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While methods for optimization under uncertainty have been studied intensely over the past decades, 

the explicit consideration of the interplay between uncertainty and time has gained increasing atten- 

tion rather recently. Problems requiring a sequence of decisions in reaction to uncertainty realizations 

are of crucial relevance in real-world applications, e.g., supply chain planning, scheduling, or finance. 

Several methods emphasizing varying aspects of these problems have been developed, mainly triggered 

by a particular application. Although these methods all intend to solve a similar underlying problem, 

they differ strongly with respect to the uncertainty representation, the prescriptive solution information 

they provide and the means of performance evaluation. The result is a fragmented picture of uncertain 

multi-stage problems – both from a methodological and an application-oriented perspective. It fails to 

interconnect results from different disciplines or even comparing strengths and weaknesses of individ- 

ual methods in particular applications. This review aims at integrating the different methods for solving 

uncertainty inflicted multi-stage optimization problems into a broader picture, thereby paving the way 

for more comprehensive approaches to sequential decision making under uncertainty. For this purpose, 

a description of the methods along with their historic development is given first. Secondly, an overview 

on their main areas of application is provided. We conclude that decoupling uncertainty models from 

solution methods and developing standardized performance measures represent key steps for organizing 

multi-stage optimization under uncertainty and for eliciting further potentials of yet unexplored combi- 

nations of uncertainty models and solution methods. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Since the early beginnings of mathematical programming, un-

ertainty in optimization problems has been a topic of increasing

nterest. Triggered by Dantzig’s seminal work “Linear programming

nder uncertainty” in 1955 [1] , in which he introduced the con-

ept of stochastic programming, numerous approaches have been

eveloped, all addressing the phenomenon that real world appli-

ations often suffer from incomplete information on relevant input

ata – short: uncertainty. At the same time, real world optimiza-

ion problems often appear in a temporal context. Therefore, the

nterplay between uncertainty and time is inherently important to

ny related decision making process. While multi-period formula-

ions are already well-established, capturing the dynamics of suc-

essive information disclosure is a challenge that received increas-
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ng attention over the past several decades and still requires fur-

her exploration. 

The problems referred to require a sequence of decisions which

eact to outcomes that evolve over time, and information on these

utcomes is disclosed gradually [2,3] . In the following, these prob-

ems will be referred to as uncertain multi-stage optimization

roblems and their general outline is sketched in Fig. 1 . Uncertain

nformation is modelled by a sequence ξ[ T ] = { ξt : t = 1 , . . . , T } of

uccessively observable data vectors ξ t over a planning horizon of

 stages, with T ∈ N . The time between two successive observa-

ions ξ t and ξt+1 of elements from ξ [ T ] marks a (decision-) stage.

t each stage, a new (partial) decision x t has to be irrevocably fixed

ased on the information available at this point. 

While reviews exist on optimization under uncertainty

4,5] and application specific approaches (e.g., [6,7] ), the au-

hors feel that insufficient attention has been paid to methods

ocusing on problems with multi-stage decision structures. As

epicted in Fig. 2 for uncertain multi-stage problems, solution

ethods have been developed in different research disciplines.

hile in the mathematical programming community established

oncepts of stochastic programming and robust optimization
g review on multi-stage optimization under uncertainty: Aligning 
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Fig. 1. Information disclosure in uncertain multi-stage optimization problems. 

Fig. 2. Prominent methods for solving multi-stage stochastic programs have been derived from three basic concepts: stochastic programming, robust optimization, and online 

optimization, stemming from the fields of mathematical programming and computer science, respectively. 
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Fig. 3. (i) Optimality: while x 1 is optimal in case of ξ 1 , solution x 2 would be opti- 

mal if ξ 2 was realized; (ii) Feasibility: while x 1 is optimal under feasible set X (ξ 1 ) , 

it is infeasible when the set of feasible solutions realizes as X (ξ 2 ) . 
have been extended to multi-stage settings, the algorithm-based

concept of online optimization evolved from the field of computer

science which deals with sequential decision making by definition.

Overviews are available for specific disciplines or specialized

aspects dealing with optimization under uncertainty: [8] gives a

survey on stochastic programming, Gabrel et al. [9] and Yanıko ̆glu

et al. [10] discuss robust optimization (with the latter reference fo-

cusing on the option of adjustable actions), Albers [11] provides a

survey on online optimization, and [12] consider the use of Monte

Carlo sampling in stochastic optimization. Furthermore, over the

last two decades researchers have begun to combine ideas from

the more established concepts leading to the emergence of new

approaches such as online stochastic combinatorial optimization

or recoverable robust optimization. 

However, much of these developments took place in an

application-driven context, and even though they all address the

same basic problem of sequential decision making in the face of

gradual information disclosure, the approaches differ largely in

terms of formalism, uncertainty model and solution concept. These

differences make a direct transfer from one concept to another

difficult for any problem of a given application. Furthermore, the

authors feel that when confronted with an uncertain multi-stage

problem the choice of a concept is often based on personal pref-

erence or habit rather than suitability. This effect is amplified by

the lack of adequate means to compare solutions between con-

cepts as currently performance measures are only concept specific.

From this background the authors believe that a systematic review

of approaches to uncertain multi-stage optimization is overdue. 

The outline of the paper is as follows: First we review rele-

vant methods and concepts for solving uncertain multi-stage prob-

lems based on their conceptual approach, their formal model of

uncertainty, and their historic development. Moreover, we give

an overview on prominent performance measures of respective

methods. We conclude this theory-related part by summarizing

the main findings in terms of commonalities and differences of

the methods. The second large part of the paper then gives an
Please cite this article as: H. Bakker, F. Dunke and S. Nickel, A structurin

concepts from theory and practice, Omega, https://doi.org/10.1016/j.om
verview on applications with multi-stage character that were

ackled by the different methods for uncertainty-inflicted optimiza-

ion. We show that for each methodological approach there are

ypical application domains and typical time horizons that were

reated preferentially. Finally, we draw a conclusion for the current

tate of multi-stage optimization under uncertainty and point out

ain directions for further research in this field. 

. Methods and concepts 

Uncertainty in an optimization problem means that some or all

f the problem’s parameters are not known at the time the prob-

em has to be solved. This implies that in an uncertain setting the

eterministically defined concepts of feasibility and optimality of

 solution are no longer defined as illustrated for the simple ex-

mple of a linear program with two decision variables in Fig. 3 .

onsequently, the problem per se cannot be solved by state-of-the-

rt solvers. As will be highlighted in the following, approaches that

volved from mathematical programming largely focus on finding

eterministic reformulations for these concepts. 
g review on multi-stage optimization under uncertainty: Aligning 
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Fig. 4. Overview of flourishing research and application periods for the different methods with respect to the multi-stage setting. 
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Even though explicitly considering temporal relationships be-

ween information disclosure and (partial) decision making adds

omplexity to the problem, multi-stage models enable the decision

aker to adapt decisions at later stages to the already observed re-

lizations of the uncertain data. Thereby, multi-stage models yield

he potential to lead to better solutions than their static counter-

arts which require that all decisions have to be fixed up front. 

However, translating this advantage into an actual improvement

emains a challenge, and in the following several approaches for

his task will be reviewed. Each will be introduced by its general

dea and then be embedded into its historical context. To this end,

ig. 4 provides a first guideline for a rough classification of the de-

elopments. This timeline will be further resolved in subsequent

ections. 

.1. Stochastic programming 

As a direct extension of deterministic mathematical program-

ing, uncertainty is added to a problem by modelling some of

he problem’s parameters as a (multi-dimensional) random vari-

ble ξ following a probability distribution F which is assumed to

e known to the decision maker. According to Rosenhead’s classi-

cation of decision environments [13] , stochastic programming de-

icts the situation of decision making under risk. Having its ori-

in in Dantzig’s seminal paper “Linear programming under uncer-

ainty” [1] , stochastic programming is, to our knowledge, the first

pproach from within the Operations Research community to deal

ith uncertainty in mathematical programming based optimiza-

ion. 

As mentioned earlier, if some or all the problem parameters are

andom, the concepts of optimality and feasibility need to be rede-

ned. Regarding optimality, Dantzig proposed to comprise all the

nformation on the probability of the uncertain parameter in a sin-

le, deterministic value, namely the expectation E ξ∼F [ ·] , leading to

 deterministic version of the objective function f : 

in 

x 
E ξ∼F [ f (x, ξ ) ] . (1) 

his reformulation assumes that the decision maker has a risk-

eutral attitude as it implies that potential losses are equally offset

y potential gains. However, particularly in applications with non-

epetitive decisions decision makers often exhibit a risk averse atti-

ude fearing losses more than cherishing gains. Therefore, alterna-

ive concepts of optimality which are often based on risk measures

rom finance, as e.g., the mean-variance criterion [14] , the Value at

isk [15] , or the Conditional Value at Risk [16] , have been applied

ver the years. 

Regarding feasibility, stochastic programming considered tem- 

oral relations between decisions and uncertainty observations

arly on by introducing the concept of recourse – a partial deci-

ion that is to be fixed after uncertainty has been disclosed so that

easibility is ensured, even if possibly at a high cost. This setting

s known as two-stage stochastic programming and formalized by
Please cite this article as: H. Bakker, F. Dunke and S. Nickel, A structurin

concepts from theory and practice, Omega, https://doi.org/10.1016/j.om
 nested problem formulation in which the first stage decision x 1 
as to be taken prior to the observation of ξ and is solution to the

roblem 

min 

 1 ∈ R n 1 
f 1 (x 1 ) + E ξ∼F [ Q(x 1 , ξ ) ] s.t. x 1 ∈ X 1 (2) 

here Q ( x 1 , ξ ) is the optimal value of the second-stage problem 

(x 1 , ξ ) := min 

x 2 ∈ R n 2 
f 2 (x 2 , ξ ) s.t. x 2 ∈ X 2 (x 1 , ξ ) (3) 

nd x 2 is the second stage decision. While the expectation of the

ptimal outcome of the second stage decision can be determined

eterministically for a given x 1 , the recourse actions x 2 depend on

nd have to be computed for every realization of the random out-

ome ξ . The resulting solution ( x 1 , x 2 ( ξ )) is called a policy. 

The problem formulation from above can be extended to a

ulti-stage setting (cf. [17,18] ) in order to capture the dynamics

f real-world decision making. Thereby, the successive information

isclosure is formally captured by extending the random variable

o a stochastic process ξ[ T ] := { ξt | t = 1 , . . . , T } where each ob-

erved element ξt ∼ F t of the process determines the parameters

f the t -stage subproblem: 

min 

x 1 ∈X 1 
f 1 (x 1 ) + E ξ2 

[
inf 

x 2 ∈X 2 (x 1 ,ξ1 ) 
f 2 (x 2 , ξ2 ) 

+ E ξ3 

[
· · · + E ξT 

[
inf 

x T ∈X T (x T−1 ,ξT ) 
f T (x T , ξT ) 

]]]
. (4) 

odelling multi-stage uncertainty by means of a stochastic process

s a generic description which – particularly in case of continuous

istributions F t – leads to practically unsolvable problems. There-

ore, the model is often simplified to a so-called scenario tree. First

ntroduced by [19] , it can be thought of as a graphic representa-

ion of a discrete (or reduced and discretized) stochastic process.

tarting at the root node each level of the tree corresponds to the

ossible outcomes at a stage of the problem. Hence, the paths ξ s 
[ T ] 

,

 = 1 , . . . , S, from root to leaves correspond to possible realizations

f the (discretized) stochastic process, also referred to as the set of

cenarios S . The probability π s of an individual scenario ξ s 
[ T ] 

can be

etermined by multiplying the probabilities of the individual out-

omes at each stage along the path in the tree. With this discrete

orm of uncertainty and the fact that the expectation of a discrete

andom variable equals a weighted sum, the multi-stage stochastic

rogram in Eq. (4) can be transformed to what is called the deter-

inistic counterpart which can be handed over to state-of-the-art

olvers: 

min 

 1 , { x s 2 } S s =1 
, ... , { x s 

T 
} S 

s =1 

∑ 

s ∈ S 
πs f (x 1 , x 

s 
2 , . . . , x 

s 
T , ξ

s 
[ T ] ) (5) 

 1 ∈ X 1 , x 
s 
t ∈ X 

s 
t s ∈ S, t ∈ T (6) 

 

s 
t = x s 

′ 
t t ∈ T , s, s ′ ∈ S with s � = s ′ , ξ s 

t = ξ s ′ 
t . (7) 

he resulting policy prescribes the optimal sequence of decisions

or every scenario and hence gives stage-wise instructions of what
g review on multi-stage optimization under uncertainty: Aligning 
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Fig. 5. (i) Scenario tree - each node represents the observation of a distinct uncertain data vector ξ s 
t ; (ii) Fan of scenarios - each node corresponds to a decision vector x s t in 

the deterministic counterpart ( Eq. (5) –(7) ). 
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to do under each realization of the uncertain parameters (transient

decision making). Fig. 5 illustrates that the deterministic counter-

part ignores the information based on uncertainty evolution in-

herent to the scenario tree. Instead, each scenario is represented

as an independent path in the tree leading to a “fan of scenar-

ios”. This does not only lead to increased complexity as the num-

ber of decision variables increases but also requires the additional

constraints in Eq. (7) . These so-called non-anticipativity constraints

ensure that decisions for individual scenarios do not differ before

the associated scenarios can be distinguished from one another. Ef-

ficiently exploiting the scenario tree structure to reduce complexity

is a topic which to our knowledge remains largely unexplored. 

Albeit the extensive form of a multi-stage stochastic program

may be handed over to a solver, practical applications are re-

strained by computational limits as a problem’s dimensions grow

quickly in the number of stages and scenarios. This computational

challenge is also reflected in the historic development of the field.

Fig. 6 sketches the methodological developments in stochastic pro-

gramming encompassing multi-stage problems. 

The body of theory on multi-stage stochastic programming

has been analyzed throughout the past decades in detail includ-

ing topics of well-definedness [20,21] , stability [22] , approxima-

tions [23] , complexity [24,25] , and advanced algorithmic outlines

[26,27] . However, researchers recognized the need for approach-

ing stochastic programming models in applications with the aid of

computer-supported decision making tools [28,29] ) and that with-
Fig. 6. Evolution of methods and concepts related to stocha

Please cite this article as: H. Bakker, F. Dunke and S. Nickel, A structurin

concepts from theory and practice, Omega, https://doi.org/10.1016/j.om
ut further ado, the practical solvability of multi-stage stochastic

rograms is strongly delimited due to large dimensions ( [30] ). 

Therefore, decomposition methods were proposed based on

pecific structures of stochastic programs. A comprehensive survey

ncluding a classification into primal and dual methods is given

n [31] . Primal methods solve a series of subproblems to approx-

mate the recourse costs with increasing accuracy. Dual meth-

ds rely on relaxing non-anticipativity constraints and consider-

ng them in the Lagrangian function which leads to one scenario

orresponding to one subproblem. Moreover, numerous specialized

ersions have been developed: [32] introduces a parallel decom-

osition scheme where scenarios and their relation to each other

subscenarios for which non-anticipativity has to be ensured) are

rganized in a tree and the mathematical programming formula-

ion is derived based upon the tree. Subproblems resulting from

ree nodes allow for parallelized solving when taking into account

nformation exchange along tree arcs. The information exchange

lso allows for cutting plane integration. Lulli and Sen [33] ad-

ress multi-stage stochastic programs with integer variables by a

ranch and price approach where the original problem is decom-

osed into a master problem and scenario subproblems. The mas-

er problem can be obtained from the Dantzig-Wolfe decomposi-

ion resulting from the integer scenario polyhedron of the feasible

et. Pricing subproblems are formulated for each scenario. A gen-

ral method for generating cutting planes to be used in decompo-

ition schemes is presented in [34] where several valid inequalities
stic programming with regard to multi-stage settings. 

g review on multi-stage optimization under uncertainty: Aligning 
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re derived from the scenario tree. Decomposition schemes were

lso specifically tailored to problem settings. For instance, Singh

t al. [35] exhibit how multi-stage stochastic mixed-integer pro-

ramming can be applied to planning capacity expansion of pro-

uction facilities and be solved using a Dantzig-Wolfe-based de-

omposition scheme which relies on a scenario tree representation

nd a technique called variable splitting which allows for a refor-

ulation of the problem yielding stronger bounds from the mas-

er problem. The decomposition method of stochastic dual dynamic

rogramming [26,27] relies on the generation of scenarios to ap-

roximate the recourse cost function in multi-stage settings using

utting planes. The advantage of stochastic dual dynamic program-

ing lies in the fact that a problem need not be formulated in its

ntirety at the outset which makes it attractive for the multi-stage

etting. 

Besides decomposition, an attempt to make problem instances

olvable in reasonable time and also to account for problems with

nfinitely many scenarios is by generating “significant” scenarios.

o this end, the technique of scenario generation through sce-

ario trees gained importance [19,36–38] . Likewise, general sam-

ling outlines such as sample average approximation became pop-

lar also for multi-stage stochastic programming [39] . Lately, re-

earchers have combined sampling and scenario generation [40] . 

Also in multi-stage models the use of risk-averse objective func-

ions has gained prominence [41] . Thereby, concepts from the

wo-stage setting cannot be transferred ad hoc to multi-stage

odels as it is not evident how to evaluate recourse costs for

he entire planning horizon. Opinions differ about whether to

valuate risk for the entire planning horizon, at every stage, or

or individual scenarios. In this context the question of time-

onsistent risk measures, which give a persistent evaluation of

isk across stages and scenarios, and a related definition of con-

istency arises [42,43] . Algorithmic implementations of risk averse

ulti-stage models can e.g. be found in [44,45] . Scenario-reduction

ethods and sampling approaches specified for risk-averse mod-

ls are presented in [46] . Shapiro [47] provides a comprehen-

ive outline on the approach of risk-averseness in multi-stage

tochastic programming including a discussion of sample average

pproximation. 

A distinction between exogenous uncertainty (as assumed in

lassical stochastic programming) and endogenous uncertainty is

ade in the research stream started by Goel and Grossmann [48] .

n contrast to exogenous uncertainty where stochastic processes

annot be influenced (e.g., customer demands which cannot be in-

uenced), endogenous uncertainty is tied to stochastic processes

hich depend on previous decisions (e.g., customer demands in-

uenced by marketing campaigns). In case of endogenous uncer-

ainty, two types of this uncertainty are described: First, decisions

an influence parameter probability distributions (e.g., demands in

ase of marketing campaigns). Second, decisions can influence the

iming of parameter realizations (e.g., when a previous decision

as to be implemented first and it has to be waited to get knowl-

dge about realized parameter values). Technically, a scenario tree

escribing the outcomes of all possible random processes becomes

ecision-dependent and requires to model all possible scenario tra-

ectories. Translated into mathematical programming, disjunctive

onstraints reflecting logical and temporal relations between de-

ision variables become necessary. Extending classical stochastic

rogramming, the authors present a hybrid mixed-integer disjunc-

ive programming formulation and advocate Lagrangean duality

ased branch and bound as a solution method. The coupling of the

tochastic process with the optimization process is further consid-

red in the multi-stage setting in [49] and [50] . To facilitate prob-

em solving, conditional non-anticipativity constraints (as opposed

o initial non-anticipativity constraints) are tackled by delimiting

heir number. Special emphasis is put on a temporal resolution of
Please cite this article as: H. Bakker, F. Dunke and S. Nickel, A structurin
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ecision-dependent uncertainties by Tarhan et al. [51] who pro-

ose multi-stage stochastic disjunctive programming with dynami-

ally generated non-anticipativity constraints that can be solved by

ombining global optimization and outer approximation. A com-

rehensive presentation of computational strategies for multi-stage

tochastic programming under endogenous and exogenous uncer-

ainties is given in [52] . 

.2. Robust optimization 

Like stochastic programming, robust optimization also extends

 mathematical program by an uncertainty model. In contrast to

tochastic programming, robust optimization overcomes the prac-

ical drawback that probabilities are often hard – if not impossible

to identify and hence bound to estimation errors [53] . Instead, 

olely information on the set of possible outcomes and not on their

ndividual likelihoods is assumed available. According to the clas-

ification of [13] , robust optimization as first proposed by Soyster

54] and eventually established in the 1990s by the seminal papers

55–57] covers the situation of decision making under ambiguity. 

Uncertainty is formally described by an uncertainty set U which

ontains all possible realizations of the uncertain problem param-

ters. A possible parameter configuration i is called an instance to

 problem, a perception which shifts the view of an uncertainty

nflicted optimization problem P U to a set of deterministic prob-

em instances where it is uncertain which one will be realized [58] .

hus, a robust optimization problem can be represented as 

 U = 

{ 

min 

x 
f (i, x ) : x ∈ X (i ) 

} 

i ∈U 
. (8) 

otice that this model allows a strict separation between the

odel of uncertainty and the actual optimization problem. In par-

icular, it is often the case that modelling the uncertainty set

s a multi-dimensional set over several parameters is too com-

lex. Instead, the uncertain phenomenon is reduced to a few so-

alled primitive uncertainties ξ ∈ � ⊂ R 

d (with d ∈ N and parame-

er space �) which affinely perturb the individual problem param-

ters away from some nominal problem instance i 0 : 

 = i 0 + 

d ∑ 

d ′ =1 

ˆ i · ξ d ′ . (9) 

hereby, the description of uncertainty can be reduced to the de-

cription of � and much of the work on static robust optimization

as focused on finding tractability results for its different shapes.

he most prominent result in this context stems from [59] who in-

roduce a tractable reformulation for problems with a cardinality-

onstrained uncertainty set. This allows decision makers to define

 maximum number of uncertain parameters which may deviate

or each constraint which leads to a considerable decrease in con-

ervatism of the resulting solution. For a comprehensive overview

n the different uncertainty sets we refer to [60] . 

As in stochastic programming, a deterministic reformulation of

he uncertain problem is needed to define optimality and feasibil-

ty. Robust optimization generally optimizes the worst case in the

ense of a guaranteed outcome under any possible realization: 

in 

x 
sup 

ξ∈ �
f (x, ξ ) . (10) 

egarding feasibility, robust optimization applies what is also re-

erred to as a fat solution approach where only solutions are con-

idered that are feasible for any outcome: 

 ∈ X (ξ ) , ξ ∈ �. (11) 

ot only does this approach ignore the temporal context, it is also

ery conservative. 
g review on multi-stage optimization under uncertainty: Aligning 
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Fig. 7. Evolution of methods and concepts related to robust optimization with regard to multi-stage settings. 
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As seen in Fig. 7 , the multi-stage aspect has been investigated

in the robust optimization community only starting in the early

20 0 0s. Ben-Tal et al. [61] introduced the concept of adjustable ro-

bust optimization (ARO) which distinguishes between “here-and-

now” decisions x 1 that are to be fixed up front and “wait-and-

see” decisions x 2 = X 2 (ξ ) which are allowed to depend on observa-

tions of the uncertain data ξ . While the situation depicted resem-

bles that of a two-stage stochastic program, ARO does not aim to

determine wait-and-see decisions directly but only the functional

form, the decision rule X 2 , by which they depend on the uncer-

tain data. The solution to an (affinely) adjustable robust counter-

part is therefore giving a more general prescription than that of

a stochastic program since decision sequences can be derived not

only for a limited number of scenarios but for a range of realiza-

tions in a possibly unbounded set. Since optimizing over functions

of arbitrary shape leads to intractable problems, the adjustable ro-

bust problem is often approximated by restricting decision rules to

some predefined functional form. The most prominent restriction

is to affine functions [61] such that one optimizes over the coeffi-

cients q ∈ R , and p ∈ R 

d in a decision rule of the form 

X 2 (ξ ) = q + p T ξ . (12)

While affine approximations of the decision rules have been found

to perform near-optimal in practice [62] and under certain condi-

tions within a defined optimality gap [63] or even optimal [64] ,

it becomes impracticable when it comes to binary or integer re-

course decisions. The most promising way to handle such problem

is finite adaptability (or k -adaptability) as presented by Bertsimas

and Caramanis [65] . It models decision rules via piece-wise con-

stant functions for k disjunctive partitions of the uncertainty set.

In order to determine these partitions iterative splitting procedures

have been proposed [66,67] . The resulting solution to a k -adaptable

problem resembles that of a stochastic program even more, the

only difference being that the policy is now not based on scenar-

ios but on partial uncertainty sets. Bertsimas et al. [68] acknowl-

edged this resemblance and introduced a generalization of a sce-

nario tree in order to model uncertainty evolution in robust multi-

stage problems. Hanasusanto et al. [69] extended the idea of k -

adaptability to a min-max-min problem formulation with the help

of which multi-stage problems with integer or binary recourse de-

cisions can be handed over to state-of-the-art solvers. For a com-

prehensive overview on ARO it shall be referred to the recently

published overview by Yanıko ̆glu et al. [10] . 

A different stream of research focuses on the exact solution

of two-stage robust problems. The second stage value function of

the first-stage decisions can be gradually constructed by using the

dual solutions of the second stage problem, leading to Benders-

dual cutting plane algorithms [70,71] . Furthermore, Zeng and Zhao

[72] show that two-stage robust problems can be reformulated as
Please cite this article as: H. Bakker, F. Dunke and S. Nickel, A structurin

concepts from theory and practice, Omega, https://doi.org/10.1016/j.om
i-level programming problems. In [73] they introduce a column-

nd-constraint-generation algorithm in which they solve the sec-

nd stage problem for a subset of relevant scenarios in order to

btain lower bounds and then iteratively add non-trivial scenarios

o strengthen these. However, it must be pointed out that these

esults cannot be transferred adhoc to a multi-stage setting. 

.3. Online optimization 

Online optimization has its roots in computer science and

s fundamentally different from stochastic programming and ro-

ust optimization which emanated from mathematical program-

ing. Online optimization addresses sequential decision making

here elements (or requests) σ t of an input sequence σ[ T ] =
(σ1 , σ2 , . . . , σT ) are presented sequentially and each element has to

e processed by an irrevocable decision before the next element is

evealed [2,74] . The original focus was to devise performance guar-

ntees for online algorithms as opposed to an optimal offline al-

orithm which is not subject to any uncertainty. The processing

ecision is taken according to an online algorithm A which deter-

ines a decision for each request without knowing subsequent re-

uests. When identifying the arrival of the t -th request σ t with the

bservation of the uncertain element ξ t at stage t and the action

f an online algorithm with the partial decision x t to be fixed at

hat stage, it is evident that online optimization also deals with un-

ertainty inflicted multi-stage optimization. However, it offers two

ew perspectives missing in mathematical programming. First, no

nformation is required on subsequent requests to make a decision

t a certain stage – neither of probabilistic nor of set-based nature.

n particular, the complexity of the decision at stage t is unaffected

y the overall problem size. Second, online optimization is gener-

lly associated with problems that require quick, short-term deci-

ion making under a constant inflow of information [75] . Consider-

ng the computational challenges of mathematical programming in

 multi-stage setting, the authors feel that it is necessary to men-

ion online optimization as an approach equally relevant to multi-

tage optimization. This need has also been acknowledged by re-

earchers since approaches combining stochastic programming and

obust optimization with online optimization have gained impor-

ance over the past years as seen in Section 2.4 . 

The historic development of online optimization is sketched in

ig. 8 . The only theoretical concept that is agreed upon widely is

ompetitive analysis (see, e.g., [2,74] ) which is formally explained

n Section 2.6 . Informally, online algorithms have to compete with

n optimal offline algorithm which knows the whole input in ad-

ance and provable quality guarantees have to hold for arbitrary

nput sequences. Hence, competitive analysis is a worst-case con-

ideration of a worst-case analysis since the quality guarantee not

nly has to hold over all inputs but also against the strongest pos-
g review on multi-stage optimization under uncertainty: Aligning 
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Fig. 8. Evolution of methods and concepts related to online optimization with regard to multi-stage settings. 
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ible hypothetical adversary in the form of an optimal offline algo-

ithm. Technically, competitive analysis leads to a classification of

nline algorithms as approximation algorithms where the scarce

esource is not time, but future information [2] . The first com-

etitive analysis has been introduced by Graham [76] for machine

cheduling; it has been picked up by Sleator and Tarjan [77] which

arks the starting point of flourishing research interest. 

Similar to robust optimization, competitive analysis is overly

essimistic and does not reflect an algorithm’s ability to suitably

eal with a given problem [74,78] . In order to overcome this dis-

dvantage, several enhancements to competitive analysis were pro-

osed (see, e.g., the surveys in [78–80] ) such as increasing the

ower of the online algorithm, reducing the power of the offline

lgorithm, restricting the instance space, applying alternative ob-

ective functions, or randomizing the online processing. 

Additionally, online optimization does not take into account

ny information on the probability of future input elements. On-

ine algorithms are tailored to optimize such a worst case per-

ormance indicator which often leads to poor average behaviour.

ence, an alternative type of analysis is average case analysis

here stochastic assumptions with regard to the elements of the

nput sequence are made. In this sense, the notion of compet-

tiveness has also been transferred to stochastic settings ( [81] ,

82] ). On the other hand, assumptions about the input sequence

re also made to soften the worst-case character of competitive

nalysis: The fair adversary model requires an input sequence to

onform with a specified set of constraints that exclude patho-

ogical worst cases [83] ; likewise, certain patterns or even distri-

utional information about the input sequence may be assumed

84,85] . 

Lately, gaps between pure online optimization and other, previ-

usly unconsidered aspects of multi-stage optimization under un-

ertainty have been addressed: Dunke and Nickel [86] introduce a

eneral framework for online optimization with look-ahead where

ook-ahead amounts to partial (deterministic) knowledge about im-

ediately successive input elements. Dunke and Nickel [87] out-

ine the use of simulation models to assess online algorithms in

ore realistic problem settings which would be inaccessible for

ompetitive analysis. In [88] , so-called double time horizons con-

isting of a short term time horizon with most of the data known

nd a long term horizon with most of the data uncertain are pre-

ented. Finally, there are concepts which allow to make parts of

he input instances known in exchange for paying some costs: In

he setting of explorable (or queryable) uncertainty (cf. [89,90] )

dditional problem information can be queried by an algorithm

nd competitive analyses are carried out in the corresponding

etting. Likewise, online optimization with advice complexity (cf.
 a

Please cite this article as: H. Bakker, F. Dunke and S. Nickel, A structurin

concepts from theory and practice, Omega, https://doi.org/10.1016/j.om
91,92] ) asks through which amount of additional information to

e queried an algorithm could reach optimal competitive ratios. 

.4. Combinations of stochastic programming, robust optimization, 

nd online optimization 

As the relevance of online optimization for uncertain multi-

tage optimization problems was widely acknowledged, mixed

orms with robust optimization and stochastic programming have

volved as seen in the timeline in Fig. 9 , trying to combine the

enefits of two methods. 

.4.1. Online stochastic optimization 

Online stochastic optimization is based on the idea of integrat-

ng available stochastic data into an online algorithm via on-the-

y sampling of uncertain data. A framework of online stochastic

combinatorial) optimization has mainly been coined over several

ears by van Hentenryck and Bent starting with their initial contri-

utions on the expectation, consensus, and regret algorithm [93] .

hese algorithms operate based on the fact that when the distri-

ution F σ of the elements of the input sequence σ is known, the

nline algorithm A may use the probabilistic information at each

tage via sampling. The algorithm samples future developments

rom this known distribution and then takes a decision optimizing

he expected objective value change in this very stage. The addi-

ional information can then be used to base the decision on the

aximization of the expected profit 

 σ∼F σ [ f ( A ( σ ) ) ] . (13) 

learly, in case of limitations on computational time, approxima-

ions are necessary which are provided by the consensus and re-

ret algorithms analyzed in [94] . Conceptually, online stochastic

ptimization integrates stochastic programming into an online al-

orithm to employ probabilistically motivated anticipatory algo-

ithms; at each stage a multi-stage stochastic program is solved,

ut only first stage decisions are implemented. Thereby, it inher-

ts the algorithmic structure from online algorithms while at the

ame time extending them by sampling from the distribution of

he elements of σ to generate scenarios of the future at each de-

ision time. Furthermore, online stochastic optimization inherits

he property of stochastic programming that uncertainty does not

epend on past decisions while moving away from a priori opti-

ization in favour of making decisions as the algorithm executes.

ately, Mercier and Van Hentenryck [95] have generalized the one-

tep anticipatory algorithms to a multi-step version (based on sam-

le average approximation and heuristic search algorithms for ex-

ctly solving Markov decision processes). 
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Fig. 9. Evolution of methods and concepts related to Combinations of stochastic programming, robust optimization, and online optimization with regard to multi-stage 

settings. 
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2.4.2. Online and robust optimization 

2.4.2.1. Recoverable robustness. One approach to combine robust

and online optimization is recoverable robust optimization, first

presented by Cicerone et al. [96] in the context of creating sta-

ble train timetables that are able to cope with disruptions in the

operational phase. Its concept is to split the decision process into

a strategic planning phase, in which a recoverable robust solution

is determined, and an operational phase, during which a sequence

of disruptions occur and the solution is modified to retain feasibil-

ity by means of an online recovery algorithm. Hence, the concept

of robustness has been altered from requiring the solution to be

feasible for all realizations of the uncertain data to that of recover-

able robustness which only requires that the solution can be recov-

ered to feasibility in every case. The concept is further formalized

in [97] and generalized to the multi-stage setting in [98,99] un-

der the requirement that the recovered solution has to be kept

feasible when answering to unfolding uncertainty realizations. As

opposed to the mathematical programming based concept of ad-

justable robustness, recoverable robust optimization allows to react

upon smaller disruptions with rather fast and simple strategies. 

Recoverable robust optimization on the one hand inherits the

algorithmic notation of the recovery algorithm A rec from online

optimization. On the other hand, the perception of the uncertain

problem as a collection of instances i is inherited from robust opti-

mization. Thereby, random influences (or incoming disruptions) ξ t 

shift the problem instance i t from one to another instance i t+1 ac-

cording to some modification function M : I ×�→ I . A sequence of

disturbances then results in a sequence of instances. The recover-

able robust solution contains two elements. An optimal policy x 0 
[ T ] 

for the nominal problem instance an optimal recovery algorithm

A rec modifying that solution after each disturbance. 

The concept of recoverable robustness has been recast in sev-

eral application-driven contexts: Liebchen et al. [100] have estab-

lished the same idea of recovery robustness and applied it to delay

resistant train timetabling and linear programming. Also [101] in-

troduce recovery robustness in a framework for the so-called ro-

bust feasibility recovery applicable to integer programming prob-

lems. The framework is instantiated for the repositioning of trans-

portation resources. Goerigk and Schöbel [102] introduce recovery-

to-optimality which differs from recovery robustness in that it

seeks to recover to an optimal (and not only feasible) solution once

uncertainty has revealed and in that it considers a cost function for

the recovery operation rather than an algorithmic recovery proce-

dure. The concept can be interpreted as a special case of recovery

robustness; the authors present a sampling heuristic to solve the

problem approximately and apply this outline to linear program-

ming and aperiodic timetabling. To improve the practical handling
 n  

Please cite this article as: H. Bakker, F. Dunke and S. Nickel, A structurin
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f recovery robustness, Van den Akker et al. [103] adapt the branch

nd price scheme resulting in two decomposition schemes (sep-

rate and combined recovery decomposition) for tackling recov-

ry robustness with state-of-the art opportunities for mathematical

rogramming. Lately, recoverable robustness has even been trans-

erred to a bi-objective setting taking into account the original ob-

ective value and the recovery costs with the goal of determining

he Pareto frontier [104] . Finding a robust solution is interpreted as

n analogon to solving a classic center location problem. 

.4.2.2. Holistic adaptive robust optimization. A very recent ap-

roach to combining online optimization and robust optimization

s presented by Bertsimas et al. [105] , who introduce the concept

f Holistic Adaptive Robust Optimization (HARO) at the example

f the k -server problem. The idea is to combine the ability of on-

ine algorithms to base the current decisions on information on the

ast observations and decisions with the ability of adjustable ro-

ust optimization to include assumptions on the future. For this

urpose they model future requests via an uncertainty set. At each

ime step they base the decision of the online algorithm not only

n the current greedy term but augment the cost of each decision

y the incurred costs of the subsequent time steps as determined

ia the optimal solution of the associated (affinely) adjustable ro-

ust counterpart. 

.4.3. Stochastic programming and robust optimization 

.4.3.1. Distributionally robust stochastic optimization. Distribution-

lly robust stochastic optimization is a paradigm which has been

evived rather recently. It combines ideas from robust optimization

nd stochastic programming, and it acknowledges the fact that the

robability distribution F governing the uncertain data ξ is often

ubject to uncertainty itself [106] . Scarf [107] proposed a first for-

ulation in which the optimization problem is reformulated with

espect to the worst-case costs over a set of probability distribu-

ions D which is assumed to contain the true probability distribu-

ion F . Hence, the resulting distributionally robust stochastic pro-

ram becomes 

in 

x ∈X 

(
max 
F∈D 

E F ( f (x, ξ ) ) 

)
. (14)

ince its introduction different forms of D have been considered. In

his context we would like to point out that if one limits D to be

he set of all distributions that put all their weight at a single point

n the parameter’s support, then Eq. (14) reduces to the robust op-

imization problem according to [55] . Delage and Ye [108] propose

ets of distributions derived from the confidence regions for the

stimated moments of the probability distributions based on a fi-

ite set of data samples. A unifying framework to modelling these
g review on multi-stage optimization under uncertainty: Aligning 
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Fig. 10. Evolution of methods and concepts related to dynamic programming with regard to multi-stage settings. 
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ets is then provided by Wiesemann et al. [106] who introduced a

tandardized description of what they call ambiguity sets contain-

ng many of the sets introduced earlier as special cases. The inter-

sted reader shall also be referred to their work for a comprehen-

ive review of distributionally robust stochastic programming. Most

ork on distributionally robust stochastic programming focused on

wo-stage stochastic programs. In 2014, however, the framework

as been extended to the multi-stage setting by Analui and Pflug

109] who introduced a model for ambiguity sets in the case of

ulti-stage uncertainty. Given that in multi-stage stochastic pro-

ramming uncertainty is depicted by a tree they propose what

hey call “ambiguity neighborhoods” around this tree as alterna-

ive models which are close to the baseline model according to the

ested distance. 

We would like to point out that the use of risk measures (such

s the Conditional Value at Risk) in stochastic programming is of-

en seen as a conceptual balance between stochastic programming

nd robust optimization. However, this stems from the idea that

he resulting solutions are more robust towards variations in the

ncertain parameters and not from the inclusion of elements from

he robust optimization paradigm. Therefore, rather than combin-

ng these two approaches we feel that the connection of risk mea-

ures and robustness is due to the fact that the term “robustness”

s not uniquely defined. 

.5. Dynamic programming 

When reviewing solution concepts for sequential decision mak-

ng problems, the theory of dynamic programming as introduced

y [110] cannot be left aside. Multi-stage optimization problems

re modelled over a state-action space in which I t is the set of

ossible states of the system at stage t and X t represents the set of

easible actions (or decisions) that the decision maker may choose

rom. A decision x t ∈ X t results in the transition from state i t ∈ I t in

tage t to state i t+1 ∈ I t+1 in stage t + 1 . In the deterministic set-up

he goal is to find a sequence of actions, a so-called policy, which

aximizes the reward function f t ( i t ) associated with the final stage

tate t = T . It is found by iteratively solving the Bellman equations

hich recursively determine the optimal reward obtained through

he optimal policy x 1 , . . . , x T where g t ( x t , i t ) is the immediate re-

ard in state i t if decision x t is implemented: 

f t (i t ) = min 

x t ∈X t 
{ g t (x t , i t ) + f t+1 (i t+1 ) } . (15) 

.5.1. Stochastic dynamic programming 

Incorporating uncertainty has been addressed in the theory of

ynamic programming early on starting with [110] as seen in the

imeline in Fig. 10 . In stochastic dynamic programming, the tran-

itions between stages occur based on probabilities p(i t+1 | x t , i t )

Please cite this article as: H. Bakker, F. Dunke and S. Nickel, A structurin

concepts from theory and practice, Omega, https://doi.org/10.1016/j.om
hich may be simultaneously state- and action-dependent. The

ptimal policy in this case is designed to optimize the expected re-

ard function, thereby drawing a link to traditional stochastic pro-

ramming approaches. It is found again by recursively solving Bell-

an’s dynamic programming equations with discount factor α

f t (i t ) = min 

x t ∈X t 

{ 

E [ g t (x t , i t ) ] + α
∑ 

i t+1 

p(i t+1 | x t , i t ) · f t+1 (i t+1 ) 

} 

. (16) 

tochastic dynamic programming was linked early with the well-

stablished concept of Markov chains so that problems solved with

tochastic dynamic programming are often formalized by Markov

ecision processes [111] . It requires that the transition probabili-

ies fulfill the Markov property, i.e, the transition probability of one

tate to another must only depend on the current state and action

nd not on previous states: 

p(i t+1 = i | i t , i t−1 , . . . , i 0 ) = p(i t+1 = i | i t ) . (17) 

Despite dynamic programming being a solution method rather

han a modelling method, problems are often formulated specif-

cally tailored towards dynamic programming putting emphasis

n a state space variable and transition probabilities between

tates. In addition, there are several other differences between dy-

amic programming and multi-stage stochastic programming mod-

ls (which could be solved by dynamic programming in case of a

arkovian process structure) such as different point of views on

ncertainty description (transitions vs. parameters), solution meth-

ds (solution of Bellman equations through policy/value iteration

r fixed point methods vs. mathematical programming and decom-

osition methods), number of stages (large vs. modest number of

tages), and objective function (discounted average costs vs. expec-

ation). 

However, with large state-spaces problems often become im-

ractically large and suffer from the curse of dimensionality ( [58] )

hich is why until the late 1980s stochastic dynamic program-

ing has not been developed further. Due to the optimal substruc-

ure assumed in each setting treated by dynamic programming, the

oncept can be successfully applied to a large number of stages or

n infinite planning horizon with discounted objective. Nonethe-

ess, there are three imminent sources (state space size, action

pace size, outcome space) for unleashing the curse of dimension-

lity. Therefore, approximate dynamic programming [112] has been

evised to alleviate these issues, i.e., to eliminate a considerable

mount of computations. It makes use of different ways to approxi-

ate the elements (state space, action space, outcome space, value

unction) required for solving a dynamic program, e.g., by using

onte Carlo simulation in order to simulate the system in a for-

ard manner for obtaining approximations of the value function

hat are only based upon a fraction of all states. 
g review on multi-stage optimization under uncertainty: Aligning 

ega.2019.0 6.00 6 

https://doi.org/10.1016/j.omega.2019.06.006


10 H. Bakker, F. Dunke and S. Nickel / Omega xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: OME [m5G; August 31, 2019;5:1 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v  

O  

o  

i  

p  

a  

t  

t  

t  

t  

c  

w  

j  

j  

o  

w  

f  

t

2

 

T  

g  

e

b  

t  

“  

t  

t  

o  

j  

p  

c  

p  

f  

a  

p  

 

i  

i  

T

m  

o  

k  

l  

p

2

 

o  

n  

s  

t  

a  

c  

O  

s  

s  

c  

s  

I

 

2.5.2. Robust dynamic programming 

Robust Markov decision processes extend classical Markov de-

cision processes by additionally imposing parameter uncertainty

with respect to state transition probabilities p(i t+1 | x t , i t ) . Hence,

another layer of uncertainty (also called ambiguity) is used to ro-

bustify classical Markov decision processes. The goal is then to

find a policy which minimizes the maximum expected cost (or

maximize the minimum expected reward) given the uncertainty

in the transition probabilities and nature playing these probabili-

ties to the decision maker’s greatest disadvantage. The setting has

been formally proposed in [113,114] with the aim to maximize the

worst-case (minimum) expected cost under uncertain state transi-

tion probabilities. To foster computational tractability, only rectan-

gular uncertainty sets P are allowed for each uncertain probability

p . In this case, the robust counterpart of the Bellman recursion is

shown to be valid by solving 

f t (i t ) = min 

x t ∈X t 

{ 

E [ f t (x t , i t ) ] + 

{ 

max 
p∈P 

∑ 

i t+1 

p(i t+1 | x t , i t ) · f t+1 (i t+1 ) 

} } 

.

(18)

In [113] , different uncertainty models are analyzed with respect to

their effect on the complexity of the robust counterpart. An in-

troduction along with a specification of several uncertainty sets in

line with this concept is also provided in the monograph by Ben-

al et al. [58] . Likewise, for finite horizons the Bellman equation is

established. In order to make the concept more applicable, Wiese-

mann et al. [115] assume that historic data on the Markov decision

process under investigation is available. This data is then trans-

lated into a confidence region for the uncertain transition proba-

bilities by maximum likelihood estimation. It is also shown which

goodness of approximations can be achieved by a policy improve-

ment scheme. With the special class of so-called k -rectangular

uncertainty sets, Mannor et al. [116] introduce a case which is

computationally tractable and overcomes some of the overcon-

servatism prevalent in the classical robust optimization concept.

Sinha and Ghate [117] finally present an approximate policy it-

eration algorithm for robust non-stationary Markov decision pro-

cesses. Fig. 10 includes the methodological evolution of robust dy-

namic programming. 

2.6. Performance measures 

The following discussion reveals that different methods use

substantially different measures and even advocate different

scopes to be investigated when evaluating performance. For the

sake of simplicity, we refer to minimization problems. 

2.6.1. Stochastic programming: Value of stochastic solution and 

expected value of perfect information 

Since stochastic programming encompasses stochastic informa-

tion about scenarios as the outcome of random events, the inher-

ent question asks about the value of this stochastic information in

terms of impact on attainable solution quality [3] . Therefore, the

outcome of a stochastic program may in a first step be compared

to the outcome of a deterministic model where all stochastic pa-

rameters are replaced by their expectation value. To this end, let

ξ be the vector of stochastic parameters of a stochastic program, x

be the vector of decision variables (addressing all stages), and f ( x ,

ξ ) be the objective function. Moreover, let ξ̄ := E (ξ ) be the vec-

tor of expectation values for the parameters in ξ . Then define EV

as the optimal objective in the problem where ξ is replaced by

ξ̄ , i.e., EV := min x f (x, ξ̄ ) . Additionally, define x̄ = arg min x f (x, ξ̄ )

as the expected value solution. Since stochastic programming is

based upon the assumption that the assumed stochastic informa-

tion is true, implementing x̄ will lead to an expected objective
Please cite this article as: H. Bakker, F. Dunke and S. Nickel, A structurin
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alue of the expected value solution defined as E E V := E ( f ( ̄x , ξ )) .

n the other hand, when we solve the stochastic program, we

btain SP as the optimal objective, i.e., SP := min x E ( f (x, ξ )) and

t shall be remarked that this value is built upon the recourse

ossibilities that arise throughout the multiple stages. Addition-

lly, define x sp := arg min x E ( f (x, ξ )) . Since the assumed distribu-

ion of the stochastic programming model is deemed to be true,

here is no need to define another expectation, and the value of

he stochastic solution x sp compared to the expected value solu-

ion x̄ is V SS := E E V − SP . On the other hand, one could ask what

ould be achieved if not only stochastic, but perfect information

as known. Therefore, define f ∗
ξ

:= min x f (x, ξ ) as the optimal ob-

ective value when ξ is known and P I := E ( f ∗
ξ
) as the expected ob-

ective value in the case of perfect information. The expected value

f perfect information is then defined as EV P I := SP − P I. Finally,

e remark that both VSS and EVPI are evaluation concepts that re-

er to the value of stochastic information under the requirement

hat the stochastic assumptions made are perfectly valid. 

.6.2. Robust optimization: Price of robustness 

There are two different definitions for the price of robustness.

he first one by Bertsimas and Sim [59] refers to robust linear pro-

ramming and is based upon introducing additional parameters for

ach row. The price of robustness in this context is the trade-off

etween feasibility violation probability and impact on the objec-

ive value. The parameters in turn can be set so as to specify how

far” deviations can go apart from nominal coefficient values. As

he trade-off depends on the problem and the kind of integra-

ion of the parameters, there is no formula for this type of price

f robustness, but it can be thought of as the change in the ob-

ective per change in parameters. Unfortunately, this notion of a

rice of robustness does not explicitly take into account the re-

ourse possibilities which arise in multi-stage robust optimization

roblems. Therefore, we turn attention to the second definition

rom the realms of recovery robustness in [118] where we find an

lgorithm-related definition similar to the one known from com-

etitive analysis. Let I be the set of all problem instances and let

f ( Alg (i )) be the objective of a recovery robust algorithm Alg on

nstance i ∈ I , i.e., an algorithm which has to react upon disruptions

n a recourse-wise manner as encountered in multi-stage settings.

hen the price of robustness of Alg is defined as the largest ratio 

ax 
i ∈ I 

f ( Alg (i )) 

f ( OPT (i )) 
(19)

ver all instances i ∈ I , where OPT is an algorithm which entirely

nows an instance i ∈ I and is capable of computing an optimal so-

ution to it. For more detailed guidance on how to apply and inter-

ret the price of robustness it shall be referred to [119] . 

.6.3. Online optimization: Competitive ratio 

Since there is no information about the future given in online

ptimization, competitive analysis in pure online optimization can-

ot relate to the value of information. Focusing on another ideal

etting, competitive analysis deals with a comparison to a hypo-

hetical omniscient offline algorithm Opt [2] . Let � be the set of

ll input sequences. The idea of competitive analysis is to directly

ompare the performance of an online algorithm Alg to that of

pt . Let Alg (σ ) be the objective attained by algorithm Alg on in-

tance σ ∈ �. Alg is called c -competitive if there is a constant a

uch that Alg (σ ) ≤ c · Opt (σ ) + a, σ ∈ �. The role of the additive

onstant a is to facilitate an asymptotic analysis and to make re-

ults independent of initial conditions for finite input sequences.

n the case a = 0 , Alg is called strictly c -competitive if 

Alg (σ ) 

Opt (σ ) 
≤ c, σ ∈ �. (20)
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Table 1 

Overview of performance measures for methods dealing with multi-stage settings. 

Method 

SP RO OO 

Performance measure Value of stochastic 

solution expected 

value of perfect 

information 

Price of robustness Competitive ratio 

Evaluated element of 

optimization problem 

Stochastic information Algorithm quality Algorithm quality 

Table 2 

Overview on the uncertainty models deployed by the different methods. Required information must be specified in order to use the model. Optional information can be 

captured by the model but is not necessary for the application of the method. Entries in parentheses indicate that this type of uncertainty information appears in specific 

settings, but is unusual in general. 

Method 

Information on uncertainty SP RO OO OSO RRO DRO SDP RSDP 

Required Set of possible outcomes + 

support of F
+ 

uncertainty set U
+ 

support of F σ
+ 

support of F ∈ D
+ + 

state space I 

Probability of individual outcomes + F ( + ) + F σ ( + ) D + p(i t+1 | x t , i t ) ( + ) P
Optional Infinite # of outcomes ( + ) + ( + ) ( + ) + + 

Conditional probabilities + ( + ) + + + + 

Seperate uncert. and problem + + + + 
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ence, a c -competitive algorithm is a c -approximation algorithm

ith the additional restriction that it has to compute online.

he competitive ratio c r of Alg is the greatest lower bound over

ll c such that Alg is c -competitive, i.e., c r = inf { c ≥ 1 | Alg (σ ) ≤
 · Opt (σ ) + a, σ ∈ �} = inf { c ≥ 1 | Alg is c -competitive } . The com-

etitive ratio states how much the performance of Alg degrades

ith respect to Opt due to the lack of information in the worst-

ase. In contrast to the measures from stochastic programming,

ot the value of information is assessed, but an algorithm’s per-

ormance guarantee. 

Table 1 summarizes the established measures. Neither of the

oncepts of online stochastic optimization, fuzzy optimization,

tochastic dynamic programming, or distributionally robust opti-

ization yield a specific performance measure that particularly ad-

resses the impact of uncertainty. In all of these methods the plain

bjective value is used in order to assess different models or algo-

ithms. 

.7. Conclusion from review on methods and concepts 

In order for a decision maker to choose a suitable method from

he above, for any given problem two questions must be consid-

red: 

1. What problem information is needed to deploy the method?

(required input) 

2. What solution information does the method yield? (granted

output) 

Regarding the first question, Table 2 summarizes the features

f the respective uncertainty models needed to apply a particular

ethod. The required features in the upper part of the table can

e broken down to whether the set of possible outcomes of the

ncertain parameters must be specified and whether information

n probabilities must be stated. Evidently, stochastic programming

nd derived concepts require most information as they need both

eatures. On the other hand, online optimization allows to ignore

ncertainty and focus on the information available at any particu-

ar stage. 

As seen in the lower part of the table, some uncertainty models

llow to model additional features or information on the uncertain

henomenon. While robust and online optimization can deal with

n infinite number of outcomes, stochastic programming generally
Please cite this article as: H. Bakker, F. Dunke and S. Nickel, A structurin
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equires a discretization at some step of the solution procedure.

lso, depending on the application it might be beneficial to model

ncertainty independently from problem parameters, thereby re-

ucing modelling effort to primitive uncertainties instead of a large

umber of parameters (e.g., in case of uncertain customer demands

ne can model the random variable by few economic indicators in-

tead of all individual demands). This approach is by default im-

lemented in robust optimization and it could also be incorpo-

ated into models amenable to stochastic programming. In the con-

ext of multi-stage problems another interesting aspect concerns

he consideration of conditional probabilities of realizations be-

ween time stages. While stochastic programming based methods

an easily incorporate that information, e.g., through asymmetric

cenario trees, robust optimization has left this idea largely unex-

lored, even though recent advances have been made by Lorca and

un [120] (dynamic uncertainty sets) and [121] (generalized sce-

ario trees). Notice that in particular with the additional informa-

ion that can be integrated into the uncertainty model one would

xpect that solution quality would increase given the information

as correct. However, at this point none of the above methods is

quipped with appropriate means to really efficiently exploit addi-

ional information, even if available. Finally, we recognize that on-

ine optimization and its derivatives do not describe uncertainty at

ll in their methodological outlines. 

The second question regards the information a decision maker

an expect when deploying a particular method. The overview in

able 3 distinguishes between information that can be derived ex

nte, i.e., at the beginning of the planning horizon (particularly rel-

vant for strategic planning), and ex post, i.e., at the end of the

lanning horizon after uncertainty has been disclosed. Looking at

he ex ante information provided on the objective function it be-

omes evident that the methods yield different insights making a

omparison based on these values practically meaningless. Also, it

ecomes clear that online optimization does not yield insights for

trategic planning. If one was to compare the concepts, the com-

arison can only take place in the ex post evaluation of the objec-

ive function, i.e., what objective value was obtained in a particular

cenario. This suggests that performance comparisons might best

e done based on simulation studies. 

Concerning the solution information it must be pointed out that

 clear disadvantage of stochastic programming is that in case of a

iscretized stochastic process the decision maker does not know
g review on multi-stage optimization under uncertainty: Aligning 
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Table 3 

Overview on the solution information yielded by the different methods on the objective value and 

the sequence of decisions. Ex ante considers information before the start of the planning horizon, 

while ex post considers information at the end of the planning horizon, hence after the observation 

of the random outcome ξ . 

Method 

SP RO OO OSO RRO DRO 

Objective value 

- ex ante E [ f (x, ξ ) ] sup 
ξ

f (x, ξ ) f ( x 0 , i 0 ) sup 
F 

f (x, ξ ) 

- ex post f (x, ξ̄ ) ∗ f (x, ξ̄ ) f (x, ξ̄ ) f (x, ξ̄ ) f ( x rec , i T ) f (x, ξ̄ ) 

Decision sequence 

- ex ante x ( ξ ) x ( ξ ) 
(
x 0 , A 

rec 
)

x ( ξ ) 

- ex post x ( ̄ξ ) x ( ̄ξ ) x ∗ x ∗ x rec x ( ̄ξ ) 
∗Can only be determined if policy has been determined for the observed realization ξ̄

method 

SDP RSDP 

Objective value 

- ex ante E [ f T (i T ) ] sup 
P 

E [ f T (i T ) ] 

- ex post f T ( i T ) f T ( i T ) 

Decision sequence 

- ex ante x it , i ∈ I , t ∈ T x it , i ∈ I , t ∈ T 
- ex post x ∗ x ∗

Table 4 

Overview of application focuses for the methods dealing with multi-stage settings. S / T / O = strategic / tactical / operational planning level, → 

= with feedback to, +++ / ++ / + = application very frequently / often / occasionally addressed by method. 

Application Method Uncertainties 

SP RO OO OSO RRO DRO (R)SDP 

Supply chain, production, inventory +++ ++ + + ++ Demands, capacities 

Scheduling +++ ++ Tasks, dates 

Energy, electricity, power +++ ++ + + + ++ Demands, prices, resources 

Environment, water, air, waste ++ Demands resources emissions inflows 

Finance, investment ++ +++ ++ Returns 

Traffic, transportation + + ++ ++ Travel times, orders, locations 

Packing, loading + +++ Sizes, weights 

Healthcare + + + Demands 

Staffing, rostering + Requirements, demands 

Telecommunication + Requests, bandwidth 

Data structures +++ Requests 

Timetabling + ++ Arrivals, events 

Projects ++ Durations, returns 

Chemical engineering ++ Physical data 

Planning horizon S / T O → O O O → O T / O 

S / T S / T 
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how to proceed when uncertainty realizes outside one of the sce-

narios. This disadvantage can be eased to a certain extent when

applying stochastic dual dynamic programming which allows to

sample scenario tree paths in an on-the-fly manner and to by-

pass the need to formulate the multi-stage problem in its entirety.

However, convergence then becomes an issue and finite conver-

gence can only be shown in the case of multi-stage linear stochas-

tic programming problems with a finite number of scenarios [27] .

Finally, only online optimization along and its derivatives allow for

an open planning horizon; all other methods derive their output

for a closed planning horizon. Hence, to use closed-horizon meth-

ods such as stochastic programming or robust optimization in an

open-horizon setting, one would have to embed them into a rolling

horizon scheme. 

3. Applications 

This section reports on multi-stage applications that have been

dealt with by the different methods and concepts presented in

Section 2 . We preface the discussion with the overview in Table 4

and remark that only applications with more than two stages have

been taken into account capturing the multi-stage feature in the
Please cite this article as: H. Bakker, F. Dunke and S. Nickel, A structurin
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ecision making process adequately. From an application perspec-

ive it becomes clear that very similar problems have been tack-

ed by several different methods. However, research results derived

hrough different methodologies differ strongly from each other,

nd a converging perspective taking into account results across dif-

erent disciplines for the same application is missing. Ultimately,

his has made it prohibitive to find out about the method most

uitable to a specific problem and it also impedes to build an in-

ormation pool for application results that would be independent

f chosen optimization methodologies. 

.1. Stochastic programming 

Applications of multi-stage stochastic programming exist for

everal domains focusing mainly on strategic and tactical decision

aking. In most cases, stages coincide with periods. A large share

f publications addresses capacitated production planning and lot

izing as well as related problems such as capacity expansion plan-

ing, inventory management, or production routing [122–137] . De-

and is by far the most prevalent uncertain parameter and it is

ainly modelled using scenario trees. Amongst others, yield qual-

ty, available capacities as well as lead and processing times are
g review on multi-stage optimization under uncertainty: Aligning 
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arely used as uncertain parameters. Typical decisions to be de-

ermined for the different stages involve capacity configurations,

apacity extensions, technology choices, network designs as well

s stage-wise production and transportation quantities. Capacity

daptations are also encountered as part of recourse actions. Apart

rom modelling and implementation, some works focus on specific

spects such as different approaches for scenario tree generation

r specialized algorithmic outlines to deal with several sources of

ncertainty. Conceptually, the value of a multi-stage solution com-

ared to a two-stage solution has been introduced. 

Another focus of applications for multi-stage stochastic pro-

ramming encompasses energy management, power generation,

nd electricity markets [138–149] . Similar to production, decisions

oncern capacity allocations for energy generation units as well

s produced energy quantities for different energy forms such as

lectricity or renewables. Another frequent decision concerns in-

estments for the installation of new generation plants and lines

n the first model stages and dispatching decisions ensuring a re-

iable supply to energy demands in subsequent stages. Sources of

ncertainty comprise energy demands or loads followed by energy

rices, greenhouse gas emission quotas, power output quantities,

nd hydro-inflows in hydro-thermal energy power systems. Ad-

anced topics address scenario tree generation and reduction, spe-

ific integration of risk measures, decomposition methods, relax-

tion schemes and sophisticated solution routines such as stochas-

ic dual dynamic programming. 

Multi-stage stochastic programming is also applied for dynamic

ortfolio optimization and asset/liability management in financial

nvestment models [150–157] . Asset returns and prices are the

riving uncertain factor; amongst others interest and exchange

ates or wage developments are occasionally used as uncertain pa-

ameters. Decisions comprise investment allocations and rebalanc-

ng decisions aiming to prescribe a portfolio investment strategy.

uthors also concentrate on delimiting scenario tree sizes to ac-

omplish model outputs in realistic market settings, e.g., by sce-

ario decomposition, or state and time aggregation. Alternatively,

olution method-related aspects such as decomposition or sample

verage approximation are discussed to empower solution schemes

n the multi-stage setting. 

In addition to these application areas, multi-stage stochastic

rogramming is encountered in the following domains: In water

esources management [158–162] , decision makers have to ensure

hat – in spite of droughts and limited access to water – peo-

le are supplied under uncertain water supplies, demands, flows

nd availabilities. The health care sector [163–166] yields different

ypes of applications such as clinical trial planning in new drug

evelopment with uncertain trial outcomes, optimizing the annual

nfluenza vaccine by determining flu shot designs and production

chedules where the uncertain factor comprises strain prevalences

nd production yields, assigning nurses to patients in hospitals

hroughout working shifts where patients’ required time amounts

f care determine the scenario set, and scheduling appointments

here service durations and the number of customers are uncer-

ain and may include no-shows. Finally, multi-stage stochastic pro-

ramming has been employed for planning logistics infrastructure

nd operations in the oil industry [167,168] , workforce capacity

lanning [169] , airport terminal capacity planning, airline network

evenue management [170,171] and team deployment in dynamic

isaster management [172] . 

.2. Robust optimization 

Literature on application papers of multi-stage decision mak-

ng based on robust optimization is sparse. In order to capitalize

n uncertainty realizations and to adjust decisions accordingly, ad-

ustable robustness in multi-stage applications has first been con-
Please cite this article as: H. Bakker, F. Dunke and S. Nickel, A structurin
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idered in the context of robust inventory management [61] where

emands are uncertain and recourse decisions are constrained to

e affine functions of previous uncertainty realizations. The prob-

em can then be solved using the formulation of an affinely ad-

ustable robust counterpart. Likewise, adjustable robustness has

een considered in other supply chain management applications

62,173,174] in two-echelon as well as in multi-echelon supply 

ystems with uncertain demands. Besides affine dependency on

ncertainty realizations, conceptual extensions such as a global-

zed robust counterpart which allows infeasibility for a sufficiently

mall share of the instances as well as related dynamic program-

ing schemes are presented. Other applications that have been

reated in a multi-stage context with adjustable robustness include

mergency logistics in [175] with uncertain demands for traffic

ows, train load planning in container terminals in [176] with un-

ertain weights of transportation units, corner castings overhangs,

nd bug parameters, process scheduling in [177] with uncertain

ask processing times, utilities consumption, availability, and pro-

ess yields, and power generation in [178] with uncertain electric-

ty demand and renewable generation. Postek et al. [179] applied

 -adjustable robust optimization to the problem of determining

ptimal dike heights in flood protection. In order to promote the

pplication of robust optimization techniques [119] provide practi-

al guidance for practitioners. 

.3. Online optimization 

With the goal of providing a worst-case performance guaran-

ee (competitive analysis) many problem settings deal with on-

ine versions of basic discrete optimization problems from com-

uter science or complexity theory. By definition, online optimiza-

ion is a sequential decision making method where decisions are

ade in a stage-wise manner. Hence, every application paper on

nline optimization would be fitting here. Nonetheless, several fo-

al points are clearly perceivable. Most applications appear in an

perational planning horizon due to the requirement of repeat-

dly and frequently processing input elements of the same type.

y far the most attention have received packing and scheduling.

acking problems [180–188] mostly allude to bin packing and vari-

nts such as the multi-dimensional version, variable-sized bins,

ounded space for open bins, or strip packing. Uncertain elements

omprise the sizes of the items to be packed. Besides improve-

ents of lower bounds for competitive ratios also conceptual and

lgorithmic enhancements are considered such as primal dual al-

orithms, average case analysis, or resource augmentation with

ugmented bin sizes. 

In machine scheduling [189–199] , competitive analysis and en-

ancements as well as alternative measures are considered for a

ultitude of machine environments and processing characteris-

ics. Uncertainty mainly encompasses job processing times. How-

ver, also other characteristics such as release dates may be un-

ertain. Specialized settings address resource augmentation in the

orm of different machine speeds, problems with release dates,

atch processing, job migration between machines, or job rejec-

ions. Whereas in machine scheduling the objective typically con-

iders job-related functions, the objective in the related topic of

oad balancing [200–202] considers the load of the machines and

pts at minimizing the maximum load ever achieved. Also for load

alancing several extensions such as related machines or fairness

onstraints are discussed. 

Another spotlight in online optimization is put on metrical task

ystems ( [85,203–207] which allow to represent the operations of

n algorithm in a configuration-wise manner where state transi-

ions are assessed by a metric. The k -server problem and paging

re two basic problems from computer science which are special

etrical task systems. Uncertainty affects tasks that have to be
g review on multi-stage optimization under uncertainty: Aligning 
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processed in order to form a processing sequence of the tasks.

Competitive analysis as well as several refinements and alterna-

tives (loose competitiveness, max-max ratio, comparative ratio, or

diffuse adversaries) have been introduced and analyzed in the

realms of metrical task systems, k -server problems and paging.

Likewise, many applications of online optimization can be found

in the areas of data management and data transmission [208–

214] such as storage allocation, page migration, list update, packet

transmission and buffering, web caching, or data routing. Request

types depend on the specific application and typically amount to

different forms of storage or retrieval requests, or bandwidth for

traffic requests. The goal lies in managing different kinds of data

operations with minimum costs which are composed of access and

administrative (data organization) costs. 

Other application papers can be found for routing [215–

217] where locations have to be visited by a server, financial plan-

ning [218–221] where capital investment strategies such as buy-

and-hold approaches, search and trading algorithms, or leasing

strategies are evaluated, health care services where treatments

have to be scheduled or patients have to be transported [222,223] .

Moreover, there exist papers on competitive algorithms in special-

ized settings such as inventory management, power management,

or robotic exploration [224–226] . 

3.4. Combinations of stochastic programming, robust optimization, 

and online optimization 

The number of application papers on combinations of stochas-

tic programming, robust optimization, and online optimization

is rather limited. Moreover, each combination has been strongly

coined by a group of few authors. 

3.4.1. Online stochastic optimization and recoverable robustness 

Starting in 2004 [93,227,228] , several prototype applications

from different sorts of scheduling were taken into consideration.

It was shown that sampling provides meaningful results in order

to make scenario-based but still informed decisions when used by

the expectation, consensus or regret algorithm. In online packet

scheduling for computer networks the packets to be served arise

online and the goal is to minimize packet loss under packet dis-

tributions that are available for sampling. Also for online vehicle

routing problems it is shown that distributions of customer ser-

vice requests can be learned online or from historical data, and

they can be processed in the online stochastic optimization ap-

proach. Finally, the seminal paper for theoretical aspects of online

stochastic optimization [94] contains an illustration of the frame-

work along with computational results from vehicle routing, ve-

hicle dispatching, and packet scheduling. Afterwards the concept

has also been applied to inspecting and repairing power systems

[228] and energy scheduling of home automation systems [229] .

In the former setting natural disasters may cause power infrastruc-

ture to suffer harms and the goal is to send out repair crews to

restore functional capability; algorithms use sampled scenarios to

guide the damage assessment and restoration based on a so-called

power restoration vehicle routing problem. In the latter setting, un-

certainties are considered in real-time prices, weather conditions,

and occupant behaviour, and the goal is to schedule consumption

activities of a set of home automation devices so as to reduce costs

while maintaining comfort and convenience. 

3.4.2. Recoverable robustness 

Only two papers address recoverable robustness in a multi-

stage context with more than two stages. Cicerone et al. [99] pro-

vides a framework for recovery robust optimization as well as

an evaluation concept (price of robustness). These concepts are

applied to timetabling in public transportation where an initial
Please cite this article as: H. Bakker, F. Dunke and S. Nickel, A structurin
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imetable with minimal passenger waiting times is recovered dur-

ng operations in case of unforeseen delays. This task also known

s delay management and it is shown how it can be accomplished

y different restrictions of a recovery algorithm. The basic ideas for

he concept and the application have already been introduced less

omprehensively in [118] . 

.4.3. Distributionally robust stochastic programming 

An introduction to financial decision making under uncertainty

ncluding a discussion of multi-stage distributionally robust op-

imization and its use in asset-liability management is given in

230] with uncertain asset returns. Since the exposition is only

onceptual, no details on the ambiguity set specifications (distribu-

ion family) of the random variable driving the stochastic process

re given. In [108] , a framework for distributionally robust opti-

ization under moment uncertainty is first introduced and then

pplied to portfolio optimization. It allows for uncertainty both in

istributions and related moments. Probabilistic arguments justify

he use of the framework whenever historical data can be used to

escribe the stochastic process of the investment returns. A multi-

eriod robust portfolio selection model is considered in [231] with

pecial emphasis on the integration of a multi-period worst-case

isk measure that is also presented in the paper. Multi-stage dis-

ributionally robust optimization is related to stochastic dual dy-

amic programming in [232] by imposing that an optimal policy

or a multi-stage stochastic program is sought over the worst-case

robability distribution in some family of distributions. The de-

ised algorithm is applied to hydrothermal scheduling where wa-

er inflow distributions are sampled from historical data. A distri-

utionally robust chance-constrained programming model for the

ulti-stage distribution expansion planning in power systems is

iven in [233] . Here distributional robustness is understood as en-

uring worst case probabilities with which feasible solutions are

btained when moment-based ambiguity sets are used to model

ind generations and loads. Finally, the supply chain management

pplication of dynamic network design under demand uncertainty

234] has also been tackled with a distributionally robust chance

onstrained model using a worst case conditional value at risk ap-

roximation for the chance constraints when only partial distribu-

ion information is known such as mean and variance of demand. 

.5. Dynamic programming 

We preface the discussion of applications by clarifying that we

nly consider such applications where a stage really corresponds

o a time stage and not to an artificial stage of a decision making

rocess that could be carried out instantaneously. 

.5.1. Stochastic dynamic programming 

In the context of energy planning, a stochastic dynamic pro-

ramming model is considered for scheduling a hydrothermal gen-

rating system ( [235] ) where distributional information on wa-

er inflows is part of the required data. Due to the curse of di-

ensionality resulting from a state space discretization, stochastic

ual dynamic programming is proposed to obtain computational

esults. The same methodological outset is used in [236] for the

idding problem of a price-maker hydropower-based company tak-

ng into account several hydro plants, time-coupling and stochastic

nflow scenarios. Project management under uncertainty is tack-

ed by stochastic dynamic programming in [237,238] based on the

dea of real option values which allows to change the course of ac-

ions depending on observed uncertainty realizations in a project.

herefore, performance realizations or market developments are

odelled by probability distributions. Several topics from supply

hain management are also covered: Capacity reservation, procure-

ent decisions, or competitive bidding strategies are addressed in
g review on multi-stage optimization under uncertainty: Aligning 
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239] , [240] . Demands, spot market prices, and costs are modelled

s random variables and it is even possible to characterize opti-

al procurement and reservation policies. In [241] , lot sizing is

onsidered for a company which performs successive auctions for

evenue generation and inventory clearance. Under stochastic de-

ands the authors provide a structural analysis of optimal policies

hich solve the specified stochastic dynamic programming model.

lthough designed for health care operations, the stochastic dy-

amic program for the capacity allocation for demands of differ-

nt products and services in [242] opts at answering the rather

eneral question of how to respond to booking requests over sev-

ral periods. Thus, stochastic customer-type specific demands rep-

esent the uncertain part in the Markov decision process which

s solved for a radiology department by dynamic programming. In

ealth care, stochastic dynamic programming has also been used in

 multi-stage setting for scheduling the operating room utilization

243] with stochastic demands and decisions to be made on each

ay leading up to the day of surgery. Apart from economic appli-

ations also technological aspects such as encountered in sensor

cheduling [244] are treated. The goal consists of selecting stage-

ise which one of a set of noisy measurement devices to select in

rder to obtain an overall measurement profile. 

.5.2. Robust dynamic programming 

Robustness for dynamic programming and Markov decision pro-

esses has only been considered for very few multi-stage appli-

ations: Scheduling charging operations for electric vehicle charg-

ng [245] under uncertain wind supply is modelled as a robust

tochastic shortest path problem underlying the robust version of

ellman’s equation. Uncertainties affect the available wind power

t different stages and translate into state transition probabili-

ies. Multi-stage optimization problems related to production and

nventory management under Markovian uncertainty with uncer-

ain customer demands or procurement prices are formulated in

246] and treated with dynamic programming. In particular, a

omparison is sought between robust and stochastic problem ver-

ions and it is found that the robust approach can outperform the

tochastic approach under low risk measured by the value at risk

oncept. Finally, Dimitrov et al. [247] yields an application of a ro-

ust decomposable Markov decision process to the allocation of

chool funding. The authors model the funding allocation problem

f a school district as a Markov decision process where a state is a

ector of performance states for the individual schools and schools

ransition between performance states. Exact transition probabili-

ies are not known, but rather uncertainty sets where probabilities

ave to be contained in. A robust version of the Bellman recursion

rovides a solution method in this setting. 

.6. Conclusion from review on applications 

Essentially, multi-stage optimization under uncertainty plays a

ole whenever a system is considered which undergoes time pro-

ression and requires decisions throughout the course of time.

hereby, every rolling horizon planning scheme which controls a

ystem stepping from configuration to configuration can be viewed

s a multi-stage planning process. Therefore, in applications the

bove concepts may also be encountered under different names

hich do not directly point towards one of the discussed methods

ut rather deal with a “dynamic” version of some problem (see,

.g., [135,248–255] ). 

Concerning the applications, two observations deserve special

entioning: First, only stochastic programming and online opti-

ization have reached a mature state with respect to the relevance

n the overall research community on multi-stage optimization; all

ther disciplines were either driven by particular researchers, or

pplications are scattered among different domains. Hence, apart
Please cite this article as: H. Bakker, F. Dunke and S. Nickel, A structurin
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rom stochastic programming and online optimization, each of the

ther approaches has only been investigated in a rather small

mount of applications, especially with regards to an explicit con-

ideration of the multi-stage character. Second, the topics of en-

rgy planning, environmental planning, and health care planning

ave experienced increasing popularity in accordance with current

ocietal needs over the past few years. 

Apart from methodological incongruities, the discussion of the

pplications showed that there seem to be favourable applications

hat are covered by some specific method in a multi-stage set-

ing or that some concepts were even devised more or less from

n application-oriented motivation. While there are certainly good

easons for this correspondence between method and application,

here may also be several good reasons or at least no obvious hin-

rances to try some of the other methods for any application un-

er scrutiny. Nonetheless, the current state of analysis for multi-

tage optimization problems under uncertainty has to be summa-

ized as shown in the left part of Fig. 11 exhibiting pre-determined

ombinations of uncertainty model and solution methods to derive

ather specific statements in given application contexts. Overall,

his leads to an accumulation of non-interrelated knowledge about

roblem domains, often only applicable to rather specific problem

ssumptions and settings. 

. Conclusion and outlook 

While sequential decision making under uncertainty is a

eneric task required in a variety of applications, there is no uni-

ed understanding on how to address it. Several concepts exist,

et they are not necessarily complementary. Rather have these

aradigms been developed largely independently from each other -

ften on an application-driven basis with researchers having a bias

owards a certain concept. The result is the situation depicted in

his paper: Concepts exist in parallel, deploy different terminology,

nd there is a lack of definitions on how they overlap and differ. 

Section 2 reviewed the theoretical underpinnings of the dif-

erent concepts for solving multi-stage optimization problems un-

er uncertainty that can be found in the areas of mathematical

rogramming and computer science. Section 3 shows that a large

umber of applications has been treated with more than one of

hese concepts already. Yet few papers consider more than one

oncept at the same time. Therefore, there are also no statements

vailable why one or the other method might be favourable in a

pecific application. The results from Section 2 suggest that con-

epts differ with respect to three main aspects: the required infor-

ation on the uncertain data – the uncertainty model –, the infor-

ation they yield for decision makers, – the (prescriptive) solution

nformation –, and the way the quality of the obtained solution

s assessed – the performance evaluation. While the first makes

t difficult to apply different concepts to a particular problem, the

atter makes a comparison between methods cumbersome. Never-

heless, we believe that the results of one specific method can only

e understood in full when put into context with results from al-

ernative methods on the same application. 

Therefore, besides providing an overview on the different con-

epts that coexist for solving uncertainty inflicted multi-stage op-

imization problems, the results from the survey clearly indicate a

eed for a mutual framework for multi-stage optimization prob-

ems. As Fig. 11 (i) illustrates, the current state of the analysis is

s follows: When solving a problem in a particular application, a

oncept is chosen first. Based on the requirements of this concept

he uncertain data is modeled and a solution derived. This solu-

ion is then again evaluated using the performance measures asso-

iated with this concept. We feel that a unifying framework is the

rst step in order to arrive at the more desirable state of analy-

is as depicted in Fig. 11 (ii). When given a particular application,
g review on multi-stage optimization under uncertainty: Aligning 
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Fig. 11. (i) Current state of analysis where uncertainty model, solution and conclusion depend on the concept chosen in a particular application; (ii) Desirable state of 

analysis where a problem in a particular application is modeled with a generalised uncertainty model, different solutions are obtained depending on the concept and an 

overall conclusion is drawn. 
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uncertainty is modeled comprehensively in such a way that the in-

formation required by different concepts can be derived with the

help of respective interfaces. From a business perspective, a unified

model of uncertainty will represent a significant step towards the

integration of big data and analytics as it would allow for a well-

defined data retrieval in time-dynamic optimization under uncer-

tainty. Standardized handling of large amounts of data becomes in-

creasingly important and deriving insights on uncertain parameters

via analytical tools can yield significant benefits for the subsequent

optimization. In this next step, different solutions may be derived

with the help of different concepts. These solutions are then to

be evaluated by standardized performance measures in order to

come to a mutual conclusion. In order to arrive at such a frame-

work much research is still needed. By design of the concepts, the

(prescriptive) solution information they provide is very different.

Therefore, new standardized performance measures need to be de-

veloped. Furthermore, the need for a unified framework does not

solely exist in a multi-stage context but can equally be raised in

a more general context of optimization under uncertainty. How-

ever, it is the multi-stage character of the problem that creates

the link from stochastic programming and robust optimization to

concepts like online optimization or dynamic programming which

makes the potential value of such a framework even greater in the

multi-stage setting. The authors have recently launched a research

project to establish a unified model for multi-stage decision mak-

ing under uncertainty [256] . 

To the best of our knowledge there have only been limited at-

tempts for such a framework which explicitly addressed the multi-

stage problem character: Pflug and Pichler [257] formalize multi-

stage uncertainty through discrete stochastic processes which can

be used for scenario tree generation. In the general problem for-

mulation, different attitudes of decision makers are cast by various

forms of risk functionals, and uncertainty is grasped by probabil-

ity functionals. Multi-stage optimization subject to geometrically

described uncertainty sets is considered in [121] where finitely

adaptable solutions are analyzed. In this concept, a set of solu-

tions is tentatively computed making every uncertainty realization

answerable with a feasible solution. As a generalization of the sce-

nario tree description, multi-stage uncertainty is described by a di-
Please cite this article as: H. Bakker, F. Dunke and S. Nickel, A structurin

concepts from theory and practice, Omega, https://doi.org/10.1016/j.om
ected acyclic network. Based on this model of uncertainty, general

orms of multi-stage stochastic and multi-stage adaptive optimiza-

ion problems are introduced and analyzed for specific uncertainty

ets. 

While models for multi-stage optimization under uncertainty

ave often been addressed from a specific application-driven point

f view (pre-determining the style of uncertainty representation

nd solution methodology), we believe that the insights and clas-

ification possibilities shown in this review can form the basis of a

onsistent and undistorted model for the analysis of multi-stage

ncertainty taking into account potentials of a variety of uncer-

ainty models, solution methods, and evaluation techniques. This

eview goes into details mainly with respect to different concepts,

pproaches, and applications. We believe that an additional survey

n available solution algorithms (in particular specializing on the

ulti-stage setting) would complement the contents of this review.
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