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Motivated by online advertising, we model and analyze a revenue management problem where a platform

interacts with a set of customers over a number of periods. Unlike traditional network revenue management,

which treats the interaction between platform and customers as one-shot, we consider stateful customers

who can dynamically change their goodwill towards the platform depending on the quality of their past

interactions. Customer goodwill further determines the amount of budget that they allocate to the platform

in the future. These dynamics create a trade-off between the platform myopically maximizing short-term

revenues, versus maximizing the long-term goodwill of its customers to collect higher future revenues. We

identify a set of natural conditions under which myopic policies that ignore the budget dynamics are either

optimal or near-optimal; such simple policies are particularly desirable since they do not require the platform

to learn the parameters of each customer dynamic and only rely on data that is readily available to the

platform. We also show that, if these conditions do not hold, myopic and finite look-ahead policies can perform

arbitrarily poorly in this repeated setting. From an optimization perspective, this is one of a few instances

where myopic policies are optimal or near-optimal for a dynamic program with non-convex dynamics.
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1. Introduction

In many revenue management domains, including online advertising, on-demand services, hospi-

tality and airlines, a platform sells a limited volume of products to a portfolio of customers. The

associated pricing and allocation decisions can be broadly grouped under the umbrella term net-

work revenue management (NRM). NRM has been given significant attention in the operations

literature (see Talluri and Van Ryzin 2005, Phillips 2005, for surveys of the field) and deployed

successfully in a wide range of commercial pricing and yield management systems.

Much of the NRM related research assumes that there is a single, short interval in which cus-

tomers interact with the platform to potentially purchase a product. Hence, the NRM problem is

formulated as a one-shot resource allocation problem. While this approach is well-understood and

1
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highly tractable, the one-shot treatment of the underlying system is not consistent with the concept

of customer lifetime value. The idea of customer lifetime value has come to prevail in marketing

(Gupta et al. 2006, Gupta and Lehmann 2008, Reinartz and Venkatesan 2008), where the key goal

is to optimize decisions with respect to the aggregate value of the customer over his/her entire

lifetime rather than during a one-shot interaction.

The customer lifetime value is relevant to numerous revenue management applications where

customer interactions occur repeatedly over a long period of time, where the aggregate value of

a profitable customer might dwarf the revenues that can be derived from a single interaction

(providing the platform is able to retain its profitable customers). Thus, a decision that is seemingly

optimal over the current period could in fact decrease customer goodwill towards the platform and

reduce the value of their future business with the platform; such a decision could be highly sub-

optimal over the entire customer’s lifetime. At the same time, new technologies enable platforms

to track customer trajectories and gather data on how goodwill is affected by past allocation

decisions; this has made it practically feasible to incorporate such goodwill effects into a revenue

management system. Our work can thus be seen as an attempt to model and then operationalize

customer lifetime value considerations.

At an operational level, customer goodwill is the lever through which customer lifetime value can

be managed. The customer’s goodwill drives future interactions between customer and platform

in addition to being dependent on their past history of interactions. We model goodwill as a

state that evolves dynamically over time, whereby repeated interactions between platform and

customers become a sequence of distinct network revenue management problems, coupled by this

dynamic state variable. We call this the repeated network revenue management (RNRM) problem,

as opposed to classic one-shot problem.

Repeated RM in online advertising. Although our model is generic, our structural assumptions

are grounded in the online advertising domain. The customers are advertisers who run campaigns

via online advertising platforms. A platform can repeatedly interact with a given customer over

hundreds of different campaign cycles. The corresponding RNRM problem evolves in discrete time.

There are T periods over which the platform interacts with a fixed pool of heterogeneous customers

indexed by j. At the start of each period, the platform has a limited but known supply of heteroge-

neous products (impressions), indexed by i, to be allocated to the customers. Each customer j has

a valuation vij and there is a pre-specified price pij for each product i that can be allocated to cus-

tomer j. At the start of a single period t, each customer decides the budget bj,t they are willing to

spend on their period t campaign. Subsequently, the platform decides how to allocate products to

customers taking into account their budget constraints. In the next period, the campaign budgets

are revised and the process repeats with a renewed supply of products.
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A customer’s state is specified by the budget bj,t. In online advertising, where it is relatively

frictionless for customers to switch between competing advertising platforms depending on their

expectations of campaign fulfillment quality, the budget they commit to an advertising campaign

serves as a proxy for their goodwill towards any specific platform. There is anecdotal evidence that

advertisers change their budgets from one campaign to another as a function of the quality of their

past experiences with the platform (Wilkens et al. 2017). Mathematically, we assume that customers

update their budgets over time according to a deterministic state update function which increases

or decreases the budget for the next period depending on the quality of the impression allocation

received in the last campaign period. We denote the quality of the allocation that customer j

receives in time t by qj,t, which we formally define in Section 3. Informally, the budget of customer

j at time t+ 1 is some function

bj,t+1 = φj(bj,t, qj,t).

Given the budget dynamics specified by {φj}1≤j≤m, the task is to find a sequence of allocations

that maximizes the total platform revenues over T periods.

Quantifying customer goodwill effects on the platform’s bottom-line adds considerable complex-

ity to the underlying network revenue management problem:

• Firstly, while one-shot network revenue management is very well understood and offers several

prescriptions and policies, such as Talluri and Van Ryzin (1998), that are both theoretically

near-optimal and practically tractable, one would not expect these to remain sound in a multi-

period setting. In particular, when customer goodwill effects are large, such myopic policies

which are inherently short-term looking, have the potential to leave significant revenue on the

table in the aggregate.

• At the same time, more sophisticated policies aimed at capturing these effects could be imprac-

tical to implement, or even compute. One concern is the amount of customer information that

more sophisticated policies would require, such as the shape of individual customer goodwill

dynamics, or customer valuation information. To obtain this would involve either designing

incentive-compatible mechanisms to solicit the information from customers themselves, or a

procedure to estimate them from previously collected data at the customer level. While tech-

nologies such as web browser cookies allow platforms to match the identity of a customer over

many time-differentiated interactions, this approach brings its own difficulties, including the

cost of tracking individual customers, and the increasing governmental scrutiny of what data

is collected and how it is used. 1

1 An example of this are the European Union’s recent General Data Protection Regulation (GDPR), governing the
usage of algorithms that employ customer-level data.
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In light of these challenges, the central issue we address is how to design policies for the RNRM prob-

lem that (i) admit revenue performance guarantees, and (ii) are similar, from an implementability

standpoint, to existing one-shot network revenue management policies.

1.1. Main Contributions

For the model broadly described above, our paper makes the following contributions:

Parametrized performance guarantees for the myopic policy. By ‘myopic’ we mean a policy

which ignores customer dynamics and solves each individual NRM problem separately and without

regard to its impact towards future periods (in other words, it treats the problem as one-shot). As

alluded to in the above, such policies are desirable in terms of tractability and simplicity.

We identify sufficient regularity conditions on the RNRM problem structure such that the myopic

policy is a constant factor approximation of the optimum. Intuitively, the necessary conditions

require similarity in the ‘bang-per-buck’ across all the products that a given customer desires: for

the goods valued by customer j, all vij/pij bang-per-buck ratios lie within a constant range that

is specific to that customer j. More precisely, there exists a constant 0≤ γ < 1 such that

min
i

{
vij
pij

}
− 1≥ (1− γ) ·

(
max
i

{
vij
pij

}
− 1

)
,

where the minimum is taken over i such that vij > 0. In this case, we show that the myopic policy

garners at least a (1−γ) fraction of what the optimal policy can achieve, regardless of the horizon

length, number of products and customers, etc. We emphasize that the platform does not need

to know the exact ratio vij/pij for all items and customers for our result to hold. Also, through

numerical experiments, we show that the performance of the myopic policy is often significantly

higher than the (1−γ) bound, although there are certain problem instances where the performance

of the myopic policy is near the bound.

Sufficient conditions for the optimality of the myopic policy. We show that if γ = 0, i.e. if

the bang-per-buck ratios are a constant specific to each customer, then our results imply that the

myopic policy is guaranteed to be optimal for the RNRM problem. While this assumption restricts

the generality of our model, it is consistent with contracts in the online advertising industry where

advertisers treat a certain population with specific features as fully homogeneous. Moreover, these

results hold for heterogeneous budget updates chosen from a general class of functions. For example,

one customer may be very sensitive to the service quality received, while another could be entirely

insensitive to it.

We emphasize that both of these results are surprising, since they imply that the platform can

ignore goodwill effects and apply the same prescriptions suggested by one-shot network revenue

management models with a limited or no loss of optimality.
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From an optimization perspective, our results on the optimality or near-optimality of myopic

contribute to the dynamic optimization literature and are, to the best of our knowledge, one of the

few instances where one can prove such results for a dynamic program with non-convex dynamics.

The technical insight that underlies our result is that, when our assumptions hold, the problem

satisfies what one could call a “dynamic complementary slackness” property (cf. Proposition 3).

Hardness results. In contrast, we show that if we remove all the regularity assumptions on bang-

per-buck ratios, then both the myopic as well as any finite look-ahead heuristics can accrue an

arbitrary loss of performance with respect to the optimal policy in the RNRM problem. To prove

this we develop a family of problem instances for which we can construct feasible policies which

garner arbitrarily more revenues than myopic or look-ahead, while at the same time being lower

bounds for the true optimum. These lower bound policies accrue revenues in a highly non-smooth

fashion, purposefully depleting customer budgets over many periods only to set themselves up for

a one-time, large increase in budgets (and accordingly, revenues) at the end of the time horizon.

Our bang-per-buck regularity conditions stated above, which allow performance guarantees for the

myopic policy, can be interpreted as ensuring that the per-period revenue function remains smooth

enough over the course of the time horizon to invalidate this type of behavior.

Although, in the worst case, look-ahead policies can perform as poorly as myopic, their ability

to account for customer dynamics allows them to outperform myopic on some problem instances,

though at the cost of additional informational and computational burdens.

Characterization of the efficiency of policies that use limited customer data. A crucial

advantage of the myopic policy is practicality. Its implementation only requires knowledge of the

current budget configuration bt, but not of the budget update functions φj(·, ·) nor of the customer

valuation vectors vj. Consequently, even though the underlying customer-level dynamics can be

complicated and heterogeneous, the algorithm itself is completely oblivious to their specification,

reducing the platform’s need to track customer-level data. Alternative policies which track customer

goodwill dynamics (such as, for example, look-ahead policies) presumably require knowledge of

this information, which may be difficult for the platform to acquire.

More generally, our model asks whether having more granular data on customer behavior, such

as the history of customer interactions with the platform and information on how customers value

these interactions, can lead to better decision-making. We identify conditions such that using

policies which are completely agnostic to this finer grained data induces a limited loss from the

perspective of the platform’s long-term revenues. Moreover, we also show that in the absence of

these conditions such policies can perform arbitrarily badly. We believe that the question of whether

such simple and partially data-agnostic policies can perform well for complex systems is of broad

interest to the operations management literature and that our work will inspire additional research

on this topic.
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2. Literature Review

Our work has links to several existing streams of literature. On the one hand, our problem is

solvable by dynamic programming (DP), a method that has received intense attention in recent

decades. On the other hand, our problem is a network revenue management or resource allocation

problem familiar to the operations management community. Lastly, there is a burgeoning literature

on customer behavior in systems where there are repeated interactions. Our literature review is

therefore organized around these three streams.

Dynamic programming. Our problem is formulated as a shortest path dynamic program and

could, in principle, be solved via dynamic programming techniques. Solving DPs via the standard

Bellman recursion suffers from the well-known “curse of dimensionality”, hence research on this

topic focuses on either finding heuristics to arrive at good approximations of optimal policies, or

on identifying certain structural properties that guarantee simple policies perform well.

Good heuristics for solving such problems are often be designed via approximate dynamic pro-

gramming (ADP), where the general approach is to construct an approximation architecture to the

value function that is amenable to efficient computation. Among work on ADP methods, we point

the reader to surveys by Bertsekas (1995) and Powell (2007), as well as to some recent papers on

linear-optimization-based approaches to ADP, such as De Farias and Van Roy (2003, 2004), Desai

et al. (2012). A particular sub-stream in the ADP literature is the idea of a weakly-coupled dynamic

program, a special class of Markov Decision Processes (MDPs) which can be viewed as a collection

of “easy” sub-problems linked together by a constraint on a single state variable. Hawkins (2003)

and Adelman and Mersereau (2008) provide ADP-based heuristics for such problems. Bertsimas

and Mǐsić (2016) explore this sub-problem structure but use a fluid based heuristic. Our problem

has a similar weakly-coupled structure in the sense that each period is an individual sub-problem

and the various periods are linked together by the vector of customer goodwills. However, the

heuristics in this literature stream, such as in Adelman and Mersereau (2008), do not yield per-

formance guarantees or computationally tractable approaches for our specific problem.2 Instead,

we focus on simple policies which can be shown to have guaranteed performance for our particular

problem structure.

An alternative approach to solving DPs is to impose certain structural assumptions that guaran-

tee the optimality of simple policies as hinted at above. Denardo and Rothblum (1983) and Sobel

(1990a,b) examine DPs with affine structure and provide conditions for the optimality of myopic

policies. More recently, Ning and Sobel (2018) characterize the class of decomposable affine MDPs.

2 For example, the Lagrangian relaxation developed in Adelman and Mersereau (2008) can be shown to not be tight
unless one uses time dependent dual variables.
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Similar to our model, these MDPs have continuous multidimensional endogenous states and actions.

Assuming polyhedral properties of the decomposed sets of feasible actions and affine dynamics and

rewards, Ning and Sobel (2018) show that decomposable affine MDPs have an affine value function

and an extremal optimal policy, determined by solving a system of auxiliary equations. While our

conclusions are similar in spirit, the state transition in our model evolves in non-linear, non-convex

fashion. To the best of our knowledge, ours are the first such results for non-linear systems.

Revenue management and online resource allocation. The classical literature on NRM and

resource allocation problems considers a setting in which a platform optimizes the allocation of

a finite inventory of resources to a pool of heterogeneous buyers. However, the bulk of this work

models a stateless, one-shot interaction between the platform and the buyers, while we consider

dynamic customers who can change their behavior from one period to the next. Another important

difference is that when the supply of products to be allocated over the period is known ahead of

time (or in other words, deterministic), the one-shot NRM problem can be solved to optimality

via an integer program, or even a linear program, under the assumption that customer budgets

are large compared to unit prices. Thus, most of the work within this research stream has focused

on the online case, when the supply of products evolves in an uncertain fashion and the decision

maker must sequentially make irrevocable allocation decisions as the products arrive. In contrast,

our model focuses on the deterministic case, which becomes non-trivial to solve because of the

statefulness of the customers.

For network revenue management, the fluid approximations of Gallego and van Ryzin (1997)

and Talluri and Van Ryzin (1998) are of particular note. In the case where products arrive as a

point process with known rates, these yield tractable “bid-price” control policies based on linear

programming. Reiman and Wang (2008) and Jasin and Kumar (2012) provide more refined approx-

imations and heuristics which essentially improve the rates of Gallego and van Ryzin (1997), Talluri

and Van Ryzin (1998). Several alternative supply uncertainty models which fluid approximations

cannot handle have been considered. Such examples include adversarial arrivals (Karp et al. 1990,

Mehta et al. 2005, Golrezaei et al. 2014), random order arrivals (Devanur and Hayes 2009, Agrawal

and Devanur 2015) and non-stationary fluid arrivals (Ciocan and Farias 2012, Bateni et al. 2016).

In the broader revenue management literature, the last decade has brought forth some significant

results on pricing in the presence of strategic customers. In this type of work, one considers agents

who may strategize when to purchase a product in anticipation of future discounts offered by the

seller, as in Aviv and Pazgal (2008), Liu (2007), Borgs et al. (2014), Besbes and Lobel (2015),

Chen and Farias (2015), Lobel et al. (2015). While also an attempt to understand how platform

allocation and pricing policies affect customer behavior, this line of work focuses on how customers
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shift a purchase temporally; we do not model such effects and instead model how the platform can

alter the level of customer goodwill and, ultimately, the long term profits derived from customers.

Recently, Agrawal et al. (2018) investigate mechanisms for repeated auctions when an auctioneer

interacts with a buyer of limited rationality, such as a finite look-ahead buyer; while elegant, their

results only apply to a single buyer and unit auctions.

Customer behavior and operations interface. The lifetime value of a customer is a key met-

ric evaluating the impact of a customer acquisition or incentive plan. As platform-based models

increasingly permeate traditional service industries, there has been an interest among both prac-

titioners and academics to incorporate this metric into a company’s day-to-day operations.

A stream of papers closely related to ours focus on customers who change their goodwill towards

a platform over time through an exponentially smoothed update function that weighs current and

past experiences. Aflaki and Popescu (2014) examine a stylized model of a service provider inter-

acting with independent customers who remember the quality of past service, and whose retention

probability depends on the history of said service, and establish structural properties of the optimal

service rate. Recently, Kanoria et al. (2018) examine a related model where a firm chooses how to

exercise two different quality service modes to minimize customer churn. Adelman and Mersereau

(2013) model a supplier who must allocate a finite capacity of a single type of product to multiple

customers, whose demand is modulated by past fill rates; they provide ADP-based heuristics for

the supplier’s allocation policy. Technically, our paper differs from these in that we consider an

allocation problem where both customers and products are heterogeneous, which makes character-

izing the optimal policy substantially harder; also, we consider a completely deterministic model

and make no large market assumptions as in classical fluid approximations where uncertainty can

help the analysis by essentially smoothing the problem. Additionally, Adelman and Mersereau

(2013) consider the long-run average criterion in their objective function, while we explicitly focus

on maximizing the platform’s revenue in a finite horizon problem,3 allowing us to model transient

effects rather than just steady state behavior of the system. Lastly, L’Ecuyer et al. (2017) consider

an sponsored search platform which optimizes search result rankings to trade-off between extract-

ing instantaneous revenues from its users, and improving their user experience to improve future

search engine traffic.

There are other interesting streams of work at the behavioral and operations interface, such as

on loyalty programs and how they can be integrated into more traditional revenue management

frameworks, see Chun et al. (2017), Chun and Ovchinnikov (2018), as well as work on pricing with

reference effects, where customers interacting with a seller repeatedly exhibit anchoring behavior

which depends on past prices in a similar manner to our own budget dynamics, such as in Popescu

and Wu (2007), Nasiry and Popescu (2011), and Hu et al. (2016).

3 Our results can be naturally extended to the infinite horizon discounted criterion.
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3. Model

We consider a discrete time model which carries over T distinct periods. The system is endowed

with a persistent population of m heterogeneous customers. These customers interact with the

same platform at every period t. In each period, the platform has a supply of n different product

types to allocate to the pool of customers. We assume this supply is replenished at the start of

each period to some deterministic level si for product i.

Valuations and prices. Customer j has a constant valuation vij for one unit of a product of

type i, and we denote by vj customer j’s vector of valuations for products 1≤ i≤ n. The platform

allocates one unit of product type i to customer j at a time-invariant price pij; we denote by pj

the vector of prices customer j pays per unit of products 1≤ i≤ n.

Customer state. At period t, each customer j is endowed with a budget bj,t to purchase products

in that period. To simplify the exposition, we assume bj,t ∈ [0,1] for each customer j and period t.

We further denote by bt the vector of customer budgets at period t.

Control. At period t, the platform chooses the allocation xt ∈ [0, s1]
m× . . .× [0, sn]m of products

to customers from the feasible set X(bt):

n∑
i=1

pijxij,t ≤ bj,t, ∀1≤ j ≤m (1)

m∑
j=1

xij,t ≤ si, ∀1≤ i≤ n. (2)

xij,t ≥ 0, ∀1≤ i≤ n,1≤ j ≤m.

We define the vector xj,t = (x1j,t, . . . , xnj,t) to refer to the vector of allocations of products to

customer j in period t, and the feasible set Xj(bj,t) to refer to the projection of X(bt) to customer j’s

allocations. Note that we allow fractional allocations of products. In applications such as online ad

allocation where the volume of products transacted is large, it could be argued that the optimality

gap versus the best integral solution is small. Such an assumption allows us to simplify the problem

without losing any essential insights.

Platform revenues and customer utilities. In period t and for a feasible allocation xt, the

platform garners revenues

R(xt) =
n∑
i=1

m∑
j=1

pijxij,t.

We assume that customer j’s utility function is linear in her allocation. Specifically,

Uj(bj,t,xj,t) =

{∑n

i=1(vij − pij)xij,t if xj,t ∈Xj(bj,t)

0 if xj,t /∈Xj(bj,t),



 Electronic copy available at: https://ssrn.com/abstract=3200338 

Calmon, Ciocan, Romero: Revenue Management with Repeated Customer Interactions
10 Working Paper - August 2018

Additionally, for a given budget bj,t, we denote the maximum possible utility that customer j could

attain by

U∗j (bj,t) = max
yt∈Xj(bj,t)

Uj(bj,t,yt).

We emphasize that if y∗t is an optimal solution to this problem, i.e. it is feasible and attains

U∗j (bj,t), then
∑

i pijy
∗
i,t = min(bj,t,

∑n

i=1 pijsi). Namely, when computing the maximum possible

utility for customer j in period t, either the budget constraint becomes tight or all the supply that

the customer is interested in is exhausted.

Budget state dynamics. Our model of budget dynamics formalizes the concept of customer

goodwill which we introduced in Section 1. We allow budgets to evolve over time as a deterministic

process {bt}1≤t≤T specified by budget update functions φj(·, ·) which are potentially heterogeneous

across customers. We allow for a broad range of memoryless functions φj(·, ·) that depend on (i)

customer j’s current budget and (ii) the “service quality” provided to customer j in the current

period. We assume that the latter is a function of that customer’s allocation in the current period

xj,t and her available budget bj,t. Specifically, we define the service quality provided to customer j

in period t as

qj(bj,t,xj,t),


Uj(bj,t,xj,t)

U∗j (bj,t)
, if bj,t > 0

1, if bj,t = 0.

(3)

Intuitively, qj(bj,t,xj,t) is the ratio of the utility customer j garnered from her allocation xj,t and

the maximum utility she could have garnered at state bj,t, equal to U∗j (bj,t). Clearly, the definition

implies that the range of qj(·, ·) is the interval [0,1] for any xj,t ∈Xj(bj,t).

We define the service quality qj to be 1 when the budget level is 0; this is a corner case that can

be avoided by having bj,t ∈ [bmin
j , bmax

j ] for each customer j and period t, where bmin
j > 0. Although

this results in a more general formulation, it also requires additional notation to project the budget

back and forth between [bmin
j , bmax

j ] and [0,1]. For the sake of clarity, we assume that bj,t ∈ [0,1] for

each customer j and period t, although our results extend to this more general case.

As a result, the domain and range of the budget update function φj (bj,t, qj (bj,t,xj,t)) are

φj : [0,1]2 → [0,1]. To denote the updated budget state vector induced by the budget update

φj (bj,t, qj (bj,t,xj,t)), we use the vector notation φφφ (bt,q (bt,xt)). Thus, budgets over two periods

are linked by the equation

bt+1 =φφφ (bt,q (bt,xt)) .

We note several connections between our choice of service quality metric and the the broader

literature. In supply chains, the fraction of the customer’s demand that is served with the available

inventory, or fill rate, is a commonly monitored metric of supplier performance. For example, Gaur

and Park (2007) and Adelman and Mersereau (2013) study supplier systems where customers place
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orders for a homogeneous good, and use fill rates as a measure of service quality in a way that is

similar to our approach. One can think of our service quality metric qj(bj,t,xj,t) as a natural ana-

logue (in the online advertising context) to the fill rate defined in Adelman and Mersereau (2013).

Specifically, U∗j (bj,t) can be interpreted as the (best-case) utility that the advertiser demands,

whereas Uj(bj,t,xj,t) can be interpreted as the utility that is actually served to the advertiser under

the allocation xt.

A last remark is that in crafting such a model of customer goodwill one could ostensibly define

a different service quality metric than the one used here. We believe ours is the right choice for a

few reasons:

• First, our service quality metric satisfies the condition that the metric qj(·) should be increasing

in the utility derived over the set of feasible allocations that customer j can receive at their

current budget level.

• Secondly, our quality metric is scale-free in the sense that, if we change the scale of v and p

by multiplying by a common constant (i.e., as if we converted the values of v and p into a

different currency), we obtain the same quality as before; requiring scale-freeness invalidates

other candidates, such as additive metrics like Uj(bj,t,xj,t)−U∗j (bj,t).

For the sake of simplicity, our service quality metric additionally lies in the [0,1] interval, i.e.

qj(0) = 0 and qj(U
∗
j (bj,t)) = 1.

Special Budget Update Case: Exponential Smoothing. While our results require some min-

imal structure on the budget update function of each customer φj(·, ·), made precise in Assumption

1 in Section 4, our analysis accommodates a broad class of possible update functions. A natural

example is an exponentially smoothed function of the form

φj(bj, qj) = αj · bj + (1−αj) · qj, (4)

for any (bj, qj) ∈ [0,1]2 and some αj ∈ [0,1]. Note that this budget update function maintains a

convex combination of the current budget level and service quality.

The exponentially smoothed update of the type (4) has been frequently considered in the liter-

ature on customer behavior as a model for customer state dynamics. For example, Gaur and Park

(2007), Adelman and Mersereau (2013) and Aflaki and Popescu (2014) use exponential smoothing

as an update function for customer goodwill evolution, while Nasiry and Popescu (2011) and Hu

et al. (2016) use it for customer reference prices.



 Electronic copy available at: https://ssrn.com/abstract=3200338 

Calmon, Ciocan, Romero: Revenue Management with Repeated Customer Interactions
12 Working Paper - August 2018

Dynamic programming formulation. Having stated the primitives of our model, we are now

ready to formulate the platform’s optimization, which is to find a sequence of allocation policies

{xt}1≤t≤T that solve the following problem:

J∗T (b1) = max
x1,...,xT

T∑
t=1

R (xt)

s.t. xt ∈X (bt) , ∀t (5)

bt+1 =φφφ (bt,q (bt,xt)) , ∀t.

We note that the cost-to-go is indexed by the problem’s remaining horizon length. Problem (5)

is a deterministic dynamic program which, for any initial budget b and feasible allocation x, can

be solved by a Bellman recursion of the form:

J∗τ (b), max
x∈X(b)

{R(x) +J∗τ−1 (φφφ (b,q (b,x)))}, ∀ 1≤ τ ≤ T, (6)

with the boundary condition J∗0 (b) = 0.

Moreover, while we present the problem in a finite horizon setting, we emphasize that our results

can be extended to a discounted infinite-horizon version of the problem.

Finally, for any policy π, specifying a sequence of feasible allocations xπ1 , . . . ,x
π
T , we define

JπT (b1),
T∑
t=1

R(xπt ).

In particular, we now define the natural myopic policy for problem (5).

The myopic policy. As its name suggests, the myopic policy simply maximizes the platform’s

short-term revenue in each period, regardless of the customers’ budget dynamics between periods.

Thus in each period t∈ {1, . . . , T}, and given the available budgets bt, the myopic policy solves the

following linear program:

MY(bt) = max
xt

R (xt)

s.t. xt ∈X (bt) . (7)

Throughout our paper, the myopic policy is denoted by the superscript MY , i.e. xMY
t ∈X (bt)

and R (xMY
t ) = MY(bt). The myopic policy follows the natural budget update

bt+1 = φ
(
bt,q

(
bt,x

MY
t

))
.
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3.1. Model Discussion

The Bellman equation (6) emphasizes that our model captures the following trade-off: in each

period the platform must find a balance between myopically maximizing its short-term revenue in

that period, and providing a service quality to its customers that maximizes the revenue that can

be garnered in the remaining horizon. Addressing this trade-off can be difficult due to the following

model features:

1. The potential heterogeneity in the bang-per-buck
vij
pij

that different items i provide for each

customer j and the revenue that the platform collects for their allocation pij, can create a

conflict between the allocations the customers and the platform would prefer. For example,

replacing a customer’s preferred item by an alternative that garners more revenue in the

current period can, in principle, have dramatically different effects on customer utility and,

consequently, their future budget trajectories.

2. Customers can additionally be heterogeneous in their budget update functions, and in par-

ticular in the extent of their reaction to the service quality they receive, which is a function

of their utility (cf. equation (3)). Some customers may be highly sensitive to receiving low

service quality and drastically reduce their budget in the next period, e.g. the exponential

smoothing budget update function in equation (4) with αj = 0, while others may have a much

more stable budget update function, e.g. the exponential smoothing budget update function

in equation (4) with αj = 1.

Our main results in Section 4 will address the relative importance of these challenges as they

pertain to the platform’s ability to maximize its revenue using relatively simple policies.

3.2. Value Function Behavior

Although our problem is a shortest path DP, it is quite challenging to solve, both from a com-

putational, as well as a structural perspective. In this section, we provide preliminary evidence of

this by exhibiting the ill behavior of the value function of problem (5), as defined in equation (6).

Specifically, we show that the value function can be decreasing in customer budget levels, as well

as not being quasi-concave nor quasi-convex.

First, we emphasize that in equation (6) computing J1 (b1) requires solving a linear program,

while computing Jt (bt) for t ∈ {2, . . . , T} may require solving a non-convex optimization problem

due to the constraint bt+1 =φφφ (bt,q (bt,xt)). In particular, this is already the case when computing

J3 (b3) even under the simple exponential smoothing budget update equation (4). Specifically, since

bj,3 = αjbj,2 + (1−αj)
Uj(bj,2,xj,2)

U∗j (bj,2)

= α2
jbj,1 +αj(1−αj)

Uj(bj,1,xj,1)

U∗j (bj,1)
+ (1−αj)2

Uj(bj,2,xj,2)

U∗j

(
αjbj,1 + (1−αj)

Uj(bj,1,xj,1)

U∗j (bj,1)

) ,
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(a) Model parameters.
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(b) Contour plot of J2(b).

Figure 1 Budget updates are given by equation (4). We assume α1 = α2 = 0.2.

J3 (b3) is non-convex in the first period allocation xj,1, see Lemma 1 for a numerical example. Thus,

even though our problem is a shortest-path DP, it is computationally hard to find its optimum

even assuming that the platform has full information about customer characteristics.

One question that arises with respect to our model is whether having customers with larger initial

budgets is always beneficial for the platform. Another is whether there exist modified prices p̃ that

can incorporate the consumer’s valuations into the platform’s objective function such that acting

myopically with respect to the modified prices p̃ attains the optimal revenue for the platform.

Specifically, it may be tempting to hope that there exist adjusted prices p̃ which can replace the

actual prices p in the myopic linear program, such that the policy obtained by solving

max
xt

∑
i

∑
j

p̃ijxij,t

s.t. xt ∈X (bt) , (8)

at each period t is optimal. Lemma 1, stated below, answers both questions in the negative by

providing an instance of problem (5) that does not satisfy either of these statements.

Lemma 1. There exist instances of problem (5) such that

(i) Increasing the customer’s initial budgets decreases the platform’s optimal revenue.

(ii) The revenue-to-go function is neither quasi-concave nor quasi-convex.

(iii) For any modified prices p̃ 6= 0, the myopic policy with respect to p̃ is guaranteed to be strictly

sub-optimal.

Proof. Consider the instance of problem (5) defined in Figure 1. It consists of two products

and two customers, where the customers update their budgets according to equation (4). Moreover,

Figure 1b displays the contour plots of J2(b2), which satisfy the first two statements in the lemma.
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For the last statement in the lemma, it can be verified that for T = 3 the unique optimal

allocation of products can be such that all the supply and budget constraints are non-binding. For

instance, if the initial budgets are b = (0.15,0.3), the unique optimal allocation in the first period is

x∗11,1 = 0.063, x∗12,1 = 0.01, and x∗22,1 = 0, and it is optimal not to spend all of the customers’ budgets

even if there is supply available. Note that since the unique optimal solution is in the interior of

the polyhedron X (b1), then the myopic policy will be sub-optimal for any linear objective, i.e. for

any modified prices p̃ 6= 0. �

In short, in the instance in Figure 1 it is optimal for the platform to withhold feasible allocations;

even if supply and demand are available, it may be optimal not to match them. The intuition behind

this observation comes from the temporal dynamics captured in problem (5) and the definition

of the service quality in equation (3). Specifically, it may be counterproductive to let customers’

budgets grow too large when the system is supply constrained, since it may then be impossible to

satisfy all their demands simultaneously. Moreover, this induced low service quality may lead to

disappointed customers significantly reducing their budget in future interactions with the platform.

The complexity of this problem is compounded by the heterogeneity in the customers’ budget

update functions.

Importantly, Lemma 1(iii) states that, in general, the optimal policy for the RNRM problem

cannot be obtained by solving any (modified) linear program at every stage as in equation (8). The

unique interior-point solution from the proof of Lemma 1 cannot be the solution of an LP since it

would never leave supply and demand unmatched. This shows that no linear-programming based

approach can be optimal for this instance. We emphasize that the parameters of the instance in

Figure 1 are reasonable for the model and do not correspond to a corner case.

4. Near-optimality of the Myopic Policy

As discussed in the introduction, the desired features of a good heuristic policy for our problem are

computational simplicity and as little use of customer-specific data as possible, since this data may

be difficult to acquire in practice. However, it seems unlikely that such policies would perform well

in the full generality of our setting. If this were the case, it would imply that, across all instances

permitted by our model, customer dynamics can be ignored no matter how drastically they can

alter customer budget trajectories, suggesting that our model is degenerate. Thus, we focus on

injecting realistic regularity assumptions into the model, which will allow us to show performance

guarantees for simple policies.

In this section, we show that the myopic policy is, in fact, a good heuristic policy under such

relatively unrestrictive regularity assumptions on the problem structure. Specifically, we derive

parametric worst-case performance guarantees for the myopic policy versus the optimum of problem
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(5), where the parametrization is in terms of the heterogeneity on the bang-per-buck of each item

that a customer is interested in.

In our analysis, we make use of the budget trajectory induced by providing a fixed level of service

quality, q ∈ [0,1], to a customer in each period. We thus use for convenience a shorthand notation

for the composition of the budget update function with itself under a fixed service quality.

Definition 1. For each customer j and fixed service quality q ∈ [0,1], let φtj be defined as

φ1
j(b, q), φj(b, q),

φtj(b, q), φj(φ
t−1
j (b, q), q), ∀t > 1.

To denote the updated budget state vector induced by the budget update φtj (b, q), we use the vector

notation φφφt (b,q).

In order to derive a worst-case performance guarantee for the myopic policy, we first introduce

two assumptions on the dynamics of customer budgets:

Assumption 1. For each customer j, the budget update function φj(b, q) is such that:

(i) It is non-decreasing in each component. Namely,

(a) φj(bh, q)≥ φj(bl, q) for each q ∈ [0,1] bh, bl ∈ [0,1], bh ≥ bl
(b) φj(b, qh)≥ φj(b, ql) for each b∈ [0,1] qh, ql ∈ [0,1], qh ≥ ql.

(ii) For each (b, q)∈ [0,1]2, φj(b, q)≥min{b, q}.

(iii) For each b∈ [0,1] and t∈ {0,1, . . .}, φtj(b, (1− γ))≥ (1− γ)φtj(b,1), for any γ ∈ [0,1].

Assumption 1(i) imposes the natural condition that, for each customer j, having a larger budget

or receiving a higher service quality cannot lead to a smaller budget in the next state. In particular,

Assumption 1(i) implies that φt−1j (bj,1) is an upper bound on the budget state of customer j in

period t, when starting from the initial budget bj.

Assumption 1(ii) imposes some smoothness on the customer budget update. Specifically, the

current budget can be interpreted as a summary statistic of the history of past service quality

provided to the customer. Then, Assumption 1(ii) requires that the updated summary statistic

cannot be lower than both its initial value and the new observation that it is being updated with.

Any averaging rule will satisfy this assumption, e.g. the exponential smoothing budget update

discussed in Section 3.

Finally, Assumption 1(iii) states that, for each customer, the budget induced by providing a

consistent service quality of (1− γ) is no worse than scaling by (1− γ) the budget induced by

consistently providing perfect service quality (i.e. q = 1). Note that the exponential smoothing

budget update in equation (4) satisfies Assumption 1(iii).

Importantly, Assumption 1(i) allows us to derive the following relaxation of the platform’s prob-

lem which will be useful in the proof of this section’s main result: find a sequence of allocations
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{xt}1≤t≤T that maximizes the total revenue collected by the platform, assuming the largest possible

budget update in each period t starting from the initial budgets b1, i.e. assuming bj,t = φt−1j (bj,1,1)

for each customer j and period t ∈ {2, . . . , T}. This natural relaxation can be cast in terms of the

following linear program:

J relax
T (b1) = max

x1,...,xT

T∑
t=1

R (xt)

s.t. xt ∈X
(
φφφt−1 (b1,1)

)
, ∀t. (9)

We emphasize that J relax
T (b1) = MY(b1)+

∑T

t=2 MY(φφφt−1 (b1,1)); in other words, it is an optimistic

revenue upper bound which assumes all customer goodwill can be maximized at all times. The

following proposition formalizes the relationship between the optimal objective value of problems

(5) and (9). Its proof is presented in Appendix A.

Proposition 1. Under Assumption 1(i), J relax
T (b1) ≥ J∗T (b1) for any horizon T ≥ 1 and initial

budget state b1.

Note that Assumption 1 is not sufficient to ensure good performance of the myopic policy. In

fact, the instance in the proof of Lemma 1, where the myopic policy is sub-optimal, satisfies this

assumption.

We now move on to discussing our second assumption, which refers to the products’ bang-per-

buck ratios for each customer. This assumption yields the parametrization of our performance

bound. It is motivated by the intuition that, in practice, while there may be significant heterogeneity

in the goods that a given customer desires, one would expect similarity in terms of bang-per-buck

between the goods in this basket. We state this precisely below:

Assumption 2. We assume that each customer j is endowed with a characteristic set Aj ⊆ [n] of

products such that

(i) mini∈Aj

{
vij
pij

}
− 1≥ (1− γ)

(
maxi∈Aj

{
vij
pij

}
− 1
)

for some γ ∈ [0,1],

(ii) For all i /∈Aj, vij = pij = 0.

Assumption 2 imposes some smoothness on the customers’ preferences, which propagate to the

customers’ budget update through the service quality they perceive. Eventually, since the customer

budgets provide an upper bound on the revenues the platform can collect, Assumption 2 rules out

extremely non-smooth behavior of the platform’s revenues.

Although Assumptions 1 and 2 impose structure on the general RNRM problem, a priori it is

not clear this should help bound the performance of the myopic policy. Specifically,

• Even in the case that γ = 0, namely when for each customer the bang-per-buck ratio is the same

across items, supply scarcity might still make it optimal to ration this supply to customers

with different potentials for future revenues in a non-myopic fashion.
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• Although restricting heterogeneity via Assumption 2 could, in principle, restrict the amount of

sub-optimality myopic accrues over one period, it is not clear why this sub-optimality would

not compound over time, eventually leading to a large gap versus the optimal policy.

• Moreover, the structure on the customers’ budget update functions imposed by Assumption 1

still allows for high heterogeneity, which remains as an important challenge that the platform

needs to address when making its allocation decisions.

The following section shows that, surprisingly, Assumptions 1 and 2 are sufficient for the myopic

policy to be (1− γ)-optimal in the RNRM problem.

4.1. A Parametric Worst-Case Guarantee for the Myopic Policy

Our main result shows that simple, myopic policies admit parametric guarantees under Assump-

tions 1 and 2, as explained below.

Theorem 1. For any horizon T and initial budget state b1, let {xMY
t }1≤t≤T be the myopic policy

defined in Section 3.

Then, under Assumptions 1 and 2, {xMY
t }1≤t≤T is (1− γ)-optimal for problem (5), i.e.

JMY
T (b1)≥ (1− γ)J∗T (b1) .

The proof of this result, which is presented in Appendix A, depends on auxiliary results which

are presented in detail in the next subsection.

Theorem 1 shows that the level of heterogeneity on the bang-per-buck that each customer derives

from the different products she is interested in, measured by the parameter (1−γ) in Assumption

2, directly defines a worst-case performance guarantee for the myopic policy in maximizing the

revenue collected by the platform. We emphasize that the (1− γ) guarantee is independent of the

length of the horizon T , or the number of customers m and products n. In other words, the myopic

policy does not “compound” sub-optimality, with the (1 − γ) gap remaining invariant at every

stage of the time horizon.

Moreover, the myopic policy has additional features that make it very attractive in practice.

First, it is easy to compute since it only requires solving a linear program in each period. In fact,

our result shows that continuing to use current technology built around the deterministic LP-

based approaches that are common in the one-shot NRM literature is approximately optimal. In

contrast, computing the optimal policy, or even a heuristic like look-ahead policies (see Section 5),

may require solving a dynamic program where the revenue-to-go function is not quasi-concave nor

quasi-convex, and it cannot be solved to optimality by a linear programmming based heuristic (cf.

Lemma 1 and Figure 1).

Second, the myopic policy only requires knowledge of the prices, the supply of products, and

the budgets available from each customer in the current period, but is agnostic to the customers’
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budget dynamics. In contrast, computing the optimal policy additionally requires knowledge of the

customer valuations for each product and the customers’ budget update functions. Although for

simplicity we assumed a full-information setup where this information is available to the platform,

in practice this may not be the case. In a private information setting, the platform may need to

design a truthful mechanism or alternatively face the consequences of misspecified valuations.

Returning to the instance defined in Figure 1 with a horizon of T = 3 periods, which was our

example of bad behavior of the value function in Section 3.2, we computed the actual worst-case

performance of the myopic policy by full enumeration. This is attained for an initial budget of

0.01 for both customers, where the myopic policy collects about 66% of the optimal revenue. The

performance of the myopic policy in this instance may suggest that the (1− γ) bound provided in

Theorem 1 is loose. We explore this issue computationally in Section 4.3.

4.2. Optimality of the Myopic Policy when γ = 0

The main purpose of this section is to present a special case of Theorem 1, namely Theorem 2 which

imposes the additional condition that γ = 0, i.e. that all goods within a customer’s preferred basket

have constant bang-per-buck. We specifically focus on this case for two reasons (a) its additional

assumptions are motivated by online advertising practice and are sufficient for establishing the

optimality of myopic policies, and (b) it provides an easier to analyze “base case” for Theorem 1.

Thus, in proving the optimality result for γ = 0, we will build important technical machinery that

we use for proving Theorem 1, combined with some other additional, non-trivial steps.

Note that the γ = 0 assumption is practically motivated by the structure of campaign contracts

in certain online advertising systems. In particular, many such systems allow advertisers to target

specific features, such as geographical location, age group, or household income, that their deliv-

ered impressions must satisfy. The space of features characterizing these impression types is often

quite rich, and as such it is a daunting task for an advertiser to value each particular feature com-

bination. To avoid these complexities, campaign contracts allow an advertiser to specify a subset

of the feature space, such as (. . . , age group = 18− 29 or 30− 39, state = MA or NH or VT, . . .),

which identifies the range of acceptable impressions for the advertiser’s campaign, akin to our

definition of the characteristic set Aj. It is implicitly understood that the advertiser values all the

impressions in this set equally at some value vij = vj, and the campaign contract sets a single price

pij = pj for any impression in this set. In fact, this campaign structure is slightly more restrictive

than Assumption 2 with γ = 0, since it enforces that valuations and prices are constant across one

advertiser’s acceptable goods basket, rather than requiring this just for their bang-per-buck ratios.
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A consequence of Assumption 2 with γ = 0 is that the budget update function is simplified.

Namely, denoting customer j’s constant bang-per-buck by ρj ,
vij
pij

for any i∈Aj, the service quality

experienced by customer j in period t becomes:

qj(bj,xj) =

∑
i∈Aj

(vij − pij)xij
U∗j (bj)

=
(ρj − 1)

∑
i∈Aj

pijxij

(ρj − 1)
∑

i∈Aj
pijy∗i

=

∑
i∈Aj

pijxij

min
(
bj,
∑

i∈Aj
pijsi

) , (10)

where y∗ is an optimal solution to U∗j (bj), i.e., the service quality provided to customer j becomes

the fraction of customer j’s budget that was used by the platform, or her fill rate. In particular,

qj(bj,xj) becomes independent of the customer’s product valuations. We also note that when γ = 0

Assumption 1(iii) becomes moot.

Having said that, we emphasize that the issues of supply scarcity and heterogeneity in customer

update functions still remain. In particular, we would still expect to see the trade-off between short-

term platform revenues and the long-term goodwill of the customers. For example if a customer is

very sensitive to service quality, it could be better to prioritize this customer even if this contradicts

the myopic policy. As a result, it is natural to expect that the myopic policy will remain sub-optimal,

even in the presence of this structure that appears to simplify the problem. On the contrary, the

following theorem shows that γ = 0 is sufficient for myopic optimality.

Before stating this theorem, we introduce two additional pieces of notation which we use in its

proof. We use µj,t to denote an optimal dual variable associated to the budget constraint (1) of

customer j, and λi,t to denote an optimal dual variable associated to the supply constraint (2) of

item i in the myopic optimization problem (7) solved at stage t.

Theorem 2. For any horizon T and initial budget state b1, let {xMY
t }1≤t≤T be the myopic policy

defined in Section 3. Then, under Assumptions 1 and 2 with γ = 0,

(i) {xMY
t }1≤t≤T is an optimal solution to problem (9), i.e. JMY

T (b1) = J relax
T (b1).

(ii) {xMY
t }1≤t≤T is an optimal solution to problem (5), i.e. JMY

T (b1) = J∗T (b1).

Proof. We show that JMY
T (b1) = J relax

T (b1). Since {xMY
t }1≤t≤T is feasible for problem (5), then

Proposition 1 implies JMY
T (b1) = J∗T (b1) = J relax

T (b1). The proof is by induction on the horizon

length T .

Base Case: If T = 1, then the RNRM problem collapses to the one-shot NRM problem and

JMY
1 (b1) = J∗1 (b1) = J relax

1 (b1).

Induction Step: Assume the statement of the Theorem holds for any problem with horizon length

(T − 1), for some T ≥ 2. Let {bt}2≤t≤T be the budget states induced by {xMY
t }1≤t≤T−1. Hence, for

any budget state b2, {xMY
t (b2)}t∈{2,...,T} ∈ arg maxJ∗T−1(b2) = J relax

T−1 (b2), where we are abusing the

notation to emphasize the dependence of the allocations xMY
t on the budget state b2. In particular,

since J∗T−1(b2) = J relax
T−1 (b2), it follows that J∗T−1(b2) can be computed by solving the associated

linear program (9). Let
{

(λλλrelax
t ,µµµrelax

t )
}
2≤t≤T be associated optimal dual solutions.
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For each customer j there are two possible cases:

(a) If
∑

i∈Aj
pijx

MY
ij,1 = bj,1, then it follows from Assumption 2 with γ = 0 that qj

(
bj,1,x

MY
j,1

)
= 1

(cf. equation (10)) and bj,2 = φj (bj,1,1).

(b) If
∑

i∈Aj
pijx

MY
ij,1 < bj,1, then from Proposition 3 in Appendix A it follows that µj,2 = 0. More-

over, from Assumption 1(i) we have φT−2(bj,2,1) ≥ . . . ≥ bj,2. Since the optimal objective

value of a maximization linear program is concave on the right hand side of the constraints,

then µrelax
j,T ≤ . . .≤ µrelax

j,2 = µj,2 = 0, see Bertsimas and Tsitsiklis (1997). From dual feasibility

(µrelax
j,t ≥ 0 for each t ∈ {2, . . . , T}) we conclude that

∑
i∈Aj

pijx
MY
ij,1 < bj,1 implies µrelax

j,t = 0 for

each period t ∈ {2, . . . , T}. Namely, increasing the budget bj,2 to its upper bound φj (bj,1,1)

(hence φt−2(bj,2,1) to φt−1(bj,1,1) for each t ∈ {2, . . . , T}) does not impact the feasibility or

optimality of the allocations {xMY
t (b2)}2≤t≤T in the subproblem with horizon T − 1 starting

in period t= 2.

Therefore, we conclude that

JMY
T (b1) = MY(b1) +

T∑
t=2

MY
(
φφφt−2 (b2,1)

)
= MY(b1) +

T∑
t=2

MY
(
φφφt−1 (b1,1)

)
= J relax

T (b1).

From Propositon 1, JMY
T (b1) = J∗T (b1) = J relax

T (b1). This concludes the proof. �

Before discussing this result, we remark that a key component of the proof is our usage of

Proposition 3, which informally says that, given our assumptions and γ = 0, if the myopic policy

does not exhaust a customer’s budget in some time period, then the marginal value of increasing

that customer’s budget in the next period is zero. In other words, Proposition 3 shows that our

model satisfies what one could call “dynamic complementary slackness”. This is formally proved

in Appendix A.

Theorem 2(ii) implies that, under Assumptions 1 and 2, when γ = 0 an optimal policy for

problem (5) with horizon T can be computed by sequentially solving T linear programs, using the

myopic allocation in one period to update the customers’ budget state in the next period. Moreover,

Theorem 2(i) shows that under these conditions the optimal objective function of problem (5)

can be computed by solving one larger linear program for the whole horizon T , where the largest

possible budget update is assumed for each customer in each period, i.e. problem (9). Note that

then the budget state in one period is independent of the allocation in previous periods.

Additionally, Theorem 2 shows that under Assumptions 1 and 2 some of the problematic features

of the general problem discussed in Lemma 1 are no longer present when γ = 0. In particular, the

platform always benefits from customers with higher budgets. This argument is formalized in the

following corollary.

Corollary 1. Under Assumptions 1 and 2 with γ = 0, J∗T (b1,h)≥ J∗T (b1,l) for any horizon T ≥ 2

and budget states b1,h, b1,l such that b1,h ≥ b1,l component-wise.



 Electronic copy available at: https://ssrn.com/abstract=3200338 

Calmon, Ciocan, Romero: Revenue Management with Repeated Customer Interactions
22 Working Paper - August 2018

Figure 2 Boxplot of the ratio between the revenue of the myopic policy and the optimal revenue when budgets

always increase at the largest possible rate. The box plot for each value of γ represents the distribution of ratios

sampled from 250,000 randomly generated problem instances. The dotted line is the 1− γ bound. For these

simulations, n∈ [3,10], T ∈ [3,15], and n=m.

Proof. From Assumption 1(i) we have φφφt−1(b1,h,1) ≥ φφφt−1(b1,l,1) component-wise, for each

t∈ {2, . . . , T}. Hence,

J∗T (b1,h) = J relax
T (b1,h) = MY(b1,h) +

T∑
t=2

MY
(
φφφt−1 (b1,h,1)

)
≥MY(b1,l) +

T∑
t=2

MY
(
φφφt−1 (b1,l,1)

)
= J relax

T (b1,l) = J∗T (b1,l)

where the first and last equalities follow from Theorem 2, and the inequality follows from Lemma

2 in Appendix A. �

4.3. Numerical Performance of the Myopic Policy

We now proceed to investigate the numerical performance of the myopic policy. Since computing

the optimal solution to problem (5) is, in general, hard, we will use J relax
T (b1) as a benchmark, i.e.

the revenue obtained by the platform when the budgets increase at the highest possible rate, which

can be computed by solving problem (9). Recall that Proposition 1 shows that this is a valid upper

bound on the optimal revenue. More specifically, assuming that customers have an exponential

smoothing budget update function given by (4), we compute the performance ratio

r (n,m,T,α,b1, s,{pij},{vij}) =
JMY
T (b1)

J relax
T (b1)

(11)

for randomly generated instances of problem (5) with parameters (n,m,T,α,b1, s,{pij},{vij}).
Note that calculating JMY

T (b1) and J relax
T (b1) involves solving a sequence of linear programs.

For different values of γ, we generate 250,000 problem instances and calculate the performance

ratio (11) for each instance. The parameters of each problem instance are generated as follows:
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Figure 3 Boxplot of the ratio between the revenue of the myopic policy and the optimal revenue when budgets

always increase at the largest possible rate. The box plot for each value of γ represents the distribution of ratios

sampled from 100,000 randomly generated problem instances. The dotted line is the 1− γ bound. For these

simulations, n=m= 2, and T ∈ [3,15].

• n is sampled form a discrete uniform with support {3, . . . ,10} and we set m= n;

• T is sampled from a discrete uniform distribution with support {3, . . . ,15};
• Each component of the smoothing parameters ααα, the initial budget b1, and the supply s, is

sampled from a uniform distribution with support [0,1];

• Every customer is connected to at least one item (customer j is connected to product i= j).

All other edges in the network are generated with some probability δ ∈ [0,1], where for each

problem instance δ is sampled from a uniform distribution on [0,1];

• For each customer j, we sample a parameter ρ from a uniform distribution with support [0,2].

Then the valuations {vij} and prices and {pij} are uniformly sampled from the circular sector

defined by (1− γ)ρ≤ vij/pij − 1≤ ρ and v2ij + p2ij ≤ 25.

The distribution of ratios r for different values of the parameter γ is depicted through box plots

in Figure 2. The dotted line represents the (1− γ) bound from Theorem 1. Note that for γ ≤ 0.7,

the revenue collected by the myopic policy is at least 85% of the revenue obtained when budgets

increase at the highest possible rate (and therefore at least 85% of the optimal revenue) for over

75% of the randomly generated instances. However, there are many outliers in the simulation with

a performance close to the (1− γ) bound, which suggests that the bound from Theorem 1 may be

tight. The majority of the outlier instances are attained for n= 3, i.e. they have a small number

of customers and products.

In order to investigate the performance of the myopic policy in small instances, we set n = 2

and repeat the sampling procedure. The distribution of ratios for different values of γ is depicted

through boxplots in Figure 3. Note that for more than 80% of the randomly generated instances



 Electronic copy available at: https://ssrn.com/abstract=3200338 

Calmon, Ciocan, Romero: Revenue Management with Repeated Customer Interactions
24 Working Paper - August 2018

the myopic policy captures over 95% of the optimal revenue. However, there are instances where

the performance of the myopic policy is very close to the (1− γ) bound, at least with respect to

the revenue collected when budgets increase at the maximum possible rate.

5. Problem Instances Where Simple Policies Fail

Having determined that under certain regularity assumptions myopic policies can perform well,

we now examine the performance of myopic and other natural policies if we do not impose any

regularity assumption on our baseline model.

First, we define another candidate class of heuristic policies for our problem, namely finite

look-ahead policies. The reason we study this class of policies is that they have been successfully

used in a large number of dynamic programming applications where myopic policy performance

is unsatisfactory (see for example the survey of Bertsekas 2005). Moreover, unlike myopic, finite

look-ahead policies explicitly account for customer goodwill effects, and is it reasonable to expect

that they would perform well. We will show in this section that, in fact, look-ahead policies, together

with the myopic policy, perform arbitrarily badly when we remove all our previous assumptions.

We begin with the definition of a look-ahead policy.

The L-step Look-ahead Policy πL-LA. For any horizon T , in each period t≤ T the L-step look-

ahead policy
{
xL−LAt

}
1≤t≤T implements the first period allocation of the policy that maximizes

the revenue garnered by the platform in the next min(L+ 1, T − t+ 1) periods, i.e. in whatever

is shorter between the current period plus the following L periods and the remaining horizon. To

simplify the notation let us define L̂= min(L+1, T − t+1). We note that the myopic policy defined

in Section 3 is a degenerate example of an L-step look-ahead policy with L= 0.

Specifically, for any parameter L≤ T − 1, period t≤ T , and budget state bt, let
{

yL̂k

}
1≤k≤L̂

∈

arg maxJ∗
L̂

(bt). Then, xL−LAt = yL̂1 . We emphasize that the L-step look-ahead policy is a rolling

horizon policy that requires solving a dynamic program in each period. However, it is oblivious

to the customers’ budget dynamics beyond the horizon L̂ = min(L + 1, T − t + 1). The L-step

look-ahead policy follows the natural budget update

bt+1 = φ
(
bt,q

(
bt,x

L−LA
t

))
.

Arbitrary Sub-optimality Gap for Myopic and L-step Look-ahead Policies. In the fol-

lowing, we provide a family of instances of problem (5) where finite look-ahead policies, as well as

myopic which is a degenerate case with L= 0, perform arbitrarily badly in an asymptotic regime

as the number of customers of the platform grows. These results illustrate that problem (5) is hard

to solve in general.
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Example 1. Consider a T period instance with m+ 1 customers. The first m customers have the

same exponentially smoothed update as defined in (4), with common parameter αj = α:

φ(bj, qj(bj,xj)) = α · bj + (1−α)qj(bj,xj), ∀1≤ j ≤m.

We set α such that αL = 1/2. The (m+ 1)-th customer does not update her budget, i.e. she has an

exponentially smoothed update with αm+1 = 1.

There are a total of m+ 1 products. The first m are indexed by 11, . . . ,1j, . . . ,1m, while the last

is indexed by 2. The supply of product 1j is s1j = 1
m2 , while the supply of product 2 is s2 =m. We

set T = 3 logα(e−1) logm. Furthermore:

1. For customers 1≤ j ≤m and some scale parameter γ > 2, the product valuations are

v1lj =

{
γm+ 1, if l= j,

m+ 1− 1
m
, if l 6= j,

v2j = 1, ∀j

p1lj =

{
1, if l= j,

1− 1
m
, if l 6= j

p2j = 1, ∀j.

2. For customer m+ 1, v1l(m+1) = p1l(m+1) = 0 for 1≤ l≤m and v2(m+1) = p2(m+1) = 1
m2 .

3. For all customers 1≤ j ≤m, the starting budget is b1,j = γ
γ+m−1 , while for customer (m+ 1),

the starting (and constant) budget is b(m+1),1 = 1.

Proposition 2. On the instance described in Example 1, with γ > 2 and m ≥max
{

1
α2 ,

2(γ−1)
γ−2

}
,

both the myopic policy and the L-step look-ahead policy, for any L≥ 1, produce revenues that are

an o
(
logm
m

)
fraction of the optimum.

The proof of proposition 2 is provided in the e-companion to this paper.

To conclude this section, we make some observations about why look-ahead policies can perform

so poorly in this context. In our instance defined in Example 1, products 1l, which are the ones with

positive utility for the customers, are scarce enough that it is not feasible to simultaneously satisfy

all customers 1≤ j ≤m when their budgets are non-negligible. Thus, the feasible strategy that we

exploit is to fully deplete the budgets of customers 2 ≤ j ≤m to essentially 0, when it becomes

possible to fully satisfy them with the scarce supply of positive utility products 1l. This allocation

induces a one-time jump in their budget from 0 to approximately (1− α) between periods T − 1

and T , which is then monetized in the last period T . As a consequence, the revenues garnered by

this feasible policy over the time horizon are highly non-smooth, with essentially all its revenues

coming in the last period. Such a strategy cannot be found by πL-LA due to its limited look-ahead

L < T ; indeed, in only L periods it is not possible to ration the 1l products in such a way as to

cause a similar coordinated one-time jump in budgets.
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6. Conclusions

In this paper, we have considered a multi-period model of network revenue management where

customers’ behavior changes from one period to another as a function of the quality of the past

interactions between the customers and the platform controlling the allocation of products. While

the problem is hard to solve in general, we have shown that by imposing reasonable conditions

on the problem structure, simple myopic policies which ignore future customer behavior can work

well.

We hope that our model and results inspire further efforts to understand whether classical oper-

ations management prescriptions are transferable to dynamic settings where customer interactions

are repeated over time. Specifically, two avenues are worth exploring: (i) understanding how prices,

along with allocations should be set in such repeated settings and (ii) building a model where

customers can explicitly switch between competing platforms, depending on their history of service

quality.

References
Adelman D, Mersereau AJ (2008) Relaxations of weakly coupled stochastic dynamic programs. Operations

Research 56(3):712–727.

Adelman D, Mersereau AJ (2013) Dynamic capacity allocation to customers who remember past service.
Management Science 59(3):592–612.

Aflaki S, Popescu I (2014) Managing retention in service relationships. Management Science 60(2):415–433.

Agrawal S, Daskalakis C, Mirrokni V, Sivan B (2018) Robust repeated auctions under heterogeneous buyer
behavior. arXiv preprint arXiv:1803.00494 .

Agrawal S, Devanur NR (2015) Fast algorithms for online stochastic convex programming. Proceedings of the
Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA,
USA, January 4-6, 2015, 1405–1424.

Aviv Y, Pazgal A (2008) Optimal pricing of seasonal products in the presence of forward-looking consumers.
Manufacturing & Service Operations Management 10(3):339–359.

Bateni MH, Chen Y, Ciocan DF, Mirrokni V (2016) Fair resource allocation in a volatile marketplace.
Proceedings of the 2016 ACM Conference on Economics and Computation, 819–819, EC ’16 (New York,
NY, USA: ACM), ISBN 978-1-4503-3936-0.

Bertsekas DP (1995) Dynamic programming and optimal control, volume 2 (Athena Scientific Belmont, MA).

Bertsekas DP (2005) Dynamic programming and suboptimal control: A survey from adp to mpc. European
Journal of Control 11(4-5):310–334.
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Appendix A: Appendix for Section 4

Proposition 1. Under Assumption 1(i), J relax
T (b1)≥ J∗T (b1) for any horizon T ≥ 1 and initial budget state

b1.

Let {x∗t}t∈{1,...,T} be an optimal policy for problem (5) with initial budgets b1, and let b∗t be the

budget trajectory induced by it, i.e. b∗t+1 =φφφ (b∗t ,q (b∗t ,x
∗
t )) for each t∈ {1, . . . , T −1}, where b∗1 = b1. From

Assumption 1(i), b∗j,t ≤ φt−1j (bj,1,1) for each period t and customer j. Then,

J relax
T (b1) = MY (b1) +

T∑
t=2

MY
(
φφφt−1 (b1,1)

)
≥MY (b1) +

T∑
t=2

MY (b∗t )≥ J∗T (b1) ,

where the first inequality follows from Lemma 2 below. The second inequality follows from x∗t ∈X(b∗t ) for

each period t, which implies that R(x∗t )≤MY (b∗t ). �

It is not hard to see that MY (b) is monotonically increasing in the budget state vector b.

Lemma 2. Let b, b̄, be such that b̄j ≥ bj for each customer j. Then, MY
(
b̄
)
≥MY (b).

Proof. Let xMY be a myopic policy with budgets b. Note that b̄j ≥ bj implies xMY ∈X
(
b̄
)
. Hence,

MY
(
b̄
)
≥R (xMY ) = MY (b). �

The following definition will be used in the rest of the analysis.

Definition 2. Let xMY
1 be a myopic allocation with budgets b1 such that there exists a customer j with a

strictly loose budget constraint, i.e. such that
∑

i∈Aj
pijx

MY
ij,1 < bj,1. Then, customer j defines a non-empty

class of customers Cj ⊆ {1, . . . ,m} as follows.

Start with Cj = {j}. In each iteration define the set of customers

Dj(Cj) =

k ∈ {1 . . . , n} : xMY
ik,1 > 0 for some i∈

⋃
l∈Cj

Al

 .

While Dj(Cj) 6=Cj, update Cj =Dj(Cj) and iterate.
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Note that by construction the class of customers Cj has the property that all the items that the customers

in Cj are interested in are allocated by xMY
1 to customers in Cj only. Namely, the class of customers Cj is

such that xMY
ik,1 = 0 for any i∈

⋃
l∈Cj

Al, k /∈Cj .
Moreover, since

∑
i∈Aj

pijx
MY
ij,1 < bj,1 it must be the case that all the items that customers in the class Cj

are interested in are fully allocated by xMY
1 to customers in the class Cj as shown next.

Lemma 3. Let xMY
1 be a myopic allocation with budgets b1 such that there exists a customer j with∑

i∈Aj
pijx

MY
ij,1 < bj,1, and let Cj be the associated class of customers from Definition 2, then∑

l∈Cj

xMY
il,1 = si, for all i∈

⋃
l∈Cj

Al.

Proof. Assume for a contradiction that there exists an item i ∈
⋃
l∈Cj

Al with a strictly loose supply

constraint, i.e. such that
∑

l∈Cj
xMY
il,1 < si. We show that then there must exist an feasible augmenting path

in the network induced by xMY
1 , contradicting its myopic optimality.

The construction of the class Cj in Definition 2 specifies a path from customer j to item i, through items

k ∈
⋃
l∈Cj

Al and customers l ∈Cj . Let us denote this path by pathj(i). Assume, without loss of generality,

that pathj(i) is composed of r ≥ 1 items labeled {k1, . . . , kr}, and r customers labeled {l1, . . . , lr}, where

l1 = j and kr = i. Namely, pathj(i) = {l1, k1, . . . , lr, kr}. We show that pathj(l) is an augmenting path.

Specifically, consider moving a flow γ > 0 small enough from item i to customer j through pathj(i) while

keeping the spend of each customer in the path, except j, the same. Namely, denote γr = γ and γ0 = 0, and

for each s∈ {1, . . . , r} consider increasing the allocation xMY
ksls,1

by γs, and decreasing the allocation xMY
ks−1ls,1

by γs−1, such that pkslsγs = pks−1lsγs−1 for each s ∈ {2, . . . , r}. Equivalently, γs =
∏r

q=s+1

pkqlq

pkq−1lq
γ for each

s∈ {1, . . . , r}. We now verify that this change to xMY
1 is feasible for γ > 0 small enough and strictly improves

the revenue collected by the platform, a contradiction.

The feasibility of the change to xMY
1 is guaranteed for any γ > 0 such that

γ ≤min

 min
s∈{1,...,r−1}

(
r∏

q=s+1

pkq−1lq

pkqlq
xMY
ksls+1,1

)
,
bj,1−

∑
k∈Aj

pkjx
MY
kj,1

pk1j

r∏
q=2

pkq−1lq

pkqlq
, si−

∑
l∈Cj

xMY
il,1

 ,

where the first term in the outer min guarantees the non-negativity of the modified allocations (i.e. γs ≤
xMY
ksls+1,1

for each s∈ {1, . . . , r−1}, where xMY
ksls+1,1

> 0 by the construction of the class Cj in Definition 2), the

second term in the outer min guarantees the budget feasibility for customer j (i.e.
∑

i∈Aj
pijx

MY
ij,1 + pk1jγ1 ≤

bj,1), and the third term in the outer min guarantees the supply feasibility for item i.

Finally, since by construction the change to xMY
1 keeps the spend of each customer in pathj(i), except

j, the same, then it follows that the strict increase in the revenue collected by the platform is equal to

pk1,jγ1 = pk1,j
∏r

q=2

pkqlq

pkq−1lq
γ > 0. This concludes the proof. �

We are now ready to show Proposition 3, which is a key result in the proof of Theorem 2. As it will be

useful for the proof which follows, we observe that the dual for problem (7), which is the linear program

which can be solved to find the myopic policy, is

min
µt,λt

n∑
i=1

siλi,t +

m∑
j=1

bj,tµj,t

s.t. λi,t + pijµj,t ≥ pij , ∀1≤ i≤ n,1≤ j ≤m

λi,t ≥ 0 ∀1≤ i≤ n

µj,t ≥ 0 ∀1≤ j ≤m,
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where we remind that µj,t denotes an optimal dual variable associated to the budget constraint (1) of

customer j, and λi,t denotes an optimal dual variable associated to the supply constraint (2) of item i.

Proposition 3. Under Assumptions 1 and 2 with γ = 0, let xMY
1 be a myopic allocation with budgets b1.

Similarly, let xMY
2 be a myopic allocation with the updated budgets b2 =φφφ (b1,q (b1,x

MY
1 )), and (λλλ2,µµµ2) be

an associated optimal dual solution.

Then, without loss of generality
∑

i∈Aj
pijx

MY
ij,1 < bj,1 implies µj,2 = 0, for each customer j.

Proof. Assume, for contradiction, that there exists a customer j such that
∑

i∈Aj
pijx

MY
ij,1 < bj,1, and

µj,2 > 0 for all dual optimal solutions associated to all myopic allocations with budgets b2.

First, note that µj,2 > 0 for all dual optimal solutions associated to all myopic allocations with budgets b2

implies that for a scalar δ > 0 small enough, µ̃j,2 > 0 for all dual optimal solutions associated to all myopic

allocations with budgets b̃2 = b2 + δej . In particular, let x̃2 be an optimal myopic allocation with budgets

b̃2, i.e. x̃2 ∈X
(
b̃2

)
and R (x̃2) = MY(b̃2).

Since
∑

i∈Aj
pijx

MY
ij,1 < bj,1, let Cj be the associated class of customers from Definition 2. We now show that

assuming µ̃j,2 > 0 for all dual optimal solutions associated to all myopic allocations with budgets b̃2 implies

that all the customers in the class Cj spent at least as much under allocation xMY
1 than under allocation x̃2,

and customer j spent strictly more. Namely, we show that the class of customers Cj is such that∑
i∈Ak

pikx
MY
ik,1 ≤

∑
i∈Ak

pikx̃ik,2 for each k ∈Cj , and∑
i∈Aj

pijx
MY
ij,1 <

∑
i∈Aj

pijx̃ij,2 for j. (12)

This is a contradiction with xMY
1 fully allocating all the items that customers in the class Cj are interested

in to customers in the class Cj (cf. Lemma 3).

To arrive at this contradiction, we reconstruct the class Cj as follows. We iteratively construct a class of

customers Ej ⊆ {1, . . . ,m} such that in finitely many iterations Ej =Cj and (12) is satisfied. Specifically, we

start with Ej = {j} ⊆Cj , and note that µ̃j,2 >µj,1 = 0. Then, we add a customer l ∈Cj \Ej to the class Ej

in each iteration such that the updated class preserves the properties that µ̃k,2 >µk,1 ≥ 0 for all k ∈Ej , and

Ej ⊆Cj . In more details, each iteration follows the next three steps.

1. We show that since, by construction, µ̃k,2 > µk,1 ≥ 0 for all k ∈ Ej , all the customers in the class Ej

spent at least as much under allocation xMY
1 than under allocation x̃2, and customer j spent strictly

more. Namely, that the class of customers Ej is such that∑
i∈Ak

pikx
MY
ik,1 ≤ bk,2 ≤ b̃k,2 =

∑
i∈Ak

pikx̃ik,2 for each k ∈Ej , and∑
i∈Aj

pijx
MY
ij,1 ≤ bj,2 < b̃j,2 =

∑
i∈Aj

pijx̃ij,2 for j ∈Ej . (13)

In both cases in (13) the first inequality follows from Lemma 4 (where Assumptions 1 and 2 with γ = 0

are used), the second inequality follows from b̃2 = b2 + δej and j ∈ Ej , and the last equality follows

from µ̃k,2 >µk,1 ≥ 0 for all k ∈Ej .
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2. Since. by construction, Ej ⊆ Cj , and from Lemma 3 all the items that customers in the class Cj are

interested in are fully allocated by xMY
1 to customers in the class Cj , i.e.

∑
l∈Cj

xMY
il,1 = si for all i ∈⋃

l∈Cj
Al, then note that (13) implies that there exists a customer l ∈Cj \Ej and item i∈

⋃
k∈Ej

Ak∩Al
such that some fraction of item i that was assigned by xMY

1 to customer l is now assigned by x̃2 to some

customer k ∈Ej , i.e. xMY
il,1 > x̃il,2 ≥ 0 and 0≤ xMY

ik,1 < x̃ik,2 for some l ∈Cj \Ej , k ∈Ej , and i∈Ak ∩Al.

3. Consider the customers l ∈ Cj \Ej and k ∈ Ej , and the item i ∈Ak ∩Al, characterized in step 2. We

now show that µ̃l,2 >µl,1 ≥ 0. Specifically,

(1−µl,1)pil = λi,1 ≥ (1−µk,1)pik > (1− µ̃k,2)pik = λi,2 ≥ (1− µ̃l,2)pil, (14)

which implies µ̃l,2 > µl,1 ≥ 0. In (14), the first equality follows from xMY
il,1 > 0 and complementary

slackness, the first and last inequalities follow from dual feasibility, the second inequality follows from

µ̃k,2 >µk,1 since k ∈Ej , the second equality follows from x̃ik,2 > 0 and complementary slackness.

Finally, update the class of customers Ej by adding customer l ∈ Cj \Ej to it, i.e. let Ej = Ej ∪ {l}.
Hence, the updated class Ej is such that µ̃k,2 >µk,1 ≥ 0 for all k ∈Ej , and Ej ⊆Cj . Iterate by going to

step 1.

To summarize, we start with Ej = {j} ⊆Cj and in each iteration we add a customer l ∈Cj \Ej to the class

Ej , such that (13) is preserved. Since Cj has finitely many members, in finitely many iterations Ej = Cj

and (12) is satisfied. Specifically, (12) is equivalent to (13) in step 1 of the iteration for Ej = Cj . This is a

contradiction with Lemma 3, which states that all the items that customers in the class Cj are interested in

are fully allocated by xMY
1 to customers in the class Cj , i.e.

∑
l∈Cj

xMY
il,1 = si for all i ∈

⋃
l∈Cj

Al. Note that

an equivalent contradiction arises in step 2 of the iteration for Ej =Cj , since this step implies the existence

of a customer l ∈Cj \Cj = ∅, a contradiction. This concludes the proof. �

Lemma 4. Let xMY
1 be a myopic allocation with budgets b1, and let b2 be the updated budgets, i.e. b2 =

φφφ (b1,q (b1,x
MY
1 )). Then, under Assumptions 1 and 2 with γ = 0, xMY

1 ∈X (b2), i.e.∑
i∈Al

pilx
MY
il,1 ≤ bl,2 for each customer l. (15)

Proof. First, assume bj,1 ≤ qj(bj,1,xMY
j,1 ). Note that then

bj,2 = φj(bj,1, qj(bj,1,x
MY
j,1 ))≥min(bj,1, qj(bj,1,x

MY
j,1 )) = bj,1 ≥

∑
i∈Aj

pijx
MY
ij,1 ,

where the first inequality follows from Assumption 1(ii).

Now assume bj,1 > qj(bj,1,x
MY
j,1 ). Then,

bj,2 = φj(bj,1, qj(bj,1,x
MY
j,1 ))≥ qj(bj,1,xMY

j,1 ) =

∑
i∈Aj

pijx
MY
ij,1

min
{
bj,1,

∑
i∈Aj

pijsi

} ≥∑
i∈Aj

pijx
MY
ij,1 .

where the first inequality follows from Assumption 1(ii), the second equality follows from Assumption 2 with

γ = 0 (cf. equation (10)), and the second inequality follows from bj,1 ∈ [0,1]. �

From the proof of Theorem 2 we observe that we only require the following consequence of Assumption 2

with γ = 0: that the service quality provided to each customer satisfies equation (10). Corollary 2 shows an

extension of Theorem 2 and Corollary 1 important for Theorem 1.
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Corollary 2. Under Assumption 1, for any horizon T , initial budget state b1, and parameter γ ∈ [0,1),

Theorem 2 and Corollary 1 also hold for any service quality that satisfies equation (10), and such that it is

scaled in the budget update function as φj (bj , (1− γ)qj) for each customer j.

Proof. It is straightforward to replicate the proofs of Theorem 2 and Corollary 1 under these assumptions.

We omit the details for the sake of brevity. �

Assumption 2 allows us to derive the following lower bound for the myopic policy performance:

JLBMY
T (b1) = max

x1,...,xT

T∑
t=1

R (xt)

s.t. xt ∈X
(
φφφt−1 (b1,1−γγγ)

)
, ∀t. (16)

Analogous to problem (9), we emphasize that JLBMY
T (b1) = MY (b1) +

∑T

t=2 MY (φφφt−1 (b1,1−γγγ)) .

Proposition 4. Let {xMY
t }1≤t≤T be the myopic policy defined in Section 3. Under Assumptions 1 and 2,

JMY
T (b1)≥ JLBMY

T (b1) for any horizon T ≥ 2 and initial budget state b1.

The proof of Proposition 4 is based on Theorem 2 and Corollary 2, as well as additional non-trival results.

It is provided in the e-companion to this paper.

We are now ready to complete the proof of the main result in Section 4.

Theorem 1. For any horizon T and initial budget state b1, let {xMY
t }1≤t≤T be the myopic policy defined in

Section 3.

Then, under Assumptions 1 and 2, {xMY
t }1≤t≤T is (1− γ)-optimal for problem (5), i.e.

JMY
T (b1)≥ (1− γ)J∗T (b1) .

Proof. We have the following chain of inequalities,

JMY
T (b1)≥ JLBMY

T (b1)≥ (1− γ)J relax
T (b1)≥ (1− γ)J∗T (b1) ,

where the first and last inequalities follow from Propositions 4 and 1, respectively. The second inequality

follows from Assumption 1(iii), since then any solution to problem (9) scaled by (1−γ) is feasible in problem

(16). Specifically, (1 − γ)X (φφφt−1 (b1,1)) ⊆ X (φφφt−1 (b1,1−γγγ)) for each t ∈ {1, . . . , T}. This completes the

proof. �
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Additional Proofs

Appendix EC.1: Proofs from Section 4

Proposition 4. Let {xMY
t }1≤t≤T be the myopic policy defined in Section 3. Under Assumptions 1

and 2, JMY
T (b1)≥ JLBMY

T (b1) for any horizon T ≥ 2 and initial budget state b1.

Proof. The proof structure is as follows. We consider the revenues collected by the myopic

policy under different budget updates, parametrized by an index k ∈ {2, . . . , T}. Specifically, we

assume that the true budget update bt+1 =φφφ (bt,q (bt,x
MY
t )) is followed between the first k peri-

ods, while a modified budget update is followed in the rest of the horizon. The modified budget

update is specified below, but informally it is characterized by an alternative service quality measure

(1− γ)q̃(bt,x
MY
t ), where q̃(bt,x

MY
t ) satisfies equation (10). One interpretation of this alternative

service quality measure is that it assumes a constant bang per buck ratio for each customer and

then it scales the result by (1− γ).

Although the net effect of using the modified budget update on the total revenue collected by

the myopic policy is a priori unclear, we show that it is actually nondecreasing in the index k (cf.

equation (EC.1)), i.e. the larger the number of periods where the modified budget update is used

the smaller the total revenue collected by the myopic policy. This result is useful since it implies

the statement in the proposition as a special case (cf. equation (EC.2)).

More precisely, let {xMY
t }t∈{1,...,k} be the myopic policy starting from the initial budget

state b1 and following the true budget update bt+1 = φφφ (bt,q (bt,x
MY
t )) for each period t ∈

{1, . . . , k − 1}. Additionally, let
{
x̃MY
k,t

}
t∈{k+1,...,T} be the myopic policy starting from the budget

state bk and following the modified budget update b̃k+1 = φφφ (bk, (1− γ)q̃ (bk,x
MY
k )), and b̃t+1 =

φφφ
(
b̃t, (1− γ)q̃

(
b̃t, x̃

MY
k,t

))
for each period t∈ {k+2, . . . , T −1}, where the alternative service qual-

ity function q̃j

(
b̃j,t, x̃

MY
j,k,t

)
,

∑
i∈Aj

pij x̃
MY
ij,k,t

min

(
b̃j,t,

∑
i∈Aj

pijsi

) satisfies equation (10), and it is scaled by (1− γ).

Then, we show that the total revenue collected by the myopic policy{
{xMY

t }t∈{1,...,k} ,
{
x̃MY
k,t

}
t∈{k+1,...,T}

}
is nondecreasing in the index k. Specifically, for each

k ∈ {2, . . . , T},

k∑
t=1

R
(
xMY
t

)
+

T∑
t=k+1

R
(
x̃MY
k,t

)
≥

k−1∑
t=1

R
(
xMY
t

)
+

T∑
t=k

R
(
x̃MY
k−1,t

)
. (EC.1)

Therefore, in particular,

JMY
T (b1) =

T∑
t=1

R
(
xMY
t

)
≥R

(
xMY
1

)
+

T∑
t=2

R
(
x̃MY
1,t

)
= JLBMY

T (b1) , (EC.2)

where the last equality follows from Theorem 2 and Corollary 2.
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We prove equation (EC.1). The proof is by induction on the length of the horizon T .

Base Case: Consider T = 2. Namely, we prove equation (EC.1) for k= 2, i.e.R (xMY
1 )+R (xMY

2 )≥

R (xMY
1 ) +R

(
x̃MY
2,2

)
. We show x̃MY

2,2 ∈X (b2), hence R
(
x̃MY
2,2

)
≤MY(b2) =R (xMY

2 ). Specifically,

bj,2 = φj
(
bj,1, qj

(
bj,1,x

MY
j,1

))
= φj

(
bj,1,

∑
i∈Aj

(vij − pij)xMY
ij,1∑

i∈Aj
(vij − pij)y∗i (bj,1)

)

≥ φj

bj,1,
(

mini∈Aj

{
vij
pij

}
− 1
)∑

i∈Aj
pijx

MY
ij,1(

maxi∈Aj

{
vij
pij

}
− 1
)∑

i∈Aj
pijy∗i (bj,1)


≥ φj

bj,1, (1− γ)

∑
i∈Aj

pijx
MY
ij,1

min
(
bj,1,

∑
i∈Aj

pijsi

)


= φj
(
bj,1, (1− γ)q̃j

(
bj,1,x

MY
j,1

))
= b̃2j

≥
∑
i∈Aj

pijx̃
MY
ij,2,2,

where the first inequality follows from Assumption 1(i), the second inequality follows from Assump-

tions 1(i) and 2(i), and the third inequality follows from x̃MY
2,2 ∈X

(
b̃2

)
.

Induction Step: For any T ≥ 3 assume that equation (EC.1) holds for any problem with horizon

T − 1, and for each policy defined by a parameter k ∈ {2, . . . , T − 1}.

First, note that this implies that equation (EC.1) holds for any problem with horizon T , and for

each policy defined by a parameter k ∈ {3, . . . , T}. Specifically, equation (EC.1) for a problem with

horizon (T −1)≥ 2 and a policy defined by a parameter k ∈ {2, . . . , T −1} implies equation (EC.1)

for a problem with horizon T and a policy defined by a parameter (k+ 1). Namely,

k+1∑
t=1

R
(
xMY
t

)
+

T∑
t=k+2

R
(
x̃MY
(k+1),t

)
=R

(
xMY
1

)
+

k+1∑
t=2

R
(
xMY
t

)
+

T∑
t=k+2

R
(
x̃MY
(k+1),t

)
≥R

(
xMY
1

)
+

k∑
t=2

R
(
xMY
t

)
+

T∑
t=k+1

R
(
x̃MY
k,t

)
=

k∑
t=1

R
(
xMY
t

)
+

T∑
t=k+1

R
(
x̃MY
k,t

)
.

It remains to show that equation (EC.1) holds for k = 2. Namely,
∑2

t=1R (xMY
t ) +∑T

t=3R
(
x̃MY
2,t

)
≥R (xMY

1 ) +
∑T

t=2R
(
x̃MY
1,t

)
. Or equivalently,

R
(
xMY
2

)
+

T∑
t=3

R
(
x̃MY
2,t

)
≥

T∑
t=2

R
(
x̃MY
1,t

)
. (EC.3)
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Equation (EC.3) follows from Corollaries 1 and 2. Specifically, inequality (EC.3) compares

the revenue collected by two myopic allocations with the same scaled budget update function

b̃t+1 =φφφ
(
b̃t, (1− γ)q̃

(
b̃t, x̃

MY
k,t

))
with initial budgets b2 and b̃2, respectively, such that b2 ≥ b̃2

component-wise. This concludes the proof of equation (EC.1).

Finally, equation (EC.2) follows from equation (EC.1) by comparing the largest left hand side

(k= T ) with the smallest right hand side (k= 2). This concludes the proof. �

Appendix EC.2: Proofs from Section 5

Proposition 2. On the instance described in Example 1, with γ > 2 and m ≥max
{

1
α2 ,

2(γ−1)
γ−2

}
,

both the myopic policy and the L-step look-ahead policy, for any L≥ 1, produce revenues that are

an o
(
logm
m

)
fraction of the optimum.

Proof. We first prove this statement for the myopic policy MY. The proof proceeds in two

parts. First, in part 1 we characterize the allocation that the myopic policy induces and upper

bound the revenues it can garner over the T time periods. In the second part, we construct a

sub-optimal policy and lower bound the revenues it garners. The result then follows by comparing

these upper and lower bounds.

Part 1. Assume that at some time t all customers 1 ≤ j ≤m have their current budget bj,t =

γ
γ+m−1 . For this budget level, consider an allocation xuniform which, for all j ∈ {1, . . . ,m}, allocates

product 1j to customer j and then fills their remaining budgets with product 2. Finally, xuniform

fills customer (m+ 1)’s budget with the remaining supply of product 2. Namely,

xuniform
1lj,t =

{
1
m2 , if l= j and l, j ∈ {1, . . . ,m},
0, if l 6= j and l, j ∈ {1, . . . ,m},

xuniform
2j =

{
γ

γ+m−1 −
1
m2 , if j ∈ {1, . . . ,m},

m− γm
γ+m−1 + 1

m
, if j =m+ 1.

(EC.4)

It is easy to verify that xuniform is budget feasible for any γ > 2 and m≥ 1.

Applying Lemma 5, where the assumptions that γ > 2 and m≥
{

1
α2 ,

2(γ−1)
γ−2

}
are used, we know

that at t= 1 with a budget b1 as defined in Example 1, the myopic policy implements the allo-

cation xuniform. It is easy to verify that φ(bj,1, q(bj,1,x
uniform
j )) = bj,1 = γ

γ+m−1 for all customers

j ∈ {1, . . . ,m}. Thus, b1 is a fixed-point under the myopic policy; this implies that MY satisfies

bj,t = γ
γ+m−1 for all customers j ∈ {1, . . . ,m} and periods t = 1, . . . , T . We can then construct an

upper bound on JMY by assuming that the myopic policy completely exhausts customer budgets

in each period over the horizon T :

JMY(b1)≤ T
(

γm

γ+m− 1
+ 1

)
= 3 logα(e−1) logm

(
γm

γ+m− 1
+ 1

)
= Θ(logm), (EC.5)
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where the term γm
γ+m−1 corresponds to the budgets of customers 1, . . . ,m, and the 1 corresponds to

the budget of customer (m+ 1).

Part 2. Now, let us consider an alternative policy πdeplete, which concentrates all the items on

customer 1 for each period t such that 1≤ t≤ T − 2. Namely, for 1≤ t≤ T − 2, πdeplete sets:

xdeplete

1lj,t
=

{
1
m2 , if j = 1

0, otherwise,

and fills the remaining customer budgets with product 2. Clearly, for all customers 2≤ j ≤m and

periods t ≤ T − 2, qj,t(bj,t,x
deplete
j,t ) = 0 so that bj,t+1 = αbj,t. Thus, under the πdeplete policy, the

budget of each customer 2≤ j ≤m at time T − 1 will be small enough such that the customer can

be fully satisfied by only allocating a fraction of item 1j to her. Namely,

bj,T−1 = αT−2
γ

γ+m− 1
= αlogα(m−3)−2 γ

γ+m− 1
=

1

α2m3

γ

γ+m− 1
≤ 1

α2m3
≤ 1

m2
,

where the first inequality follows from γ
γ+m−1 ≤ 1 for any m≥ 1, and the second inequality follows

from the assumption m≥ 1
α2 . Then, at period T − 1 the policy πdeplete sets:

xdeplete

1lj,T−1 =


0, if j = 1

αT−2 γ
γ+m−1 , if j 6= 1, l= j

0, otherwise,

thus obtaining qj,T−1(bj,T−1,x
deplete
j,T−1 ) = 1 and bj,T = αbj,T−1 + (1−α)≥ 1−α for all customers 2≤

j ≤m. Lastly, in period T , πdeplete exhausts the budgets of all customers 2≤ j ≤m with products

of type 2. Therefore,

Jπ
deplete

(b)≥ (1−α)(m− 1) = Θ(m). (EC.6)

Combining equations (EC.5) and (EC.6), we obtain that:

JMY(b1)

J∗(b1)
≤ JMY(b1)

Jπdeplete(b1)
= o

(
logm

m

)
.

Where the inequality holds since Jπ
deplete

(b1) is a lower bound on J∗(b1).

The proof that

Jπ
L-LA

(b1)

J∗(b1)
= o

(
logm

m

)
,

proceeds similarly and is omitted. The main difference is that we use a different argument to show

that starting at b1, π
L-LA allocates uniformly products 1j to j, thus implying that b1 remains a

steady state budget. This argument is precisely described in Lemma 5. �

Lemma 5. On the instance described in Example 1, and for γ > 2 and m≥
{

1
α2 ,

2(γ−1)
γ−2

}
, both the

myopic and L-step look-ahead policies produce xuniform as the optimal allocation for t= 1.
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Proof. We prove, separately for the case of the myopic policy and the L-step look-ahead policy,

that xuniform is yielded as the optimal allocation on the instance described in Example 1.

Part 1: Myopic policy. Note that at period t= 1 all customers 1≤ j ≤m start with equal budget

levels. Therefore, by symmetry, the optimal allocation can be either one which allocates each good

{1j}1≤j≤m to the corresponding customers 1≤ j ≤m, which is xuniform, or one which concentrates all

these goods to, without loss of generality, customer 1 only. By examination, we can see that at this

budget level, xuniform
2j = γ

γ+m−1−
1
m2 for customers 1≤ j ≤m, and thus xuniform

2(m+1) =m− mγ
γ+m−1−

1
m
> 0

for customer (m+ 1), while all customers 1≤ j ≤m have their budgets exhausted. Since the price

garnered by allocating good 1j to customer j is higher than the price of allocating some other good

1l, l 6= j, to customer j, then under the concentrated allocation there is less leftover of good 2 to

allocate to customer (m+ 1), and as such xuniform garners more revenues in this period than the

concentrated allocation. This highlights the purpose of customer (m+1) in Example 1: without this

customer, the optimal myopic solution at t= 1 would be non-unique, with both concentrated and

uniform allocations yielding the same objective value, whereas the presence of customer (m+ 1)

solves this issue and guarantees that xuniform is the unique myopic allocation.

Part 2: L-step look-ahead. Consider the L-step look-ahead policy with a starting budget bj,1 =

γ
γ+m−1 for 1≤ j ≤m. Note that the structure of the problem is such that it is always optimal to

fully exhaust the budget of a customer 1≤ j ≤m; moreover, since the supply of good 2 is m, it is

always possible to exhaust these budgets. Thus, the optimal sequence of allocations produced by

πL-LA is the one that maximizes
∑L+1

t=1

∑m

j=1 bj,t.

First, note that under any sequence of allocations z1, . . . ,zL+1, the budget trajectories in the

L+1 periods, namely b1, . . . ,bL+1, are such that for any j, bj,t ≥ αL γ
γ+m−1 ≥

γ
2(γ+m−1) . This implies

1
m2 ≤ γ

2(γ+m−1) ≤ bj,t, where the first inequality holds for any m≥ 2 and γ ≥ 2, and thus xuniform is

feasible for any bt along the budget path. Moreover,

U∗j (bj,t) = γm
1

m2
+mmin

{
bj,t− 1

m2

1− 1
m

,
m− 1

m2

}
=
γ

m
+ min

{
m2bj,t− 1

m− 1
,
m− 1

m

}
, (EC.7)

and, since bj,t ≥ γ
2(γ+m−1) , then

m2bj,t−1
m−1 ≥

γm2

2(γ+m−1)
−1

m−1 ≥ 1 ≥ m−1
m

as long as γ > 2 and m ≥ 2(γ−1)
γ−2 .

Thus, equation (EC.7) becomes

U∗j (bj,t) =
γ− 1

m
+ 1, for t≤L+ 1. (EC.8)

Now observe that given any budget level bt such that bj,t ≥ γ
2(γ+m−1) and for any feasible alloca-

tion x, ∑
j

qj,t(bj,t,xj) =
∑
j

γmx1jj +m
∑

l 6=j x1lj

U∗j (bj,t)
=
γm

∑
j x1jj +m

∑
j

∑
l 6=j x1lj

γ−1
m

+ 1
.
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We can cast optimizing
∑

j qj,t(bj,t,xj) as the fractional knapsack problem:

max
x≥0

γm
∑

j x1jj +m
∑

j

∑
l 6=j x1lj

γ−1
m

+ 1

s.t.
∑
j

x1lj ≤
1

m2
, ∀l.

Since we have set γ > 2, the solution to the knapsack is the one that allocates all the supply of

good 1j to customer j, for each 1 ≤ j ≤m, i.e. sets x1jj to its maximum feasible value for all j,

which is precisely the allocation xuniform. This implies that, starting at t= 1, choosing xuniform at

t= 1, . . . ,L+ 1 maximizes each
∑

j qj,t(bj,t,xj), and consequently
∑L+1

t=1

∑m

j=1 bj,t. Thus xuniform is

the optimal first period allocation for πL-LA. �


