
Learning to Rank an Assortment of Products

Kris J. Ferreira
Assistant Professor, Harvard Business School, Boston, MA 02163, kferreira@hbs.edu

Sunanda Parthasarathy
Wayfair, Boston, MA 02116, sparthasarathy@wayfair.com

Shreyas Sekar
Harvard Business School, Boston, MA 02163, ssekar@hbs.edu

We consider the product ranking challenge that online retailers face when their customers typically behave as

“window shoppers”: they form an impression of the assortment after browsing products ranked in the initial

positions and then decide whether to continue browsing. We design online learning algorithms for product

ranking that maximize the number of customers who engage with the site. Customers’ product preferences

and attention spans are correlated and unknown to the retailer; furthermore, the retailer cannot exploit

similarities across products owing to the presence of subjective, stylistic elements. We develop a class of online

learning-then-earning algorithms that prescribe a ranking to offer each customer, learning from preceding

customers’ clickstream data to offer better rankings to subsequent customers. Our algorithms balance product

popularity with diversity : the notion of appealing to a large variety of heterogeneous customers. We prove

that our learning algorithms converge to a ranking that matches the best-known approximation factors for

the offline, complete information setting. Finally, we partner with Wayfair - a multi-billion dollar home goods

online retailer - to estimate the impact of our algorithm in practice via simulations using actual clickstream

data, and we find that our algorithm yields a significant increase (5-30%) in the number of customers that

engage with the site.

Key words : Online Learning, Product Ranking, Assortment Optimization, E-Commerce

1. Introduction

Over the last decade, online retail has experienced significant growth and is becoming a larger

portion of the retail industry (Economist (2017)). Online retailers1 face many new operational

opportunities to drive customer engagement and revenue growth. One such opportunity is the

decision of how to rank products on their website. It is well established in the academic literature

and known by retailers that more customers view products ranked in top positions compared

to products ranked towards the bottom of the page where customers must scroll down to view.

Furthermore, the product ranking can have a causal effect on the number of products searched

(see, e.g., Ursu (2018)). Thus, the ranking of products is an important decision since this allows the

1 We will refer to any retailer with an online presence, regardless of whether they also have brick-and-mortar stores,
as an “online retailer”. When the context is clear, we will refer to online retailers as simply “retailers” for brevity.

1

2 Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products

retailer to control which products are seen by most customers, impacting the customers’ browsing

behavior, purchase decisions, and long-term interest in the retailer.

In this paper, we study the ranking challenge in a particular setting that, to the best of our

knowledge, is yet to be studied in the academic literature. We consider a retailer selling products

that have a subjective style, and which are difficult to fully characterize by their attributes. The

typical customer (she) does not have a good idea of the assortment or style of products offered,

and may not have a particular product in mind that she is looking for. She forms an opinion about

the assortment and style after browsing products in the initial ranks; we define the customer’s

“attention window” as the number of products she views to help form her opinion, which may differ

by customer and is unknown to the retailer. Many retailers face such customers. In general, retailers

who change their assortment of products frequently relative to the frequency of a customer’s visit

likely face such customer behavior.

We assume that each customer browses products in the initial ranks up to her attention window,

and if she sees a product that she likes, she is “hooked” and continues browsing in the hopes

of finding additional products that she likes. If she does not see a product she likes within her

attention window, she believes she may not find anything she likes in the assortment and therefore

leaves the site2 early. Customers click on products that they like in order to learn details about the

product (e.g., sizes available, dimensions, material, etc.). In contrast to other literature on product

ranking, we do not make the assumption that customers purchase at most one product; instead, we

are motivated by the setting where customers may like, and perhaps purchase, multiple products.

The retailer observes the set of products that customers like via clicks and dynamically changes the

product ranking over time to learn the ranking that maximizes the number of hooked customers,

or equivalently, minimizes the number of customers who do not see anything they like and abandon

the site prematurely.

Customers in our setting are analogous to “window shoppers” in brick-and-mortar retail. In a

physical mall, window shoppers stroll through the mall looking at products in the retailers’ display

cases to learn about the assortment of products the retailer is offering. If they see a product they

like, they are hooked and enter the store to browse more products; otherwise, they avoid the

store altogether. The online retailer’s goal of maximizing the number of hooked customers - the

number of customers who engage with the site - is analogous to the brick-and-mortar retailer’s

goal of maximizing store traffic, a key customer engagement metric for many retailers. Although

the objective of profit maximization is more commonly studied in the academic literature, many

2 “Site” refers to the page(s) that display products in an assortment, which may include only a subset of products the
retailer offers. For example, a flash sales retailer may offer several events at a time; here, “site” refers to an event’s
page(s).

Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products 3

retailers in competitive markets have the primary objective of maximizing market share and use

such customer engagement metrics to do so, including the retailer we partnered with for this

research, Wayfair (www.wayfair.com) - a multi-billion dollar home goods online retailer.

In order to maximize the number of hooked customers, the retailer must consider both product

popularity and diversity in its ranking decisions. Popularity is an obvious consideration: by includ-

ing a very popular product in a top rank, the retailer can hook many customers. Interestingly,

ranking by popularity is one of the most common ranking approaches studied in the academic

literature and implemented in practice. However, diversity (or variety) of products is also an impor-

tant notion; here, we consider two products as being diverse if the set of customers that each

hooks has little or no overlap. Two products that are very popular may hook the same customers.

Incorporating diversity allows the retailer to hook a broader base of customers.

Our main contributions in this paper are three-fold. First, we introduce and study the product

ranking challenge for retailers who often face “window shopping” consumer behavior. Our model

highlights the importance of both product popularity and diversity considerations when making

ranking decisions. This type of consumer shopping behavior is well recognized in the consumer

psychology literature as “hedonic browsing” (see, e.g., Moe (2003)), which cites the importance

of offering such consumers a diverse set of products, and we are the first to consider the ranking

decision for retailers often facing such customers.

Second, we develop a class of prescriptive, dynamic ranking algorithms that balance popular-

ity and diversity to learn the ranking that maximizes the number of hooked customers. In the

(unrealistic) complete information setting - where the retailer knows the joint distribution of which

products customers like along with their attention windows - we relate a special case of our model

to the maximum coverage problem and extend its well-known greedy algorithm to our more general

model. Then, when the retailer has no prior knowledge of product interests and attention windows,

we develop algorithms that dynamically learn the greedy ranking from the complete information

setting by offering different rankings over time. Our algorithms circumvent having to learn the joint

distribution of products that customers like and their attention windows, and instead learn the

optimal ranking directly. The algorithms that we propose vary based on their tradeoff of optimality

gap vs. speed of learning and can thus be applied to retailers of varying sizes.

For our third contribution, we partner with Wayfair to develop a realistic model and imple-

mentable algorithm, and ultimately estimate its impact via simulations using actual clickstream

data. Across six different product assortments, our algorithm hooks an average of 5-30% more cus-

tomers than Wayfair’s static, popularity-based ranking. Furthermore, our algorithm hooks 89-95%

of the total number of customers hooked by an (omniscient) offline benchmark. These simulations

using real clickstream data illustrate that our algorithmic contributions can make a significant

impact in practice.

4 Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products

Assumes
customers

buy at
most one
product

Models as
optimal
stopping

problem (OSP)
or MNL

Assumes
independent

utility /
interest across

products

Assumes a priori
full knowledge of

products’ intrinsic
utilities and

distribution of
random utilities

Descriptive
(D) vs.

Prescriptive
(P)

Aouad and Segev
(2015)

X MNL X P

Chen and Yao (2016) X OSP X X D
Chu et al. (2017) X OSP X X P
Dzyabura and Hauser
(2016)

X OSP D

Gallego et al. (2016) X MNL P
Ghose et al. (2012) X MNL X X P
Ghose et al. (2014) X P
Golrezaei et al. (2018) X OSP X X P
Lei et al. (2018) X MNL X X P
Kim et al. (2010) X OSP X X D
Kim et al. (2016) X OSP X X D
Koulayev (2014) X OSP X D
Ursu (2018) X OSP X X D

Table 1 Modeling Assumptions and Analysis Techniques in Product Ranking Literature

1.1. Related Literature

Our work is related to three different streams of literature: product ranking, learning algorithms,

and submodular optimization.

Connections to Product Ranking Product ranking has been well-studied in the academic

literature, although there are key differences in modeling assumptions and analysis between this

stream of work and ours. We compare the major aspects of the most relevant product ranking

papers in Table 1 and speak to their implications below.

First, product ranking papers assume that customers are shopping to fill a particular need and

buy at most one product. Making this assumption and considering sequential, costly search, many

of these papers build upon the seminal paper Weitzman (1979) and model the consumer’s shopping

behavior as an optimal stopping problem, trading off the cost of searching one more product vs. its

expected utility. Most other papers use a multinomial logit (MNL) model. In contrast, we do not

assume that customers buy at most one product, although this behavior is possible in our model;

rather, we are motivated by settings where consumers are window shoppers and browse products

looking for any they might like. Due to this difference, modeling our problem using the optimal

stopping framework of Weitzman (1979) or an MNL model is not appropriate for our setting.

This type of shopping behavior is well recognized in consumer psychology literature as “hedonic

browsing” (see, e.g., Moe (2003)). Browsing has been further described in the consumer behavior

Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products 5

literature as a screening activity that is independent of any purchase needs (Bloch et al. (1989));

through browsing, consumers purchase products that they would not otherwise have considered

(Rowley (2002)). Research has shown that first impressions matter; for example, Dawson and Kim

(2010) suggests that if a shopper is not hooked within 30 seconds of browsing the site, she will leave.

Cho and Youn-Kyung (2012) suggests that shoppers form a quick judgment of the assortment after

viewing a few products, which may or may not warrant further exploration. We capture this initial

screening behavior and time spent on the site via the customer’s attention window.

Second, most product ranking papers assume for tractability that customer interest in any two

products is independent, which may be unrealistic: given that a customer likes product A, she is

more likely to also like a similar product B. We do not make this independence assumption, and in

fact, our learning algorithm converges to the well-studied popularity ranking when independence

holds. A notable exception to this assumption is Ghose et al. (2014), which instead of explicitly

modeling consumer utility, assumes a structural model (hierarchical Bayes) based on well-defined,

observed attributes and estimates parameters of the model with historical data. In their structural

model, they include the product ranking effect in both a linear and quadratic term. We do not

assume such a functional form for the product ranking effect, and we do not require that attribute

data exists or is available for search.

Third, most other papers assume for tractability that the intrinsic utilities of products, as well

as the distribution of random utilities, are known to the retailer and customers before customers

actually view the products, which may be unrealistic. Thus, we do not make this assumption and

instead use a basic model of customer learning where the customer browses products to learn about

the assortment and style of products offered. Dzyabura and Hauser (2016) also incorporate an

aspect of customer learning in their model, where the customer is assumed to know attribute values

of all products offered, but learns her preferences for those attributes as she searches. Although

Aouad and Segev (2015) and Gallego et al. (2016) do not consider customer learning, they do

assume exogenous attention windows as do we. Interestingly, even with critical differences in mod-

eling assumptions, Gallego et al. (2016) proposes an algorithm that is similar in spirit to our offline

algorithm; that said, their analysis does not extend to our model.

Finally, many of these papers are descriptive in nature, evaluating the impact of a static ranking

on consumer behavior. In contrast, our work is prescriptive, in that we aim to find a ranking that

maximizes a retailer’s objective. Beyond differences in modeling assumptions, the other papers that

are prescriptive in nature consider offline algorithms that produce a static ranking, whereas ours

presents an online learning algorithm that dynamically changes rankings to learn the best rank

over time. One notable exception is Lei et al. (2018), who dynamically change product rank, price,

and fulfillment decisions to maximize the profitability of selling a finite inventory over a selling

6 Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products

season; in contrast, the dynamic nature of our algorithms stem from the necessity of learning the

best rank given unknown model parameters.

Connections to Learning Algorithms Motivated by applications in information retrieval,

web search, and recommendation systems, there are many recent papers on learning algorithms for

information ranking. Much of this work uses clickstream data to infer optimal static rankings, so

we only highlight the recent work pertaining to online learning algorithms. Online learning-to-rank

can be classified under two broad categories depending on the model of user behavior (Zoghi et al.

2017). In the cascade model (Kveton et al. 2015) there is only one user type with a fixed but

unknown set of click probabilities for each item and a known attention window (k), and the objective

is - analogous to ours - to select k items to minimize the probability of customer abandonment.

However, such a model does not account for varying and unknown attention windows that lead to

the behavioral effect that fewer customers view products at lower ranks. Therefore, the cascade

model essentially captures a subset selection problem since altering the order in which the k items

are displayed does not affect the reward.

In the position-based model, as in sponsored search, the customer’s utility or click probability

for an item is the product of a position-specific and item-specific component (Lagrée et al. 2016).

On the contrary, we do not assume any independence between the customer’s product interest

probabilities and their attention windows. Recent research has attempted to bridge the gap between

the two models by proposing more general approaches (Zoghi et al. 2017). In all of these works,

the optimal ranking is simply the ‘popular ranking’ obtained by sorting the items in descending

order of click probabilities.

A parallel stream of literature has focused on the problem of designing online algorithms for

the selection of diverse sets of items from a large universe (Radlinski et al. 2008, Raman et al.

2012). Although these works allow for heterogeneous customer types, all customers have the same

attention window and hence, the problem is more analogous to submodular selection than ranking.

Our work also bears superficial similarities to papers on combinatorial bandits such as (Chen et al.

2016) although our ranking problem cannot be captured by the model in that work since the overall

reward cannot be independently decomposed into its components due to different products.

Along these lines, our work is also related to the relatively small literature on learning optimal

assortments (see, e.g., Agrawal et al. (2016), Bernstein et al. (2017), and Ulu et al. (2012)). Similar

to ours, papers in this area propose offering dynamic assortments over time to learn an optimal

assortment. Key differences include (i) these papers either assume customers buy at most one

product or that product interest is independent for each product, and (ii) customers observe all

products in the assortment, i.e. the attention window is known and identical for all customers. It

Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products 7

is worth noting that there is a larger literature on offline, static assortment optimization without

learning, some of which results in diverse assortments (see, e.g., Li et al. (2015)); the same key

differences exist.

Connections to Submodular Optimization Although our model bears strong similarities

to the well-studied stochastic submodular optimization problem (Asadpour and Nazerzadeh 2015),

our results and techniques do not follow directly from that literature. This is because submodular

maximization problems are concerned with selecting a subset of items from a known universe

whereas our problem involves both selection and ranking of the selected products. In that sense,

our model strictly generalizes popularly studied online submodular maximization problems such as

the maximum coverage problem (Radlinski et al. 2008). Moreover, while the greedy algorithm for

the maximum coverage problem provides a natural intuition on how to rank the selected products,

in the online learning setting, this could lead to undesirable sample complexity. To address this

concern, we draw inspiration from (Badanidiyuru and Vondrák 2014) and develop a threshold-

based algorithm that is particularly well-suited for the ranking problem and show that it performs

well both theoretically and in practice.

2. Model

We consider an online retailer who offers a set of n products for sale during a selling season. For

convenience, the products are labeled as [n] = {1, 2, . . . ,n}. A set T of customers (|T| = T) arrive

sequentially and the retailer selects a ranking of products to offer to each customer. Formally, a

ranking is a permutation π : [n]→ [n] that maps each product i to a position 16 π(i)6 n. We use

π−1(j) ∈ [n] to denote the product that is ranked in the jth position under ranking π. Clearly, if

π−1(j) = i, then π(i) = j by definition. We will use πt to denote the ranking of products displayed

to customer t and leave off the subscript when the context is clear. The assortment of products

is assumed to be fixed beforehand as are their prices, which reflects the fact that product ranking

decisions are typically made after assortment and pricing decisions in practice. Furthermore, we

assume that inventory is plentiful such that no products sell out before the end of the season.

Customers browse products sequentially and click on products that they like in order to learn

more about the product (e.g., its size/dimensions, material, availability, etc.), and retailers observe

these clicks to help inform their subsequent ranking decisions. Each customer t∈ T is characterized

by (pt, kt) ∼iid D, where we refer to pt = (p1t, p2t, ..., pnt) as her vector of click probabilities, and

we refer to kt ∈ [n] as her attention window. Customer t browses all products within her attention

window (positions 1 to kt) in order to learn about the assortment and general style of products

offered. With probability pit, customer t likes product i and - conditional on browsing (seeing)

8 Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products

product i - she clicks on it to learn more about the product3. If the customer does not like any of

the products she sees within her attention window, she stops browsing and exits the site; otherwise,

she continues browsing4. The retailer has no prior knowledge of (pt, kt) or D, and only observes

customer clicks. Note that our model allows for customer heterogeneity as the click probability

vector and attention window can be different across customers; in addition, customers’ preferences

and attention windows may not be independent.

For each product i and customer t such that π(i)6 kt, we define the Bernoulli random variable

Cit(π) as Cit(π) = 1 if the customer t - conditional upon her type (pt, kt) - clicks on product i under

ranking π and Cit(π) = 0 if not. For notational convenience, when π(i)> kt, we define Cit(π) = 0.

We use Cit(π) as shorthand to denote 1−Cit(π) ∀i, t. By indexing customer t, we implicitly assume

that the random variable is conditional on customer t’s type, (pt, kt), and will use this shorter

notation throughout the paper. Note that Pr(Cit(π) = 1) = pit when π(i)6 kt, since customer t is

guaranteed to have browsed product i if it is displayed within her attention window. We assume that

Cit(π) |= Cjt(π) ∀i 6= j, π(i)6 kt, π(j)6 kt; note that this independence is conditional on customer t’s

type, (pt, kt), in contrast to much of the work cited in Section 1.1.

We further define the event that customer t is “hooked” as

Ht(π) =

{
1, if

∑
i∈[n]Cit(π)> 1

0, if
∑
i∈[n]Cit(π) = 0

;

in other words, customer t is hooked if she clicks on at least one product in the assortment

under ranking π. Since Cit(π) = 0 when π(i) > kt, a necessary condition for the customer to be

hooked is that she clicks on at least one product within her attention window. Therefore, Ht(π) =

1 if and only if
∑
j∈[kt]Cπ−1(j)t(π) > 1. Moreover, the probability of customer t being hooked is

1 −
∏
j∈[kt](1 − pπ−1(j)t). Note that as the number of products the customer is likely to click on

within her attention window increases, the more likely she is to be hooked.

The problem faced by the retailer is to design a non-anticipatory algorithm that selects a ranking

πt for each arriving customer t ∈ T in order to maximize the total number of hooked customers

over the season, or equivalently, to maximize the total number of customers who engage with the

site by clicking on at least one product:

max
π1,π2,...,πT

E
[∑
t∈T

Ht(πt)
]
. (1)

3 For ease of exposition, we equate the customer “liking” a product to the customer “clicking on” a product if she sees
it, although our algorithm and results remain unchanged if we instead assume that a customer clicks on a product
she likes with probability λ∈ [0, 1].
4 The customer may continue to browse all or only a subset of the remaining products.

Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products 9

Our objective can be interpreted as “minimizing abandonment”, a common objective in service

systems, where in our case, abandonment refers to a customer not finding any products she likes

within her attention window and thus leaving the site early before being “served” a product she likes

(if such a product exists). Although the objective of profit maximization is more commonly studied

in the academic literature, many retailers in competitive markets (including our partner retailer,

Wayfair) and/or retailers targeting window shoppers (e.g., flash sales sites) have the primary

objective to maximize market share and use such a customer engagement metric to do so.

To summarize the sequence of events in our model, customers arrive sequentially and for each

customer t∈ T,

1. The retailer selects and offers ranking πt.

2. The customer browses all products within her attention window (positions 1 to kt) and clicks

on products that she likes.

3. If the customer does not like any of the products within her attention window, she leaves the

site without browsing any additional products. Otherwise, she is hooked and continues browsing.

4. The retailer observes all customer clicks (but not (pt, kt)) and can use this information when

choosing rankings to offer new customers.

We will refer to the retailer’s ranking problem under the consumer behavior model described

above as the online assortment ranking problem (OnAR). We point out that “online” refers to

two characteristics: first, “online” refers to the retailer’s ability to observe clicks in real time as

customers engage with the site. Second, “online” also refers to the online retail industry, since many

online retailers face this ranking challenge and have the ability to change rankings dynamically

over time. In this work, we focus on a common special class of algorithms for OnAR known as

learning-then-earning algorithms - these methods focus on rapidly converging to a (near-)optimal

ranking that is then fixed for the remaining customers. Such algorithms are often preferable in

online retail when these sites lack accurate foreknowledge of the number of customers |T| who visit

during the selling period.

Before presenting our class of dynamic ranking algorithms for the online assortment ranking

problem in Section 4, we first study the offline assortment ranking problem (OffAR) in Section 3

where we make the (unrealistic) assumption that the retailer knows the distribution D at the start

of the season. Since D is known ahead of time, no learning is necessary and thus the term “offline”

is used, as a single, static ranking can be chosen at the beginning of the season and offered to all

customers.

3. Offline Assortment Ranking

In this section, we consider the offline version of the assortment ranking problem (OffAR), where

the retailer knows the distribution D from which customers’ preferences and attention windows

10 Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products

are drawn at the beginning of the season. However, the retailer does not know the parameters

(pt, kt) before the arrival of each customer t ∈ T. Since D is known ahead of time, no learning is

necessary and a single, static ranking can be chosen at the beginning of the season and offered to all

customers. Although our primary interest lies in the online assortment ranking problem where the

retailer must learn the customers’ preferences, the methods developed in this section will provide a

clear understanding of the core techniques involved in the more sophisticated learning algorithms

that we will present in Section 4, and will also serve as a benchmark for which to compare our

online ranking algorithms in the simulations in Section 5.

Our first result shows that even when the retailer knows D a priori, the assortment ranking

problem is NP-Hard.

Proposition 1. The offline assortment ranking problem is NP-Hard.

The proof of this result utilizes an important special case of OffAR where pit ∈ {0, 1} and kt =

k ∀t ∈ T, i ∈ [n]. This special case admits the following intuitive interpretation: each customer

t ∈ T is endowed with a set of preferred products St ⊆ [n] and attention window 1 6 k 6 n and

clicks on any product i ∈ St that is present within ranks [1,k]. The retailer’s goal is to select a

ranking π to maximize the expected number of customers who have at least one product from their

preferred subset inside their attention window. Upon close examination, this special case of OffAR

is a stochastic version of the maximum coverage problem, which is a well-studied problem in the

combinatorial optimization literature. The deterministic maximum coverage problem is known to

be NP-Hard, and given that OffAR generalizes the maximum coverage problem, it must also be

NP-Hard. The formal proof of Proposition 1 involves mapping the deterministic maximum coverage

problem to the stochastic offline assortment ranking problem. Proofs of all analytical results are

provided in Appendix A.

Given this NP-Hardness result, it is difficult to find an optimal solution to OffAR for a reasonable

problem size. Thus, a standard optimization approach is to consider approximation algorithms that

come close to the optimal solution. The best approximation algorithm for the maximum coverage

problem - a special case of OffAR - is a greedy algorithm that achieves a (1− 1
e
) approximation

factor (see Theorem 3.8 in Hochbaum (1996)). Motivated by this greedy algorithm, we formally

present our algorithm for the more general offline assortment ranking problem in Algorithm 1,

which we will refer to as the Greedy Algorithm for OffAR (or simply Greedy Algorithm when the

context is clear).

Algorithm 1 sequentially fixes products in ranks {1, 2, . . . ,n}. Assuming that ranks 1 through

r−1 have been fixed, in iteration r, the algorithm considers all the remaining (unranked) products

for position r. The product i with the maximum marginal benefit (∆ir) - i.e., that increases the

Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products 11

Algorithm 1: Greedy Algorithm for OffAR

Initialize null ranking πg(i) = ∅ for all 16 i6n;

Initialize unranked products U= [n];

for r= 1 to n do
for i∈U do

Let π̃g← πg;

π̃g(i)← r;

∆ir = Et∼D[Ht(π̃
g)−Ht(π

g)];
end

Let i∗r = argmaxi∈U∆ir;

Set πg(i∗r)← r;

U←U \ i∗r.
end

probability of hooking an incoming customer by the largest amount - is fixed at rank r and the

algorithm continues on to the next rank. The marginal benefit can also be interpreted as the

probability that the customer clicks on the product at rank r but not on any products in ranks

{1, 2, . . . , r−1}. Note that ∆ir depends on three key factors: (1) the probability that a customer clicks

on product i, (2) the probability that a customer does not click on products in ranks {1, 2, . . . , r−1},

and (3) whether or not rank r is within the customer’s attention window. The combination of the

first two factors can be interpreted as the balance of popularity and diversity. On the one hand,

the retailer wants to offer popular products that are likely to be clicked on; on the other hand, the

retailer wants to select diverse products to hook a more heterogeneous set of customers.

It is straightforward to see that Algorithm 1 reduces to the standard greedy algorithm for the

maximum coverage problem for the special case of OffAR where pit ∈ {0, 1} and kt = k ∀t∈ T, i∈ [n],

which is known to provide a (1 − 1
e
)-approximation factor to the optimal offline solution. The

important yet subtle generalization in our algorithm can be seen in the definition of ∆ir, which

incorporates varying attention windows and probabilistic interests. Surprisingly, the following result

shows that even for the more general offline assortment ranking problem, the Greedy Algorithm

still achieves a 1
2
-approximation factor.

Theorem 1. The Greedy Algorithm for OffAR results in ranking πg such that the probability that

an incoming customer is hooked is at least one-half that of the optimal ranking π∗, i.e. Algorithm

1 achieves a 1
2
-approximation factor for OffAR.

The proof involves characterizing the marginal benefit due to each product in π∗ in terms of

the product occupying the same rank under πg. Informally, consider all the customer profiles (say,

12 Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products

Z) in the support of D that are first hooked by a certain product i ∈ [n] under ranking π∗ - i.e.,

its marginal benefit from customers who do not click on products at ranks smaller than j= π∗(i).

The central argument in the proof is that the fraction of customers hooked by product i under

ranking π∗ is no more than the sum of (a) the fraction of Z profiles that are hooked by the greedy

algorithm πg at ranks less than j and (b) the marginal benefit of the product at rank j under

ranking πg. Indeed, if this were not the case, one could argue that the greedy algorithm would have

fixed product i at rank π∗(i). Summing up this idea over all products gives us a factor of one-half

since we may end up counting each customer profile twice. The challenge in formalizing this claim

comes from the fact that the customers’ clicks are governed by two sources of uncertainty - the set

of preferred products and the attention window. Since the sources may be correlated, one cannot

simply decompose them via typical independence arguments.

The following example shows the 1
2
-approximation factor in Theorem 1 is tight for Algorithm 1.

Example 1. Consider an instance of OffAR with two products {1, 2}. The distribution D is

defined as follows:

• with probability 0.5+ ε, customer t has kt = 2 and p1t = 1, p2t = 0;

• with probability 0.5− ε, customer t has kt = 1 and p1t = 0, p2t = 1.

The optimal ranking is π∗ = {2, 1}, which hooks all customers with probability one. On the other

hand, πg = {1, 2}, which only hooks a customer with probability 0.5+ε. As ε→ 0, the approximation

factor for the Greedy Algorithm for OffAR approaches one half. �

Interestingly, although the 1
2
-approximation factor is tight for general OffAR instances, the

following result shows that the Greedy Algorithm for OffAR can achieve a (1− 1
e
)-approximation

factor for a broad class of special cases to OffAR, including the maximum coverage problem.

Theorem 2. Consider the special case of OffAR where pt and kt are independent, referred to

as OffAR with Independence. The Greedy Algorithm for OffAR achieves a (1− 1
e
)-approximation

factor for OffAR with Independence.

The proof involves showing that for any given attention window k, the first k ranks in πg are

identical when (i) all customers are included when running the algorithm, and (ii) only customers

with attention window k are included when running the algorithm. Using results from stochastic

submodular optimization, we can show that this is a (1− 1
e
)−approximation to the optimal ranking

for customers with attention window k. Finally, we relate the hook probability of the optimal

ranking for all customers to the optimal ranking for customers with attention window k for all

k∈ [n].

Interestingly, for the special case of OffAR where pit ∈ {0, 1} and allowing for dependent pt

and kt, one can develop an alternative algorithm using LP-pipage rounding that also achieves a

Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products 13

(1− 1
e
)−approximation factor (Asadpour (2019)). Intuitively, if (pt, kt) are correlated, there may be

more opportunity to prioritize hooking different customer types due to varying kt. Our algorithm

does not account for such dependencies, whereas work by Asadpour (2019) does. Unfortunately,

their algorithm does not extend well to the learning setting in OnAR. As we will soon see, this is

a key benefit of Algorithm 1.

Given the prevalence of the popularity ranking - i.e., where products are ranked in decreasing

order of their click probabilities - in both academia and practice, we emphasize the key distinguish-

ing feature of our algorithm. Namely, for each rank, our Greedy Algorithm seeks to maximize the

number of customers that click on the product located at that rank and no preceding ranks. There-

fore, our approach balances both product popularity and diversity - whereas the popularity ranking

only seeks to maximize the number of customers that click on that rank, regardless of whether the

customer clicked on a preceding rank. The following example illustrates that the performance of the

popularity ranking can be arbitrarily bad, highlighting the importance of incorporating diversity

as a key criteria in the ranking algorithm.

Example 2. Consider a distribution D composed of k< n
2

distinct customer types {z1, z2, . . . , zk}.

An arriving customer belongs to type z1 with probability 1
k
+ (k− 1)ε and all other types with an

equal probability of 1
k
− ε for some arbitrarily small ε> 0. The attention window is k for all types

and the click probabilities are as defined below:

• Type z1: pit = 1 for i= {1,k+ 2, . . . , 2k} and pit = 0 otherwise.

• Type zi (i 6= 1): pit = 1 and pi ′t = 0 for all i ′ 6= i.

We first argue that (one of) the optimal ranking(s) is π∗ such that π∗(i) = i for all i ∈ [1,n].

Indeed it is easy to see that every customer type has at least one product from their preferred set

within their attention window (top k ranks) and therefore, the probability of getting hooked for

any incoming customer is one. Furthermore, one can verify that the Greedy Algorithm would also

result in a ranking πg that hooks all customers.

Next we derive the popularity ranking, πp. Products i∈ {1,k+2, . . . , 2k} are preferred by customers

of type z1 and thus yield an expected click probability of 1
k
+(k− 1)ε. Each product in the set i ′ =

{2, . . . , k} appeals to exactly one of the other customer types and thus its expected click probability

is 1
k
− ε. Therefore, πp must contain all of the products in {1,k+ 2, . . . , 2k} in its first k positions,

hooking only a 1
k
+ (k− 1)ε fraction of customers. As ε→ 0 and n and k grow large, we observe

that πp can be arbitrarily worse than the optimal ranking. �

4. Online Assortment Ranking

In this section, we study the more realistic online assortment ranking problem (OnAR), where the

retailer does not know the distribution D from which customers’ preferences and attention windows

14 Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products

are drawn. A naive approach for tackling this problem is to learn the complete distribution D

by sampling the interest vectors pt and attention window kt from a sufficiently large number of

customers. One could then apply (say) Algorithm 1 for OffAR to retrieve the same approximation

factors as in Section 3. Unfortunately, such an approach is likely infeasible as the joint distribution

D may have a large support, whereas the number of customers (available samples) may be relatively

small. The problem is further compounded by the fact that the retailer’s observations are censored :

the retailer cannot observe the exact attention window kt of customers nor infer the full vector pt.

Driven by these constraints, we develop learning-then-earning algorithms for OnAR that converge

to the offline approximately optimal ranking without learning the distribution D. Our learning-then-

earning algorithms operate in two phases: first, in the learning phase, the algorithm offers different

rankings to customers in order to learn the (approximately) best ranking. Then, in the earning

phase, the algorithm offers this single, (approximately) best ranking to the remainder of customers.

Although our proposed methods do sample customers to partially infer their preferences, the goal

is to simply learn the (approximately) best ranking of products, not the entire distribution D. As

is typical for online learning algorithms, we measure performance in terms of two metrics: (i) an

approximation factor with respect to the optimal ranking for the earning phase, and (ii) the length

of the learning phase, i.e. the number of customers for which the algorithm learns before converging

upon the final ranking. The first metric essentially measures how accurately the algorithm can

learn, whereas the second metric measures the speed of learning.

In what follows, we present two learning algorithms for OnAR: the Simple Learning Algorithm

and the Threshold Acceptance Algorithm. The former leverages multi-armed bandit (MAB) tech-

niques to mimic the Greedy Algorithm for OffAR. These techniques come at the cost of a long

learning phase, as the algorithm may require up to Θ(n4) customers to guarantee convergence. In

practice, requiring such a long learning phase is infeasible leading to the question of whether the

retailer could sacrifice some performance in favor of speed. With this motivation, we develop the

Threshold Acceptance Algorithm and prove that it achieves an approximation guarantee that is

close to that of the Greedy Algorithm for OffAR but with a convergence rate that is an order of

magnitude faster than that of the Simple Learning Algorithm.

4.1. Simple Learning Algorithm

We begin with a sequential learning paradigm that yields a class of algorithms for OnAR that all

converge to a one-half approximation to the optimal ranking, yet differ by the length of the learning

phase. In particular, the class of algorithms that we propose builds upon previous work in the area

of multi-armed bandits for the problem of identifying the best arm among a finite set, i.e., the

action yielding the highest expected reward. We propose a general procedure that transforms such

Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products 15

multi-armed bandit algorithms into algorithms that compute rankings for OnAR. We use a MAB

algorithm as a black-box input and make several calls to this black-box to fix an approximately

optimal product at each rank. Our reliance on black-box transformations using MAB algorithms is

inspired by the large body of research in recent years that focuses on computing the best arm using

the minimum number of samples (see Jamieson and Nowak (2014) for a survey); this version of the

MAB problem is often referred to as MAB for Best Arm Identification, although we will simply

use MAB for brevity. By using these techniques as black-box inputs to our ranking algorithm, we

are able to leverage the insights generated in this literature without having to reinvent the wheel.

We first describe a few technical concepts required for stating our results. A multi-armed bandit

problem comprises of n arms or actions such that upon ‘pulling each arm’ i ∈ [n], the algorithm

observes a reward of νi that is drawn independently from some unknown distribution. There is a

finite limit, T̃ , on the total pulls that can be made. We focus on the objective of identifying the arm

that maximizes the expected reward (i∗ = argmaxi E[νi]) while minimizing the number of arm pulls.

As is common in online learning, we use the framework of (ε, δ)-PAC (probably approximately

correct) algorithms that compute an approximately-optimal arm with high probability.

Definition 1. (Even-Dar et al. 2006) An algorithm is an (ε, δ)-PAC algorithm for the multi-

armed bandit problem with sample complexity T̃ if with probability at least 1 - δ, it outputs an

arm i such that E[νi]>maxi ′ E[νi ′]−ε and the number of times it pulls the arms is bounded by T̃ .

Algorithm 2 formally presents our Simple Learning Algorithm for OnAR, which specifies rankings

offered to customers during the learning phase. At the end of the learning phase, the ranking output

by Algorithm 2 is offered to all remaining customers. The algorithm proceeds sequentially from

ranks one through n and for each rank r, it makes one call to a black-box PAC algorithm (ALG)

which samples at most T̃ customers to identify the product that achieves the maximum empirical

marginal benefit - i.e., hooks the largest fraction of customers who did not click on any of the

previously ranked products - when placed at rank r. The arms of ALG correspond to the unranked

products and the reward on each arm is a Bernoulli random variable equal to 1 if the customer

clicked on the product in rank r but not on any products in ranks [1, r− 1], and 0 otherwise. The

Simple Learning Algorithm mimics the Greedy Algorithm for OffAR such that the product with the

maximum marginal probability of hooking a customer is fixed at each rank with high probability.

The following result shows that the ranking produced by the Simple Learning Algorithm hooks

at least (approximately) one-half of the customers hooked by the optimal ranking with high proba-

bility for general OnAR. Analogous to the offline setting, we define OnAR with Independence to be

the special case of OnAR where pt and kt are independent; in this case, the one-half approximation

factor can be further tightened to 1− 1
e
.

16 Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products

Algorithm 2: Simple (Black-Box) Learning Algorithm

Input: (ε ′, δ ′)-PAC algorithm ALG, Parameters ε, δ > 0;

Initialize null ranking π̃(i) = ∅ for all 16 i6n;

Initialize unranked products U= [n];

for r= 1 to n do
For all i∈U, define π̃∪ i to be a ranking identical to π̃ in positions 1, ..., r− 1 and with

product i in rank r;

Run ALG on products U for T̃ customers, where νi =Cit(π̃∪ i)
∏
j∈[r−1]Cπ̃−1(j)t(π̃) for all

i∈U;

Let ĩr be the product output by ALG;

Set π̃(̃ir)← r;

U←U \ ĩr.
end

Theorem 3. Given any (ε ′, δ ′)-PAC algorithm as a black box where ε ′ = 2ε
n

and δ ′ = δ
n

, the

Simple Learning Algorithm returns a ranking π̃ such that with probability (1− δ):

1. E[Ht(π̃)]> 1
2
E[Ht(π∗)] − ε for general OnAR.

2. E[Ht(π̃)]> (1− 1
e
)E[Ht(π∗)] − ε for OnAR with Independence.

Our final ranking π̃ is essentially an (ε, δ)-PAC approximation to the optimal ranking π∗. Since

π̃ achieves an additive error of ε compared to the benchmark, the maximum permissable error for

ALG at each individual rank r is ε
n

(multiplied by a factor of two); similarly, for each rank r, the

product designated at that rank via ALG is suboptimal with probability at most δ
n

. Given the

lower bounds and the hardness results for OffAR in Section 3, it is not possible for any online

learning algorithm to identify the optimal ranking using a polynomial number of queries.

The Simple Learning Algorithm makes exactly n black-box calls to the (ε ′, δ ′)-PAC algorithm.

This allows us to bound the length of the learning phase as follows.

Corollary 1. Given any (ε ′, δ ′)-PAC algorithm as a black box, the Simple Learning Algorithm

returns a ranking π̃ after at most nT̃ customers.

Due to the black-box nature of Algorithm 2, one could simply substitute any of numerous algo-

rithms (Even-Dar et al. 2006, Jamieson and Nowak 2014, Kalyanakrishnan et al. 2012) for best-arm

identification to develop a corresponding methodology for ranking. As mentioned previously, all

of these algorithms converge to a ranking with the same approximation guarantee. However, the

total number of customers they require may depend on different parameters and hence, the choice

of the best algorithm may be instance-specific. The following corollary highlights the number of

Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products 17

customers used by our algorithm for two specific instantiations of the black-box (ε ′, δ ′)-PAC algo-

rithm. In particular, we consider the Exhaustive Sampling Algorithm (Even-Dar et al. 2006), where

each product is sampled for L = 4
ε2

log(2n
δ
) times and the product yielding the largest number of

hooked customers is returned; note that T̃ = nL in this case. We also consider the LUCB Algo-

rithm (Kalyanakrishnan et al. 2012), a variant of the popular upper confidence bound (UCB)

algorithm.

Corollary 2. The Simple Learning Algorithm returns a ranking π̃ with approximation factors

as specified in Theorem 3 with probability (1− δ) and length of learning phase as described below:

1. Θ
(
n4

ε2
log(n2

δ
)
)

when the Exhaustive Sampling Algorithm is used as the black box.

2. Θ
(
n2

∆2∗
log(n2

∆2∗δ
)
)

when the LUCB Algorithm is used as the black box, where ∆∗ is a measure of

the minimum gap between the rewards of the highest and second-best arms, where the minima is

taken over all ranks r∈ [n]5.

To summarize, the Simple Learning Algorithm balances popularity and diversity and (approxi-

mately) recovers the performance guarantees achieved in the offline setting for the earning phase.

As we show in Corollary 2, the algorithm may require as many as Θ(n4) customers in the learning

phase before it converges to an approximately-optimal ranking to offer to customers in the earning

phase. In practice, requiring such a long learning phase is often infeasible; thus, the next subsection

is devoted to modifying the Simple Learning Algorithm to decrease the length of the learning phase

at a slight loss of optimality in the earning phase.

4.2. Threshold Acceptance Algorithm

We propose a novel method that we term the Threshold Acceptance Algorithm, which achieves

a significant speed-up in convergence time at the cost of only a small loss in performance. The

approach is fully described in Algorithm 3 but its core idea is rather simple: instead of exhaustively

trying all products at a given rank in order to identify the best one, the algorithm simply selects a

product that is ‘good enough’. Although this appears to be a simple tweak, the convergence time is

an order of magnitude faster.

At each stage of the algorithm, we maintain a threshold τ, which is monotonically decreasing.

The algorithm terminates when the threshold goes below a pre-specified value τmin. Any product

whose marginal benefit exceeds the threshold is fixed at the current rank and we move on to the

next rank. Unlike the Simple Learning Algorithm, the Threshold Acceptance Algorithm allows us

to fix products at consecutive ranks in a single pass through the products: this is the primary

5 Technically, let [π̃]r denote the sub-ranking of π̃ with only the first r ranks filled and [π̃]r−1 ∪ i be the ranking that
coincides with π̃ in its first r− 1 positions and has product i in its rth rank. For any r let Ur be the set of products
that are not ranked in the first r− 1 positions in π̃. We define ∆∗ =minnr=1mini,i′∈Ur (Ht([π̃]r−1 ∪ i)−Ht([π̃]r−1 ∪ j)).

18 Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products

Algorithm 3: Threshold Acceptance Algorithm

Input: Parameters ε, δ,α > 0, Initial and Final Thresholds: τmax > τmin > 0;

Initialize null ranking π̃(i) = ∅ for all 16 i6n;

Initialize unranked products U= [n], CurrentRank= 1;

Initialize τ= τmax;

while τ> τmin and CurrentRank6n do
for i∈U do

Define π̃∪ i to be a ranking identical to π̃ in positions 1, ..., r− 1 and with product i in

r, where r=CurrentRank;

Display ranking π̃∪ i to L= n2

ε2
log(n√

δ
) customers;

Let ∆ir be the fraction of the above customers who only click on i;

if ∆ir > τ then
Set π̃(i)←CurrentRank;

U←U \ i, CurrentRank←CurrentRank+ 1;
end

end

τ← τ
1+α

;
end

cause of the speed-up. Once the algorithm takes a full pass through the available products, the

threshold is then lowered geometrically (i.e., from τ to τ
1+α

) and thus the algorithm terminates after

a logarithmic number of rounds. The choice of α allows the algorithm designer to trade off between

performance and speed: small (large) α leads to more (less) conservative thresholds which result

in a longer (shorter) learning phase yet better (worse) performance in the earning phase. Finally,

in some cases, the ranking π̃ output by the Threshold Acceptance Algorithm may contain fewer

than n products assigned to ranks. In this case, one can simply append the remaining products to

π̃ (e.g., according to estimated click probabilities) without affecting the theoretical bounds.

The following result shows the algorithm’s approximation factor with respect to the optimal

ranking for the earning phase, as well as the required length of the learning phase.

Theorem 4. The Threshold Acceptance Algorithm with τmax = 1, τmin = ε
n

returns a ranking π̃

such that with probability 1− δ

E[Ht(π̃)]>
1

2+α
E[Ht(π∗)] − ε,

where π∗ is the optimal solution to OffAR. The length of the learning phase is

O
(
n3

ε2
log1+α(nε) log(

n√
δ
)
)

.

Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products 19

The key idea behind the proof is two-fold: first, the product fixed by our algorithm at position r

in the ranking π̃ has an empirical marginal benefit of at least τ. Due to our choice of L, its actual

expected marginal benefit can be lower bounded by τ− ε
n

. Second, we bound the loss due to only

selecting a product that is ‘good enough’ by recognizing that no product can provide more marginal

benefit than (1+α)τ, due to how the threshold is decreased at each iteration of the algorithm. The

rest of the proof involves summing up the above ideas over all ranks and deriving a relationship

between the marginal benefit of adding a product at rank r in π̃ vs. π∗.

Note that the length of the learning phase (Θ(n4)) for the Simple Learning Algorithm with

Exhaustive Sampling is a strict and instance-agnostic limit since the algorithm makes precisely

n calls to the black-box where the rth such invocation contains n − r + 1 arms as input. For

the Threshold Acceptance Algorithm, the learning phase length of O(n3 log(n)) is only a worst-

case bound: in practice, the actual click probabilities tend to be closely clustered in which case

the learning phase is significantly shorter. Furthermore, we note that in both algorithms, the

performance improves substantially throughout the learning phase, since products are fixed in ranks

iteratively and the initial ranks are responsible for hooking the most customers due to both (i)

expiring attention windows, and (ii) customers’ increased likelihood of being hooked by an earlier-

ranked product.

4.3. Additional Considerations

There are a few practical considerations worth noting regarding both our algorithms and model.

First, although our algorithms specify which products to rank only in positions [1, r] for iteration

r, in practice the retailer can simply append the remaining products (e.g., according to estimated

click probabilities) without affecting the theoretical bounds. Second, the ranking returned by our

algorithms would not be affected even if the retailer only observes the first product that a cus-

tomer clicks on. This has key implications: for one, it implies that companies only need to track a

customer’s first click, rather than the entire set of products the customer clicks on. In addition, it

highlights that our algorithms are robust to situations where customers change their search paths

and click behavior after clicking on the first product.

Although our goal of maximizing the number of hooked customers is a very common objective

in practice for companies who want to grow market share, there are other important metrics that

retailers may consider, e.g., maximizing profit or total clicks. Unfortunately, our algorithms for

OffAR and OnAR do not extend to these objectives because they only consider each customer’s

first click and do not make any assumptions on subsequent browsing or purchase behavior after

clicking. We believe developing algorithms for such alternative objectives is a promising area of

future work.

20 Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products

Finally, the performance of both our learning algorithms was stated in terms of two key met-

rics, namely the approximation to the optimal ranking and the speed of convergence. Presenting

the performance guarantees using these two metrics is fairly typical in the online learning litera-

ture pertaining to learning-then-earning algorithms, e.g., see (Radlinski et al. 2008, Jamieson and

Nowak 2014). Although notions such as regret are also popular, breaking down the performance

in such a manner allows for practitioners to quickly gauge the tradeoffs inherently involved, e.g.,

the Threshold Acceptance Algorithm requires much fewer customers than the Simple Learning

Algorithm to converge, but its approximation factor is slightly worse. That being said, all of our

results in this section could be stated in terms of the underlying regret bound by assuming that

the platform incurs unit regret during the learning phase and fixed per-round regret in the earn-

ing phase. Formally, the regret incurred by the Simple Learning Algorithm, RSIMPLE, over a finite

horizon of length T > n4

ε2
log(n2

δ
) with exhaustive sampling (Even-Dar et al. 2006) as its black-box

could be bounded as follows:

E[RSIMPLE]6OPT

(
n4

2ε2
log(

n2

δ
)+

1

2
T

)
+ εT,

with probability (1− δ). In the above bound, OPT = E[Ht(π∗)] is the value of the optimal solution

although one could remove this dependence by simply using the fact that OPT 6 1. Similarly, the

regret incurred by the Threshold Acceptance Algorithm, RTHRESHOLD, over a finite horizon of length

T satisfies the following bound with probability 1− δ:

E
[
RTHRESHOLD

]
6OPT

(
(
1+α

2+α
)
n3

ε2

(
1+ log1+α(

n

ε
)
)
log(

n√
δ
)+

1

2+α
T

)
+ εT.

We conclude this section by noting that it is not possible to obtain a regret bound for OnAR that

is sublinear in T since OffAR is NP-Hard.

5. Simulations

In this section, we describe our empirical setting and estimate the impact of our Threshold Accep-

tance Algorithm as a function of a variety of model parameters.

5.1. Company and Data Description

We partnered with Wayfair - a multi-billion dollar home goods online retailer - to develop the

algorithm and estimate its impact using actual clickstream data. Although a majority of Wayfair’s

business is driven via intentional customer search through product category pages (e.g. a customer

searching for a new bed), a significant amount of sales and website traffic is through Wayfair’s

“events”. These events are often stylistically themed and offer products from multiple product

categories; typical events last about 2 weeks and offer approximately 100 products. Figure 1 shows

Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products 21

Figure 1 Chosen from a single Wayfair event, (a) shows six diverse products with respect to style, price point,

product category, color, etc. and (b) shows six more similar products across these dimensions.

products chosen from a single Wayfair event; panel (a) highlights the diversity of products offered

with respect to style, price point, product category, color, etc., whereas panel (b) shows six products

that are more similar. A customer with an attention window of six products would likely have a

very different perception of the full assortment of products offered in the event if she were to be

shown the products in (a) vs. (b) in the first six ranks.

Wayfair provides three options for customers to sort items in events: recommended (default),

customer rating, and price. For some events (particularly those that do not span multiple cate-

gories), Wayfair may offer a refinement bar to allow customers to filter the products to only those

they may be interested in. Less than 5% of customers use either of these features - changing the

default ranking or using filters - which supports our consumer behavior model that most customers

are likely engaging in hedonic browsing as opposed to intentional search. We chose to not include

customers who change the ranking or use filtering in our simulations since our algorithm is intended

to replace Wayfair’s default ranking and therefore would only be applied to browsing customers.

Wayfair’s default ranking is a static ranking (does not change over the course of the event) which

ranks products in decreasing order of their expected popularity based on pre-event data.

Wayfair selected six historical, stylistically-themed events for which to evaluate our algorithm; for

example, one event featured wall art and associated paraphernalia, and another featured Halloween-

themed decorations. The total number of customers (|T|) who shopped at each event ranged between

100,000 and 325,000; due to confidentiality, we disguise events as A, B, C, D, E, and F in increasing

order of |T|. For each of these events, we were provided clickstream data which includes every

product each customer clicked on in the event. We represent this data as cit = 1 if customer t

22 Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products

clicked on product i and 0 otherwise. We focus on only the first n= 48 products in the event since

this is the number of products shown per page before having to click to view the second page of

products. As per the data, very few customers advance to the second page; thus it is likely that

the clickstream data for products not listed on the first page would be too noisy for use.

5.2. Implementation

There are two key components in implementing the simulations. First, we describe how we gen-

erate customers endowed with (pt, kt) using the clickstream data provided. Then, we describe the

implementation details of the algorithm itself.

5.2.1. Customer Generation

Since (pt, kt) is unobserved, we must infer it from the censored clickstream data. To do so, we

make three simplifying assumptions. First, we assume interest probabilities are independent of

attention windows (OnAR with Independence). Second, we assume that if a customer is hooked,

she views the remaining products on the page (i.e., she views the first 48 products in the event).

Finally, we assume that pit ∈ {0, 1} ∀i, t where pit = 1 implies that customer t will click on product i

if she views it. The second assumption is motivated by the fact that customers who are interested

in purchasing a product tend to carefully examine the whole assortment before making a final

choice. Moreover, this is actually a very conservative assumption that handicaps our algorithm’s

performance. For example, the assumption would entail assigning pit = 0 for a hooked customer t

and all products i that they did not click on while in reality, the customer may not have viewed

certain products. Consequently, the performance of our algorithm on the click data is only a lower

bound on its potential real-world performance. In Appendix C, we present additional simulations

that were conducted on a different, less-conservative set of customer behavior assumptions. In

reality, customer behavior and the performance of our algorithm may fall somewhere in-between.

Next we describe our inference methodology. First we fix the distribution of attention windows

Dk and the total number of customers who have non-zero preferences, |T̃| (i.e.,
∑
i pit > 1 for t∈ T̃).

Given Dk and |T̃|, we will infer the distribution of interest probabilities, Dp. Subsequently we will

discuss our choices of Dk and |T̃|. Let T̃c be the subset of customers from T̃ who clicked on a product,

i.e. T̃c , {t ∈ T̃ :
∑
i cit > 1}. Note that T̃c ⊆ T̃ ⊆ T and pit = cit ∀t ∈ T̃c and i ∈ [n]; the challenge is

that we do not observe pt for t∈ T̃ \ T̃c, when ct = 0.

1. Derive distribution of attention windows for customers t∈ T̃c: We define r1t to be the index of

the first product customer t clicks on and let i be the product located at rank r1t . Then, it must be

true that cit = 1 and ci ′t = 0 for any product i ′ placed at a rank smaller than r1t . Since the customer

clicked on the r1t–th ranked product, her attention window kt must be greater than or equal to r1t .

That is, for r < r1t , Pr(kt = r|t∈ T̃c, r1t) = 0. Therefore, for r> r1t , Pr(kt = r|t ∈ T̃c, r
1
t) =

Pr(kt=r)∑n
l=r1t

Pr(kt=l)
,

where Pr(kt = l) comes from the distribution of attention windows, Dk.

Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products 23

2. Weight each observed preference vector: For each customer t ∈ T̃c, assign weight

wt =
1∑n

l=r1t
Pr(kt=l|t∈T̃c)

to preference vector pt. Intuitively, this assigns larger weights to preference

vectors whose first clicks are in greater ranks, which accounts for the fact that those preference

vectors are less likely to be observed in the click data due to expiring attention windows. This

gives rise to a distribution Dp with a set of preference vectors and a weight on each vector that is

proportional to the probability of a customer having the corresponding preferences.

3. Sample preference vectors for |T̃| customers: Sample |T̃| preference vectors from the empirical

distribution of Dp.

Now that we have outlined our approach of estimating Dp given Dk and |T̃|, we discuss our choices

of Dk and |T̃|. For Dk, we assumed 5% of customers viewed all n products on the page (kt =n) and

the remaining customers’ attention windows followed a power law distribution where Pr(k= r) =

ar−b∑n−1
l=1 al

−b ∀r = 1, ...,n− 1. Power law distributions are well-motivated in the context of consumer

behavior and product popularity on the Internet (Clauset et al. 2009). We set |T̃|= 0.8|T| based on

the parameter choices given to us by our partners at Wayfair. We conducted sensitivity analysis

on these parameter choices to better understand their impact on the algorithm’s performance; our

analysis gleans similar results so we relegate it to Appendix B.

We tuned parameters a and b of the power law distribution such that the resultant Dk and

Dp most closely matched the observed data. In particular, after generating |T̃| customers per the

procedure outlined above, we randomly assigned each of these customers an attention window

according to Dk. We then identified which customers would have been hooked had they been

presented with Wayfair’s actual ranking in order to generate (hypothetical) click vectors, and we

compared the total number of actual clicks vs. the total number of hypothetical clicks for each

product. Figure 2 presents the actual vs. hypothetical number of clicks for each product in each of

the six events, where the hypothetical clicks are averages over 100 samples in step 3. The close fit

illustrates that our customer generation procedure is congruent with the observed data.

5.2.2. Algorithm Details We implemented the Threshold Acceptance Algorithm (Algo-

rithm 3) described in Section 4.2. We chose the parameter α to be small and constant across events

so that the threshold is lowered conservatively in each iteration, due to click probabilities generally

being in a fairly narrow range. We varied the number of customers for which to offer each rank

(L) such that L ∈ [100, 1000], allowing us to evaluate the tradeoff between faster vs. more accurate

learning. Finally, the implementation of our algorithm includes two features - described below -

that were not required to develop the theory yet can make a considerable impact on performance

in practice. The purpose of the first feature is to speed up the learning phase of the algorithm, and

the purpose of the second feature is to hook more customers during the learning phase.

24 Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products

Figure 2 Actual and simulated relative click probabilities for all six events provided by Wayfair. The click prob-

abilities are normalized for confidentiality so that the maximum click probability of any product is

one.

First, we recognize that the expected number of new customers that can be hooked by product i

diminishes with rank due to both expiring attention windows and because as the rank increases, the

customer has a higher probability of getting hooked prior to seeing product i. Using the notation

in Algorithm 3, we can therefore use ∆ir calculated at rank r as an upper bound for ∆ir ′ at rank

r ′ for any r ′ > r. When selecting products to test for rank r, we choose products in descending

order of their tightest upper bound which allows us to more quickly find a product that passes the

threshold requirement for fixing in rank r and eliminates having to test clearly suboptimal products

for each rank. The notion of leveraging upper bounds to speed up calculations has its origins in

submodular optimization, where it is referred to as lazy evaluations (Leskovec et al. 2007).

Second, during the course of the algorithm, as we evaluate the marginal benefit of a product at

a given rank, the remaining unranked products are placed in descending order of the upper bound

described above. For products not yet tested in any rank, we include them at the end of the ranking

in increasing order of their Wayfair rank. Note that this implies we use Wayfair’s ranking as an

input into our algorithm, but not their estimated popularity metrics; this is reasonable as it is the

current methodology used for ranking and is how we would implement the algorithm in practice.

Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products 25

Furthermore, note that using Wayfair’s ranking as an input does not necessarily imply that our

algorithm would perform better in simulations, as our ranking must spend a considerable amount

of time learning; put differently, if Wayfair’s current ranking was indeed optimal, our algorithm

would produce worse performance metrics as it would have to explore suboptimal rankings.

5.3. Results

For each event and each set of model parameters, we conducted the following simulation 100 times.

First, we generated |T| customers such that each customer’s attention window was drawn from

Dk. With probability q= |Tc|

|T|
, pt is drawn from Dp; otherwise, pt = 0. We applied our algorithm

sequentially to customers t= 1, ..., |T| and calculated the percent of customers that our algorithm

hooked. Unless otherwise specified, we used a sample size of L = 500 customers for each ranking

offered during the learning phase; we present sensitivity analysis on this modeling choice at the end

of this section. We also identified the percent of customers that Wayfair’s static ranking hooked,

which serves as a practical, popularity-based benchmark for which to compare our algorithm. By

our choice of Dp and Dk, this quantity is consistently very close to the actual percent of customers

Wayfair hooked in the event: In 99.5% of our simulations, the percent of customers hooked by

Wayfair’s ranking was within [0.98, 1.02] times the actual percent of customers hooked.

Figure 3 shows the simulation results for the performance of our algorithm compared to Wayfair’s

static ranking (πWF). In particular, it displays the percent increase in the number of customers

hooked by our algorithm vs. Wayfair’s ranking6: (total hooked customers by our algorithm - total

hooked customers by πWF) / (total hooked customers by πWF). Across all six events, our algorithm

hooks an average of 5-30% more customers than Wayfair’s ranking. There is variability both across

simulations and across events. Variability across simulations stems from a relatively low number

of customers L who are offered each ranking compared to the number of possible preference vec-

tors in Dp; thus, our algorithm may converge to a (slightly) different ranking in each simulation.

Interestingly, even with this noise in the learning process, the worst-case improvement across all

simulations was still considerable for five of the six events (9-22%). In addition, our algorithm led

to a positive increase in the percent of hooked customers for every simulation; notably, this is not

trivial - if Wayfair’s ranking was optimal, our algorithm would perform worse due to exploring

suboptimal rankings before converging.

Variability across events stems from the degree of optimality of Wayfair’s static ranking. Intu-

itively, when πWF is near optimal, there is not much opportunity for our algorithm to improve

upon the ranking and vice versa. To explore this further, we implemented the Greedy Algorithm

for OffAR for each of the simulations and calculated the percent of customers it would have hooked

6 Due to confidentiality, we report only relative metrics rather than disclosing the actual percent of hooked customers.

26 Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products

Figure 3 Box & whisker plots for the percent increase in hooked customers our algorithm achieves over πWF

had it been offered (as a static ranking) to each of the customers; we use this as an upper bound7

for the number of customers hooked by our algorithm and πWF. Figure 4 compares the performance

of our algorithm and πWF to the static ranking output by the Greedy Algorithm for OffAR (πg):

specifically, (total number of hooked customers by our algorithm (or πWF)) / (total number of

hooked customers by πg).

Across all six events, our algorithm has consistently strong performance, hooking an average

of 89-95% of the total number of customers that πg hooks. Although there is variability across

simulations as before, the average is fairly consistent and highlights our algorithm’s ability to

(approximately) converge to and achieve the results in the offline setting. In contrast, there is

considerable variability in the performance of Wayfair’s ranking: across all six events, πWF hooks

an average of 68-90% of the total number of customers that πg hooks. For events where Wayfair’s

ranking was quite strong (B and F), our algorithm improved on Wayfair’s ranking by 5-15%. For

events where Wayfair’s ranking was not as strong (A, C, D, and E), our algorithm improved on

Wayfair’s ranking by 26-30%.

Finally, Figure 5 presents sensitivity analysis on our choice of the sample size L - the number of

customers to offer each ranking during the learning phase. The analysis illustrates that when the

7 Given that the Greedy Algorithm for OffAR is an approximation algorithm, it is technically possible for the perfor-
mance of a ranking to be larger than this ranking; however, that does not happen in any of our simulations.

Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products 27

Figure 4 Box & whisker plots presenting the percent of total customers hooked by πg (the offline benchmark)

that are hooked by our algorithm and πWF

sample size is small, there is insufficient learning and the algorithm’s performance suffers. As the

sample size increases up to approximately 400 or 500 customers, the algorithm is able to sufficiently

learn the (approximate) best ranking. For the smallest event (A), we see evidence that as the

sample size grows too large, the algorithm is unable to learn fast enough to reap the benefits of

more precise learning. Interestingly, we see that for all but the smallest event, the performance of

our algorithm is remarkably constant for a wide range of sample sizes. This is a desirable artifact

since Wayfair can simply choose a single sample size for the algorithm’s implementation across all

events - likely L= 400 or 500 - without having to estimate the event size T a priori.

6. Conclusion

We study a crucial problem faced by many online retailers - that of developing fast online learning

approaches for computing near-optimal product rankings. We propose a novel model for online

learning-to-rank problems that captures a number of features unique to online retailers operat-

ing in dynamic environments and which have yet to receive attention in the academic literature.

Specifically, we study scenarios where the products have a subjective style and cannot be fully

characterized by their attributes, and where customers can be described as “window shoppers”.

By modeling customers with limited attention windows, we capture the position effect typically

observed in online environments. Yet our framework is more challenging as these attention windows

28 Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products

Figure 5 Sensitivity Analysis on Sample Size, L

are unobserved and may be correlated with customers’ interest in products. As such, our model is

a significant departure from existing work on ranking algorithms.

We present two learning algorithms for the online ranking problem: the Simple Learning Algo-

rithm and the Threshold Acceptance Algorithm. The former uses bandit algorithms for best-arm

identification as a black-box to achieve a (nearly) 1
2
-approximation guarantee but may require

O(n4) customer samples in the worst case. The latter algorithm is an order of magnitude faster

but its approximation guarantee becomes 1
2+α

for some parameter α> 0. Both of these algorithms

require no knowledge of customers’ intrinsic utilities or attention windows, and circumvent having

to learn this distribution by directly learning the optimal ranking instead. Another interesting

feature of our algorithms is that they optimally balance popularity and diversity for each event.

This is particularly useful in the case of stylistic products as product similarities are subjective.

We estimate the impact of the Threshold Acceptance Algorithm via simulations using actual

clickstream data from Wayfair. Across six different product assortments, our algorithm hooks an

average of 5-30% more customers than Wayfair’s static, popularity-based ranking. Furthermore,

our algorithm hooks 89-95% of the total number of customers hooked by an offline benchmark.

These simulations using real clickstream data illustrate that our algorithmic contributions can

make a significant impact in practice.

Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products 29

Although our model and results are motivated from the perspective of product ranking, we

argue that they may be relevant in any setting with dynamic assortments, subjective products,

and customers with limited attention windows. As a concrete example, a digital media outlet could

employ our algorithm to highlight ‘top articles’ - by balancing popularity and diversity, the website

could hook a larger fraction of its incoming users.

Finally, we share opportunities for future work. First, retailers could benefit from understanding

the long-term value of a hooked customer. Although we make the very weak assumption that

a hooked customer browses for longer than one who is not hooked, it would be pertinent to

understand more details about a hooked customer’s browsing, purchasing, and return shopping

behavior. Second, although our objective of maximizing the number of hooked customers is a

very common objective in practice for companies who want to grow market share, we believe that

there would be value in developing alternative algorithms for retailers looking to maximize other

objectives, such as maximizing profit. Third, “hedonic browsing” is a common customer behavior

that many retailers face, yet much of the academic work focuses primarily on customers who engage

in “directed buying”, i.e. who shop with the intent to purchase a product and have knowledge of

what they are looking for (Moe (2003)). We hope that our work inspires others to consider studying

the impact of hedonic browsing behavior on a firm’s operational and marketing decisions.

References

Agrawal S, Avadhanula V, Goyal V, Zeevi A (2016) A near-optimal exploration-exploitation approach for

assortment selection. Proceedings of the 2016 ACM Conference on Economics and Computation, 599–

600 (ACM).

Aouad A, Segev D (2015) Display optimization for vertically differentiated locations under multinomial logit

choice preferences, working paper.

Arthur D, Vassilvitskii S (2007) k-means++: the advantages of careful seeding. Proceedings of the Eighteenth

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, 1027–1035.

Asadpour A (2019) Personal Communication.

Asadpour A, Nazerzadeh H (2015) Maximizing stochastic monotone submodular functions. Management

Science 62(8):2374–2391.

Badanidiyuru A, Vondrák J (2014) Fast algorithms for maximizing submodular functions. Proceedings of the

Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon,

USA, January 5-7, 2014, 1497–1514.

Bernstein F, Modaresi S, Saure D (2017) A dynamic clustering approach to data-driven assortment person-

alization, working paper.

30 Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products

Bloch P, Ridgway N, Sherrell D (1989) Extending the concept of shopping: An investigation of browsing

activity. Journal of the Academy of Marketing Science 17(1):13–21.

Chen W, Wang Y, Yuan Y, Wang Q (2016) Combinatorial multi-armed bandit and its extension to proba-

bilistically triggered arms. The Journal of Machine Learning Research 17(1):1746–1778.

Chen Y, Yao S (2016) Sequential search with refinement: Model and application with click-stream data.

Management Science 63(12):4345–4365.

Cho E, Youn-Kyung K (2012) The effects of website designs, self-congruity, and flow on behavioral intention.

International Journal of Design 6(2).

Chu LY, Nazerzadeh H, Zhang H (2017) Position ranking and auctions for online marketplaces, working

paper.

Clauset A, Shalizi CR, Newman MEJ (2009) Power-law distributions in empirical data. SIAM Review

51(4):661–703.

Dawson S, Kim M (2010) Cues on apparel web sites that trigger impulse purchases. Journal of Fashion

Marketing and Management: An International Journal 14(2):230–246.

Dzyabura D, Hauser JR (2016) Recommending products when consumers learn their preferences, working

paper.

Economist (2017) Stores are being hit by online retailing. The Economist URL https://www.economist.

com/special-report/2017/10/26/stores-are-being-hit-by-online-retailing.

Even-Dar E, Mannor S, Mansour Y (2006) Action elimination and stopping conditions for the multi-armed

bandit and reinforcement learning problems. Journal of machine learning research 7(Jun):1079–1105.

Gallego G, Li A, Truong VA, Wang X (2016) Approximation algorithms for product framing and pricing,

working paper.

Ghose A, Ipeirotis PG, Li B (2012) Designing ranking systems for hotels on travel search engines by mining

user-generated and crowdsourced content. Marketing Science 31(3):493–520.

Ghose A, Ipeirotis PG, Li B (2014) Examining the impact of ranking on consumer behavior and search

engine revenue. Management Science 60(7):1632–1654.

Golrezaei N, Manshadi V, Mirrokni V (2018) Two-stage pandora’s box for product ranking, working paper.

Hochbaum DS (1996) Approximation Algorithms for NP-hard problems (PWS Publishing Co.).

Jamieson KG, Nowak RD (2014) Best-arm identification algorithms for multi-armed bandits in the fixed con-

fidence setting. 48th Annual Conference on Information Sciences and Systems, CISS 2014, Princeton,

NJ, USA, March 19-21, 2014, 1–6.

Kalyanakrishnan S, Tewari A, Auer P, Stone P (2012) PAC subset selection in stochastic multi-armed ban-

dits. Proceedings of the 29th International Conference on Machine Learning, ICML 2012, Edinburgh,

Scotland, UK, June 26 - July 1, 2012.

Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products 31

Kim JB, Albuquerque P, Bronnenberg BJ (2010) Online demand under limited consumer search. Marketing

Science 29(6):1001–1023.

Kim JB, Albuquerque P, Bronnenberg BJ (2016) The probit choice model under sequential search with an

application to online retailing. Management Science 63(11):3911–3929.

Koulayev S (2014) Search for differentiated products: identification and estimation. The RAND Journal of

Economics 45(3):553–575.

Kveton B, Wen Z, Ashkan A, Szepesvári C (2015) Combinatorial cascading bandits. Advances in Neural

Information Processing Systems 28: Annual Conference on Neural Information Processing Systems

2015, December 7-12, 2015, Montreal, Quebec, Canada, 1450–1458.

Lagrée P, Vernade C, Cappé O (2016) Multiple-play bandits in the position-based model. Advances in Neural

Information Processing Systems 29: Annual Conference on Neural Information Processing Systems

2016, December 5-10, 2016, Barcelona, Spain, 1597–1605.

Lei YM, Jasin S, Uichanco J, Vakhutinsky A (2018) Randomized product display (ranking), pricing, and

order fulfillment for e-commerce retailers, working paper.

Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance N (2007) Cost-effective outbreak

detection in networks. Proceedings of the 13th ACM SIGKDD international conference on Knowledge

discovery and data mining, 420–429 (ACM).

Li G, Rusmevichientong P, Topaloglu H (2015) The d-level nested logit model: Assortment and price opti-

mization problems. Operations Research 63(2):325–342.

Moe WW (2003) Buying, searching, or browsing: Differentiating between online shoppers using in-store

navigational clickstream. Journal of Consumer Psychology 13(1-2):29–39.

Radlinski F, Kleinberg R, Joachims T (2008) Learning diverse rankings with multi-armed bandits. Proceed-

ings of the 25th international conference on Machine learning, 784–791 (ACM).

Raman K, Shivaswamy P, Joachims T (2012) Online learning to diversify from implicit feedback. The 18th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’12, Beijing,

China, August 12-16, 2012, 705–713.

Rowley J (2002) Window shopping and browsing opportunities in cyberspace. Journal of Consumer

Behaviour: An International Research Review 1(4):369–378.

Ulu C, Honhon D, Alptekinoglu A (2012) Learning consumer tastes through dynamic assortments. Operations

Research 60(4):833–849.

Ursu RM (2018) The power of rankings: Quantifying the effect of rankings on online consumer search and

purchase decisions. Marketing Science .

Weitzman ML (1979) Optimal search for the best alternative. Econometrica: Journal of the Econometric

Society 641–654.

32 Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products

Zoghi M, Tunys T, Ghavamzadeh M, Kveton B, Szepesvári C, Wen Z (2017) Online learning to rank in

stochastic click models. Proceedings of the 34th International Conference on Machine Learning, ICML

2017, Sydney, NSW, Australia, 6-11 August 2017, 4199–4208.

Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products 33

Appendix A: Proofs

Proof of Proposition 1: Our proof involves showing a reduction from the deterministic maximum coverage

problem to a special case of OffAR. Since the deterministic maximum coverage problem is known to be

NP-Hard, the same claim follows for the special case of OffAR and thus the more general OffAR problem

is also NP-Hard. The deterministic maximum coverage problem is defined by a universe U of elements

{u1, u2, . . . , um}, a collection of n sets S = {S1, S2, . . . , Sn}, where Si ⊆ U for all i, and finally a single integer

k such that 16 k6 n. The objective is to select at most k sets from S in order to maximize the number of

elements in U that are covered by (present in) at least one of the sets, i.e.

max
S′⊆S;|S′|6k

∣∣∪Si∈S′ Si∣∣. (2)

The reduction is straightforward. Given an instance of the deterministic maximum coverage problem, we

construct an instance of OffAR with: (i) n products labeled by [n], such that product i corresponds to set

Si ∈ S; (ii) distribution D comprising of m customer types such that each type occurs with equal probability

1
m

, and for a customer t of the jth type, pit = 1 if and only if uj ∈ Si in the original problem. In other words,

we transform the problem so that for every set Si, a new product is created and for every element of the

universe U, there is a customer type who prefers all of the sets (products) which contain that element of the

universe (are liked by that customer type). Finally, all customers have an attention window equal to k in

this reduced instance.

Consider any ranking π and let Sπ(k)⊆ S correspond to the top-k ranked products in π. Recall that π−1(j)

denotes the jth ranked product in π. Then, formally,

Sπ(k) = {Sπ−1(1), . . . , Sπ−1(k)}.

Let E[Ht(π)] be the probability that a single incoming customer drawn from D is hooked when she is

exposed to the ranking π. We then claim that for the deterministic maximum coverage problem with sets

Sπ(k) chosen, the number of elements in U that are covered is precisely mE[Ht(π)]. Indeed, consider any

customer type j belonging to the distribution D that is hooked by the ranking π: this implies that there

exists some i having π(i)6 k such that uj ∈ Si. However, this in turn implies that the collection Sπ(k) must

cover the element uj in the universe. We further observe that each customer type in D (corresponding to an

element in the universe) occurs with equal probability 1
m

. Therefore, there is a one-to-one correspondence

between the optimal solutions to the original, deterministic maximum coverage problem and the constructed

(stochastic) offline assortment ranking problem, which in turn implies the NP-Hardness of the latter. �

Notation for Subsequent Proofs Before proving Theorem 1, we introduce notation that will help stream-

line our presentation. Specifically, we use Ct(r,π) to denote the indicator random variable for the event that

a customer t does not click on any of the top-r ranked products in π, i.e., for 16 r6n

Ct(r,π) =
∏
j∈[r]

Cπ−1(j)t(π).

34 Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products

We define Ct(0,π) = 1 for notational convenience. As before, by indexing customer t, we implicitly assume

that this random variable is conditional on customer t’s type, (pt, kt).

A subtle point bears mentioning here: Cπ−1(j)t(π) = 1 implies that either j > kt and/or the customer did

not click on product π−1(j). However, if the customer did not click on any of the top kt ranked products, she

is not hooked and therefore, cannot have clicked on any of the products with rank larger than kt. Therefore,

for any r > kt, Ct(r,π) =Ct(kt, π) and it is accurate to interpret Ct(r,π) = 1 as the event that the customer

did not click on any of the top-r ranked products under π.

Finally, we note the following equality that will be used in several proofs.

n∑
r=1

E
[
Ct(r− 1,π)Cπ−1(r)t(π)

]
=

n∑
r=1

E
[(
1−Ct(r,π)

)
−
(
1−Ct(r− 1,π)

)]
=E

[(
1−Ct(n,π)

)
−
(
1−Ct(0,π)

)]
=E[Ht(π)]. (3)

Proof of Theorem 1 Our objective is to prove that for any incoming customer t ∼D, the probability that

this customer is hooked under the optimal ranking π∗ is at most twice the probability that she is hooked

under the greedy ranking πg. Mathematically, we need to prove that

E[Ht(π∗)] = E[1−Ct(kt, π∗)] 6 2 E[1−Ct(kt, πg)] = 2E[Ht(πg)],

where Ct(r,π) is defined immediately prior to the proof of this theorem.

We remark that the expectation involves two sources of uncertainty: (i) the fact that the arriving customer

t’s preferences (pt, kt) are drawn from distribution D, (ii) given customer t with preferences (pt, kt), the

event that the customer clicks on product i within her attention window is a random variable. Since Ht(π∗)

is conditional on (pt, kt), one could rewrite the above expectation as E(pt,kt) [E[Ht(π∗)]], where the inner

expectation is the probability that a customer t is hooked given pt and kt. For brevity, we capture both

sources of uncertainty under a single expectation in the rest of the proofs. Suppose that π denotes some

arbitrary ranking. We begin by decomposing π∗ in terms of π and eventually substitute π= πg,

E[Ht(π∗)] =E
[
1−Ct(kt, π

∗)
]

=E
[
1−Ct(n,π

∗)
]

(4)

6E
[
1−Ct(n,π

∗)Ct(n,π)
]

(5)

=E[1−Ct(n,π)] +
n∑
r=1

E
[(
1−Ct(n,π)Ct(r,π

∗)
)
−
(
1−Ct(n,π)Ct(r− 1,π

∗)
)]

(6)

=E[Ht(π)] +
n∑
r=1

E
[(
1−Ct(n,π)Ct(r,π

∗)
)
−
(
1−Ct(n,π)Ct(r− 1,π

∗)
)]

=E[Ht(π)] +
n∑
r=1

E
[
Ct(n,π)

(
Ct(r− 1,π

∗)−Ct(r,π
∗)
)]

=E[Ht(π)] +
n∑
r=1

E
[
Ct(n,π)Ct(r− 1,π

∗)(1−Cπ∗−1(r)t(π
∗))
]

Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products 35

=E[Ht(π)] +
n∑
r=1

E
[
Ct(n,π)Ct(r− 1,π

∗)Cπ∗−1(r)t(π
∗)
]

6E[Ht(π)] +
n∑
r=1

E
[
Ct(r− 1,π)Cπ∗−1(r)t(π

∗)
]

(7)

Equality (4) follows from the definition that Cit(π) = 0 when π(i) > kt. Inequality (5) simply comes

from the fact that Ct(n,π) 6 1. The equality in (6) is a rearrangement of E
[
1 − Ct(n,π

∗)Ct(n,π)
]

in the

form of a telescoping summation, i.e.,
∑n
r=1E

[(
1 − Ct(n,π)Ct(r,π

∗)
)
−
(
1 − Ct(n,π)Ct(r − 1,π

∗)
)]

= E
[
1 −

Ct(n,π
∗)Ct(n,π)

]
−E
[
1−Ct(n,π)

]
. The intermediate steps between (6) and (7) follow from simple algebraic

manipulations and the definition of Cπ∗−1(r)t(π
∗). Inequality (7) follows because Ct(r− 1,π∗)6 1 and

Ct(n,π) =
∏
j∈[n]

Cπ−1(j)t(π)6
∏
j∈[r−1]

Cπ−1(j)t(π) =Ct(r− 1,π)

since the right-hand-side refers to only a subset of the events on the left-hand-side.

By substituting π= πg in (7), we get:

E[Ht(π∗)]6E[Ht(πg)] +
n∑
r=1

E
[
Ct(r− 1,π

g)Cπ∗−1(r)t(π
∗)
]

(8)

To complete our proof, we next show that
∑n
r=1E

[
Ct(r−1,π

g)Cπ∗−1(r)t(π
∗)
]
6E[Ht(πg)]. Consider E

[
Ct(r−

1,πg)Cπ∗−1(r)t(π
∗)
]

for any r∈ [n]. We claim that

E
[
Ct(r− 1,π

g)Cπ∗−1(r)t(π
∗)
]
6E

[
Ct(r− 1,π

g)Cπg−1(r)t(π
g)
]
. (9)

To prove (9), we define i , π∗−1(r). Then, the left hand side of the above inequality is the marginal

contribution of adding product i in position r while fixing the top r− 1 positions in πg, i.e., the probability

that an incoming customer t does not click on any of the top r− 1 products in πg and clicks on product

i when it is placed in rank r. However, we know that the Greedy Algorithm for OffAR fixes the product

πg−1(r) in position r that leads to the maximum marginal increment towards getting an incoming customer

hooked. Therefore, the marginal contribution of product i cannot be larger than that of the product actually

selected by the greedy algorithm. Equation (9) is formally proved in Lemma 1 which immediately follows

the proof of this theorem. From Equation (9) and applying Equation (3), we have

n∑
r=1

E
[
Ct(r− 1,π

g)Cπ∗−1(r)t(π
∗)
]
6

n∑
r=1

E
[
Ct(r− 1,π

g)Cπg−1(r)t(π
g)
]
=E[Ht(πg)]. (10)

Combining (8) and (10), we have

E[Ht(π∗)]6E[Ht(πg)] +
n∑
r=1

E
[
Ct(r− 1,π

g)Cπ∗−1(r)t(π
∗)
]
6E[Ht(πg)] +E[Ht(πg)] = 2E[Ht(πg)]. �

The following lemma is used in the proof of Theorem 1.

Lemma 1. Suppose that π∗ denotes the optimal ranking and πg denotes the ranking produced by the Greedy

Algorithm for OffAR. Let r6n denote any index. Then, we have that:

E
[
Ct(r− 1,π

g)Cπ∗−1(r)t(π
∗)
]
6E

[
Ct(r− 1,π

g)Cπg−1(r)t(π
g)
]
.

36 Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products

Proof of Lemma 1: First, we define an alternative ranking π̃g such that for all j6 r− 1, π̃g−1(j) = πg−1(j)

and π̃g−1(r) = π∗−1(r). That is, π̃g mirrors the ranking πg in the first r− 1 positions and shares the rth rank

with ranking π∗. Let π̃g−1(j) = ∅ when j > r, i.e. no product is ranked in positions greater than r.

Suppose that i denotes the rth ranked product in π∗, i.e. i, π∗−1(r). Going back to the expression in the

left hand side of the lemma statement, we can apply the rule of iterated expectations and get,

E
[
Ct(r− 1,π

g)Cπ∗−1(r)t(π
∗)
]
=E

[
Ct(r− 1,π

g)Cit(π
∗)] =Et

[
E[Ct(r− 1,πg)Cit(π∗)|(pt, kt)]

]
. (11)

In the final term, the outer expectation is with respect to the randomness in the customer’s preferences

(i.e., (pt, kt)) and the inner expectation is with respect to the randomness in the customer’s clicks given

pt and kt. Note that since Ct(r− 1,πg) and Cit(π
∗) are already defined conditional on (pt, kt), the inner

expectation is somewhat redundant and just represents the probability that an incoming customer t would

not click on any of the top r − 1-ranked products when presented with πg but would click on product i

when presented with π∗. However, we choose to express the conditional statement explicitly to improve the

readability of the proof.

We now consider three cases depending on the relative values of r,πg(i), and kt. In each of the three

cases, we show that for all t, the expression E[Ct(r− 1,πg)Cit(π∗)|(pt, kt)] from (11) is less than or equal to

E[Ct(r− 1, π̃g)Cit(π̃g)|(pt, kt)], an intermediate step to complete our proof.

• Case I: kt < r:

Since kt < r, Cit(π∗) = 0 by definition. So, we have that E[Ct(r − 1,πg)Cit(π
∗)|(pt, kt)] = 0 6 E[Ct(r −

1, π̃g)Cit(π̃
g)|(pt, kt)].

• Case II: kt > r and πg(i)< r:

Given customer t’s preferences (pt, kt), we know that for any ranking π that this customer faces, the event

that she clicks on product i within her attention window is the Bernoulli random variable Cit(π) with

probability (mean) pit. Therefore, for any particular instantiation of this Bernoulli random variable, it must

be the case that the expression Cit(πg)Cit(π∗) = 0, since the customer is guaranteed to see product i under

both rankings πg and π∗.

This in turn implies that the quantity Ct(r− 1,πg)Cit(π∗) = 0 because Ct(r− 1,πg) is a product of several

terms, one of which is Cit(πg). Finally, it follows that:

E[Ct(r− 1,πg)Cit(π∗)|(pt, kt)] = 06E[Ct(r− 1, π̃g)Cit(π̃g)|(pt, kt)].

• Case III: kt > r and πg(i)> r:

Since the ranking πg does not contain the item i in its first r−1 ranks, this implies that the random variables

Ct(r− 1,π
g) and Cit(π∗) are independent of each other.

Therefore, we have that:

E[Ct(r− 1,πg)Cit(π∗)|(pt, kt)] =E[Ct(r− 1,πg) |(pt, kt)] E[Cit(π∗)|(pt, kt)]

=E[Ct(r− 1, π̃g) |(pt, kt)] E[Cit(π̃g)|(pt, kt)]

=E[Ct(r− 1, π̃g)Cit(π̃g)|(pt, kt)].

Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products 37

In the second equality, we used the fact that E[Cit(π∗)|(pt, kt)] = E[Cit(π̃g)|(pt, kt)] because π∗(i) = π̃g(i) = r

by definition. We also used the fact that E[Ct(r− 1,πg)|(pt, kt)] = E[Ct(r− 1, π̃g)|(pt, kt)] since π̃g has the

same products in its first r− 1 ranks as πg by definition. For the third equality, we once again relied on the

independence between customer behavior on different products within the attention window and the fact

that π̃g(i) = r.

To summarize, in all three cases, we have E[Ct(r− 1,πg)Cit(π∗)|(pt, kt)] 6 E[Ct(r− 1, π̃g)Cit(π̃g)|(pt, kt)].

Plugging this back into (11), we can continue with proving the lemma.

E
[
Ct(r− 1,π

g)Cπ∗−1(r)t(π
∗)
]
=Et

[
E[Ct(r− 1,πg)Cit(π∗)|(pt, kt)]

]
6Et

[
E[Ct(r− 1, π̃g)Cit(π̃g)|(pt, kt)]

]
=E[Ct(r− 1, π̃g)Cit(π̃g)

]
6E[Ct(r− 1,πg)Cπg−1(r)t(πg)

]
. (12)

The last inequality comes from the fact that for each rank r, the Greedy Algorithm for OffAR tries all

of the remaining items (e.g., i ′ such that πg(i ′)> r− 1) in position r keeping the previous ranks fixed. The

product having the maximum marginal utility (probability that the customer clicks on rank r but not the

ones before) is selected. Mathematically, this implies that if πg(i) > r, we have E[Ct(r − 1, π̃g)Cit(π̃g)
]
6

E[Ct(r− 1,πg)Cπg−1(r)t(πg)
]
. If πg(i) < r, we have Ct(r− 1, π̃g)Cit(π̃g) 6 Cit(π̃g)Cit(π̃g) = 0, so (12) follows

trivially. �

Proof of Theorem 2: We first introduce some notation that will be helpful in our proof. Since the interest

probabilities and the attention windows are independent of each other, let Dp,Dk denote the distributions of

these two parameters, respectively, such that D=Dp×Dk. For any two vectors of click probabilities, pt,p ′t,

it must then be the case that

PrD(kt = k|pt) = PrD(kt = k|p
′
t),

for all k ∈ [1,n]. As before, let π∗ denote the optimal ranking and πg denote the ranking that results from

the Greedy Algorithm for OffAR for any instance where (pt, kt) ∼ D. With slight abuse of notation and for

this proof only, we let π∗k and πgk denote the optimal and greedy rankings, respectively, for instances where

pt ∼Dp, kt = k, i.e., where all customers have an attention window equal to k. Finally, for any ranking π, we

use [π]r to denote the sub-ranking comprising only of the first r positions in π, i.e., [π]r(i) = π(i) if π(i)6 r

and we define [π]r(i) = ∅ otherwise.

The proof comprises of two components. First, we show that for every k, πgk = [πg]k, i.e. the ranking

returned by the Greedy Algorithm for OffAR when pt ∼ Dp, kt = k is equivalent to the first k positions8 in

ranking πg, and hence πg is a (1 − 1
e
)-approximation to π∗k. Second, we prove that

∑n
k=1 EDp [Ht(π

∗
k)|kt =

k]Pr(kt = k) > ED[Ht(π
∗)]. That is, the performance of the optimal ranking π∗ is not better than a linear

8 Technically, πgk contains products in positions beyond k as well but since all customers have attention windows equal
to k we can safely assume that (πgk)

−1(j) = ∅ when j > k.

38 Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products

combination of the performance of rankings π∗k weighted according to the probability that a customer has

an attention window equal to k.

We begin by proving that πgk is a (1 − 1
e
)-approximation to π∗k. Fix any k and suppose that kt = k for

all t. For a constant attention window (kt = k), OffAR is simply a special case of stochastic submodular

optimization and therefore, we can leverage known results (Asadpour and Nazerzadeh 2015) to infer that πgk

is a (1− 1
e
)-approximation to π∗k.

We next prove that πgk coincides with [πg]k by induction, specifically, πg−1k (r) = πg−1(r) for every 16 r6 k.

We define π−1(0) = ∅ for every ranking π and thus the claim is trivially true when r= 0. Thus, our inductive

hypothesis is that πg−1k (j) = πg−1(j) for j= 1, ..., r− 1. Recall that [π]r−1 refers to the sub-ranking of π with

only the first r−1 positions filled, and let [π]r−1∪ i refer to the ranking where the first r−1 positions coincide

with π and product i is placed in the rth rank. Now, the rth ranked product in the greedy ranking when

kt = k can be mathematically characterized as:

πg−1k (r) = argmax
i∈[n]

Ept∼Dp
kt=k

[Ht([π
g
k]r−1 ∪ i)−Ht([π

g
k]r−1)] = argmax

i∈[n]
Ept∼Dp
kt=k

[Ht([π
g]r−1 ∪ i)−Ht([πg]r−1)] , (13)

where the second equality follows from the inductive hypothesis. Since πg is the greedy ranking when customer

profiles are drawn from D, the product placed in rank r is chosen according to the following equation.

πg−1(r) = argmax
i∈[n]

Ept∼Dp
kt∼Dk

[Ht([π
g]r−1 ∪ i)−Ht([πg]r−1)]

= argmax
i∈[n]

Ept∼Dp [Ekt∼Dk [Ht([π
g]r−1 ∪ i)−Ht([πg]r−1)|kt > r]Pr(kt > r)]

= argmax
i∈[n]

Pr(kt > r)Ept∼Dp [Ht([π
g]r−1 ∪ i)−Ht([πg]r−1)|kt > r]

= argmax
i∈[n]

Ept∼Dp [Ht([π
g]r−1 ∪ i)−Ht([πg]r−1)|kt > r]

= argmax
i∈[n]

Ept∼Dp [Ht([π
g]r−1 ∪ i)−Ht([πg]r−1)|kt = k] (14)

= argmax
i∈[n]

Ept∼Dp
kt=k

[Ht([π
g]r−1 ∪ i)−Ht([πg]r−1)] = πg−1k (r). (15)

The second and third equalities are crucially dependent on the independence between the interest probabil-

ities and attention windows. The second equality follows from the fact that when kt < r, Ht([πg]r−1 ∪ i) −

Ht([π
g]r−1) = 0 for all i ∈ [n]. The third inequality is consequence of the notion that Pr(kt > r) is a constant

that is independent of Dp. Note that we removed the expectation over Dk because once we condition on

kt > r, the inner expectation does not depend on the exact value of kt since Ht([πg]r−1 ∪ i) does not contain

any products at ranks beyond r. The fourth equality follows since the index at which a variable is maximized

does not change when multiplied by a constant - in this case Pr(kt > r). Equality (14) is due to the fact that

both [πg]r−1 ∪ i and [πg]r−1 do not have any products in ranks greater than r, and therefore do not have any

products in ranks greater than k, which by definition is larger than or equal to r. Equation (15) follows from

(13) and completes the inductive argument. Thus, we have for all k∈ [1,n],

Ept∼Dp
kt=k

[Ht(π
g)] = Ept∼Dp

kt=k

[Ht(π
g
k)]> (1−

1

e
)Ept∼Dp

kt=k

[Ht(π
∗
k)]. (16)

We move on to the second part of the proof, where we relate the hook probability of π∗k to that of π∗.

Note that for the instance where pt ∼Dp and kt = k, π∗k is the optimal ranking and therefore, its performance

must surpass that of π∗. This gives us,

Ept∼Dp
kt=k

[Ht(π
∗
k)]> Ept∼Dp

kt=k

[Ht(π
∗)] ∀k∈ [1,n]

Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products 39

=⇒
n∑
k=1

Ept∼Dp
kt=k

[Ht(π
∗
k)]Pr(kt = k)>

n∑
k=1

Ept∼Dp
kt=k

[Ht(π
∗)]Pr(kt = k)

= Ept∼Dp

[
n∑
k=1

E[Ht(π
∗)|kt = k]Pr(kt = k)

]
= Ept∼Dp

kt∼Dk

[Ht(π
∗)].

Combining the above inequality with (16), the theorem follows. That is,

Ept∼Dp
kt∼Dk

[Ht(π
g)] =

n∑
k=1

Ept∼Dp
kt=k

[Ht(π
g)]Pr(kt = k)

> (1−
1

e
)

n∑
k=1

Ept∼Dp
kt=k

[Ht(π
∗
k)]Pr(kt = k)

> (1−
1

e
)Ept∼Dp
kt∼Dk

[Ht(π
∗)]. �

Proof of Theorem 3 We only prove the ≈ 1
2
-approximation guarantee for OnAR in the case when the click

probabilities and attention windows are correlated9; the proof for the ≈ (1− 1
e
)-approximation guarantee for

OnAR with Independence follows in an almost identical fashion using the independence arguments outlined

in the proof of Theorem 2, so we avoid reproving it to minimize redundancy. Recall that π̃ denotes the output

of Algorithm 2 while π∗ is the optimal ranking. As in the proof of Theorem 2, suppose that for any ranking

π, [π]r is the sub-ranking of π such that [π]r(i) = π(i) if π(i)6 r and we define [π]r(i) = ∅ otherwise. Finally,

let [π]r ∪ i be an augmentation of [π]r such that its first r positions coincide with π and product i is placed

in rank r+ 1.

Now, as per Definition 1 and Algorithm 2, we can infer that for any given rank r, the product π̃−1(r) is a

(2ε
n
, δ
n
)-PAC approximation to the best product at rank r subject to the products already fixed at previous

ranks. Formally, with probability 1− δ
n

, the following inequality holds for each r∈ [1,n]:

E[Ct(r− 1, π̃)Cπ̃−1(r)t(π̃)]>max
i∈[n]

E[Ct(r− 1, π̃)Cit([π̃]r−1 ∪ i)] −
2ε

n
, (17)

We note that even though π̃ is itself a random ranking due to sampling differences, (17) holds for any

particular instantiation of [π̃]r−1 with probability 1− δ
n

. Recall that Ct(r−1, π̃) = 1 when customer t does not

click on any of the first r−1 ranked products in π̃ conditional on (pt, kt). Therefore, the left hand side of the

above inequality is the probability that an incoming customer t is ‘hooked’ by the rth ranked product in π̃

for some fixed instantiation of [π̃]r−1. Suppose that for all r, Br denotes the event that (17) holds for index

r, i.e., Br = 1 if (17) is true and is zero if the inequality is not true. We have Pr(Br = 0)6 δ
n

for all r∈ [1,n].

From the union bound, we have that:

Pr(Br = 1 ∀r) = 1−Pr(∃r :Br = 0)> 1−
n∑
r=1

Pr(Br = 0)> 1−n
δ

n
= 1− δ. (18)

In simple terms, by applying the union bound, we can infer that with probability 1−δ, the ranking output

by our algorithm satisfies the following condition: for all r∈ [n], the product at rank r in π̃ is approximately

9 i.e., D cannot be decomposed into two separate distributions as in the proof of Theorem 2.

40 Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products

optimal for that rank with respect to the products fixed at previous ranks. For the rest of this proof, we only

concern ourselves with rankings π̃ output by our algorithm where Br = 1 for all r, which happens to be the

case with probability 1− δ.

Specifically, let us fix the ranking π̃ returned by Algorithm 2 such that this ranking satisfies the condition

in (18). For any such fixed ranking π̃, we aim to show that E[Ht(π̃)] > 1
2
E[Ht(π∗)] − ε, or equivalently,

E[Ht(π∗)]6 2E[Ht(π̃)] + 2ε. By applying (7) from the proof of Theorem 1 with π= π̃, we get that:

E[Ht(π
∗)]6E[Ht(π̃)] +

n∑
r=1

E
[
Ct(r− 1, π̃)Cπ∗−1(r)t(π

∗)
]
. (19)

Fix some rank r and suppose that π∗−1(r) = i∗. Now proceeding exactly as in Lemma 1, we have

E
[
Ct(r− 1, π̃)Ci∗t(π

∗)
]
6E

[
Ct(r− 1, π̃)Ci∗t([π̃]r−1 ∪ i∗)

]
.

Finally, we leverage (17) to obtain

E
[
Ct(r− 1, π̃)Ci∗t(π

∗)
]
6E

[
Ct(r− 1, π̃)Ci∗t([π̃]r−1 ∪ i∗)

]
6max
i∈[n]

E
[
Ct(r− 1, π̃)Cit([π̃]r−1 ∪ i)

]
6E[Ct(r− 1, π̃)Cπ̃−1(r)t(π̃)] +

2ε

n
. (20)

Substituting (20) into (19), we have

E[Ht(π
∗)]6E[Ht(π̃)] +

n∑
r=1

E
[
Ct(r− 1, π̃)Cπ∗−1(r)t(π

∗)
]

6E[Ht(π̃)] +
n∑
r=1

(
E
[
Ct(r− 1, π̃)Cπ̃−1(r)t(π̃)

]
+
2ε

n

)

=E[Ht(π̃)] +
n∑
r=1

E
[
Ct(r− 1, π̃)Cπ̃−1(r)t(π̃)

]
+ 2ε

=E[Ht(π̃)] +E[Ht(π̃)] + 2ε (21)

= 2E[Ht(π̃)] + 2ε

where (21) follows by applying (3). �

Proof of Theorem 4 Without loss of generality, we assume that log1+α(nε) is integral, and so during the

course of the algorithm, τ ∈ {1, 1
1+α

, 1
(1+α)2

, . . . , ε
n
}10. For the purpose of this proof, we will also implicitly

assume that the parameters α,ε, δ are chosen such that n> log1+α(nε). Indeed, when this is not the case, the

length of the learning phase for the Threshold Acceptance Algorithm becomes Θ(n4) and it is advantageous

to run Algorithm 2 instead.

Recall that for a fixed threshold τ, our algorithm takes one pass through the set of available products

and fixes any product at the smallest open rank as long as its marginal benefit at that rank is at least τ.

10 Since log1+α(nε) is integral, this implies that there exists an integer a such that τmax
(
1
1+α

)a
= τmin = ε

n
. Therefore,

Algorithm 3 tries out exactly a+ 1 different values of τ belonging to the set {1, 1
1+α

, 1
(1+α)2

, . . . , ε
n
}.

Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products 41

Therefore, for a given threshold, the algorithm could assign multiple products to successive ranks as long as

the marginal benefit of all of these products meet the threshold at the corresponding ranks. Subsequently,

the threshold is lowered to 1
1+α

τ for the given parameter α > 0, and the above process is repeated on the

remaining, unranked products.

We first introduce pertinent notation. For any rank r∈ [1,n], let τr be the threshold value that the product

π̃−1(r) had exceed in order to be assigned to the corresponding rank. Conversely, let r(τ) be the smallest rank

at which our algorithm considers the threshold τ or, equivalently, the rank when the algorithm transitions

from a threshold of (1 + α)τ to τ. Due to the fact that the thresholds are monotonically decreasing, this

implies that for all r ′ < r(τ), τr′ > τ. As in earlier proofs, suppose that for any ranking π, [π]r is the sub-

ranking of π such that [π]r(i) = π(i) if π(i)6 r and we define [π]r(i) = ∅ otherwise. Finally, let [π]r ∪ i be an

augmentation of [π]r such that its first r positions coincide with π and product i is placed in rank r+ 1.

In the first part of our proof, we will use Hoeffding’s inequality to bound the expected number of new

customers hooked at each rank. We move the details of Hoeffding’s inequality to Lemmas 2 and 3 immediately

following this proof for ease of exposition. Consider the product π̃−1(r) that our algorithm fixes at rank r. We

know that ranking [π̃]r was displayed to L= n2

ε2
log(n√

δ
) customers, and at least a fraction τr of these customers

clicked exclusively on product π̃−1(r). Consider the Bernoulli random variable X=Ct(r−1, π̃)Cπ̃−1(r)t(π̃) which

equals one if the customer clicks on the product at rank r without clicking on any of the previously ranked

products and is zero otherwise. We have 1
L

∑L
i=1Xi > τr, where Xi denotes the i–th sample of the Bernoulli

random variable X corresponding to customer i6 L. Applying Lemma 2, we have that with probability at

least 1− δ
n2

, the following inequality is true:

E
[
Ct(r− 1, π̃)Cπ̃−1(r)t(π̃)

]
>
1

L

L∑
i=1

Xi−
ε

n
> τr−

ε

n
. (22)

Note that even though [π̃]r−1 is itself a random ranking, the above inequality holds with probability at

least 1− δ
n2

for any particular instantiation of [π̃]r−1. Let U(τ) be the set of unranked products when the

algorithm lowers the threshold from (1+α)τ to τ. For any i ∈U(τ), there must exist some rank r ′ 6 r(τ) at

which L customers were shown the ranking [π̃]r′−1 ∪ i and the fraction that clicked on product i without

clicking on any of the previously ranked products was smaller than (1+ α)τ. Applying Lemma 3, we have

that with probability at least 1− δ
n2

E
[
Ct(r

′− 1, π̃)Cit([π̃]r′−1 ∪ i)
]
6
1

L

L∑
j=1

Xj+
ε

n
< (1+α)τ+

ε

n
,

where (Xj)
L
j=1 is the instantiation of the random variable Ct(r ′−1, π̃)Cit([π̃]r′−1∪i) when the ranking [π̃]r′−1∪i

was displayed to each of the L customers. Since r ′ 6 r(τ), we also have that E
[
Ct(r

(τ)−1, π̃)Cit([π̃]r(τ)−1∪ i)
]
6

E
[
Ct(r

′− 1, π̃)Cit([π̃]r′−1 ∪ i)
]

by monotonicity. Thus, for all τ and all i∈U(τ), the following inequality holds

with probability at least 1− δ
n2

:

E
[
Ct(r

(τ) − 1, π̃)Cit([π̃]r(τ)−1 ∪ i)
]
6 (1+α)τ+

ε

n
. (23)

Once again, we highlight that the above inequality holds for any particular instantiation of [π̃]r(τ)−1. Let

us use E(τ)
i to denote the event (indicator variable) that (23) is true for a given τ and i∈U(τ) for the ranking

42 Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products

output by our algorithm. We know that Pr(E(τ)
i = 0)6 δ

n2
. Analogously let Fr be the event that (22) is true

for a given rank r at which π̃−1(r) 6= ∅. We also have Pr(Fr = 0)6 δ
n2

. Applying the union bound as we did in

the proof of Theorem 3, we get that for a given τ:

Pr
(
∃i∈U(τ) s.t. E(τ)

i = 0
⋃
∃r : τr = (1+α)τ s.t. Fr = 0

)
6
∑
i∈U(τ)

Pr(E
(τ)
i = 0)+

∑
r

τr=(1+α)τ

Pr(Fr = 0)

6
∑
i∈U(τ)

δ

n2
+

∑
r

τr=(1+α)τ

δ

n2

6n
(δ
n2

)
=
δ

n
.

The final inequality comes from the fact that |U(τ)|+ |r|τr = (1+α)τ|6n because the products that are fixed

in the ranks specified by the set {r | τr = (1+ α)τ} must by definition belong to the set [n] \U(τ). We can

apply the above inequality over all feasible threshold values τ to get

Pr
(
∃τ : {∃i∈U(τ) s.t. E(τ)

i = 0
⋃
∃r : τr = (1+α)τ s.t. Fr = 0}

)
6 log1+α(

n

ε
)
δ

n
6 δ. (24)

Here, we used the fact that the number of feasible values of τ is exactly log1+α(nε), which by our assumption

is no larger than n. Informally, (24) gives an upper bound on the (error) probability that the empirical

marginal click probabilities estimated by our algorithm are not close to the true click probabilities for all

thresholds and all ranks and products corresponding to those thresholds.

Now that we have bounded the expected number of new customers hooked at each rank, for the rest of

this proof we will consider the regime where these empirical estimates are close to their expected values, i.e.

we only consider rankings π̃ output by our algorithm such that E(τ)
i = 1 ∀i∈U(τ)

⋂
Fr = 1 ∀r : τr = (1+α)τ for

all τ. We know that with probability 1− δ, our algorithm returns such a ranking. We aim to show that in

this regime, any ranking π̃ computed by our algorithm satisfies: E[Ht(π̃)]> 1
2+α

E[Ht(π∗)] − ε.

Consider a fixed ranking π̃ returned by our algorithm that satisfies the conditions mentioned above. We

apply (7) from the proof of Theorem 1 with π= π̃ to get that

E[Ht(π∗)]6E[Ht(π̃)] +
n∑
r=1

E
[
Ct(r− 1, π̃)Cπ∗−1(r)t(π

∗)
]

6E[Ht(π̃)] +
n∑
r=1

max
i∈[n]

E
[
Ct(r− 1, π̃)Cit([π̃]r−1 ∪ i)

]
=E[Ht(π̃)] +

n∑
r=1

max
i∈U(τr)

E
[
Ct(r− 1, π̃)Cit([π̃]r−1 ∪ i)

]
(25)

6E[Ht(π̃)] +
n∑
r=1

(
(1+α)τr+

ε

n

)
. (26)

For (25), we replaced the set [n] by U(τr), the latter being a (superset) of the set of unassigned products when

the algorithm considers the rank r. Note that for all i /∈Uτr , π̃(i)< r and so, E
[
Ct(r−1, π̃)Cit([π̃]r−1 ∪ i)

]
= 0.

Finally, (26) comes from (23).

Now, suppose that Algorithm 3 returns a ranking π̃, with products assigned to ranks one through n ′ <n.

In this case, we can once again apply (23) and infer that the marginal benefit for all of the unranked products

at rank n ′ + 1 must be strictly smaller than τmin + ε
n

- if this were not the case, these products would have

Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products 43

already been fixed at rank n ′+1 or earlier. Thus our algorithm ends by updating τn′+1 =
τmin

1+α
; equivalently,

when r > n ′, (1+α)τr =
ε
n

since τmin = ε
n

in the theorem statement. We now continue with (26):

E[Ht(π∗)]6E[Ht(π̃)] +
n∑
r=1

(
(1+α)τr+

ε

n

)
=E[Ht(π̃)] +

n′∑
r=1

(1+α)(τr)+

n∑
r=n′+1

(1+α)(τr)+ ε

=E[Ht(π̃)] +
n′∑
r=1

(1+α)(τr)+ (n−n ′)
ε

n
+ ε

6E[Ht(π̃)] +
n′∑
r=1

(1+α)(E
[
Ct(r− 1, π̃)Cπ̃−1(r)t(π̃)

]
+
ε

n
)+ (n−n ′)

ε

n
+ ε (27)

6E[Ht(π̃)] + (1+α)

n′∑
r=1

E
[
Ct(r− 1, π̃)Cπ̃−1(r)t(π̃)

]
+(1+α)ε+ ε

=E[Ht(π̃)] + (1+α)E[Ht(π̃)] + (2+α)ε

Inequality (27) comes from (22). In the final step, we used (3).

To conclude, we are left with

E[Ht(π∗)]6 (2+α)E[Ht(π̃)] + (2+α)ε,

which in turn implies the statement of the theorem. �

The following lemmas are used in the preceding proof of Theorem 4, and both their proofs follow from the

standard Hoeffding inequality.

Lemma 2. Given i ∈ [n] and r ∈ [n], suppose that X1,X2, . . . ,XL are independent samples of the random

variable Ct(r− 1, π̃)Cit([π̃]r−1 ∪ i). Then, we have that:

Pr

(
L∑
j=1

Xj

L
−E
[
Ct(r− 1, π̃)Cit([π̃]r−1 ∪ i)

]
>
ε

n

)
6 exp(−2

ε2

n2
L).

Lemma 3. Given i ∈ [n] and r ∈ [n], suppose that X1,X2, . . . ,XL are independent samples of the random

variable Ct(r− 1, π̃)Cit([π̃]r−1 ∪ i). Then, we have that:

Pr

(
E
[
Ct(r− 1, π̃)Cit([π̃]r−1 ∪ i)

]
−

L∑
j=1

Xj

L
>
ε

n

)
6 exp(−2

ε2

n2
L).

44 Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products

Figure 6 Sensitivity Analysis on Percent of Customers with Non-Zero Preferences

Appendix B: Sensitivity Analysis for Simulations

In this appendix, we perform sensitivity analysis on the default parameter set (recommended by Wayfair)

that we used to generate customer preference vectors from observed clickstream data. First, we varied the

percent of customers with non-zero preferences between 70-90% (specifically, {70%, 80%, 90%} - recall that

the main results presented are for 80%). Figure 6 presents our sensitivity analysis on the percent of customers

with non-zero preferences. The analysis illustrates that our results are robust to this parameter choice, and

in most cases, that our algorithm performs marginally better as the percent of customers with non-zero

preferences increases. Intuitively, when there are more customers with non-zero preferences, our algorithm has

more opportunity to hook additional customers compared to Wayfair’s ranking where the number of hooked

customers is fixed. In reality, it is impossible to know the percent of customers with non-zero preferences,

and our results show that over a reasonable and wide parameter range, our algorithm still attains significant

performance improvement over Wayfair’s ranking.

Second, we varied the percent of customers who view all n products between 2.5-10% (specifically, {2.5%,

5%, 7.5%, 10%} - recall that the main results presented are for 5%). When the percent of customers who

view all products was 2.5% or 10%, we were unable to find a power law distribution to generate customers

that recovered the actual clickstream data for some of the events, i.e. we could not find matches between

actual and simulated clicks as we did in Figure 2; thus, these parameter values are likely unrealistic. Figure 7

presents our sensitivity analysis on the percent of customers who view all products. The analysis illustrates

that our results are robust to this parameter choice. In reality, it is impossible to know the percent of

customers who view all products, and our results show that over a reasonable parameter range, our algorithm

still attains significant performance improvement over Wayfair’s ranking.

Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products 45

Figure 7 Sensitivity Analysis on Percent of Customers Who View All Products

Appendix C: Additional Simulations: Finite Customer Types

In Section 5, we presented our main empirical results, where we evaluated the performance of our Threshold

Acceptance Algorithm on customer preferences inferred based on actual clickstream data from six distinct

events. Despite the rather conservative assumptions made in that section, we observed that our proposed

algorithm outperformed the default static ranking employed by Wayfair by moderate amounts (average

improvement between 5 and 30%; refer to Figure 3). In this section, we adopt an alternative and less-

conservative methodology where we assume that customers belong to a finite number of types and use the

clickstream data to infer the types and the probability that an incoming customer belongs to each of these

types. We then use the derived customer preference distribution to estimate the performance of our method

in comparison to Wayfair’s static ranking as well as the omniscient offline benchmark as defined earlier (the

static ranking output by the Greedy Algorithm for OffAR, πg).

We begin by highlighting a few of the restrictive assumptions from Section 5 below and outline our

reasoning for relaxing these assumptions. Following this, we present the technical details surrounding the

implementation. A comprehensive description of our partner Wayfair, customer behavior on the platform,

characteristics of the six stylistically-themed events that were chosen for these simulations, and the click-

stream data can be found in Section 5.1, and we avoid repeating these details here.

In the process of learning customer preferences and attention windows from the clickstream data, our

implementation in Section 5 required the following behavioral assumptions. First, our inference was based

on the premise that once a customer was hooked, she views all 48 products in the event. Consequently, each

unique click vector was taken to represent a distinct customer type11; this resulted in each event catering to

11 Formally, a preference distribution D can be partitioned into mutually exclusive customer types, where each type
z is characterized by an interest probability vector p(z), attention window distribution D

(z)
k and a type probability

q(z). An incoming customer t belongs to type z with probability q(z) and conditional upon her type being z, her click
vector is pt =p(z) and attention window kt is drawn independently from D

(z)
k .

46 Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products

anywhere between 3500 and 14000 customer types. Second, the customer interest probabilities were assumed

to be independent of their attention windows. Third, for each customer t and product i, we had only integral

click probabilities, i.e., pit ∈ {0, 1}. These assumptions are somewhat conservative as they tend to be inimical

to the performance of our algorithm. For example, the premise that hooked customers view all 48 products

severely limits the customer’s response to any alternative ranking as the customer is assumed to not be

interested in any product that she did not click on.

In the following simulations, we make a different set of assumptions regarding customer interests and

behavior and similarly compare our algorithm to Wayfair’s static ranking and offline benchmark:

• We suppose that there is a finite set Z of customer types, where each type z ∈ Z is specified by its

parameters (p(z),D
(z)
k , q

(z)). Crucially, the distribution of customer attention windows is not independent of

product interest. This is a natural consideration in e-commerce domains, e.g., the demographics of customers

may skew both their product preferences and their attention windows. Finally, we assume that the average

number of products per type that a customer has non-zero interest in is two. Mathematically, we have:

1

|Z|

∑
z∈Z

∑
i∈[n]

1{p
(z)
i > 0}= 2,

where 1{} is the indicator variable that is one if the condition inside is true and zero otherwise. Note that

some types may have only one product and others may have many.

• There exists a customer click probability parameter p ∈ (0, 1) such that pit ∈ {0,p} for all customers t

and products i ∈ [1,n]. A simple interpretation for this parameter is that a customer t who is interested in

a product i that falls within her attention window only clicks on this product with some finite probability p

and does not click on this product with probability 1−p.

• Customer t only clicks on products displayed in ranks [1,kt], regardless of whether or not they are

hooked. This assumption is in contrast with the one made in Section 5 that hooked customers browse and

can click on products in the entire assortment. In reality, customer behavior and the performance of our

algorithm may fall somewhere in-between.

C.1. Implementation

In Section 5, the primary difficulty in the inference process was to identify the (censored) interest probability

vector pt for customers who did not click on any product by assigning them to one of the click vectors

corresponding to the hooked customers. Here, the challenge is two-fold: first, we need to infer a representative

set of customer types including their preferences and attention windows; second, we need to assign each

of the customers to one of the types based on the observed click vector. Once again, the second part is

compounded by the censored nature of the observations for all customers (hooked or otherwise).

We now outline the methodology used for constructing the empirical distribution D̂ of customer types

based on the clickstream data. Where it is applicable, we use the same notation introduced in Section 5, e.g.,

ct represents the click vector for customer t, T̃c and T̃ are the customers with non-zero clicks and non-zero

preference vectors respectively, and so on. To reiterate, our goal is to use the set of customer click vectors

(ct)t∈T to construct the customer types that make up the distribution D̂, i.e., (p(z),D
(z)
k , q

(z))z∈Z.

Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products 47

1. Fixing parameters a priori : As we did in Section 5, we assume that the total number of customers with

non-zero preferences |T̃| is fixed, as is the customer click probability parameter p and the number of types

|Z|. We will vary the parameter p within an appropriate range to recover the customer types that best fit

the observed click data. The exact choice or range of the other parameters is discussed subsequently.

2. Clustering to partition click vectors into types: We identify a subset of the customers in T̃c who clicked

on two or more products (
∑
i∈[n] cit > 1) and run a standard k-means++ (Arthur and Vassilvitskii 2007)

algorithm to cluster these click vectors into |Z| partitions.

3. Identifying representative set of interest vectors (p(z))z∈Z: We extract the centroids of each cluster

(C(z))z∈Z, which are fractional and tend to be overly dispersed as each centroid has non-zero entries corre-

sponding to many products. Thus, we take each product i∈ [n] and assign it to the w clusters corresponding

to the w largest values in (C
(z)
i)z∈Z. Therefore, p(z)i = p if z is one of the top-w clusters for product i∈ [n] as

per the centroid, and p(z)i = 0 otherwise. Finally, the parameter w is chosen in order to satisfy our assumption

that the average number of products that a customer type is interested in is two, i.e., w= 2|Z|

48
.

4. Assigning customers (click vectors) to types: Now that we have derived the interest vectors p(z) for each

type, we need to infer the attention window distributions as well as type probabilities. As a first step, we

take each click vector belonging to the customers in T̃c and assign it to one of the types using a maximum

likelihood technique. Specifically, consider a click vector ct and let rt denote the position of the largest ranked

product that the customer clicks on. For every type z ∈ Z, customer t ∈ T̃c, and product i ∈ [rt], we define

a probabilistic score s(z)it as follows: (i) s
(z)
it = p if cit, p

(z)
i > 0; (ii) s

(z)
it = 1− p if p(z)i > 0 = cit; (iii) s

(z)
it = η

if p(z)i = 0 < cit and (iv) s
(z)
it = 1 if p(z)i = cit = 0. In the above definition η <min{p, 1− p} is a penalty term

corresponding to the case where a customer clicks on a product that a type is not interested in. The type

z(t) that a customer t is assigned to is the solution to the following expression that captures the likelihood

of belonging to each type given the observed click vector ct:

z(t) = argmax
z∈Z

rt∏
i=1

s
(z)
it . (28)

5. Joint, iterated Bayesian inference of attention windows and type probabilities: We use an iterative

approach that starts with an initial assumption (uniform distribution) on the attention windows and type

probabilities and jointly and iteratively updates both of these parameters until the process converges. Specif-

ically, suppose that (D̂
(z)
k , q̂

(z))z∈Z are the current estimates for the corresponding distributions in a given

iteration. We use the following two steps to update these parameters:

• For every t ∈ T̃c, we identify z(t) as per (28). For the customers who did not click on any product but

have non-zero preferences (t∈ T̃ \ T̃c) we randomly assign them to a type z(t)∈Z using Bayes rule, which in

turn is dependent on (D̂
(z)
k , q̂

(z)):

Pr(z(t) = z|ct = 0) =
q̂(z)

|T̃\T̃c|

T̃

∑
k∈[n]

Pr(ct = 0|p
(z), kt = k)Pr(kt = k|D̂

(z)
k).

Once every customer t is assigned to a type z(t), we can update q̂(z) to be the fraction of customers assigned

to type z.

48 Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products

• Given z∈Z, for every customer t∈ T̃ such that z(t) = z, we compute the probability that the customer’s

attention window is k given her type z. That is for all k> rt, we can use the (conditional) distribution D̂
(z)
k

to infer the probability that her attention window is kt = k subject to k> rt, where rt is the rank of the last

product that the customer clicked on (rt = 0 if t∈ T̃ \ T̃c).

Pr(kt = k|z(t) = z, k> rt) =
Pr(kt = k|D̂

(z)
k)∑n

r=rt
Pr(kt = r|D̂

(z)
k)

.

Finally, we can update the distribution D̂
(z)
k by aggregating the probability that Pr(kt = k|z(t) = z) over all

k∈ [n] and all t such that z(t) = z.

We terminate the iterative process when the root mean square errors of the values of both D̂
(z)
k and q̂(z)

between successive rounds are smaller than a specified tolerance level

Parameter Choices First, we assume that 70% of the customers have non-zero preference vectors, i.e.,

|T̃|

|T|
= 0.7. This reflects a conservative modeling choice that is at the lower end of the range of this parameter

that we analyzed in Appendix B. By assuming that 30% of the customers cannot be hooked by any ranking,

we seek to compensate for our other, less conservative assumptions. Second, for the rest of this section, we fix

the number of customer types or clusters to be |Z|= 75; we tested and found similar results for other values

such as |Z|= {25, 50, 100} but present only |Z|= 75 for brevity. This is in stark contrast to the experiments in

Section 5 with thousands of types and only a handful of customers per type. Finally, we assume that the

customer click probability p∈ [0.5, 0.75], which corresponds to an average click probability over all products

of 2p
48
≈ [0.02, 0.03] per Wayfair’s recommendation.

C.2. Results

The implementation of the Threshold Acceptance Algorithm is identical to our earlier simulations and we

refer the reader to Section 5.2.2 for a detailed description. As in Section 5, we conducted the following

simulations 100 times for each event. First, we generated |T̃| customers from the inferred distribution D̂ =

(p(z), D̂
(z)
k , q̂

(z))z∈Z. We applied our Threshold Acceptance Algorithm for each customer profile that was

generated assuming that customers arrive in a random order and then compared the algorithm’s performance

to that of Wayfair’s static ranking (πWF) and the offline benchmark static ranking. Owing to a judicious

choice of the parameters mentioned earlier, the click behavior of customers on Wayfair’s ranking was a close

fit to the true click distribution observed in the data. For example, in all of our simulations, the percent

of customers hooked by Wayfair’s ranking was within [0.98, 1.06] times the actual percentage of customers

hooked.

Figure 8 compares the performance of our algorithm and πWF to the static ranking output by the Greedy

Algorithm for OffAR (πg): specifically, (total number of hooked customers by our algorithm (or πWF)) / (total

number of hooked customers by πg). We see that our Threshold Acceptance Algorithm yields a significant

improvement over Wayfair’s static ranking. Averaged over 100 simulations, the number of customers hooked

by our algorithm was at least a multiplicative factor of 1.5-times the number hooked by Wayfair’s ranking

for all six events. There are two main reasons why we see such a significant improvement over Wayfair’s

ranking. First, unlike in Section 5, here we allow product interests to be correlated with attention windows.

Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products 49

Figure 8 Box & whisker plots presenting the percent of total customers hooked by πg (the offline benchmark)

that are hooked by our algorithm and πWF

Our Threshold Acceptance Algorithm is able to exploit these dependencies better than Wayfair’s static,

popularity-based ranking. Second, our assumptions on browsing and clicking behavior for these simulations

are less conservative than those in Section 5, and provide more opportunities for our algorithm to hook those

customers who were not hooked by Wayfair’s ranking. It is likely that the actual improvement in practice

lies somewhere between these results and the more conservative ones in Section 5.

Another key finding is that our Threshold Acceptance Algorithm’s performance is comparable to the offline

benchmark: On average over the six events, the number of customers hooked by our algorithm is at least 87%

of the amount hooked by πg. We note that the variability in the performance of our Threshold Acceptance

Algorithm is primarily due to the randomness that comes from sampling only L= 500 customers to estimate

the marginal benefit of each product. A surprising by-product of this variability is that in a few instances, our

algorithm actually outperforms the benchmark ranking, by up to 3%. Indeed, it is worth noting that since

the benchmark ranking πg is computed on the full distribution D̂, its performance can vary considerably

on individual populations that are randomly sampled from D̂. Beyond randomness, this can also occur due

to the fact that the offline greedy algorithm is only a 1
2
-approximation to the true optimal ranking12. As a

result, our algorithm may converge to a ranking better than πg by making some locally suboptimal decisions.

12 Recall that the true optimal ranking is NP-Hard to compute even for a special case of our problem

