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This article presents a new approach for constructing
no-arbitrage models of the term structure in terms of the pro-
cess followed by the short rate, r. The approach, which
makes use of trinomial trees, is relatively simple and compu-
tationally much more efficient than previousty proposed pro-
cedures. The advantages of the new approach are particularly

noticeable when hedge statistics such as delta, gamma, and -

vega are computed.

The procedure is appropriate for models where there
is some function x of the short rate r that follows a mean-
reverting arithmetic process. It can be used for the Ho-Lee
model, the Hull-White model, and the Black-Karasinski
model. Also, it is a tool that can be used Jor developing a

wide range of new models,

The key element of the procedure is that it produces
a tree that is symmetrical about the expected vdiue of x. A
Jorward induction procedure is used to find the positions of
the central nodes at the end of each time step. In the case of
the Ho-Lee and Hull-White models, this Jorward induction
procedure is entirely analytic. In the case of other models, it
15 necessary to use the Newton-Raphson or other iterative
search procedure at each time step, but only a small number
of iterations are required. '

We illustrate the procedure using numerical exam:
ples and explain how the models can be calibrated to marke:
data on interest rate option prices.

n recent years there has been a trend toward

developing models of the term smucture where

the inidal term structure is an input rather than

an ourput. These models are often referred to as
no-arbitrage models,

The first no-arbitrage model was proposed by
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Ho and Lee [1986] in the form of a binomial tree of
discount bond prices. This model involves one
underiying factor and assumes an arithmetdc process
for the short rate. The Ho and Lee model was

extended to include mean reversion by Hull and
White [1990]. (Hull and White refer to this as the
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extended-Vasicek model.)

One-factor no-arbitrage models where the
short rate follows a lognormal process have been pro-
posed by Black, Derman, and Toy [1990] and Black
and Karasinski {1991]. Heath, Jarrow, and Morton
(1992] develop a2 model of the term structure in terms
of the processes followed by forward rates. Hull and
White [1993] show how a range of different one-fac-
tor no-arbitrage models can be developed using wino-
mial trees.

Choosing among the differen: no-arbitrage
models of the term structure involves some difScule
trade-offs. A two- or three-factor Heath, Jarrow, and
Morton model probably provides the most realistic
descripton of term structure movements, but it has
the disadvantage that it is non-Markov (the discribu-
ton of interest rates in the next period depends on
the current rate and also on rates in earlier periods).
This means that the model must be implemented
‘using either Monte Carlo simulation or a non-recom-
bining tree. Compurtations are very tdme-consuming,
and American-style derivatives are difficuls, if not
impossible, to value accurately.

Of the one-factor Markov models, those where
the interest rate is always non-negadve are the most
artracrive. Yet the only one-factor model that is both
capable of fitting an arbitrary inital term structure and
analytically tractable is the Hull-White extended-
‘Vasicek model. In this model negative interest rates
can occut.

The main purpose of this ardele is to present
numerical procedures that can be used to implement a
variety of different term structure models including
the Ho-Lee, Hull-White, and Black-Karasinski mod-
els. The result is a significant improvement over the
trinomial tree procedure suggested in Hull and White
[1993]. In a companion sequel ardcle, we show how
the procedures here can be extended to model two
term structures simultaneously and to represent a fam-
ity of two-factor models.

1. ONE-FACTOR INTEREST RATE MODELS

Heath, Jarrow, and Morton {1992] provide the
most general approach to. constructing a one-factor
no-arbitrage model of the term structure, Their
approach involves specifying the voladlides of all for-
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ward rates at all dmes. The expected drifts of forward
rates in a risk-neuwtral world are calculated from their
volatilides, and the inital values of the forward rates
are chosen to be consistent with the initial term
structure.

Unfortunately, the model that results from the
Heath, Jarrow, and Morton approach is usually non-
Markov. There are only 2 small number of known for-
ward rate volatility functions that give rise to Markov
models.! To develop additional Markov one-factor
models, 2n alternative to the Heath, Jarrow, and
Morton [1992] approach has become popular. This
involves specifying 2 Markov process for the short-
term interest rate, T, with a drift term that #s a func-
don .of time, 8(t). The tme-varying drift functon is
chosen so that the model exactly fits the current term
structure, :

The Ho and Lee {1986] model can be used to
provide an example of the alternative approach. The
continuous time limit of the Ho and Lee 11986]
model] is?

dr=8@)dt+odz

In this model all zero-coupon interest rates at
all dmes are normally distributed and have the same
variance rate, 02, 8(t) is chosen to make the model
consistent with the mral term scrucrure. As a rough
approximation, €(t) is the slope of the forward curve
at ime zero.’

Since Ho and Lee published their work, it has
been shown that their model has a great deal of ana-
lytic tractability (see, for example, Hull and White
[1990]). Define Fft, T) as the instantaneous forward
rate at time t for a conwract maturing at T. The param-
eter B(t} is given by

8() = F (0,0 + o*
where the subscript denotes the partal derivadve. The
price at time t of a discount bond maturing at dme T,
P(t, T), can be expressed in terms of the value of r at
dme t:

Pir, T) = Aft, T)e™

where
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P(0, T)

log Alt, T) = log P0.1) + (T - )F(0, t) -

]2 2
—c“t(T -t
S o%(T - )

Since zero-coupon interest rates are norrnally
distributed, discount bond prices are lognormally dis-
tributed. This means that it is possible to use a varianc
of Black-Scholes to value opdons on discount bonds.

The price, ¢, at time t of 2 European call option on a
' discount bond is given by

¢ = P(t, )N(b) — XP(t, T)N(h ~ Gy) 1)

where s is the maturity date of the bond underlying
the opton, X is the swike price, T is the maturity
date of the opdon,

h = Llog———-—-P(E’ S) + %
op "Pt DX 2

and
o = (s - TP(T - ¢)

The variable O, is the product of the forward
bond price voladlity and the square root of the life of
the opton.

European options on coupon-bearing bonds
can be valued analyrically using the approach in
Jamshidian {1989]. This approach uses the fact that all
bonds are instantaneously perfectly correlated to
€Xpress an opuon on a coupon-bearing bond as the
sum of opdons on the discount bonds that make up
the coupon-bearing bond.

The Hull-White {extended-Vasicek) model can
be regarded as an extension of Ho and Lee that incor-
porates mean reversion. The short rate, 1, follows the
process

dr = [8(t) —ar] dt + G dz

in a risk-neutral world. The short rate is pulled toward
its expected value at rate 2.
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There are two volatlity parameters, a and o,
The parameter ¢ determines the overall level of
volatility; the reversion rate parameter, a, determines
the relative volatilidies of long and short rates. A high
value of a causes shori-term rate movements to damp
out quickly, so long-term voladlicy is reduced. As in
the Ho and Lee model, the probability distribution of
all races at all dmes is normal.

Like Ho and Lee, the Hull-White model has 2
great deal of analytic tracrability. The paramerer, (1),
is given by

2
G(l) = P[(O, l) + aF(O, t) + -;—a(] - e-2at) (2)

The price at dme t of a discount bond marur-
ing at ame T is given by

P(t, T) = Aft, T)e BT

~ where

B(, T) 1[1 - e"(T“‘)]

a

and

P(0, T)

log Alt, T) = 1
og At, T) = log P00

+ B(L, T)F(0, 1) -

g—:—(l - e 2Bt T)?

The price, ¢, at time t of a European call option
on 2 discount bond is given by Equason (1) with

As in the case of Ho and Lee, European
opdons on coupon-bearing bonds can be valued ana-
lyrically using the decomposition approach in
Jamshidian [1989).
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Another mode] of the short rate has been sug-
gested by Black, Derman, and Toy {1990]. The con-
tnuous time limit of their model is:

dlog(r) = [B(t) + -gc—;((—:))-log(r)]dt + oft)dz

This model has the desirable fearure that the
short rate cannot become negadve, but it has no ana-
lytic tractability. The probability distribution of the
short rate ac all dmes is lognormal, and the reversion
rate, —0”(t)/O(t), is a functon of the short rate volatli-
ty, o), and its derivative with respect to tme, o’(t).
In practice, the Black, Derman, and Toy model is
often implemented with o(t} constant, so o’(t) = 0. It
then reduces to a lognormal version of Ho and Lee:

dlogfr) = 8(t) dt + ¢ dz

Black and Karasinski [1991] decouple the
reversion rate and the voladlity in the Black, Derman,
and Toy model to get:

dlog(r) = [8(t) ~ a(t)log(r)] dt + o() dz

Black and Karasinski provide a procedure for imple-
mentng their model involving 2 binomial tree and
time steps of varying lengths.

One issue that arises in both the Hull-White
and Black-Karasinski model is whether 2 and ¢ should
be functions of time.* The advantage of making these
parameters functions of time is that it becomes possi-
ble to fit the voladlity structure at dme zero exactly.
The disadvantage is that the voladiity term strucrure at
future times is liable to be quite different from the
volatlity structure roday.

We first noticed this when trying to fic the
“hump” in cap volatlities by making the reversion
rate, 2, a functon of dme. The resulting volatility
term structure as seen at a time zfter the hump proves
to be steeply downward-sloping — quite different
from the inidal voladlicy scructure,

A reasonable approach here may be 1o intro-
duce a small amount of dme dependence into the s
and O parameters without trying to match initial
volatlides exactly. For example, we might choose to
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set the reversion rate, a, to zero beyond year 7 to
reflect the fact that the volatility curve appears 1o
“level out” at abour this time. This type of modifica-
tion to the basic model can easily be accommodated
by the tree-building technology that we describe here.

II. BUILDING TREES FOR THE
HULIL~-WHITE MODEL

The Hull-White model is:
dr = [8(t) - ar} dt + G dz ' &)

Although this model has many analytic properties, a
tree is necessary to value instruments such as
American-style swap options and indexed amortizing
rate swaps.

Hull and White {1993} constrace a trinomial
tree to represent movements in r by using time steps
of length At and considering at the end of each time
step r-values of the form t, + kAr, where k is a posi-
tive or negatve integer, and r, is the inidal value of r.
The tree branching can take any of the forms shown
in Exhibit 1. Here we improve upon Hull and White
[1993] by arranging the geometry of the tree so that
the central node always corresponds to the expected
value of r. We find that this leads to faster tree con-
struction, more accurate pricing, and much more
accurate values for hedge parameters.

The first stage is to build a preliminary tree for
r. setting 6(t) = 0 and the inidal value of r = 0. The
process assumed for r during the first stage is therefore

EXHIBIT 1
ALTERNATIVE BRANCHING PROCESSES

S£Y
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dr=—ardr+ o dz

For this process, r(t + At) - r{t) is normally dis-
wributed. For the purpose of tree construction, we
define t a5 the contnuously compounded At-period
rate. We denote the expected value of r(t + Ac) — r(t)
as r()M and the variance of r{t + At) — r(t) as V.

We first choose the size of the time step, At.
We then set the size of the interest rate step in the
tree, Ar, as

Ar = 43V

Theoretical work in numerical procedures suggests
that this is a good choice of Ar from the standpoint of
error minirnizaton. ‘ :

Our first objectdve is to build a tree similar co
that shown in Exhibit 2, where the nodes are evenly
spaced in r and t. To do this, we must resolve which
of the three branching methods shown in Exhibit 1
will apply at each node. This will determine the over-
all shape of the tree. Once this is done, the branching
probabilities must also be calculated,

Define (i, j) as the node for which t = jAtand 1
= jAr. Define p , p,_, and p, as the probabilities of the
highest, middle, and lowest branches emanating from
a node. The probabilides are chosen to match the
expected change and variance of the change in r over
the next time interval At. The probabilites must also
sum to umnity. This leads to three equations in the
three probabilides. When r is at node (3, j) the expect-
ed change during the next dme step of length At is
JArM, and the variance of the change is V.

If the branching from node (i, j) is as in Exhibit
1A, the soludon to the equatons is

1 M+ M
Py = o b T
6 2
2 a0
= % - M
Pm 3 J
1 M - M
= -+
P4 5 >
respectively.
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EXHIBIT 2
TREE WITH 8(t) = 0 WHEN f(r) = 1, 2 = 0.1, 5 = 0.01,
AND At = ONE YEAR

Nods A B C . D E F G H 1

v 0.00% 1.73% 0.00% =1.73% 3.46% 1.73% 0.00% —1.73% «3.46%
p, 0.167 0.122 0.167 (222 0.887 0122 0.167 0.222 0.087
Py 0.666 0.656 0.666 0.636 0.026 0.656 0.666 0.656 0,026
pe 0.167 0222 0167 0122 0.087 0222 0.167 0.122 0.887

If the'branching has the form shown in Exhibic
1B, the soluton is

po= Ly IM - M
"6 2

1 a2
Pm= =3~ I'M" + 2jM
; .1, M - 3M
17 6 2

Finally, if it has the form shown in Exhibit 1C,
the solution is :

7 PM? + 3M
Py = ¢+
6 2
1 2y o2 .
pm=--3--JM - 2M
1 PM* 4 M
= — 4+
Pg 6 3

Most of the time the branching in Exhibit 1A
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EXHIBIT 3
FINAL TREE WHEN f(t) =1, a = 0.1, 5 = 0.01, At = One
YEAR, AND THE t-YEAR ZERO RATE IS 0.08 0.05e- 018

Node A B C D E F G H i

r 3.82% 6.93% 5.20% 3.47% 9.71% 7.98% 6.35% 452% 2.7%
P, 0167 0122 0167 0.222 0.887 0,122 0.147 0.222 0.087
Pn 0666 0.636 0.666 0.656 0.026 0.656 0.466 0.656 0.026
py 0167 0.222 0167 0.122 0.087 0222 0.167 0122 0887

is appropriate. When a > 0, it is necessary to switch
from the branching in Exhibit 1A to the branching
in Exhibit 1C when j is large. This is to ensure that
the probabilities Py Pap» 3nd p, are all positive.
Simdlarly, it is necessary to switch from the branch-
ing in Exhibit 1A to the branching in Exhibit 1B
when j is small (i.e., negacve and large in absolute
value).

Define j_ as the value of j where we switch
from the Exhibit 1A branching to the Exhibit 1C
branching, and j_ . as the value of j where we switch
from the Exhibit 1A branching to the Exhibit 1B
branching, It can be shown from the equatons that
Py Pa 2nd p, are always positive, providing j is
chosen to be an integer between —0.184/M and
—0.816/M, and j_. is chosen to be an integer
berween 0.184/M and 0.816/M, (Note that when 2 >
0, M < 0.) In practce we find that it is most efficient
to set j_. equal to the smallest integer greater than
—0.184/M and j_. equal to “Jnax:

We illustrate the first stage of the tree construc-
ton by showing how the tree in Exhibit 2 is con-
structed for ¢ = 0.01, a = 0.1, and At = one yeaz. In
this example we set M = —Ar and V = g2At. This is
accurate to order At® The first step in the construc-
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Hon of the tree is to calculate Ar from At In this case
Ar=0.01 43 =0.0173.

The next step is to calculate the bounds for e
These are 0.184/0.1 and 0.816/0.1, or 1.84 and 8.16.
We set j__ = 2. Similady, we set Jmin = =2. The proba-
bilities on the branches emanatng from each node are
caleulated using the equations for Pyr Py and p &

Note that the probabilities at each node
depend only on j. For example, the probabilides at
node B are the same as the probabilides at node E
Furthermore, the tree is symmerrical. The probabili-
ties at node D are the mirror tmage of the probabili-
ties at node B.

This completes the tree for the simplified pro-
cess. The nexr stage in the tree constructon is to
inroduce the correct, tme-varying drift. To do this,
we displace the nodes at dme iAt by an amount & to
produce a new tree, Exhibit 3. The value of r at node
(i, j) in the new mee equals the value of r at node (i, j)
in the old:tree plus 0. The probabilities on the tree
are unchanged. The values of the Qs are chosen so
that the tree prices all discount bonds consistently
with the initial term structure observed in the market.

The effect of moving from the tree in Exhibic
2 to the tree in Exhibit 3 is to change the process
being modeled from

dr = —arde+ gdz
to
dr = [8(t) = ar] dr + 6 dz

If we define §(1) as the esdmate of & given by
the tree berween times tand t + At, the drift in r ar dme

-1At at the midpoine of the tee is é(t) — a0 so that®

[é(t) - aai]m = 0 - o
Qr

B = i T ey act;
At

This equation relates the 65 to the @s. In the limit as
At = 0, 8(t) — 8().7
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To facilitate computadons, we define Q,; as the
present value of a securiry that pays off $1 if node (i, J
is reached and zero otherwise. The Q. and Qi,j are cal-
~ cuiated using forward induction. We illustrate the pro-
cedure by showing how the tree in Exhibit 3 is calcu~
lated from the tree in Exhibit 2 when the t-year con-
tinuously compounded zero-coupon rate is 0.08 —
0.05¢7%% (This corresponds approximately to the
U.S. term structure at the beginning of 1994, with
one-, two-, and three-year yields of 3.82, 4.51, and
5.09, respectively.)

The value of Q, , is 1. The value of Q, is cho~
sen to give the right price for a zero-coupon bond
maturing at ome At. That is, @, is set equal to the ini-
tial At period interest rate. Since At = 1 in this exam-
ple, 0y = 0.0382. The next step is to calculate the val-
ues of Q,,, Q,,, and Q, -y~ There is a probability of
0.1667 that the (1, 1) node is reached and the dis-
count rate for the first dme step is 3.82%. The value
of Q, ; is therefore 0.1667¢"9%2 = 0.1604. Similarly,
Qo= 0-6417,2nd Q, , = 0.1604.

Once Q, . Q, o and Q, . have been calcular-
ed, we are in 2 positdon to determine @,. This is cho-
sen 10 give the righe price for 2 zero-coupon bond.
maturing at tme 2At. Since Ar = 0.0173 and At = 1,
the price of this bond as seen at node B is ¢ \*1700173),
Sirnilarly, the price as seen at node C is ¢ and the

. . ={0;~00173}
price as seen at node D is ¢

seen at the inital node A is therefore

. The price as

P(O, 2) = Ql.lc-(a]+0.0173} + Q[.Qc_ul

Q]‘—] e-(ut -0.0173)

{4
From the initial term strucrure, this bond price should

be ¢7004512%2 = 09137, Substituting for the Qs in
Eguadon (3), we obtain

0.16046-(u1+0'0173] + 0.6417e~™

+ 0.1604¢@100173) _ 4434

This can be solved to give a, = 0.0520.
The next step is to calculate Quz Qayr Qugr
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Q- 2nd Q, _,. These are found by discoundng the
value of a single $1 payment at one of nodes E-| back
through the tree. This can be simplified by using pre-
viously determined (Q values.

Consider as an example Q. This is the value
of a security that pays off $1 if node F is reached and
zero otherwise. Node F can be reached only from
nodes B and C. The interest rates at these nodes are
6.93% and 5.20%, respectively. The probabilities asso-
ciated with the B-F and C-F branches are 0.656 and
0.167. The value at node B of $1 received at node F is
therefore 0.656e %% The value at node C is
0.167e70:0520 ,nd the present value is the sum of each
of these weighted by the present value of $1 received
at the corresponding node. This is

0.656e70%% % 0,1604 + 0.1670:0520 &

0.6417 = 0.1997

Similarly, Q,,.= 0.0183, Qup = 04737, Q,_, =
0.2032, and Q, _, = 0.0189.

The next step is to calenlate Q. After that the
Q5 can then be computed. We can then calculate
Q,; and so on.

To express the approach more formally, we
suppose the Qid.s have been determined for i £ m (m
2 0). The next step is to determine 0 so that at dme
O the tree correctly prices 2 discount bond maruring
at {m + 1)At. The interest rate at node (m, Nisa_+
JAr so that the price of a discount bond maturing at

‘ame (m + 1)At is given by

P(0, m+1) = anQm,j exp[~(cy, + janatl (s)

j=-am

where n_ is the number of nodes on each side of the
central node at dme mAt. The soludon of this equa-
gon is

Rm ajoTAt
o i_’jzj'—‘-nm Qe _ logP(0, m + 1)

Once o » D2s been determined, the Q.

% fori=
m + 1 can be calculated using
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Qe = 3 Qmaa(k, jJexp[{a,, + kar)at]
k

where q(k, j) is the probability of moving from node
{m, k) to node (m + 1, J), and the summaton is taken
over all values of k for which this is non-zero.

OI. EXTENSION TO OTHER MODELS

We now show how this procedure can be
extended to more general models of the form

df(r) = [8(r) — af(r)] dt + & dg

These models have the advantage that they can fit any

term structure. When f{r) = log(r) the mode] is a ver-

sion of the Black and Karasinski [1991] model. .
We start by seting x = f{r) so that

dx = [B(t) - ax] dt + 0 dz

The first stage is to build 2 tree for x setting
8(t) = 0 and the initial value of x = 0. The procedure
here is identical to the procedure for building the tree
in Exhibit 2.

As in the previous section, we then displace the
nodes at time iAt by an amount @, 10 provide an exact
fit to the initial term strucrure. The equations for
determining Q. and Qid. inductively are slightly differ-
ent from those already described. Qe = 1. Suppose
the Qi‘ss have been determined fori < m (m 2 0). The
next step is to determine Uy SO that the tree correctly
prices an (m + 1)At discount bond,

Define g as the inverse functon of f so that the
At-period interest rate at the Jjth node at time mAzis

8@, *+ jax)
The period 0 price of 2 discount bond marur-

ing at time t_ +; 1s given by

Y Qs explg(cy + jaxjat] ()

J=mng

P(0, m+1) =

This equadon can usually be solved with 2 small num-
ber of iterations using the Newton-Raphson proce-
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dure. When m = 0, Equation (6) can be soived o
give a, = f(ro), where I, is the condnuously com-
pounded yield on the At maturiry discount bond.

Once ¢ has been determined, the Q fori=
m + 1 can be calculated

Qm+1.j = ZQm.kq(k' j)exp["g(am + kAx)At]
k

where q(k, j) is the probability of moving from node
(m, k) to node (m + 1, 1) and the summation is taken
over all values of k for which this is Non-zero.

Exhibit 4 shows the resules of applying the pro-
cedure to the mode]

dlog(r) = {0(c) - alog(r)] dt + o dz

when a2 = 0.22, g = 0.25, At = 0.5, and the t-year
zero-coupon yield is 0.08 — 0.05e~0-18

The procedures described here can be extend-
ed in a number of ways. First, the parameter, a, can be
a function of time. This does not affect the positons
of the central nodes or Ax, It leads to the probabili-
tes, and possibly the rules for branching, being differ-
ent at each time step.

EXHIBIT 4
TREE WHEN {{r) = Lo¢ r),a=0.22,0=0.25, At= 0.5
YEAR, AND THE t~YEAR ZERO RATE 15 0.08 — 0.05e-0-15t

Neode A B C D E F G H [

% ~3.3725 ~2.8751 -3.1813 -3.4875 2430 27362 10424 =3 1% 3E57E
PR S6A% 415%  306% BS0% 648% 47T% 351% 259K
P, Q167 0118 0167 0228 08 0118 0167 028 008
P 0666 0634 0666 0654 0058 0654 0666 0654 0058

-

P; 0167 6228 0167 0418 0081 028 0.167 0118  0.881
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Second, the parameter G can be made 2 func-
ton of dme. The easiest approach here is to make the
time step on the tree inversely proportional to thac
date’s G°.

Third, iteratve procedures can be devised ro
choose functions of time for 2 and G so that aspects of
the initial term structure are matched. (As we explain
earlier, we do not recommend this.) Finally, che length
of the ome step can be changed using a procedure
analogous to that outlined in Hull and White [1993].
+ Thus might be done to reduce the amount of compu-
uztion needed for the later periods of 2 long-maturicy
instrument.

IV. CALCULATION OF HEDGE STATISTICS

Delta, in this case the pardal derivative of the
price of a security with respect to che short Tate, t, can
be calculated directly from the tree in the usual way.
Practitoners are usually interested in calculating the
partial derivatives of a security price with respect to z
number of different shifts in the term structure. A
popular approach is to divide the zero curve ‘or the
forward curve into a number of sections or “buckets,”
and to consider changes in the zero curve where there
is a small shift in one bucket and the rest of the zero
curve is unchanged.

To calculate 2 generalized delta with respect to
a shift in the term structure, we compute the value of
the security in the usual way. We then make the shift
in the term structure, reconstruct the tree, and
observe the change in the security price.

A key feature of our tree-building procedure is
that the posidon of the branches on the tree relative o
the cenrral branch and the probabilides associated with
the branches do not depend on the term strucrure, A
small change in the term swucture affects only the Q.
The result of all this is a2 control variate effect where
the partial derivative is estimated very accurately >0

We favor calculating two vega measures: the
partial derivatives with respect to the paramerers, a
and O. In each case we make a small change to the
parameter, reconstruct the tree, and observe the effact
on the security price. In the case of G, 2 small change
affects only the spacing of the nodes; it does not alter
the probabilities. In the case of 2, a small change
affects the probabilities in a symmetrical way; it does
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not affect the positions of nodes. In both cases, there
1s 2 conrrol variate effect that leads to the partial

* derivatives being calculated with a high degree of

accuracy.
There are many different gamma measures that

can be calculated. We favor 2 single overall measure of

curvature: the second partal derivacve of the security

price with respect to r. This can be calculated directly
from the tree.

V. CALIBRATION

The Black-Scholes stock option model has the

. simplifying feature that it involves only one voladlity

parameter. The usual procedure for calibrating the
model to the market is to infer this paramerer from
the marker prices of actively traded stock options.

The models presented here are more compli-
cated than Black-Scholes in that they involve two
volatility parameters, 2 and 6. The parameter G deter-
mines the overall volatility of the short rate. The
parameter 2 determines the relative volatilities of long
and short rates. In practice, both pammeters are liable
to change over drmne.

We favor inferring both parameters from bro-
ker quotes or other market data on the prices of inter-
est rate options. Our procedure is to choose the values
of 2 and © that minimize

(P - Vi_)z

where P, is the market price of the ith interest rate
opuon, and V, is the price given by the model for the
ith interest rate option. The minimization is accom-
plished using an iterative search “hill-climbing” tech-
nique. When we calibrate the Hull-White model to
the prices of seven at-the-money swap options, we
find that the best fit values of 2 and G give a oot
mean square pricing error of about 1% of the option
price.

VI. CONCLUSIONS

This numerical procedure for one-factor term
structure models can be used for the Hull-White
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extended-Vasicek model and for lognormal models
similar to those proposed by Black, Derman, and Toy
[1990] and Black and Karasinski [1991]. The new
approach is simpler and faster than previously suggest-
ed approaches. What is more, it gives greater accuracy
for both che pricing of interest rate derivatives and
hedge paramerers.

ENDNOTES

The authors are grateful to Zak Maymin of Sakura
Global Capital for comments on an eadier version of this
article,

"These are the Ho and Lee [1986] and the Hull
and White [1990] models.

Note that we use risk~neutral valuation. All pro-
cesses are those that would exist in a risk-neutral world.

*A more precise satement is that 9(t) is the partal

derivative with respect to t of the instantaneous Jutures rate.

for a contract with macurity t. When interest razes are
stochastic, forward and futures rates are not exacdy the
same. .

“Like Black and Karasinski, in their original 1990
publicadon Hull and White provide results for the general
case where a and © are functions of time.

SFor slightly faster convergence, we can set M and
V equal to their exact values:

M= 1, V=gl ey,

“Equation (2) provides an analytic expression for
8(t). We prefer not to use this and to construct the tree
using the iteradve approach described here. This is because
it leads to 2 wee where the initial term soucture is marched
exactly. If the value of 8 at dme t is assumed to apply to the
ame interval berween t and t + At, the initial term struc-
ture is matched exactly only in the limit as At tends to zero.

7It is not necessary to caleutate 6 or 8 in order 1o
construct or use the tree. )

¥Not all no-arbitrage models have this property.
For example, the extended-CIR model, considered by
Cox, Ingersoll, and Ross [1985] and Hull and White
{1990], which has the form

dr = [8(t) - ardt + o+r dz

cannot fit steeply downward-sloping yield curves. This is
because the process is not well-defined when O(t) is nega-
dve. When r is small, the negative drift makes r become

16 NUMERICAL PROCEDURES FOR IMPLEMENTING TERM STRUCTURE MODELS 1: SINGLE-FACTOR MODELS

negative, resulting in imaginary voladlides,

*In Hull and White {1993}, 2 small change in the
term scructure is Hable to lead to a change in all the branch-
ing probabilities. This introduces “naise,” and causes the
effect of small changes in the term structure on the price of
a derivative to be esimated with much less precision.

"®The control variate approach is 2 technique for
increasing the accuracy of 2 numerical approximaton. If the
value of some variable to be approximated, X, is always
clase to some other varizble ¥ whose value is known, accu-
racy can often be increased markedly by approximating not
X but the difference between X and the control vataze Y.

REFERENCES

Black, F.,.E. Derman, and W. Toy. “A One-Factor Model
of Interest Rates and irs Application to Treasury Bond
Options.” Finandal Analysts Journal, January-February 1990,
Pp- 33-35. :

Black, F., and P. Karasinski. “Bond and Option Pricing
when Short Rates are Lognormal.” Financial Analysts
Joumal, July-August 1991, pp. 52-55.

Cox, J.C., J.E. Ingersoll, Jr., and S.A. Ross. “A Theory of
the Term Structure of Interesc Rates.” Econometrica, 53
(1985), pp. 385407.

Heath, D., R. Jarrow, and A. Morton. “Bond Pricing and
the Term Structure of Interest Rates: A New
Methodology.” Econometriea, 60, 1 (1992), pp. 77-105.

Ho, T.5.Y., and S.-B. Lee. "Term Stucture Movemens
and the Pricing of Interest Rate Contingent Claims.”
Journal of Finance, 41 (December 1986), pp. 1011-1029,

Hull, J., and A. White. “One-Facror Interest Rare Models
and the Valuation of Interest Rate Denvanve Securicies.”
Journal of Financial and Quantitative Analysis, 28 {1993), pp.
235-254.

——. “Pricing Interest Rate Derivative Securities.” Review
of Financial Studies, 3, 4 (1990), pp. 573-592.

Jamshidian, F. “An Exact Bond Option Pricing Formula.”
Joumal of Finance, 44 (March 1989), pp. 205-209.

FALL 1994



