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Abstract

Implied volatilities are frequently used to quote the prices of options. The implied volatility

of a European option on a particular asset as a function of strike price and time to maturity is

known as the asset’s volatility surface. Traders monitor movements in volatility surfaces closely.

In this paper we develop a no-arbitrage condition for the evolution of a volatility surface. We

examine a number of rules of thumb used by traders to manage the volatility surface and test

whether they are consistent with the no-arbitrage condition and with data on the trading of

options on the S&P 500 taken from the over-the-counter market. Finally we estimate the factors

driving the volatility surface in a way that is consistent with the no-arbitrage condition.



1 Introduction

Option traders and brokers in over-the-counter markets frequently quote option prices using implied

volatilities calculated from Black and Scholes (1973) and other similar models. The reason is that

implied volatilities usually have to be updated less frequently than the prices themselves. Put–call

parity implies that, in the absence of arbitrage, the implied volatility for a European call option is

the same as that for a European put option when the two options have the same strike price and

time to maturity. This is convenient: when quoting an implied volatility for a European option with

a particular strike price and maturity date, a trader does not need to specify whether a call or a put

is being considered.

The implied volatility of European options on a particular asset as a function of strike price and

time to maturity is known as the volatility surface. Every day traders and brokers estimate volatility

surfaces for a range of different underlying assets from the market prices of options. Some points

on a volatility surface for a particular asset can be estimated directly because they correspond to

actively traded options. The rest of the volatility surface is typically determined by interpolating

between these points.

If the assumptions underlying Black–Scholes held for an asset, its volatility surface would be flat

and unchanging. In practice the volatility surfaces for most assets are not flat and change stochas-

tically. Consider for example equities and foreign currencies. Rubinstein (1994) and Jackwerth and

Rubinstein (1996), among others, show that the implied volatilities of stock and stock index options

exhibit a pronounced “skew” (that is, the implied volatility is a decreasing function of strike price).

For foreign currencies this skew becomes a “smile” (that is, the implied volatility is a U-shaped

function of strike price). For both types of assets, the implied volatility can be an increasing or

decreasing function of the time to maturity. The volatility surface changes through time, but the

general shape of the relationship between volatility and strike price tends to be preserved.

Traders use a volatility surface as a tool to value a European option when its price is not directly

observable in the market. Provided there are a reasonable number of actively traded European

options and these span the full range of the strike prices and times to maturity that are encountered,

this approach ensures that traders price all European options consistently with the market. However,

as pointed out by Hull and Suo (2002), there is no easy way to extend the approach to price path-

dependent exotic options such as barrier options, compound options, and Asian options. As a result

there is liable to be some model risk when these options are priced.

Traders also use the volatility surface in an ad hoc way for hedging. They attempt to hedge

against potential changes in the volatility surface as well as against changes in the asset price.

Derman (1999) discusses alternative approaches to hedging against asset price movements. The

“volatility-by-strike” or “sticky strike” rule assumes that the implied volatility for an option with a

given strike price and maturity will be unaffected by changes in the underlying asset price. Another

1



popular approach is the “volatility-by-moneyness” or “sticky delta” rule. This assumes that the

volatility for a particular maturity depends only on the moneyness (that is, the ratio of the price of

the underlying asset to the strike price).

The first attempts to model the volatility surface were by Rubinstein (1994), Derman and Kani

(1994), and Dupire (1994). These authors show how a one-factor model for an asset price, known as

the implied volatility function (IVF) model, can be developed so that it is exactly consistent with the

current volatility surface. Unfortunately, the evolution of the volatility surface under the IVF model

can be unrealistic. The volatility surface given by the model at a future time is liable to be quite

different from the initial volatility surface. For example, in the case of a foreign currency the initial

U-shaped relationship between implied volatility and strike price is liable to evolve to one where

the volatility is a monotonic increasing or decreasing function of strike price. Dumas, Fleming, and

Whaley (1997) have shown that the IVF model does not capture the dynamics of market prices well.

Hull and Suo (2002) have shown that it can be dangerous to use the model for the relative pricing

of barrier options and plain vanilla options.

This paper extends existing research in a number of ways. Similarly to Ledoit and Santa Clara

(1998), Schönbucher (1999), Brace et al (2001), and Britten–Jones and Neuberger (2000), we develop

no arbitrage conditions for the evolution of the volatility surface. We consider a general model where

there are a number of factors driving the volatility surface and these may be correlated with stock

price movements. We then investigate the implications of the no-arbitrage condition for the shapes

of the volatility surfaces likely to be observed in different situations and examine whether the various

rules of thumb that have been put forward by traders are consistent with the no-arbitrage condition.

Finally we carry out two empirical studies. The first empirical study extends the work of Derman

(1999) to investigate whether movements in the volatility surface are consistent with different rules of

thumb. The second extends work of Kamal and Derman (1997), Skiadopoulos, Hodges, and Clewlow

(2000), Cont and Fonseca (2002), and Cont, Fonseca and Durrleman (2002) to estimate the factors

driving movements in the volatility surface in a way that reflects the theoretical drifts of points on

the surface. One distinguishing feature of our work is that we use over-the-counter consensus data

for our empirical studies. To the best of our knowledge we are the first derivatives researchers to use

this type of data. Another distinguishing feature of our research is that, in addition to the sticky

strike and sticky delta rules we consider a “square root of time” rule that is often used by traders

and documented by, for example, Natenburg (1994).

The rest of the paper is organized as follows. Section 2 explains the rules of thumb. Section

3 develops a general model for the evolution of a volatility surface and derives the no-arbitrage

condition. Section 4 discusses the implications of the no-arbitrage condition. Section 5 examines a

number of special cases of the model. Section 6 considers whether the rules of thumb are consistent

with the no-arbitrage condition. Section 7 tests whether there is empirical support for the rules of
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thumb. Section 8 derives factors driving the volatility surface in a way that is consistent with the

no-arbitrage condition. Conclusions are in Section 9.

2 Rules of Thumb

A number of rules of thumb have been proposed about volatility surfaces. These rules of thumb fall

into two categories. In the first category are rules concerned with the way in which the volatility

surface changes through time. They are useful in the calculation of the Greek letters such as delta

and gamma. In the second category are rules concerned with the relationship between the volatility

smiles for different option maturities at a point in time. They are useful in creating a complete

volatility surface when market prices are available for a relatively small number of options. In this

section we explain three different rules of thumb: the sticky strike rule, the sticky delta rule and the

square root of time rule. The first two of these rules are in the first category and provide a basis for

calculating Greek letters. The third rule is in the second category and assists with the mechanics of

“filling in the blanks” when a complete volatility surface is being produced.

We consider a European call option with maturity T , strike price K and implied volatility σTK .

We define the call price as c, the underlying asset price as S, and the delta, ∆ of the option as the

total rate of change of its price with respect to the asset price:

∆ =
dc

dS
.

2.1 The Sticky Strike Rule

The sticky strike rule assumes that σTK is independent of S. This is an appealing assumption

because it implies that the sensitivity of the price of an option to S is

∂c

∂S
,

where for the purposes of calculating the partial derivative the option price, c, is considered to be a

function of the asset price, S, σTK , and time, t. The assumption enables the Black–Scholes formula

to be used to calculate delta with the volatility parameter set equal to the option’s implied volatility.

The same is true of gamma, the rate of change of delta with respect to the asset price.

In what we will refer to as the basic sticky strike model, σTK is a function only of K and T . In

the generalized sticky strike model it is independent of S, but possibly dependent on other stochastic

variables.

2.2 The Sticky Delta Rule

An alternative to the sticky strike rule is the sticky delta rule. This assumes that the implied

volatility of an option depends on the S and K, through its dependence on the moneyness variable,
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K/S. The delta of a European option in a stochastic volatility model is

∆ =
∂c

∂S
+

∂c

∂σTK

∂σTK

∂S
.

Again, for the purposes of calculating partial derivatives the option price c is considered to be a

function of S, σTK , and t. The first term in this expression is the delta calculated using Black-

Scholes with the volatility parameter set equal to implied volatility. In the second term, ∂c/∂σTK

is positive. It follows that, if σTK is a declining (increasing) function of the strike price, it is an

increasing (declining) function of S and ∆ is greater than (less than) that given by Black-Scholes.

For equities σTK is a declining function of K and so the Black-Scholes delta understates the true

delta. For an asset with a U-shaped volatility smile Black-Scholes understates delta for low strike

prices and overstates it for high strike prices.

In the most basic form of the sticky delta rule the implied volatility is assumed to be a deter-

ministic function of K/S and T − t. We will refer to this as the basic sticky delta model. A more

general version of the sticky delta rule is where the process for VTK depends on K, S, T , and t only

through its dependence on K/S and T − t. We will refer to this as the generalized sticky delta model.

The implied volatility changes stochastically but parameters describing the process followed by the

volatility (for example, the volatility of the volatility) are functions only of K/S and T − t.

Many traders argue that a better measure of moneyness than K/S is K/F where F is the forward

value of S for a contract maturing at time T . A version on the sticky delta rule sometimes used by

traders is that σTK(S, t)−σTF (S, t) is a function only of K/F and T − t. Here it is the excess of the

volatility over the at-the-money volatility, rather than the volatility itself, which is assumed to be a

deterministic function of the moneyness variable, K/F . This form of the sticky delta rule allows the

overall level of volatility to change through time and the shape of the volatility term structure to

change, but when measured relative to the at-the-money volatility, the volatility is dependent only

on K/S and T − t. We will refer to this model as the relative sticky delta model. If the at-the-money

volatility is stochastic, but independent of S, the model is a particular case of the generalized sticky

delta model just considered.

2.3 The Square Root of Time Rule

Another rule that is sometimes used by traders is what we will refer to as the “square root of time

rule”. This is described in Natenberg (1994) and Hull (2006). It provides a specific relationship

between the volatilities of options with different strike prices and times to maturity at a particular

time. One version of this rule is

σTK(S, t)
σTF (S, t)

= Φ
(

ln(K/F )√
T − t

)
,
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where Φ is a function. An alternative that we will use is

σTK(S, t)− σTF (S, t) = Φ
(

ln(K/F )√
T − t

)
. (1)

We will refer to this version of the rule where Φ does not change through time as the stationary

square root of time model and the version of the rule where the form of the function Φ changes

stochastically as the stochastic square root of time model.

The square root of time model (whether stationary or stochastic) simplifies the specification of

the volatility surface. If we know

1. The volatility smile for options that mature at one particular time T ∗, and

2. At-the-money volatilities for other maturities,

we can compute the complete volatility surface. Suppose that F ∗ is the forward price of the asset

for a contract maturing at T ∗. We can compute the volatility smile at time T from that at time T ∗

using the result that

σTK(S, t)− σTF (S, t) = σT∗K∗(S, t)− σT∗F∗(S, t),

where
ln(K/F )√

T − t
=

ln(K∗/F ∗)√
T ∗ − t

,

or

K∗ = F ∗
(

K

F

)√(T∗−t)/(T−t)

.

If the at-the-money volatility is assumed to be stochastic, but independent of S, the stationary

square root of time model is a particular case of the relative sticky strike model and the stochastic

square root of time model is a particular case of the generalized sticky strike model.

3 The Dynamics of the Implied Volatility

We suppose that the risk-neutral process followed by the price of an asset, S, is

dS

S
= [r(t)− q(t)] dt + σ dz, (2)

where r(t) is the risk-free rate, q(t) is the yield provided by the asset, σ is the asset’s volatility, and

z is a Wiener process. We suppose that r(t) and q(t) are deterministic functions of time and that σ

follows a diffusion process. Our model includes the IVF model and stochastic volatility models such

as Hull and White (1987), Stein and Stein (1991) and Heston (1993) as special cases.

Most stochastic volatility models specify the process for σ directly. We instead specify the

processes for all implied volatilities. As in the previous section we define σTK(t, S) as the implied

volatility at time t of an option with strike price K and maturity T when the asset price is S. For

convenience we define

VTK(t, S) = [σTK(t, S)]2
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as the implied variance of the option. Suppose that the process followed by VTK in a risk-neutral

world is

dVTK = αTK dt + VTK

N∑

i=1

θTKi dzi, (3)

where z1, · · · , zN are Wiener processes driving the volatility surface. The zi may be correlated with

the Wiener process, z, driving the asset price in equation (2). We define ρi as the correlation

between z and zi. Without loss of generality we assume that the zi are correlated with each other

only through their correlation with z. This means that the correlation between zi and zj is ρiρj .

The initial volatility surface is σTK(0, S0) where S0 is the initial asset price. This volatility surface

can be estimated from the current (t = 0) prices of European call or put options and is assumed to

be known.

The family of processes in equation (3) defines the multi-factor dynamics of the volatility surface.

The parameter θTKi measures the sensitivity of VTK to the Wiener process zi. In the most general

form of the model the parameters αTK and θTKi (1 ≤ i ≤ N) may depend on past and present

values of S, past and present values of VTK , and time.

There is clearly a relationship between the instantaneous volatility σ(t) and the volatility surface

σTK(t, S). The appendix shows that the instantaneous volatility is the limit of the implied volatility

of an at-the-money option as its time to maturity approaches zero. For this purpose an at-the-money

option is defined as an option where the strike price equals the forward asset price.1 Formally:

lim
T→t

σTF (t, S) = σ(t), (4)

where F is the forward price of the asset at time t for a contract maturing at time T . In general

the process for σ is non-Markov. This is true even when the processes in equation (3) defining the

volatility surface are Markov.2

Define c(S, VTK , t; K, T ) as the price of a European call option with strike price K and maturity

T when the asset price S follows the process in equations (2) and (3). From the definition of implied

volatility and the results in Black and Scholes (1973) and Merton (1973) it follows that:

c(S, VTK , t;K, T ) = e
−

∫ T

t
q(τ) dτ

SN(d1)− e
−

∫ T

t
r(τ) dτ

KN(d2),

where

d1 =
ln(S/K) +

∫ T

t
[r(τ)− q(τ)]dτ√

VTK(T − t)
+

1
2

√
VTK(T − t),

1Note that the result is not necessarily true if we define an at-the-money option as an option where the strike price

equals the asset price. For example, when

σTK(t, S) = a + b
1

T − t
ln(F/K)

with a and b constants, limT→t σTF (t, S) is not the same as limT→t σTS(t, S)
2There is an analogy here to the Heath, Jarrow, and Morton (1992) model. When each forward rate follows a

Markov process the instantaneous short rate does not in general do so.
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d2 =
ln(S/K) +

∫ T

t
[r(τ)− q(τ)]dτ√

VTK(T − t)
− 1

2

√
VTK(T − t).

Using Ito’s lemma equations (2) and (3) imply that the drift of c in a risk-neutral world is:

∂c

∂t
+ (r − q)S

∂c

∂S
+

1
2
σ2S2 ∂2c

∂S2
+ αTK

∂c

∂VTK
+

1
2
V 2

TK

∂2c

∂V 2
TK

[ N∑

i=1

(θTKi)2 +
∑

i 6=j

θTKiθTKjρiρj

]

+SVTKσ
∂2c

∂S∂VTK

N∑

i=1

θTKiρi.

In the most general form of the model ρi, the correlation between z and zi, is a function of past

and present values of S, past and present values of VTK and time. For there to be no arbitrage the

process followed by c must provide an expected return of r in a risk-neutral world. It follows that

∂c

∂t
+ (r − q)S

∂c

∂S
+

1
2
σ2S2 ∂2c

∂S2
+ αTK

∂c

∂VTK
+

1
2
V 2

TK

∂2c

∂V 2
TK

[ N∑

i=1

(θTKi)2 +
∑

i 6=j

θTKiθTKjρiρj

]

+SVTKσ
∂2c

∂S∂VTK

N∑

i=1

θTKiρi = rc.

When VTK is held constant, c satisfies the Black-Scholes (1973) and Merton (1973) differential

equation. As a result
∂c

∂t
+ (r − q)S

∂c

∂S
= rc− 1

2
VTKS2 ∂2c

∂S2
.

It follows that

1
2
S2 ∂2c

∂S2
(σ2 − VTK) + αTK

∂c

∂VTK
+

1
2
V 2

TK

∂2c

∂V 2
TK

[ N∑

i=1

(θTKi)2 +
∑

i 6=j

θTKiθTKjρiρj

]

+SVTKσ
∂2c

∂S∂VTK

N∑

i=1

θTKiρi = 0,

or

αTK = − 1
2∂c/∂VTK

[
S2 ∂2c

∂S2
(σ2 − VTK) +

∂2c

∂V 2
TK

V 2
TK

N∑

i=1

(θTKi)2

+
∂2c

∂V 2
TK

V 2
TK

∑

i 6=j

θTKiθTKjρiρj + 2SVTKσ
∂2c

∂S∂VTK

N∑

i=1

θTKiρi

]
. (5)

The partial derivatives of c with respect to S and VTK are the same as those for the Black–Scholes

model:

∂c

∂S
= e

−
∫ T

t
q(τ) dτ

N(d1),

∂2c

∂S2
=

φ(d1)e
−

∫ T

t
q(τ) dτ

S
√

VTK(T − t)
,

∂c

∂VTK
=

Se
−

∫ T

t
q(τ) dτ

φ(d1)
√

T − t

2
√

VTK

,
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∂2c

∂V 2
TK

=
Se

−
∫ T

t
q(τ) dτ

φ(d1)
√

T − t

4V
3/2
TK

(d1d2 − 1),

∂2c

∂S∂VTK
= −e

−
∫ T

t
q(τ) dτ

φ(d1)d2

2VTK
,

where φ is the density function of the standard normal distribution:

φ(x) =
1
2π

exp
(
−x2

2

)
, −∞ < x < ∞.

Substituting these relationships into equation (5) and simplifying we obtain

αTK =
1

T − t
(VTK − σ2)− VTK(d1d2 − 1)

4




N∑

i=1

(θTKi)2 +
∑

i 6=j

θTKiθTKjρiρj




+σd2

√
VTK

T − t

N∑

i=1

θTKiρi. (6)

Equation (6) provides an expression for the risk-neutral drift of an implied variance in terms of

its volatility. The first term on the right hand side is the drift arising from the difference between the

implied variance and the instantaneous variance. It can be understood by considering the situation

where the instantaneous variance, σ2, is a deterministic function of time. The variable VTK is then

also a function of time and

VTK =
1

T − t

∫ T

t

σ(τ)2dτ

Differentiating with respect to time we get

dVTK

dt
=

1
T − t

[VTK − σ(t)2],

which is the first term.

The analysis can be simplified slightly by considering the variable V̂TK instead of V where

V̂TK = (T − t)VTK . Because

dV̂TK = −VTKdt + (T − t)dVTK ,

it follows that

dV̂TK =

{
−σ2 − V̂TK(d1d2 − 1)

4




N∑

i=1

(θTKi)2 +
∑

i 6=j

θTKiθTKjρiρj




+σd2

√
V̂TK

N∑

i=1

θTKiρi

}
dt + V̂TK

N∑

i=1

θTKidzi.

4 Implications of the No-Arbitrage Condition

Equation (6) provides a no-arbitrage condition for the drift of the implied variance as a function

of its volatility. In this section we examine the implications of this no-arbitrage condition. In the
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general case where VTK is nondeterministic, the first term in equation (6) is mean fleeing; that

is, it provides negative mean reversion. This negative mean reversion becomes more pronounced

as the option approaches maturity. For a viable model the θTKi must be complex functions that

in some way offset this negative mean reversion. Determining the nature of these functions is not

easy. However, it is possible to make some general statements about the volatility smiles that are

consistent with stable models.

4.1 The Zero Correlation Case

Consider first the case where all the ρi are zero so that equation (6) reduces to

αTK =
1

T − t
(VTK − σ2)− VTK(d1d2 − 1)

4

N∑

i=1

(θTKi)2

As before, we define F as the forward value of the asset for a contract maturing at time T so

that

F = Se

∫ T

t
[r(τ)−q(τ)]dτ

.

The drift of VTK − VTF is

1
T − t

(VTK − VTF )− VTK(d1d2 − 1)
4

N∑

i=1

(θTKi)2 − VTF [1 + VTF (T − t)/4]
4

N∑

i=1

(θTFi)2.

Suppose that d1d2 − 1 > 0 and VTK < VTF . In this case each term in the drift of VTK − VTF is

negative. As a result VTK −VTF tends to get progressively more negative and the model is unstable

with negative values of VTK being possible. We deduce from this that VTK must be greater than

VTF when d1d2 > 1. The condition d1d2 > 1 is satisfied for very large and very small values of K.

It follows that the case where the ρi are zero can be consistent with the U-shaped volatility smile.

It cannot be consistent with a upward or downward sloping smile because in these cases VTK < VTF

for either very high or very low values of K.

Our finding is consistent with a result in Hull and White (1987). These authors show that when

the instantaneous volatility is independent of the asset price, the price of a European option is the

Black–Scholes price integrated over the distribution of the average variance. They demonstrate that

when d1d2 > 1 a stochastic volatility tends to increase an option’s price and therefore its implied

volatility.

A U-shaped volatility smile is commonly observed for options on a foreign currency. Our analysis

shows that this is consistent with the empirical result that the correlation between implied volatilities

and the exchange rate is close to zero (see, for example, Bates (1996)).

4.2 Volatility Skews

We have shown that a zero correlation between volatility and asset price can only be consistent

with a U-shaped volatility smile. We now consider the types of correlations that are consistent with
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volatility skews.

Consider first the situation where the volatility is a declining function of the strike price. The

variance rate VTK is greater than VTF when K is very small and less than VTF when K is very

large. The drift of VTK − VTF is

1
T − t

(VTK − VTF )− VTK(d1d2 − 1)
4

N∑

i=1

(θTKi)2 − VTF (1 + VTF (T − t)/4)
4

N∑

i=1

(θTFi)2

+σd2

√
VTK

T − t

N∑

i=1

θTKiρi + σ
VTF

2

N∑

i=1

θTFiρi − VTK(d1d2 − 1)
4

∑

i 6=j

θTKiθTKjρiρj

−VTF (1 + VTF (T − t)/4)
4

N∑

i=1

θTFiθTFjρiρj

When K > F , VTK − VTF is negative and the effect of the first three terms is to provide a negative

drift. For a stable model we require the last four terms to give a positive drift. As K increases and

we approach option maturity the first of the last four terms dominates the other three. Because

d2 < 0 we must have

N∑

i=1

θTKiρi < 0 (7)

when K is very large. The instantaneous covariance of the asset price and its variance is

σ

N∑

i=1

θTKiρi.

Because σ > 0 it follows that when K is large the asset price must be negatively correlated with its

variance.

Equities provide an example of a situation where there is a volatility skew of the sort we are

considering. As has been well documented by authors such as Christie (1982), the volatility of an

equity price tends to be negatively correlated with the equity price. This is consistent with the result

we have just presented.

Consider next the situation where volatility is an increasing function of the strike price. (This

is the case for options on some commodity futures.) A similar argument to that just given shows

that the no-arbitrage relationship implies that the volatility of the underlying must be positively

correlated with the value of the underlying.

4.3 Inverted U-Shaped Smiles

An inverted U-shaped volatility smile is much less common than a U-shaped volatility smile or a

volatility skew. An analysis similar to that in Section 4.2 shows why this is so. For a stable model

N∑

i=1

θTKiρi
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must be less than zero when K is large and greater than zero when K is small. It is difficult to see

how this can be so without the stochastic terms in the processes for the VTK having a form that

quickly destroys the inverted U-shaped pattern.

5 Special Cases

In this section we consider a number of special cases of the model developed in Section 3. This

will enable us to reach conclusions about whether the rules of thumb in Section 2 can satisfy the

no-arbitrage condition in Section 3.

Case 1: VTK is a deterministic function only of t, T , and K

In this situation θTKi = 0 for all i ≥ 1 so that from equation (3)

dVTK = αTK dt.

Also from equation (6)

αTK =
1

T − t

[
VTK − σ2

]
,

so that

dVTK =
1

T − t

[
VTK − σ2

]
dt,

which can be written as

(T − t)dVTK − VTKdt = −σ2 dt,

or

σ2 = −d [(T − t)VTK ]
dt

. (8)

This shows that σ is a deterministic function of time. The only model that is consistent with

VTK being a function only of t, T , and K is therefore the model where the instantaneous volatility

(σ) is a function only of time. This is Merton’s (1973) model.

In the particular case where VTK depends only on T and K, equation (8) shows that VTK = σ2

and we get the Black-Scholes constant-volatility model.

Case 2: VTK is independent of the asset price, S .

In this situation ρi is zero and equation (6) becomes

αTK =
1

T − t
(VTK − σ2)− VTK(d1d2 − 1)

4

N∑

i=1

(θTKi)2.

Both αTK and the θTKi must be independent of S. Because d1 and d2 depend on S we must have

θTKi equal zero for all i. Case 2 therefore reduces to Case 1. The only model that is consistent with
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VTK being independent of S is therefore Merton’s (1973) model where the instantaneous volatility

is a function only of time.

Case 3: VTK is a deterministic function of t, T , and K/S.

In this situation

VTK = G

(
T, t,

K

F

)
,

where G is a deterministic function and as before F is the forward price of S. From equation (4)

the spot instantaneous volatility, σ, is given by

σ2 = G (t, t, 1) .

This is a deterministic function of time. It follows that, yet again, the model reduces to Merton’s

(1973) deterministic volatility model.

Case 4: VTK is a deterministic function of t, T , S and K.

In this situation we can write

VTK = G(T, t, F, K), (9)

where G is a deterministic function. From equation (4), the instantaneous volatility, σ is given by

σ2 = lim
T→t

G(T, t, F, F ).

This shows that the instantaneous volatility is a deterministic function of F and t. Equivalently

it is a deterministic function of underlying asset price, S, and t. It follows that the model reduces

to the implied volatility function model. Writing σ as σ(S, t), Dupire (1994) and Andersen and

Brotherton–Ratcliffe (1998) show that

[σ(K,T )]2 = 2
∂c/∂T + q(T )c + K[r(T )− q(T )]∂c/∂K

K2(∂2c/∂K2)
,

where c is here regarded as a function of S, K and T for the purposes of taking partial derivatives.

6 Theoretical Basis for Rules of Thumb

We are now in a position to consider whether the rules of thumb considered in Section 2 can be

consistent with the no-arbitrage condition in equation (6). Similar results to ours on the sticky strike

and sticky delta model are provided by Balland (2002).

In the basic sticky strike rule of Section 2.1 the variance VTK is a function only of K and T .

The analysis in Case 1 of the previous section shows that the only version of this model that is

internally consistent is the model where the volatilities of all options are the same and constant.

This is the original Black and Scholes (1973) model. In the generalized sticky strike model VTK is

independent of S, but possibly dependent on other stochastic variables. As shown in Case 2 of the
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previous section, the only version of this model that is internally consistent is the model where the

instantaneous volatility of the asset price is a function only of time. This is Merton’s (1973) model.

When the instantaneous volatility of the asset price is a function only of time, all European

options with the same maturity have the same implied volatility. We conclude that all versions of

the sticky strike rule are inconsistent with any type of volatility smile or volatility skew. If a trader

prices options using different implied volatilities and the volatilities are independent of the asset

price, there must be arbitrage opportunities.

Consider next the sticky delta rule. In the basic sticky delta model, as defined in Section 2.2, the

implied volatility is a deterministic function of K/S and T − t. Case 3 in the previous section shows

that the only version of this model that is internally consistent is Merton’s (1973) model where the

instantaneous volatility of the asset price is a function only of time. As in the case of the sticky

strike model it is inconsistent with any type of volatility smile or volatility skew.

The generalized sticky delta model, where VTK is stochastic and depends on K,S, T and t only

through the variable K/S and T − t, can be consistent with the no-arbitrage condition. This is

because equation (6) shows that if each θTKi depends on K, S, T , and t only through a dependence

on K/S and T − t, the same is true of αTK .

The relative sticky delta rule and the square root of time rule can be at least approximately

consistent with the no-arbitrage condition. For example, for a mean-reverting stochastic volatility

model, the implied volatility approximately satisfies the square root of time rule when the reversion

coefficient is large (Andersson, 2003).

7 Tests of the Rules of Thumb

As pointed out by Derman (1999) apocryphal rules of thumb for describing the behavior of volatility

smiles and skews may not be confirmed by the data. Derman’s research looks at exchange-traded

options on the S&P 500 during the period September 1997 to October 1998 and considers the sticky

strike and sticky delta rules as well as a more complicated rule based on the IVF model. He finds

subperiods during which each of the rules appears to explain the data best.

Derman’s results are based on relatively short maturity S&P 500 option data. We use monthly

volatility surfaces from the over-the-counter market for 47 months (June 1998 to April 2002). The

data for June 1998 is shown in Table 1. Six maturities are considered ranging from six months to

five years. Seven values of K/S are considered, ranging from 80 to 120. A total of 42 points on

the volatility surface are therefore provided each month and the total number of volatilities in our

data set is 42× 47 = 1974. As illustrated in Table 1, implied volatilities for the S&P 500 exhibit a

volatility skew with σTK(t, S) being a decreasing function of K.

[Table 1 about here.]
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The data was supplied to us by Totem Market Valuations Limited with the kind permission of a

selection of Totem’s major bank clients.3 Totem collects implied volatility data in the form shown

in Table 1 from a large number of dealers each month. These dealers are market makers in the

over-the-counter market. Totem uses the data in conjunction with appropriate averaging procedures

to produce an estimate of the mid-market implied volatility for each cell of the table and returns

these estimates to the dealers. This enables dealers to check whether their valuations are in line

with the market. Our data consist of the estimated mid-market volatilities returned to dealers. The

data produced by Totem are considered by market participants to be more accurate than either the

volatility surfaces produced by brokers or those produced by any one individual bank.

Consider first the sticky strike rule. Sticky strike rules where the implied volatility is a function

only of K and T may be plausible in the exchange-traded market where the exchange defines a

handful of options that trade and traders anchor on the volatility they first use for any one of these

options. Our data comes from the over-the-counter market. It is difficult to see how this form of the

sticky strike rule can apply in that market because there is continual trading in options with many

different strike prices and times to maturity. A more plausible version of the rule is that the implied

volatility is a function only of K and T − t. We tested this version of the rule using

σTK(t, S) = a0 + a1K + a2K
2 + a3(T − t) + a4(T − t)2 + a5K(T − t) + ε, (10)

where the ai are constant and ε is a normally distributed error term. The terms on the right hand

side of this equation can be thought of as the first few terms in a Taylor series expansion of a general

function of K and T − t. Here our analysis is similar in spirit to the “ad-hoc model” of Dumas,

Fleming and Whaley (1998). As shown in Table 2, the model is supported by the data, but has an

R2 of only 27%. As a test of the model’s viability out-of-sample, we fitted the model using the first

two years of data and then tested it for the surfaces for the remaining 23 months. We obtained a

root mean square error (RMSE) of 0.0525, representing a quite sizable error.

[Table 2 about here.]

We now move on to test the sticky delta rule. The version of the rule we consider is the relative

sticky delta model where σTK(t, S)− σTF (t, S) is a function of K/F and T − t. The model we test

is

σTK(t, S)− σTF (t, S) = b0 + b1 ln
(

K

F

)
+ b2

[
ln

(
K

F

)]2

+ b3(T − t)

+b4(T − t)2 + b5 ln
(

K

F

)
(T − t) + ε (11)

where the bi are constants and ε is a normally distributed error term. The model is analogous to

the one used to test the sticky strike rule. The terms on the right hand side of this equation can be
3Totem was acquired by Mark-it Partners in May 2004
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thought of as the first few terms in a Taylor series expansion of a general function of ln(K/F ) and

T − t. The results are shown in Table 3. In this case the R2 is much higher at 94.93%.

[Table 3 about here.]

Here we repeat our out-of-sample exercise, in this case with more satisfactory results: a RMSE

of 0.0073 is obtained, representing a fairly close fit. In Table 3 it should be noted that the estimates

obtained from using only the first half of the sample are quite close to those obtained using the

whole data set.

If two models have equal explanatory power, then the observed ratio of the two models’ squared

errors should be distributed F (N1, N2) where N1 and N2 are the number of degrees of freedom in the

two models. When comparing the sticky strike and relative sticky delta models using a two tailed

test, this statistic must be greater than 1.12 or less than 0.89 for significance at the 1% level. The

value of the statistic is 32.71 indicating that we can overwhelmingly reject the hypothesis that the

models have equal explanatory power. The relative sticky delta model in equation (11) can explain

the volatility surfaces in our data much better than the sticky strike model in equation (10).

The third model we test is the version of the stationary square root of time rule where the

function Φ in equation (1) does not change through time so that σTK(t, S)− σTF (t, S) is a known

function of ln(K/S)/
√

T − t. Using a similar Taylor Series expansion to the other models we test

σTK(t, S)− σTF (t, S) = c1
ln(K/F )√

T − t
+ c2

(
ln(K/F )√

T − t

)2

+c3

(
[ln(K/F )]√

T − t

)3

+ c4

(
ln(K/F )√

T − t

)4

+ ε (12)

where c1, c2, c3 and c4 are constants and ε is a normally distributed error term. The results for this

model are shown in Table 4. We consider more restricted forms of the model where progressively c4

and c3 are set to zero, to render a more parsimonious model for the volatility smile. In this case the

R2 is 97.12%. This is somewhat better than the R2 for the sticky delta model in (11) even though

the model in equation (12) involves two parameters and the the one in equation (11) involves six

parameters.

[Table 4 about here.]

Testing the out of sample performance of the three possible forms of the square-root model gives

RMSEs of 0.0069, 0.0069 and 0.0073 for the four term, three term and two term forms of the model.

We conclude that for both in-sample and out of sample performance, including a cubic term leads to

improvement in performance while the addition of a quartic term has negligible effect. Accordingly,

in the following analysis, when working with the square-root rule, we restrict our attention to the

cubic version.
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We can calculate a ratio of sums of squared errors to compare the stationary square root of time

model in equation (12) to the relative sticky delta model in equation (11). In this case, the ratio is

1.373.4 When a two tailed test is used it is possible to reject the hypothesis that the two models

have equal explanatory power at the 1% level. We conclude that equation (12) is an improvement

over equation (11).

In the stochastic square root of time rule, the functional relationship between σTK(t, S) −
σTF (t, S) and

ln(K/F )√
T − t

changes stochastically through time. A model capturing this is

σTK(t, S)− σTF (t, S) = c1(t)
ln(K/F )√

T − t
+ c2(t)

(
ln(K/F )√

T − t

)2

+ c3(t)
(

ln(K/F )√
T − t

)3

+ ε (13)

where c1(t), c2(t) and c3(t) are stochastic. To provide a test of this model we fitted the model in

equation (12) to the data on a month by month basis. When the model in equation (13) is compared

to the model in equation (12) the ratio of sums of squared errors statistic is 3.11 indicating that

the stochastic square root of time model does provide a significantly better fit to the data that the

stationary square root of time model at the 1% level.

The coefficient, c1, in the monthly tests of the square root of time rule is always significantly

different from zero with a very high level of confidence. In almost all cases, the coefficients c1, c2

and c3 are all significantly different from zero at the 5% level. We note, however, that in spite of

this statistical significance, the most economically significant of the three terms is the linear term.5

Figure 1 shows the level of c1, c2 and c3 plotted against the S&P 500 for the period covered by

our data. We note that there is fairly weak correlation between c1 and the level of the S&P 500

index. However, there is reasonably high correlation between c2 and c3 and the index, during the

earlier part of our sample.

[Figure 1 about here.]

To provide an alternative benchmark for the square root of time rule, we now consider the

possibility that volatility is a function of some other power of time to maturity. We consider both

the stationary power rule model:

σTK(t, S)− σTF (t, S) = d1

[
ln(K/F )
(T − t)d0

]
+ d2

[
ln(K/F )
(T − t)d0

]2

+d3

[
ln(K/F )
(T − t)d0

]3

+ d4

[
ln(K/F )
(T − t)d0

]4

+ ε (14)

4The ratios for comparing the quadratic model and quartic model to (11) are 1.157 and 1.373 respectively
5The approximate linearity of the volatility skew for S&P 500 options has been mentioned by a number of re-

searchers including Derman (1999).
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and the stochastic power rule model:

σTK(t, S)− σTF (t, S) = d1(t)
[

ln(K/F )
(T − t)d0(t)

]
+ d2(t)

[
ln(K/F )

(T − t)d0(t)

]2

+d3(t)
[

ln(K/F )
(T − t)d0(t)

]3

+ d4(t)
[

ln(K/F )
(T − t)d0(t)

]4

+ ε (15)

Estimating this model gives the results in Table 5. We note that the estimates of d0 (the power

of time to maturity which best explains volatility changes) are approximately equal to 0.44, and is

statistically significantly different from 0.5. Performing an out of sample calculation of RMSE for

the stationary power rule, we obtain 0.0070 for each model. All three seem to display reasonable

parameter stability over time.

[Table 5 about here.]

Testing for significance between the performance of this power rule and the square-root rule, we

obtain a ratio of squared errors of 1.04, insufficient to reject the hypothesis of equal performance.

When the stochastic variants of each model are compared, the ratio becomes 5.39 showing that a

considerable improvement in fit is obtained when the power relationship is allowed to vary with

time. All our model comparison results are summarized in Table 6.

[Table 6 about here.]

For the model in equation (15) there is little or no relationship between the level of the index

and the parameters of the rule. We do, however, note that in the later part of the data, there does

seem to be evidence of the power rule being very close to the square root rule (d0 = 0.5).

[Figure 2 about here.]

We conclude that there is reasonably strong support for the square-root rule as a parsimonious

parametrisation of the volatility surface. There is some evidence that the rule could be marginally

improved upon by considering powers other than 0.5.

8 Estimation of Volatility Factors

We also used the data described in the previous section to estimate the factors underlying the model

in equation (3). We focus on implied volatility surfaces where moneyness is described as F/K rather

than S/K, as originally reported. We create this data, and the attendant changes in log volatility,

using interpolation.

The conventional analysis involves the use of principal components analysis applied to the

variance-covariance matrix of changes in implied volatilities. The results of this are shown in Table
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7 and Figure 3. This is a similar analysis to that undertaken by Kamal and Derman (1997), Ski-

adopoulos, Hodges and Clewlow (2000), Cont and Fonseca (2002) and Cont, Foseca and Durrleman

(2002). Our study is different from these in that it focuses on over-the-counter options rather than

exchange-traded options. It also uses options with much longer maturities.

8.1 Taking Account of the No-Arbitrage Drift

We now carry out a more sophisticated analysis that takes account of the no-arbitrage drift derived

in Section 3. The traditional principal components analysis does not use any information about the

drift of volatilities. In estimating the variance-covariance matrix, a constant drift for each volatility

is assumed. From our results in Section 3 we know that in a risk-neutral world the drifts of implied

volatilities depend on the factors. We assume that the market price of volatility risk is zero so that

volatilities have the same drift in the real world as in the risk-neutral world. We also assume a form

of the generalized sticky delta rule where each θTKi is a function K/F and T − t. Consistent with

this assumption we write VTK(t) and θTKi(t) as V(T−t),F/K,t and θ(T−t),F/K,i.

Define α̂ as the drift of ln V(T−t),F/K,t. Applying Ito’s lemma to equation (6) the process for

ln V(T−t),F/K,t is

d ln V(T−t),F/K,t = α̂dt +
N∑

i=1

θ(T−t),F/K,idzi,

where

α̂(T−t),F/K =
1

T − t
(1− σ2

V(T−t),F/K
) + σd2

1√
V(T−t),F/K(T − t)

N∑

i=1

θ(T−t),F/K,iρi

− (d1d2 + 1)
4

N∑

i=1


θ2

(T−t),F/K,i +
∑

j 6=i

ρiρjθ(T−t),F/K,iθ(T−t),F/K,j


 . (16)

We can write the discretised process for ln V(T−t),F/K,t as

∆ ln(V(T−t),F/K,t) = α̂(T−t),F/K∆t + ε(T−t),F/K,t. (17)

Here, the term ε(T−t),F/K,t (which has expectation zero) represents the combined effects of the

factors on the movement of the volatility of an option with time to maturity T − t and relative

moneyness F/K, observed at time t.

The correlations between the ε’s arise from a) the possibility that the same factor affects more

than one option and b) the correlation between the factors arising from their correlation with the

asset price. The covariance between two ε’s is given by

E(ε(T1−t),(F/K1),tε(T2−t),(F/K2),t) = ∆t

N∑

k=1

[
θ(T1−t),(F/K1),kθ(T2−t),(F/K2),k
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+
∑

l 6=k

θ(T1−t),(F/K1),kθ(T2−t),(F/K2),lρkρl

]

+





σ2
ε if T1 = T2 and K1 = K2.

0 otherwise.
(18)

The analysis assumes no correlation between any volatility movements at different times. The

σε captures further effects over and above those given by the finite set of factors considered.

We carry out a maximum likelihood analysis to determine the values of the θ’s, ρ′s, and σε that

best describe the observed changes in option implied volatilities. As these parameters are changed,

α̂ changes and there is a different covariance matrix for the errors.

For any set of parameters we back out an ε for each observation in our data set, using (17). Since

we know that these ε’s are jointly normally distributed, it is a standard result in econometrics6 that

the log likelihood function for this set of parameters is given by:

L =
M∑

i=1

−ε′ti
(Σti)

−1εti − ln det(Σti) (19)

where εti is the vector of ε’s for time ti and Σti is the variance-covariance matrix described by (18)

at time ti.7 To estimate the factors, we can thus use an optimization routine to maximize (19)

by varying θ(T−t),F/K,j (where T − t and F/K are taken to be the varying levels of maturity and

moneyness we observe in our volatility matrices), ρj and σ2
ε . For an N factor model, describing a

volatility matrix of M volatilities, this results in N ×M + N + 1 parameters. We used MATLAB’s

fmincon optimization routine (constraining the ρ’s to lie between -1 and 1) and found that the

routine is efficient for solving the problem, even for this large number of parameters.

Fitting a four factor model (N = 4) we find the factors given in Figure 4 and Table 8. To ease

the comparison with the results from Figure 3 and Table 7, we have converted our factors from

a collection of factors each correlated with stock price movements (and therefore each other) to a

collection of five orthonormal factors, one of which (factor zero) is driven by the same Brownian

Motion as in the underlying stock price. The normalization results in the factors having to be

multiplied by a scaling factor, which allows the familiar analysis of considering the proportion of the

covariance matrix of the surface which is explained by each factor.

Focusing on factor zero (the factor which is perfectly correlated with stock prices) we see that

an increase in stock prices leads to an increase in the slope of implied volatilities. In the case of the

typical skew observed, this would result in a decrease in stock prices causing the skew to steepen,

rendering out of the money puts more valuable. The effect is most pronounced for short maturity

options, and tapers off for longer maturity options.
6See, for example Greene (1997), page 89.
7It is worth observing that our model’s intertemporally independent residuals allows us to consider the likelihood

ratio as the sum of individual time steps’ log likelihood ratios. This considerably speeds up the calculation of both

the inner product term (ε′ti
(Σti )

−1εti ) and ln det(Σti ), which (for a large sample) could involve quite large matrices.
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The most important of all the factors is the first one. This factor shows evidence of hyperbolic

behaviour in the time dimension, and works to offset the explosive behaviour we noted in section

3. It is roughly level in the moneyness dimension, and can therefore be seen as representing moves

up and down of the existing smile. Factors two and three show evidence of a square root effect,

having roughly a square-root shape in the time dimension, but both showing evidence of increasing

sensitivity for higher strike options. Factor four is less easy to interpret, seeming to be a factor

which affects low moneyness, long maturity options.

With four factors, we can explain 99.6% of the variation in implied volatilities, with both the

last two factors making a significant contribution.

Contrasting the results of our consistent factor analysis with the simpler approach originally

followed, we note that we obtain a richer factor structure. The principal components approach

gives two dominant factors which explain 98.8% of the variation. The first factor is similar to

that uncovered by the drift consistent approach, while the second factor shows some evidence of a

square-root behaviour in the maturity dimension.

[Figure 3 about here.]

[Figure 4 about here.]

[Table 7 about here.]

[Table 8 about here.]

9 Summary

It is a common practice in the over-the-counter markets to quote option prices using their Black–

Scholes implied volatilities. In this paper we have developed a model of the evolution of implied

volatilities and produced a no-arbitrage condition that must be satisfied by the volatilities. Our

model is exactly consistent with the initial volatility surface, but more general than the IVF model

of Rubinstein (1994), Derman and Kani (1994), and Dupire (1994). The no-arbitrage condition

leads to the conclusions that a) when the volatility is independent of the asset price there must be

a U-shaped volatility smile and b) when the implied volatility is a decreasing (increasing) function

of the asset price there must be a negative (positive) correlation between the volatility and the

asset price. We outline how these no-arbitrage conditions can be incorporated into a factor analysis,

resulting in no-arbitrage consistent factors. Our empirical implementation of this analysis suggests

that more factors may in fact govern volatility movements than would be thought otherwise.

A number of rules of thumb have been proposed for how traders manage the volatility surface.

These are the sticky strike, sticky delta, and square root of time rules. Some versions of these
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rules are clearly inconsistent with the no-arbitrage condition; for other versions of the rules the

no-arbitrage condition can in principle be satisfied.

Our empirical tests of the rules of thumb using 47 months of volatility surfaces for the S&P 500

show that the relative sticky delta model (where the excess of the implied volatility of an option

over the corresponding at-the-money volatility is a function of moneyness) outperforms the sticky

strike rule. Also, the stochastic square root of time model outperforms the relative sticky delta rule.

A Proof of Equation (4)

For simplicity of notation, we assume that r and q are constants. Define F (τ) as the forward price

at time τ for a contract maturing at time t + ∆t so that

F (t) = S(t)e(r−q)∆t.

The price at time t of a call option with strike price F (t) and maturity t + ∆t is given by

c(S(t), Vt+∆t,F (t), t; F (t), t + ∆t) = e−q∆tS(t)[N(d1)−N(d2)],

where in this case

d1 = −d2 =
√

∆t

2
σt+∆t,F (t)(t, S(t)).

The call price can be written

c(S(t), Vt+∆t,F (t), t; F (t), t + ∆t) = e−q∆tS(t)
∫ d1

−d1

φ(x) dx,

where

φ(x) =
1√
2π

exp
(
−x2

2

)
.

For some x̄ ∫ d1

−d1

φ(x) dx = 2d1φ(x̄)

and the call price is therefore given by

c(S(t), Vt+∆t,F (t), t; F (t), t + ∆t) = 2e−q∆tS(t)d1φ(x̄),

or

c(S, Vt+∆t,F (t), t; F (t), t + ∆t) = e−q∆tS(t)φ(x̄)σt+∆t,F (t)(t, S(t))
√

∆t. (20)

The process followed by S is
dS

S
= (r − q) dt + σ dz.

Using Ito’s lemma

dF = σF dz.
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When terms of order higher that (∆t)1/2 are ignored

F (t + ∆t)− F (t) = σ(t)F (t)[z(t + ∆t)− z(t)].

It follows that

lim
∆t→0

1√
∆t

E[F (t + ∆t)− F (t)]+ = lim
∆t→0

1√
∆t

σ(t)F (t)E[z(t + ∆t)− z(t)]+,

where E denotes expectations under the risk-neutral measure.

Because

E[F (t + ∆t)− F (t)]+ = er∆tc(S(t), Vt+∆t,F (t), t; F (t), t + ∆t),

and

lim
∆t→0

1√
∆t

E[z(t + δt)− z(t)]+ =
1√
2π

,

it follows that

lim
∆t→0

1√
∆t

er∆tc(S(t), Vt+∆t,F (t), t; F (t), t + ∆t) =
σ(t)F (t)√

2π
.

Substituting from equation (20)

lim
∆t→0

er∆te−q∆tS(t)φ(x̄)σt+∆t,F (t)(t, S(t)) =
σ(t)F (t)√

2π
.

As ∆t tends to zero, φ(x̄) tends to 1/
√

2π so that

lim
∆t→0

σt+∆t,F (t)(t, S(t)) = σ(t).

This is the required result.
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Figure 1: Plot of the level of the S&P 500 index (solid line, with scale on the right axis) and the
estimates of c1, c2 and c3 (dashed line, with scale on the left axes). Note the positive correlations
between c2 and c3 and the index during the earlier part of the sample.
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Time to Maturity (months)
Strike 6 12 24 36 48 60

120 15.91% 18.49% 20.20% 21.03% 21.44% 21.64%
110 18.13% 20.33% 21.48% 21.98% 22.18% 22.30%
105 19.50% 21.26% 22.21% 22.52% 22.59% 22.70%
100 20.94% 22.38% 23.06% 23.14% 23.11% 23.07%
95 22.73% 23.71% 23.92% 23.73% 23.58% 23.53%
90 24.63% 24.99% 24.78% 24.40% 24.10% 23.96%
80 28.41% 27.71% 26.66% 25.83% 25.23% 24.83%

Table 1: Volatility matrix for June 1998. Time to maturity is measured in months while strike is in
percentage terms, relative to the level of the S&P 500 index.
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Variable Estimate Standard Error t-statistic Estimate from first 2 years
a0 0.4438616 0.0238337 18.62 0.5405505
a1 -0.0001944 0.000036 -5.40 -0.0002511
a2 0.0000000 0.0000000 1.44 0.0000000
a3 -0.0262681 0.0033577 -7.82 -0.0335188
a4 -0.0006589 0.0003454 -1.91 -0.0011062
a5 0.0000290 0.0000022 13.30 0.0000355
R2 0.2672
Standard error
of residuals 0.0327

Table 2: Estimates for the version of the sticky strike model in equation (10) where volatility depends
on strike price and time to maturity.
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Variable Estimate Standard Error t-statistic Estimates from first 2 years
b0 0.0058480 0.0003801 15.39 0.0067000
b1 -0.2884075 0.0019565 -147.41 -0.3345461
b2 0.0322727 0.0067576 4.78 0.0112730
b3 -0.0075740 0.0003487 -21.72 -0.0091289
b4 0.0015705 0.0000701 22.42 0.0018404
b5 0.0414902 0.0009180 45.20 0.0496937
R2 0.9493
Standard error
of residuals 0.0057

Table 3: Estimates for the version of the relative sticky delta model in equation (11).
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Variable Estimate Standard Error t-statistic Estimates from first 2 years
Unrestricted

c1 -0.2529421 0.0022643 -111.7102965 -0.2702221
c2 0.1423444 0.0124579 11.4260104 0.0675920
c3 0.5101281 0.0572173 8.9156322 0.2231858
c4 -0.2067651 0.2106077 -0.9817545 -0.1157022
R2 0.9631
Standard error
of residuals 0.0049

c4 = 0
c1 -0.2547240 0.0013537 -188.1644600 -0.2712324
c2 0.1319096 0.0064984 20.2987718 0.0620709
c3 0.5595131 0.0272658 20.5206944 0.2522889
R2 0.9631
Standard error
of residuals 0.0049

c3 = c4 = 0
c1 -0.2402662 0.0012591 -190.8294624 -0.2654298
c2 0.0565335 0.0058389 9.6821751 0.0240899
R2 0.9562
Standard error
of residuals 0.0052

Table 4: Estimates for the stationary square root of time rule in equation (12).
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Parameter Estimate Standard Error t-statistic Estimates from first two years
Unrestricted

d0 0.4392204 0.0052036 84.4076018 0.5114474
d1 -0.2416622 0.0023361 -103.4488377 -0.2714956
d2 0.0725670 0.0152348 4.7632480 0.0864143
d3 0.3307833 0.0617382 5.3578373 0.2373512
d4 0.3775721 0.2574542 1.4665602 -0.3039707
R2 0.9652
Standard error
of residuals 0.0047

d4 = 0
d0 0.4419942 0.0048206 91.6878322 0.5083725
d1 -0.2394926 0.0018407 -130.1086545 -0.2733074
d2 0.0912235 0.0076917 11.8600018 0.0674926
d3 0.2581095 0.0390363 6.6120391 0.2901229
R2 0.9651
Standard error
of residuals 0.0047

d4 = d3 = 0
d0 0.4220134 0.0034726 121.5254560 0.4825231
d1 -0.2308670 0.0012548 -183.9941367 -0.2632187
d2 0.0540911 0.0055657 9.7185927 0.0238527
R2 0.9644
Standard error
of residuals 0.0048

Table 5: Estimates of the power rule from equation (14).
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Test Statistic
Sticky Strike (10) versus Sticky delta (11) 32.71

Sticky Delta (11) versus (cubic) Stationary Square-root rule (12) 1.37
Stationary Square-root rule (12) versus Stochastic Square-root rule (13) 3.11

Stationary Square-root rule (12) versus Stationary power rule (14) 1.04
Stochastic Square-root rule (13) versus Stochastic power rule (15) 5.39

Table 6: Comparison of Models using the ratio of sums of squared errors statistic. In a two-tailed
test the statistic must be greater than 1.123 (1.111) to reach the conclusion that the first equation
to provide a better explanation of the data than the second equation at the 1% (5%) level
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Factor 1 Variance=2.823464 Factor 2 Variance=0.187797
Portion=0.926429 Portion=0.061620

Time to Maturity (months) Time to Maturity (months)
Strike 6 12 24 36 48 60 Strike 6 12 24 36 48 60

0.80 0.17 0.15 0.12 0.11 0.10 0.10 0.80 0.15 0.03 -0.06 -0.10 -0.14 -0.15
0.90 0.19 0.16 0.13 0.12 0.11 0.10 0.90 0.18 0.06 -0.06 -0.11 -0.15 -0.16
0.95 0.20 0.16 0.13 0.12 0.11 0.10 0.95 0.20 0.06 -0.06 -0.11 -0.15 -0.17
1.00 0.21 0.17 0.14 0.12 0.11 0.10 1.00 0.22 0.06 -0.06 -0.11 -0.16 -0.18
1.00 0.21 0.17 0.14 0.12 0.11 0.10 1.00 0.22 0.06 -0.06 -0.11 -0.16 -0.18
1.05 0.21 0.17 0.14 0.12 0.11 0.10 1.05 0.24 0.06 -0.06 -0.11 -0.16 -0.18
1.10 0.22 0.18 0.14 0.12 0.11 0.10 1.10 0.26 0.07 -0.05 -0.11 -0.17 -0.19
1.20 0.22 0.19 0.15 0.13 0.11 0.11 1.20 0.29 0.10 -0.05 -0.11 -0.18 -0.20
Factor 3 Variance=0.015721 Factor 4 Variance=0.010684

Portion=0.005158 Portion=0.003505
Time to Maturity (months) Time to Maturity (months)

Strike 6 12 24 36 48 60 Strike 6 12 24 36 48 60
0.80 0.41 0.10 -0.02 0.04 0.10 0.14 0.80 -0.15 -0.27 -0.13 -0.07 0.07 0.08
0.90 0.31 0.03 -0.07 0.02 0.09 0.12 0.90 -0.07 -0.21 -0.11 -0.05 0.08 0.09
0.95 0.24 -0.02 -0.09 0.01 0.07 0.10 0.95 -0.02 -0.20 -0.11 -0.05 0.08 0.10
1.00 0.17 -0.08 -0.12 -0.01 0.05 0.08 1.00 0.05 -0.18 -0.10 -0.05 0.08 0.12
1.00 0.17 -0.08 -0.12 -0.01 0.05 0.08 1.00 0.05 -0.18 -0.10 -0.05 0.08 0.12
1.05 0.08 -0.14 -0.15 -0.03 0.03 0.07 1.05 0.15 -0.13 -0.09 -0.06 0.09 0.13
1.10 -0.02 -0.22 -0.20 -0.04 0.01 0.05 1.10 0.27 -0.08 -0.07 -0.07 0.09 0.15
1.20 -0.28 -0.39 -0.28 -0.07 -0.03 0.02 1.20 0.58 -0.00 -0.05 -0.08 0.10 0.18

Table 7: Factors obtained by Principal Components analysis applied to changes in the volatility
surface.
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Factor 1 Variance=2.043035 Factor 2 Variance=0.283968
Portion=0.719536 Portion=0.100011

Time to Maturity (months) Time to Maturity (months)
Strike 6 12 24 36 48 60 Strike 6 12 24 36 48 60

0.80 0.16 0.15 0.12 0.11 0.10 0.09 0.80 -0.12 -0.11 -0.11 -0.11 -0.12 -0.12
0.90 0.18 0.16 0.13 0.12 0.10 0.10 0.90 -0.15 -0.13 -0.12 -0.12 -0.13 -0.13
0.95 0.19 0.17 0.14 0.12 0.11 0.10 0.95 -0.17 -0.13 -0.12 -0.12 -0.13 -0.13
1.00 0.20 0.17 0.14 0.12 0.11 0.10 1.00 -0.19 -0.14 -0.13 -0.13 -0.13 -0.13
1.00 0.20 0.17 0.14 0.12 0.11 0.10 1.00 -0.19 -0.14 -0.13 -0.13 -0.13 -0.13
1.05 0.21 0.18 0.15 0.13 0.11 0.10 1.05 -0.21 -0.15 -0.13 -0.13 -0.13 -0.13
1.10 0.21 0.18 0.15 0.13 0.11 0.10 1.10 -0.24 -0.16 -0.13 -0.13 -0.13 -0.13
1.20 0.22 0.20 0.16 0.13 0.12 0.11 1.20 -0.28 -0.17 -0.13 -0.13 -0.14 -0.14
Factor 3 Variance=0.146822 Factor 4 Variance=0.125169

Portion=0.051709 Portion=0.044083
Time to Maturity (months) Time to Maturity (months)

Strike 6 12 24 36 48 60 Strike 6 12 24 36 48 60
0.80 -0.07 -0.00 0.05 0.07 0.07 0.08 0.80 -0.08 -0.07 -0.11 -0.15 -0.19 -0.20
0.90 -0.16 -0.05 0.03 0.06 0.07 0.08 0.90 -0.05 -0.06 -0.11 -0.15 -0.20 -0.21
0.95 -0.21 -0.07 0.03 0.06 0.08 0.09 0.95 -0.04 -0.05 -0.11 -0.15 -0.20 -0.22
1.00 -0.27 -0.08 0.02 0.06 0.08 0.09 1.00 -0.02 -0.04 -0.10 -0.15 -0.20 -0.22
1.00 -0.27 -0.08 0.02 0.06 0.08 0.09 1.00 -0.02 -0.04 -0.10 -0.15 -0.20 -0.22
1.05 -0.33 -0.10 0.02 0.06 0.09 0.10 1.05 -0.01 -0.04 -0.10 -0.15 -0.20 -0.22
1.10 -0.40 -0.12 0.01 0.06 0.09 0.10 1.10 0.00 -0.02 -0.09 -0.15 -0.20 -0.23
1.20 -0.52 -0.17 -0.00 0.06 0.10 0.11 1.20 0.03 0.01 -0.08 -0.14 -0.21 -0.24

Factor 0 Variance=0.229168
Portion=0.080711

Time to Maturity (months)
Strike 6 12 24 36 48 60

0.80 0.49 0.26 0.12 0.08 0.05 0.04
0.90 0.39 0.22 0.10 0.07 0.05 0.04
0.95 0.32 0.19 0.09 0.06 0.04 0.03
1.00 0.25 0.16 0.08 0.06 0.04 0.03
1.00 0.25 0.16 0.08 0.06 0.04 0.03
1.05 0.17 0.12 0.07 0.05 0.03 0.02
1.10 0.08 0.09 0.05 0.05 0.03 0.02
1.20 -0.13 0.01 0.03 0.04 0.02 0.01

Table 8: Factors obtained by using maximum likelihood estimation, incorporating the no-arbitrage
consistent drift. The factors are all orthogonal, with factors 1, 2, 3 and 4 being uncorrelated with
the stock price Brownian Motion, and factor 0 being perfectly correlated with the stock price.
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