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1. Introduction
Improved access to foreign markets alters the innovation decisions of firms in two

ways. First, it provides firms with a larger market (or scale) that increases the returns to
innovation. Second, greater scale encourages entry, meaning greater competition, which
makes innovation less attractive for some firms (business-stealing competition) but more
attractive for other firms seeking to escape the competition through innovation. Examples
of this research include Lileeva and Trefler (2010), Bustos (2011), and Aghion et al. (2022)
on scale, Atkeson and Burstein (2010), Impulliti and Licandro (2018), and Aghion et al.
(2018) on business-stealing competition, and Aghion et al. (2001) and Aghion et al. (2005)
on escaping the competition. This paper uses firm-level Chinese data for 2000–2006 to in-
vestigate econometrically how improved access to foreign markets affects innovation via
these scale and competition channels. It does so using a new model that combines step-
by-step innovation, escape the competition, and a type of quality segmentation observed
in many markets that we now describe.

Consider the mobile phone market. The world’s three hundred mobile phone man-
ufacturers can be divided heuristically into three quality segments: a high grade (e.g.,
Apple and Huawei), a middle grade (e.g., China’s Xiaomi), and a low grade (e.g., China’s
Tecno Mobile focused on Africa). Grades are segmented both because consumers have
heterogeneous demands for quality and because today’s grade determines the set of
grades that can be reached through successful innovation tomorrow (‘step-by-step’ in-
novation). After China’s entry into the the WTO in 2001, China’s mobile phone manu-
facturers quickly dominated the global low grade before becoming major players in the
middle grade, and are now entering the high grade.

Consider Xiaomi’s innovation decision. Looking forward in quality space, if Xiaomi
innovates into the high grade it will open up new export markets (scale); however, this
will put it in direct competition with Apple. Whether Xiaomi should innovate depends
on the scale and competition forces in its middle grade relative to the high grade. Look-
ing backward in quality space, Xiaomi is also nervously tracking low-grade firms such as
Tecno Mobile who may soon innovate into the middle grade where they will compete
neck-and-neck with Xiaomi. This puts pressure on Xiaomi to innovate in order to es-
cape tomorrow’s competition. We refer to these effects of competition on innovation as
competitive cascades because competition in the high grade discourages innovation in the
middle grade, and more firms remaining in the middle grade creates competition that
discourages innovation in the low grade.

The need to simultaneously look backward and forward creates a complicated prob-
lem for Xiaomi. Yet the solution is characterized by a remarkably clear and testable set of
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Figure 1: Four Predictions: Impact of Competition and Scale on Innovation
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predictions summarized in figure 1. To describe these succinctly, denote the low, middle,
and high grades by g � 1, g, and g + 1, respectively. The first two predictions are about
the impact of competition on innovation. Firms want to innovate out of more competitive
grades and into less competitive grades. This implies that Xiaomi’s incentive to innovate
is high when grade g + 1 is less competitive. It is also high when grade g � 1 is more com-
petitive, since if Xiaomi fails to innovate, it may be competing tomorrow with firms in
g � 1. In other words, whether competition increases or reduces innovation depends on
whether the competition comes from forward or backward grades. A similar logic holds
for scale, but in the opposite direction: Xiaomi’s incentive to innovate is high when grade
g+1 has larger scale and when grade g�1 has smaller scale. Hence, even though Xiaomi’s
problem is complex, there is a sharp characterization of how its innovation decision de-
pends on scale and competition in backward and forward grades.

Despite the fact that many markets feature step-by-step innovation, quality grades,
and competitive cascades, we are the first to examine these intuitive and important pre-
dictions about exporting and innovation. We test the predictions using China’s rapid
expansion into foreign markets during 2000–2006. In this period, China’s exports grew
by a stunning 22% a year and this growth was shared equally by continuing exporters
(incumbents) and by first-time exporters (entrants). These firms benefited from the in-
creased scale associated with improved access to foreign markets that came with China’s
WTO accession in 2001. Chinese firms became the dominant driver of increased compe-
tition in many foreign markets, often with Chinese firms competing head-on with each
other. We will show that during 2000–2006, these changes in export-market scale and
competition contributed in important ways to China’s rapid expansion of R&D expen-
ditures, patenting, and new-product sales. (They grew by 45%, 31%, and 16% per year,
respectively.) Understanding this contribution is crucial given China’s continued central
role in global value chains and the impacts of Chinese technological change on global
welfare. (See di Giovanni et al., 2014 for a discussion.)

This paper proceeds in three steps. First, we develop a theoretical framework in which
products are segmented into quality-based grades and firms must invest in innovation to
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raise the grade of their product. We use the model to derive an estimating equation that
relates firm innovation to export-market size and competition in grades that are forward
and backward in quality space relative to a firm’s existing grade. Second, we develop a
method for estimating each Chinese firm’s grade, leveraging a structural demand equa-
tion implied by our model. This is an entirely novel approach to a novel problem so we
spend time developing and validating it. Third, we use detailed data on trade, produc-
tion, and innovation outcomes for Chinese firms to estimate the effects of export-market
size and competition on innovation, focusing on R&D spending, patents, the value of
new-product sales, and the principal component of all three measures. We confirm all
four of the predictions in figure 1. Further, for the competition predictions we find that
increased competition associated with entry is much more important for innovation than
is increased competition from incumbents. Finally, we find these results to be robust to
a wide range of alternative specifications, including ones that address endogeneity con-
cerns.

Literature

Our paper contributes to several literatures. First, we add to the body of research
documenting how firm-level innovation is affected by exporting (scale). There is growing
empirical evidence that improvements in export-market access have positive effects on
firm-level innovative activity. For example, tariff cuts in export markets have been shown
to lead to greater product and process innovation (Lileeva and Trefler, 2010, for Canada),
higher spending on technology transfers and high-tech equipment (Bustos, 2011, for Ar-
gentina), and patenting (Coelli et al., 2022, for multiple countries). Maican et al. (2021)
and Peters et al. (2020) also estimate that export-market profits are a key component
of expected returns to R&D for Swedish and German firms respectively.1 See Shu and
Steinwender (2019), Melitz and Redding (2021) and Akcigit and Melitz (2022) for sur-
veys. We contribute to this evidence by showing that the effect of greater export-market
size on firm innovation – both in our model and the data – depends on whether the in-
crease occurs backward or forward in quality space relative to the firm’s current quality.
Our findings also complement branches of this literature that emphasize heterogeneity in
export-market size effects with respect to other firm characteristics, for example firm size
(Akcigit and Kerr, 2018) and productivity (Aghion et al., 2022).

Second, we contribute to the empirical literature examining how firm-level innovation
1There is evidence of such effects outside of the international trade context as well. For example, Ace-

moglu and Linn (2004) provide evidence that increases in potential market size lead to greater entry of new
pharmaceutical products, while Beerli et al. (2018) show that an increase in domestic market size raises
productivity for Chinese manufacturing firms.
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is affected by competition. Here the evidence is much more mixed, with some studies
finding negative impacts of import competition on innovation (e.g., Autor et al., 2020,
Liu et al., 2021) and others finding positive effects (e.g., Bloom et al., 2016). Several pa-
pers have highlighted that the effects of competition on innovation may depend on firm
characteristics such as size (Zhang, 2018) and productivity (Bombardini et al., 2018, Cu-
solito et al., 2021). We add to this discussion by showing that the effects of competition
on innovation depend on where in quality space the competition occurs.

Third, we offer a new theory of what innovation actually buys a firm. Existing frame-
works mostly model innovation by incumbent firms as a means of improving production
efficiency (“process innovation”) and differ in how firm innovation decisions interact.2

Some frameworks also model innovation as a means by which firms can obtain new
products (“product innovation”), by creating these products from scratch,3 stealing ex-
isting products from incumbents,4 or possibly both.5 Our model captures elements of
both product and process innovation, since a firm that successfully innovates not only
creates a new product of higher quality but also changes the distribution of its future pro-
ductivity shocks. However, the key difference in our model relative to the literature is
that successful innovation also changes the market in which a firm operates, which then
exposes the firm to different export-market conditions. This concept of innovation as a
means of ascending through a sequence of ordered markets is key for rationalizing the
opposite effects on innovation of competition in forward versus backward grades that we
find empirically.

In particular, if all firms operated in a single grade, stronger competition would always
discourage innovation due to standard business-stealing effects, whereas when firms can
innovate to move up the grade ladder, investing in innovation to escape from competi-
tion in backward grades becomes possible. In this sense, we also contribute to the more
specific discussion about competition associated with escape-the-competition motives for
innovation. In seminal work, Aghion et al. (2001) and Aghion et al. (2005) develop mod-
els of competition between two firms in which innovation allows one firm to increase

2These include partial equilibrium models that abstract from such cross-firm interactions (e.g., Aw et al.,
2011, Aghion et al., 2022, Maican et al., 2021, Peters et al., 2020), models with atomistic firms in which firm
innovation decisions interact only through general equilibrium price indices (e.g., Atkeson and Burstein,
2010, Costantini and Melitz, 2007, Bustos, 2011, Chen and Xu, 2022, König et al., 2021, Lentz and Mortensen,
2008), duopolistic models that study interactions between two innovating firms (e.g., Acemoglu and Ak-
cigit, 2012, Aghion et al., 2005, Aghion et al., 2001, Akcigit et al., 2021), and oligopolistic models with
symmetric firms (e.g., Impulliti and Licandro, 2018).

3As in Arkolakis et al. (2018), Atkeson and Burstein (2010), and Bloom et al. (2021).
4As in Grossman and Helpman (1991), Klette and Kortum (2004), Acemoglu et al. (2018), and Acemoglu

and Linn (2004).
5See Atkeson and Burstein (2019).
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market share by improving its production capabilities relative to its competitor. How-
ever, both firms always remain in the same market, and an increase in competition is
modeled as an increase in the substitutability between firms’ products instead of growth
in the measure of firms operating in each market, as in our case. In other work, Fieler
and Harrison (2022) develop a model where firms can choose to compete in nests with
many competitors or invest to create new nests with fewer competitors, while in Bloom
et al. (2021), firms facing greater import competition can respond by reallocating trapped
factors toward innovative activities that create new products. This is similar to our mech-
anism, in the sense that innovation changes the market in which a firm operates, except
that there is no notion of orderedness in these markets, hence the concept of “forward”
and “backward” market shocks does not apply.

The outline of the paper is as follows. Section 2 presents the theoretical framework.
Section 3 reviews the data. Section 4 describes a critical step in our analysis, namely the
estimation of grades and product quality. Section 5 presents our main findings about the
impacts on innovation of changes in export-market scale and competition in forward and
backward grades. Section 6 addresses endogeneity concerns. Section 7 provides robust-
ness checks. Section 8 concludes with implications for policy, including WTO subsidies
reform.

2. Model
We consider an economy at two points in time, t � 1 and t. In each period, there is

a set of firms that each produce a unique product. These products are heterogeneous
in a fundamental characteristic that we refer to as the grade of the product, indexed by
g 2 {1, · · · , G} with G < 1.6 For our purposes, there are three important features of
grades. First, products that are of higher grades have higher quality, where quality is
modeled as a consumer taste shifter. Second, the domestic and export profits that a firm
earns are dependent on the grade in which the firm produces. Third, the grade of a firm
at time t depends on the firm’s grade at time t�1 and the firm’s investment in innovation.

Since each firm produces a unique product at a given point in time, we can refer to the
grade of firm i at time t without ambiguity and denote this by g (i, t). Furthermore, as we
describe below, the innovation decision of firm i at time t will depend on its lagged grade
at time t� 1, which for brevity we simply denote by g (i) ⌘ g (i, t� 1).

6We treat G as exogenous. While microfounding this (e.g., in the spirit of Perla and Tonetti, 2014)
would provide modelling elegance, it would not add any additional insights for our empirical analysis
below. Atkin et al. (2021) adopt a similar assumption.
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2.1. Firm heterogeneity
At the end of period t � 1, firms are heterogeneous in three dimensions: grade g(i),

total factor productivity (TFP) which we denote by ⌦i,t�1, and export status which we
denote by �i,t�1, where �i,t�1 = 1 if the firm exports and �i,t�1 = 0 if not. We assume that
TFP follows a first-order Markov process with the cumulative density of ⌦it conditional
on ⌦i,t�1 denoted by F (·|⌦i,t�1). We assume that export status also follows a first-order
Markov process. Specifically, the probability that a firm which exported in grade g at time
t� 1 exports in period t is denoted by:

p
XX,g
t ⌘ Pr [�it = 1 | �i,t�1 = 1, g (i) = g] (1)

while the corresponding probability for a non-exporter in period t� 1 in grade g is:

p
NX,g
t ⌘ Pr [�it = 1 | �i,t�1 = 0, g (i) = g] . (2)

We make four observations. First, unlike Melitz (2003), exporting is not a choice vari-
able. This simplification will allow us to have incredibly rich heterogeneity across grades
(e.g., demand and the cost of innovation will vary by grade) and across firms. We will
exploit this empirically. Second, exporting depends on grade, which depends on inno-
vation. Since we will find higher exporting propensities in higher grades, the choice to
innovate leads directly to a higher probability of exporting, a feature that the firm inter-
nalizes in making its innovation decision. Third, given the innovation process described
below, the distribution of TFP depends on grade. Hence, TFP and exporting are correlated
because the distribution of both depends on grade. Fourth, we can allow the probability
of exporting to depend on directly on TFP, but this does not enrich the empirics below
and so we forego the extra notation required.

2.2. Innovation
At the start of period t, before draws of {⌦it, �it} are realized, each firm makes a deci-

sion about how much to invest in a costly innovation good. This good may be interpreted
as R&D, but can also reflect other inputs into the innovation process. A firm i that ended
period t � 1 in grade g (i) chooses an investment level ait, successfully innovates with
probability M

g(i) (ait) and fails to innovate with probability 1 � M
g(i) (ait). We refer to

M
g as the innovation success function in grade g and denote its first derivative by m

g. We
assume that M g is strictly increasing, strictly concave, and satisfies lima!0 m

g (a) = +1
and lima!+1 m

g (a) = 0. We also allow the per-unit nominal cost of the innovation good,
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denoted by b
g
t , to vary by grade e.g., innovation in higher grades may be more costly.

Conditional on successfully innovating, the firm transitions forward to a grade g
0
>

g (i) with exogenous probability p
g(i),g0

F , where
P

g0>g(i) p
g(i),g0

F = 1. Similarly, conditional
on unsuccessful innovation, the firm remains in or regresses to a grade g

0  g (i) with
some exogenous probability p

g(i),g0

B , where
P

g0g(i) p
g(i),g0

B = 1. Hence, greater investment
in innovation makes it more likely that a firm will transition to a higher grade.7

The transition probabilities p
g(i),g0

F and p
g(i),g0

B determine industry dynamics, but we
know from multiple data sets that industry dynamics are not entirely controlled by the in-
novation choices of firms. For example, Foster et al. (2008) find that exit is often preceded
by negative demand shocks, which Griliches and Regev (1995) refer to as the “shadow
of death.” More generally, Foster et al. (2008) show that negative demand shocks play a
key role for industry dynamics. Since quality will be defined here as a demand shifter,
the Foster et al. demand dynamics are closely related to our grade dynamics. That is,
grade regression appears to be an important feature of US firm-level data. It is also likely
important in China where we estimate that 12% of firms in a given year experience grade
regression. This number is even higher when it includes exit by firms in grade g = 1. To
accommodate demand/grade dynamics that are often happening independently of firm
innovation decisions, we make the following assumption: With exogenous probability ⌘

a firm receives an obsolescence shock that drops its grade by one step.8

Reviewing the timing, at the start of period t the innovation investment is made, in-
novation success or failure is realized, and the obsolescence shock is realized. Together,
these determine the firm’s period-t grade. The firm then draws {⌦it, �it}, makes produc-
tion decisions, and receives profits. Let ⇡g

t (⌦it, �it) denote the profit that a firm with TFP
⌦it and export status �it captures when it produces in grade g at time t. Since firms choose
innovation investments before observing {⌦it, �it}, the optimal innovation investment for
a firm i depends on expected profits:

⇡̄
g
it ⌘ E [⇡g

t (⌦it, �it) |⌦i,t�1, �i,t�1, g (i)] . (3)

7For most of this paper we follow the literature in assuming that failed innovation leaves a firm in its
current grade. That is, pg(i),g(i)

B
= 1. We nevertheless allow failed innovation to move a firm backward to

capture in the simplest way possible a large management literature documenting and explaining innova-
tion strategies that worsen a product’s attractiveness. Christensen (1997) famously described how leaders
in the hard drive industry missed the shift in demand towards smaller, more mobile drives. Misguided
innovation then led to a loss of market share. Likewise, IBM was a leader in artificial intelligence, but its
focus on expert systems left it far behind competitors working on machine learning. Finally, a brief review
of the Chinese mobile phone sector reveals many cases where a phone’s new function was so beset with
problems that it reduced the manufacturer’s quality reputation and market share.

8One can also allow for a firm to exit with some positive probability conditional on failing to innovate.
This is inconsequential for our purposes.
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For simplicity, we assume that firms making innovation investment decisions at the
start of period t fully discount outcomes beyond that period. Firm i therefore chooses
ait � 0 to maximize the following objective function:

�b
g(i)
t ait +M

g(i) (ait)
X

g0>g(i)

p̄
g(i),g0

F ⇡̄
g0

it +
⇥
1�M

g(i) (ait)
⇤ X

g0<g(i)

p̄
g(i),g0

B ⇡̄
g0

it (4)

+
h
M

g(i) (ait) p
g(i),g(i)+1
F ⌘ +

⇥
1�M

g(i) (ait)
⇤
p
g(i)g(i)
B (1� ⌘)

i
⇡̄
g(i)
it

where p̄
gg0

F ⌘ p
gg0

F (1� ⌘) + p
g,g0+1
F ⌘ for g0 > g and p̄

gg0

B ⌘ p
gg0

B (1� ⌘) + p
g,g0+1
B ⌘ for g0 < g are

the net probabilities of advancing and regressing given the outcomes of both innovation
and obsolescence.9 The corresponding first-order condition for the firm’s problem is then:

b
g(i)
t = m

g(i) (ait)

2

4
X

g0>g(i)

p̄
g(i),g0

F ⇡̄
g0

it �
X

g0<g(i)

p̄
g(i),g0

B ⇡̄
g0

it + p̄
g(i)
O ⇡̄

g(i)
it

3

5 (5)

where p̄
g
O ⌘ ⌘p

g,g+1
F � (1� ⌘) pggB (o subscript for own grade) is the net probability of a firm

remaining in its own grade g conditional on the outcome of innovation.
In appendix A.2, we show formally that a model with forward-looking firms leads

to a similar first-order condition for innovation investments (see equation A.27), except
that the weights

n
p̄
gg0

F , p̄
gg0

B , p̄
g
O

o
have a different interpretation: instead of only reflecting

the probabilities of transitioning from g to g
0 in a single period, these weights also reflect

the discounted probability of transitioning to g
0 over multiple periods. Intuitively, firms

in g care about profit opportunities in g
0 if the latter can be reached either in one period

through jumps of potentially multiple steps (as in our model) or through jumps over
multiple periods (if firms are forward-looking). Hence, in this sense, our model captures
the key implications of forward-looking behavior even without allowing for it explicitly.
We revisit this discussion in section 7.

Equation (5) is central and anticipates one of our main results. It shows that optimal
innovation for firm i depends on outcomes in three types of grades: the firm’s own grade

9To understand the expression for p̄gg
0

F
note that a firm moves forward from g to g

0 in one of two ways:
It successfully innovates to g

0 and does not face obsolescence (with probability p
g,g

0

F
(1�⌘)) or it successfully

innovates to g
0 +1 and faces obsolescence (with probability p

g,g
0+1

F
⌘). The sum of these probabilities is p̄gg

0

F
.

Likewise, a firm moves backward from g to g
0 in two ways whose probabilities sum to p̄

gg
0

B
. Furthermore,

the term in front of ⇡̄g(i)
it

is the sum of two terms: The first part is the probability of successfully innovating
to g(i) + 1 followed by obsolescence and the second term is the probability of failed innovation that leaves
the firm in the same grade g(i) followed by no obsolescence.
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g (i), forward grades g0 > g (i), and backward grades g0 < g (i). Given the properties of M g de-
scribed above, if g0 can be reached from g(i) with strictly positive probability then optimal
innovation investments are strictly increasing in ⇡̄

g0

it for forward grades and strictly decreasing in
⇡̄
g0

it for backward grades. On the other hand, since the sign of p̄gO is ambiguous, so too is the
effect of own-grade expected profits ⇡̄g(i)

it on innovation.

2.3. Profits, scale and competition
Equation (5) is a structural relationship between optimal innovation investments and

expected profits in each grade. To link innovation investments to export-market size and
competition, we must therefore take a stand on how these variables affect firm profits.
We can generally express the profits earned by a firm with TFP ⌦it and export status �it in
grade g as the sum of profits from domestic (D) and export (X) markets:

⇡
g
t (⌦it, �it) = ⇡

D,g
t (⌦it, �it) + ⇡

X,g
t (⌦it, �it) . (6)

Anticipating that we do not observe export destinations for a large number of Chinese
firms in our data, we treat the export-market as a single market. In addition, we assume
that preferences for products within a grade g are identical across markets and take a con-
stant elasticity of substitution form with product substitution elasticity �

g. This implies
that domestic and export profits can be expressed respectively as:

⇡
D,g
t (⌦it, �it) =

✓
1

�g

◆
R̄

D,g
t

✓
1

N
D,g
t

◆✓
⌦it

⌦̄D,g
t

◆�g�1

(7)

⇡
X,g
t (⌦it, �it) = �it

✓
1

�g

◆
R̄

X,g
t

✓
1

N
X,g
t

◆✓
⌦it

⌦̄X,g
t

◆�g�1

(8)

where R̄
D,g
t (R̄X,g

t ) is total domestic sales (export revenues) for all firms (exporters) in
grade g, ND,g

t (NX,g
t ) is the number of firms (exporters) in grade g, and

n
⌦̄D,g

t , ⌦̄X,g
t

o
are

measures of average TFP among firms and exporters in grade g:

⌦̄D,g
t =

2

4 1

N
D,g
t

X

i2ND,g
t

⌦�g�1
it

3

5

1
�g�1

, ⌦̄X,g
t =

2

4 1

N
X,g
t

X

i2NX,g
t

⌦�g�1
it

3

5

1
�g�1

(9)

with
�
ND

t ,NX
t

 
denoting the set of firms and exporters in grade g. Note that a firm’s ex-

port status �it does not matter for its domestic profits, whereas the firm captures positive
profits from exporting if and only if �it = 1.
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The intuition for the profit equations (7) and (8) is straightforward. With CES pref-
erences within each grade, profits for a firm in grade g are a constant fraction 1

�g of the
firm’s sales in that market. Firm sales can then be decomposed into three terms.

First, R̄D,g
t and R̄

X,g
t capture the scale of the grade g domestic and export markets.

These terms account for: (i) total consumer expenditure in the domestic and export mar-
kets across all grades; (ii) how consumers differentiate and allocate expenditure across
grades in each market; (iii) the extent of foreign competition faced by domestic producers
in the domestic market (import competition) and in the export market; and (iv) any vari-
able trade costs associated with exporting. In our empirical application below, we will
use data on R̄

X,g
t to control for export-market scale. This approach allows us to proceed

with the empirical analysis without having to first identify the underlying drivers of scale
described above.

Second, ND,g
t and N

X,g
t capture the extensive margin of competition in the grade g domes-

tic and export markets. Absent firm heterogeneity, each firm (exporter) would capture a
constant fraction 1

ND,g
t

( 1
NX,g

t

) of the domestic (export) market in grade g. Hence, ceteris
paribus, more competitors reduce the profits that an individual firm is able to capture.

Third, ⌦̄D,g
t and ⌦̄X,g

t capture the intensive margin of competition in the grade g domestic
and export markets. Firms that are more productive than the average firm in the market
capture more than an equal share of the market, whereas firms that are less productive
than the average firm capture less than an equal share. Hence, as the productivity of the
average competitor in a market increases, sales and profits for each firm fall conditional
on the firm’s own productivity.

Taking expectations of the profit expressions (7) and (8) conditional on firm i’s lagged
TFP and export status, we then obtain:

⇡̄
D,g
it =

✓
1

�g

◆
R̄

D,g
t

✓
1

N
D,g
t

◆✓
1

⌦̄D,g
t

◆�g�1

H
g (⌦i,t�1) (10)

⇡̄
X,g
it = pit

✓
1

�g

◆
R̄

X,g
t

✓
1

N
X,g
t

◆✓
1

⌦̄X,g
t

◆�g�1

H
g (⌦i,t�1) (11)

⇡̄
g
it = ⇡̄

D,g
it + ⇡̄

X,g
it (12)

where H
g (⌦i,t�1) ⌘

R
⌦�g�1

it dF (⌦it|⌦i,t�1) is the expectation of ⌦�g�1
it conditional on ⌦i,t�1

and pit is firm i’s expected probability of exporting at t conditional on its export status
and grade at time t� 1:

pit ⌘ �i,t�1p
XX,g(i)
t + (1� �i,t�1) p

NX,g(i)
t . (13)

10



2.4. Innovation and export-market scale and competition
We are interested in explaining firm i’s expenditure on innovation, denoted by Yit ⌘

b
g(i)
t ait. We need two preliminaries. First, denote the set of innovation-relevant factors as:

n
R̄

D,g
t , R̄

X,g
t , N

D,g
t , N

X,g
t , ⌦̄D,g

t , ⌦̄X,g
t

oG

g=1
. (14)

Second, in the following propositions the forward and backward grades of firm i are re-
stricted to those grades that can be reached with positive probability. Plugging equations
(10)–(12) into the innovation first-order condition (5) and totally differentiating delivers
our two main comparative static results about innovation spending Yit.

PROPOSITION 1. Let g0 be a forward grade for firm i and suppose pit > 0. Holding constant
all other innovation-relevant factors, firm i’s optimal innovation expenditure Yit is (i) strictly
increasing in export-market scale R̄X,g0

t , (ii) strictly decreasing in the extensive margin of export-
market competition N

X,g0

t , and (iii) strictly decreasing in the intensive margin of export-market
competition ⌦̄X,g0

t .

PROPOSITION 2. Let g0 be a backward grade for firm i and suppose pit > 0. Holding constant
all other innovation-relevant factors, firm i’s optimal innovation expenditure Yit is (i) strictly
decreasing in export-market scale R̄X,g0

t , (ii) strictly increasing in the extensive margin of export-
market competition N

X,g0

t , and (iii) strictly increasing in the intensive margin of export-market
competition ⌦̄X,g0

t .

In short, less scale and more competition in forward grades make innovation less at-
tractive, whereas less scale and more competition in backward grades have the opposite
effect. As highlighted above, we refer to the effects of competition on innovation as com-
petitive cascades. Returning to our mobile phone example, more competition from firms
such as Apple in a high-quality grade discourages innovation by Xiaomi and makes it
more likely that Xiaomi continues competing in a middle-quality grade. This in turn dis-
courages innovation by firms in low-quality grades. In this sense, competition in forward
grades cascades downward along the quality ladder. Similarly, looking backward, more
competition from firms such as Tecno Mobile in low-quality grades encourages Xiaomi
to innovate to escape the competition. This increases the likelihood that Xiaomi becomes
a high-quality producer, which in turn increases competition in high-quality grades and
encourages firms like Apple to innovate to escape. In this sense, competition in backward
grades cascades upward along the quality ladder.

Interestingly, the effects of scale and competition on a firm’s own grade are ambigu-
ous because a firm remains in the same grade either through successful innovation plus
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obsolescence or failed innovation without obsolescence. Mathematically, p̄gO ⌘ p
g,g+1
F ⌘ �

p
gg
B (1� ⌘) has an ambiguous sign. This is very clear in the special case of one-step innova-

tion where successful innovation moves a firm up one grade and unsuccessful innovation
leaves the firm in the same grade. Then equation (5) reduces to:

b
g(i)
t =m

g(i)(ait)
h
(1� ⌘)⇡̄g(i)+1

it + ⌘⇡̄
g(i)
it � (1� ⌘)⇡̄g(i)

it � ⌘⇡̄
g(i)�1
it

i
(15)

=m
g(i)(ait)

h
(1� ⌘)⇡̄g(i)+1

it � ⌘⇡̄
g(i)�1
it + (2⌘ � 1)⇡̄g(i)

it

i
.

Combining this with equations (10)–(12) yields the following proposition.

PROPOSITION 3. Assume that there is one-step innovation. Let g = g (i) be firm i’s grade and
suppose pit > 0. Holding constant all other innovation-relevant factors, larger scale R̄X,g

t , lower
extensive-margin competition N

X,g
t , and lower intensive-margin competition ⌦̄X,g

t (i) raise firm
i’s innovation if ⌘ >

1
2 , (ii) lower firm i’s innovation if ⌘ <

1
2 , and (iii) have no effect on firm i’s

innovation if ⌘ = 1
2 .

It is thus useful to have an empirical sense of ⌘’s value. In the one-step innovation
case, the probabilities of transitioning from g(i) to either g(i) � 1, g(i) or g(i) + 1 sum to
one and are pinned down by ⌘ and the average probability of successful innovation M̄ .
Calibrating ⌘ and M̄ to match observed transitions in our data generates ⌘ = 0.594, which
is close to 0.5.10 This motivates our baseline specification in which we include expected
export-market scale and competition regressors for grades g � 1 and g + 1, but not for
grade g. In section 7 we then show that when regressors for grade g are included they are
statistically and economically insignificant.

3. Data
Production data: Production and sales data (including firm-level exports) are from

the 2000–6 Chinese Manufacturing Enterprises (CME) database. We link firms across
time following Brandt et al. (2012, 2014, 2017), who have generously published their so-
phisticated programs. Not suprisingly, our firm counts are almost identical to theirs. See
online appendix E.1.1. Appendix B describes how we clean the data and choose which

10Consider firms in grades g = 2, . . . , G � 1. In the data the probability of moving up for these
firms is 0.301 and occurs in the one-step model when there is successful innovation without obsolescence:
M̄(1 � ⌘) = 0.301. The probability of moving down for these firms is 0.154 and occurs in the model when
innovation fails with obsolescence: (1� M̄)⌘ = 0.154. Solving for M̄ and ⌘ yields ⌘ = 0.594.
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observations to include in the sample. Notably, we always omit processing firms and in
robustness checks also exclude state-owned enterprises and foreign-invested firms.

Innovation data: Firms engage in innovation in a variety of formal and informal ways
that we measure using data on patents, R&D, and the value of new-product sales. Patent
data are from the China National Intellectual Property Administration (CNIPA) and are
matched to our CME database using firm names and addresses. R&D and new-product
sales are reported directly in the CME. R&D is available for 2001–3 and 2005–6. The
three innovation measures are winsorized. Appendix B contains details. Each measure
is zero for many firms. To deal with this sparsity we combine the three measures by
estimating their common principal component. This principal component of innovation
is our baseline measure of innovation, though we always report results separately for
R&D, new-product sales, and patents. The principal component is estimated by 2-digit
industry. Our sample has 28 industries. Details of estimation, including a table of factor
loadings, appear in appendix B. The loadings show that for each industry, the principal
component is positively correlated with all three innovation measures. The loadings also
show that patents carry the least weight of the three.11

TFPR and Markups: We estimate revenue total factor productivity for each firm as in
Orr et al. (2019). They show that translog gross-output production functions estimated by
2-digit industry perform well on our data. We use the proxy variable approach in Acker-
berg et al. (2015), but with three modifications: the law of motion for firm-level productiv-
ity depends on export status as in the learning-by-exporting approach of De Loecker and
Warzynski (2012) and De Loecker (2013); the Olley and Pakes (1996) selection correction
method is used to correct for attrition bias; and we add lagged capital and its square as
additional (over-identified) instruments in estimation of the production functions.12 With
TFPR estimates in hand, we estimate markups using De Loecker and Warzynski (2012)
with material inputs. The distribution of our markup estimates are shown in appendix
figure A.2. The log of markups has a sensible median of 0.17, with 5th and 95th percentiles
of 0.01 and 0.36, respectively.

Quantity and price data: We use data on constant and current dollar output for 2000–3

11The patent and R&D data are known to be distorted by government incentive schemes. In this paper
we always use these data within narrow bins defined not just by industry and year, but also by quality
grade. This purges some if not most of these biases. Chen et al. (2021a) also document the presence of R&D
tax ‘notches’, but we cannot see how these would affect our within-industry-year-grade results.

12Details appear in appendix B. Appendix figure A.2 shows that our log TFPR estimates are tightly
distributed with an interquartile range of 0.13. The figure also shows that whether or not we make the three
proxy-variable modifications does not affect these distributions. Online appendix figure B.1 reports the
distributions of our estimated output elasticities for labour, capital and materials, as well as our estimates
of returns to scale. These are all sensible.
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from the CME to recover quantities. We then recover prices as sales per unit of quantity.13

In addition, we extrapolate quantities and prices to 2004–6 using the procedure described
in online appendix E.1.4. The appendix cross-validation test establishes that our extrapo-
lation procedure is very accurate.

4. The Assignment of Firms to Grades
4.1. Estimation Algorithm

Crucial for our paper is the notion of quality grades. This section defines grades by
estimating a grade assignment function g(i) that maps firm i in year t � 1 into grade g 2
{1, . . . , G}. We assume that consumer preferences in any market take the following CES
form across grades (for brevity in this section we suppress industry and time subscripts):

U =

"
GX

g=1

(✓gQg)
⇢�1
⇢

# ⇢
⇢�1

(16)

where ✓g denotes the quality of grade g products, Qg is a CES aggregate of products within
grade g with elasticity of substitution �

g (which generates the profit equations 7 and 8),
and ⇢ is the elasticity of substitution across grades. Importantly, we assume that ✓

g is
strictly increasing in g, which is key for identification of a firm’s grade and captures the
fact that firms must invest in innovation to improve product quality.

From equation (16), total demand faced by a firm i operating in grade g is:

qi = A
g (✓g)�

g�1 (pi)
��g

(17)

where A
g is a grade-specific general equilibrium demand shifter reflecting demand from

both domestic and export markets and pi is the firm’s output price.14 In equation (17),
qi and pi are data while ✓

g, �g and A
g are unknown parameters that we need in order to

estimate g(i).
If we knew each firm’s grade assignment, then we could identify the sample of firms

in grade g and use the sample to estimate ✓
g, �g and A

g using standard techniques e.g.,
Berry (1994). Unfortunately, we do not know the grade assignment and have therefore
developed a novel iterative approach. Let n index iterations and let gn (i) be the estimated

13Brandt et al. (2017) use these data to build up the price indexes they (and we) use to construct TFPR.
14The form of A

g is straightforward to derive given consumer CES consumer preferences, but this is
inconsequential for our analysis.
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grade assignment function at iteration n. For the purposes of the algorithm we treat
quality as a firm-specific variable. Let ✓i,n be a firm’s quality at iteration n.

We start with an initializing choice ✓i,0. In iteration n � 1, we k-means cluster the
✓i,n�1 into G clusters. The clustering is the grade assignment gn(i). Graphically, we are
dividing the ✓i,n�1 into G intervals that cover the real line. Firms whose ✓i,n�1 fall into the
g
th interval are assigned to grade g.

Before moving to iteration n+ 1 we need ✓i,n. Inverting equation (17):

ln ✓i,n =
1

�gn(i) � 1

�
ln qi + �

gn(i)
n ln pi

�
� 1

�gn(i) � 1
lnAgn(i)

n (18)

where �
gn(i)
n and A

gn(i)
n are the iteration-n estimates of the product substitution elasticity

and export-market demand shifter in grade gn (i), respectively. We estimate �
g
n using our

markup estimates µi as follows. Letting S
g
n be the set of firms assigned to grade g in

iteration n, the average grade-g markup is µ
g
n ⌘

P
i2Sg

n
µi/ |Sg

n|. Appealing to properties
of CES, we set �g

n ⌘ µ
g
n/(µ

g
n � 1).

To estimate the demand shifters A
g
n, recall that the largest quality in grade g is the

smallest quality in grade g + 1:

max
i2Sg

n

ln ✓i,n = min
i2Sg+1

n

ln ✓i,n . (19)

Combined with equation (18) this implies the following relation between the demand
shifters Ag+1

n and A
g
n:

lnAg+1
n = B

g+1
n �

✓
�
g+1
n � 1

�
g
n � 1

◆
B

g
n +

�
g+1
n � 1

�
g
n � 1

lnAg
n (20)

where B
g
n ⌘ maxi2Sg

n
{ln qi + �

g
n ln pi} and B

g+1
n ⌘ mini2Sg+1

n
{ln qi + �

g+1
n ln pi}. At this

point in iteration n, we know qi and pi for all i and �
g
n and S

g
n for all g. That is, we

know everything except the demand shifters. It follows that equation (20) is a first-order
difference equation in the A

g
n and these are easily solved as a linear function of A1

n. Since
quality is only meaningful up to a constant, without loss of generality we normalize log
quality in grade 1 to zero. Equation (17) then pins down the demand shifter in grade 1:

lnA1
n = ln q̄1n + �

1
np̄

1
n (21)

where ln q̄1n and ln p̄1n denote the average log quantity and price in grade 1, respectively.
Now that we know all of the �

g
n and A

g
n, equation (18) gives us ✓i,n. We move to
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Table 1: External Validation of Grade Assignment

k-means with quality k-means with sales

Grade
Share of 

firms

Berry-
Khandelwal 
(trade data)

 Schott  
(price)

Kugler-
Verhoogen 
(Input Defl.)

Share of 
firms ln(sales)

(1) (2) (3) (4) (5) (6) (7)
1 0.15 0.00 0.00 0.000 0.8029 0.00
2 0.18 0.07 0.16 0.017 0.1398 1.65
3 0.16 0.13 0.21 0.024 0.0374 2.56
4 0.15 0.22 0.23 0.025 0.0122 3.27
5 0.13 0.30 0.26 0.034 0.0049 3.93
6 0.11 0.38 0.27 0.036 0.0018 4.57
7 0.09 0.47 0.32 0.052 0.0007 5.42
8 0.04 0.43 0.40 0.078 0.0003 6.11

Notes: To facilitate comparison across columns, in columns 3, 4, 5, and 7 grade 1 is normalized to zero i.e.,
the grade 1 value is subtracted from all numbers in the column. Column 4 uses 2000–3 price data.

iteration n + 1, which starts with k-means clustering on ✓i,n to get gn+1(i). The algorithm
continues until gn+1(i) = gn(i) for all i i.e., until we have a stable estimate of the grade
assignment function.15

We empirically implement the algorithm as follows. We set the number of grades at
G = 8 and show in section 7 that our findings are not sensitive to the choice of G. We
then implement the algorithm separately for each 2-digit industry, pooling across years
in order to track how firms transition across grades over time. See appendix C for details.

4.2. External Validation of Grade Assignment
Features of the grade assignment appear in table 1. Column 2, which sums to one,

shows that higher grades have fewer firms, which is consistent with our key assumption
that it is costly for firms to advance to higher grades.

To externally validate our assignment of firms to quality grades, we estimate alterna-
tive measures of quality by firm and year and then calculate the mean of these measures

15Here are some technical details. (i) k-means clustering is invariant to adding a constant to the ✓i,n and
hence is invariant to the normalization of the export demand shifter A

1
n

. (ii) Price and quantity data are
doing very limited work in our algorithm. As opposed to traditional methods of estimating demand where
price and quantity data are required to estimate the main object of interest �g , in our setting the �

g param-
eters are retrieved from markups. Hence, the role of price and quantity is confined here to identification of
the demand shifters Ag .
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by grade. The results appear in columns 3–5 of table 1. In the international trade liter-
ature, Khandelwal (2010) provides the best-known procedure for estimating quality. He
uses US trade data at the Harmonized System level. We adapt his procedure by using
firm-level export data matched with our firm-level production data. This allows us to
construct firm-level instruments for firm-level prices. See online appendix E.1.5 for de-
tails. Column 3 of table 1 reports our Khandelwal-inspired measure of quality averaged
across firms in each grade. As is apparent, there is a high degree of correlation between
this measure and our assignment of firms to quality grades.

In column 4, we use Schott’s (2004) influential quality measure, namely unit value
import prices. In column 5, we follow Kugler and Verhoogen (2012) in arguing that a
firm’s output quality is correlated with its input quality as measured by input prices.
These we measure with the Brandt et al. (2017) input deflators. Considering columns 3–5,
these measures of quality are all highly correlated with our assignment of firms to grades.

Our quality and grade assignments are, at bottom, firm-specific demand shifters and
so can be compared to those in Foster et al. (2008). In online appendix E.1.7 we show
that our grades display almost identical dynamics to the demand shifters examined so
carefully in Foster et al. (2008).

Finally, one might conjecture that our estimation procedure simply groups together
firms that have similar sales, so that what we interpret as heterogeneity in quality is
largely driven by heterogeneity in firm size. To examine this, we implement our estima-
tion procedure targeting sales rather than quality in the k-means clustering. Comparing
columns 2 and 6, clustering on sales leads to a substantially different distribution of firms
across grades. In particular, the distribution based on sales is highly skewed with 80%
of firms in grade 1 and only 6% of firms in grades 3–8. Skewness is further evident in
column 7 where the average firm in grade 4 is 26 times larger than in grade 1 (= e

3.27) and
the average firm in grade 8 is 450 times larger. In other words, except for a small handful
of very large firms, clustering on sales relegates most firms to a small number of grades,
whereas clustering on quality produces a more discriminating distribution of firms across
grades.

4.3. Assessing Two Key Premises of our Theory
Our theory has two key premises. The first premise is that innovation is an activity

that allows firms to move up the quality grade ladder. In appendix D we show this
by regressing a firm’s grade change g(i, t) � g(i, t � 1) on measures of its innovation.
The results are strikingly strong: firms that innovate have a much higher probability of
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moving up the grade ladder. Our second premise is that export-market shocks vary across
grades so that firms in different grades are exposed to different shocks. In appendix D we
also show that during 2000-6, the highest grades experienced the fastest growth in exports
and number of exporters. Hence, we conclude that our iterative procedure delivers a
grade assignment that is consistent with the key premises of our theory.

5. Baseline Empirical Results
As explained in the discussion following Proposition 3, the starting point for our

baseline empirical analysis is the innovation first-order condition (equation 15) with ⌘ =

1/2 together with the decomposition of export-market profits into scale and competition
(equation 11). Since we focus on export markets and work in logs, we drop X superscripts
and define:

r̄
g
jt = ln(1 + R̄

X,g
jt ) , n

g
jt = ln(1 +N

X,g
jt ) , !̄

g
jt = ln(1 + (⌦̄g

jt)
��1) and !it = ln(⌦it) (22)

where we add 2-digit industry subscripts (j) to industry-level variables. We add 1 to logs
to deal with the 0.2% of the sample where there are no exporters within a grade-industry-
year bin.

Plugging the profit functions of (10)–(12) into the first-order condition (15) and log-
linearizing yields our estimation equation (see appendix A.1 for the derivation):

yijt = �
+
r pijtr̄

g(i)+1
jt + �

+
n pijtn

g(i)+1
jt + �

+
! pijt!̄

g(i)+1
jt (23)

+ �
�
r pijtr̄

g(i)�1
jt + �

�
n pijtn

g(i)�1
jt + �

�
! pijt!̄

g(i)�1
jt

+ �ppijt + �!!i,t�1 + ↵i + ↵
g(i)
jt + "ijt .

where ↵i is a firm fixed effect, ↵g(i)
jt is a grade-industry-year fixed effect, and "ijt accounts

for approximation error. A firm’s probability of exporting pijt multiplies each of the
export-market variables

n
r̄
g0

jt, n
g0

jt, !̄
g0

jt

o
because, intuitively, these variables are only rele-

vant for a firm’s innovation investments if the firm expects to be an exporter. We therefore
often refer to these products as expected export-market scale and competition.16

16 This footnote is intended to show as briefly as possible that we have exact theoretical expressions for
each coefficient in equation (23). The � coefficients are defined in appendix equation (A.16). �p is defined
in (A.17). �! is also defined in (A.17) and appears here because !i,t�1 is a log-linear approximation of
H

g(i)(⌦i,t�1) i.e., of expected productivity conditional on productivity in period t � 1. We experimented
with approximations of Hg(i)(⌦i,t�1) involving higher-order polynomials in !i,t�1, but this made no dif-
ference to our empirical results. ↵i is defined in (A.18). ↵

g(i)
jt

is defined in (A.19) and, significantly, is a
function of the marginal cost of innovation b

g(i)
jt

as well as the the part of domestic profits that is common to
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Proposition 1 implies that for forward grades:

�
+
r > 0, �

+
n < 0, �

+
! < 0 . (24)

Greater expected export-market size and less expected export-market competition in for-
ward grades make them more profitable and hence encourage firms in grade g(i) to in-
novate. Proposition 2 implies that backward grade signs are opposite of forward grade
signs:

�
�
r < 0, �

�
n > 0, �

�
! > 0 . (25)

Larger expected export-market size and less expected export-market competition in back-
ward grades discourage firms in grade g(i) from innovating.

In section 7 we consider an unrestricted specification where we allow for (1) grade
transitions of more than one step, (2) ⌘ 6= 1/2 and the corresponding inclusion of grade-g
scale and competition regressors, and (3) regression coefficients that vary by grade e.g.,
�
+
r replaced by �

+,g
r . In each case, our baseline conclusions are re-confirmed.

5.1. Baseline Results
We begin by estimating equation (23) using the principal component of innovation

as the dependent variable, where each of the variables on the right-hand side are con-
structed exactly as described in the theory section.17 Table 2 presents the results. There
are 621,879 firm-year observations covering 170,302 firms. All specifications include firm
fixed effects. Our baseline specification appears in column 7 and includes the ↵

g(i)
jt fixed

effects which we henceforth refer to as grade-industry-year fixed effects or gjt fixed ef-
fects for short. While the theory is clear that estimation must occur within these detailed
gjt bins, the within-gjt sample variation is narrow so in columns 1–6 we build up from
simpler sets of fixed effects.

Column 1 includes industry-year fixed effects to control for industry trends. Five con-
clusions emerge from this column. First, the coefficient signs for expected export-market

all firms, R̄D,g(i)
jt

/(�g(i)
N

D,g(i)
jt

(⌦̄D,g(i)
jt

)�
g(i)�1). The reader can easily verify that all terms in the first-order

condition (15), and in equations (10)–(12) that are substituted into (15), appear in equation (23).
17
r̄
g(i)�1
jt

, r̄g(i)+1
jt

, ng(i)�1
jt

, ng(i)+1
jt

, !̄g(i)�1
jt

and !̄
g(i)+1
jt

are constructed using the discussion surrounding
equations (8), (9) and (22). pijt is constructed using equation (13) together with the sample moments cor-
responding to equations (1)–(2). We explored many refinements for constructing pijt e.g., conditioning on
a firm’s quantile within the productivity distribution (!i,t�1) or conditioning on a firm’s province. Our
results are not sensitive to these alternatives.
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Table 2: Baseline Specification: Principal Component of Innovation

(1) (2) (3) (4) (5) (6) (7) (8)

Exports (r ) Backward -0.84* -0.90* -0.78* -0.84* -0.90* -0.97* -0.62* -0.61*
(0.08) (0.09) (0.08) (0.08) (0.09) (0.09) (0.08) (0.09)

[0.12]* [0.13]* [0.12]* [0.12]* [0.12]* [0.12]* [0.11]* [0.10]*

Exports (r ) Forward 0.41* 0.39* 0.37* 0.36* 0.42* 0.44* 0.22* 0.18*
(0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.07)

[0.07]* [0.07]* [0.07]* [0.07]* [0.08]* [0.08]* [0.06]* [0.07]*

Competition (n ) Backward 0.76* 0.78* 0.68* 0.70* 0.78* 0.79* 0.59* 0.57*
(0.08) (0.08) (0.08) (0.07) (0.08) (0.08) (0.07) (0.07)

[0.11]* [0.12]* [0.11]* [0.11]* [0.11]* [0.11]* [0.11]* [0.09]*

Competition (n ) Forward -0.48* -0.44* -0.39* -0.34* -0.36* -0.32* -0.29* -0.25*
(0.06) (0.05) (0.05) (0.05) (0.06) (0.06) (0.06) (0.06)

[0.07]* [0.07]* [0.06]* [0.06]* [0.07]* [0.07]* [0.07]* [0.05]*

Competition (w) Backward 0.21* 0.23* 0.22* 0.24* 0.24* 0.27* 0.13* 0.12*
(0.03) (0.03) (0.04) (0.04) (0.04) (0.04) (0.04) (0.03)

[0.05]* [0.05]* [0.05]* [0.05]* [0.05]* [0.05]* [0.04]* [0.04]*

Competition (w) Forward -0.06 -0.09 -0.05 -0.09 -0.07 -0.12* 0.06 0.05
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.03) (0.03)
[0.04] [0.05] [0.04] [0.04] [0.05] [0.05] [0.04] [0.04]

Lagged productivity -0.18* -0.16* -0.18* -0.16* -0.14* -0.11* -0.11* -0.08*
(0.02) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

[0.03]* [0.03]* [0.03]* [0.03]* [0.03]* [0.03]* [0.02]* [0.02]*

Prob. of exporting 0.16* 0.16* 0.07 0.08 0.03 0.00 0.03 0.04
(0.04) (0.04) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

[0.05]* [0.05]* [0.04] [0.04] [0.04] [0.04] [0.04] [0.03]

Fixed effects #2 jt jpt jt jpt jt jpt gjt gjpt
Fixed effects #3 g g gj gjp
F tests

107.05* 112.75* 89.15* 95.74* 102.85* 114.54* 44.52* 32.66*
130.81* 131.27* 99.54* 100.31* 102.34* 97.35* 65.75* 54.34*
16.34* 23.97* 15.20* 22.84* 16.53* 25.28* 1.38 1.23

   All Six = 0 33.84* 32.81* 29.21* 27.32* 33.44* 31.66* 23.04* 19.23*

Observations 621,879 620,018 621,879 620,018 621,879 619,707 621,852 613,799

R2 0.725 0.736 0.726 0.736 0.726 0.742 0.729 0.755
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Notes: This table reports estimates of equation (23). Predicted signs appear next to the row labels. The
dependent variable is the principal component of innovation. All specifications include firm fixed effects
(170,302 firms). Additional fixed effects are listed in the ‘Fixed effects’ rows where g indexes firm i’s grade in
period t� 1 (8 grades), j indexes 28 2-digit industries, t indexes years (2000–6), and p indexes 31 provinces.
Standard errors clustered two-way by firm and gj are in parentheses with a * next to the coefficient indicat-
ing significance at the 1% level. Bootstrapped standard errors with two-way clustering (firm and gj) are in
square brackets, with a * next to the bracket indicating significance at the 1% level. F tests are for the null
that the backward and forward coefficients are equal and for the null that all six coefficients are zero. F s
are based on the standard errors in parentheses and a * indicates rejection of the null at 1%.
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size, expected extensive-margin competition, and expected intensive-margin competition
are all as predicted. See equations (24) and (25) or the signs next to each row label. Second,
all but one of the coefficients is statistically significant. To limit p-hacking, throughout this
paper we only report statistical significance at the 1% level (indicated by a single *) and
ignore statistical significance at the 5% and 10% levels. Standard errors two-way clustered
by firm and grade-industry (gj) are reported in parentheses and a * next to a coefficient
is based on these standard errors. Bootstrapped standard errors two-way clustered by
firm and gj appear in square brackets and a * there indicates significance based on boot-
strapped standard errors. In online appendix E.1.6 we provide a detailed justification for
our clustering and show that it produces the largest standard errors among the 12 most
reasonable clustering candidates.

Third, the magnitudes of most of our key regression coefficients are large. In this
table each dependent and independent variable is pre-scaled by its interquartile range
(iqr). Thus, a one iqr increase in backward expected export-market scale leads to a 0.84
iqr decrease in the principal component of innovation. Fourth, since our regressors are
correlated, it is possible for them to be individually significant but not jointly significant.
The F -statistic for the null that all six regressors are zero appears in the table and is 33.84,
well above the cut-off of about 3. Fifth, our key hypothesis implies not only that forward
and backward coefficients have different signs, but also that these coefficients are statis-
tically different. The F -test rows report results of tests that the backward and forward
coefficients are equal, from which we see that the null of equality is soundly rejected (crit-
ical F around 7). Sixth, the extensive-margin competition variables n

g(i)�1
jt and n

g(i)+1
jt are

much more important than the intensive-margin competition variables !̄g(i)�1
jt and !̄

g(i)+1
jt .

Indeed, the latter will sometimes be insignificant in the results reported below. In simpler
language, it is the number of competitors that matters more so than the productivity of
these competitors.

Moving across the columns in table 2 we increase the number of fixed effects with a
view to controlling for omitted demand- and supply-side shocks to innovation. In column
1 we allow for industry trends that might be correlated with our six key variables. For
example, our variables might be correlated with (a) demand shocks that differ by industry
and hence drive differential industry growth or (b) supply shocks that differ by industry
such as rising spillovers from increased multinational presence in some of China’s sectors,
which might lower the cost of innovation. (a) and (b) are controlled for by the industry-
year fixed effects in column 1. In column 2 we allow industry trends to vary by province
e.g., (a) rising incomes in Guangdong drive rising demand for consumer electronics there,
(b) a new provincial technical institute lowers the local cost of hiring R&D workers or (c)
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a provincial policy encourages spillovers from foreign multinationals. In columns 3–4 we
add grade fixed effects to allow levels of innovation to vary across grades e.g., innovation
may be more important or more costly in higher grades.18 In column 5 we allow for
grade fixed effects to vary by industry e.g., the innovation-grade gradient is steeper for
higher-tech industries. In column 6 the grade-industry-province (gjp) fixed effects allow
innovation-grade gradients to vary flexibly across industry-province pairs.

When we move to column 7 we introduce the full set of fixed effects implied by the
theory. This is our baseline specification. We see that the coefficients shrink (though all
but one remain statistically significant at the 1% level), which tells us that the gt com-
ponent is important or, put simply, that high and low grades are trending differently
and this matters for understanding the relationship between innovation and our six key
variables.19 Finally, in column 8 we allow for grade-industry-province-year (gjpt) fixed
effects e.g., as Guangdong incomes rise faster than in other regions, consumer demand in
that province tilts towards higher-quality electronics. This adds 27,525 fixed effects and
leaves us with just 16 observations per fixed effect.20 Remarkably, the addition of these
fixed effects has little impact on our coefficients or their standard errors. Five of our six
coefficients have the signs predicted by the theory and are economically and statistically
significant. We believe that our saturation of the regression with so many fixed effects
goes considerably further than the standard research on China and points to a high level
of confidence in our results.

Finally, all specifications in table 2 include two additional time-varying, firm-level
variables, !i,t�1 and pijt. The theory does not predict their signs.21

pijt plays an additional
econometric role. Pick any one of our key variables, say pijtr̄

g(i)�1
jt . We want to know if

its importance is due to the interaction of pijt with r̄
g(i)�1
jt , as implied by the theory, or

due to each term separately, which is inconsistent with the spirit of our theory. To answer
this, we can include all three of pijtr̄

g(i)�1
jt , pijt, and r̄

g(i)�1
jt , which is in fact what we do in

our baseline specification since r̄
g(i)�1
jt is implicitly controlled for by our baseline gjt fixed

effects. Further, we have included pijt in all specifications and its coefficient is tiny both
economically and statistically. So it is the interaction pijtr̄

g(i)�1
jt that matters, as implied

18Our estimated coefficients on the grade fixed effects are higher for higher grades (not shown). This
illustrates that in our baseline specification of column 7 with grade-industry-year fixed effects we are not
exploiting cross-grade differences in innovation or cross-grade differential trends in innovation.

19Bøler et al. (2015) provide evidence that Norwegian firms increased R&D spending in response to
lower R&D costs (lower bg

jt
). The average of such an effect is captured here by the gjt fixed effects.

20(613,799 observations � 170,302 firm fixed effects) / 27,525 ⇡ 16.
21See footnote 16 above or appendix equation (A.17). While the theory does not predict the sign of the

coefficient on !i,t�1, its negative sign is likely due to the within-grade result that higher quality requires
more expensive inputs and so comes at the cost of lower productivity (Jaumandreu and Yin, 2018).
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by our theory. Finally, excluding pijt and/or !i,t�1 makes absolutely no difference to the
remaining coefficients. See online appendix table B.5.

Summarizing, we have provided robust evidence that both scale and competition mat-
ter for innovation, and in particular that innovation cascades are economically and statis-
tically significant.

5.2. R&D, New-Product Sales, and Patents Separately
In table 3 we move from using the principal component of innovation as our depen-

dent variable to separately using the log of one plus R&D expenditures, the log of one
plus new-product sales, and the log of one plus patents. Consider R&D. Column 1 is our
baseline specification (same as column 7 of table 2). The pattern of coefficient signs and
statistical significance are exactly the same as for the principal component of innovation.
That is, the theory correctly predicts five of our six key variables. Turning to magnitudes,
the skewness of R&D, new-product sales and patents makes the interquartile range un-
informative and so we do not scale these dependent variables. Looking at column 1, the
-0.21 coefficient means that a one iqr increase in backward expected export-market size
leads to a 0.21 log decrease in R&D expenditures. This is about a third of the mean of
log R&D (0.597) and hence is a sizeable effect. Means of the dependent variables appear
in the final row of the table. The remaining coefficients on our key variables are smaller
in magnitude, but those that are statistically significant imply non-trivial changes of be-
tween 0.06-0.18 log points. Column 2 reports results using grade-industry-year-province
fixed effects. This does not alter our conclusions.22

Results for new-product sales are again very similar to those based on the principal
component of innovation. For example, in our baseline specification (column 3), a one
iqr increase in backward expected export-market size leads to a 0.22 log decrease in new-
product sales, which is about a quarter of the mean of the dependent variable (0.949).

Results for patents are weaker. Our baseline specification appears in column 6. All
six of the coefficients have the signs predicted by theory and are economically large, but
none are statistically significant. In column 5 we retreat from our baseline fixed effects
(grade-industry-year) to fewer fixed effects (grade-industry and industry-year). Now all
six coefficients are statistically significant.23

22The full table 2 for each of R&D, new-product sales, and patents appears in online appendix tables
B.6–B.8.

23The weaker patent results are consistent with Autor et al. (2020) who estimate small impacts on patents
of US imports from China. Our results are also consistent with Chen et al. (2021b) who estimate that the
majority of benefits from R&D investment by high-tech Chinese manufacturing firms arise from non-patent
activities.
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Table 3: Baseline Specification: Individual Measures of Innovation

R&D New-Product Sales Patents

(1) (2) (3) (4) (5) (6)

Exports (r ) Backward -0.21* -0.21* -0.22* -0.19* -0.026* -0.011
(0.03) (0.03) (0.03) (0.03) (0.006) (0.005)
[0.04]* [0.04]* [0.04]* [0.03]* [0.007]* [0.006]

Exports (r ) Forward 0.05* 0.04 0.15* 0.12* 0.018* 0.007
(0.02) (0.03) (0.03) (0.03) (0.005) (0.004)
[0.02] [0.03] [0.04]* [0.03]* [0.006]* [0.005]

Competition (n ) Backward 0.18* 0.18* 0.23* 0.18* 0.019* 0.009
(0.03) (0.03) (0.04) (0.03) (0.005) (0.004)
[0.03]* [0.03]* [0.05]* [0.03]* [0.006]* [0.005]

Competition (n ) Forward -0.07* -0.07* -0.18* -0.14* -0.011* -0.006
(0.02) (0.02) (0.03) (0.03) (0.004) (0.003)
[0.02]* [0.02]* [0.04]* [0.03]* [0.005] [0.004]

Competition (w) Backward 0.06* 0.04* 0.04* 0.04* 0.009* 0.004
(0.01) (0.01) (0.01) (0.01) (0.002) (0.002)
[0.02]* [0.02]* [0.01]* [0.01]* [0.003]* [0.002]

Competition (w) Forward 0.02 0.03 -0.00 -0.01 -0.008* -0.002
(0.01) (0.01) (0.01) (0.01) (0.002) (0.002)
[0.02] [0.01] [0.02] [0.01] [0.002]* [0.002]

Lagged productivity -0.04* -0.03* -0.05* -0.04* -0.004* -0.003*
(0.01) (0.01) (0.01) (0.01) (0.001) (0.001)
[0.01]* [0.01]* [0.01]* [0.01]* [0.001]* [0.001]

Prob. of exporting -0.02 -0.01 0.07* 0.05* -0.001 -0.000
(0.01) (0.01) (0.01) (0.01) (0.002) (0.002)
[0.02] [0.01] [0.02]* [0.02]* [0.003] [0.002]

Fixed effects #2 gjt gjpt gjt gjpt gj and jt gjt
F tests

29.72* 21.23* 46.75* 41.48* 20.93* 5.57
38.23* 38.24* 52.36* 39.40* 12.69* 4.88
1.49 0.18 3.44 6.05 17.86* 4.13

   All Six = 0 16.04* 16.12* 15.84* 12.28* 5.88* 3.06*

Observations 517,156 510,600 611,361 602,937 622,169 622,142

R2 0.687 0.714 0.740 0.772 0.566 0.571
Mean of dep. var. 0.597 0.597 0.949 0.949 0.042 0.042
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Notes: This table is the same as table 2 except the dependent variable is now one of the following: the log
of one plus R&D expenditures (columns 1–2), the log of one plus new-product sales (columns 3–4), or the
log of one plus the number of patents (columns 5–6). The table reports estimates of equation (23). Predicted
signs appear next to the row labels. All specifications include firm fixed effects. Additional fixed effects are
listed in the ‘Fixed effects #2’ row (g for grade, j for industry, t for year, and p for province). See the notes
to table 2 for a discussion of standard errors (clustering and bootstrapping) and F -statistics. In particular, a
* indicates significance at the 1% level. 24



5.3. A Simple Placebo Test
We conclude this section with a placebo test to assess whether our findings are some-

how mechanically driven by the partitioning of firms into grades. To investigate, we
randomly assign firm-year observations to grades, recalculate all of the variables used in
our regressions, and re-estimate our baseline specification with the principal component
of innovation as the dependent variable (the specification in column 7 of table 2). We re-
peat this process 1,000 times, each time for a different random draw of grades. We obtain
the correct sign pattern in only 10 of these draws, that is, only 0.1% of the time. Thus,
grade assignment is playing a key role in our results.24

6. Threats to Identification
Our six key variables pijtr̄

g(i)�1
jt , pijtr̄

g(i)+1
jt , pijtn

g(i)�1
jt , pijtn

g(i)+1
jt , pijt!̄

g(i)�1
jt , and pijt!̄

g(i)+1
jt

are potentially correlated with the error term. In this section we examine potential sources
of such correlations.

Correlation of Six Key Variables with Observable Firm Characteristics: Good firms
are characterized by a cluster of correlated attributes, e.g., they tend to be large, produc-
tive, high-quality exporters. It is possible that our six key variables are correlated with
attributes in this cluster and hence that our results are due to omitted variable bias. Table
4 suggests otherwise. The dependent variable is the principal component of innovation.
Column 1 repeats our baseline specification from column 7 of table 2. This specification al-
ready includes many controls for firm characteristics: firm fixed effects and time-varying
controls for lagged productivity (!i,t�1), lagged export status (pijt depends on lagged ex-
port status �i,t�1), and lagged quality (grade g(i)). In column 2 we add two other correlates
of ‘good’ firms, namely, the lagged log of both domestic sales and employment. As else-
where, we scale these by their interquartile ranges. Both variables are economically and
statistically significant. More importantly, their inclusion makes absolutely no difference
to the coefficients on our six key variables. The same conclusion holds when the de-
pendent variable is R&D, new-product sales, or patents. See online appendix table B.10.
Thus, our results survive the inclusion and, as we have seen in previous tables, the exclu-
sion of firm fixed effects and five time-varying lagged firm characteristics: productivity,
export status, grade, sales, and employment. A simplistic appeal to omitted variable bias

24Very similar results obtain when we impose on the randomization that it replicate the actual shares of
firm-year observations by grade.
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does not explain our results.25

Correlation of pijt with Observable Firm Characteristics and Potential Alternative Mech-
anisms: Our main hypothesis is that shocks to export-market scale and competition in
forward and backward grades affect innovation for firms that are likely to export. Since
the probability of exporting pijt is correlated with many firm attributes, it is possible that
the real mechanism driving our results has less to do with exporting and more to do with
a correlate of exporting such as productivity or size. To examine this, we replace pijt

with a correlate of exporting. Consider column 3 of table 4. We include all the variables
in our column 1 baseline specification as well as six variables of the form !i,t�1r̄

g(i)�1
jt .26

The results are stark. Comparing our baseline column 1 with column 3 shows that the
coefficients on our six key variables are unchanged by the inclusion of these alternative
interactions. Further, the alternative interactions are not statistically significant individ-
ually or jointly. The joint hypothesis that all six are zero has a tiny F -statistic of 1.31. In
columns 4 and 5, we replace interactions based on productivity with interactions based
on the lagged log of domestic sales and employment, respectively. Again, our baseline
interactions are unchanged and the additional interactions are jointly and individually
statistically insignificant. Online appendix table B.10 repeats table 4, but for the depen-
dent variables R&D, new-product sales, and patents. The conclusions are the same for
each of these. In summary, table 4 lends support to the conclusion that our results are
driven by an exporting mechanism and not by a mechanism involving an observable cor-
relate of exporting.

Correlation of pijt with Unobservable Firm Characteristics: It remains possible that
pijt is correlated with unobserved firm characteristics. To purge pijt of any such correlation,
recall from equation (13) that pijt only depends on firm i’s characteristics via i’s lagged
export status �i,t�1. We therefore purge pijt of its i-specific information by replacing �i,t�1

with a prediction of it based on data from other similar firms. Specifically, we replace �i,t�1

with its average across the set of firms that share i’s grade, industry, year, and productivity
quartile. One objection to this is that similar firms have similar unobservables so that
our alternative to �i,t�1 is not purged of the correlation with unobservables. To address
this, suppose that firms sort regionally based in part on unobservable characteristics e.g.,

25Given the similarity of bootstrapped and regular standard errors, we no longer report the former.
26We include { !i,t�1r̄

g(i)�1
jt

, !i,t�1r̄
g(i)+1
jt

, !i,t�1n
g(i)�1
jt

, !i,t�1n
g(i)+1
jt

, !i,t�1!̄
g(i)�1
jt

, !i,t�1!̄
g(i)+1
jt

}. Since
our baseline interactions use pijt, which must lie between 0 and 1, we facilitate comparison by requiring
the !i,t�1 used in the interactions to lie between 0 and 1 and do so by using their percentiles. Likewise in
columns 4–5 where we replace lagged productivity with lagged log domestic sales and employment.
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Table 4: Endogeneity of pijt and Alternative Mechanisms

Add Sales, Add Interactions:

Baseline Employment Productivity Domestic Sales Employment

(1) (2) (3) (4) (5)
Interact with prob. of exporting

Exports (r ) Backward -0.62* -0.61* -0.63* -0.63* -0.62*
(0.08) (0.08) (0.08) (0.08) (0.08)

Exports (r ) Forward 0.22* 0.22* 0.25* 0.25* 0.25*
(0.06) (0.06) (0.06) (0.06) (0.07)

Competition (n ) Backward 0.59* 0.58* 0.60* 0.61* 0.60*
(0.07) (0.07) (0.08) (0.08) (0.08)

Competition (n ) Forward -0.29* -0.28* -0.32* -0.31* -0.31*
(0.06) (0.06) (0.06) (0.06) (0.06)

Competition (w) Backward 0.13* 0.13* 0.13* 0.14* 0.13*
(0.04) (0.04) (0.04) (0.04) (0.04)

Competition (w) Forward 0.06 0.06 0.06 0.06 0.06
(0.03) (0.03) (0.03) (0.03) (0.03)

Lagged ln(Domestic Salesi ,t -1) 0.19* 0.19*

(0.02) (0.02)

Lagged ln(Employmenti ,t -1) 0.39* 0.43*

(0.03) (0.03)

Exports (r ) Backward 0.10 -0.08 0.02
(0.52) (0.53) (0.53)

Exports (r ) Forward -1.03 -1.14 -1.05
(0.64) (0.64) (0.64)

Competition (n ) Backward 0.18 0.41 0.28
(0.53) (0.54) (0.54)

Competition (n ) Forward 2.21 2.36 2.25
(0.93) (0.92) (0.92)

Competition (w) Backward -0.42 -0.38 -0.41
(0.45) (0.45) (0.46)

Competition (w) Forward -0.68 -0.67 -0.71
(0.54) (0.54) (0.53)

1.31 1.48 1.38

Observations 621,852 619,315 621,852 621,852 619,315

R2 0.729 0.730 0.729 0.729 0.730

Additional Firm characteristics

Interact with lagged productivity, 
domestic sales, or employment

F-test for 6 interactions with 
lagged prod, sales or employ
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Notes: The dependent variable is the principal component of innovation. Column 1 repeats column 7 of
table 2. Included but not reported in all specifications are lagged productivity (!i,t�1), the probability of
exporting (pijt), firm fixed effects, and gjt fixed effects. Predicted signs appear next to row labels. Standard
errors are two-way clustered by firm and gj. A * indicates significance at the 1% level.
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electronics firms of a particular grade and productivity quartile co-locate in the province
of Guangdong. Then we can further purge unobservables by replacing �i,t�1 with its
mean among the set of firms in i’s grade-industry-year-productivity bin excluding firms
that are in the same province as i.27 Let ��p(i),t�1 be this leave-one-province-out predictor
of �i,t�1. Thus, for example, we are replacing the lagged export status of a high-quality,
high-productivity electronics, firm in Guangdong with its mean counterpart outside of
Guangdong i.e., outside of China’s main electronics cluster. Firms that choose to locate
outside the main cluster are different in terms of observables (not reported) and hence are
likely different in terms of unobservables. Restated, ��p(i),t�1 is unlikely to be correlated
with i’s unobservables. Table 5 reports the results when the dependent variable is the
principal component of the innovation. Column 1 uses the same specification as our
baseline (column 7 of table 2). Column 2 recalculates pijt using ��p(i),t�1 in place of �i,t�1.
This barely affects the signs and statistical significance of the coefficients on our six key
variables. We conclude from this that endogeneity bias arising from the correlation of pijt
with unobservable firm characteristics is unlikely to be a problem.

IV provides an alternative approach to dealing with unobservables. We treat each of
our six key variables as endogenous variables and each of their six counterparts based on
��p(i),t�1 as instruments. This approach is fraught because the small-sample properties of
IV deteriorate rapidly as the number of instruments grow. Keeping this caveat in mind,
column 3 of table 5 reports the IV results. They are similar to our baseline results. Mi-
nor exceptions are the coefficients on backward export-market size and extensive-margin
competition which are somewhat larger, though not statistically so. Similar results hold
for R&D, new-product sales, and patents, as shown in appendix table B.11. The conclu-
sion from IV is again that our results are not likely driven by a correlation of pijt with
unobservable firm characteristics.28

Correlation of Observed and Unobserved Firm Characteristics with r̄
g�1
jt , r̄g+1

jt , ng�1
jt ,

n
g+1
jt , !̄g�1

jt and !̄
g+1
jt : Consider one of our key variables, say pijtr̄

g�1
jt . We have argued

above that endogeneity of pijt is unlikely to be a problem. We now consider whether
pijtr̄

g�1
jt is endogenous because r̄

g�1
jt is endogenous. In what follows we make the argu-

ment using r̄
g�1
jt and r̄

g+1
jt , but the same holds for n

g�1
jt , ng+1

jt , !̄g�1
jt , and !̄

g+1
jt as well. We

27The quartiles of the distribution of productivity among firms in firm i’s grade-industry-year bin.
28Here are some details of IV. (i) The Kleibergen-Paap weak instruments F -statistic is well above the

Stock-Yogo heuristic of 20. See the last column of table 5. (ii) Each of the six first stages is sensible in
that it loads heavily on the ‘own’ instrument e.g., in the first stage for pijtr̄

g(i)�1
jt

the largest coefficient is
p
0
ijt

r̄
g(i)�1
jt

where p
0
ijt

is pijt with �i,t�1 replaced by ��p(i),t�1. (iii).Throughout table 5 we do not include
pijt as a separate regressor. This is because it then becomes a seventh endogenous variable with a seventh
instrument. We drop it to reduce the number of instruments. Including it makes no difference to our results.
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Table 5: Endogeneity Revisited: Leave-One-Province-Out, SOEs, and Agglomeration

Leave one province out when constructing:

Baseline OLS IV OLS IV

(1) (2) (3) (4) (5) (6) (7)

Exports (r ) Backward -0.60* -0.73* -0.91* -0.47* -0.52* -0.82* -0.57*

(0.08) (0.14) (0.22) (0.08) (0.09) (0.10) (0.09)

Exports (r ) Forward 0.23* 0.23* 0.21 0.17* 0.20* 0.32* 0.18*

(0.06) (0.09) (0.10) (0.06) (0.07) (0.08) (0.07)

Competition (n ) Backward 0.59* 0.60* 0.83* 0.41* 0.47* 0.77* 0.55*

(0.08) (0.15) (0.24) (0.07) (0.08) (0.10) (0.08)

Competition (n ) Forward -0.28* -0.25* -0.20 -0.20* -0.23* -0.41* -0.24*

(0.06) (0.10) (0.13) (0.06) (0.06) (0.07) (0.06)

Competition (w) Backward 0.13* 0.24* 0.24* 0.14* 0.14* 0.18* 0.08

(0.04) (0.07) (0.09) (0.04) (0.04) (0.04) (0.03)

Competition (w) Forward 0.06 0.00 0.01 0.03 0.04 0.04 0.06

(0.03) (0.07) (0.09) (0.03) (0.04) (0.04) (0.03)

Lagged productivity -0.83* -0.85* -0.78* -0.85* -0.84* -0.12* -0.08*

(0.16) (0.16) (0.16) (0.16) (0.16) (0.02) (0.02)

Fixed effects #2 gjt gjt gjt gjt gjt gjt gjtc

Observations 621,729 621,729 621,729 621,729 621,729 438,504 604,095

R2
0.729 0.729 0.729 0.729 0.775

Weak instrumnets F  (KP) 459.30 842.20

Lagged export status 

di ,t -1 

Each component of 6 

key variables

Drop 

SOEs and 

FIEs

Add city 

to gjt 
FEs

					"!"##"#
$ (!)'(			(+)

					"!"##"#
$ (!))(				(−)

				"!"#(̅"#
$ ! '(				(−)

					"!"#*+"#
$(!))(			(−)

					"!"#(̅"#
$ ! )(				(+)

					"!"#*+"#
$ ! '(			(+)

*!,#'(

Notes: The dependent variable is the principal component of innovation. Column 1 is our baseline specifi-
cation. (It is ever so slightly different from column 7 of table 2 because 123 observations are lost to missing
information about province and because the pijt regressor is dropped.) In column 2 we recompute pijt leav-
ing out data from firm i’s province and use the resulting six leave-one-province-out regressors as exogenous
variables. In column 3 we use these six new regressors as instruments for our original six key variables. In
column 4 we recompute not only pijt, but also r̄

g(i)�1
jt

, r̄g(i)+1
jt

, ng(i)�1
jt

, ng(i)+1
jt

, !̄g(i)�1
jt

and !̄
g(i)+1
jt

leaving
out data from firm i’s province and use the resulting six leave-one-province-out regressors as exogenous
variables. In column 5 we use these six new regressors as instruments for our original six key variables. In
column 6 we do exactly as in our baseline specification (column 7 of table 2), but omit SOEs and FIEs. In
column 7 we again do exactly as in our baseline specification, but use grade-industry-year-city fixed effects.
See footnote 31 for details.. All specifications include firm and gjt fixed effects. Standard errors clustered
two-way by firm and gj are in parentheses. A * indicates significance at the 1% level.
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begin by outlining four criteria that must be satisfied for endogeneity to occur.
Criteria: First, r̄gjt is gjt-level exports, not firm-level exports. Hence, for r̄

g
jt to be cor-

related with a grade-g firm’s residual means the firm is either large or part of a large set
of firms with correlated residuals. We refer to this as the ‘granularity’ criterion. Second,
the set cannot be too large because then the correlated component of the set’s residuals
would be absorbed by the gjt fixed effect. So the set must be sub-gjt. Third, we care about
the endogeneity of r̄g�1

jt and r̄
g+1
jt , not r̄gjt, so our grade-g firm must have a residual that is

correlated with the residuals from granular sets of grade-(g � 1) and grade-(g + 1) firms.
Fourth, our grade-g firm must have a residual that is negatively correlated with a granular
set of grade-(g � 1) firms and positively correlated with a granular set of grade-(g + 1)

firms; otherwise, the endogeneity cannot explain the distinctive sign pattern of our six
key variables. In what follows we provide two examples of how such correlations could
arise and show that they are empirically irrelevant.

Example 1: Assume that there are only three grades, let g be the middle grade, and let
i be a state-owned enterprise (SOE) in grade g. Suppose the Chinese government sub-
sidizes the exports and R&D expenditures of SOEs while taxing the exports and R&D
expenditures of private firms. The subsidies raise i’s R&Dit and probability of exporting
pijt. Now make the additional assumption that SOEs dominate in the high grade so that
the export subsidy raises the grade’s export sales r̄

g+1
jt . Finally, assume that private firms

dominate in the low grade so that the export tax lowers the grade’s export sales r̄g�1
jt . That

is, the policies raise R&Dit, raise pijtr̄
g+1
jt , and possibly lower pijtr̄

g�1
jt , thereby providing

a very different explanation of our results. One can construct a similar argument to the
above, but with subsidized SOEs replaced by foreign-invested enterprises (FIEs) that dis-
proportionately engage in exporting and R&D.29 If this example is driving our results,
then the results will deteriorate when we drop SOEs and/or FIEs from our sample. To
investigate, we re-estimate our baseline specification without SOEs and FIEs. The results
appear in column 6 of table 5 and, rather than deteriorate, they are even stronger.30 Thus,
our results cannot be explained away by the types of correlations with unobservables
described here.

Example 2: Suppose again that there are only three grades and that government export
and R&D policies benefited regions that export high-grade goods and hurt those regions
that export low-grade goods. Think of the former as coastal cities. This might explain why
a firm in a middle grade coastal city has a residual that is positively correlated with r̄

g+1
jt

29As in the Bilir and Morales (2020) discussion of R&D choices of foreign affiliates of US multinationals.
30Results for R&D, new-product sales, and patents appear in appendix table B.12. These results do not

deteriorate when SOEs and/or FIEs are omitted.
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and negatively correlated with r̄
g�1
jt . Regional agglomeration effects might also explain

the correlations. Since we showed in tables 2–3 that our results survive grade-industry-
year-province fixed effects, the regions would have to be sub-provincial i.e., cities. To
address endogeneity concerns, we adopt two approaches. First, we re-estimate our base-
line model using grade-industry-year-city fixed effects.31 The results appear in column 7
of table 5. Comparing columns 1 and 7 of table 5 , it is clear that the inclusion of more
geographically disaggregated fixed effects has only a modest effect on our main findings.
The same holds for R&D, new-product sales, and patents as shown in online appendix
table B.13. Thus, we again find that all but our intensive-margin competition results are
robust.

Example 3: Here we put aside the issue of how the correlation of firm i’s residual with
r̄
g�1
jt and r̄

g+1
jt could have the right sign pattern and simply focus on the possibility that

the correlations are non-zero. At this abstract level, the previous two examples assumed
that firm i shared unobservables with firms in grades g(i) � 1 and g(i) + 1. Supposing
again that firms sort regionally based on unobservables, we can purge the unobservables
by computing r̄

g(i)�1
jt , r̄g(i)+1

jt , and pijt without using any data from firms in i’s province.
This is the leave-one-province-out approach we used before, but now extended to include
not just lagged export status �i,t�1 but all variables on the right-hand side.32 Note that if
firms in a region learn from one another, as in Fernandes and Tang (2014) where firms
learn about exporting opportunities from others in the same region, this will show up
in our data as a correlation of unobservables across firms in the same region. Restated,
the endogeneity concern here can be couched in terms of peer effects. This is of interest
because leave-one-out estimators are a core statistical technique in that literature (An-
grist, 2014). Table 5 reports results for the principal component of innovation. Column
4 replaces our original regressors with the leave-one-province-out regressors. Column 5
instruments our original regressors with the leave-one-province-out regressors. In both
cases, we expect coefficients to be smaller in absolute value because correlations with un-
observables have been purged. Comparing the baseline column 1 with columns 4–5, we
do indeed see slightly smaller coefficients, but changes are modest and in no way explain

31 City codes changed during our sample. We build a crosswalk between the two codes. Specifically,
neighbouring cities that grew into each other during 2000–6 are amalgamated into a single code, leaving
us with 341 city codes. There are a 147,461 grade-industry-year-city fixed effects or a paltry 3 observations
per fixed effect. To reduce the number of fixed effects, for each city we define a fixed effect that is the actual
city if the city has at least 7,500 firm-year observations and that is the province if the city has less than 7,500
firm-year observation. This leaves us with 50 ‘cities’ and just under 10 observations per fixed effect. The
approach gives China’s largest industrial cities their own city fixed effects, as our example 2 requires.

32These are r̄
g�1
jt

, r̄g+1
jt

, ng�1
jt

, ng+1
jt

, !̄g�1
jt

, and !̄
g+1
jt

as well as pXX,g

jt
and p

NX,g

jt
that go into the computa-

tion of pijt (see equations 1–2 and 13).
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away our results.33

Summarizing, we have explored many potential sources of endogeneity and showed
that our results are robust to each.

7. Robustness
In this section we show that our results are robust to a large number of alternative

specifications.

Timing of a firm’s innovation decision. Our model assumes that firms make innovation
decisions at the start of period t based on expectations about period-t productivity !it and
exporting �it. Alternatively, we could have assumed that innovation decisions are made
at the end of period t � 1, in which case each dependent variable yijt is replaced by its
one-period lag yij,t�1. Online appendix tables B.14-B.15 repeat the specifications in tables
2 and 3 with this alternative timing assumption. The results are generally better than the
yijt-based results reported above.

The choice of G. Our main results assume that there are G = 8 grades in total. Recall
that G is an exogenously set parameter for the k-means clustering used to assign firms
to grades. To assess the implications of the choice of G = 8, we re-estimate the grade
of each firm under three alternative choice of G 2 {6, 10, 12}. We then re-estimate our
baseline specification for each of our measures of innovation (principal component of
innovation, R&D, new-product sales, and patents). Online appendix table B.16 shows
that our estimated coefficients are largely insensitive to the choice of G.

Heterogeneous effects. Our baseline specification constrains the coefficients on our six
key variables to be the same across grades. The theory states that a coefficient can vary
across grades (see appendix equation A.16), but cannot switch signs across grades (propo-
sitions 1–2). To investigate the stability of coefficient signs across grades we interact each
of our six key variables with grade dummies so that each coefficient now varies by grade.
The large number of coefficients are plotted in online appendix figure B.3, which shows
that coefficient signs are stable across grades.

Grade transitions of more than one step. In our baseline specification we assumed
one-step innovation so that failed innovation leaves firm i in grade g(i) and successful

33Similar conclusions hold for R&D, new-product sales, and patents. See appendix table B.11.

32



innovation takes the firm to grade g(i) + 1. However, Propositions 1–2 hold for multi-
step innovation: Successful innovation takes the firm forward k grades with probabil-
ity p

g(i),g(i)+k
F while failed innovation takes the firm backward k grades with probability

p
g(i),g(i)�k
B . Proposition 1 then states that the coefficients on variables such as pijtr̄

g(i)+k
jt

should be positive for all k � 1, while Proposition 2 states that the coefficients on vari-
ables such as pijtr̄

g(i)�k
jt should be negative for all k � 1. Further, we expect that if a grade

has a low probability of being reached then shocks in that grade should have little impact
on innovation. As discussed mathematically at the end of appendix A.1, if the forward
and backward probabilities p

g(i),g(i)+k
F and p

g(i),g(i)�k
B are declining sufficiently rapidly in

k, then the effects of pijtr̄
g(i)+k
jt and pijtr̄

g(i)�k
jt on firm i’s innovation must decline with k.

Turning to an empirical examination of this, we note that neighbouring shocks such as
pijtr̄

g(i)+1
jt and pijtr̄

g(i)+2
jt are too highly correlated to estimate their coefficients separately.34

Instead we sum the pijtr̄
g(i)+k0

jt from k
0 = 1 to k and use the sum as a regressor. We ex-

pect that the larger is k, the smaller in absolute value is the coefficient on the sum. This
logic holds for all six key variables. Online appendix table B.17 implements this. It starts
with our baseline specification and replaces each of the six key variables with their corre-
sponding sums. It then shows the stark result that all six sums have the predicted signs
and, more importantly, as k rises, the six coefficients all shrink monotonically in absolute
value. This holds for the principal component of innovation, R&D, new-product sales,
and patents. This is an interesting prediction about multi-step innovation that has never
been examined before. As we shall now see, the logic behind it explains why our results
hold in infinite-horizon models with forward-looking firms.

Forward-Looking Firms. In appendix A.2 we develop an infinite-horizon model with
forward looking firms and discounting. To isolate the role of forward-looking behaviour,
we make four simplifying assumptions. (i) Grade attributes such as the innovation suc-
cess function M

g(a) are identical across grades. (ii) M g(a) = 1
�a

� for � 2 (0, 1). (iii) The
economy is in steady-state. (iv) To focus as simply as possible on the role of grades g � 1

and g + 1 found in our empirics, we assume that successful (unsuccessful) innovation in-
creases (decreases) a firm’s grade by one step and there is no obsolescence (⌘ = 0). Under
these assumptions we show that innovation is strictly increasing in

XG

g0=1
w

gg0
⇡̄
g0 (26)

34This is expected. Firms in the same grade are similar so firms in neighbouring grades are fairly similar.
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where the w
gg0 are constants that depend only on the discount factor and �. Therefore,

our key insights (Propositions 1 and 2) hold if wgg0
> 0 for g0 > g and w

gg0
< 0 for g0 < g.

While proving this for general values of the discount factor and � is difficult, we can easily
compute the coefficients wgg0 numerically. Figure A.1 shows these coefficients for � = 0.95

and different values of � 2 (0, 1). In all cases, we find that wgg0
> 0 for g0 > g and w

gg0
< 0

for g0 < g. That is, Propositions 1 and 2 hold in a model with forward-looking firms.
The intuition for why the first-order condition for optimal innovation depends on

profits in all grades in this forward-looking model (i.e., equation 26) and in our model
(i.e., equation 5) is simple. Firms in grade g care about profit opportunities in other grades
if either (1) these grades can be reached in one period through grade jumps of more than
one step (as in our model) or (2) these grades can be reached through grade jumps of one
step over multiple periods (as in the forward-looking model).

The intuition for why Propositions 1 and 2 hold in the forward-looking model is also
simple. First, readers familiar with the innovation literature will immediately recognize
that the first-order condition for optimal innovation with forward-looking firms states
that innovation is increasing in V

g+1 � V
g�1, where V

g is the (discounted) continuation
value of being in grade g. Then, for any grade g

0 � g + 1, a firm is more likely to reach g
0

faster from g+1 than from g�1. As a result, V g+1 is more sensitive than V
g�1 to profits in

g
0. It follows that innovation is increasing in the profits of any grade g

0 � g+1. This is our
Proposition 1. Applying a symmetric logic to any g

0  g � 1, it follows that innovation is
decreasing in the profits of any grade g

0  g � 1. This is our Proposition 2.
To conclude, we can re-interpret our multi-step model of innovation as a one-step

model with forward-looking firm behaviour. See appendix A.2 for details.

Own-Grade Effects: Online appendix table B.18 adds the own-grade variables pijtr̄
g(i)
jt ,

pijtn
g(i)
jt , and pijt!̄

g(i)
jt to our baseline specification. This is done for the principal compo-

nent of innovation, R&D, new-product sales, and patents. We find that the coefficients
on pijtr̄

g(i)
jt and pijtn

g(i)
jt are tiny. For example, when the principal component of innova-

tion is the dependent variable, the coefficients (standard errors) are 0.13 (0.17) and -0.10
(.12), respectively. That is, they are economically and statistically small and simply do
not belong in the regression. Proposition 3 together with our empirical finding that the
obsolescence rate ⌘ is close to 1/2 provide a clear explanation of this result. In contrast,
the coefficient on pijt!̄

g(i)
jt is large and statistically significant (0.26 with a standard error

of 0.07). Further, when it is included, the coefficient on forward intensive-margin com-
petition becomes statistically insignificant. We have already observed that the forward
and backward intensive-margin coefficients are fragile and this table provides further
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evidence of this. Interestingly, more intensive-margin competition in a firm’s own grade
induces innovation, meaning that a firm responds to high levels of productivity among its
own-grade competitors by innovating to escape the competition as in Aghion et al. (2001,
2005). This is an interesting result, but not part of our focus on innovation cascades.

8. Conclusion
We have examined how innovation depends on exporting and, in particular, scale

and competition in export markets. Our theory features (1) quality-segmented markets,
(2) step-by-step innovation that moves firms forward and backward through laddered
grades, and (3) escape-the-competition motives for innovation. Using data for Chinese
firms in a period of explosive export growth (2000–2006), we have verified that innovation
is promoted by (1) larger scale and less competition in forward export-market grades and
(2) smaller scale and more competition in backward export-market grades. In addition,
the component of competition that matters for innovation is entry (the extensive margin)
rather than increased productivity of existing competitors (the intensive margin). Our
findings highlight that a proper understanding of the impact of exporting on innovation
must take into account how the former affects scale and competition at different points in
the quality distribution.

Our theory provides a natural framework for examining the impact of China’s rise
on innovation in the rest of the world. Our research suggests that the effects of Chinese
import competition on innovation in other countries will depend on where in the quality
distribution Chinese exporters are entering. We will investigate this in future work by
embedding our theory within a multi-country model of trade and making use of innova-
tion and production data for firms outside of China.

Our research also has important policy implications for the most contentious source
of international trade disputes, namely subsidies and especially subsidies to innovative
industries. In a number of important WTO disputes, low- and high-quality goods have
been treated as separate markets and the Appellate Body has ruled that WTO panels
should ignore future damages to high-quality firms from current industrial subsidies to
low-quality firms. See Lead and Bismuth II and discussions in Grossman and Mavroidis
(2003) and Bown and Hillman (2019). Our work shows how these separate markets are
closely linked by innovation choices and provides a framework for revisiting WTO prece-
dent on this extremely important issue.

To illustrate, consider the market for commercial aircraft, which is segmented by char-
acteristics such as range (regional versus long-haul). Subsidies provided by the Chinese
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government to COMAC (the main producer of regional jets in China) have little imme-
diate impact on foreign firms that do not currently compete in the same quality segment
as COMAC’s flagship regional jet, the ARJ21. However, it is clear that industry leaders
Boeing and Airbus view COMAC as a serious future competitive threat, so much so that
they have ended their decades-old dispute at the WTO in order to deal with growing
Chinese competition. In our language, Boeing and Airbus are more concerned with com-
petition from behind than competition from within their own grade. Furthermore, the
threat of future damages has already become relevant at the US International Trade Com-
mission, where Boeing successfully appealed for countervailing duties against Canada’s
Bombardier (a regional jet producer) based on the argument that Bombardier is only sev-
eral innovative steps away from becoming a direct competitor. As the WTO currently
renegotiates its Agreement on Subsidies and Countervailing Measures (ASCM), our re-
search provides a timely and valuable framework for moving the negotiations forward.
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A. Theory Appendix
A.1. Derivation of Empirical Specification from the Model

For brevity, let us suppress the g (i) notation and denote firm i’s lagged grade simply
by g. To economize on notation, we will also assume here that p̄gO = 0 as in our base-
line specification, although none of the following derivations require this. Our starting
point is the innovation first-order condition (5). Using equations (10)-(11) to substitute
for expected profits, we can rewrite the first-order condition as:

log bgt = log [mg (ait)] + log g
it (A.1)
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Now let us first log-linearize the term log [mg (ait)] around a value for ait that only
depends on g, denoted by a

g (e.g. the value of ait for the average firm in grade g averaged
across time):
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Note that the
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coefficients in equation (A.4) are firm-time specific only
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replacing {pit,⌦i,t�1} with values that

depend only on grade, {pg,⌦g} (e.g. the respective values for the average firm in grade
g averaged across time). Substituting (A.8) and (A.9) into equation (A.4) and dropping
second-order terms (i.e. those involving products of deviations such as
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with h
g0 denoting the first derivative of H
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into equation (A.10) and ignoring second-order terms gives:
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Finally, combining equations (A.1), (A.3), (A.10), and (A.15), we obtain the empiri-
cal specification (23) after imposing one-step innovation and ⌘ = 1
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The firm fixed effect is given by:
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while the grade-time fixed effect is given by:
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Note in particular that ↵g
t absorbs the cost of innovation b

g
t as well as domestic market

innovation-relevant factors. Furthermore, the sign restrictions in (24) and (25) follow from
the signs of the coefficients in equation (A.7).

To see how the magnitudes of the export-market coefficients
�
�
gg0
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gg0
n , �
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!

 
vary with

g
0, first note from equation (A.7) that this variation depends only on three terms: market

potentials ⇠X,g0 , TFP conditional expectation functions H
g0 , and transition probabilitiesn

p
gg0

F , p
gg0

B

o
. While our theory imposes no restrictions on the first two variables, it is nat-

ural to assume that the transition probability between two grades g and g
0 is declining in

the distance |g0 � g|. It is then clear from equation (A.7) that imposing this assumption
would tend to make the export-market coefficients declining in |g0 � g|.
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A.2. Model with Forward-looking Firm Behaviour
We illustrate here the implications of forward-looking firm behaviour in our model

and show that our key insights are robust to allowing for this. To isolate the role of
forward-looking behaviour, we make several simplifying assumptions. First, all firm-
specific shocks (TFP and export status) are iid. Second, all grades are identical except for
the fact that reaching higher grades requires successful innovation. Third, the economy
is in steady-state. Fourth, the innovation success function is of the form M (a) = 1

�a
� with

a constant elasticity � 2 (0, 1). Finally, pg,g+1
F = 1, pg,g�1

B = 1, and ⌘ = 0, so that successful
innovation increases a firm’s grade by one step, failed innovation decreases a firm’s grade
by one step, and there is no obsolescence.

Now let V g denote the expected value of a firm that is able to produce in grade g. This
value satisfies the following Bellman equation:

V
g = ⇡̄

g + �max
ag

�
�ba

g +M (ag)V g+1 + [1�M (ag)]V g�1
 

(A.20)

where � is the temporal discount factor. The first-order condition for the firm’s innovation
investment at an interior solution is:

b = m (ag)
�
V

g+1 � V
g�1
�
. (A.21)

Comparing this with the first-order condition (5) from our model, it is clear that forward-
looking behaviour simply implies that optimal innovation depends on the difference in
firm values V

g+1 � V
g�1 rather than the difference in static profits ⇡̄g+1 � ⇡̄

g�1. If � = 0,
then the two are equivalent.

Given the assumed properties of the innovation success function M , we can generally
solve equation (A.21) for ag to obtain:

a
g = F

✓
V

g+1 � V
g�1

b

◆
(A.22)

where F (x) ⌘ m
�1
�
1
x

�
is a strictly increasing function. Using equation (A.22) to substi-

tute for ag in the Bellman equation (A.20) then makes it clear that in general, the value in
grade g, V g, depends on expected profits in all grades, since firms in grade g internalize
the fact there is a non-zero probability of reaching any other grade at some point in the
future. Consequently, optimal innovation for firms in grade g also depends on profits in
all grades. Note from the first-order condition (5) that this result is also allowed for by our
model without forward-looking behaviour through the forward and backward transition
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probabilities, pgg
0

F and p
gg0

B . Intuitively, firms in g care about profit opportunities in other
grades if these grades can be reached in one period through grade jumps of more than
one step (as in our model) or through grade jumps of one step over multiple periods (as
with forward-looking behaviour).

However, to establish that the insights in Propositions 1 and 2 are robust to allowing
for forward-looking firm behaviour, we must show that profits in forward grades affect
innovation positively, while profits in backward grades affect innovation negatively. To
make progress here, let us linearize the function F around some constant value c. We can
then turn the Bellman equation (A.20) into a linear system in firm values and profits:

V
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g � f + �⌫V
g+1 + � (1� ⌫)V g�1 (A.23)

where ⌫ ⌘ 1
� c

�
1�� and f ⌘ �bc

1
1�� . Note in particular that since we are assuming interior

solutions, then 1
� (a

g)� < 1, which from (A.22) implies c < �
1��
� and hence ⌫ 2 (0, 1).

To solve for firm values as a function of expected profits, we must specify the bound-
ary conditions for this system. Hence, let us normalize the value of being in grade 0 (e.g..,
exit) to zero and suppose that successful innovation in grade G results in staying in grade
G rather than advancing a grade. Hence, equation (A.23) for g = 1 becomes:

V
1 = ⇡̄

1 � f + �⌫V
2 (A.24)

and for g = G becomes:

V
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G � f + �⌫V
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. (A.25)

Equations (A.23), (A.24), and (A.25) now define a system of G linear equations in the
firm values {V g}Gg=1 given expected profits {⇡̄g}Gg=1 in each grade. Hence, we can generally
write the solution for the value in grade g as:

V
g =

GX

g0=1

w̃
gg0
⇡̄
g0 + f̃

g (A.26)

where w̃
gg0 and f̃

g are constants that are independent of profits. Substituting this result
into the first-order condition (A.21) then gives:
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where w
gg0 ⌘ w̃

g+1,g0 � w̃
g�1,g0 . Therefore, the key insights of Propositions 1 and 2 hold if

w
gg0

> 0 for g0 > g and w
gg0

< 0 for g0  g.
While proving this for general values of � and ⌫ is difficult, we can easily compute

the coefficients w
gg0 numerically. Figure A.1 shows these coefficients for � = 0.95 and

three different values of ⌫ 2 {0.25, 0.5, 0.75}, where we omit the endpoint grades g = 1

and g = 8. Note that one can think of different values of ⌫ as arising from holding c

constant and choosing three different values for the success function elasticity �. In the
figure, g0 appears on the horizontal axis and, for each g

0 there are six bars corresponding
to g = 2, . . . , 7. In all cases, we find that wgg0

> 0 for g0 > g and w
gg0

< 0 for g0 < g.
The intuition for this result is the following. Optimal innovation in grade g is increas-

ing in the difference between the values of grades g + 1 and g � 1. All grades g
0
> g

are “closer” to g + 1 than g � 1 and hence profits in these grades matter more for V
g+1

than V
g�1, so that the effect of profits in these grades on the difference V

g+1 � V
g�1 is

positive. Similarly, all grades g
0
< g are “closer” to g � 1 than g + 1 and hence profits in

these grades matter more for V g�1 than V
g+1, so that the effect of profits in these grades

on the difference V
g+1 � V

g�1 is negative. Note that since grade g is neither closer to g+1

nor closer to g � 1, the effect of ⇡̄g on innovation in grade g is ambiguous, as can be seen
in figure A.1. In sum, the core predictions of our model – that profits in forward grades
affect innovation positively while profits in backward grades affect innovation negatively
– are robust to allowing for forward-looking firm behaviour (as long as one excludes g as
a backward grade, as we do in our baseline specification).

B. Data Appendix
In the raw Chinese Manufacturing Enterprises (CME) database we have virtually

identical numbers of firms per year as in Brandt et al. (2014). See online appendix E.1.1.
We clean the raw data using the data-cleaning algorithms and supplementary data de-
scribed in Brandt et al. (2012) and Brandt et al. (2017), graciously made available by the
authors. These include an algorithm to link firms across time, a crosswalk between old
and new industry classifications, and data on capital stocks and input deflators.

Sample selection. After dropping the 2-digit industry ”Waste resources and recycling”,
we have 1,434,565 firm-years and 434,344 firms. Dropping processing firms leaves us
with 1,239,996 firm-years and 385,455 firms.35 We next drop firms based on four criteria

35We define a processing firm as a firm with an exports-to-output ratio in excess of 1 in any year. This
identifies 52,000 firms, comparable to what has been found in the (accurate) customs data. We have experi-
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Figure A.1: Coefficients wgg0 in the innovation first-order condition (A.27)
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that are relevant for productivity analysis. First, the firms must have complete data on
sales, employment, material costs, and capital. Second, we delete firms that report less
than 8 employees in every year. Third, we drop the 2-digit industry ”Tobacco”. Fourth,
if a firm has missing data in one year but available data in the surrounding years, we
drop all data before this ‘hole’. This is needed to take lags when estimating the law of
motion for productivity and affects much less than 0.5% of our sample. This leaves us
with 1,076,018 firm-years and 342,061 firms in 28 industries. We use this sample to com-
pute grade aggregates such as r̄

g
ijt. As in Brandt et al. (2017), we estimate productivity

at the 2-digit industry level and drop firms that switch 2-digit industries. This leaves us
with 1,047,177 firm-years and 264,168 firms in 28 industries. When running regressions,
we delete firms with only one year of data because these observations are collinear with
their firm fixed effects. This leaves us with 733,957 firm-years and 241,880 firms for the
regressions. Finally, when running regressions we lose a firm’s first observation to lags
(where possible, we use 1999 data to prevent this loss) and we lose observations when
the principal components measure of innovation is missing, leaving us with regressions
estimated on 621,879 firm-year observations and 170,301 firms.

TFP and markup estimation details. We estimate productivity using both value-added
and gross-output production functions, for both Cobb-Douglas and translog functional
forms. The Cobb-Douglas elasticities (coefficients on capital, labour and materials) are
very similar to those reported in Brandt et al. (2014) and Brandt et al. (2017). See Orr et al.
(2019). As discussed there, the translog gross-output production function estimates are
most sensible as judged by input elasticities, returns to scale, and stability across specifi-
cations. We therefore use these. In Orr et al. we considered five different variants of the
proxy-variable approach. Here we consider the simplest and most complex of these. The
simplest is exactly as in Ackerberg et al. (2015). The most complex adds to this (1) the
Olley and Pakes (1996) selection correction terms to correct for attrition bias, (2) a law of
motion for firm-level productivity that depends on lagged export status so as to control
for learning-by-exporting as in De Loecker and Warzynski (2012) and De Loecker (2013),
and (3) lagged capital and its square as extra (over-identified) instruments. We calculate
markups using the De Loecker and Warzynski (2012) method with material cost shares.

Figure A.2 reports distributions of revenue TFP (left panel) and log markups (right
panel) for the ‘simple’ case (dashed line) and ‘complex’ case (solid line). As is apparent,
the two cases produce very similar results and in the main text we only report results for
the ‘complex’ case.

mented with different export-to-output ratio cutoffs and this makes no difference to our findings.
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Figure A.2: Revenue TFP and Markups
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Notes: This figure displays the distributions of revenue TFP (left panel) and log markups (right panel)
for our estimated translog, gross-output production functions. Each panel displays two distributions.
The dashed-line distribution is the ‘simple’ case and the solid-line distribution is the ‘complex’ case
that are described in the text. Revenue TFP is demeaned at the 2-digit industry level. Log markups are
not demeaned and have a median of 0.17, indicating that the median markup is 17%. Since revenue
TFP and log markups vary across firm-year observations, the distributions in the figure are based on
1,047,177 firm-year observations.

Online appendix figure B.1 reports the distributions of returns to scale as well as the
output elasticities for labour, capital, and materials. The labour and capital output elastic-
ities tend to be close to zero, which is standard for these data, e.g., De Loecker et al. (2016)
and Brandt et al. (2017). The returns to scale tend to be strongly concentrated around 1
(the mean and median are close to 1.03), which is reassuring.

Patent data. Patent data from CNIPA are matched to our CME database using firm
names and addresses. This is the same criteria used by Liu and Qiu (2016) and our match
rates are comparable to those reported in Liu and Ma (2020). CME firms that have no
match in the patent data are assumed to have no patents.

Winsorization of innovation data. We winsorize patents, R&D, and new-product sales
to deal with extreme values. For patents, we top code at 52, which is the 99th percentile of
the distribution of non-zero patents. Only 391 firm-year observations are top coded. For
R&D, we top code firm-years with R&D-sales ratios greater than 0.20. Only 413 firm-year
observations are top coded. For new-product sales, we top code firm-years with (new
product sales)/(total sales) greater than one. Only 7,369 firm-year observations are top
coded. Our results are not sensitive to omitting these firm-year observations or doubling
the top coding levels.

Computing the principal component of innovation. To compute this we use three fac-
tors: the log of one plus the number of patents, the log of one plus R&D expenditures,
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and the log of one plus new-product sales. Since R&D data are missing in 2000 and 2004,
for the purpose of computing the principal component (and only for this purpose) we lin-
early impute 2000 and 2004 R&D data. The principal component is computed separately
by 2-digit industry. The factor loadings appear in online appendix table B.2.

Definition of SOEs and FIEs: We define an SOE as a firm which (i) has a state capital
share in excess of 50%, as in Hsieh and Song (2015) or (ii) has one of the following own-
ership codes: 110 (domestic SOE), 141 (state-owned joint venture), or 143 (state-owned
and collective joint venture enterprises), as in Yu (2015). We define foreign-invested firms
(FIEs) as firms with ownership codes 310, 320, 330, 340, 210, 220, 230, or 240, as in Yu
(2015).

C. Convergence of Grade Assignment Algorithm
The algorithm is initialized with ✓i,0 = (ln qi + � ln pi) /(� � 1) (see equation 18). We

choose � = 5.03, which is the median estimate of the elasticity of substitution across a
large sample of international trade papers (Head and Mayer, 2014). The algorithm stops
when less than 0.1% of firm-year observations change grades between iterations n and
n + 1.36 At the point of stopping, the Neyman and Spearman correlations between ✓i,n+1

and ✓i,n are both above 0.999.

D. Assessing Two Key Premises of our Theory
The model is based on two key assumptions. First, innovation raises the probability

of moving up the grade ladder. If this is not true then we are misinterpreting all of our
results. Second, export-market shocks differ across grades. If this were not true, we would
be unable to separately identify forward and backward effects. There would be only a
single effect. We provide additional evidence about these points here.

Innovation raises the probability of moving up the grade ladder: To investigate how
innovation affects quality, we regress changes in a firm’s grade g(i, t)�g(i, t�1) and qual-
ity ✓g(i,t)�✓g(i,t�1) on the firm’s innovation in period t. Table A.1 reports our results, where
columns 1–4 (5–8) report changes in a firm’s grade (quality) as the dependent variable
and each column examines one of four measures of innovation: the principal component

36For some industries, a very small number of observations cycle between adjacent grades. This is most
pronounced for Rubber Products (CIC 29), but even in this industry there are only 22 firm-years that cycle.
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Table A.1: Innovation Leads to Changes in Grades and Quality

Grade Change =  g (i ,t ) - g (i ,t -1)     Quality Change = θg (i ,t ) - θg (i ,t -1)    

(1) (2) (3) (4) (5) (6) (7) (8)
Principal Component, t 0.037* 0.031*

(0.002) (0.002)
R&D, t 0.026* 0.026*

(0.002) (0.002)
New-Product Sales, t 0.023* 0.023*

(0.001) (0.002)
Patents, t 0.079* 0.069*

(0.008) (0.010)

Observations 785,302 621,689 748,350 796,945 551,009 497,868 534,674 551,009
R2 0.458 0.569 0.510 0.458 0.512 0.561 0.543 0.511

Notes: Each column is a specification involving a regression of either grade change or quality change on a
measure of innovation. The independent variable R&D enters as ln(1 + RDit). Likewise for new-product
sales and patents. All specifications include firm and gjt fixed effects. Standard errors clustered two-way
by firm and gj are in parentheses. A * indicates significance at the 1% level.

innovation, R&D, new-product sales, and patents. All specifications include firm and
grade-industry-year fixed effects. “Grade” refers here to lagged grade. In all cases, we
find that innovation is strongly related to changes in grade and quality. Online appendix
table B.9 shows that we obtain very similar results when regressing grade and quality
changes between t�1 and t on a firm’s lagged innovation in t�1 and when regressing the
level of a firm’s grade or quality on measures of its innovation (either contemporaneous
or lagged).

Export-market shocks vary across grades: Table A.2 provides evidence that the trade
shocks impacting China during our sample period were in fact heterogeneous across
grades. The table shows the average annual growth rates between 2000 and 2006 of our
export-market size and competition variables in each grade: R̄

X,g
t , N̄X,g

t and (⌦̄X,g
t )�

g�1.
Evidently, total exports and the number of firms competing for export-market profits ex-
panded most rapidly in higher quality grades. For instance, total exports and the number
of exporters grew at average rates of 38% and 25% per year respectively in the highest
grade but both contracted slightly in the lowest grade. On the other hand, the average
TFP of exporters as measured by (⌦̄X,g

t )�
g�1 grew more slowly in higher grades, sug-

gesting that higher quality comes at the cost of lower productivity, as documented by
Jaumandreu and Yin (2018).
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Table A.2: Grade Characteristics: Annual Growth Rates, 2000–2006

Grade Exports Exporters (N X ) TFP index
(1) (2) (3) (4)
1 -0.03 -0.05 0.13
2 0.07 0.09 0.15
3 0.12 0.14 0.14
4 0.14 0.15 0.14
5 0.17 0.17 0.12
6 0.18 0.17 0.12
7 0.20 0.20 0.09
8 0.38 0.25 0.07

All 0.23 0.15 0.12

(Ω#)

Notes: For the 621,879 observations used in our regressions, we compute total exports in 2000 and 2006,
then take the log change divided by 6. (For R&D we use 2001 in place of 2000.)
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