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We study how delivery data can be applied to improve on-time performance in last mile delivery service.

Motivated by a food delivery service provider, we discuss a data-driven framework to model the delivery

performance and optimize the decision on how to assign orders to drivers. From the analytics for the service

provider, we decompose driver’s total delivery time into two components: uncertain service time at customer

locations and predictable travel time on road. Leveraging classical results in routing literature and machine

learning approaches, we propose a prediction model for the delivery tour length, which captures driver’s

routing behavior in practice as well as provides satisfactory prediction for the travelling salesman problem

in theory. We then demonstrate an application of the proposed delivery tour prediction model in the order

assignment problem. An optimization model is first developed to minimize the expected total delay of all

routes, which can be solved via sample average approximation scheme using the historical data. Furthermore,

to deal with the inadequacy of samples at some locations, we develop a distributionally robust optimization

model using limited distributional information on service time. Utilizing the independence in service times

verified from data analytics, we overcome the difficulty in obtaining the robust solution under piecewise

linear objective, and derive a mixed-integer second order conic program formulation that is computationally

tractable and scalable. A branch-and-price algorithm is then proposed to solve both models efficiently. In

the numerical study, we show the benefits of data-driven order assignment models integrated with delivery

tour prediction, compared to the models based on classical vehicle routing problems. Our results indicate the

importance of learning from the operational data to reflect the practical aspect—driver’s routing behavior.

We also discuss several practical and managerial issues, such as the impact of sample size and staffing levels,

from the numerical experiments.
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1. Introduction

As ecommerce booms and customers expect faster delivery, food shopping has recently been shaped

to a case in point. Fast-growing online platforms enable convenient food ordering and delivery ser-
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vices for customers. In food delivery service provided by platforms such as Grubhub and UberEATS,

food is prepared and packaged by restaurants and the platform is only responsible for food pickup

and delivery. By contrast, food service providers such as SpoonRocket and Domino’s Pizza prepare

and deliver their own food boxes. A key challenge faced by both types of service providers is how

to assign prepared orders to available carriers or drivers for fast and efficient delivery.

In this paper, we consider the order assignment problem motivated by a food service provider

that prepares and delivers food to its customers in Shanghai, China. The provider operates a central

kitchen, which is referred to as “the depot” thereafter, and serves customers within a certain radius

from the depot. Customers place orders before each cutoff time, e.g., 10:30 am, are promised to

receive the orders within a time window, e.g., by 11:45 am. However, the provider found that delays

seemed to be inevitable if the orders were not well allocated to drivers, as a delay at one location

will propagate to subsequent visits by the same driver.

The order assignment problem faced by food service providers is complicated, due to the following

practical challenges. First, the complex road condition and practical constraints make it difficult

for drivers to follow suggested routes or delivery sequences. For example, the considered provider

allows drivers to have freedom in deciding their own routes to deliver the assigned orders. It is

thus common to see drivers – riding electric bikes in Chinese cities – flexibly adjust their routes

based on their experience and realtime road conditions. Consequently, the actual delivery routes

usually deviate from the recommended routes and an accurate estimation of actual delivery tour

for serving a set of customer locations is difficult. Second, the time a driver spends at a customer

location, which we term as the “service time”, is highly uncertain. As the customer locations are

often high rise buildings in metropolitans, drivers usually need to find parking spaces, navigate to

the right floor and meet customers in person. The service time varies and depends on the customer

location and the order size, which are also random from day to day. Generally, it takes longer service

time to navigate in a taller building and to deliver larger orders at one location. Compared to the

service time, the travel time on road has much less uncertainty, as indicated by the service provider

for reasons, including that the drivers riding electric bikes can take bicycle lanes to avoid traffic

congestion. Therefore, the travel time is more predictable once the delivery tour is determined.

To tackle the challenges described above, in this paper, we propose a data-driven framework to

model the delivery performance and optimize order assignment decisions. We use data analytics to

develop a delivery tour length prediction function from delivery operational data, to incorporate

driver’s routing behavior in the subsequent order assignment optimization models. The resulting

data analytics also highlight the importance of dealing with service time uncertainty, in meeting

the on-time target. Using historical delivery data in the scheme of sample average approximation
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(SAA), we propose a data-driven order assignment (DOA) model as a mixed-integer linear pro-

gram (MILP) that assigns orders to available drivers to minimize the expected total delay of all

routes. To deal with the inadequacy of observations at several locations, we further develop a DOA

model as a mixed-integer second order conic program (MISOCP), using the distributionally robust

optimization (DRO) framework, where limited distributional information can be obtained from the

data. We then propose a branch-and-price algorithm for both DOA models, aiming to improve the

computational performance for real applications.

In the case study using the delivery data set, we employ a data-driven approach to evaluate

the out-of-sample performance of the proposed DOA models with delivery tour length prediction

function, in benchmark with the models based on classical vehicle routing problem (VRP). We

also discuss several practical and managerial issues, such as the impact of sample size for SAA

formulations and the provider’s staffing considerations. We summarize our contributions as follows.

1. Data-driven modeling: We decompose the uncertainty of total delivery time into the uncer-

tainty service time at the customer locations and a more predictable travel time on road. That

is, from a graph perspective, we aggregate all uncertainties to the nodes and leaving the edges

predictable. Such treatment allows us to model the travel time and integrate uncertainties in the

optimization models. Our delivery tour length prediction function learned from real data reveals

higher prediction accuracy compared to the solution from classical traveling salesman problem

in the practical application. Besides, it predicts the tour length without explicit optimization on

the delivery sequence and renders computational tractability in the subsequent order assignment

optimization.

2. Data-driven optimization: We employ the SAA and DRO frameworks to utilize real data for

both abundant-data and limited-information contexts. Utilizing the independence in service time,

which is verified from data analytics, we overcome the difficulty in solving the robust problem under

piecewise linear objective and derive an equivalent MISOCP formulation, which is computationally

tractable and scalable. Furthermore, by exploiting the problem structure, the branch-and-price

algorithm delivers superior performance in both solution time and solution quality, compared to

solving the standard MILP and MISOCP formulations directly using commercial solvers.

3. Managerial insights: From the out-of-sample evaluation in the case study, we find that the

DOA models significantly outperform the VRP-based models, which ignore driver’s routing behav-

ior. The results numerically quantify the benefit of data-driven modeling. We also observe that

the performance of the DOA model using SAA improves with larger sample size, at the cost of

longer computational time. However, the VRP-based model using SAA does not necessarily benefit

from larger sample size, due to its bias in delivery tour length estimation. Moreover, applying the

VRP-based model may lead to unnecessary overstaffing to target on-time performance. Finally, the
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performance gap between the DOA and VRP-based models is larger under more stringent delivery

requirements — with less drivers and tighter delivery time window.

The remainder of the paper is organized as follows. In Section 3 and 4, we analyze the food

delivery data from the industry partner that lead to practical modeling of uncertainties in delivery

route and the development of the tour prediction function. Based on the results of data analytics,

we discuss data-driven order assignment models in Section 5. Next, we develop solution algorithms

in Section 6 and conduct a case study based on the delivery data in Section 7. Finally, we conclude

our paper in Section 8.

2. Literature Review

The order assignment problem in last mile delivery has been studied extensively in the form of

vehicle routing problems (VRP) in the transportation and operations research literature (see, e.g.,

Solomon 1987, Laporte 2007). VRPs determine the visiting sequence of a number of vehicles to

minimize the travel cost. There are various extensions of VRPs developed in both deterministic

and stochastic contexts. Some classical instances include VRP with stochastic demand and VRP

with stochastic travel time, and with or without time window constraints (see Laporte et al. 1992,

Gendreau et al. 1996, Campbell and Thomas 2008, Erera et al. 2010 for details). More recently,

Jaillet et al. (2016) propose a new decision criterion to measure the risk associated with violations

of time window constraints when travel times and demands are uncertain. Meanwhile, in a dynamic

manner, Bertsimas and Van Ryzin (1991, 1993) analyze VRPs with stochastic wait times and derive

several policies under light and heavy traffic conditions using queuing theory. Compared to the

stochastic VRP with time window, our data-driven order assignment models optimize the order

assignment decisions using a delivery tour length prediction function learned from data, which does

not require explicitly determining the delivery sequence.

For many strategic planning decisions, such as service region partitioning, VRP tours (i.e.,

travel distances) are usually approximated by analytical functions. For example, the well-known

Beardwood-Halton-Hammersley (BHH) Theorem (Beardwood et al. 1959) allows the length of an

optimal traveling salesman problem (TSP) tour to be expressed in the probability density function

of demand points, following the law of large numbers. Utilizing the asymptotic result in BHH theo-

rem, Carlsson (2012) considers the problem of partitioning a service region to balance the workload

among vehicles, where demand locations are independent and identically distributed samples from

a given probability density function. Moreover, continuum approximation (CA) models are widely

used in the design of supply chain network to avoid the combinatorial nature of such decisions and

yield tractable analytical solutions. Its applications include terminal design problem (Ouyang and

Daganzo 2006), inventory routing problem (Shen and Qi 2007), dynamic facility location (Wang
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et al. 2016), supply chain distribution network design (Lim et al. 2016), and analysis of online retail

grocery (Belavina et al. 2016). Alternatively, approximation functions to TSP tours can also be

obtained through simulation. In a study of last-mile transportation system for passengers, Wang

and Odoni (2014) conduct extensive simulation experiments to obtain tractable approximations

for TSP tour and customer waiting time in queue.

A significant difference between our paper and the above literature is that we employ a data-

driven approach to estimate the actual delivery tour length, which reflects driver’s routing behavior.

Inspired by analytical approximations of TSP tour (e.g., Beardwood et al. (1959)), we construct

relevant features and predict the delivery tour length based on spatial information of orders using

machine learning, which enables us to capture the travel patterns of drivers from the delivery data.

Moreover, the delivery tour length prediction function also performs well in estimating the TSP

tour, and thus can be used as a closed-form approximation of TSP tour that preserves computa-

tional tractability in optimization.

In the context of last mile delivery, assigning orders to vehicles is also referred to as dispatching.

For example, Klapp et al. (2016) study the dynamic dispatch problem where orders arrive dynam-

ically through a day. Their research involves the decision on whether to dispatch a single vehicle

in each epoch, considering future arrivals. By contrast, in our context, orders are batched together

by their cutoff times and our research focus is on assignment within a batch of orders by taking

into account the delivery tour and service time. Our problem is also related to the order batching

problem in warehouse. For instance, Gademann and Velde (2005) study the order picking strategy

in a parallel-aisle warehouse to minimize the total travel time, where the extraction time — the

time spent at the pick location, is omitted in their optimization model, due to the assumption of

constant total extraction time. In our paper, however, we identify a major reason for delayed deliv-

eries is the uncertainty in service time — the time spent at the customer location. We explicitly

consider such uncertainty in our models to minimize the expected total delay.

As data become richer and more accessible in operational contexts, more researchers are calibrat-

ing their modeling assumptions and corresponding analytical functions with real data. Our paper

is thus closely related to the following papers that integrate predictive models with optimization.

Kong et al. (2010) provide a simple model for the benefit of potential region in organ allocation

that can be estimated from data and maintains tractable in optimization. Collaborating with a

large gas utility, Angalakudati et al. (2014) address the resource allocation problem to minimize

maintenance crew overtime in performing standard jobs as well as meeting emergency jobs. Fer-

reira et al. (2015) apply machine learning techniques such as regression trees to estimate lost sales,

predict demand for new products and incorporate the demand prediction model into the pricing

optimization problem. Hekimoğlu et al. (2016) perform data analysis to derive the functional form
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of the price evolution and build the pricing and selection model for wines based on the empirical

findings. Ahipaşaoğlu et al. (2015, 2016) develop optimization models based on cross-moment and

marginal distribution information to estimate and analyze traffic equilibrium of transportation sys-

tems. Bertsimas et al. (2016) combine machine learning and optimization techniques to guide the

design of chemotherapy regimens. For optimization problems with unknown cost parameters in the

objective functions, Elmachtoub and Grigas (2017) propose a new predictive framework to incor-

porate the structure of the optimization problem, which enables robust performance against model

misspecification. Efforts in integrating prediction with optimization can also been found in Ban and

Rudin (2018), where feature-based machine learning algorithms are developed for the newsvendor

problem. In addition, recent research in revenue management has generated nonparametric choice

modeling approaches that can be used to improve the prediction accuracy and assortment decision

(Farias et al. 2013, Bertsimas and Mǐsic 2015). Our paper follows a similar journey in data-driven

modeling, where the key features in the research problem are identified and formulated based on

data analytics. Nevertheless, our idea of decomposition of total delivery time allow us to model

the uncertainty in service time as well as develop a prediction function for the travel time, which

is novel and practical for delivery operations.

The closest to our paper is Zheng et al. (2016) where least squares linear and quadratic estima-

tors are proposed to approximate the distribution of project completion using related persistency

problem. Specifically, the linear estimator is an affine function of the random durations of individual

activities. The authors solve for the least squares normal approximation to obtain the best param-

eters that consist of two parts: the intercept and coefficients associated with individual activities.

Similar in spirit, we consider the total delivery time in two parts: the travel time and the uncertain

service time at customer locations, in analogy to the intercept and random activity durations in

Zheng et al. (2016). Because the travel time has less uncertainty compared to the service time in

our application, we further develop a prediction model for the travel time by utilizing the spatial

information of customer locations as features.

When analytics is applied to develop data-driven models, the resulting optimization formula-

tions often call for data-driven solution approaches, without assumptions of specific probability

distributions for underlying uncertainties. A popular choice of such approaches is the sample aver-

age approximation (SAA) scheme that captures the stochastic nature of the uncertainties, e.g.,

the service time in our problem, without parametric assumptions. Furthermore, distributionally

robust optimization (DRO) framework is also widely used, especially when the empirical data are

not sufficient to calibrate full distributional information. Our paper proposes both SAA and DRO

models for the order assignment problem, under the mentioned practical considerations. When
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customer locations are unknown at the time of partitioning the territory for multiple vehicle rout-

ing, Carlsson and Delage (2013) deploy the DRO framework to optimize the worst-case workload

under limited distributional information, such as the first- and second-order moments information,

of demand spatial distribution. With the recent development of DRO using Wasserstein distance

(e.g., Esfahani and Kuhn 2015, Gao and Kleywegt 2016), Carlsson et al. (2017) develop robust

partitioning for TSP under the worst-case spatial distribution of demand, which is specified by the

Wasserstein distance between the continuous distributional density function and observed discrete

sample points. In our study of order assignment problem, however, the customer locations are

realized as the orders have been received and are waiting to be delivered. Therefore, our focus is

the uncertainty in service time aiming to reduce expected delays, instead of the uncertainty in

spatial distribution of demand to balance the workload of vehicles. Our problem is also related to

the robust bin packing problem studied in Zhang et al. (2016), because the target delivery time

and uncertain service time in the order assignment problem are analogous to the fixed capacity

and uncertain item weight in the bin packing problem respectively. While Zhang et al. (2016) use

chance constraints with the probability of exceeding bin’s capacity, we consider the worst-case

expected total delay in the objective function of our DRO model. To address the difficulty in deal-

ing with resulting piecewise linear objective under DRO (Ardestani-Jaafari and Delage 2016), we

decompose the DRO model by the independence in service time and utilize the general projection

property in Popescu (2007) to derive a tractable optimization formulation.

3. Analytics for A Food Delivery Service

We acquire an operational data set that contains detailed ordering and delivery information for a

2-month period in 2015, from a food delivery service provider operating in Shanghai, China. The

data set records the following information: 1) order time: the time when the order is received by

the provider; 2) quantity: the number of items ordered; 3) time window: the guaranteed delivery

time; 3) pick-up time: the time when the order is collected by a driver; 4) delivery time: the

actual time when the order is delivered to the customer; 5) longitude and latitude: the customer

location; 6) cutoff time: it identifies the order batch and all orders with the same cutoff time will be

dispatched together. Cutoff time is 75 minutes before the guaranteed delivery time. The provider

has determined a sequence of cutoff times {t1, t2, . . .} and all orders placed in (tk, tk+1] will be

guaranteed to be delivered by tk+1 +75 minutes. For instance, orders placed between 10:15 am and

10:30 am are promised to be delivered by 11:45 am.

There are 2,846 customer locations identified in the data set. Figure 1 shows the spatial distri-

bution of customer locations and the historical demand density in the study period. We observe

that most customer locations are within a square area around the depot and many customer loca-

tions are geographically adjacent. The demand density is not uniform across the service region.
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Figure 1 Historical demand density and customer locations (the red dot represents the depot).

Among all customer locations, there are 1,184 points that only generate 1 order during the 2-

month period. Moreover, 21.55% of the total orders were not delivered on time. We summarize

the number of orders and delayed time in Table 1. In particular, the variability in the number of

orders is huge among customer locations, and the average delay per order is 9.26 minutes, which

is not satisfactory.

3.1. Order Assignment Practice

Potential causes for the delay in delivery involve slow food preparation at the depot and poor order

assignment policy leading to inefficient delivery routes. Due to the limited production capacity at
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Table 1 Statistics of demand and delay (in minutes) during the 2-month period

Min Median Max Mean

Number of orders per location 1 2 612 10.36
Delay per order 0 0 197 9.26

the depot and unexpected disruptions, food preparation may take longer time than planned, which

suppresses the time window for driver’s delivery. Resolving this issue often requires expanding

capacity and optimization of food preparation operations, e.g., job scheduling, which is out of scope

of this paper and we leave for future exploration. When delivery time window is predictable, e.g.,

after food preparation process, the delivery performance heavily depends on the order assignment

policy. In its current practice, the provider assigns orders manually. Figure 2 demonstrates a set of

orders that share the same cutoff time and similar pickup times (belong to one dispatch), and how

they were delivered in sequence by different drivers (we only show 3 drivers for clarity purpose).

We observe that driver 1 only carried one order and visited one customer location while driver 3

made deliveries to more than 5 locations. In addition, driver 2 was assigned to locations at opposite

directions and consequently took long detours. Such assignment decision could cause inefficient

utilization of drivers and undesired delivery performance. In this dispatch, driver 3 failed to deliver

on time. Furthermore, one may notice that driver 2 did not follow the shortest path by traveling

back and forth. It is because the provider only assigns orders to drivers without specifying the

delivery sequence, allowing them to design their own routes.
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Figure 2 Delivery routes by 3 drivers (the red dot represents the depot).
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It is therefore necessary to develop an efficient order assignment policy that delivers better on-

time performance. In this paper, the on-time performance of a route is measured by its delay in

visiting its last customer, since all customers in the same batch share the same promised delivery

time. That is, whenever the last visit is on-time, all visits in the same route are on-time. Since the

drivers have freedom in customizing their routes, the specific visiting sequence is unpredictable.

Therefore, focusing on the delay of all routes is more sensible than focusing on the delay of all

orders, which requires to know (or solve for) the visit sequence at the stage of order assignment

that the drivers may not follow in practice.

In the discussion below, we consider the total delivery time of a route consists of two components:

the uncertain service times at customer locations and the predictable travel time of the route. It

allows us to model the dependence of total delivery time on the order assignment, e.g., number

of orders and their locations, as well as the uncertainty at customer locations. From a graph

perspective, our primary idea is to introduce the uncertainty at the nodes while keep the edges

predictable.

3.2. Uncertainty in Service Time

Food orders are usually delivered to customers in person. As many customer locations are high rise

buildings in urban areas, drivers often need to find parking spaces, navigate to the right floor and

meet customers to handover the orders. To differentiate with travel time in delivery tour, we use

the term “service time” to denote the time a driver spends between the arrival and departure at

a customer location. Since the service time is not measured explicitly in the data set, we estimate

the service time spent at each customer location as follows. We first measure the travel distance

between two consecutively visited customer locations using the shortest path on Google Maps, and

calculate the travel time assuming an average electric bike speed as 15km/hr in Shanghai (Cherry

and Cervero 2007). Such assumption is based on the fact that electric bikes are allowed to take

bicycle lanes to avoid traffic congestions. The service time is therefore estimated as the difference

between the delivery time observed from the data and the estimated arrival time, i.e., the departure

time and the estimated travel time from the previous customer location. We note that by assuming

a different speed, the estimated values of service time may differ. Nevertheless, in this section, we

intend to investigate the existence of uncertainty in service time, as highlighted by practitioners in

delivery service. In theory, an accurate measure of the service time can be obtained, if the provider

tracks more detailed vehicle location information.

The distribution of service time estimated across all customer locations is presented in Figure

3 (a), where its mean is 4.11 minutes. We observe that the variability of service time is large

system-wide. We also notice that the service time is heterogeneous across different locations. The
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Figure 3 Distribution of service time (in minutes).

mean service time of a customer location varies from 0 minute to 38.69 minutes. Furthermore, the

distributions of service time at various locations are different. Figure 3 (b) displays histograms of

service time at three different customer locations with similar number of orders. We can see that

the service times at those locations follow different distributions, e.g., the probability of having

service time longer than 5 minutes is higher at location 3 than the rest.

Furthermore, the service time across different customer locations are mostly independent. We

apply Hoeffding’s independence test (Hoeffding 1948) to pairs of locations that share enough num-

ber of visits in the data set. The result shows that only 3% of them reject the null hypothesis

of independence with a significance level of 0.05. This observation facilitates the analysis of the

worst-case expected total delays in Section 5.2.

3.3. Driver’s Routing Behavior

In the practice of the studied service provider, drivers have freedom in planning their own routes.

It is because the service provider believes that the drivers are familiar with the local area, of which

the information may not be represented in its database, e.g., real time road condition and hidden

paths not shown on maps. While some providers suggested routes for their drivers, they also allow

drivers some flexibility for adjustment. Given assigned orders, the route planning for a single driver

can be solved as a traveling salesman problem (TSP) in theory. This subsection examines driver’s

routing behavior in comparison to the theoretical TSP routes.

Based on the routes reconstructed from data, we obtain the actual delivery tour — the travel

distance from the depot to the last visited customer by each driver. To both the provider and

drivers, the key objective is to minimize delays: the provider receives complaints from customers and

drivers receive penalties on delayed orders. Since the final segment from the last visited customer

location to the depot does not influence the on-time performance, drivers tend to minimize one-way
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delivery tour, starting from the depot and ending at the last customer location. Using a standard

TSP formulation with dummy node (see details in the Appendix), one can find the shortest possible

one-way delivery tour to visit all assigned customers in a single route by a driver. However, the

theoretical TSP solution may not represent the reality on how drivers actually plan their routes

and deliver orders. To compare the TSP routes with the actual ones, we calculate the lengths of

both routes using the distances between customer locations calibrated from the Distance Matrix

function of Google Maps. Figure 4 presents the histogram of the differences between the actual

delivery tour length and that from TSP solution for all observed routes. We find that the actual

delivery tour length is consistently greater or equal to the delivery tour length from the TSP

solution. The histogram has a long tail that highlights the instances where actual delivery tour

deviates from the shortest route by a large amount. The difference between the actual delivery

tour length and the TSP solution is 0.59 km on average and can be as large as 6.67 km.
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Figure 4 The difference between the actual delivery tour length and TSP solution (in kilometers).

The above result implies that drivers often deviate from the theoretical shortest routes. This

phenomenon is also confirmed in empirical studies on driver’s routing behavior (e.g., Lima et al.

2016). There are several possible explanations. First, the TSP formulation does not consider many

practical constraints that were transforming the behavior of drivers. For example, some road inter-

sections have limited left turn flows and drivers may choose to avoid these intersections. Second,

drivers may prefer some travel patterns over others. For instance, zigzagging routes are found to

be undesirable because of the increased possibility of accidents on busy streets (Holland et al.
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2017). Third, delivery drivers may adjust the routes based on practical road conditions, weather

conditions and customers’ updated locations. Modeling all practical constraints and behavior con-

siderations is difficult and incorporating them as numerous constraints into a complicated VRP

model is almost intractable. To overcome this difficulty, we utilize machine learning techniques to

predict the actual delivery tour length for visiting a set of customer locations without specifying

the visiting sequence, which is detailed in the next section.

4. Delivery Tour Prediction

Existing literature has proposed approximate formulas for TSP and VRP with asymptotic results

under various scenarios. In particular, when planning a delivery route for a single driver, a VRP

reduces to a TSP. Assuming demand locations are independently and uniformly distributed in a

square area of area A, the delivery tour length TSP ∗ of the optimal TSP route satisfies (Beardwood

et al. 1959):

lim
n→∞

TSP ∗√
n

=ϕ
√
A, (1)

where n is the number of points and ϕ is a constant. Similar results can be also derived for VRP (see

Daganzo 2005 for details). However, the approximate formulas require strong stochastic assump-

tions and can only yield good results when n is large (Shen and Qi 2007). In food delivery practice,

each driver often visits less than 10 different customer locations, and thus makes the approximate

formulas inappropriate. Furthermore, the existing result ignores driver’s routing behavior discussed

in Section 3.3 and lacks the fitting test on real data.

In the following, we develop a data analytics approach to predict the delivery tour length — how

far a driver travels in practice. The first step is feature engineering, i.e. we need to come up with

features that can capture the main factors influencing the delivery tour. Note that the one-way

delivery tour includes 1) the travel distance from the depot to the first visited customer and 2) the

travel distance from the first customer to the subsequent customers. For the first part, we take the

distance from the depot to the nearest customer location, d, as a proxy. For the second part, we

consider the following candidate features motivated by the asymptotic results of TSP, e.g., from

Equation (1), and empirical observations:

• n: the number of distinct customer locations;

• a: the maximum latitudinal distance between a pair of realized customer locations;

• b: the maximum longitudinal distance between a pair of realized customer locations;

• a
√
n− 1, b

√
n− 1, a(n− 1), b(n− 1) and

√
ab(n− 1);

• sa: the average inter-customer latitudinal distance;

• sb: the average inter-customer longitudinal distance.
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In total, we have 11 features, including the nearest distance feature d. Measuring a and b in latitu-

dinal and longitudinal distances aligns with the road network in the studied area in Shanghai. For

cities with different road orientations, one can apply rotation transformations for proper orientation

in the measurement of a and b.

After extracting the above features, the second step is to select the best prediction model based

on data. We test a wide range of machine learning models including least absolute shrinkage and

selection operator (LASSO), ridge regression, support vector regression and random forest. We

make a brief introduction to these four models (for more details, please refer to Friedman et al.

2001). Let β denotes the coefficient vector corresponding to the 11 features. LASSO extends the

least squares regression by introducing p||β||1, a `1-norm penalty term of the coefficients β, into

the loss minimization problem. The shrinkage parameter p > 0 is used to control the sparsity of the

model. The greater the value of p, the sparser the resulted coefficients will be. By contrast, ridge

regression adds p||β||22, a squared `2-norm penalty term of the coefficients β, into the objective

function in the least squares regression. Both methods are able to reduce undesired over-fitting

by regularization. Support vector regression (SVR) stems from support vector machine (SVM)

for classification and uses a different loss function than least squares. It maps data to higher

dimension with a kernel function, which facilitates capturing complicated nonlinear relationship.

Different from the first three models, random forest runs a number of decision trees that split the

feature space into subregions, which then predict the same value for each subregion. To enhance

the prediction accuracy, different trees are generated by sampling training data and feature space.

We conduct 5-fold cross-validation to select the best hyper-parameters for the four models (e.g.

shrinkage parameters in LASSO and ridge regression, and the number of trees grown in random

forest). For SVR, we choose the commonly used radial basis function (RBF) kernel. All training

and validation procedures are implemented in R. In Table 2, we report the average cross-validation

mean squared errors (MSE)— the average of
∑
s∈S(ls−l̂s)

2

|S| , where ls denotes the actual delivery tour

length and l̂s denotes the predicted delivery tour length for test sample s in each testing fold S.

We also include the MSE of TSP solution as a reference in Table 2.

Table 2 Performance Evaluation of Machine Learning Methods and TSP Solution

Method Average MSE

LASSO 0.314
Ridge regression 0.317
SVR 0.295
Random forest 0.304

TSP solution 1.002
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Based on the cross-validation results, we choose LASSO to derive the delivery tour prediction

function, for the reasons detailed below.

1. Accuracy: LASSO achieves significantly higher prediction accuracy than TSP solution with

68.66% reduction in MSE. It is satisfactory compared to more sophisticated non-linear models,

e.g., SVR.

2. Interpretability: Due to its simple form — linear in features, LASSO is more interpretable

than SVR and random forest, which are often viewed as “black box”. The delivery tour prediction

function resulting from LASSO implies the importance of each feature on the tour length.

3. Tractability: Its linear functional form also makes LASSO favorable in developing a tractable

optimization model for order assignment. The non-linear nature of SVR and random forest will

result in excessively complicated optimization formulations, if not intractable. While ridge regres-

sion is also a linear model, LASSO has slightly better accuracy and the treatment for the prediction

function from LASSO can also be applied to that from ridge regression.

With the tuned shrinkage parameter, LASSO selects 6 features. Figure 5 presents how the cross-

validation average MSE of LASSO varies with respect to different values of shrinkage parameter p

as well as the resulted different number of features, in which we observe that the best performance

is attained with only 6 features summarized below. The delivery tour prediction function from

LASSO is (for n≥ 1):

β0d+β1a+β2b+β3a
√
n− 1 +β4b

√
n− 1 +β5n, (2)

where β0 = 1.006, β1 = 27.69, β2 = 79.64, β3 = 54.27, β4 = 56.51, β5 = 0.004 and the adjusted

R2 = 0.970 for the full dataset. Note that the reported value of β is calibrated from the delivery

data set. For different applications, one shall estimate β using their corresponding data sets.

4.1. Performance of the Prediction Function

To further examine the prediction performance of LASSO, we discuss its application in predicting

the actual delivery tour in practice as well as approximating the TSP tour in theory. The first part

shows its practicality in capturing driver’s routing behavior, and the later suggests its potential as

a closed-form approximation to TSP tour without solving an optimization program.

Figure 6 presents the mean absolute percentage error (MAPE) of LASSO and the TSP solution

in predicting the actual delivery tour lengths with different number of customer locations. MAPE,

defined as
∑
s∈S |ls−l̂s|
|S| × 100%, is unit free and measures the relative prediction errors. We can see

that LASSO achieves significantly smaller errors than the TSP solution, especially when there are

more customer locations to visit. For the cases with fewer customer locations, e.g., only 2 customer

locations, the performances of TSP and LASSO are similar. It is worthwhile to note that the
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MAPE of LASSO is less than 25% and grows mildly with the number of customer locations, while

the MAPE of the TSP solution can be close to 50%.

To establish the connection between the prediction function and transportation literature on

routing problems, we discuss its approximation performance for TSP tours. We use the same order

assignment realizations observed in the delivery data and calibrate their TSP tours. That is, we

eliminate driver’s routing behavior by assuming the drivers follow TSP tours exactly, e.g., as if
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they were autonomous vehicles. Thus, the calibrated dataset shares the same set of customer

points and order history with the original delivery dataset. According to the 5-fold cross-validation

results, LASSO still selects the same 6 features as in (2), but with a different coefficient vector β

resulting from the fitting for TSP tours. Notably, the average MSE drops to 0.037 when fitting

LASSO for theoretical TSP tours. Figure 7 shows that the prediction function (2) serves as a good

approximation to the TSP tour length, especially for trips within 5km.

The observations above suggest the potential of using the closed-form tour prediction function

in various applications involving TSP tours. For example, when a driver’s visit sequence is not

required, as in the case of order assignment, it greatly simplifies the procedures of obtaining a

TSP tour length, without solving a mathematical program. Furthermore, an advantage of the

prediction function (2) is that it only requires estimation of 6 parameters, e.g., the coefficients in

β. In contrast, a TSP formulation requires the estimation of travel distance (or time) matrix for

all pairs of locations, e.g., 11×11 size matrix for 10 customer locations and a depot. Consequently,

more estimation errors may be introduced to TSP formulation.

To conclude this section, we remark several further observations. First, as LASSO employs the

l1-norm regularization, it results in a sparse coefficient vector and requires less features (automatic

feature selection), which makes it easy to interpret and integrate with optimization models. Sec-

ond, unlike the TSP solution that consistently underestimates the delivery tour length, LASSO

prediction is much less biased. Third, LASSO is appropriate to estimate the actual delivery tour

length even when n = 1: it predicts β0d+ β5 ≈ d with β0 ≈ 1 and β5 is very small. Finally, the
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function (2) indeed predicts the average delivery tour length. The actual tour length may vary

depending on other spatial characteristic of the realized customer locations, whose deviation from

the function (2) can be viewed as the residuals. We treat such prediction as accurate in the basic

models and discuss how uncertainty in travel time can be incorporated in Section 5.3. Due to

its simple structure and outstanding prediction power, we will adopt the delivery tour prediction

function in (2) from LASSO for order assignment optimization in the next section.

5. Order Assignment Models

We consider a firm that operates a single central depot, e.g., kitchen in food service, and assigns

its orders to drivers, aiming to minimize the total delay in delivery. For the ease of discussion

and implementation, we assume that orders from the same location, e.g., a building or block, are

delivered by the same driver. Subsequently, the firm’s decision is to assign the customer locations

with orders, denoted by I, to a group of available drivers K. The drivers freely design their routes

to visit the assigned customer locations.

According to our data analytics, a critical part of the uncertainty lies in the service time at each

customer location. We model the uncertain service time at location i∈ I using a random variable

t̃i and denote the joint distribution of t̃i among all locations in I as P. Let yik ∈ {0,1} be the

binary decision variable denoting whether customer location i is served by driver k: 1 if i is served

by driver k and 0 otherwise. Subsequently, the vector yk = (yik,∀i∈ I) defines the set of locations

to be visited by driver k. From the prediction function (2), the delivery tour length by driver k is

predicted as:

l(yk) = β0d(yk) +β1a(yk) +β2b(yk) +β3a(yk)

√∑
i∈I

yik− 1 +β4b(yk)

√∑
i∈I

yik− 1 +β5

∑
i∈I

yik, (3)

where the terms d(yk), a(yk) and b(yk) are the distance from the depot to the closest customer, the

maximum latitudinal and longitudinal distances between a pair of customer locations, respectively,

given the customer locations yk served by driver k. Since real-time traffic and weather information

is usually revealed at the time of order assignment, we assume a constant speed (or velocity) v

and predict the travel time by driver k as l(yk)

v
in the models presented below. Our model can be

extended to consider other factors affecting actual travel time, e.g., heterogeneous speed vk for a

specific driver k. We further discuss introducing uncertainty in travel time in Section 5.3.

Given the target delivery time window τ , the order assignment problem is then formulated as

the following stochastic program that minimizes the expected total delay of all routes:

min
yik

∑
k∈K

EP

[∑
i∈I

t̃iyik +
lk
v
− τ

]+
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s.t.
∑
k∈K

yik = 1, ∀i∈ I,

lk = l(yk), ∀k ∈K,

yik ∈ {0,1},∀i∈ I, ∀k ∈K,

where the first set of constraints ensure that each customer location i is served by some driver.

Since evaluating the objective function in the above stochastic program requires full knowledge

of the joint service time distribution as well as integration, we deploy the sample average approxi-

mation (SAA) scheme. Given a set of historical samples S, let tsi be the service time at location i

in sample s∈ S. The SAA formulation for order assignment is provided below:

min
yik

∑
s∈S

∑
k∈K

[∑
i∈I

tsiyik +
lk
v
− τ

]+
s.t.

∑
k∈K

yik = 1, ∀i∈ I,

lk = l(yk), ∀k ∈K,

yik ∈ {0,1}, ∀i∈ I, k ∈K.

In this formulation, we drop the constant multiplier 1/|S| for the sample average in the objective.

The nonlinear objective function can be linearized by introducing nonnegative auxiliary variables,

e.g., ωsk with constraints ωsk ≥
∑

i∈I t
s
iyik + lk

v
− τ and ωsk ≥ 0. Thus, the objective function can be

rewritten as
∑

s∈S
∑

k∈Kω
s
k. The challenge in this optimization problem is to deal with l(yk) for

delivery tour prediction.

5.1. Reformulation of l(yk)

We introduce auxiliary variables ak, bk, dk and nk to denote a(yk), b(yk), d(yk) and
∑

i∈I yik

respectively, using the following constraints:

lk = β0dk +β1ak +β2bk +β3ak
√
nk− 1 +β4bk

√
nk− 1 +β5nk, ∀k ∈K, (4)

nk ≥max

{∑
i

yik,1

}
, ∀k ∈K, (5)

ak ≥ |lati− lati′ |(yik + yi′k− 1), ∀i, i′ ∈ I, k ∈K, (6)

bk ≥ |longi− longi′ |(yik + yi′k− 1), ∀i, i′ ∈ I, k ∈K, (7)

where lati and longi are the latitude and longitude of customer location i.

Note that constraints (6) and (7) are required for all distinct pairs of customer locations. Thus,

the number of these constraints O(I2 ·K) can be large, when there are many customer locations.

Alternatively, we propose the following equivalent O(I ·K) number of constraints:

ak = āk + ak ≥ 0, ∀k ∈K, (8)
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bk = b̄k + bk ≥ 0, ∀k ∈K, (9)

āk ≥ lati · yik, ∀i∈ I, k ∈K, (10)

ak ≥−lati +M(yik− 1), ∀i∈ I, k ∈K, (11)

b̄k ≥ longi · yik, ∀i∈ I, k ∈K (12)

bk ≥−longi +M(yik− 1), ∀i∈ I, k ∈K. (13)

With the above set of constraints, the nonlinearity remains in Equation (4), e.g., the square root

term
√
nk− 1. Since nk is an integer with a limited range, we can linearize this nonlinear (and

non-convex) term using binary variables. In practice, the number of orders assigned to driver k,

i.e., nk, can not be arbitrarily large. Therefore, we can safely restrict nk to be within a certain

range {0,1, . . . ,Nk}. One can interpret Nk as the maximum number of orders for driver k, and can

be determined by the practitioner or estimated from data. Based on our data set, we observe that

the maximum number of orders assigned to a driver in one delivery route is 20 and most routes

contain less than 15 orders. In the extreme case, Nk could be the total number of orders to be

delivered. We can thus express nk as a piecewise function with a set of auxiliary binary variables:

nk =

Nk∑
j=0

j ·ukj, (14)

Nk∑
j=0

ukj = 1, (15)

ukj ∈ {0,1}, ∀j ∈ {0,1, ...,Nk}. (16)

Consequently, lk can be expressed as:

lk =

Nk∑
j=0

fkj,

where fk0 = 0 and

fkj ≥ β0dk +β1ak +β2bk +β3ak
√
j− 1 +β4bk

√
j− 1 +β5nk +M(ukj − 1), ∀j ∈ {1, . . . ,Nk} (17)

and all fkj’s are nonnegative. Alternatively, we can choose the following set of constraints introduced

by Glover (1975):

D+
kjukj ≥ fkj ≥D−kjukj, (18)

β0dk +β1ak +β2bk +β3ak
√
j− 1 +β4bk

√
j− 1 +β5nk−D−kj(1−ukj)≥ fkj, (19)

fkj ≥ β0dk +β1ak +β2bk +β3ak
√
j− 1 +β4bk

√
j− 1 +β5nk−D+

kj(1−ukj), (20)

where D+
kj and D−kj are the upper and lower bounds on β0dk + β1ak + β2bk + β3ak

√
j− 1 +

β4bk
√
j− 1 + β5nk, which can be selected based on the data. It is clear that constraints (18)-(20)
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are stronger than constraints (17), despite that more constraints are required. By replacing lk with

the above linear functions, we obtain a mixed integer linear program (MILP), which can be ready

solvable by commercial optimization solvers. The resulting MILP has O(K · I + N ·K) binary

variables and O(K · I ·S) number of constraints.

We summarize the data-driven order assignment using SAA scheme as the following mixed-

integer linear program:

min
Y

∑
s∈S

∑
k∈K

ωsk (DOA-SAA)

s.t. ωsk ≥
∑
i∈I

tsiyik +
lk
v
− τ, ∀k ∈K, s∈ S,

ωsk ≥ 0, ∀k ∈K, s∈ S,∑
k∈K

yik = 1, ∀i∈ I,

lk =

Nk∑
j=0

fkj, ∀k ∈K,

dk =
∑
i∈I

d̂ixik, ∀k ∈K, (21)∑
i′∈I

xi′k ≥ yik, ∀i∈ I, k ∈K, (22)

xik ≤ yik, ∀i∈ I, k ∈K, (23)

Constraints (8)− (13),

Constraints (14)− (16), ∀k ∈K,

Constraints (18)− (20), ∀k ∈K, j ∈ {1, . . . ,Nk},

yik ∈ {0,1}, ∀i∈ I, k ∈K,

where d̂i is the distance from the depot to customer location i. Constrains (21)-(23) ensure that

dk is the distance from the depot to the nearest customer location in driver k’s route.

5.2. Robust Order Assignment

For the DOA-SAA model to perform well, it requires a large number of samples. However, the

observations of service time at many customer locations are sparse in our data. Moreover, its

computation time grows if more samples are generated, e.g., via bootstrapping, for the SAA model.

To deal with such challenges, we develop a distributionally robust optimization model that utilizes

limited distributional information and is independent of sample size in computation.

Suppose the joint distribution P of service time t̃i,∀i∈ I lies in an ambiguity set F, such that P

contains limited distributional information, i.e., the marginal mean and variance for each customer

location. The support of t̃i is set to R, to allow potentially (although rarely) negative service time.
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For instance, a negative service time may denote the case when a customer collects an order without

asking a driver to visit the customer location, e.g., with the use of food delivery lockers at more

convenient locations to drivers. In particular, we construct the moment ambiguity set F as below

by imposing zero correlation between different customer locations (supported by our independence

test described in subsection 3.2) :

F=

 P∈P0(R|I|)

EP(t̃i) = µi, ∀i∈ I

EP

[(
t̃i−µi

)2]
= σ2

i , ∀i∈ I

EP
[(
t̃i−µi

) (
t̃j −µj

)]
= 0, ∀i 6= j ∈ I

 .

To simplify our discussion, we introduce the term hk = lk
v
− τ to denote the slack for service

time, after considering the routing time in a delivery tour. The distributionally robust optimization

(DRO) model that minimizes the worst-case expected total delay is given by:

min
Y

max
P∈F

EP

∑
k∈K

[∑
i∈I

t̃iyik +hk

]+
(24)

s.t. hk =
lk
v
− τ, ∀k ∈K,

Constraints in DOA-SAA.

While the DRO model in (24) involves the joint distribution of all service time t̃i, we show in

Proposition 1 below that it can be reduced to have a DRO model with an objective of a sum of K

separable worst-case expected delays.

Proposition 1. Let T̃k =
∑

i∈Ik
t̃i, where Ik = {i∈ I : yik = 1}, be the projected random variable,

i.e., the total service time of driver k. The DRO model in (24) is equivalent to the DRO model as

below:

min
Y

∑
k∈K

max
Qk∈Gk

EQk

[
T̃k +hk

]+
(25)

s.t. hk =
lk
v
− τ, ∀k ∈K,

Constraints in DOA-SAA.

where Qk is in the ambiguity set Gk, defined by

Gk =

 Qk ∈P0(R)

EQk(T̃k) =
∑

i∈Ik
µi

EQk

[(
T̃k−

∑
i∈Ik

µi

)2
]

=
∑

i∈Ik
σ2
i

 .

Proof We first show that the inner maximization problem for the worst-case expected total

delay can be separable. Let Pk be the joint distribution of the service time at locations assigned
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to driver k, i.e.,
{
t̃i
}
Ik

where Ik = {i∈ I : yik = 1}. Correspondingly, we consider the ambiguity set

Fk as the projection of F on Pk. That is, Fk is specified as

Fk =

 Pk ∈P0(R|Ik|)

EPk(t̃i) = µi, ∀i∈ Ik
EPk

[(
t̃i−µi

)2]
= σ2

i , ∀i∈ Ik
EP
[(
t̃i−µi

) (
t̃j −µj

)]
= 0, ∀i 6= j ∈ Ik

 .

Note that each location is assigned to a single driver. The collection of Ik,∀k ∈ K is a partition

of I, i.e., ∪k∈KIk = I and Ik ∩ Ik′ = ∅ for k 6= k′ ∈ K. Therefore, for any given Pk ∈ Fk for all

k ∈ K, we can construct the joint distribution of service times at all locations as P = Πk∈KPk. It

is straightforward to see that the constructed P belongs to the ambiguity set F. Hence, the inner

maximization problem in (24) can be reformulated in the following steps:

max
P∈F

EP

∑
k∈K

[∑
i∈I

t̃iyik +hk

]+

= max
P∈F

∑
k∈K

EP

[∑
i∈Ik

t̃i +hk

]+

= max
Pk∈Fk,∀k∈K

∑
k∈K

EPk

[∑
i∈Ik

t̃i +hk

]+

=
∑
k∈K

max
Pk∈Fk

EPk

[∑
i∈Ik

t̃i +hk

]+
.

Here, the first equality follows from the linearity of expectation and the definition of Ik =

{i∈ I : yik = 1}. The second equality is established based on the previous argument—for any given

Pk ∈ Fk, we can construct P = Πk∈KPk ∈ F, while for any given P ∈ F, we can construct Pk ∈ Fk
by projection. The third equality is based on separability of the objective function by the decision

variables Pk.

Let T̃k =
∑

i∈Ik
t̃i, be the projected random variable. From Proposition 1 in Popescu (2007), the

inner maximization problem can be further reformulated as

max
Pk∈Fk

EPk

[∑
i∈Ik

t̃i +hk

]+
= max

Qk∈Gk
EQk

[
T̃k +hk

]+
,

where

Gk =

 Qk ∈P0(R)

EQk(T̃k) =
∑

i∈Ik
µi

EQk

[(
T̃k−

∑
i∈Ik

µi

)2
]

=
∑

i∈Ik
σ2
i

 .

Therefore, for each inner maximization problem, we can instead solve the corresponding “projected”

problem over the class of univariate distributions in Gk. It then leads to the DRO model provided

in (25). �
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To derive a tractable formulation to problem (25), we deal with maxPk∈Fk EPk

[
T̃k +hk

]+
in the

following lemma.

Lemma 1. The inner problem maxPk∈Fk EPk

[
T̃k +hk

]+
can be solved by the following equivalent

optimization problem with second-order conic constraints:

min
λk,ηk,θk

λk + ηk
∑
i∈I

µiyik + θk
∑
i∈I

σ2
i yik

s.t. λk + (ηk− 1)
∑
i∈I

µiyik−hk + θk ≥
∥∥∥∥( ηk− 1
λk + (ηk− 1)

∑
i∈I µiyik−hk− θk

)∥∥∥∥
2

λk + (ηk− 1)
∑
i∈I

µiyik−hk ≥ 0

λk + ηk
∑
i∈I

µiyik + θk ≥
∥∥∥∥( ηk
λk + ηk

∑
i∈I µiyik− θk

)∥∥∥∥
2(

λk + ηk
∑
i∈I

µiyik + θk

)2

≥

(
λk + ηk

∑
i∈I

µiyik− θk

)2

+ η2k,

θk ≥ 0.

Based on Lemma 1, we can formulate the distributionally robust order assignment as a tractable

second order conic program (the proof is available in the Appendix):

Proposition 2. The distributionally robust order assignment policy can be solved by the follow-

ing mixed-integer second order conic program (MISOCP):

min
Y,ρ

∑
k∈K

[
ρk +

∑
i∈I

µiyik +hk

]
(DOA-DRO)

s.t. hk =
lk
v
− τ, ∀k ∈K,

ρk ≥

∥∥∥∥∥∥∥∥


σ1y1k
...

σIyIk∑
i∈I µiyik +hk


∥∥∥∥∥∥∥∥
2

, ∀k ∈K,

Constraints in DOA-SAA.

The problem DOA-DRO has K second order conic constraints. Since our problem has natural

independence in service times among the drivers, we can decompose the objective function as well as

the ambiguity set, and derive an efficient model. For the general distributionally robust optimization

model without imposing zero correlation, we can still derive a decomposable formulation but with

more conic constraints.
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5.3. Uncertain Travel Time

In the analytics and models above, we consider the primary uncertainty in service times at customer

locations and develop prediction function for travel distance, which can be translated into travel

time with a known speed. We note that the function (2) predicts the average travel distance by

a driver. Therefore, it may be necessary to introduce uncertainty in travel time, when the traffic

information is less reliable and driver’s routing behavior is heterogeneous.

Here we discuss a simple remedy to deal with uncertain travel time. Since the uncertainty in

travel time may come from the uncertainty in travel distance or that in travel speed, we denote

the uncertain travel time by driver k as r̃k. Its deviation from the predicted travel time lk
v

is thus

defined by εk = r̃k− lk
v

. Suppose the provider has knowledge about the realized travel time r̃k in its

delivery data, one can obtain an empirical distribution of εk for the DOA-SAA model and estimate

the moment information of εk for the DOA-DRO model. We can replace the terms lk
v

with lk
v

+ εk

in both DOA models and deal with εk as an additional random variable with the same treatment

of uncertain service time t̃i. Therefore, both DOA models can handle the uncertain travel time,

while keeping the same forms as presented above.

6. Branch-and-Price Algorithm

The DOA models formulated in Section 5 can be solved in commercial mixed integer solvers such

as Gurobi and CPLEX. However, as the number of locations (I) and the number of drivers (K)

grow, the assignment problem becomes increasingly hard to solve. Furthermore, order assignment

decision for food service is usually required be made quickly (e.g., 20 minutes) in practice. Thus,

the standard MILP/MISOCP formulation may fail to deliver good quality solutions in time. To

overcome this issue, we utilize the structure of the order assignment problem and formulate it as

a set partitioning problem, which allows us to develop an efficient branch-and-price algorithm.

6.1. Set Partitioning Formulation

Let the subset of locations assigned to a driver be associated with a cost, which is the expected

delay of delivering to this subset of locations. The order assignment problem is to find a partitioning

of locations to subsets such that the total cost (expected total delay) is minimized. As a result,

the order assignment problem can be stated as the set partitioning master problem (MP):

min
z

∑
j∈J

cjzj (MP)

s.t.
∑
j∈J

δijzj = 1, ∀i∈ I, (26)∑
j∈J

zj =K, (27)
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zj ∈ {0,1}, ∀j ∈J ,

where J is the set of all possible subsets satisfying cardinality constraints. δij is 1 if location i

belongs to subset j, and 0 otherwise. Constraints (26) ensure that every location is covered by a

subset and constraint (27) ensures the number of selected subsets equal to K. For SAA, the subset

cost cj is the sample average delay of subset j. For the robust counterpart, cj is the worst-case

expected delay of subset j given the first and second moment information.

MP involves an exponential number of variables (columns) since the number of possible subsets

grows exponentially in the number of locations. Instead of enumerating all possible subsets and

solve the entire MP, column generation provides a way to generate candidate subsets and promises

to solve the LP relaxation of MP when a stop routine is invoked. Specifically, column generation

solves the following pricing subproblem at each iteration:

min
ȳ

−πo−
∑
i∈I

πiȳi + c(ȳ) (SP)

s.t. Constraints in DOA-SAA or DOA-DRO,

where πo is the dual value for constraint (27) and πi’s are the dual values for constraints (26)

in MP. The constraints in SP are similar to those in DOA-SAA and DOA-DRO except that the

subscript k is dropped. Note that in the case of DOA-DRO, the subproblem is also a MISOCP

but with less binary variables and only one conic constraint. Thus, the subproblem can be solved

efficiently. If the optimal objective of SP is negative, we add to MP the subset corresponding to ȳ∗,

i.e., {i∈ I : ȳ∗i = 1}, and then solve the new MP. We repeat this process until the optimal objective

of SP is nonnegative, implying that the LP relaxation of MP is solved. For more details about set

partitioning and column generation, we refer readers to Barnhart et al. (1998)

6.2. Algorithm Overview

We start the algorithm from an initial pool of subsets that is a feasible partitioning of customer

locations. The initial partitioning is found by solving the order assignment problem by replacing

the delivery tour length with its lower bound (a+ b+ d), i.e., the minimum delivery tour length

required to cover all customer locations. This simpler problem removes many hard constraints and

allows us to find a good feasible partitioning quickly.

The optimal solution from solving the LP relaxation of MP with column generation is not

necessarily integral and applying a branching rule is required. However, a standard branching rule

that sets a fractional variable to {0,1} can fail, since preventing a subset j from reappearing in

SP (corresponding to setting zj = 0) is difficult. To resolve this issue, we adopt the branching

rule introduced by Ryan and Foster (1981) that can be added to SP in branches. Basically, this
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branching rule detects a pair of subsets S1, S2 with fractional values in the solution, and two

locations i, j with one in S1∩S2 and the other in S1/S2. In the two branches, the left branch adds

constraints such that i and j can only be in the same subset while the right branch adds constraints

such that i and j can not belong to the same subset.

Following the suggestions of Mehrotra et al. (1998), we use a depth-first-search (DFS) to select

the next node to solve. Also, for all nodes except the root node, we do not solve the LP relaxation

to optimality. Instead, we stop column generation once the objective value of the LP relaxation is

less than the objective value at the root node.

6.3. Comparison to MILP Formulation

To demonstrate the efficiency of branch-and-price algorithm, we generate instances from real data

by varying parameter settings. We run experiments in Python 3.6 using Gurobi 7, on a 3.50 GHz

Xeon CPU. We choose the termination criterion to be (i) optimality gap is below 1%, or (ii) CPU

time exceeds 20 minutes.

Table 3 compares the performance of solving DOA-SAA using the standard MILP formulation

and the branch-and-price algorithm for a range of instances with 30 samples. The t column presents

solution times and ZMILP, ZBP columns report the objective values derived with MILP and branch-

and-price algorithm at the termination, respectively. Unlike the standard MILP formulation that

fails to solve 4 out of 6 instances, branch-and-price algorithm scales well and solves all 6 instances

within 600 seconds. Table 4 reports the computational results of solving DOA-DRO with branch-

and-price algorithm and a standard MISOCP formulation. The last column of Table 4 also reports

the optimality gap of branch-and-price algorithm if computational time limit is hit. Still, branch-

and-price algorithm delivers superior performance in terms of both solution time and solution

quality. Branch-and-price algorithm can find a good quality solution (optimality gap ≤ 3%) for the

robust model within 20 minutes while the standard MISOCP formulation fails in all instances.

Table 3 Solution time (in CPU seconds) and objective values of MILP and branch-and-price for DOA-SAA

(* indicates computation stopped at 20-min time limit)

Locations Drivers Time Window MILP Branch-and-Price
(in minutes) t ZMILP t ZBP

29 7 80 2 0.00 9 0.00
29 7 60 1200* 61.31 151 42.78
37 8 80 1200* 90.20 86 40.40
37 8 60 1200* 873.23 126 571.26
42 9 80 37 0.00 29 0.00
42 9 60 1200* 471.04 521 284.31
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Table 4 Solution time (in CPU Seconds) and objective values of MISOCP and branch-and-price for DOA-DRO

(* indicates computation stopped at 20-min time limit)

Locations Drivers Time Window MISOCP Branch-and-Price
(in minutes) t ZMILP t ZBP (Gap)

29 7 80 1200* 8.45 365 6.98
29 7 60 1200* 61.31 151 42.78
37 8 80 1200* 37.81 1200* 18.43 (3%)
37 8 60 1200* 64.80 1200* 45.93 (3%)
42 9 80 1200* 15.82 1013 11.36
42 9 60 1200* 48.02 1200* 27.31 (3%)

7. Numerical Study

In this section we first discuss the setup of our numerical study using a delivery data set from a

food service provider in Shanghai. We then employ a machine learning approach to evaluate the

out-of-sample performance of the proposed DOA models with benchmarks. We discuss the detailed

experiment setup as follows.

Data: We consider the batch of orders placed between 10 : 15 am and 10 : 30 am, and were

promised to be delivered by 11 : 45 am, which corresponds to the typical busy period during a day.

Across 35 sample days, we have 7,043 orders and 1,048 different customer locations observed in

the study period. The batch of orders on each sample day is used in each experiment instance,

where we apply our models and benchmarks.

Preprocessing: Based on the customer locations, we calculate the `1-norm distance between each

pair of them as the proximity measure. Among the resulting 1,048 customer locations, some loca-

tions belong to the same building but at different floors. Therefore, these locations can be considered

as one single customer location representing a building (or a plaza). Also, in the densely populated

area of Shanghai, it is often economical to assign orders coming from nearby buildings to one driver

instead of multiple drivers. Motivated by these observations, we apply a clustering method— the

minimax linkage hierarchical clustering, to cluster customer locations and meanwhile manage the

problem size. Minimax hierarchical clustering is a type of agglomerative clustering algorithms that

build trees in a bottom-up approach. It starts with singletons and gradually merges two closest

clusters stage by stage, until only one cluster remains. The resulting binary tree is commonly dis-

played as a dendrogram, as shown in Figure 8. Each leaf node represents a data point and is placed

at the bottom with height 0. Each interior node indicates a merging and the corresponding height

is equal to the distance between the clusters merged at that node. A key choice for such clustering

algorithms is the distance measure between two clusters. Common measures include complete, sin-

gle, average, and centroid linkage (see Friedman et al. 2001 for example). The minimax hierarchical

clustering uses a different linkage:
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d(G,H) = min
x∈G∪H

dmax(x,G∪H),

where G and H are clusters and dmax(x,G ∪H) is the maximum distance between the point x

and a point in cluster G∪H. This linkage measures the minimax radius of the resulting merged

cluster. The most central point of the merged cluster (in terms of minimizing dmax) is called

prototype. Minimax hierarchical clustering is proved to have many desirable properties including

interpretability and robustness (see Bien and Tibshirani 2011 for more details). In our applications,

we can restrict the minimax radius of the obtained clusters by cutting the dendrogram at a certain

height. Thus, each resulting cluster contains only locations that are within a certain distance from

each other.

Figure 8 A dendrogram with 5 locations (Bien and Tibshirani 2011)

We choose to cut the dendrogram at height 0.15, which implies that the radius of the resulting

clusters can not exceed 0.15 km. It corresponds to the average street block size in the inner ring

of Shanghai (Pan and Cao 2015). Therefore, we obtain a total of 97 clustered locations, with each

cluster roughly represents a block. On a typical day, orders are received from 40 out of these 97

clusters in the busy period.

Sample Generation and Estimation : An important input to SAA models is the set of samples

of service times at different locations. We generate samples by bootstrapping from observed set

of service times at each (clustered) location. As the distribution of service time does not exhibit

normal behavior, bootstrapping is helpful in approximating the distribution without analytical

functional assumptions. In the case of robust model, sample mean and variance are estimated from

observations to construct the ambiguity set.

7.1. Model Evaluation

We compare the performance of the assignment policy produced by the DOA models with two

benchmark models that assume drivers follow the shortest-distance routes. With the shortest route
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assumption, the order assignment model essentially becomes a stochastic vehicle routing problem

with stochastic service times (SVRP). Similar to the DOA models, we can formulate a SAA model

of SVRP and its distributionally robust counterpart to minimize the worst-case expected delays.

We refer to the benchmarks as VRP-based models — VRP-SAA for a SAA model and VRP-DRO

for a DRO model. Note that our calculation of delay does not account for the return trip from the

last visited location to the depot. As discussed in Section 3.3, we introduce a dummy node into the

location network, which helps drop the return trip from the route. We employ the commonly used

illegal subtour elimination scheme in solving SVRP (see Laporte et al. 1992 for more details). Both

the benchmark VRP-SAA and VRP-DRO models are solved with the branch-and-price algorithm,

which has been shown to be an efficient exact method of solving VRPs (Fukasawa et al. 2006).

Please refer to the detailed formulations of VRP-SAA and VRP-DRO in the Appendix.

To assess the out-of-sample performance of order assignment decisions, we construct validation

sets by drawing independent samples from historical observations. We do not estimate the prob-

ability density functions as the number of observations at some locations are very limited, which

makes many parametric and nonparametric estimation methods inappropriate. For each problem

instance in the numerical test, we generate 1,000 validation sets.

In the evaluation of delays from implementing proposed solutions in the validation sets, we

need to estimate the actual delivery tour length for a set of locations, which we may have not

observed in history. Since driver’s behavior is hard to simulate, we rely on machine learning models

to accomplish this task. Based on the cross validation result in Table 2 of Section 3, support

vector regression is the leading model that gives the lowest error. Hence, we apply support vector

regression to estimate the actual delivery tour in various scenarios.

7.2. Results and Discussion

In this subsection, we report the performance of the DOA models versus the VRP-based models on

various instances. Generated instances vary by the number of customer locations and the number

of available drivers, with each combination represents a specific day in the study period. We first

apply a relatively small sample size of 30 for the SAA approach, such that those instances can

be solved within 20 minutes for both DOA-SAA and VRP-SAA, and then discuss the impact of

the sample size on their solution quality. We also test the performance of all models with different

delivery time windows. A tighter delivery time window corresponds to the case when the provider

takes urgent orders, or when food preparation delay occurs and less time is left for last mile delivery.

7.2.1. Performance Comparison. Table 5 and Table 6 present the average total delivery

delay produced by different order assignment models with a delivery time window of 80 minutes

and 60 minutes, respectively. For the instances with 80-minute delivery time window, DOA-DRO
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gives the lowest average delay among all models. In particular, it achieves smaller average delays

than VRP-DRO in all instances, with improvement varying from 33% to 70%. Similarly, DOA-SAA

outperforms VRP-SAA substantially, reducing the average delay in most of the instances by 10%

to 74%. Such performance gap is also observed in Table 6 for a relatively shorter delivery time

window. This implies the importance of incorporating driver’s routing behavior, which is ignored

in the VRP-based models. Note that for instances with a 60-minute delivery time window, DOA-

DRO still achieves the best performance overall but does not always dominate DOA-SAA. As SAA

models only consider a small number of samples in the experiments, their performance can get

better if the sample size becomes larger to capture more distributional information of the service

time. Table 7 summarizes the performance gap between DOA-SAA and VRP-SAA, and between

DOA-DRO and VRP-DRO.

Table 5 Average Performance of Different Models (80-minute Delivery Time Window)

Average Total Delay
Locations Drivers DOA-SAA VRP-SAA DOA-DRO VRP-DRO

26 6 3.063 11.899 2.115 3.152
29 7 3.782 2.824 0.951 2.610
32 7 4.538 12.881 3.469 7.059
33 7 3.875 4.321 2.617 4.463
36 8 2.090 7.129 1.371 3.189
37 8 1.291 2.158 0.231 0.762
38 8 9.725 13.067 5.276 8.220
40 8 3.679 5.576 1.604 4.479
42 9 6.527 8.163 1.652 4.093

Table 6 Average Performance of Different Models (60-minute Delivery Time Window)

Average Total Delay
Locations Drivers DOA-SAA VRP-SAA DOA-DRO VRP-DRO

26 6 21.327 32.659 20.114 27.363
29 7 9.036 22.743 8.535 15.486
32 7 20.364 32.677 25.123 27.341
33 7 19.985 30.555 16.976 23.037
36 8 14.031 20.726 12.897 22.975
37 8 8.860 9.012 7.014 9.628
38 8 36.340 53.495 34.582 54.515
40 8 22.817 43.635 30.643 30.643
42 9 21.832 37.731 20.650 28.211

To understand why VRP-based models fail to deliver satisfactory results, we compare the assign-

ment decisions produced by DOA-SAA and VRP-SAA for the 26-location instance. The evaluation
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Table 7 Average Performance Gap Between Data-driven and VRP-Based Models

SAA DRO
Time Window Mean Max Mean Max

80-minute 33.99% 74.26% 52.78% 69.72%
60-minute 35.91% 60.27% 26.69% 44.89%

on the validation set shows that the average total delay is 3.06 minutes for DOA-SAA and 11.90

minutes for VRP-SAA. The main contributors to the delay of VRP-SAA are two drivers, namely

A and B, who experience average delay of 5.60 minutes and 4.83 minutes, respectively. Based on

the validation result, driver A actually travels 7.115 km (28.46 minutes) and driver B actually

travels 7.057 km (28.23 minutes) to visit their assigned customers. However, under the modeling

assumption of VRP-SAA, the two drivers would only travel 3.619 km (14.48 minutes) and 4.127 km

(16.51 minutes). Therefore, VRP-SAA underestimates their travel time and misleads the assign-

ment decision. By contrast, DOA-SAA foresees the longer actual delivery tours and assigns the two

drivers differently from VRP-SAA to avoid severe delays. As a result, the average delay of driver

A and B following the assignment decision from DOA-SAA is reduced to only 0.08 minutes and

0.02 minutes, respectively.

7.2.2. The Impact of Sample Size. The performance of SAA depends on the number of

samples used to approximate the expected objective function value. To obtain a good quality solu-

tion, the number of samples is suggested to be growing logarithmically on the size of the feasible

set (Kleywegt et al. 2002). However, growing number of samples may make the problem com-

putationally inefficient for our application. Furthermore, since the real delivery tour is unknown,

our approximated objective function may not approach the true expected objective even when

the number of samples is sufficiently large. To understand the impact of sample size on the per-

formance of SAA models, we calculate the average total delay of SAA models on the validation

sets by varying sample sizes, as shown in Figure 9. For the two illustrated instances, DOA-SAA

achieves lower average delay than DOA-DRO, which serves as a reference and is independent of

the sample size, when the number of samples gets as large as 180. However, the performance of

VRP-SAA does not necessarily improve as the sample size grows. For the second instance in Figure

9, the average delay of VRP-SAA becomes larger as the sample size increases from 30 to 120. One

possible reason is that the objective value of VRP-SAA becomes more biased when the number of

samples becomes larger, again due to the ignorance of driver’s routing behavior. Consequently, the

solution to VRP-SAA can “overfit” to the samples and deviate from the true optimal solution. In

contrast, the objective value of DOA-SAA is less biased and is closer to the true objective value.

Thus, its solution is able to approach the true optimal solution for large sample size.
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Figure 9 Impact of sample size on SAA models (delivery time is 80 minutes)

7.2.3. Staffing Considerations. One way to reduce the delivery delay is to expand the fleet

size by hiring more drivers. To determine the optimal staffing level, the company needs to weigh

the benefit from reduced delivery delays with increased wage payment to drivers. Based on the

DOA models, we can evaluate the delivery performance with different staffing levels. Figure 10

shows how the average total delay changes with the number of dispatched drivers in two SAA

models: DOA-SAA and VRP-SAA with sample size of 180. As more drivers are dispatched, the

order assignment solution from DOA-SAA yields lower average delivery delay. When the delivery

time window is 80 minutes, DOA-SAA’s solution achieves an average total delay that is less than

5 minutes with only 6 drivers, for both instances of 29 and 26 locations. When the allowable time

window reduces to 60 minutes, DOA-SAA needs 8 drivers to ensure the average delay does not

exceed 5 minutes. However, applying VRP-SAA can cause unnecessary overstaffing for achieving

the same service goal. As shown in Figure 10b and 10d, VRP-SAA requires 10 and 9 drivers to

reduce the average total delay to less than 5 minutes for both instances, which are higher than

the corresponding staffing levels according to DOA-SAA. In addition, increasing the staffing level

does not always lead to improved delivery performance for VRP-SAA. As observed in Figure 10a

and 10b, the performance of VRP-SAA is even worsen off as a result of adding more drivers. This

result seems counterintuitive, but as we argue before, optimizing a biased objective function can

give very poor solutions. Recall that the performance is evaluated out-of-sample. It is likely that

the benefit from adding a driver is offset by the loss from a worse order assignment decision from

a biased model. Consequently, it is indeed necessary to employ DOA-SAA, instead of VRP-SAA,

to capture driver’s routing behavior in the order assignment and staffing decisions. Finally, by

comparing Figure 10a and 10b (and also Figure 10c and 10d), the performance gap between DOA
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and VRP-based models widens under more stringent delivery requirement– with less drivers and

shorter delivery time window.
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Figure 10 Average total delay with different staffing levels (DOA-SAA and VRP-SAA with sample size = 180)

8. Conclusion

In this study, we proposed a data-driven approach to model and solve the order assignment problem

faced by last mile delivery service providers. Using the delivery data set from a food service provider

in China, we identified driver’s routing behavior that deviate from theoretical shortest-distance

tour and constructed a delivery tour length prediction function based on the historical data.

In view of uncertain service time, we incorporated the delivery tour prediction function into

a stochastic optimization model for order assignment, whose SAA counterpart can be solved as

a mixed-integer linear program via reformulation. We also developed a distributionally robust
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optimization model to account for the scarcity of observations in historical data, and further derived

a computationally tractable SOCP formulation based on the independence in service time. To solve

both models efficiently, a branch-and-price algorithm is proposed by utilizing the problem structure

in order assignment.

The performance of our proposed DOA models were benchmarked with the corresponding VRP-

SAA and VRP-DRO models that use the classical VRP formulation. Our results showed that

DOA-DRO outperformed all other models with the lowest average delay when the delivery time

window was 80-minute and both DOA models performed better than their VRP-based counterparts

under tighter delivery time window, e.g., 60 minutes. We also analyzed the impact of sample

size and found that DOA-SAA might achieve lower average delay than DOA-DRO with a large

number of samples, however, at the cost of increasing computation time. VRP-SAA model was less

satisfactory and the performance of VRP-SAA did not necessarily improve as the sample size grew,

potentially due to its misalignment with driver’s actual routing behavior. Finally, we observed that

DOA-SAA model captured the evolution of delay with varying staffing levels more accurately, while

the solution from VRP-SAA might give misleading results. The accurate estimation of delay with

variable number of drivers facilitates the firm’s planning its staffing level.

This paper considered the firm that dispatches orders to the drivers after orders have been

prepared. While such order assignment is responsive to the demand realization and improves the

utilization of drivers, it require extra efforts in operations and technology from the service provider,

compared to the static order assignment strategy: first divide the service region and dedicatedly

allocate drivers to their own subregions, e.g., delivery zoning and territory partitioning (e.g., Carls-

son 2012, Carlsson and Delage 2013). The practical advantage of static order assignment is that

drivers become more familiar and effective in visiting their assigned customer locations, which leads

to a smoother delivery experience. Therefore, a natural extension is to develop a data-driven static

order assignment model. A key challenge arises from the static order assignment is the uncertainty

in customer locations to visit in each batch, in addition to the uncertainty in service time. While

our SAA model can be directly extended using indicators for customer location realizations in all

samples, it would be interesting to study a DRO model for static order assignment with both layers

of uncertainties in customer location and service time.
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Hekimoğlu, Mert Hakan, Burak Kazaz, Scott Webster. 2016. Wine analytics: Fine wine pricing and selection

under weather and market uncertainty. Manufacturing & Service Operations Management 19(2) 202–

215.

Hoeffding, Wassily. 1948. A non-parametric test of independence. The annals of mathematical statistics

546–557.

Holland, Chuck, Jack Levis, Ranganath Nuggehalli, Bob Santilli, Jeff Winters. 2017. Ups optimizes delivery

routes. Interfaces 47(1) 8–23.



38 Liu et al.: Data-driven Order Assignment for Last Mile Delivery

Jaillet, Patrick, Jin Qi, Melvyn Sim. 2016. Routing optimization under uncertainty. Operations research

64(1) 186–200.

Klapp, Mathias A, Alan L Erera, Alejandro Toriello. 2016. The one-dimensional dynamic dispatch waves

problem. Transportation Science 52(2) 402–415.

Kleywegt, Anton J, Alexander Shapiro, Tito Homem-de Mello. 2002. The sample average approximation

method for stochastic discrete optimization. SIAM Journal on Optimization 12(2) 479–502.

Kong, Nan, Andrew J Schaefer, Brady Hunsaker, Mark S Roberts. 2010. Maximizing the efficiency of the

us liver allocation system through region design. Management Science 56(12) 2111–2122.

Laporte, Gilbert. 2007. What you should know about the vehicle routing problem. Naval Research Logistics

(NRL) 54(8) 811–819.

Laporte, Gilbert, Francois Louveaux, Hélène Mercure. 1992. The vehicle routing problem with stochastic

travel times. Transportation science 26(3) 161–170.

Lim, Michael K, Ho-Yin Mak, Zuo-Jun Max Shen. 2016. Agility and proximity considerations in supply

chain design. Management Science 63(4) 1026–1041.

Lima, Antonio, Rade Stanojevic, Dina Papagiannaki, Pablo Rodriguez, Marta C González. 2016. Under-
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Appendix. Proofs and Detailed Formulation

Proofs of Lemma 1 and Proposition 2

Proof of Lemma 1 By strong duality of maxPk∈Fk
EPk

[
T̃k +hk

]+
, we have

min
λk,ηk,θk

λk + ηk
∑
i∈I

µiyik + θk
∑
i∈I

σ2
i yik

s.t. λk + ηkT̃k + θk

(
T̃k−

∑
i∈I

µiyik

)2

≥
[
T̃k +hk

]+
, ∀T̃k ∈R.

It is equivalent to

min
λk,ηk,θk

λk + ηk
∑
i∈I

µiyik + θk
∑
i∈I

σ2
i yik

s.t. λk + ηkT̃k + θk

(
T̃k−

∑
i∈I

µiyik

)2

≥ T̃k +hk, ∀T̃k ∈R,

λk + ηkT̃k + θk

(
T̃k−

∑
i∈I

µiyik

)2

≥ 0, ∀T̃k ∈R.

From the constraints, we observe that θ must be nonnegative. Otherwise, the quadratic constraints will

be violated by large values of T̃k. We rewrite the first constraint as:

min
T̃k∈R

λk + (ηk− 1)T̃k + θk

(
T̃k−

∑
i∈I

µiyik

)2

≥ hk.

Since the left-hand-side can be solved, it becomes:

λk + (ηk− 1)
∑
i∈I

µiyik−
(ηk− 1)2

4θk
≥ hk

≡
{(

λk + (ηk− 1)
∑

i∈I µiyik−hk + θk
)2 ≥ (λk + (ηk− 1)

∑
i∈I µiyik−hk− θk

)2
+ (ηk− 1)2

λk + (ηk− 1)
∑

i∈I µiyik−hk ≥ 0.

Similarly, the second constraint is equivalent to

λk + ηk
∑
i∈I

µiyik−
η2k
4θk
≥ 0

≡
{(

λk + ηk
∑

i∈I µiyik + θk
)2 ≥ (λk + ηk

∑
i∈I µiyik− θk

)2
+ η2k

λk + ηk
∑

i∈I µiyik ≥ 0.

Thus, the inner problem is equivalent to the optimization problem with second-order cone constraints, as

provided in the proposition. �

Proof of Proposition 2 From the results in Lemma 1, the distributionally robust optimization prob-

lem (25) can be reformulated as

min
Y,λ,η,θ

∑
k∈K

[
λk + ηk

∑
i∈I

µiyik + θk
∑
i∈I

σ2
i yik

]

s.t. hk =
lk
v
− τ,∀k ∈K,(

λk + (ηk− 1)
∑
i∈I

µiyik−hk + θk

)2

≥

(
λk + (ηk− 1)

∑
i∈I

µiyik−hk− θk

)2

+ (ηk− 1)2,∀k ∈K,
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λk + (ηk− 1)
∑
i∈I

µiyik−hk ≥ 0,∀k ∈K,(
λk + ηk

∑
i∈I

µiyik + θk

)2

≥

(
λk + ηk

∑
i∈I

µiyik− θk

)2

+ η2k ,∀k ∈K,

λk + ηk
∑
i∈I

µiyik ≥ 0,∀k ∈K,

θ≥ 0,

Constraints in DOA-SAA.

We replace λk + ηk
∑

i∈I µiyik = %k and simplify the above program as:

min
Y,η,θ,%

∑
k∈K

[
%k + θk

∑
i∈I

σ2
i yik

]

s.t. hk =
lk
v
− τ,∀k ∈K,(

%k−
∑
i∈I

µiyik−hk + θk

)2

≥

(
%k−

∑
i∈I

µiyik−hk− θk

)2

+ (ηk− 1)2,∀k ∈K, (28)

%k−
∑
i∈I

µiyik−hk ≥ 0,∀k ∈K, (29)

(%k + θk)
2 ≥ (%k− θk)2 + η2k ,∀k ∈K, (30)

%k, θk ≥ 0,∀k ∈K, (31)

Constraints in DOA-SAA.

Now we consider the above minimization problem with fixed Y . After fixing Y , the resulting minimization

problem boils down to K independent subproblems, which corresponds to K drivers. Let the KKT multipliers

be α1, α2, . . . , α5 ≥ 0 (the subscript k is dropped here for brevity), corresponding to constraints (28)-(31).

The stationarity conditions can be written as follows:

1 = 4θkα1 +α2 + 4θkα3 +α4, (32)

0 =−2(ηk− 1)α1− 2ηkα3, (33)∑
i∈I

σ2
i yik = 4(%k−

∑
i∈I

µiyik−h)α1 + 4%kα3 +α5. (34)

First, we show that %k > 0 and θk > 0: 1) If %k = 0, then from constraints (30) we have ηk = 0. It follows

that α1 = 0 based on the stationarity condition (33). Then from (34), α5 =
∑

i∈I σ
2
i yik > 0. Hence θk = 0 by

the complementary slackness, which indicates that ηk = 1 from constraints (28). Thus we get a contradiction.

2) If θk = 0, constraints (28) imply that ηk = 1 while constraints (30) imply ηk = 0, which generates a

contradiction. As a result, %k and θk must be both positive, and α4 = α5 = 0.

Second, we prove that %k >
∑

i∈I µiyik + hk by contradiction. If %k =
∑

i∈I µiyik + hk, ηk = 1 as implied

by constraints (28). Then from the stationarity condition (33), we have α3 = 0. It follows that the RHS of

constraint (34) is zero while the LHS is strictly positive. Hence %k >
∑

i∈I µiyik + hk, and α2 = 0 by the

complementary slackness.
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We can now rewrite the stationarity conditions as:

1 = 4θk(α1 +α3), (35)

2α1 = 2ηk(α1 +α3), (36)∑
i∈I

σ2
i yik = 4(%k−

∑
i∈I

µiyik−h)α1 + 4%kα3. (37)

Next we can show that α1, α3 > 0 by contradiction: 1) If α1 = 0, then we have θk, α3 > 0 from (35) and

ηk = 0 from (36). However, by the complementary slackness, α3 = 0 indicates (%k + θk)
2 = (%k − θk)2, which

is impossible as both %k and θk are positive. 2) If α3 = 0, stationarity conditions (35) and (36) imply that

α1 = 1/2θk > 0 and ηk = 1. By the complementary slackness, constraints (28) must be satisfied at the equality,

so ρk =
∑
i∈ Iµiyik + hk (recall θk > 0). Then the RHS of (37) is zero while the LHS is strictly positive,

which leads to a contradiction. Consequently, we have both α1 and α3 are positive. Then the complementary

slackness implies:

4(%k−
∑
i∈I

µiyik−h)θk = (ηk− 1)2, (38)

4%kθk = η2k . (39)

Then we can solve for %k, θk, ηk and α1, α3 using the above five equations (35)-(39):

%k =

[∑
i∈I µiyik +hk +

√
(
∑

i∈I µiyik +hk)2 +
∑

i∈I σ
2
i yik

]2
4
√

(
∑

i∈I µiyik +hk)2 +
∑

i∈I σ
2
i yik

, (40)

ηk =

∑
i∈I µiyik +hk +

√
(
∑

i∈I µiyik +hk)2 +
∑

i∈I σ
2
i yik

2
√

(
∑

i∈I µiyik +hk)2 +
∑

i∈I σ
2
i yik

, (41)

θk =
%k− (

∑
i∈I µiyik +hk)ηk∑
i∈I σ

2
i yik

. (42)

As a result, we have

%k + θk
∑
i∈I

σ2
i yik =

∑
i∈I

µiyik +hk +

√
(
∑
i∈I

µiyik +hk)2 +
∑
i∈I

σ2
i yik. (43)

So the original robust optimization formulation equals to:

min
Y,ρ

∑
k∈K

[
ρk +

∑
i∈I

µiyik +hk

]

s.t. hk =
lk
v
− τ,∀k ∈K,

ρ2k ≥
∑
i∈I

σ2yik + (
∑
i∈I

µiyik +hk)
2,∀k ∈K,

Constraints in DOA-SAA.

The second constraints can be transformed to

ρ2k ≥
∑
i∈I

σ2y2ik + (
∑
i∈I

µiyik +hk)
2,∀k ∈K,

by utilizing the fact that yik is binary. Thus, the resulting optimization model is a MISOCP. �
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The Formulation of One-Way Traveling Salesman Problem

Given the set of realized customer locations V ⊂ I and the depot node 0, we also introduce a dummy

node 0′ to facilitate the one-way travel distance calculation. Define a complete arc set AV on the node set

V ′ = V ∪ {0,0′} and each arc (i, j)∈AV is associated with a distance dij . The distance between the dummy

node and all other nodes are 0, i.e. d0′i = di0′ = 0 for i∈ V∪{0}. The decision variables are binary variables ζij

that indicate whether the driver travels arc (i, j)∈AV . The formulation for the one-way traveling salesman

problem is

min
∑

(i,j)∈A

ζijdij , (44)

∑
j∈I′

ζij = 1, ∀i∈ I, (45)∑
j∈I′

ζji = 1, ∀i∈ I, (46)∑
i∈I

ζ0i = 1, (47)∑
i∈I

ζi0′ = 1, (48)

ζ0′0 = 1, (49)∑
i,j∈S

ζij ≤ |S| − 1, ∀S ⊂I ′, 2≤ |S| ≤ I. (50)

Constraints (45) and (46) are degree (flow) constraints for customer nodes. Constraint (47) ensurse that

the route begins from the depot. Constraint (48) specifies that the dummy node is entered once from the

customer nodes and constraint (49) requires the route returns to the depot through the dummy node so no

return trip cost is incurred. Constraints (50) are subtour elimination constraints that prevents the formation

of illegal subtours. We implement the subtour elimination constraints as lazy constraints in Gurobi.

The Detailed Description of SP in the Branch-and-Price Algorithm

Constraints of DOA-SAA The complete set of constraints in the pricing subproblem of DOA-SAA is:∑
i∈I

ȳi ≤N (51)

c(ȳ) =
∑
s∈S

ws, (52)

ωs ≥
∑
i∈I

tsi ȳi +
l

v
− τ, ∀s∈ S (53)

ωs ≥ 0, ∀s∈ S, (54)

l=

N∑
j=0

fj , (55)

D+
j uj ≥ fj ≥D−j uj , ∀j ∈ {1, . . . ,N}, (56)

β0d+β1a+β2b+β3a
√
j− 1 +β4b

√
j− 1 +β5n−D−j (1−uj)≥ fj , ∀j ∈ {1, . . . ,N}, (57)

fj ≥ β0d+β1a+β2b+β3a
√
j− 1 +β4b

√
j− 1 +β5n−D+

j (1−uj), ∀j ∈ {1, . . . ,N}, (58)

d=
∑
i∈I

d̂ix̄i, ∀k ∈K, (59)



Liu et al.: Data-driven Order Assignment for Last Mile Delivery 43

∑
i∈I

x̄i ≥ ȳi, ∀i∈ I, (60)

x̄i ≤ ȳi, ∀i∈ I, (61)

n=

N∑
j=0

j ·uj , (62)

N∑
j=0

uj = 1, (63)

a= ā+ a≥ 0, (64)

b= b̄+ b≥ 0, (65)

ā≥ lati · ȳi, ∀i∈ I, (66)

a≥−lati +M(ȳi− 1), ∀i∈ I, (67)

b̄≥ longi · ȳi, ∀i∈ I, (68)

b≥−longi +M(ȳi− 1), ∀i∈ I, (69)

uj ∈ {0,1}, ∀j ∈ {0,1, ...,N}, (70)

ȳi ∈ {0,1}, ∀i∈ I. (71)

The constraints have similar meanings to those in the original DOA-SAA except that the zone subscript is

removed.

Constraints of DOA-DRO In DOA-DRO, the delay cost c(ȳ) has a different form than DOA-SAA but

the constraints defining the travel distance l remains the same. So the complete set of constraints in the SP

of DOA-DRO can be stated as ∑
i∈I

ȳi ≤N, (72)

c(ȳ) = ρ+h+
∑
i∈I

µiȳi, (73)

h=
l

v
− τ, (74)

ρ2 ≥
∑
i∈I

σ2y2i +

(∑
i∈I

µiyi +h

)2

, (75)

Constraints (55)-(71). (76)

Constraints of VRP-SAA In addition to the set of customer locations I and the depot node 0, a dummy

node 0′ is added as in the one-way TSP formulation. Similarly, we define a complete arc set A on the node

set I ′ = I ∪{0,0′} and each arc (i, j)∈A is associated with a distance dij . The distance between the dummy

node and all other nodes are 0, i.e. d0′i = di0′ = 0 for i∈ I ∪{0}. In the pricing subproblem of VRP-SAA, the

decision variables are binary variables ζij that indicate whether the driver travels arc (i, j) ∈ A, as well as

the variables ȳi that indicate whether customer i is covered in this route. The detailed formulation is given

as follows: ∑
i∈I

ȳi ≤N, (77)
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c(ȳ) =
∑
s∈S

ws, (78)

ωs ≥
∑
i∈I

tsi ȳi +
l

v
− τ, ∀s∈ S, (79)

l=
∑

(i,j)∈A

ζijdij , (80)

∑
j∈I′

ζij = ȳi, ∀i∈ I, (81)∑
j∈I′

ζji = ȳi, ∀i∈ I, (82)∑
i∈I

ζ0i = 1, (83)∑
i∈I

ζi0′ = 1, (84)

ζ0′0 = 1, (85)∑
i,j∈S

ζij ≤ |S| − 1, ∀S ⊂I ′, 2≤ |S| ≤ I. (86)

Constraints (81)-(86) play the same roles as in the one-way TSP formulation.

Constraints of VRP-DRO The constraints in the pricing subproblem of VRP-DRO can be obtained by

combining the constraints from DOA-DRO and VRP-SAA: (72)-(75) and (80)-(86).


