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Abstract 

We present an alternative to the Gaussian copula/base correlation model for valuing CDO 
tranches. Instead of implying copula correlations from market prices we imply the copula 
itself. Our model fits the market quotes for actively traded CDO tranches exactly. It is 
easy to understand and is a useful tool for pricing, trading, and risk management. It 
enables non-standard credit derivatives, such as bespoke CDOs and CDO squareds, to be 
priced consistently with market quotes for tranches of standard CDOs.  Contrary to some 
of the criticisms that have been made of the approach, we find that it is more stable than 
the Gaussian copula/base correlation approach. Indeed our results suggest that the spreads 
given by the latter approach sometimes permit arbitrage.  
 
 
 
 
* Early drafts of this paper were entitled “The Perfect Copula” and many analysts still refer to our approach 
as the perfect copula approach rather than as the implied copula approach. We are grateful to Bill Bobey for 
research assistance and to Leif Andersen, Steve Figlewski, Jon Gregory, David Lando, Roger Stein, and 
Harald Skarke for comments that have improved this paper. We are also grateful to participants at the 
following events for helpful feedback on earlier drafts of this paper: WBS Fixed Income Conference, 
Prague (Sept. 2005), GRETA Credit Risk Conference, Venice (Sept. 2005), Moody’s Academic Advisory 
Committee Meeting (Nov. 2005), ICBI Global Derivatives, Geneva (Dec. 2005), WHU Campus-for-
Finance Conference (Jan. 2006), Credit Derivatives Congress, New York (Apr. 2006), and an IAFE 
Presentation (May 2006). We are grateful for financial support from Moody’s Investors Service. 
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Valuing Credit Derivatives Using an Implied Copula Approach 

 

John Hull and Alan White 

The Gaussian copula model has become the standard market model for valuing 

collateralized debt obligations and similar instruments. Many market participants like to 

imply what are known as base correlations for actively traded instruments using this 

model. Spreads for less actively traded instruments are often obtained by interpolating 

between these base correlations. In this respect the market uses implied base correlations 

and the Gaussian copula model in much the same way as it uses implied volatilities and 

the Black-Scholes model.1  

If the Gaussian copula model fitted market prices well the implied base correlation would 

be approximately constant across tranches. However, this is not the case. As a result it is 

very difficult to determine the appropriate correlation when the Gaussian copula model is 

used to value non-standard credit derivatives such as bespoke CDOs and CDO-squareds.2 

This has led a number of researchers to look for copulas that fit market prices better than 

the Gaussian copula. Among the copulas that have been considered are the Student-t, 

double-t, Clayton, Archimedean, and Marshall Ohkin. 

In this paper we take a different approach. We show how a copula model can be implied 

from market quotes. What we are doing in this paper is analogous to what Breeden and 

Litzenberger [1978] and Jackwerth and Rubinstein [1996] did when they implied a future 

stock price distribution from European option prices. Using a copula that provides a 

perfect fit to market quotes for all tranches is particularly useful when non-standard 

structures are considered.  

The simplest version of the implied copula approach is the homogeneous case in which 

we assume that all companies being modeled have the same default probabilities and the 

same recovery rate. We choose a number of alternatives for the term structure of hazard 

                                                 
1 For a description of the CDO market and the implementation of copula models see Hull and White 
[2004]. 
2 Again we have an analogy with option pricing. Black-Scholes does not fit option prices well and so it is 
difficult to know the correct volatility to use when exotic options are valued using Black-Scholes 
assumptions. 
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rates and search for probabilities to apply to them so that market quotes are satisfied. We 

will refer to the result of this procedure as a set of hazard rate scenarios.  

It is not immediately obvious that the implied copula approach, as we have just outlined 

it, has anything to do with copulas. However, we will show that the value of the factor in 

a one-factor copula model implies a hazard rate scenario for the underlying companies. 

The usual procedure for implementing a one-factor copula model involves integrating the 

value of the underlying instrument over the probability distribution of the factor using 

Gaussian quadrature. Equivalently it involves integrating the value of the instrument over 

the corresponding set of hazard rate scenarios. Specifying a one-factor copula model is 

therefore equivalent to specifying the corresponding set of hazard rate scenarios. 

Conversely, any set of hazard rate scenarios is equivalent to a copula.  

Given this equivalence between a copula and a set of hazard rate scenarios, a natural 

suggestion is that, instead of specifying the copula in the usual way, we specify the set of 

hazard rate scenarios directly. This is the suggestion that underlies the ideas in this paper. 

The default correlation in the copula model corresponds to the dispersion of the hazard 

rate scenarios. As the dispersion increases the default correlation increases.   

I. CDS AND CDO VALUATION 

Credit default swaps (CDSs) and collateralized debt obligations (CDOs) provide 

protection against default in exchange for a fee. Although a CDO is a much more 

complicated contract than a CDS the approaches used to value the two contracts have 

some similarities. 

A typical contract (CDS or CDO) has a life of 5 years during which the seller of 

protection receives periodic payments at some rate, s, times the outstanding notional. 

Usually these payments are made quarterly in arrears. When defaults occur3 they reduce 

the outstanding notional principal and trigger two events. First there is an accrual 

payment to bring the periodic payments up to date. Second the seller of protection makes 

a payment equal to the loss to the buyer of protection. The loss is the reduction in the 

notional principal times one minus the recovery rate, R. 

                                                 
3 For simplicity we assume that defaults occur in the middle of a period. More realistic assumptions can be 
used but they do not materially affect the value and serve only to obscure the notation. 
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The value of a contract is the present value of the expected cash flows. The calculation of 

this present value involves three terms. The first, A, is an annuity factor that is the present 

value of the regular payments at a rate of 1 per year. The second, B, is the accrual 

payment that occurs when defaults reduce the notional principal, and the third, C, is the 

payoff arising from defaults. Expressions for A, B, and C for a CDS are 
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where ti for 1≤ i ≤ n is the end of period i when the ith periodic payment is made, P(ti), is 

the notional principal outstanding at ti, r is the risk-free rate of interest, and E denotes 

expectations taken over a risk-neutral density. The same equations apply to CDO 

tranches except that the expression for C should not be multiplied by 1–R. The total value 

of the contract to the seller of protection is sA + sB – C. The breakeven spread is C/(A + 

B). The key element in pricing the contract is the determination of the expected notional 

principal at time ti.  

A CDS provides protection against a default by a particular firm. The variable P(t) is 

initially equal to the notional principal, K. It reduces to zero when the firm defaults. The 

expected notional principal at time ti  is therefore 

 ( ) ( )( )1i iE P t Q t K= −⎡ ⎤⎣ ⎦   

where Q(t) is the risk-neutral probability that the entity has defaulted before time t.  

A synthetic CDO provides protection against a subset of the total loss on a portfolio of 

CDSs. The portion of loss that is covered, known as a tranche, is defined by attachment 

point (AP), aL, and detachment point (DP), aH. The seller of protection agrees to cover all 

losses between aL KTot and aH KTot where KTot is the initial total notional principal of all 

the underlying CDSs. In exchange, the seller of protection receives payments at rate s on 

an initial notional (aH – aL) KTot. Each loss that is covered reduces the notional on which 
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payments are based. Once the total portfolio losses exceed the detachment point no 

notional remains and all payments stop.  

Two portfolios that attract a lot of trading are the CDX IG and the iTraxx portfolios. 

CDX IG is an equally weighted portfolio of 125 CDSs on investment grade North 

American companies. The standard {AP, DP} are {0, 3%), {3%, 7%}, {7%, 10%}, 

{10%, 15%}, {15%, 30%}, and {30%, 100%}. iTraxx is an equally weighted portfolio of 

125 CDSs on investment grade European companies. The standard {AP, DP} are  

{0, 3%), {3%, 6%}, {6%, 9%}, {9%, 12%}, {12%, 22%}, and {22%, 100%}. The 

portfolios are revised periodically to reflect downgrades and defaults. Exhibit 1 shows the 

mid point of the bid and offer quotes from Reuters for CDX IG and iTraxx on August 30, 

2005. The quotes for the 0 to 3% tranche show the upfront payment (as a percent of 

principal) that must be paid in addition to 500 basis points per year. The quotes for the 

other tranches are the annual payment rates in basis points per year that must be paid. The 

index quote indicates the cost of entering into a CDS on all 125 companies underlying the 

index. Consider for example the 50 basis point quote for the CDX IG index. This means 

that 125 five-year CDS contracts on the CDX IG companies, each with a notional 

principal of $800,000, could be purchased for a payment of 0.005×125×800,000 or 

$500,000 per year. This payment would reduce by 500,000/125 or $4,000 when a default 

occurs. 

Suppose there are N CDSs in the CDO portfolio each with the same notional principal, K, 

and the same recovery rate, R. In this case the AP and DP can be mapped into the number 

of losses. A tranche with attachment point aL and detachment point aH is responsible for 

the nL-th to nH-th loss where nL = aL N/(1–R) and nH = aH N/(1–R). For example, if N = 

125, R = 0.4, aL = 0.03 and aH = 0.06 then nL = 6.25 and nH = 12.5. In this case the initial 

notional for the CDO tranche is (0.06–0.03)NK or 3.75K. This is the remaining notional 

as long as there have been 6 or fewer defaults. The seller of protection is responsible for 

providing compensation for 75% of the seventh default so the seventh default reduces the 

notional by (1–R)K×0.75 or 0.45K to 3.30K. Defaults 8 to 12 each reduce the remaining 

notional by (1–R)K or 0.6K. After the twelfth default the remaining notional is 0.30K. 
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This is eliminated by the thirteenth default. Thereafter the notional is zero and no further 

payments occur.4  

Let Pj be the remaining notional after the jth default and define m(x) as the smallest 

integer greater than x. Then the general expression for the remaining tranche notional 

after j defaults is 

 ( )
( ) ( )

( ) ( ) ( )
( )

, 1
0

H L L

j L H H L H

H

a a NK j m n
P a a a NK j R K m n j m n

j m n

− <⎧
⎪= − − ≤ <⎨
⎪ ≥⎩

 (2) 

The expected principal at time ti is obtained by integrating this over the probability 

distribution of the number of defaults by time ti. 

 

II. ONE-FACTOR COPULA MODELS 

A one-factor copula model is a way of modeling the joint defaults of n different obligors.  

The structure for this model was suggested by Vasicek [1987] and it was first applied to 

credit derivatives by Li [2000] and Gregory and Laurent [2005].  

The first step is to define variables xj (1≤ j ≤ n) by 

 jjjj ZaMax 21−+=  (3) 

where M and the Zj’s have independent probability distributions with mean zero and 

standard deviation one. The variable xj can be thought of as a default indicator variable 

for the jth obligor: the lower the value of the variable, the earlier a default is likely to 

occur. Each xj has two stochastic components. The first, M, is the same for all xj while the 

second, Zj, is an idiosyncratic component affecting only xj. Equation (3) defines the 

correlation structure between the xj’s.  

                                                 
4 A careful reader will notice that, if we have a set of CDO tranches that cover the full range of losses on 
the portfolio of CDSs, every time there is a default the total notional of the CDOs on which spread 
payments are based is reduced by (1–R)K. Meanwhile the total notional of the CDSs underlying the CDOs 
is reduced by K. Usually the notional of the most senior tranche, the tranche with the highest attachment 
point, aL, is reduced by RK every time there is a loss that affects a more junior tranche and by K for each 
default affecting the most senior tranche. In this way the total notional for the CDOs remains the same as 
the total notional for the underlying CDSs. 
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Suppose that tj is the time to default of the jth obligor and Qj is the cumulative probability 

distribution of tj.  The copula model maps xj to tj on a “percentile to percentile” basis. The 

5% point on the xj distribution is mapped to the 5% point on the tj distribution; the 10% 

point on the xj distribution is mapped to the 10% point on the tj distribution; and so on. In 

general, the point tj = t is mapped to xj = x where  

 ( )1
j jx F Q t− ⎡ ⎤= ⎣ ⎦  (4) 

or equivalently  

( )1
j jt Q F x− ⎡ ⎤= ⎣ ⎦  

and Fj is the cumulative probability distribution for xj. 

The copula model defines a correlation structure between the tj’s while maintaining their 

marginal distributions. The essence of the copula model is that we do not define the 

correlation structure between the variables of interest directly. We map the variables of 

interest into other more manageable variables (the xj’s) and define a correlation structure 

between those variables.  

From Equation (3)  

( )
2
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j
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j
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a

⎡ ⎤−
⎢ ⎥< =
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where Hj is the cumulative probability distribution of Zj. It follows from Equation (4) that 

 ( ) ( ) ( )1
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 (5) 

Conditional on M, defaults are independent. When using the model to value a CDO 

tranche we set up a procedure to calculate, as indicated in Equation (1), the components 

of the present value of expected cash flows on a tranche conditional on M and then 

integrate over M to obtain their unconditional values.  
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The Standard Market Model 

In the standard market model M and the Zj have standard normal distributions and all the 

aj are equal. The time to default, Qj(t), is the same for all j and is usually determined by 

assuming a constant hazard rate that matches the CDS spread for the index. The recovery 

rate is assumed to be constant at 40%. The only free parameter in the model is therefore 

a, the common value of the aj.  

 

III. THE IMPLIED COPULA APPROACH 

Equation (5) together with the probability distribution for M defines a probability 

distribution for the term structure of cumulative default rates. Define ( )j t Mλ  as the 

hazard rate at time t conditional on M for company j. The relationship between ( )j t Mλ  

and ( )jQ t M  is 

( ) ( )
0

1 exp
t

j jQ t M M d
⎡ ⎤

= − − λ τ τ⎢ ⎥
⎣ ⎦

∫  

or equivalently 

( ) ( )
( )1

j
j

j

dQ t M dt
t M

Q t M
λ =

−
 

Equation (5) together with the probability distribution of M can therefore also be used to 

define a set of hazard rate scenarios. Furthermore, the set of hazard rate scenarios totally 

defines the model.  

This suggests a new way of viewing factor-based copulas. Instead of formulating the 

model in terms of Equations (3) and (4) we can go directly to Equation (5) and formulate 

the model in terms of a set of hazard rate scenarios. It is clear that there is a set of hazard 

rate scenarios corresponding to any factor-based copula. From Sklar’s theorem there must 

also be a copula corresponding to any set of hazard rate scenarios.   

The implied copula approach involves implying a set of hazard rate scenarios from 

market quotes. We choose a set of hazard rate term structures. (The way this choice is 
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made will be discussed later). We then search for probabilities to apply to the hazard rate 

term structures so that market quotes are matched. 

The mechanics of implementing the implied copula model are quite similar to the 

mechanics of implementing a factor-based copula. In a factor-based copula we discretize 

the distribution of M and each point of the discrete distribution implies through Equation 

(5) a term structure for cumulative default rates. In the implied copula approach we 

choose a discrete set of hazard rate term structures. Each hazard rate term structure 

implies a term structure for cumulative default rates. In a factor-based copula the 

probabilities to apply to the term structure of cumulative default rates are based on the 

probability density for M. In the implied copula approach we imply the probabilities. 

Correlation in the Implied Copula Model 

Before describing how the hazard rate term structures are chosen and how the 

probabilities assigned to them are implied we make an important point about the 

relationship between default correlation and a set of hazard rate scenarios.  

Default correlation arises in a factor-based copula model because of uncertainty about the 

default environment. When the model is expressed using Equation (3) it is the value of M 

that defines the default environment. Low values of M correspond to bad default 

environments while high values of M correspond to good default environments. When the 

model is expressed in terms of a set of hazard rate scenarios, high hazard rates correspond 

to bad default environments while low hazard rates correspond to good default 

environments. 

Default correlation depends on the dispersion of the set of hazard rate scenarios. As the 

dispersion increases default correlation increases. This is because the hazard rate term 

structure sampled from the set of hazard rate scenarios applies to all companies in the 

portfolio. In the extreme situation where there is only one hazard rate term structure the 

default correlation is zero. In this case knowing the time to default for one company does 

not help in determining that for other companies. As the dispersion of the set of hazard 

rate scenarios increases this becomes progressively less true. 
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To express this point algebraically suppose that dk is the cumulative probability of default 

over the life of the contract for an obligor for the kth hazard rate term structure. The 

probability that a company will default during the life of the contract is 

∑π=
k

kkdq  

where πk is the probability of the kth hazard rate term structure. The probability that any 

two companies will both default during the life of the contract is 

∑π
k

kkd 2  

This increases as the variance of cumulative default rates increases. The latter increases 

as the dispersion of the set of hazard rate scenarios increases. 

The probability that two companies will both default in the Gaussian copula model is 

( ), ,B b b ρ  

where ( )1b N q−= , N is the cumulative normal distribution function, ρ is the copula 

correlation, and B(x, y, ρ) is the cumulative probability that the first variable is less than x 

and the second variable is less than y in the bivariate normal distribution where the 

correlation is ρ. The Gaussian copula correlation for any two companies that is equivalent 

to a particular implied copula is given by finding the ρ that satisfies 

 ( )2 , ,k k
k

d B b bπ = ρ∑  (6) 

This Equation shows that copula correlation can be regarded as a measure of the variance 

of the default rate distribution.  

 

IV. IMPLEMENTATION OF MODEL  

In the simplest implementation of the implied copula approach default probabilities are 

determined by assuming that defaults occur according to a Poisson process whose hazard 

rate is drawn from a discrete L-point distribution. Our conditional cumulative default 

probabilities are  
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 ( ) ( )1 exp 1, ,k kQ t t k Lλ = − −λ = K  (7) 

The probability that λ = λk is πk. The calibration problem is to choose a set of λk’s and 

their associated πk’s.  

The index quote and the quote on the first five iTraxx or CDX tranches are used for 

calibration. We first choose a set of λk’s. For each λk, Equations (1) and (7) are used to 

calculate the value of the five tranches and the index. Let us denote these values as Vm(λk) 

for m = 1 to 6, and k = 1 to L. The market is perfectly matched if we can choose the πk’s 

so that  
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 (8) 

If the recovery rate is constant we find that there is often no solution to Equation (8) 

when market spreads are used. That is, if recovery rates are assumed to be constant there 

is no distribution of default probabilities that is exactly consistent with observed prices. 

However, when a recovery rate model that reflects the negative correlation between 

default rates and recovery rates is used the prices can be fit. This negative correlation has 

been documented by Altman et al [2002], and Cantor et al [2002], and Hamilton et al 

[2005]. The best fit relationship reported by Hamilton et al [2005] is  

 ( ) ( )max 0.52 6.9 1 ,0R Q Q= − ×⎡ ⎤⎣ ⎦  

Using this relationship does not make the analysis significantly more complicated. The 

only change is that a different recovery rate is used in the calculations for each λk. This 

applies to both CDOs and CDSs. In the interests of consistency we have used this 

recovery rate model in all the results we report for both the Gaussian copula model and 

the implied copula model. 
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Choosing the λ’s 

To implement the implied copula approach we must choose the number of λ’s that will 

be used, L. We then distribute these between zero (no chance of default) and some high 

number λmax (probability of default over a period of 5 years of close to one).  

Define the sum of the values of the instruments for a hazard rate of zero and a very high 

hazard rate as follows 

 
( )

( )

6
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6

max max
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m
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V V

V V
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=

=

= λ

∑

∑
 

We choose values of λk (1 ≤ k ≤ L) so that  

( ) ( )( ) ( )
6

min max min
1

1 1m k
m

V V k V V L
=

λ = + − − −∑  

This ensures that the total values are evenly distributed between Vmin and Vmax.5 

Choosing the π’s 

When L > 7 there may be many solutions to Equation (8). The easiest procedure for 

examining the set of possible solutions is to treat this as a linear programming problem in 

which we maximize  

 
1

max
L

k k
k

w
=

π∑  

for some set of weights, wk subject to the constraints given in Equation (8). This is solved 

using the Simplex method. By varying the weights, wk, all possible solutions to the 

problem can be found. In practice we consider the L solutions defined by 

{ }1; 0 for k jw w j k= = ≠ for k =1 to L. These solutions reveal the maximum value that 

                                                 
5 A simple alternative approach is to distribute the λ’s logarithmically 

⎟
⎠
⎞

⎜
⎝
⎛

−
ε−

+ε=λ
1

)ln()5.0ln()ln()ln(
Lj  

 
for some suitably small value of ε. 
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each individual πk can take on. We then choose the convex combination of these 

solutions that minimizes6  

 ( )
( )

21
1 1

2 1 1

2L
k k k

k k k

−
− +

= + −

π + π − π
λ − λ∑  

This produces a maximally smooth distribution of probabilities. Exhibit 2 shows the 

results of fitting the implied copula model to the five-year iTraxx and CDX data shown in 

Exhibit 1. The convergence of the procedure as the value of L is increased is illustrated in 

Exhibit 3. 

The probability distributions in Exhibits 2 and 3 are truncated. The implied copula 

approach assigns a small probability to extreme hazard rate term structures that lead to a 

cumulative default rate for the life of the model greater than 70%. We refer these extreme 

hazard rate term structures as “end-of-the-world” scenarios. Without assigning a small 

probability to these scenarios it is impossible to fit the spread for the most senior 

tranche.7 

iTraxx and CDX Time Series Results 

Exhibit 4 shows the results of fitting the implied copula model to daily five-year iTraxx 

and CDX data between July 26, 2004 and November 2, 2005. The model was calibrated 

every day for which we had an index quote plus three or more CDO tranche quotes (out 

of a possible 5).8 To facilitate comparisons the set of λ’s were chosen to be the same each 

day. 

The main thing to note in Exhibit 4 is the structural change in the probability distribution 

of hazard rates that took place in May 2005 when Ford and GM were downgraded to non-

investment grade. Prior to this there was a significant probability assigned to a hazard 

rate of zero. After this the probability that the hazard rate was zero (i.e., that there was no 

chance of default) was itself zero. This phenomenon is observed for both indices.  

                                                 
6 This sum is the discrete analog of twice the integral of the square of the second derivative. 
7 This phenomenon will be familiar to anyone who has implemented the Gaussian copula. Even though 
they have a very low probability, it is necessary to consider extreme values of the probability distribution 
for M in order to calculate accurate spreads for senior tranches.  
8 It is not necessary to have a full data set to calibrate the model. 
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Obtaining Bounds for Tranches 

As we will illustrate, the model we have outlined can provide an estimate of the price of 

non-standard instruments. It can also be used to obtain bounds for a price.9 Suppose that 

V(λ) is the value of a particular instrument when the hazard rate is λ. The maximum 

(minimum) value of the instrument is given by using linear programming to choose the πk 

to maximize (minimize)  

( )
1

L

k k
k

V
=

π λ∑  

subject to the constraint that the selected probabilities satisfy the calibrating equations in 

Equation (8). 

For a CDO tranche the tranche value is a function of the tranche spread, s. For any 

spread, s, and any hazard rate, λ, the value of the tranche is V(s, λ). Given s, the upper 

and lower bounds on the tranche value are 

 ( ) ( ) ( ) ( )max min
1 1

max , and min ,
L L

k k k k
k k

V s V s V s V s
= =

= π λ = π λ∑ ∑  

subject to the constraint that the selected probabilities satisfy the calibrating equations. 

The maximum and minimum permissible (no arbitrage) spreads are the highest and 

lowest spreads for which Vmin(s) ≤ 0 ≤ Vmax(s). 

The normal market practice is to imply a spread for the super senior tranche (30% to 

100% in the case of CDX and 22% to 100% in the case of iTraxx) from the spreads for 

other tranches and the index. The rationale for this is that buying a portfolio of the super-

senior tranche plus the other five tranche is similar to buying the index.10 To test this we 

used the approach just presented to calculate bounds for the super-senior spread. Our 

results confirm that the market practice is reasonable. The bounds appear to be quite 

tight. For example, using the five-year iTraxx data from August 30, 2005 we find that the 

spread for the 22% to 100% tranche must lie between 4.92 and 4.97 basis points. 

                                                 
9 The issue of providing bounds on prices is also considered by Walker [2006] 
10 The payoffs in the event of default are the same for the two portfolios. However, the pattern of payments 
is quite different. 
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V. COMPARISON OF THE BASE CORRELATION AND IMPLIED COPULA 
APPROACHES 

As already mentioned the standard market model is a one-factor Gaussian copula model. 

There is one free parameter. This is a, the common value of aj. The copula correlation in 

the model is a2. 

Copula correlations can be implied from the spreads quoted in the market for particular 

tranches. These correlations are known as tranche correlations or compound correlations. 

Exhibit 5 shows implied tranche correlations for the five-year quotes in Exhibit 1. It can 

be seen that the tranche correlations were not constant on April 30, 2005. They exhibit a 

pronounced ‘smile’. This is the usual situation.  

An alternative and more popular correlation measure is known as the base correlation. 

Using Equation (1) define C(aL, aH, ρ) as the expected loss for a tranche with attachment 

point aL, detachment point aH, and correlation ρ. This can be calculated for each tranche 

using the tranche implied correlation. The tranches are numbered so that the attachment 

point for tranche m is the detachment point for tranche m–1. The νth base correlation is 

chosen so that the total expected loss is correct for the first ν tranches. This means that 

 ( ) ( )
1

0, , , ,
v

Hv Bv Lm Hm m
m

C a C a a
=

ρ = ρ∑  

where ρBν is the base correlation for the νth tranche and ρm is the mth tranche correlation. 

Base correlations are usually monotonically increasing with the number of tranches 

included, as illustrated in Exhibit 5. 

We now compare the use of base correlations with our implied copula approach. 

Non-Standard Attachment Points 

The usual procedure for calculating a spread for nonstandard aL and aH is as follows.       
The base correlations for {0, aL} and {0, aH} are calculated by interpolating between the 

base correlations for the neighboring points for which data is available. The expected loss 

for the tranche is estimated as the expected loss for the {0, aH} tranche minus the 

expected loss for the {0, aL} tranche. The {aL, aH} tranche correlation is implied from 
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this expected loss and the breakeven tranche spread is calculated using this tranche 

correlation.  

The implied copula approach can be used for a nonstandard tranche in two different 

ways. First, the tranche spread can be calculated directly from the λk’s and πk’s. Second, 

the bounding approach described above can be used to find the highest and lowest 

possible tranche spreads. 

The results from using the implied copula approach to calculate the spread directly for 

iTraxx and CDX data on August 30, 2005 are shown in Exhibit 6. They are compared 

with two different implementations of the base correlation approach, one using linear 

interpolation, the other using a cubic-spline interpolation scheme. In all cases the tranche 

spread is determined and then converted into an implied tranche correlation using the 

Gaussian copula model. The tranches considered have {AP, DP} equal to {4%, 5%}, 

{5%, 6%}, {6%, 7%}, … The exhibit shows that the interpolation scheme does have a 

noticeable effect on the base correlation results. Also, the spreads from using the implied 

copula approach are smoother and more stable across tranches than those from the base 

correlation approach. 

The results from using the bounding approach for iTraxx and CDX data on August 30, 

2005 are shown in Exhibit 7. The tranches considered are the same as in Exhibit 6. The 

results from the two implementations of the base correlation approach are compared with 

the bounds given by the implied copula approach. The results show that when linear 

interpolation is used in the base correlation approach the tranche correlations are 

regularly outside the bounds. When the spline interpolation scheme is used in the base 

correlation approach the tranche correlations are better behaved but occasionally fall 

marginally outside the bounds for iTraxx and are far outside the bounds for CDX. 

The market’s spreads for the non-standard tranches we consider are not known but it is 

clear that the results from the implied copula approach are superior to those from the base 

correlation approach. The implied copula results are smoother and more stable across 

tranches than the base correlation results. Many of the base correlation results lie outside 

the permissible range for the set of copula models that are implicitly considered by the 

implied copula approach.  
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One approach that is sometimes used to avoid the problems with the base correlation 

approach that are illustrated in Exhibits 6 and 7 is to calculate expected losses for the 0 to 

X% tranche. Market quotes enable this to be estimated for X equal to 3, 6, 9, 12, and 22 in 

the case of iTraxx and X equal to 3, 7, 10, 15, and 30 in the case of CDX. The expected 

losses for other values of X are obtained by interpolation. Interpolating expected losses is 

more direct than interpolating base correlation and gives much better results. It can be 

shown that for no arbitrage the expected loss for the 0 to X% tranche must be an 

increasing function of X with a negative second derivative. It is not difficult to ensure that 

the interpolation scheme satisfies this requirement.  

The implied copula approach does not have any advantages over the interpolate-

expected-loss approach for valuing non-standard tranches. But it is much easier to use 

than that approach for many of the non-standard structures that are encountered.  

Non-Standard Number of Names 

We now test the effect of changing the number of companies in the iTraxx portfolio. We 

consider a {3%, 6%} (mezzanine) five-year tranche. We are assuming homogeneity. The 

names in our portfolio therefore are assumed to have exactly the same characteristics as 

the average iTraxx name. Three models are considered:  

1. A model where base correlations for the 3% and 6% detachment points are 

assumed to be the same as those for the regular 125-company iTraxx portfolio 

2. A model where the {3%, 6%}tranche correlation is assumed to be the same as the 

{3%, 6%} tranche correlation for the regular 125-company iTraxx portfolio 

3. The implied copula model, fitted to the data in Exhibit 1  

The results are shown in Exhibit 8. The three models agree that the tranche spread 

decreases quite sharply as the number of companies increase. As far as we know, this 

result is not widely known. It arises from the properties of the binomial distribution. 

Consider the case where the default probability is 0.03. The probability that the number 

of defaults is greater than 5% and less than or equal to 10% is 11.1%, 9.2%, and 7.0% for 

portfolios of size 40, 80, and 120 companies respectively.  
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Exhibit 8 shows that the results obtained from the Gaussian copula model are critically 

dependent on how the model is used. Two plausible ways of using the model give very 

different results. Again we conclude that the implied copula model is more stable across 

tranches than the Gaussian copula model. 

VI. EXTENSIONS OF THE IMPLIED COPULA APPROACH 

The implied copula approach as we have described it so far assumes that all companies 

have the same constant default rates. The life of the CDO being considered is assumed to 

be the same as that of the reference (iTraxx or CDX) CDOs.  We now consider some 

ways in which the implied copula approach can be extended.  

Different Maturities 

Exhibit 9 shows the cumulative probability distribution for the 5-year and 10-year hazard 

rate for iTraxx on August 30, 2005. It is natural to suggest that the implied copula 

methodology be extended to find a 10-year hazard rate path distribution that 

simultaneously matches the market data for both five and ten year maturities. It is 

possible to find such a hazard rate path distribution, but it is important to avoid over 

fitting the model. The model is a description of the average hazard rate environment 

between time zero and some time T as seen at time zero. The model does not say 

anything about the dynamics of hazard rates. A different type of model is needed to 

answer a question such as “if the hazard rate between now and year 5 is λ, what is the 

probability distribution for hazard rates between years 5 and 10?”  

When valuing CDO tranches and other similar instruments that have maturities between 

five and ten years, it makes sense to interpolate between the terminal default rates at each 

quantile of the cumulative distributions. For example, in the case of iTraxx 90% of the 

five- and ten-year default rates are below 0.0446 and 0.0975 respectively. From this we 

estimate that 90% of the seven-year default rates are less than or equal 0.0658. Similar 

calculations can be carried out for every quantile to generate a complete probability 

distribution for seven-year default rate.  



 19

Different CDS Spreads 

We now discuss how the model we have presented can be extended so that the 

homogeneity assumption is relaxed. In our experience a non-homogeneous model gives 

similar results to the corresponding homogeneous model in most circumstances. 

However, a non-homogeneous model can be important for risk management.  

At this stage we continue to assume flat hazard rate term structures. Continuing with our 

earlier notation λk (1 ≤ k ≤ L) is the value of the kth hazard rate in the homogeneous 

model. We define: 

λkj (1 ≤ k ≤ L): the kth hazard rate for the jth company (to be determined) 

sj (1 ≤ j ≤ N): the CDS spread for the jth company 

sindex: the CDS spread for the index (This is assumed to be the CDS spread for all 

companies in the homogeneous case) 

U(λ,s): the value of a CDS to buy protection on a company on when the principal is $1, 

hazard rate is λ and the CDS spread is s. (From Equation (1) this is C(λ) – [A(λ)+B(λ)]s.) 

We choose the λkj so that  

 
( )

( )
,

,
kj j

j
k index

U s
c

U s
λ

=
λ

 (9) 

for all k where cj is a constant independent of k. The cj cannot be chosen arbitrarily. In 

general there is a small range of values of cj for which Equation (9) can be satisfied. We 

then choose the πk so that a) the five CDO tranche quotes are matched in the non-

homogeneous model and b) sindex is matched in the homogeneous model.  Matching sindex 

in the homogeneous model ensures that  

( )
1
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From Equation (9) this implies that 
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so that all N CDS spreads are matched. 

Implementing the non-homogeneous model is therefore very similar to implementing the 

homogeneous model. The only differences are a) it is necessary to develop the procedure 

for calculating the cj’s and λkj’s and b) it is necessary to use a algorithm such as that in 

Andersen et al [2003] or Hull and White [2004] to calculate loss distributions on a non-

homogeneous portfolio. 

Matching the CDS Term Structure 

The implied copula model can be extended so that the term structure of CDS spreads is 

matched. This is achieved by allowing the alternative hazard rate term structures to be 

non-flat. We find that for most applications of the model matching the CDS term 

structure makes very little difference. Roughly speaking, it changes the times when 

defaults occur without changing the cumulative number of defaults. 

Suppose that the CDS spread is known for company j for maturities t1, t2, t3, …, tn. We 

first calculate a set of constant hazard rates for each company as just described in the 

previous section to match the tn maturity spread.  Define dkj as the cumulative default rate 

for the kth hazard rate (= 1−exp(−λkjtn) where λkj is the kth hazard rate for company j). 

To match all CDS spreads for company j we adjust the model so that the kth hazard rate 

for the company is constant between time ti−1 and time ti (t0=0). We choose the hazard 

rates so that the ratio of the value of the ti year CDS to the value of the tn year CDS is 

independent of k while ensuring that the kth hazard rate term structure is consistent with 

dkj. This means that when we match the tn maturity spread we automatically match the ti 

maturity spread for 1 ≤  i ≤ n–1 . The ratio of the value of the ti year CDS to the value of 

the tn year CDS can be chosen as (wisi)/(wnsn) where wi is the present value of payments at 

the rate of $1 per year on a ti year CDS when the hazard rate is zero and si is the ti year 

CDS spread. 

There is perfect correlation between obligors in the generalized model we have outlined 

in that when we know the hazard rate term structure for one obligor we know the hazard 

rate term structure for all other obligors.  Searching for the optimal set of probabilities in 

the model is no more difficult than in the homogeneous model because the model is set 
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up so that when we match the CDS spread for the index we automatically match the term 

structure of CDS spreads for all companies underlying the index. As already mentioned 

an algorithm such as that in Andersen et al [2003] or Hull and White [2004] must be used 

to calculate loss distributions on the portfolio for each i, but such an algorithm must 

similarly be used for each value of the factor that is considered in the nonhomogeneous 

Gaussian copula model.  

It is possible to extend the model still further so that the dispersion of hazard rate paths is 

different for different companies. However, just as it is difficult to know how to choose 

unequal correlations in the Gaussian copula model, so it is difficult to know how to vary 

the dispersion of hazard rates from company to company in the implied copula model. 

VII. BESPOKE PORTFOLIOS 

CDOs involving bespoke portfolios can be handled using the implied copula approach. 

Consider first the situation where the bespoke portfolio is considered to be as well 

diversified as the portfolio underlying the reference index (iTraxx or CDX). The simplest 

approach is to first calibrate the model to the index assuming homogeneity and then 

adjust the hazard rates. Suppose that the index gives a probability πk of a hazard rate λk. 

For the bespoke portfolio we assume that there is a probability πk of a hazard rate *
kλ  

where  

kk βλ=λ*  

The constant β is chosen so that the average CDS spread for the companies in the 

bespoke portfolio is matched. 

A more sophisticated approach is to use the extension of the implied copula model where 

each company has a different set of hazard rates. This works exactly as described Section 

VI. The model is set up so that when we match the index CDS quote in the homogeneous 

model we automatically match all CDS spreads for the companies in the bespoke 

portfolio.  

Dealing with portfolios that are less (or more) well diversified than the index requires 

some judgment and, whether the Gaussian copula/base correlation or implied copula 
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approach is used, is inevitably somewhat ad hoc. The theory underlying structural models 

of credit risk suggests that the Gaussian copula correlation should be similar to the 

correlation between equity returns. Based on this observation one way of proceeding is as 

follows. Calculate, y, the average pairwise correlation between equity returns for 

companies in the portfolio and y* the average pairwise correlation between equity returns 

for companies in the index. Assume that the average pairwise Gaussian copula 

correlation for the bespoke portfolio is ρy/y* where ρ is its value for the index. Increase 

the dispersion of hazard rate paths for each obligor while maintaining the correct CDS 

spread so that the results are consistent with Equation (6) when ρ is replaced by ρy/y*. 

 

VIII. CDO SQUAREDS 

A CDO squared is an example of a credit derivative with a non-standard structure. It is 

similar to a CDO or a CDS in that, in exchange for a set of periodic payments, it provides 

protection against losses due to default. The distinction is that in a CDO-squared the 

default losses arise from a portfolio of CDO tranches and the loss covered is a subset of 

the total loss. The CDO-squared is referred to as the parent CDO while the CDOs from 

which the CDO tranches underlying the CDO-squared are drawn are known as child 

CDOs. 

In a typical structure there are 10 child CDOs each containing about 80 CDSs. Some of 

the names appear in more than one of the child CDOs. We define ‘overlap’, a measure of 

commonality between two CDOs, as the number of names in common divided by the 

average number of firms in the two CDOs. For example, if one CDO has 80 names in it 

and one has 100 names, and there are 25 names in common, the overlap is 25/90 or about 

28%. In a typical CDO-squared the average overlap between the child CDOs is about 

25%. 

In this section we will construct a typical CDO-squared and calculate the breakeven 

tranche spread using the implied copula model. We will then determine what copula 

correlation would produce the same spread if the value were determined using the 

standard Gaussian copula. 
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The Example 

Our example is based on a pool of 500 homogeneous names. We calibrated the implied 

copula model to the five-year August 30, 2005 iTraxx market data and set the spread for 

each of the 500 names equal to that for the index. Ten portfolios of 80 names were 

created using a quasi-random selection process. The average of the 45 pairwise overlap 

measures, as we have just defined them, was 23%; the highest overlap between two 

portfolios was 30% and the lowest overlap was 14%. 

Each of the 10 portfolios has a CDO tranche based on it with attachment points aLm and 

aHm, m=1 to 10. If K is the initial notional on each of the CDSs, the maximum possible 

loss on each of the 10 tranches is 80(aHm – aLm)K. The total possible loss across all 10 

tranches is 

 ( )
10

max
1
80 Hm Lm

m
K a a K

=

= −∑  

Kmax can be thought of as the notional underlying the CDO-squared. The CDO-squared 

also has attachment point aL and detachment point aH, and the seller of protection is 

required to cover all losses on the 10 CDO tranches between aL Kmax and aH Kmax. The 

seller of protection receives spread income at rate s on an initial notional of (aH – aL)Kmax. 

As losses that affect the CDO-squared arise, the notional on which the spread income is 

earned is reduced as in a regular CDO. Once total losses on the ten CDO tranches reach 

aH Kmax no further spread income is earned. 

Valuation 

The value of the CDO-squared using the implied copula approach is calculated by Monte 

Carlo simulation. The procedure is as follows. For each of the 500 names we draw a 

random variable, xj, j=1 to 500. The xj are uniformly distributed between zero and one. 

For each λk, k=1 to L, we calculate the default time, τj, for each name based on the 

random sample,  

 ( )1
j j kQ x−τ = λ  
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We also calculate the recovery rate based on the value of λk. For each portfolio m we 

accumulate all the τj’s and the associated loss given default for all the names in that 

portfolio for which 0 < τj < T where T is the life of the CDO, five years. These are sorted 

in increasing time of default. Losses within each portfolio are aggregated over time and 

the losses that lie between 80 aLm K and 80 aHm K along with their default times are 

retained. These losses are pooled across all portfolios, resorted in order of time of default 

and the losses between aL Kmax and aH Kmax together with their default times are retained. 

These are the losses that affect the CDO-squared. The size and timing of these losses are 

used to calculate the present value of spread income (when paid at a rate of $1 per year) 

and the present value of losses for the CDO squared.  

Analogous to Equation (1) we will refer to the present value of spread income, the 

present value of accrual payments, and the present value of losses as A(λk), B(λk), and 

C(λk) respectively. Using the same set of random numbers this procedure is repeated for 

every λk. The first simulation result is then 
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for i=1. At this point a new set of 500 random numbers is drawn and the procedure is 

repeated to calculate A2, B2 and C2. This is repeated n times and the final sample 

estimates are  

 1 1 1
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where ŝ  is the estimated breakeven spread. 
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Comparison of Models 

Very little market data for CDO squareds is available. The implied copula model has the 

key advantage that it fits all available market data on CDOs and the index. The prices 

produced by that model are therefore consistent with the observed prices; that is, these 

prices do not allow arbitrage opportunities. To test the viability of using the Gaussian 

copula model to value CDO squareds we imply a Gaussian copula correlation from the 

prices given by the implied copula model. We then examine whether this correlation 

might reasonably have been used by market participants.  

Usually the child CDO tranches underlying a CDO-squared are mezzanine tranches. So 

as our base case we choose a case in which all the child CDO tranches have attachment 

and detachment points aLm=3% and aHm=6%, the same as the iTraxx mezzanine tranche. 

The child CDO contains 80 names. Ten different parent CDO cases are considered with 

attachment and detachment points of 0 to 10%, 10 to 20% and so on up to 90 to 100%. 

Four other cases were considered: 

Senior Case 1: The basic structure is the same as the base case except that the child CDO 

tranches are all 6 to 9% senior tranches. The same ten parent CDO cases are considered. 

Senior Case 2: The basic structure is the same as the base case except that the child CDO 

tranches are all 9 to 12% senior tranches. The same ten parent CDO cases are considered. 

Mixed Case 3: In this case several child CDO tranches are mixed together. Three of the 

child CDO tranches are 3 to 6% mezzanine tranches, four are 6 to 9% senior tranches, 

and three are 9 to 12% senior tranches. The same ten parent CDO cases are considered. 

(This type of structure is rarely seen in the market.) 

Mixed Case 4: This is similar to case 3 except three of the child CDO tranches are 0 to 

3% equity tranches, four are 3 to 6% mezzanine tranches, and three are 6 to 9% senior 

tranches. The same ten parent CDO cases are considered. 

For each of the cases the breakeven spread for each of the ten parent tranches was 

calculated. The results are shown in Exhibit 10. All spreads are quoted in basis points per 

year (running rates). For the first three cases in which all the child CDOs are the same, 
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the breakeven spread for the relevant CDO tranche is shown in the rightmost column for 

reference purposes.  

The implied Gaussian copula correlations are shown in Exhibit 11. It is difficult to 

discern any pattern in the implied copula correlations relative to the correlations for the 

underlying CDO tranches. For parent tranche 4 {30%, 40%} the implied Gaussian copula 

correlation is approximately the same as that for the child tranche, but this is not true of 

other tranches.11 

For ‘Senior Case 2’ in which all the underlying tranches are 9 to 12% tranches the 

implied correlation for tranches 2 to 7 are close to the underlying tranche correlation. For 

the other two cases the implied correlation is usually significantly higher or lower than 

the underlying tranche correlation. The base case exhibits the sort of correlation smile 

that is usually observed in the CDO market. 

Our overall conclusion is that it would be difficult to devise a scheme that would allow us 

to determine the copula correlation that would be appropriate for any particular CDO-

squared tranche. 

Impact of Overlap 

One of the factors that affect the pricing of a CDO-squared is the degree of overlap 

between the names in the child CDOs. Our examples so far have used 10 child CDOs of 

80 names with an average overlap of about 23%. This means that on average when two 

child CDOs are compared there will be about 19 or 20 names in common between the 

two portfolios. Exhibit 12 compares this situation with situations where the overlap is 

46% and 70% for the base case. Increasing the degree of overlap for a CDO-squared has 

an effect similar to increasing the correlation in valuing the tranches of a CDO. 

Increasing the degree of overlap increases the cost of CDO-squared tranches with high 

attachment points and decreases the cost of tranches with low attachment points.  

 
 

                                                 
11 As explained earlier the Gaussian copula implied correlation for a particular tranche of an 80-company 
portfolio is different from that for a 125-company portfolio. 
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IX. CONCLUSIONS 

We have presented a new approach to modeling default dependence. The approach has a 

number of advantages over the Gaussian copula model and its extensions. First, the 

model can be exactly fitted to the market quotes for the actively traded CDO tranches of 

standard portfolios. Second, the model is more intuitive than the base correlation model. 

Third, by perturbing market quotes such as those in Exhibit 1 Greek letters showing 

sensitivity to the quotes can be calculated. Fourth, the model can be used to value CDOs 

on bespoke portfolios and more exotic structures such as CDO-squareds. Finally, the 

model is ideally suited for trading. A trader can first calculate the implied distributions 

such as those in Exhibit 4. She can then investigate the effect on market prices of 

modifying the distributions to reflect her beliefs. A natural extension is to a two-factor 

model that fits iTraxx and CDX tranches simultaneously. This extension can be achieved 

by assuming a copula correlation structure for the hazard rate distributions for North 

America and Europe. 

We have shown that the implied copula approach is more stable than the Gaussian 

copula/base correlation approach. The latter is liable to produce results that are 

inconsistent with market quotes. The implied copula approach is sometimes criticized 

because it depends on the number of hazard rates chosen and the smoothness condition 

used. However, the Gaussian copula/base correlation model is no less arbitrary. It 

depends on the number of values chosen for the factor and on the interpolation scheme 

used for base correlation.  

There are limitations of both the implied copula and the Gaussian copula/base correlation 

approach. They do not involve the dynamic evolution of hazard rates or credit spreads. 

They are therefore inappropriate for some instruments. For example, the models are not 

appropriate for valuing a one-year option on a five-year CDO because this depends on the 

hazard rate distribution between years one and five conditional on what we observe 

happening during the first year.  
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EXHIBIT 1: Quotes for CDX IG and iTraxx tranches on August 30, 2005. Quotes 
for the 0 to 3% tranche are the percent of the principal that must be paid up front 
in addition to 500 basis points per year. Quotes for other tranches and the index 
are in basis points. Source: Reuters 
 

 CDX IG Tranches 
 0% to 3% 3% to 7% 7% to 10% 10% to 15% 15% to 30% Index 
5-year Quotes 40% 127 35.5 20.5 9.5 50 

 ITraxx Tranches 
 0% to 3% 3% to 6% 6% to 9% 9% to 12% 12% to 22% Index 
5-year Quotes 24% 81 26.5 15 9 36.375 
10-year Quotes 53% 395 90 52 29 57.625 
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EXHIBIT 2: Results of fitting the implied copula model to 5-year iTraxx and CDX 
data  

Implied Probability Distributions
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EXHIBIT 3: Impact on the hazard rate probability distribution of increasing the 
number of points, L, that are used. 

Convergence of itraxx Probability Density
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EXHIBIT 4: Change in the iTraxx (upper chart) and CDX (lower chart) hazard 
rate probability distribution between July 26, 2004 and November 2, 2005 
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EXHIBIT 5: Implied tranche and base correlations for 5-year CDX IG and 5-year 
iTraxx tranches on August 30, 2005. 
 

 CDX IG  
 0% to 3% 3% to 7% 7% to 10% 10% to 15% 15% to 30% Index 
Tranche Correlation 0.091 0.012 0.068 0.106 0.156 n/a 
Base Correlation 0.091 0.177 0.223 0.280 0.448 n/a 

 iTraxx  
 0% to 3% 3% to 6% 6% to 9% 9% to 12% 12% to 22% Index 
Tranche Correlation 0.134 0.030 0.079 0.111 0.154 n/a 
Base Correlation 0.134 0.210 0.266 0.308 0.428 n/a 

 
 



 34

 
EXHIBIT 6: Tranche correlations when the tranche width is 1% calculated using 
the base correlation and implied copula approaches. Linear and spline interpolation 
schemes are used in the implementation of the base correlation approach. The 
upper panel shows the iTraxx results, the lower CDX results. 
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EXHIBIT 7: Tranche correlations when the tranche width is 1% implied using the 
base correlation method. These are compared with the maximum and minimum 
possible correlations implied from the implied copula approach. Linear and spline 
interpolation schemes are used in the implementation of the base correlation 
approach. The upper panel shows the iTraxx results, the lower CDX results. 
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EXHIBIT 8: Breakeven Spread for 5-Year iTraxx Mezzanine Tranche with 
Different Portfolio Sizes on August 30, 2005.  
 

 Number of Firms in Portfolio 
 40 60 80 100 125 150 200 

Implied Copula 154.4 122.4 103.7 91.6 81.0 75.2 67.0 
Gaussian Copula: Tranche Correlation 174.3 133.3 109.4 94.0 81.0 73.1 62.8 
Gaussian Copula: Base Correlation 124.8 103.9 93.4 86.8 81.0 77.6 73.0 
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EXHIBIT 9: Cumulative five- and ten-year default rates for iTraxx on August 30, 
2005 
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EXHIBIT 10: Breakeven spreads in basis points for ten different CDO-squareds 
with five different underlying CDO structures. When all child CDOs have the same 
attachment and detachment points the CDO tranche spread is also reported. 
 

 CDO-Squared Tranche  
 1 2 3 4 5 6 7 8 9 10 CDO 

Base Case 499 190 104 68 52 44 39 35 31 24 104 
Senior Case 1 53 37 33 30 28 25 22 19 15 12 27 
Senior Case 2 29 24 20 17 14 13 11 10 10 9 16 
Mixed Case 3 234 63 40 33 29 25 20 16 12 10  
Mixed Case 4 3063 1056 395 140 65 43 35 30 24 16  
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EXHIBIT 11: Implied copula correlations for ten different CDO-squareds with five 
different underlying CDO structures. When all child CDOs have the same 
attachment and detachment points the CDO tranche correlation is also reported. 
 

 CDO-Squared Tranche  
 1 2 3 4 5 6 7 8 9 10 CDO 

Base Case 0.240 0.019 0.024 0.028 0.035 0.043 0.052 0.062 0.076 0.094 0.026 
Senior Case 1 0.036 0.056 0.068 0.079 0.088 0.095 0.101 0.106 0.112 0.122 0.071 
Senior Case 2 0.079 0.098 0.105 0.108 0.110 0.112 0.117 0.124 0.134 0.151 0.106 
Mixed Case 3 0.012 0.033 0.050 0.068 0.083 0.096 0.104 0.110 0.116 0.132  
Mixed Case 4 0.112 0.117 0.000 0.021 0.053 0.060 0.067 0.078 0.094 0.109  
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EXHIBIT 12: Breakeven spreads for CDO-squared with different degrees of 
overlap in basis points 
 

   Overlap 
Tranche AP DP 23% 46% 70% 

1 0% 10% 498.7 428.3 359.0 
2 10% 20% 190.2 187.6 183.7 
3 20% 30% 103.6 116.1 127.1 
 4 30% 40% 68.3 81.4 94.9 
5 40% 50% 52.3 62.5 74.3 
6 50% 60% 43.9 51.0 60.3 
7 60% 70% 38.7 43.6 50.1 
8 70% 80% 34.6 37.8 43.0 
9 80% 90% 30.5 32.9 37.1 
10 90% 100% 23.7 26.5 30.3 
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