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Abstract

In monopoly pricing situations, firms should optimally vary prices to learn demand.

The variation must be sufficiently high to ensure complete learning. In competitive

situations, however, varying prices provides information to competitors and may reduce

the value of learning. Such situations may arise in the pricing of new products such

as pharmaceuticals and digital goods. This paper shows that firms in competition can

learn efficiently in certain equilibrium actions which involve adding noise to myopic

estimation and best-response strategies. The paper then discusses how this may not

be the case when actions reveal information quickly to competitors. The paper provides

a setting where this effect can be strong enough to stop learning so that firms optimally
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reduce any variation in prices and choose not to learn demand. The result can be that

the selling firms achieve a collaborative outcome instead of a competitive equilibrium.

The result has implications for policies that restrict price changes or require disclosures.

Keywords: Revenue management, sequential estimation, dynamic pricing, learning, competi-

tion
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1 Introduction

Developing effective pricing strategies in new or uncertain markets involves balancing the

tradeoff between learning about consumer demand and earning profits in each period. For

markets with a small number of firms, this tradeoff becomes increasingly difficult to manage

as firms must not only account for the unknown demand from consumers, but also for the

response from their competitors. As the market matures and firms learn from the experience

of selling their products, each firm becomes more proficient at setting prices; however, the

resulting increased level of competition may cause profits to decline for the industry as a

whole. This effect brings into question whether it is in the best interest of firms to actively

learn about their business environment, or rely only on their current information to compete

for profits. In other words, do competing firms always want to learn about demand?

Our primary research focus concerns the impact of competition on the design and im-

plementation of dynamic pricing strategies. Dynamic pricing strategies are a useful tool

for firms that face a changing marketplace for their product. As market conditions evolve

over time, firms can employ such strategies by adjusting their prices periodically to match

their environment. For example, consider the market for a single, new product where the

demand for that product is initially unknown. From the firm’s perspective, the marketplace

is changing as data from the sales of the product is collected, providing more information

about the underlying demand. In each period, the firm must weigh the expected revenue

that their pricing decision will yield in the current period against the information value that

charging varied or experimental prices may provide for future pricing decisions. Balancing

this learning and earning tradeoff for a monopolist firm has been the focus of recent research

in revenue management and has produced effective pricing policies under various forms of

uncertainty. Our goal is to assess the performance of these dynamic strategies when multiple

firms are selling products in an uncertain marketplace and examine the effects of competition

on the learning and earning tradeoff.

Designing strategies that account for both demand learning and the impact of competition

leads to the following questions. If firms adopt dynamic pricing strategies taken from the
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monopolist literature for demand learning, will they eventually learn the underlying demand

conditions for their products? At same time, will revealing the market conditions increase

the degree of competition and “learn” away profits for all of the firms involved? To address

these questions, we introduce two models of competition under demand uncertainty. The first

tests the performance of various monopolist strategies and heuristics in these competitive

environments, while the second explores potential equilibrium strategies for these markets.

The first model allows each competing firm to choose from a family of pricing strategies

from the monopolist literature on dynamic pricing. When these strategies are applied si-

multaneously, we show that the prices of the individual firms can approach an overall Nash

equilibrium of the game with complete information if the firms sufficiently vary their prices.

On the other hand, if firms do not vary prices sufficiently, the firms can incompletely learn the

demand with prices that converge to a different set of prices from the complete-information

Nash equilibrium. These prices can be beneficial or harmful to individual firms relative to

the complete-information Nash equilibrium, and, in some case, can actually be better than

the complete-information solution for all firms (an aspect which we explore more fully in the

second part of the paper).

The model assumes that each firm estimates its underlying demand curves using least

squares estimation. We find that these strategies do not necessarily produce desirable out-

comes. Firms that face uncertainty from both their consumers and their competitors need to

account for how their pricing decisions will influence their competitors’ future prices. Firms

eventually learn their underlying demand curves, but drive the market into a state of in-

creased competition. Instead, firms would prefer to remain ignorant of the true demand in

order to charge collusive prices in the market.

Our second model shows that willful ignorance is not merely a byproduct of the dynamic

pricing strategies we investigated, but rather is a rational outcome for firms competing in a

perfect Bayes equilibrium (PBE). In particular, we develop several simple demand environ-

ments, where the equilibrium strategies for the competing firms actively avoid learning the

true value of demand and attain a collusive outcome even in finite time horizons.
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2 Literature Review

This paper relates to an extensive literature on dynamic learning and pricing in the operations

research literature. These papers build on the classical work of Lai and Robbins [1982] that

sequential optimization and estimation of a linear model can lead to incomplete learning

without sufficient variation in the choice of the controls. The main focus in the subsequent

papers is then to generate conditions under which the model can be learned completely and

the controls can yield the same rewards asymptotically as with full information. Papers in

this stream include Besbes and Zeevi [2009], Keskin and Zeevi [2014], den Boer and Zwart

[2013], Cheung et al. [2015], Harrison et al. [2012], and Broder and Rusmevichientong [2012].

In contrast to most of the work in this area, our paper considers a competitive environ-

ment in which individual agents have private information. Some papers that explore this

area include Cooper et al. [2015] and Bertsimas and Perakis [2006]. Cooper et al. [2015]

considers a case where one agent is unaware of the competition and shows that this can pos-

sibly attain better outcomes from all firms than if they knew they were in competition. The

Bertsimas and Perakis paper considers a similar situation to that of our model but considers

only restrictive strategies and more of a full information situation. In contrast, our work

considers asymmetric information but full knowledge of the competitive landscape.

This paper also relates to the extensive economics literature on collusive pricing and

equilibrium price experimentation as well as the recent research on dynamic pricing and

learning in stationary demand environments. In particular, the second part of the paper

explores the maintenance of collusion as, for example, in Stigler [1964] and Maskin and Tirole

[1988], but instead of uncertainty or non-differentiability leading to collusive arrangements,

collusion in our case will follow from uncertainty and the threat of providing information to

competitors.

Our modeling framework fits into the literature on prisoner’s dilemma situations and

the maintenance of cooperative behavior. Such papers include Kreps et al. [1982], Green

and Porter [1984], Abreu et al. [1990], Sannikov and Skrzypacz [2007], and Rahman [2014].

The mechanism to sustain collusion, however, in this paper is again different in its reliance
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on the potential information leak from individual agent actions, leading to disincentives to

experiment and incomplete but ultimately beneficial incomplete learning.

Pricing when demand is uncertain requires balancing the trade-off between learning about

demand and earning revenues in the short run. In order to accurately estimate the param-

eters of a demand model, firms must vary the prices of their products across the selling

season; however, this practice typically requires firms to deviate from the myopic price that

earns the most expected revenue given their current information and forecasts. Early works

by Rothschild [1974] and McLennan [1984] showed that following a myopic strategy can

lead to incomplete learning in the long run. In the case of a monopolist firm, such strate-

gies will inevitably underperform more forward looking policies that explore the potential

pricing alternatives. By introducing a performance metric known as regret, researchers in

revenue management have developed semi-myopic polices to avoid incomplete learning by

strategically experimenting with prices. However, learning the demand curve in the long

run may not be a desirable strategy for firms in a competitive marketplace. For instance,

firms would prefer to have mistaken beliefs if the resulting market prices outperform the

full-information competitive equilibrium. Adhering to a myopic strategy would therefore

be rational in competitive environments provided that firms can recognize situations where

their mistaken beliefs generate collusive prices. Our work extends the notion of regret to

competitive environments, develops pricing strategies that avoid incomplete learning, and

analyzes the connection between demand uncertainty and collusive pricing.

We should also note that the type of behavior in this paper may be observed in new mar-

kets, such as those for new classes of pharmaceuticals. In these cases, firms may not know

the effect of price changes and tend not to vary prices until many entries have occurred. Re-

cent experience for new Hepatitis C treatments and new cholesterol-lowering agents (PCSK9

inhibitors) appears to follow this pattern.
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3 Setup and Notation

We consider N firms, each about to introduce a single, new product to the marketplace.

Firms are aware of their competitors’ products and that the prices chosen by their competi-

tors will influence the demand for their own product. The underlying market conditions,

however, are initially unknown. The demand for each distinct product is related to the oth-

ers, but it is uncertain whether these products will behave as substitutes or complements,

nor is it clear what magnitude a change each product’s own price will have on its demand.

Firms learn about the market conditions by pricing their product and privately observing

their resulting sales.

We model their interactions as a T -period, dynamic game of incomplete information. Let

I := {1, . . . , N} be the set of firms. The market conditions are characterized by a state of the

world θ, which remains constant throughout the selling season, and is drawn randomly from

a compact set Θ before selling begins. At the start of each period t, firms use their available

data to estimate the state of the world and forecast the prices that their competitors will

choose. Firms then price their products publicly and simultaneously with firm i choosing its

price pit from a compact subset of the positive real line P ⊂ <+. After prices are chosen, each

firm receives a private signal dit ∈ < drawn randomly from consumers. For our purposes,

each firm’s private signal represents that firm’s observed demand for its product in period

t. In other words, prices are observed by both consumers and competing firms, whereas the

demand for each product is observed privately by each firm.

We are primarily focused on the role of dynamic pricing for the purposes of learning

demand while earning profits. To that end, we assume that the firms have no capacity limi-

tations for their products and ignore the effects of marginal and fixed costs. Observed sales

therefore represent samples of the uncensored demand distribution, and firms can maximize

their profits by choosing prices that increase revenues. The distribution of consumer demand

for each product depends on the vector of prices chosen in that period, pt ∈ PN , and the

unknown state of the world θ. Each firm’s profit in a given period t is defined as the product

of their chosen price and the consumer demand ui(pt, dit) = pitdit.
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4 Model 1: Efficient learning with least-squares esti-

mates and restricted strategies

Model I evaluates the performance of myopic and semi-myopic heuristics from the revenue

management literature on dynamic pricing. Drawing from the setup in Keskin and Zeevi

[2014], each firm correctly assumes that their demand is a linear function of the prices charged

in each period,

dit = θ>i


1

p1t

...

pNt

+ εit, i = 1, . . . , N.

The unknown market conditions θ = (θ1, . . . , θN)> are initially drawn from a compact set

Θ ⊂ <N(N+1) and the demand shocks, εit are drawn from a static, mean-zero distribution

independently for each of the N products and serially independent across time. For conve-

nience, let xt = (1, p>t )>, where pt = (p1t, . . . , pNt)
> is the vector of prices chosen by each

firm in period t. It will also be useful to distinguish between the various demand parameters

within each firm’s demand model. Thus, with a slight overuse of notation, let θi0 = αi,

θii = βi and θij = γij for i 6= j. The demand curve for firm i can now be expressed as

dit = αi + βipit +
∑
j 6=i

γijpjt + εit, i = 1, . . . , N.

Though equivalent, both the vector and component form for the demand curves will be useful

for our analysis as will be evident in context.

At the start of each period t, firms use their available data to estimate the state of the

world, to forecast the prices that their competitors will choose, and to determine their own

pricing action. We describe each agent’s strategy as comprising these elements of estimation,

forecast, and action, all based on public information revealed in the past actions of all agents

and each individual agent’s private information on past payoffs.

In considering demand estimates, we note that observed sales represent samples of the

uncensored demand distribution since we have ignored capacity considerations. As a simple
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estimation strategy, we consider that each agent uses ordinary least squares regression. At

the start of period t, firm i’s least squares estimator of θi is

θ̂it =

(
t−1∑
s=1

xsx
>
s

)−1( t−1∑
s=1

disxs

)
.

Since each firm’s realized demand history {dis}i=±1,s=1,...,t is private information, only firm

i has knowledge of the least-squares estimate θ̂it. However, the least-squares estimates for

the N firms are interconnected as they share the same empirical Fisher information matrix

given by

Jt =
t∑

s=1

xsx
>
s .

This matrix plays a crucial role in our analysis, as its size (as measured by its smallest

eigenvalue λmin (Jt) ≥ 0) indicates how close each firm’s estimates are to the true value

of the parameters. Combining the definition of the least-squares estimates with the true

demand model yields the following expression for the estimation error:

θ̂it − θi = J −1
t

t∑
s=1

εisxt.

As the estimation error is inversely proportional to the empirical Fisher information, in-

creasing the size of this matrix will enable each firm to learn their underlying demand;

however, joint control of the Fisher information is non-trivial, since it is generated through

the combined pricing actions of all of the firms in the market.

The distribution of the demand noise εit plays a important role in the estimation error as

well. To ensure that the demand noise does not dominate the estimation error, we assume

that it follows a light-tailed distribution, as in Keskin and Zeevi [2014]; that is, there exists

a positive constant z0 such that E[ezεit ] < ∞ for all |z| < z0. The least-squares estimates

can be improved further by using the knowledge that the true parameters θ belong to the

compact set Θ. Let ϑit := argminϑ∈Θi
{||ϑ − θ̂it||} be the L2-projection of the least-squares

estimates onto firm i’s subset of the demand parameter set Θi ⊂ Θ.
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Along with their demand estimates, each firm develops a forecast for their competitors’

future prices pet at start of period t. We allow a range of assumptions that include the

following that have appeared in the literature:

1. Cournot adjustment: pet = pt−1;

2. Time average over H-horizon: pet = 1
H

∑t−1
τ=t−H pτ for H < T ;

3. Exponential smoothing: pet =
∑t−1

τ=1 λ
t−τpτ for λ < 1.

Each firm selects a forecasting strategy before selling begins; indeed, rival firms need not

be aware of their competitors’ choices. Given these estimates and forecasts, we define an

estimated expected demand for each agent i’s demand given their action pit as d̂it(p
e
t , pit, ϑit).

A general pricing strategy for firm i is a sequence of functions σi := (σi1, σi2, . . . σiT )

where σit : <(N+1)(t−1) → P(P ) is a measurable mapping from firm i’s observable history

Hit = (di1, p1, . . . , di(t−1), p(t−1)), to the space of probability measures on the closed interval

of prices P ⊂ <+. However, by introducing the demand estimates and price forecasts, we

consider a restricted set of admissible pricing strategies σit : <2N+1 → P(P ) such that firm

i’s price in period t is distributed as

pit ∼ σit(ϑit, p
e
t ),

where pet =
∑t−1

τ=1 λ
t
τpτ with λtτ ≥ 0 and

∑t−1
τ=1 λ

t
τ ≤ 1 (i.e., pet is in the convex hull of observed

prices p1, . . . , pt−1) with the following additional restriction: for some 0 < T̄ < ∞ and all

t ≥ T̄ and some 0 < δ < 1,

t−1∑
i=1

λts
log s√
s
≤ δ2

Γ

log t√
t
, λt1 ≤ (1− δ) log t√

t
, (4.1)

where 1 > δ2 > Γ := 2 maxθ∈Θ

[(∑
j 6=i γij

−2βi

)2
]

and the feasibility of this relationship holds

by assumption. We note that the three forecasting policies given above, as well as many

more-complex prediction functions, satisfy these assumptions.

Our analysis revolves around strategies that focus on best-response (as, for example,

also assumed in Simon [2007]). Consider the firm’s expected single-stage payoffs given their
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estimates and forecasts. In this case, firms can maximize their single-stage profits by choosing

prices that maximize expected revenues (since we assume zero marginal cost). Each firm’s

profit in a given period t is their best-response to the forecast prices of competitors defined

as the product of their chosen price and the consumer demand ui(pt, dit).

The single-period best-response function for firm i given an estimate ϑit and price forecast

pet is

ϕ(ϑit, p
e
t ) = arg max

pit
ui(pit, d̂it(p

e
t , pit, ϑit)) =

α̂i

−2β̂i
+
∑
j 6=i

γ̂ij

−2β̂i
pejt.

If the true demand parameters θ were known, then solving for the best-response prices for

each firm simultaneously yields the unique single-period Nash equilibrium prices:

pNEi = ϕ(θi, p
NE).

Since the best-response in a monopolistic setting can yield incomplete learning, we add

a perturbation to the best-response in the form of a noise term. We call this set of policies

best response with random dithering (following Lobo and Boyd [2003]), given as follows:

σit(ϑi, p
e
t ) = ϕ(ϑit, p

e
t ) + νit,

such that the νit are mean-zero random variables, that are conditionally independent over

i and t given the history at time t. Therefore, at the start of period t and given history

Hit, firm i’s price is a random variable with distribution σit(ϑi, p
e
t ) and mean ϕ(ϑit, p

e
t ). A

simple way to generate admissible random dithering policies is to choose distributions for the

random noise terms before the selling season begins and then truncate these distributions in

each period so that prices remain in P .

Note that in order for best response with random dithering polices to be admissible

strategies, the prices that each firm charges in each period must lie in a closed interval P .

An immediate consequence of this property is that the νit noise terms must be bounded in

each period and that the best response function ϕ(ϑi, p
e) ∈ P for all ϑi ∈ Θi and all pe ∈ PN .

To that end, for a random dithering strategy to be an admissible random dithering strategy,

we assume that each firm’s best-response price lies within an open interval int(P ) whenever

12



its competitors’ prices also lie within that interval. This assumption allows for the added

noise terms νit to have positive variance in each period and has the following implications

for the parameter space Θ.

Proposition 4.1. If ϕ(ϑi, p
e
t )) ∈ int(P ) for all ϑi ∈ Θi and all pet ∈ PN , then:

i. βi < 0 for all i ∈ 1 . . . N and all θ ∈ Θ;

ii. |
∑

j 6=i γij| ≤ −2βi for all i ∈ 1 . . . N and all θ ∈ Θ.

Proof. First note that if βi ≥ 0, then demand for product i increases with the price of product

i and by definition the best response would be unbounded ϕ(ϑi, p
e
t ) = ∞. Let P = [l, u]

where u > l > 0. Then the second property comes from enforcing that ϕ(ϑi, ue) ≤ u

and ϕ(ϑi, le) ≥ l, where e is the N -vector of ones. Combining these inequalities yields

ϕ(ϑi, ue)− ϕ(ϑi, le) ≤ u− l or (
∑

j 6=i γ̂ij/− 2β̂i)(u− l) ≤ u− l. Since both −2β̂i and u− l

are positive, this implies that
∑

j 6=i γ̂ij ≤ −2β̂i. Similarly, the inequality −(
∑

j 6=i γ̂ij) ≤ −2β̂i

follows through the combination of ϕ(ϑi, ue) ≥ l and ϕ(ϑi, le) ≤ u.

Additionally, it is necessary to strengthen the second property of Proposition 4.1 and

assume that the parameter space has the property that |
∑

j 6=i γij| ≤ −βi for all i ∈ 1 . . . N

and all θ ∈ Θ. In the following, we expand our definition of admissible strategies to include

this restriction on the parameter space. This assumption is required due to a byproduct of

our proof technique which bounds the forecasting errors inherent to our allowed options for

competitor forecasts.

We restrict the analysis below to this limited set of admissible policies since finding

equilibria in fully general settings is not realistic. It requires, for example, extraordinary

rationality (see Blume and Easley [1995]) for each agent to fully consider all other agents’

information states, updating capabilities, and strategy choices. In Model 2 (Section 5),

however, we analyze a restricted action and parameter space setting where we can more

fully describe equilibria in the repeated game.
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4.1 Measuring Regret

In order to analyze the pricing strategies outlined in the previous section, we introduce a

performance metric called regret, which compares the revenues generated by each firm to the

revenues generated by the competitive Nash equilibrium. The T -period regret for firm i is

given by

∆σ
i (θ, T ) =

T∑
t=1

Eσθ [pNEi (αi + βip
NE
i +

∑
j 6=i

γijp
NE
j )− pit(αi + βipit +

∑
j 6=i

γijpjt)],

where the expectation Eσθ is taken with respect to the probability of the price sequences

{pt}t=1,...,T induced by the firms’ chosen strategies σ and the true value of demand parameters

θ. We note that this is distinct from the definition of regret often used in the machine learning

literature (see Zinkevich et al. [2007]). In that context, regret is measured as the difference

relative to the best possible static competitor actions ; that is, rather than comparing realized

profits to the complete-information Nash equilibrium, firms would instead compare their

outcomes to the profits they would have accrued if their competitors chose to charge a

constant price in each period. We consider our admissible policy responses as more fully

capturing rational behavior. As all firms are pricing to learn demand and earn revenues,

charging a constant price would prohibit learning not only for those firms that choose to

adopt that strategy, but also for the marketplace as a whole.

Choosing to benchmark against the competitive Nash outcome is also useful because it

has a direct analogue to the monopolist learning and earning literature. In particular, it

separates into two quantities of interest that we describe as the regret due to learning and

the regret due to influence as the two terms in the following representation of the regret:

∆σ
i (θ, T ) = −βi

T∑
t=1

Eσθ
[
(pNEi − pit)2

]
− 2βi

T∑
t=1

Eσθ
[
pit
(
ϕ(θi, p

NE)− ϕ(θi, pt)
)]
.

The first term in the sum measures the expected squared distance between firm i’s Nash

equilibrium price and the prices chosen in each period according to its strategy σi. We

identify this term as measuring firm i’s regret due to learning, as it tracks the firm’s knowl-

edge of the underlying demand parameters and the system’s progress towards the complete-

information Nash equilibrium. The expected squared distance is precisely the regret metric
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that a monopolist would face in this market when balancing the tradeoffs between learning

and earning. The worst-case regret of a monopolist is

∆σ(T ) ≤ sup{−|K|
T∑
t=1

Eσθ
[
||pCE − pt||2

]
: θ ∈ Θ},

where pCE is the vector of cooperative Nash equilibrium prices and K is a known constant.

The remaining term, called the regret due to influence, represents the regret that firm i incurs

as a result of the mistaken beliefs about its competitor. Notice that when the products in the

market are substitutes (complements), this term is negative when competing firms charge

above (below) their Nash equilibrium prices. Our definition of regret allows for such negative

values as in learning scenarios in which a firm i can exploit the ignorance of its competitors

to earn additional revenues. Hence, firms may consider allowing an increase in the regret

due to learning in an effort to influence their competitor to charge a more favorable price.

4.2 Conditions for Efficient Learning

This section analyzes the use of the admissible strategies in achieving an efficient learning

outcome, as measured by the worst-case regret due to learning. In particular, we show first

that the information grows at the rate of the variance of the pricing strategies σ, as controlled

by the noise terms in random dithering policies. These results depend on the information

metric Jt and its minimum eigenvalue, denoted λmin(Jt). To bound this minimum eigenvalue,

we use the following matrix version of the Freedman bound. Let Es and Vars denote the

conditional expectation and variance of an adapted sequence of random matrices given a

history of realizations up to time s.

Theorem 4.2 (Matrix Freedman, Tropp [2011]). Consider a finite adapted sequence {Ys}

of random, self-adjoint matrices with dimension d. Assume that

Es−1Ys = 0 and λmax(Ys) ≤ R almost surely.

Define the finite series

Z :=
∑
s

Ys and W :=
∑
s

Es−1(Y 2
s ).
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Then, for δ ≥ 0 and v > 0,

P
{
λmax(Z) ≥ δ and λmax(W ) ≤ v2

}
≤ d · exp

(
−δ2/2

v2 +Rδ/3

)
.

The Freedman bound can be applied directly to our model as follows:

Corollary 4.3. Let Jt =
∑t

s=1 xsx
>
s be the Fisher information matrix at time t ≤ T

generated by admissible strategies σ. Assume that ∃v > 0 such that

||
t∑

s=1

Vars−1[xsx
>
s ]|| < v, almost surely,

then

P

{
λmin(Jt) ≤ −δ +

t∑
s=1

λmin

(
Es−1[xsx

>
s ]
)}
≤ N · exp

(
−δ2/2

v2 +Rδ/3

)
.

Proof. This follows through a direct application of the Freedman bound and Weyl’s inequal-

ities. Since the sequence of public price vectors xs is a finite sequence of adapted random

vectors, the random matrices Ys := Es−1[xsx
>
s ]−xsx>s form an adapted sequence of random,

self-adjoint matrices each with conditional mean zero.

By the definition of our admissible strategies, the prices charged in each period lie in an

interval P = [l, u] with 0 < l < u, so ||xt||2 ≤ Nu2 := R. The fact that prices are uniformly

bounded implies that the maximum eigenvalues of the Ys are also uniformly bounded by the

following argument. Consider the spectral norm of the Ys,

||Ys|| = ||Es−1[xsx
>
s ]− xsx>s || = max{||Es−1[xsx

>
s ]||, ||xsx>s ||} ≤ R.

The above expression for spectral norm follows from the fact that both Es−1[xsx
>
s ] and xsx

>
s

are positive semi-definite matrices and the bound follows from the following application of

Jensen’s inequality:

||Es−1[xsx
>
s ]|| ≤ Es−1||xsx>s || ≤ Es−1||xs||2 ≤ R.

Since the spectral norm of a Hermitian matrix is ||X|| = max{λmax(X),−λmin(X)}, we have

that

λmax(Ys) ≤ ||Ys|| ≤ R.
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Applying the Matrix Freedman bound yields:

n exp

(
−δ2/2

σ2 +Rδ/3

)
≥ P

{
λmax

(
−Jt +

t∑
s=1

Es−1[xsx
>
s ]

)
≥ δ

}

≥ P

{
λmax(−Jt) ≥ δ −

t∑
s=1

λmin(Es−1[xsx
>
s ])

}

= P

{
λmin(Jt) ≤ −δ +

t∑
s=1

λmin(Es−1[xsx
>
s ])

}
.

Notice that the matrix W =
∑t

s=1 Vars−1[xsx
>
s ] in the Freedman bound is omitted. This

is due to the fact that the spectral norm of a matrix is greater than or equal its maximum

eigenvalue and the condition λmax(W ) ≤ v2 holds almost surely by assumption.

We can now use the corollary above to bound the minimum eigenvalues of the Fisher

information matrix in our setting.

Lemma 4.4. If firms choose admissible strategies and there exist constants ci, Ci > 0 such

that ci√
t
≤ Vart−1[σit] ≤ Ci√

t
almost surely for i = 1, . . . , N and t < T , then there exist

constants κ0, κ1 > 0 such that

P(λmin(Jt) < κ0

√
t) ≤ κ1√

t
.

Proof. The proof will proceed as follows. First, we will provide a lower bound for the

minimum eigenvalue for the sum of the conditional expectations of xsx
>
s for s = 1, . . . , t.

Second, we will provide an upper bound for the sum of the conditional variances of xsx
>
s

for s = 1, . . . , t. These bounds then allow us to apply the Matrix Freedman corollary and

complete the proof. We express the price vectors in each period as the sum:

xs = zs + νs,

where zs := Es−1[xs] and νs ∈ <N+1 is a random vector with zero mean and variance equal

to Vars−1[xs].

Claim 1. λmin

(∑t
s=1 Es−1[xsx

>
s ]
)
≥ δ0

√
t for some δ0 > 0.
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Proof of Claim 1

Separate the conditional expectations into zs and νs components,

t∑
s=1

Es−1[xsx
>
s ] =

t∑
s=1

zsz
>
s +

t∑
s=1

Es−1[νsν
>
s ]

=
t∑

s=1

(zs − z̄)(zs − z̄)> +
t∑

s=1

z̄z̄> +
t∑

s=1

Es−1[νsν
>
s ]

�
t∑

s=1

z̄z̄> +
t∑

s=1

Es−1[νsν
>
s ],

where z̄ := 1
t

∑t
s=1 zs. Let y = (y1, . . . , yN+1) ∈ <N+1 be an arbitrary unit vector and y∗ and

z̄∗ be vectors consisting of the last N components of y, z̄, respectively. Let c = mini=1,...N{ci},

then

y>

(
t∑

s=1

z̄z̄> +
t∑

s=1

Es−1[νsν
>
s ]

)
y =

t∑
s=1

(y1 + y>∗ z̄∗)
2 +

N∑
i=1

y2
i+1Vars−1[σis]

≥
t∑

s=1

(y1 − ||y∗|| · ||z̄∗||)2 + ||y∗||2
c√
t

≥ (y1 − ||y∗|| · ||z̄∗||)2t+ ||y∗||2c
√
t.

Since y is an arbitrary unit vector, the Rayleigh-Ritz theorem implies that the minimum

eigenvalue of
∑t

s=1 Es−1[xsx
>
s ] grows by least δ0

√
t for some constant δ0 > 0. †

Claim 2. ||
∑t

s=1 Vars−1[xsx
>
s ]|| ≤ v0

√
t almost surely for some v0 > 0.

Proof of Claim 2

Let C = maxi=1,...,N{Ci} and R = Nu2 where P = [l, u] is the admissible price interval with
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0 < l < u. By the definition of the conditional variance for random matrices:

Vars−1

[
xsx

>
s

]
= Covs−1

[
zν>s , xsx

>
s

]
+ Covs−1

[
νsz
>, xsx

>
s

]
+ Covs−1

[
νsν
>
s , xsx

>
s

]
= Es−1

[
(ν>s νs)zz

>]+ Es−1

[
(ν>s z)zν>s

]
+ Es−1

[
(ν>s νs)zν

>
s

]
+ Es−1

[
(ν>s z)νsz

>]+ Es−1

[
(z>z)νsν

>
s

]
+ Es−1

[
(ν>s z)νsν

>
s

]
+ Es−1

[
(ν>s νs)νsz

>]+ Es−1

[
(ν>s z)νsν

>
s

]
+ Es−1

[
(ν>s νs)νsν

>
s

]
− Es−1

[
νsν
>
s

]2
= Es−1

[
||νs||2xsx>s

]
+ Es−1

[
(ν>s z)xsx

>
s

]
+ Es−1

[
(ν>s z)νsν

>
s

]
+ (z>z)Es−1

[
νsν
>
s

]
− Es−1

[
νsν
>
s

]2
.

Apply the spectral norm to both sides of the above equation and use Jensen’s inequality on

each term to generate an upper bound,

||Vars−1

[
xsx

>
s

]
|| ≤ Es−1

[
||νs||2||xsx>s ||

]
+ Es−1

[
|ν>s z| ||xsx>s ||

]
+ Es−1

[
|ν>s z| ||νsν>s ||

]
+ z>zEs−1

[
||νsν>s ||

]
≤ R

(
Es−1

[
||νs||2

]
+ 2Es−1

[
|ν>s z|

]
+ ||Es−1

[
νsν
>
s

]
||
)

≤ R
(
Es−1

[
||νs||2

]
+ 2|z|>Es−1

[
νsν
>
s

]1/2
+ ||Es−1

[
νsν
>
s

]
||
)

≤ N ·R · C√
s

+O(
1√
s

).

The resulting matrix variance statistic is then

t∑
s=1

||Vars−1[xsx
>
s ]|| ≤

t∑
s=1

NR√
s

+O(
1√
s

) ≤ v0

√
t,

for some v0 > 0. †

Let δ = δ0
2

√
t and v = v0

√
t and apply the Matrix Freedman corollary,

N · exp

(
−δ2/2

v2 +Rδ/3

)
≥ P

{
λmin(Jt) ≤ −δ +

t∑
s=1

λmin

(
Es−1[xsx

>
s ]
)}

Ne−κ1

√
t ≥ P

{
λmin(Jt) ≤ κ0

√
t
}
.
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We now invoke the following result from Keskin and Zeevi [2014].

Lemma 4.5 (Keskin and Zeevi [2014], Lemma 3). There exist finite positive constants ρ

and k such that,

P
{
||θ̂it − θi|| > δ, λmin(Jt) ≥ m

}
≤ kt exp

(
−ρ(δ ∧ δ2)m

)
,

for all δ,m > 0 and all t ≥ 3.

The proof approach in the result above combined with our earlier results then yield the

following result for the overall estimation error.

Proposition 4.6. If firms choose admissible strategies and there exist constants ci, Ci > 0

such that ci√
t
≤ Vart−1[σit] ≤ Ci√

t
almost surely for i = 1, . . . , N and t < T , then firm i’s

expected estimation error in period t is:

Eσθ
[
||θi − ϑit||2

]
= O

(
log(t)√

t

)
.

Proof. We break up the expectation into cases where the minimum eigenvalue of Jt is large

with respect to the current time period and when it is small.

Eσθ
[
||θi − ϑit||2

]
=

∫ ∞
0

Pσθ
(
||θi − ϑit||2 > x, λmin(Jt) ≥ κ0

√
t
)
dx

+

∫ ∞
0

Pσθ
(
||θi − ϑit||2 > x, λmin(Jt) < κ0

√
t
)
dx

≤
∫ ∞

0

Pσθ
(
||θi − θ̂it||2 > x, λmin(Jt) ≥ κ0

√
t
)
dx

+

∫ K1

0

Pσθ
(
||θi − ϑit||2 > x, λmin(Jt) < κ0

√
t
)
dx

≤
∫ ∞

0

Pσθ
(
||θi − θ̂it||2 > x, λmin(Jt) ≥ κ0

√
t
)
dx

+K1Pσθ
(
λmin(Jt) < κ0

√
t
)
,

where K1 = maxθ,θ′∈Θ ||θ − θ′||2. The first inequality is due to the fact that the estimation

errors of the projected least squares estimate ϑit are bounded by K1 and are weakly smaller

than the estimation errors of θ̂it.
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In the proof of Keskin and Zeevi [2014], Theorem 2, the authors prove that Lemma 4.5

implies that ∫ ∞
0

Pσθ
(
||θi − θ̂it||2 > x, λmin(t) ≥ κ0

√
t
)
dx = O(

log t√
t

).

Since the steps are identical to their analysis, they are omitted for brevity. We can then

apply Lemma 4.4 to obtain the desired conclusion:

Eσθ
[
||θi − ϑit||2

]
≤ A0 log t√

t
+
A1√
t
,

for some constants A0, A1 > 0. Therefore, the expected estimation error in each period is

order O( log t√
t

).

4.3 Low Regret under Random Dithering Policies

Using the information result of the previous section, we can devise a best-response with

random dithering strategy that achieves low regret due to learning.

Theorem 4.7. If firms adopt best-response with admissible random dithering strategies

and there exist constants ci, Ci > 0 such that ci√
t
≤ Vart−1[σit] ≤ Ci√

t
almost surely for

i = 1, . . . , N and t < T , then the worst-case regret due to learning is O(
√
T log T ) for all

firms.

Proof. Consider the maximum t period contribution to regret due to learning for any firm.

Let i∗ = arg maxi∈I Eσθ
[
(pNEi − pit)2

]
. Next, separate the regret due to learning into estima-

tion error and forecast error and dithering as follows:

Eσθ
[
(pNEi∗ − pi∗t)2

]
= Eσθ

[
(ϕ(θi∗ , p

NE)− ϕ(ϑi∗t, p
e
t )− νi∗t)2

]
≤ 2Eσθ

[(
ϕ(θi∗ , p

NE)− ϕ(ϑi∗t, p
NE)

)2
]

+ 2Eσθ
[(
ϕ(ϑi∗t, p

NE)− ϕ(ϑi∗t, p
e
t )− νi∗t

)2
]

= 2Eσθ
[(
ϕ(θi∗ , p

NE)− ϕ(ϑi∗t, p
NE)

)2
]

+ 2Eσθ
[(
ϕ(ϑi∗t, p

NE)− ϕ(ϑi∗t, p
e
t )
)2
]

+ 2Varσθ (νi∗t).
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The first term on the right hand side representing the estimation error component can be

bounded using the mean value theorem:

|
(
ϕ(θi∗ , p

NE)− ϕ(ϑi∗t, p
NE)

)
| ≤ max

ω ∈ Θ, j ∈ I,

k ∈ {1, . . . , N + 1}

√
(N + 1)

∣∣∣∣∂ϕ(ωj, p
NE)

∂ωjk

∣∣∣∣ ||θi∗ − ϑi∗t||.
Therefore,

Eσθ
[
(pNEi∗ − pi∗t)2

]
≤ 2K0Eσθ

[
||θi∗ − ϑi∗t||2

]
+2Eσθ

[(
ϕ(ϑi∗t, p

NE)− ϕ(ϑi∗t, p
e
t )
)2
]

+ 2 Var(νi∗t),

where K0 is defined by the maximization in the previous equation.

Let ϑi∗t = (ai∗t, bi∗t, ci∗jt)
> and substitute the definition of ϕ(ϑi∗t, p

e
t ) into the above equation:

Eσθ
[
(pNEi∗ − pi∗t)2

]
≤ 2K0Eσθ

[
||θi∗ − θi∗t||2

]
+2Eσθ

(∑
j 6=i∗

cijt
−2bit

(pNEj − pejt)

)2
+ 2 Var(νi∗t).

Choosing the firm with the largest gap between the Nash equilibrium price and the forecasted

price,

Eσθ
[
(pNEi∗ − pi∗t)2

]
≤ 2 max

ϑ∈Θ

{(∑
j 6=i∗ ci∗jt

−2bi∗t

)2
}

max
j∈I

{
Eσθ
[(
pNEj − pejt

)2
]}

+ 2K0Eσθ
[
||θi∗ − θi∗t||2

]
+ 2 Var(νi∗t).

Note that Γ = 2 maxθ∈Θ

[(∑
j γj

−2β

)2
]
< 1 as used in the admissible pricing condition (4.1) by

both Proposition 4.1 and the stronger assumption that |
∑

j 6=i γij| ≤ −βi for all i ∈ 1 . . . N

and all θ ∈ Θ. Therefore, when firms use an admissible forecast scheme the regret due to

learning is

Eσθ
[
(pNEi∗ − pi∗t)2

]
≤ Γ max

j∈I

{
Eσθ
[(
pNEj − pejt

)2
]}

+ 2K0Eσθ
[
||θi∗ − θi∗t||2

]
+ 2 Var(νi∗t).

Applying Proposition 4.6, and the assumptions on the variance of the added noise,

Eσθ
[
(pNEi∗ − pi∗t)2

]
≤ Γ max

j∈I

{
Eσθ
[(
pNEj − pejt

)2
]}

+K(1− δ) log t√
t
,
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where δ is a parameter that satisfies the admissible pricing properties in (4.1) and K > 0 is

determined by δ, the bounds Ci∗ , K0, and the upper bound on the estimation error. Next,

representing the price forecasts in the above equation as a weighted sum of past prices,

Eσθ
[
(pNEi∗ − pi∗t)2

]
≤ Γ max

j∈I

Eσθ

(pNEj −
t−1∑
τ=1

λtτpjτ

)2
+K(1− δ) log t√

t
.

Applying Jensen’s inequality to the sum,

Eσθ
[
(pNEi∗ − pi∗t)2

]
≤ Γ max

j∈I

{
Eσθ

[
t−1∑
τ=1

λtτ
(
pNEj − pjτ

)2

]}
+K(1− δ) log t√

t

≤ Γ
t−1∑
τ=1

λtτ max
j∈I

{
Eσθ
[(
pNEj − pjτ

)2
]}

+K(1− δ) log t√
t
,

which forms the autoregressive sequence:

yt ≤ Γ
t−1∑
τ=1

λtτyτ +K(1− δ) log t√
t
, (4.2)

where yt = maxi∈I Eσθ
[
(pNEi − pit)2

]
. The proof proceeds to establish an order bound on∑∞

t=1 yt by bounding yt for t ≥ T̄ + 1, where the admissible pricing condition (4.1) holds for

all t ≥ T̄ .

With the admissible policy assumptions, we can show that for all t ≥ T̄ + 1,

yt ≤ K
log t√
t
, (4.3)

where y1 < K <∞.

This can be assumed for all 2 ≤ t ≤ T̄ + 1 for some choice of K (by increasing K in (4.2)

if necessary); so, we follow by induction with the hypothesis for all s ≤ t− 1 with t > T̄ + 1

and wish to show it holds for t. From (4.2) and the assumption of (4.3) for s ≤ t− 1,

yt ≤ Γ

(
λt1y1 +

t−1∑
s=2

λts(K
log s√
s

)

)
+K(1− δ) log t√

t
(4.4)

≤ Γ

(
(1− δ) log t√

t
K +

δ2

Γ

log t√
t
K

)
+K(1− δ) log t√

t
(4.5)

≤ δK
log t√
t

+K(1− δ) log t√
t

= K
log t√
t
, (4.6)
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which yields (4.3) for s = t to complete the induction.

Summing across time, we attain our desired result through the integral bound:

max
i∈I

Eσθ
[
(pNEi − pit)2

]
= O(

log t√
t

) ∀θ ∈ Θ

⇓

max
θ∈Θ,i∈I

T∑
t=1

Eσθ
[
(pNEi − pit)2

]
= O(

√
T log T ).

4.4 Managerial Implications

These results imply that an equilibrium among firms using a policy of best-response against

forecast plus noise can achieve complete learning and attain the full-information Nash equilib-

rium revenues if the noise terms satisfy the conditions above. In numerical results, however,

if firms do not add sufficient noise then incomplete learning may occur and different effects

can occur, including the possibility that all firms earn greater revenues than under the full-

information Nash equilibrium. An example appears in Figures 1 and 2. The red and blue

curves in the figures correspond to the regions that are favorable to each player relative to the

Nash equilibrium which occurs at the lower intersection of the two curves. The upper section

corresponds to higher revenues for player 1 and the right section corresponds to higher rev-

enues for product 2. The crosses correspond to the repeated actions of best responses with

different initial observations or priors and varying amounts of noise. The yellow trajectory

provides each player with a random and unbiased prior, the green trajectory has priors that

give low-biased initial prices, and the purple trajectory has a prior that gives high-biased

initial prices. Figure 1 shows a trajectory of 400 price pairs while Figure 2 shows only the

last 50 price pairs to show where the trajectories are converging. As shown in Figure 2,

the yellow prices are concentrated around the full-information Nash equilibrium while the

green prices are favorable for Product 1 and unfavorable for Product 2 relative to the Nash

equilibrium revenues. The purple prices are concentrated in an area that corresponds to

higher revenues for both Products 1 and 2 relative to the Nash equilibrium revenues. In this
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Figure 1: Incomplete learning price trajectories.

Figure 2: Incomplete learning price trajectories.

case, incomplete learning leads to better outcomes for both products than if both players

had full information.

This type of behavior was also observed in the situation of unknown competition explored

in Cooper et al. [2015]. The phenomenon suggests that it may be beneficial for firms not

to experiment on prices if the information from such revelation can lead to competitors’

learning (perhaps free-riding) and reduced revenues. To make the analysis of such a situation

tractable, the next section introduces a model with simplified action and belief states but

fully general policy structure in the form of a repeated prisoner’s dilemma game which

demonstrates that strategic lack of learning can occur in this setting, even with a finite time
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horizon.

5 Model 2: Incomplete learning as an equilibrium strat-

egy

This section addresses the issue of incomplete learning under competition by directly investi-

gating equilibrium pricing policies in dynamic games of incomplete information. The model

shows that incomplete learning of demand information is not merely a byproduct of the

dynamic pricing strategies investigated in the first model, but is rather a rational outcome

for firms competing in a Markov perfect equilibrium (MPE). In particular, we develop sev-

eral simple demand environments, where the equilibrium strategies for the competing firms

actively avoid learning the true value of demand and attain a collusive outcome even in finite

time horizons. Hence, firms prefer to remain willfully ignorant of the marketplace for their

products.

By simplifying the information assumptions of our first model, we present a dynamic

game where the equilibria can be characterized using simple Markov strategies. Consider

two firms that choose between two potential prices, the single period Nash equilibrium price

and the cooperative equilibrium price. Initially, they do not know which price represents

cooperation and which represents competition. In this respect, the competitive single period

Nash equilibrium price and the cooperative equilibrium price form a prisoner’s dilemma.

Assuming a common Bayesian prior over the two possibilities, each firm decides whether or

not to stick with the historically charged price or to experiment. Our results show that there

exist conditions, parameterized by the value of the game’s payoffs and prior beliefs, such

that the firms will deliberately avoid experimenting with the prices in an effort to remain

uncertain and to keep their opponent uncertain.

The significance of the results here are that firms can rationally choose not to experi-

ment and learn the environment because their competitor also benefits from the information

and can use that knowledge to the detriment of the experimenting agent. This threat of
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information leakage can dominate for any finite time horizon, leading to maintenance of a

cooperative equilibrium and continued uncertainty over the environment. This contrasts with

the traditional literature in which opportunities for collusion are reduced in conditions with

uncertainty (since deviations from cooperation are less likely to be detected and punished).

5.1 Model

Consider a stochastic game where two firms compete in a common market, with each selling

a distinct product over a fixed T period selling season. The sequence of actions and outcomes

in each period follow the same steps as in our first model. Firms begin each period with a

belief about an uncertain demand environment and privately choose a price for their product

from a fixed set of feasible prices. The firms then announce their chosen prices publicly and

simultaneously, and in turn are given private realizations of demand from their customers.

The distinguishing feature of this model, compared to our previous OLS approach, is that

the set of possible prices for each firm is limited to a finite set of actions, instead of a closed

interval, and the parameters for the underlying demand are restricted to a set of discrete

demand “scenarios”, rather than a compact set Θ.

Before this selling season begins, a state of the world is drawn from one of two possible

market scenarios. For each state of the world, the profits to each firm are conditionally

deterministic; that is, if a firm knew the true underlying market scenario, then that firm

would know exactly what revenues would result from each possible pair of prices. In the first

period, firms are unaware of the true market scenario and share a common prior π, which

equals the probability that the underlying state is scenario 1. Specifically, each scenario

corresponds to a different Prisoner’s dilemma,

Scenario 1:

a1 a2

a1 X,X T1, S1

a2 S1, T1 R1, R1

Scenario 2:

a1 a2

a1 X,X S2, T2

a2 T2, S2 P2, P2

where S1 < X < R1 < T1 and S2 < P2 < X < T2.
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At the start of each period, firms simultaneously choose between two prices: price a1 and

price a2. When both firms elect to charge price a1, the outcome is known to be a fixed value,

X. This joint action reveals no new information and the game continues to the next period.

However, if either of the firms choose to charge price a2, then the true demand scenario is

revealed to both firms after the revenues for that period are collected. For this reason, we

refer to the pure-strategy of charging a1 as staying put and the pure-strategy of charging

a2 as experimenting. The firms, therefore, have joint control of the information state of the

game.

To solve for the Markov perfect equilibria of this game of uncertain information, we begin

by considering the single period game, T = 1. Let p be the probability that firm 1, (the

ROW player in the Prisoner’s dilemma), chooses price a1 and let q be the probability that

firm -1, (the COL player) chooses price a2. Then for a given q the best response for firm 1 is

BR(q) = arg maxp∈[0,1]


pq

p(1− q)

(1− p)q

(1− p)(1− q)



> π


X

T1

S1

R1

+ (1− π)


X

S2

T2

P2



 ,

with the left vector representing the probability of each joint action and the vector sum on

the right representing the expected value of each action for firm 1. Through the following

transformations, the best-response function is fully represented by a 2-dimensional state of

game coordinates xπ ∈ < and yπ ∈ <.

28



BR(q) = arg maxp∈[0,1] p


q

(1− q)

−q

−(1− q)



> π


X

T1

S1

R1

+ (1− π)


X

S2

T2

P2



+ α(π, q)

= arg maxp∈[0,1] p

 q

(1− q)

> π
 X − S1

T1 −R1

+ (1− π)

 X − T2

S2 − P2

+ α(π, q)

= arg maxp∈[0,1] p

 q

(1− q)

> xπ

yπ

+ α(π, q),

where

xπ := π(X − S1)− (1− π)(T2 −X)

yπ := π(T1 −R1)− (1− π)(P2 − S2)

α(π, q) := q (πS1 + (1− π)T2) + (1− q) (πR1 + (1− π)P2) ,

with xπ representing the expected gain to firm 1 (given π) of price a1 when the opponent

chooses to stay put (q = 1) and yπ representing the expected gain of staying put when the

opponent experiments (q = 0).

Written in a simplified form,

BR(q) = arg max
p
α(π, q) + β(π, q)p =

0, β(q) ≤ 0,

1, β(q) > 0,

where β(π, q) represents the expected payoff of charging a1 and possibly remaining ignorant

of demand, given the strategy of the opponent is q. Specifically, β(π, q) = qxπ + (1− q)yπ is

the q weighted convex combination of xπ and yπ. Firm 1’s decision is then straightforward.

If the expected payoff of charging a1 is positive, then firm 1 charges a1. If it is negative,

then firm 1 experiments and chooses a2. If it is zero, then firm 1 is indifferent between

experimenting and staying put and could chose either action or adopt a mixed strategy.
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BothReveal Game

Reveal Game Remain Ignorant

(a1, a1)

xπ

yπ

(a1, a2)

(a2, a1)

(a2, a2)

(a2, a2)

(a1, a1)

Figure 3: Pure-Strategy Nash EQ in Single-Period Game

The two-dimensional graph in Figure 3 illustrates the regions of the (xπ, yπ) graph and the

pure-strategy equilibrium actions in each quadrant.

Each quadrant of the (xπ, yπ) represents a region where for a given belief π, the prescribed

pure strategy actions are single-period Nash equilibria. For instance, if for a given π the

values of xπ and yπ were both positive, then the joint action (pNE, qNE) = (a1, a1) is a pure-

strategy Nash equilibrium. Note that in quadrant II and quadrant IV of Figure 3, mixed

strategy equilibria exist where both firms 1 and 2 are indifferent between learning the game

and remaining uncertain.

Next, we extend the single-period stage game to a T -period dynamic game. We use

a general setting of Markov perfect equilibrium as our solution concept. A Markov perfect

equilibrium is a subgame perfect equilibrium where the firms are restricted to Markov strate-

gies σ(s) : S → P([0, 1])T where S = {0, π, 1} denotes the set of three possible belief states

for the firms. When s = 1, both firms are aware that scenario 1 represents the underlying

payoff structure of the game and likewise, when s = 0, the game is known to be scenario

2. Let σ1(s) = (p1(s), . . . , pT (s)) ∈ [0, 1]T and σ−1 = (q1(s), . . . , qT (s)) ∈ [0, 1]T denote the

Markov strategies of firm 1 and −1, respectively, and the set Σ denote the set of all Markov

strategies. The term pt denotes the probability that firm 1 stays put in period t; qt is anal-

ogously defined for firm −1. Given these strategies, the expected payoff to firm i for the
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subgame beginning in period t is denoted ui(σ, σ−i, t). A pair of strategies form a Markov

perfect equilibrium when

ui(σi, σ−i, t) ≥ max
σ̄i∈Σ

ui(σ̄i, σ−i, t), i ∈ {1,−1},∀t ∈ {1, . . . , T}.

The space of Markov strategies Σ can be reduced significantly, as there are unique equi-

libria for the states s = 1 and s = 0. If either of these states are reached in period t, by either

firm charging a2 in period t − 1, then the only subgame perfect equilibrium strategy is for

both firms to charge a1 if s = 1 or a2 if s = 0 for all periods t through T . This is due to the

standard backwards induction argument for a finite horizon, Prisoner’s dilemma game. Both

firms know that their opponent has a dominant strategy, which is to choose these prices in

the final period, and each has no incentive to cooperate in the period prior. However, if the

game is uncertain in period t, we now show that the deterrent to price exploration enforces

a more collusive outcome, due to the uncertainty between two Prisoner’s dilemma games.

The expected payoffs of each firm for the T -period games are determined using backwards

induction. Let V σ
π [t] denote the expected payoff of firm i from periods t through T given

that the game has not yet been revealed (i.e., s = π) by period t. Let v0 = πX + (1− π)P2

denote the single-period payoff that firm i expects, given his beliefs, the revealed game to

yield in the next period. Then the expected payoff for firm i given strategies σ are

V σ
π [t] = SGπ(0) + E[ui(σ, t+ 1)]

= SGπ(0) + ptqtV
σ
π [t+ 1] + (1− ptqt)v0(T − t)

= SGπ(0) + ptqt (V σ
π [t+ 1]− v0(T − t)) + v0(T − t),

where the value SGπ(0) is equal to the expected payoff to firm i of the single-period stage

game that was analyzed previously. Using the (xπ, yπ) graphical analysis to characterize

equilibria strategies, let SG(∆) represent the expected payoff to firm i of an equilibrium

strategy to an augmented single-period game with (x′, y′) = (xπ + ∆, yπ) as the game coor-

dinates. That is, plot the point (x′, y′) on the graph in Figure 3 and select a pure-strategy

Nash equilibrium (pNE, qNE) from the appropriate quadrant. The value SG(∆) is then the
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expected value of this augmented game for firm i:

SGπ(∆) :=
{
u(pNE, qNE, T ) : (x′, y′) = (xπ + ∆, yπ)

}
= α(π, qNE) +

(
qNEx′ + (1− qNE)y′

)
pNE

= α(π, qNE) +
(
qNE(xπ + ∆) + (1− qNE)yπ

)
pNE.

Since there exist multiple equilibria for certain quadrants in the (xπ, yπ) graph, the value

of SGπ(∆) is not well-defined without an explicit equilibria selection criterion. However,

this formulation allows us to identify the Markov perfect equilibria to the dynamic game as

follows. Consider the expected payoff equation for firm i introduced earlier:

V σ
π [t] = SGπ(0) + ptqt (V σ

π [t+ 1]− v0(T − t)) + v0(T − t)

= SGπ(0) + ptqt∆t+1 + v0(T − t)

= SGπ(∆t+1) + v0(T − t).

The term ∆t+1 := V σ
π [t+ 1]− v0(T − t) represents the expected future gains when both

firms stay put in period t less the gains from playing a complete information game for the

next T − t periods. Hence, the multi-period game is solved by reducing the decision in each

period t for each firm to a single-period game. The future value of either knowing the scenario

information or remaining uncertain is incorporated appropriately into this augmented game.

Using this technique, we identify the following payoff and belief conditions where the strategy

of (pt, qt) = (1, 1) forms a Markov perfect equilibrium, and both firms choose to stay put for

the entire T−period game. Inefficient learning is then an equilibrium outcome for competing

firms under these conditions.

Consider the case where xπ > 0; that is, the expected payoff of charging a1 is positive

when firm i knows that their opponent will also charge a1 in a single-period game. In this

case, firms would choose to remain ignorant of the underlying game in the terminal period T ,

provided that firms reached that period without changing their prices. Iterating backwards,

we show that the added value of remaining ignorant persists in each period and as a result

∆t > ∆t+1 for all t and firms choose (a1, a1) in all periods. This process is illustrated in
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BothReveal Game

Reveal Game Remain Ignorant

(a1, a1)

T T − 1 T − 2

xπ

yπ
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Figure 4: Inefficient Learning MPE in the Dynamic Game

Figure 4. Essentially, the analysis shows that if firms are willing to remain ignorant in the

terminal period, they will also be willing to remain ignorant over an arbitrarily long, finite

horizon.

Proposition 5.1 (Equilibrium with Incomplete Learning). If the set of payoff parameters

and beliefs are such that xπ > 0, then the strategy (pt, qt) = (1, 1) for all t ∈ {1, . . . , T} is a

Markov perfect equilibrium.

Proof. First recall from the analysis in Figure 3 that when xπ > 0 the subgame beginning

in period T has a Nash equilibrium (pT , qT ) = (1, 1). Hence, if the firms were to choose

the action (a1, a1) for all periods t < T and remain ignorant of the underlying game payoffs,

they would continue to choose (a1, a1) in the terminal period. Continuing with this graphical

approach, we next show that ∆t ≥ 0 for t < T and thus x′ ≥ xπ for these periods as well.

The backwards induction argument proceeds as follows. First, consider the terminal case

where ∆T = α(π, 1) + xπ − v0. Substituting the definitions of α and xπ,

∆T = α(π, 1) + xπ − v0

= (1− π)(X − P2) > 0.

Next, assume for a given t < T that (pτ , qτ ) = (1, 1) and ∆τ ≥ 0 for τ > t. Since ∆t+1 ≥ 0

the game coordinates (xπ + ∆t+1, yπ) lie in quadrant I or quadrant IV of the single-period
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equilibrium graph. Therefore, the action (pt, qt) = (1, 1) is an equilibrium action for period

t. It remains to show that ∆t ≥ 0 as follows.

∆t = V σ
π [t]− v0(T − t+ 1)

= (α(π, 1) + xπ)(T − t+ 1)− v0(T − t+ 1)

= ∆T (T − t+ 1) > 0.

5.2 Competition with Demand and Opponent Uncertainty

In the model of the previous section, firms receive the same private information in each

round and are effectively aware of their competitor’s information state. In this section, we

introduce uncertainty into the payoff signals and, hence, distinct private information states.

We show that, although firms can become aware of the game environment, they may still

have an incentive to sustain the cooperative equilibrium.

Consider two games with the following payoff structure:

Scenario 1:

a1 a2

a1 X t
1, X

t
−1 T1, S1

a2 S1, T1 R1, R1

Scenario 2:

a1 a2

a1 X t
1, X

t
−1 S2, T2

a2 T2, S2 P2, P2

where

S2 < P2

S1

<

<

 suppX t
1 ∪X t

−1

suppX t
1 ∪X t

−1

 <

<

T2

R1 < T1,

for all periods t ≤ T . The key distinction between these scenarios and the game considered in

the previous section is that the rewards for playing action (a1, a1) are independent Bernoulli

random variables. If the scenario is equal to 1 then,

X t
i ∼

X0, w.p. γ

X0 ± δ1, w.p. 1
2
(1− γt)

i = ±1, t = 1, . . . , T.
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If the scenario is equal to 2 then,

X t
i ∼

X0, w.p. γ

X0 ± δ2, w.p. 1
2
(1− γt)

i = ±1, t = 1, . . . , T,

for δ1 6= δ2. There is a (1−γt) probability in each period that firm i will learn the underlying

game scenario, even if both firms choose the typically uninformative action of pricing (a1, a1).

Furthermore, firm i may learn the game, with a realization of X0 ± δ1 or X0 ± δ2, while its

opponent realizes X0 and remains ignorant. These scenarios generate a partially observable

stochastic game, where firms face uncertainty over the game outcomes and uncertainty about

their opponent’s information state. Each firm i maintains a private state sit ∈ {1, . . . , 5} for

t ∈ {1, . . . , T}. These states are defined as follows:

sit =



1 Game Revealed - Scenario 1

2 Game Revealed - Scenario 2

3 Game Not Revealed - all X0

4 Game Not Revealed - occurrence of X0 ± δ1

5 Game Not Revealed - occurrence of X0 ± δ2.

States 1 and 2 indicate that at some time τ < t, one of the firms charged a2 and thus both

firms are aware of the underlying game scenario and are aware that their opponent also has

this knowledge. The remaining states all correspond to the setting where both firms charged

price a1 for the past t − 1 periods. Therefore, neither firm knows whether their opponent

has seen a revealing outcome, (X0 ± δ1) or (X0 ± δ2), in any of the past periods. State 3

corresponds to the situation where firm i is unaware of the game scenario, and states 4 and

5 correspond to firm i’s knowledge of scenario 1 or scenario 2 respectively.

Denote the strategy of firm i as σit(si). To solve for a Markov perfect equilibrium, we

assume that firm i knows its current state in each period and best-responds to a known

strategy matrix σ−it(s) for s ∈ {1, . . . , 5} of its opponent. The main result of this section

is that for a range of values for the common prior π0 = Pr(Scenario 1|si1 = 3), the horizon
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length T , and the probability of uninformative outcomes γt, there exists Markov perfect

equilibria where firms choose (a1, a1) in all periods. In other words, the theorem states that

cooperation persists when the game has not been revealed, even when one firm or both

firms has discovered the environment. Each firm’s uncertainty over the private state of their

opponent is enough to enforce cooperation throughout the game.

First, we update some of the notation used in the previous model to include the addition of

opponent uncertainty. Let s1t denote the vector pt ∈ [0, 1]5 with each component representing

the probability that firm 1 will choose price a1 in period t and state s. Likewise, represent

s−1t as the vector qt ∈ [0, 1]5. There are two belief sequences for firm 1. The belief matrix,

µtss̄ = Pr(s−1t = s̄|s1t = s), maintains firm 1’s belief in period t of its opponents state.

Additionally, let πt = Pr(Scenario 1|sit = 3) denote firm 1’s belief that the underlying

environment is scenario 1, provided this information is still unknown. Applying the same

game coordinate system that was used in the previous model, define

xπt := πt(X0 − S1)− (1− πt)(T2 −X0)

yπt := πt(T1 −R1)− (1− πt)(P2 − S2).

Incorporating these new factors into the analysis used in the previous section yields the

following theorem.

Theorem 5.2. There exists a Markov perfect equilibrium strategy with pt = qt = (1, 0, 1, 1, 1)>

for t ∈ {1, . . . , T − 1}, and pT = qT = (1, 0, 1, 1, 0)> provided that

i. xπ0 > 0;

ii.
∏T−1

t=1 γt >
(
T2−X0

T2−P2

)
.

Proof. Note that the only equilibrium action in state 1 is for both firms to choose (a1, a1)

and similarly firms choose (a2, a2) in state 2. Each of these states generate finite horizon,

complete-information games with dominant Nash equilibrium strategies. As a result, p1t =

q1t = 1 and p2t = q2t = 0 are the only potential equilibrium actions for these revealed states.

The action (a1, a1) is also a dominant strategy for state 4. To see this, assume that firm

1 is in state 4 at period t and therefore knows that the underlying game is scenario 1, but
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is unaware of its opponent’s state. Given knowledge of the underlying game, firm 1 has no

myopic incentive to charge a2 since S1 < R1 < x0. Firm 2 also has no information-state

incentive to charge a2 as the value of the realized game (state 1) is the same as the value of

obscured game (state 4) provided q1t = q3t = q4t = 1. Firm 1’s best response is therefore to

charge a1 for the remaining horizon.

Assuming that firm −1 adopts qt as its strategy, the best-response strategy for firm 1

while in states 3 and 5 is determined using the analysis of the previous section. In the

terminal period T , the best-response for firm 1 in state 3 is

BR3(qT ) = arg max
p
α(πT , µ3·qT ) + β(πT , µ3·qT )p

= arg max
p

[
(µT33 + µT34)xπT

]
p.

By assumption xπ0 > 0 and q3t = q4t = q5t = 1 for t < T . Applying Bayes rule to the prior

belief on scenarios, πt = Pr(Scenario = 1|s1t = 3) yields

πt+1 = πt
µT4·qt
µT3·qt

= πt,

and thus πT = π0. As a result, (µT33 + µT34)xπ0 > 0 and the best-response for firm 1 in state

3 and period T is to charge the uninformative price a1. If firm 1 were instead in state 5 in

the terminal period T , the best-response to qT is

BR5(qT ) = arg max
p
α(0, µ5·qT ) + β(0, µ5·qT )p

= arg max
p

[
(µT53 + µT54)x0

]
p.

By definition, x0 := −(T2 − X0) < 0, and therefore firm 1 would choose price a2 in the

terminal period. To simplify the notation for the backwards induction, let

v0 := π0V1,T + (1− π0)V2,T

∆3,t+1 := V3,t+1 − v0

∆5,t+1 := V5,t+1 − V2,t+1.

The terms Vs,t represent the expected payoffs to firm 1 of the subgame starting in period

t with information state s, provided that firm -1 chooses strategy qt. Note that ∆3,T =

37



(1 − π0)(X0 − P2) > 0 is the single-period expected gain from being ignorant of both the

underlying game and the opponent’s information-state, and ∆5,T = µT53(T2 − P2) is the

single-period expected gain from being ignorant of the opponent’s information-state.

Iterating backwards, assume that both ∆3,t+1 and ∆5,t+1 are positive and consider the

value function for state 3,

V3,t = max
p
α(π0, 1) + β(π0, 1)p

+ p (γtV3,t+1 + (1− γt) [π0V4,t+1 + (1− π0)V5,t+1])

+ (1− p) (π0V1,t+1 + (1− π0)V2,t+1) .

In words, the value of state 3 in period t is equal to the sum of myopic stage-game value

α(π0, 1)+β(π0, 1)p, the expected value of the subgame in period t+1 if firm 1 were to charge

a1, and the expected value of the subgame if firm 1 were to charge a2. Simplifying the above

equation,

V3,t = max
p

(xπ0 + γt∆3,t+1 + (1− γt)(1− π0)∆5,t+1) p+ α(π0, 1) + v0(T − t).

From condition (1) of the theorem, xπ0 > 0 and by the inductive hypothesis ∆3,t+1 > 0 and

∆5,t+1 > 0. Therefore, the strategy p3,t = 1 is the best response to qt. Next, consider the

value function for state 5.

V5,t = max
p
α(0, 1) + β(0, 1)p+ pV5,t+1 + (1− p)V2,t+1

= max
p

(β(0, 1) + ∆5,t+1) p+ α(0, 1) + V2t+1

= max
p

(x0 + ∆5,t+1) p+ α(0, 1) + V2t+1.

By the analysis above, p5,t = 1 is the best response strategy to qt provided that ∆5,t+1 > −x0.

Note that this condition holds in the terminal period by condition (2) of the theorem.

∆5,T = µT53(T2 − P2)

= (T2 − P2)
T−1∏
t=1

γt

> T2 − x0

> −x0.
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It remains to show that ∆3,t > 0 and that ∆5,t > −x0. Assume that this condition holds for

τ ≥ t. Then,

∆5,t = V5,t − V2,t

= ∆5,t+1 + x0 + α(0, 1)− P2

= ∆5,t+1 + (X0 − T2) + T2 − P2

= ∆5,t+1 + (X0 − P2)

> ∆5,t+1

> −x0,

and

∆3,t = V3,t − (π0V1,t + (1− π0)V2,t)

= γt∆3,t+1 + (1− γt)(1− π0)∆5,t+1 + xπ0 + α(π0, 1)− v0

> xπ0 + α(π0, 1)− v0

= X0 − v0

= X0 − (π0X0 + (1− π0)P2) > 0.

Overall, this demonstrates that for a finite range, an equilibrium strategy has a positive

probability of not learning and leading to a collusive outcome for any finite time horizon.

6 Conclusion

This paper presents dynamic models of price competition with unknown demand. In the

first part, we presented a model in which the players assume linear demand functions and

can observe others’ actions but not their payoffs. We showed that, in the class of strategies

characterized by best responses plus noise, an equilibrium exists in which each player adjusts

their noise to be sufficient for learning and decreasing to ensure convergence. We also gave an
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example to show that it is possible, however, for other strategies to dominate this outcome for

all players. The lack of information, however, makes it difficult for the players to coordinate

on this outcome.

The second model considers relaxation of the policies to obtain an equilibrium in which

learning does not occur and players jointly attain a cooperative outcome. To make this

analyzable, the second model restricts the uncertainty to finite unknown states of the world

and actions in a dynamic Prisoner’s dilemma situation. When players’ actions can reveal the

state to their competitor and the payoffs overlap in a way that does not reveal the state with

other actions, an equilibrium can result in which the players maintain non-revealing actions

and achieve the cooperative outcome for any time horizon. This result can even occur after

one agent becomes informed.

These results imply that firms in competition can achieve learning as efficiently as a

monopolist firm, but this requires either restriction in strategies or information structure.

With sufficiently diffuse information but rapid learning by all participants from variations in

actions, equilibria can exist in which learning does not occur. This result suggests that limi-

tations on actions (such as laws, for example, those for insurance products, that restrict price

adjustments or impose price caps) and privacy restrictions can lead to inefficient outcomes

(or to losses in consumer welfare).

This work suggests several potential follow-on studies. Further theoretical studies could

consider general conditions for the non-learning phenomenon (or for its non-existence) in a

broader game context. Mechanisms to reduce the possibilities of inefficient outcomes, such as

the presence of a monitor or intermediary, could also be considered. For empirical extensions,

as mentioned, pharmaceutical examples could be studied for the observed phenomenon. In

addition, the effects of price restrictions as in insurance markets might also provide useful

empirical research.
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