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Problem definition: We study a finite horizon, single product, periodic review inventory system with

two supply sources and salvage options. A challenging trade-off exists between the two sources because the

expedited supplier has a shorter lead time but charges a higher per-unit price. A further complication is the

salvage option that allows for bilateral inventory adjustments. All inventory adjustments involve a fixed cost

component in addition to variable costs or revenues and may be subject to capacity limits.

Academic/practical relevance: These strategic dilemmas arise whenever a company decides on off-shoring

versus on-shoring, or a hybrid approach which utilizes both suppliers simultaneously.

Methodology: We analyze our model with dynamic programming and Markov Decision Process techniques.

Results: We show that an optimal policy first determines the size of an order with the expedited supplier,

or the size of any salvage quantity, based, exclusively, on the regular full inventory position. Thereafter, any

order with the regular supplier is determined as a function of the adjusted inventory position. Moreover, the

dependence of the optimal order sizes and/or salvage quantity, on the period’s starting inventory position

follows a relatively simple structure. The above results apply to the special case where the lead times of the

two suppliers differ by a single period. However, our structural results suggest effective heuristics for general

lead time combinations.

Managerial implications: We evaluate our heuristics in a comprehensive numerical study. We focus on

how various model primitives impact on the benefits of dual sourcing. For example, we show that the cost

savings due to dual sourcing may be as large as 30%. For a given price differential, the benefits of dual

sourcing grow as the lead time difference increases.

Key words : dual sourcing, capacity constraints, lead time, inventory management, convexity, dynamic

programming

1. Introduction

Manufacturing companies and retail chains often have access to two alternative supply sources for

component parts, product modules, finished goods or supply materials. One source is typically low

cost but has long lead times, whereas the other provides quicker response but at a higher price.

When designing its procurement process, the purchaser may select one of the two sources as its
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exclusive supplier. Alternatively, it may opt for a dual sourcing strategy which procures from both

sources. In the latter case, the challenge is to determine how and when each of the sources is to be

used, as a function of the dynamically evolving inventory information. The objective of this paper

is to address this question within a general model that incorporates economies of scale with respect

to the order costs, capacity limits for individual orders and opportunities to reduce inventory via

salvage sales.

The above strategic dilemmas arise, first and foremost, when firms decide on offshoring vs

onshoring options. In the past few decades, there has been a consistent trend to offshore. In 2010,

PricewaterhouseCoopers (2010) reported that the share of products that are sourced from offshore

locations ranges from 51% to 75%, in different European and American countries. At that point,

the share was projected to grow more than 10%, annually, in the next five years. The survey was

conducted based on interviews with 59 CEO in global retail and consumer companies in eight

countries: Austria, Canada, China, France, Germany, India, the United Kingdom and the United

States.

However, the trend has recently been reversed, as companies have come to realize that, along

with other sourcing considerations, price savings associated with offshore options need to be traded

off against increased inventory costs and stockout risks due to the larger lead times involved. Longer

lead times translate into a need for larger safety stocks, under a given targeted service level, or

inferior service levels under given inventory investments. In contrast, onshore procurement from a

local or nearby market is fast but typically incurs a higher purchase price or manufacturing cost.

In 2013, The Economist (2013) reported that for the time interval between 2012 and 2014, 19% of

the surveyed companies declared an intention to reshore, almost the same percentage (23%) which

intended to replace local suppliers by offshore alternatives. Another 33% intended to move between

low- and high-cost countries, again revisiting their supplier base, see Figure 1 below.

Moreover, many companies have come to realize that a hybrid approach employing two or more

suppliers, simultaneously, is, frequently, considerably more effective than one which relies on a

single supplier (single sourcing). Scheller-Wolf et al. (2007), for example, compare the optimal

procurement strategy under single sourcing with two heuristic policies that employ dual sourcing.

The comparisons are conducted within a base model, i.e., a periodic-review, infinite horizon model

with i.i.d. demands, in which uncapacitated orders can be placed with either supplier and order

costs are linear, without any fixed costs. In their numerical study, the authors observed that the

dual sourcing heuristics, on average, reduce costs by 9%, while, in some instances, the cost savings
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Figure 1 The Economist’s report on companies’ outsourcing decisions

are as large as 25%! Moreover, the dual sourcing heuristics are guaranteed to outperform the

optimal procurement strategy under single sourcing with either one of the two suppliers.

Within the operations management/research community, several authors have reported on spe-

cific company settings where dual sourcing is employed. These include Beyer and Ward (2002)

reporting on Hewlett-Packard’s strategy for manufacturing servers and Rao et al. (2000) on Cater-

pillar’s for compact worktools sold in the North American market. Allon and Van Mieghem (2010a)

report on a $10 billion high-tech US manufacturer of wireless transmission components with two

assembly plants, one in China and one in Mexico. The company implemented a dual sourcing

strategy. The authors identify a (different) heuristic dual sourcing strategy and report that in their

application the strategy saves up to 20% over the best single sourcing strategy. Based on this

company setting, Allon and Van Mieghem (2010b) developed a teaching game, referred to as the

“Mexico-China sourcing game”, see also Van Mieghem and Allon (2015).

The study of periodic review, dual sourcing inventory models starts with four papers in the early

sixties, shortly after the initiation of single source stochastic inventory models. These early papers

addressed the above-mentioned periodic review model with independent demands, full backlogging

of stockouts, and two suppliers with different lead times and different per-unit procurement prices.

The “expedited” supplier charges the higher per-unit price, giving rise to a challenging trade-off

problem. Other than the linear order costs, there are holding and backlogging costs assumed to be

proportional with or convex in the end-of-the-period inventory and backlog levels, respectively.

The seminal paper by Fukuda (1964) showed that a so-called single index dual base stock policy

is optimal in this model, as long as the lead time of the slower supplier is exactly one period longer

than that of the expedited supplier. Under this policy, one starts by determining the size of the
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order to be placed with the expedited supplier, if any. This order is determined by a base-stock

policy acting on the (full) inventory position = the inventory level plus all outstanding orders. In

other words, an order is placed iff this inventory position is below a given base stock level; when

applicable, it is sized to elevate the inventory position to this base stock level. After the order with

the expedited supplier is added to this inventory position measure, a second base-stock policy is

applied to determine the order size with the slower supplier (if any).

In general, lead times may, of course, differ by an arbitrary number of periods. For this general

setting, it was shown, e.g., Whittemore and Saunders (1977), that no procurement strategy, acting

on a single or even two inventory measures (so-called indices) needs to be optimal. As a consequence,

many heuristic policies were proposed, mostly in the past decade, to handle the general lead time

case. These are reviewed in Section 2.

However, to our knowledge, little progress was made to include important generalizations and

complicating factors that arise in practice and have become part of standard single sourcing inven-

tory models, by themselves or in various combinations; in particular:

(a) fixed order costs, and

(b) capacity limits associated with the orders with the two suppliers.

An additional generalization is

(c) the ability to decrease the inventory level by salvaging a given quantity through sales in a

secondary channel (jobbers, discounters, outlet stores, etc).

As mentioned, optimal strategies that act on a single (or even a pair of) inventory indices,

can only be expected when the lead times associated with the two suppliers differ by a single

period. We, therefore, initially, confine ourselves to this case and show that a single index policy

continues to be optimal for this very general model that incorporates the three complications

(a)–(c), simultaneously. (The remaining model assumptions are standard and identical to those

employed in the above-mentioned literature on dual sourcing models: full backlogging of stockouts,

demands that are independent across time and holding and backlogging costs that are specified

by convex functions of the end-of-the-period inventory levels.) In each period, one first determines

the size of an order with the expedited supplier, if any, or the size of any salvage quantity, based,

exclusively, on the regular full inventory position. Thereafter, the inventory position is adjusted

upward (by the expedited supplier order) or downward (by the salvage quantity); any order with

the regular supplier is then determined as a function of the adjusted inventory position.

Moreover, the dependence of the optimal order sizes and/or salvage quantity, on the period’s

starting inventory position follows a relatively simple structure. In the most general case, the
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optimal policy is characterized by fours critical threshold levels of the inventory position: be ≤

b̄e ≤ se ≤ se partitioning the inventory position line into 5 consecutive regions. In the middle range

[b̄e, se], it is optimal to forgo both an order with the expedited supplier, as well as any salvage

activity. In the far-left (-right) region (−∞, be) [(se,∞)], it is optimal to place an order with the

expedited supplier [to initiate a salvage sale], the size of which varies as a non-linear function of

the inventory position. This leaves us with the remaining pair of intervals [be, b̄e) and (se, se]. In the

former, i.e., when be < b̄e, it is possible that one alternates between sub-intervals with a positive

order and those where it is optimal to stay put; however, salvaging is not to be considered in this

interval [be, b̄e). Similarly, when se < se, one alternates on (se, se] between sub-intervals where it is

optimal to stay put and those where it is optimal to initiate a salvage batch; however, ordering

does not need to be considered.

As far as the second stage ordering decision with the regular supplier is concerned, the opti-

mal policy is characterized by two threshold parameters, br, b̄r partitioning the adjusted inventory

position line in up to three regions. The structure of the optimal strategy within these regions is

identical to those of the first stage decision in the three left most intervals mentioned there; see

Figure 2.

Figure 2 General optimal policy structure
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Even simpler and more pronounced structures arise in various special cases; where only a subset

of the complications (a)–(c) prevails, or where some model parameters take on a specific value, for
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example, when either orders or salvage sales can be initiated without a fixed cost. These special

cases are characterized in Section 5.

For the case of general lead time combinations, we propose, as effective heuristics, single index

policies of the same structure—but alternative policy parameters—as those shown to be optimal

in the special case where the lead time difference is a single period. We illustrate this for several

important cases, in particular, dual sourcing problems without salvage opportunities but with

capacity limits or fixed costs for the orders.

Our structural results are obtained by showing that the value functions in a given dynamic

programming formulation, satisfy the so-called (C1K1,C2K2)-convexity property, a generalization

of the far better known convexity or K-convexity property, as well as many other generalized

convexity properties employed in the single sourcing literature to handle specific subsets of the

complications (a)–(c), above. We rely heavily on the analysis of the (C1K1,C2K2)-convexity prop-

erty, conducted in Federgruen et al. (2017) to characterize the structure of an optimal strategy in

the single sourcing model with the simultaneous presence of complications (a)–(c).

The remainder of this paper is organized as follows. In Section 2 we give a review of the literature

on multi-sourcing procurement strategies. Section 3 introduces the model. In Section 4, we derive

the structure of the optimal dual sourcing policy in the single-period problem, assuming the lead

time difference equals one. Section 5 extends these results for a general finite (or infinite) planning

horizon, both in the most general and in various special cases. Based on the structural results

in Section 5 we develop, in Section 6, our proposed heuristics for the case of general lead time

combinations, along with an illustrative numerical study. Section 7 contains concluding remarks.

2. Literature Review

In this section, we review the literature on dual sourcing stochastic inventory models. As mentioned

in the Introduction, the 60-year-old literature has mostly focused on a base periodic review model

with independent demands, full backlogging of stockouts, linear order, holding and backlogging

costs, and two potential uncapacitated suppliers, differentiated by their per-unit procurement price

and lead times. This workhorse model may be viewed as the direct extension of the seminal single

source model by Arrow et al. (1951).

Three papers in the early sixties, i.e., Barankin (1961), Daniel (1963) and Neuts (1964) focused

on the special case where the lead time of the expedited supplier is negligible (or zero), and that

of the regular supplier exactly one period. Here, the optimal strategy employs two base-stock

levels: first, the period’s starting inventory level—including last period’s regular order—is used
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by a simple base-stock policy to determine whether an order is to be placed with the expedited

supplier. Thereafter, a second base-stock policy is used to determine the order with the regular

supplier, if any, comparing the adjusted inventory level (inventory level plus the new order with

the expedited supplier) with a second base-stock level. Fukuda (1964) extended this result to the

case where the lead time of the regular supplier is arbitrary and that of the expedited supplier one

period shorter. The same structural result continues to apply, except that the base-stock policies

act on the period’s starting inventory position, as opposed to the inventory level.

Whittemore and Saunders (1977) showed that no simple structure prevails for the general case

with non-consecutive lead times, i.e., lead times that differ by more than a single period. In par-

ticular, the optimal policy needs to be based on more than one, or even any constant number of

inventory measures, or indices.

With this negative insight, the development of dual sourcing models was interrupted for some

30 years. In the last decade, we have seen a plethora of papers suggesting and comparing heuristic

policies for the infinite horizon, stationary base model with general lead times. This literature

stream started with Veeraraghavan and Scheller-Wolf (2008) proposing the use of dual index base-

stock polices. Here, the first stage order to the expedited supplier is determined by a base-stock

policy acting on the so-called expedited inventory position, consisting of the inventory level plus all

outstanding orders to arrive within the expedited supplier’s lead time from the current period. The

second stage order with the regular supplier is determined by a second base-stock policy acting

on the full inventory position, the current period’s order with the expedited supplier included.

These authors compared the cost performance of the best policy within their proposed class, with

the overall optimal policy. To this end, they conducted a numerical study assuming the demand

distribution has support on a few values only., so that the set of possible inventory levels can be

limited and the optimal policy can be found via dynamic programming, at least for small lead time

values. The authors report that their proposed dual index policy, in the majority of cases, comes

within 1% or 2% of optimality.

The authors also consider capacity limits for the two suppliers. In this case, base stock policies

need to be replaced by “modified base-stock policies”, where an order is placed to bring the relative

inventory index as close as possible to the base-stock level. In the single sourcing literature, such

policies were shown to be optimal, see e.g. Federgruen and Zipkin (1986a,b).

Scheller-Wolf et al. (2007) show that a single-index base-stock policy performs comparably or

even better than the dual index base-stock policy in Veeraraghavan and Scheller-Wolf (2008).

Under a single index base-stock policy, the order with the expedited supplier is determined by a
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base-stock policy acting on the full inventory position, which includes all outstanding orders, rather

than the more limited “expedited” inventory position in Veeraraghavan and Scheller-Wolf (2008).

In Scheller-Wolf et al. (2007)’s numerical study, the average difference between the cost values of

the two heuristics is less than 0.5% and the maximum difference no more than 3%. While the

cost performance is almost identical between the two heuristics, the authors point at several major

advantages of the single index heuristic, including the fact that it is simpler and that the optimal

base-stock levels can be computed analytically, at “25–60 times faster” computational times.

Sheopuri et al. (2010) develop six alternative heuristic polices, some of considerably more complex

structure (for example, the vector-based base-stock policy and the “best weighted” index policy).

Their numerical study shows that each of the heuristics has an average cost performance that

comes within 1% of that of the dual index base-stock policy, and hence of the single index base-

stock policy, as well. These authors also show that the single source lost-sales model can be viewed

as a special case as the dual source model with backlogging. Several of the structural properties

identified by Zipkin (2008) for the lost sales model can therefore be generalized in the study of dual

sourcing problems. In the same spirit as Sheopuri et al. (2010), Hua et al. (2015) developed another

class of heuristic policies, again with comparable cost performance, in their numerical study.

Allon and Van Mieghem (2010a) proposed a Tailored Based-Surge (TBS) heuristic in which

a constant size order is placed with the regular supplier and a base-stock policy is used for the

expedited supplier. Janakiraman et al. (2015) analyzed this class of policies, deriving optimality

gap bounds when the demands consist of a regular base demand plus an infrequent surge demand.

In a numerical study, similar to that in Veeraraghavan and Scheller-Wolf (2008), they observed that

the optimality gap of the best TBS policy varies between 21% and 3.5%. Xin and Goldberg (2017)

showed that a TBS policy is asymptotically optimal when the lead time difference goes to infinity.

Xin et al. (2017) extend the results to a setting where the expedited supplier is unreliable, i.e., in

any period the supplier is with a given probability unable to fill any order. The authors evaluate the

performance of the TBS heuristic based on Walmart data. As mentioned in the Introduction, Allon

and Van Mieghem (2010b) developed the Mexico-China teaching game, based on the industrial

application which motivated their parallel paper. See also Chapter 7 in the prominent textbook

on Operations Strategy by Van Mieghem and Allon (2015) for a treatment of the dual sourcing

problem.

Sun and Van Mieghem (2017) developed a robust optimization approach for the base dual sourc-

ing problem. Under this approach, the problem can be formulated as a mathematical program,
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avoiding the curse of dimensionality associated with standard dynamic programming formulations

that aim at optimizing aggregate expected costs.

Very few papers address generalizations of the base model. A noted exception is Sethi et al. (2003)

who incorporates fixed order costs into the model with the one period lead time difference. They

show that, in each period, the order for the expedited supplier and that for the regular supplier are

to be determined sequentially, both on the basis of an (s,S)-policy acting on the regular inventory

position. We retrieve this result as one of the special cases in our general model. Fox et al. (2006)

also allow for fixed order costs but assume zero lead time for the both suppliers. It is easily seen

that this model reduces to a single sourcing problem with a piecewise linear concave order cost.

Boute and Van Mieghem (2015) add capacity costs and order smoothing considerations into the

base model.

A few papers have addressed dual sourcing problems in continuous review models. Moinzadeh

and Schmidt (1991) and Song and Zipkin (2009) assumed demands are generated by a Poisson

process and a dual-index base-stock policy is applied. The former paper assumes the lead times

are deterministic while the latter allows for stochastic but exogenous lead times. Moinzadeh and

Schmidt (1991) characterize the steady-state inventory level distribution and hence the long-run

average cost for any (dual-index) base-stock policy. Song and Zipkin (2009) models the system as a

queueing network with overflow by-passes and obtain the steady-state distribution of the network in

product form. Very recently, Zhou and Yang (2016) extended their work by allowing for compound

Poisson demands and fixed order costs. These authors propose, as heuristic, a single index pair of

(R,nQ)-policies. At each demand epoch, one places an order with the expedited supplier iff the full

inventory position is below a reorder level Re; the order is sized as the smallest multiple of an order

size Qe which elevates the inventory position above Re. With this order added to the inventory

position, any order with the regular supplier is determined by a different (Rr, nQr)-policy.

All of the above continuous review papers make an upfront restriction to a specific class of

heuristic policies. However, the recent paper by Song et al. (2017), characterizes the optimal policies

in a setting with linear costs but endogenously determined stochastic lead times, under a certain

condition, and propose near-optimal heuristic policies when the condition fails.

3. Model Formulation

We consider a single-item periodic review inventory system with two potential suppliers: a regular

and a expedited supplier. The regular supplier produces the item at a lower (per-unit) cost, but a

longer lead time is involved. We thus assume that the suppliers are differentiated in terms of their
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lead times and variable prices(, only). In particular, if orders are associated with fixed costs or

capacity limits, we assume these to be the same for both suppliers. In each period, there may also

be a salvage option to reduce inventory, generating a given per-unit revenue, possibly associated

with a fixed cost and capacity limit. The lead time is le both for ordering from the expedited

supplier and salvaging (when applicable), and lr > le for ordering from the regular supplier. In this

section we focus on the case where lr = le + 1. As explained in the Introduction, an optimal policy

of a relatively simple structure can only be expected for this case. However, the structural results

obtained for this special case suggest immediate extrapolations for the general model where lr ≥

le+2, as heuristic policies. In Section 6, we design these heuristics and evaluate their performance.

We index the periods backward from 1 to N . The sequence of events in period n is as follows: At

the beginning of period n, an order may arrive from either the expedited or the regular supplier, or

both. Such deliveries are added to the inventory level. As in single sourcing models, we define the

firm’s inventory position as the aggregate of its inventory level along with all outstanding orders

to be delivered in future periods, i.e., at the beginning of periods n− 1, n− 2, . . . , n− le. Note that

this covers all orders placed in the past that have not been delivered yet; even an order placed

with the regular supplier in the prior period n+1, clearly the last to arrive, among all outstanding

orders, will arrive at the beginning of period n− le since lr = le+1. Based on its inventory position,

the firm now decides on new order sizes to be placed with each of the two suppliers as well as any

salvage quantity if it wants to reduce its inventory position. Stochastic demand is then realized

and satisfied with on-hand inventory. At the end of the period, any unsatisfied demand is fully

backlogged while leftover inventory is fully carried over to the next period. It is easily verified that

it is never optimal to simultaneously place an order with the expedited supplier and to sell off a

batch of inventory, since both inventory adjustments take effect in the very same period, i.e., le

periods, hence.

We first introduce the notation for the model primitives, treating the per-unit revenue in any

given period as a negative cost. For period n=N,N − 1, . . . ,0, denote:

Kn,Cn = fixed cost and capacity limit for any order, respectively.

cen, c
r
n = unit price charged by the expedited and regular suppliers, respectively. (cen > c

r
n)

le, lr = order lead time for the expedited and regular suppliers, respectively.

Kv
n, c

v
n,C

v
n = fixed cost, unit revenue and capacity limit, respectively, when salvaging inventory.

Dn = stochastic demand.

α= discount factor, α∈ [0,1].
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Assume {Dn,1≤ n≤N} are independent random variables with general distributions. Inventory

and backlogging related costs will be introduced below. We impose the following restrictions on

the cost parameters. These restrictions are innocuous and merely preclude arbitrage opportunities.

Assumption 1. For any period n, the unit order costs, the unit salvage revenue and backlogging

cost satisfy the restrictions: (i) cen ≥ cvn, and (ii) crn ≥ αcvn−1.

Assumption 1 (i) precludes the possibility of arbitrage opportunities where goods are procured from

the expedited supplier, to be sold at a premium via the salvage channel. Similarly, Assumption 1

(ii) precludes the possibility of buying units form the regular supplier in period n, and initiating

the sell-off of these units one period later, so that the purchased units can be sold off at a premium

in the same period when they arrive, through the salvage channel.

The state and action variables are given by:

xn = the inventory position at the beginning of period n

= the inventory level at the beginning of period n, plus all outstanding orders from both

suppliers, before the determination of the current orders.

qen = the size of the expedited-channel inventory adjustment in period n.

qrn = the size of the order placed with the regular supplier in period n.

Note, qrn ≥ 0 while −∞< qen <∞. When qen ≥ 0, qen represents the size of the order placed with the

expedited supplier, while qen < 0 indicates that in period n a batch of size |qen| is scheduled to be

salvaged (le periods later).

Our ability to aggregate the order size placed with the expedited supplier, with the amount to

be salvaged (a lead time later), follows, by Assumption 1, from the fact that it is never optimal to

initiate both a negative and a positive expedited-channel inventory adjustment in the same period:

by Assumption 1 (i), if the net inventory position adjustment is positive, one is better off reducing

the order to the level of the net inventory adjustment and canceling the salvage batch; if the net

inventory adjustment is negative, one is better off reducing the size of the salvage batch to this net

adjustment level, while canceling the order with the expedited supplier.

The inventory position dynamics are given by

xn−1 = xn + qen + qrn−Dn.

Moreover, the inventory level In−le at the end of period n− le is given by

In−le = xn + qen−Dn,n−le , (1)
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where Dn,m =Dn+Dn−1 + · · ·+Dm is the aggregate demand in the time interval [n,m] with m≤ n.

Assuming the inventory and backlogging related costs depend on the end-of-period inventory level

sizes only—as in virtually all single-sourcing inventory models, the (single dimensional) inventory

position xn is a sufficient description of the state of the system. Instead of charging the actual

inventory costs that arise at the end of period m (m = 1,2, . . .) to that period, one obtains an

equivalent representation of the controllable part of the total expected discounted cost by charging

its expected value to the start of period m+ le, employing the stochastic identity (1). Thus for all

n= 1,2, . . . ,N , let

Ln(xn + qen) = the expected value of all inventory and backlogging related costs

at the end of period n− le discounted back to period n

and impose a standard assumption regarding these functions, satisfied for most common cost

structures.

Assumption 2. The function Ln(·) is convex and Ln(y) = O(|y|p) for some p ≥ 1, n =

1,2, . . . ,N . Also, E(Dp
n)<∞ for n= 1,2, . . . ,N .

We are now ready to formulate the dynamic programming recursions for our model. Let

fn(x) = the optimal discounted expected total costs in the last n periods of the planning horizon,

when period n is started with an inventory position x.

As mentioned, under Assumption 1, it is never optimal to place an order with the expedited

supplier along with the initiation of a salvage order. Then, in any given period, the firm either

(i) places an order with the expedited supplier, possibly combined with an order for the regular

supplier, or

(ii) initiates the sale of a salvage batch, possibly combined with an order for the regular supplier.

Therefore

fn(x) = min{f1
n(x), f2

n(x)}, (2)

where

f1
n(x) = the minimum total expected cost in the last n periods, when starting with an inventory position

of x units, and assuming no inventory salvage is initiated in period n,

f2
n(x) = the minimum total expected cost in the last n periods, when starting with an inventory position

of x units, and assuming a salvage sale is initiated in period n.
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These functions satisfy the recursions:

f1
n(x) = min

qen,q
r
n∈[0,Cn]

{Knδ(q
e
n) + cenq

e
n +Knδ(q

r
n) + crnq

r
n +Ln(x+ qen) +αEfn−1(x+ qen + qrn−Dn)},

(3)

f2
n(x) = min

qen∈[−Cv
n,0],q

r
n∈[0,Cn]

{Kv
nδ(−qen) + cvnq

e
n +Knδ(q

r
n) + crnq

r
n +Ln(x+ qen) +αEfn−1(x+ qen + qrn−Dn)},

(4)

where δ(u) = 1 if u> 0 and δ(u) = 0 otherwise.

In settings without salvage opportunities, fn(x) = f1
n(x). However, to allow for a unified treat-

ment, we model the “no-salvage” case as one in which cvn =−M , a large negative number such that

salvaging is completely unattractive. Without loss of generality, we set Kv
n = 0 and Cv

n =∞ in this

case.

Since (3) and (4) share the last three terms, and substituting

yn = x+ qen = the beginning inventory position of period n, after inclusion of any expedited supplier order

or salvage sale quantity,

zn = yn + qrn = xn + qen + qrn = the beginning inventory position of period n, after inclusion of all

inventory adjustments of period n,

we can rewrite (3) and (4) as

f1
n(x) = min

y∈[x,x+Cn]
{Knδ(y−x) + cen(y−x) + gn(y)}, (5)

f2
n(x) = min

y∈[x−Cv
n,x]
{Kv

nδ(x− y) + cvn(y−x) + gn(y)}, (6)

where

gn(y) =Ln(y) + f rn(y), (7)

f rn(y) = min
z∈[y,y+Cn]

{Knδ(z− y) + crn(z− y) +αEfn−1(z−Dn)}. (8)

In other words, the order and salvage decisions in any given period may be thought of as occurring

in two stages: first a new order with the expedited supplier/salvage quantity is determined based

on xn—the inventory position, followed by the choice of a supplementary order with the regular

supplier based on the augmented inventory position yn. Our second conclusion is that the dual

source inventory planning problem is equivalent to a single source model with an “adjusted” future

cost function gn(·).

In the next section, we therefore summarize the structural properties of the optimal inventory

policy in the single sourcing problem.

Beyond Assumption 1, we need a few restrictions on the fixed costs and capacity parameters:
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Assumption 3.

Kn ≥ αKn−1, Kv
n ≥ αKv

n−1,

Cn ≤Cn−1, Cv
n ≤Cv

n−1.

In other words, capacity limits are assumed to weakly increase over time, an assumption satisfied

by most practical applications. The inequalities Kn ≥ αKn−1 and Kv
n ≥ αKv

n−1 echo these in the

basic single source inventory problem with fixed order costs, see Scarf (1960) or Zipkin (2000).

4. (C1K1,C2K2)-Convexity and the Single-Period Problem

Federgruen et al. (2017) introduced a key convexity concept, referred to as (C1K1,C2K2)-convexity,

which is a generalization of all familiar convexity properties including K-convexity, see Scarf (1960),

CK-convexity, see Gallego and Scheller-Wolf (2000), sym-K-convexity, see Chen and Simchi-Levi

(2004), and weak (K1,K2)-convexity, see Semple (2007).

4.1. Definitions and Properties

Definition 1 ((C1K1,C2K2)-convexity). Given non-negative constants C1,K1 and C2,K2, a

real-valued continuous function f is called strongly (C1K1,C2K2)-convex if for any x≥ y, a∈ [0,C1]

and b∈ (0,C2],

f(x+ a) +K1 ≥ f(x) +
a

b

(
f(y)− f(y− b)−K2

)
. (9)

Denote SCC1K1,C2K2
as the set of all strongly (C1K1,C2K2)-convex functions. When (9) is required

only for x= y, we refer to the property as weak (C1K1,C2K2)-convexity.

Figure 3 provides an intuitive way of understanding the strong (C1K1,C2K2)-convexity property.

For any two points y≤ x, select any point x+a with a∈ (0,C1] and any point y−b with b∈ (0,C2].

Raise the function value at point x+a by K1 and draw a ray from (x, f(x)) to (x+a, f(x+a)+K1).

Similarly raise the function value at point y− b by K2 and draw a ray from (y− b, f(y− b) +K2)

to (y, f(y)). Then f is strongly (C1K1,C2K2)-convex if the slope of the former ray is bigger than

or equal to the slope of the latter ray.

Federgruen et al. (2017) show that (C1K1,C2K2)-convexity generalizes all familiar convexity

structures as special cases:

• Simple convexity is (∞0,∞0)-convexity.

• K-convexity of Scarf (1960) is weak (∞K,∞0)-convexity.

• Weak/strong CK-convexity of Gallego and Scheller-Wolf (2000) is weak/strong (CK,∞0)-

convexity, respectively.

• Sym-K-convexity of Chen and Simchi-Levi (2004) is weak (∞K,∞K)-convexity.

• Weak (K1,K2)-convexity of Semple (2007) is weak (∞K1,∞K2)-convexity.
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Figure 3 Geometric illustration of strongly (C1K1,C2K2)-convex functions.
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4.2. Single-Period, Bilateral-Adjustment Inventory Problem

In Section 3, we showed that the dual sourcing inventory problem may be viewed as equivalent to

a single sourcing problem with an adjusted salvage value function. To derive the structure of an

optimal strategy we therefore review from Federgruen et al. (2017) the structure of the optimal

policy in the following single sourcing problem. Assume the firm starts the period with an inventory

level (or position) of x units, and has the ability to elevate the level, instantaneously, via an order

of up to C1 units, or to decrease the level, by selling up to C2 units. An order (salvage sale) involves

a fixed cost K1 (K2) and a variable per-unit cost (revenue) β1 (β2). The expected cost during the

period is given by a function g(y) of the inventory level after any adjustment (order or salvage

quantity). This gives rise to the optimization problem:

g1(x) = min
y∈[x,x+C1]

{K1δ(y−x) +β1(y−x) + g(y)}, (10)

g2(x) = min
y∈[x−C2,x]

{K2δ(x− y) +β2(y−x) + g(y)}, (11)

g0(x) = min{g1(x), g2(x)}, (12)

Note that, in each period n, the value functions f1
n(·), f2

n(·) satisfy a single stage problem of the

structure, given by (10) and (11), with g1(·) = f1
n(·), g2(·) = f2

n(·) and g(·) = gn(·). Federgruen et al.

(2017) show that the optimal inventory adjustment strategy has a relatively simple structure when

the function g(·) is strongly (C1K1,C2K2)-convex. In the next section, we will inductively show

that in each period n, the function gn(·) has the strong (C1K1,C2K2)-convexity property for the

proper parameters C1,K1,C2 and K2.
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Define auxiliary functions

g̃1(x) =K1 + min
y∈[x,x+C1]

{β1(y−x) + g(y)}, (13)

g̃2(x) =K2 + min
y∈[x−C2,x]

{β2(y−x) + g(y)}, (14)

as counterparts of g1(x) and g2(x), under definitive inventory adjustment, i.e., definitively incurring

fixed costs for ordering or salvaging, respectively, and let Ai(x) = g̃i(x)− g(x) be the increase in

minimal cost if forced to order (for i= 1) or salvage (for i= 2).

To characterize the structure of an optimal policy we need to define some critical points as

follows, with the convention that the infimum (supremum) of an empty set equals +∞ (−∞).

Definition 2. (Critical Points) For a continuous function g(·) ∈ SCC1K1,C2K2
and any β1, β2,

define

B = inf
{

arg min
y
{β1y+ g(y)}

}
, b= inf{x : A1(x)≥ 0}, b̄= sup{x : A1(x)< 0}, (15)

S = sup
{

arg min
y
{β2y+ g(y)}

}
, s= sup{x : A2(x)≥ 0}, s= inf{x : A2(x)< 0}. (16)

These critical points play important roles in the structure of the optimal strategy. By its defini-

tion, B is the (smallest) global minimizer of g̃1(x) if C1 =∞, i.e., the smallest order-up-to level for

sufficiently small x if ordering is better than staying put. Similarly, S is the (largest) global mini-

mizer of g̃2(x) if C2 =∞, .i.e., the biggest salvage-down-to level for sufficiently large x if salvaging

is better than staying put; b is the smallest among all inventory levels where ordering is not better

than staying put; b̄ is the largest among all inventory levels where ordering is better than staying

put; s is the largest among all inventory levels where salvaging is not better than staying put; s is

the smallest among all inventory levels where salvaging is better than staying put.

Note that by definition we have

g1(x) = min{g(x), g̃1(x)}, A1(x)< 0 ∀x< b, A1(x)≥ 0 ∀x> b̄, (17)

g2(x) = min{g(x), g̃2(x)}, A2(x)< 0 ∀x> s, A2(x)≥ 0 ∀x< s. (18)

The lemma below characterizes the ranking of the critical points, which is important when

developing the optimal policy structure.

Lemma 1 (Critical Points). Assume β1 ≥ β2 and g(·)∈ SCC1K1,C2K2
, then

(i) −∞≤ b≤ b̄≤ s≤ s≤∞;

(ii) −∞≤ b≤B ≤ S ≤ s≤∞;

(iii) If C2 =∞ and K1 ≥K2, then b̄≤B; if C1 =∞ and K1 ≤K2, then S ≤ s;
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(iv) If C1 =∞ and K2 = 0, then b = b̄; if C2 =∞ and K1 = 0, then s = s. If C1 = C2 =∞ and

K1 =K2 = 0, then b= b̄=B,S = s= s.

Proof. See Proof of Proposition 2 in Federgruen et al. (2017).

In this lemma, (i) ranks four critical points. (ii) ranks and locates the global minimizers B and

S between b and s. (iii) and (iv) lead to simple policy structures, in certain special cases, which

will be discussed later.

With the definitions and lemmas developed so far, we now proceed to the optimal single-period

policy structure, in the following proposition.

Proposition 1 (Optimal Policy Structure). Assume β1 ≥ β2 and g(·) ∈ SCC1K1,C2K2
, then

g0(x) and the corresponding minimizer y∗(x) are characterized by Table 1, in which g̃1(·) and g̃2(·)

are defined by (13) and (14), respectively. If y∗(x) is specified as a two-element set {·, ·}, either

one of the two elements may apply. Let

B(x) = inf{ arg min
x≤y≤x+C1

{β1y+ g(y)}, S(x) = sup{ arg min
x−C2≤y≤x

{β2y+ g(y)}

denote minimizers of g̃1(x) and g̃2(x), respectively.

Table 1 Optimal policy structure

x (−∞, b) [b, b̄) [b̄, s] (s, s] (s,∞)

g0(x) g̃1(x) min{g̃1(x), g(x)} g(x) min{g̃2(x), g(x)} g̃2(x)
y∗(x) B(x) {B(x), x} x {S(x), x} S(x)

Proof. See Proof of Theorem 2 in Federgruen et al. (2017).

In other words, four critical points partition the inventory position line into 5 regions. In the two

extreme regions, (−∞, b) and (s,∞), a positive order or salvage transaction needs to be initiated,

respectively; in the middle region, [b̄, s], it is optimal to stay put; in the second region, [b, b̄), it is

optimal to either order or to stay put, and in the fourth region, (s, s], it is optimal to either initiate

a salvage transaction or to stay put. Within the latter two regions, it is possible that the optimal

policy alternates several times between ordering or salvaging versus staying put, a phenomenon

already discovered in simpler models without salvage opportunities, see e.g., Chen and Lambrecht

(1996) and Chen (2004).
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4.3. Preservation of (C1K1,C2K2)-Convexity under Value Iteration

The (C1K1,C2K2)-convexity is preserved under the minimization operations specified by (10)–(12).

This enables us to extend the structural results, above, to general multi-period planning horizons.

Proposition 2 (Preservation). Assuming β1 ≥ β2, if g(·) is strongly (C1K1,C2K2)-convex,

then

g1(x) = min
y∈[x,x+C′1]

{K1δ(y−x) +β1(y−x) + g(y)},

g2(x) = min
y∈[x−C′2,x]

{K2δ(x− y) +β2(y−x) + g(y)},

g0(x) = min{g1(x), g2(x)},

are also strongly (C1K1,C2K2)-convex for any C ′1 ≥C1,C
′
2 ≥C2.

Proof. See Proof of Proposition 3 in Federgruen et al. (2017).

5. The Full Planning Horizon: Optimal Policy Structures

Given the results of Section 4, the structure of the optimal policy in each period n = 1, . . . ,N

follows easily by showing that the value functions {fn(x)} satisfy the required strong (C1K1,C2K2)-

convexity property.

Theorem 1. Assume f0(x) ∈ SCC0K0,C
v
0K

v
0

and f0(x) = O(|x|p) for some integer p ≥ 1. Then

fn(x)∈ SCCnKn,Cv
nK

v
n

and fn(x) =O(|x|p) for n=N,N − 1, . . . ,0.

Proof. We prove this theorem by induction. By our assumption, the theorem holds for n= 0.

Suppose the result holds for period n−1, i.e., fn−1(·)∈ SCCn−1Kn−1,C
v
n−1K

v
n−1

and fn−1(x) =O(|x|p).

We first prove that fn(x) =O(|x|p). Since fn−1(x) =O(|x|p), there exists a constant A> 0 such that

|fn−1(x)| ≤A|x|p; so that |Efn−1(z−Dn)| ≤AE|z−Dn|p ≤AE(|z|+Dn)p =A
∑p

l=0

(
p
l

)
EDp−l

n |z|l ≤

Bmax{|z|p,1} for some constant B > 0. Let z∗(y) achieve the minimum in (8), then |f rn(y)| ≤Kn+

crn|z∗|+ αB|z∗|p ≤Kn + crn(|y|+ Cn) + αBmax{1, (|y|+ Cn)p} = O(|y|p). By the same argument,

and since Ln(y) =O(|y|p), gn(y) =O(|y|p) and f1
n(x), f2

n(x) and fn(x) are all O(|x|p).

We then prove that fn(x)∈ SCCnKn,Cv
nK

v
n
. Since fn−1(·)∈ SCCn−1Kn−1,C

v
n−1K

v
n−1

, by Lemma 1 (iii)

and (iv) in Federgruen et al. (2017), and Assumption 3,

αEfn−1(z−Dn)∈ SCCn−1(αKn−1),C
v
n−1(αK

v
n−1)
⊂ SCCnKn,Cv

nK
v
n
. (19)

It then follows from Proposition 2 and Assumption 3 that f rn(y) ∈ SCCnKn,Cv
nK

v
n
. Since Ln(·) is

convex, we have

gn(y) =Ln(y) + f rn(y)∈ SCCnKn,Cv
nK

v
n

(20)
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by Lemma 1 (iii) in Federgruen et al. (2017). Finally by Proposition 2 again, f1
n(x), f2

n(x), fn(x)∈

SCCnKn,Cv
nK

v
n
. �

Theorem 1 guarantees strong (CnKn,C
v
nK

v
n)-convexity of the value function fn(x) in any period,

which allows us to obtain the optimal policy structure using the results in Section 4.2. Define

auxiliary functions

g̃1n(x) =Kn + min
y∈[x,x+Cn]

{cen(y−x) + gn(y)}, A1
n(x) = g̃1n(x)− gn(x),

g̃2n(x) =Kv
n + min

y∈[x−Cv
n,x]
{cvn(y−x) + gn(y)}, A2

n(x) = g̃2n(x)− gn(x),

g̃rn(y) =Kn + min
z∈[y,y+Cn]

{crn(z− y) +αEfn−1(z−Dn)}, Arn(y) = g̃rn(y)−αEfn−1(y−Dn),

where g̃1n(x) represents the optimal expected cost from period n on assuming one is committed to

place an order with the expedited supplier in this period (possibly combined with an order with

the regular supplier). A1
n(x) = g̃1n(x)−gn(x) denotes the cost differential with the optimal expected

cost from period n on, assuming one is committed to forgo any order with the expedited supplier or

a salvage batch in this period. Similarly, g̃2n(x) represents the optimal expected cost from period n

on assuming one is committed to initiate a salvage batch in this period (possibly combined with an

order with the regular supplier). A2
n(x) = g̃2n(x)− gn(x) denotes the cost differential with the same

benchmark gn(·) used in the definition of A1
n(·). Finally, given an inventory position y in period

n, g̃rn(y) denotes the expected optimal cost until the end of the planning horizon, assuming one is

committed to place an order with the regular supplier, while Arn(y) denotes the cost differential

vis-à-vis the optimal expected cost when forgoing an order with the regular supplier in this period

n.

Define the following critical points for period n with implications as mentioned after Definition 2:

Be
n = inf{arg min

y
{ceny+ gn(y)}}, ben = inf{x :A1

n(x)≥ 0}, b̄en = sup{x :A1
n(x)< 0}, (21)

Sn = sup{arg min
y
{cvny+ gn(y)}}, sn = sup{x :A2

n(x)≥ 0}, sn = inf{x :A2
n(x)< 0}, (22)

Br
n = inf{arg min

z
{crnz+αEfn−1(z−Dn)}}, brn = inf{x :Arn(x)≥ 0}, b̄sn = sup{x :Arn(x)< 0}. (23)

Using these critical points, the following theorem follows immediately from Proposition 1.

Theorem 2. The optimal solution to fn(xn) is characterized by Table 2, in which certain y∗n(xn)

and z∗n(y∗n) are either uniquely determined or take a value in a bi-valued set {·, ·}, and

Be
n(x) = inf{ arg min

x≤y≤x+Cn

{ceny+ gn(y)},

Sn(x) = sup{ arg min
x−Cv

n≤y≤x
{cvny+ gn(y)},

Br
n(y) = inf{ arg min

y≤z≤y+Cn

{crnz+αEfn−1(z−Dn)}

are minimizers of g̃1n(x), g̃2n(x) and g̃rn(y), respectively.
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Table 2 Optimal policy structure for systems with fixed costs and capacity limits

(a) Expedited supplier and salvage

xn (−∞, ben) [ben, b̄
e
n) [b̄en, s

v
n] (svn, sn] (sn,∞)

fn(xn) g̃1n(xn) min{g̃1n(xn), g(xn)} g(xn) min{g̃2n(xn), g(xn)} g̃2n(xn)
y∗n(xn) Be

n(xn) {Be
n(xn), xn} xn {Sn(xn), xn} Sn(xn)

(b) Regular supplier

y∗n (−∞, brn) [brn, b̄
r
n) [b̄rn,∞)

f r
n(y∗n) g̃rn(y∗n) min{g̃rn(y∗n), αEfn−1(y∗n−Dn)} αEfn−1(y∗n−Dn)}
z∗n(y∗n) Br

n(y∗n) {Br
n(y∗n), y∗n} y∗n

Proof. By Assumption 1, cen ≥ cvn. By (20) in the proof of Theorem 1, gn(y) ∈ SCCnKn,Cv
nK

v
n
.

Applying Proposition 1 with properly defined critical points, we immediately obtain the optimal

policy structure for ordering with the expedited supplier and salvaging, as given by Table 2 (a).

For the regular supplier, since αEfn−1(z−Dn)∈ SCCnKn,Cv
nK

v
n

by (19) in the proof of Theorem 1,

we can apply Proposition 1 again and use Corollary 2 in Federgruen et al. (2017) to obtain the

optimal policy structure given by Table 2 (b). �

Based on Theorem 2, the optimal order and salvage decisions, in period n, can be determined

in two steps. In the first step, determine the optimal adjustment target y∗n(xn) for the expedited

channel (i.e., the optimal order amount from the expedited supplier or salvage amount) using

Table 2 (a) after computing all necessary auxiliary functions and critical points; this also involves

the calculation of the value function f rn(y). In the second step, with y∗n obtained from the first step,

determine the optimal adjustment target z∗n(y∗n) for the regular channel (which implies the optimal

order amount from the regular supplier) using Table 2 (b).

5.1. Special Settings

In this subsection, we consider several special settings where the optimal policy structure takes on

simpler forms.

5.1.1. No Fixed Costs, No Capacity Limits, Salvage Opportunities

In this setting Kn =Kv
n = 0 and Cn =Cv

n =∞. Based on Table 3 (c) in Corollary 3 in Federgruen

et al. (2017), the optimal policy structure for systems without fixed costs and capacity limits

is summarized by Table 3. The optimal inventory decision for the expedited channel (ordering

from the expedited supplier or salvaging) follows a double “base stock”–type policy. The inventory

position line is partitioned into three consecutive regions. In the left and right most regions, it

is optimal to order up to a base-stock level Be
n from the expedited supplier or to salvage down

to a level Sn, respectively; in the middle region it is optimal to stay put. The optimal inventory



Federgruen, Liu and Lu: A General Model for Inventory Management with Dual Sources
Article submitted to Manufacturing & Service Operations Management; manuscript no. MS-0000-0000.00 21

decision for the regular supplier is a simple base stock policy with an order-up-to level Br
n. Note

that if salvaging is not allowed, the first stage policy is a simple base stock policy, i.e., Sn =∞,

eliminating the last column in subtable (a).

Table 3 Optimal policy structure for systems without fixed costs and capacity limits

(a) Expedited supplier and salvage

xn (−∞,Be
n) [Be

n, Sn] (Sn,∞)

y∗n(xn) Be
n xn Sn

(b) Regular supplier

y∗n (−∞,Br
n) [Br

n,∞)

z∗n(y∗n) Br
n y∗n

5.1.2. Fixed Costs, No Capacity Limits, No Salvage. In this setting Kn > 0,Kv
n = 0,

Cn = Cv
n =∞. Based on Table 3 (a) from Corollary 3 in Federgruen et al. (2017), the optimal

policy structure is summarized by Table 4. Both channels take on the classical “(s,S)”–type policy.

More specifically, the expedited channel adopts a (ben,B
e
n) policy and the regular channel follows a

(brn,B
r
n) policy.

Table 4 Optimal policy structure for systems with fixed costs but without capacity limits

(a) Expedited supplier

xn (−∞, ben) [ben,∞)

y∗n(xn) Be
n xn

(b) Regular supplier

y∗n (−∞, brn) [brn,∞)

z∗n(y∗n) Br
n y∗n

5.1.3. No Fixed Costs, Capacity Limits, No Salvage. In this setting, Kn =Kv
n = 0 and

Cn <∞,Cv
n =∞. Based on Table 4 (c) from Corollary 4 in Federgruen et al. (2017), under the

optimal policy, both channels adopt a modified base-stock policy as in Table 5.

Table 5 Optimal policy structure for systems without salvage option

(a) Expedited supplier

xn (−∞, b̄en−Cn) [b̄en−Cn, b̄
e
n) [b̄en,∞)

y∗n(xn) xn +Cn b̄en xn

(b) Regular supplier

y∗n (−∞, b̄rn−Cn) [b̄rn−Cn, b̄
r
n)

z∗n(y∗n) y∗n +Cn b̄rn
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5.1.4. Fixed Costs and Capacity Limits, No Salvage. In this setting Kn > 0,Kv
n = 0 and

Cn <∞,Cv
n =∞. Based on Table 4 (a) from Corollary 4 in Federgruen et al. (2017), the optimal

policy structure for systems with fixed costs and capacity limits but without salvage option is

summarized by Table 6, where

1+
ben

= 1(ben > b̄
e
n−Cn), 1−ben = 1(ben < b̄

e
n−Cn); 1+

brn
= 1(brn > b̄

r
n−Cn), 1−brn = 1(brn < b̄

r
n−Cn).

The optimal policy structures for the expedited and regular suppliers are similar in form. There

are four regions. In the far-left region, the optimal policy is to order as much as possible—up to

the capacity limit, while in the far-right region it is optimal to stay put. In the remaining two

intermediate regions, the optimal policy is less categorical: in the third region, it is optimal to

either stay put or to place an order; in the second region, one of two cases prevails: in one case it

is optimal to either order as much as possible or stay put and in the other it is optimal to order a

quantity specified by the aforementioned functions, B̄e
n(·) or B̄r

n(·).

Table 6 Optimal policy structure for systems without salvage option

(a) Expedited supplier

xn (−∞,min{b̄en−Cn, b
e
n}) [min{b̄en−Cn, b

e
n},max{b̄en−Cn, b

e
n}) [max{b̄en−Cn, b

e
n}, b̄en) [b̄en,∞)

y∗n(xn) xn +Cn {xn +Cn, xn}1−ben + B̄e
n(xn)1+

ben
{B̄e

n(xn), xn} xn

(b) Regular supplier

y∗n (−∞,min{b̄rn−Cn, b
r
n}) [min{b̄rn−Cn, b

r
n},max{b̄rn−Cn, b

r
n}) [max{b̄rn−Cn, b

r
n}, b̄rn) [b̄rn,∞)

z∗n(y∗n) y∗n +Cn {y∗n +Cn, y
∗
n}1−brn + B̄r

n(y∗n)1+
brn

{B̄r
n(y∗n), y∗n} y∗n

6. General Lead Times

In this Section, we address the general case, with arbitrary lead time combinations lr > le, rather

than the special setting where lr− le = 1. As shown in Whittemore and Saunders (1977) and, more

recently, in Sheopuri et al. (2010), when the difference between the lead times ∆l≡ lr− le ≥ 2, it is

no longer possible to collapse the state space into a one-dimensional space. Instead, Sheopuri et al.

(2010) show that a minimal state description is of dimension ∆l, even in the simplest of models,

i.e., in the absence of any fixed order costs, capacity limits or salvage opportunities. The following

is one such “minimal” state descriptions:

It ≡ (I let , I
le+1
t , . . . , I lr−1t ),

where I lt = the net inventory level at the beginning of period t plus all outstanding orders that will

arrive by the beginning of period t+ l. While of dimension ∆l, this state description is already,
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a major simplification, beyond the straightforward state description, which includes the inventory

level and each of le outstanding orders with the expedited supplier and the lr orders with the

regular supplier.

Note that xt = I lr−1t , represents the regular full inventory position at the beginning of period t,

including all outstanding orders with the expedited and regular suppliers.

The exact optimal procurement strategy is a function of the full ∆l-dimensional state vector It.

For example, Whittemore and Saunders (1977) already showed that, even in the absence of fixed

costs, capacity limits or salvage opportunities, the optimal order policy for the regular supplier fails

to be a base-stock policy based on the full inventory position, see also Theorem 3.2 in Sheopuri

et al. (2010). This fully optimal strategy fails to have an elegant structure, as in the case ∆l = 1

developed in Section 5. It is prohibitively difficult to compute, in particular when ∆l≥ 3, say, and

even if computable, it would be prohibitively difficult to implement.

For ∆l ≥ 2, we therefore need to resort to heuristics, and propose the following procedure. For

the sake of notational simplicity, we confine ourselves to infinite horizon models with stationary

inputs (parameters and demand distributions).

Two-Step Procedure:

Step 1: Set l̂r = le + 1. Identify the structure of the optimal policy from the results in Section 5,

and calculate the minimal optimal cost value C, a lower bound for the true optimal cost C∗.

Similarly, an upper bound C̄ ≥C∗ is obtained when increasing le to lr−1, leaving lr unchanged.

Step 2: Within the identified class of policies for expedited and regular orders, search for the

optimal combination of policy parameters using xt = I lr−1t , the full inventory position measure,

as the inventory index.

The procedure is most easily explained in the base model without fixed costs, capacity limits

or salvage opportunities: when le = lr − 1, it is known since Fukuda (1964)—and we showed it as

a simple corollary of our general framework, see Table 3 and the adjacent discussion—that it is

optimal to use a single index pair of base-stock policies. In Step 2, we follow the same order rules,

using the full inventory position as the single inventory index, but search for the pair of base-stock

levels Br > Be under which the long-run average cost value is minimal along all such combined

base-stock policies. Let

IP1 = xt = I lr−1t = full inventory position at the beginning of period t,

IP2 = IP1 + qet ,

IP3 = IP1 + qet + qrt = IP2 + qrt .
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As mentioned in Section 2, Scheller-Wolf et al. (2007) already proposed this class of single

index policies in the base model. They show how the optimal base-stock level pair can be found

analytically, with a special algorithm. In contrast, Veeraraghavan and Scheller-Wolf (2008) proposed

a class of combined base-stock policies where the order with the expedited supplier is based on I let

rather than I lr−1t , while the order for the regular supplier continues to be based on IP2 = IP1 + qet .

The authors refer to such policies as “dual index policies”.

Clearly, alternative dual index policies can be entertained by basing the expedited supplier order

on any one of the components of the full state vector It ≡ (I let , I
le+1
t , . . . , I lr−1t )—not just I lr−1t = xt

or I let as in Veeraraghavan and Scheller-Wolf (2008)—or a weighted average of those components,

as in Sheopuri et al. (2010). As discussed in Section 2, in the base model, all of these various choices

exhibit very comparable cost performance. This motivates our restriction to single index policies

for the general model, with fixed costs, capacity limits and/or salvage opportunities.

6.1. Numerical Study

We have conducted a numerical study to explain how and to what extent dual sourcing can result

in system-wide cost savings, compared with an optimal single sourcing policy (with either the slow

or the fast supplier). We also investigate how the optimal policy parameters and the optimal cost

value depend on various model primitives. As mentioned, in analyzing the dual sourcing setting,

we follow the Two-Step Procedure, described above.

We investigate two sets of problem instances, with 25 and 30 problem instances, respectively. The

first set relates to the base model, without fixed order costs, capacity limits or salvage opportunities.

Here, the Two-Step Procedure suggests the use of a single index pair of base-stock policies, and

we compute the best such pair with the algorithm in Scheller-Wolf et al. (2007). In the second set

of instances, we add a fixed order cost. As a consequence, the Two-Step Procedure suggests the

use of a single index pair of (s,S)-policies, both acting on the full inventory position. Such a pair

of policies is characterized by 4 parameters (se, Se, sr, Sr); we determine the optimal quadruple

of policy parameters via simulation and an exhaustive search over an integer grid (To reduce the

computational times, we employed the parameter restriction Sr− sr = Se− se, i.e., we assumed an

identical gap between the reorder level and order-up-to level for both suppliers.) Every problem

instance was evaluated for every policy parameter condition, with a simulation over a horizon of

100,000 periods. All problem instances assume the demand distribution is Normal.

Table 7 exhibits the results for the first set of instances. The first 9 columns specify the input

parameters, in particular: (i) the expedited lead time le; (ii) the regular lead time lr; (iii) the

differential between the per unit cost rates charged by the expedited and regular suppliers, c;
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Table 7 Numerical results for settings without fixed cost

Varying parameters l e l r c h p SL µ σ Cost* % Savings S e S r % Expedited Expedite Freq Cost* S e Cost* S r
0 1 10 5 495 99% 5 1 17.20 8.9% 6.9 12.7 2.2% 19.8% 18.89 13.3
0 2 10 5 495 99% 5 1 19.28 16.9% 12.1 17.5 4.6% 34.6% 23.21 19.1
0 3 10 5 495 99% 5 1 20.77 21.8% 16.9 22.1 6.8% 45.0% 26.54 24.7
0 4 10 5 495 99% 5 1 21.79 27.2% 21.4 26.4 8.7% 52.6% 29.93 30.2
0 5 10 5 495 99% 5 1 22.91 30.2% 25.8 30.6 10.2% 58.1% 32.85 35.7
0 2 10 5 495 99% 5 1 19.28 16.9% 12.1 17.5 4.6% 34.6% 63.49 7.4 23.21 19.1
1 3 10 5 495 99% 5 1 24.14 9.0% 18.0 23.5 3.7% 29.5% 68.89 13.3 26.54 24.7
2 4 10 5 495 99% 5 1 28.00 6.5% 23.7 29.3 3.4% 27.6% 73.07 19.0 29.93 30.2
3 5 10 5 495 99% 5 1 31.33 4.6% 29.3 34.9 3.0% 25.1% 76.70 24.7 32.85 35.7
4 6 10 5 495 99% 5 1 34.19 3.2% 34.7 40.6 2.2% 20.0% 79.93 30.2 35.32 41.1
2 4 1 5 495 99% 5 1 24.55 12.5% 23.0 27.1 20.1% 81.8% 28.07 19.0
2 4 2.5 5 495 99% 5 1 25.71 14.1% 23.4 28.1 11.8% 63.2% 35.57 19.0
2 4 5 5 495 99% 5 1 26.79 10.5% 23.6 28.7 6.8% 45.2% 48.07 19.0
2 4 10 5 495 99% 5 1 28.00 6.5% 23.7 29.3 3.4% 27.6% 73.07 19.0
2 4 20 5 495 99% 5 1 29.00 3.1% 23.6 29.8 1.2% 11.8% 123.07 19.0
2 4 10 5 12 70% 5 1 12.95 0.4% 19.5 26.1 0.4% 5.0% 60.06 15.9 13.00 26.2
2 4 10 5 20 80% 5 1 15.54 1.1% 20.5 26.7 1.0% 10.5% 62.17 16.5 15.72 26.9
2 4 10 5 45 90% 5 1 19.21 2.6% 21.6 27.5 1.9% 17.4% 65.25 17.2 19.72 27.9
2 4 10 5 95 95% 5 1 22.25 4.0% 22.3 28.2 2.3% 20.7% 67.93 17.9 23.18 28.7
2 4 10 5 495 99% 5 1 28.00 6.5% 23.7 29.3 3.4% 27.6% 73.07 19.0 29.93 30.2
2 4 10 5 495 99% 5 0.1 2.80 6.5% 20.4 25.4 0.3% 27.7% 52.31 15.4 2.99 25.5
2 4 10 5 495 99% 5 0.5 14.00 6.5% 21.9 27.2 1.7% 27.6% 61.54 17.0 14.97 27.6
2 4 10 5 495 99% 5 1.0 28.00 6.5% 23.7 29.3 3.4% 27.6% 73.07 19.0 29.93 30.2
2 4 10 5 495 99% 5 1.5 42.00 6.5% 25.6 31.5 5.1% 27.6% 84.61 21.1 44.90 32.8
2 4 10 5 495 99% 5 2.0 56.00 6.5% 27.4 33.6 6.8% 27.6% 96.20 23.1 59.87 35.4

Demand volatility σ

Parameters Dual Sourcing Single - Expedited Single - Regular

Lead time difference
l r -l e

63.49 7.4

Lead times l r , l e
(fixing l r -l e )

Unit cost c 29.93 30.2

Service level
SL = p /(h+p )

Note. Setting: Normal demands for 100,000 periods; full backlogging.

(iv) K, the fixed cost incurred for any order; (v) h, the holding cost rate for any unit carried in

inventory, in any given period; (vi) p, the backlogging cost rate incurred for any unit backlogged,

per period; (vii) SL = p/(h+ p), the service level in a single source setting when governed by a

base-stock level; (viii) µ= the mean of the Normally distributed one-period demand; (ix) σ= the

standard deviation of the Normally distributed one-period demand.

The remaining ten columns in the table display various output measures as follows:

(a) Cost* = the optimal long-run average cost value within our considered class of dual sourcing

policies;

(b) % Savings = the percentage savings realized by the above dual sourcing policy, compared with

the optimal single sourcing policy;

(c) Se and Sr = the optimal base-stock level for the fast and slow supplier, respectively;

(d) % Expedited = the percentage of sales that is procured from the expedited supplier;

(e) Expedite Freq : the percentage of periods in which an order is placed with the fast supplier (by

itself or in combination with a regular order).

(f) Single–Expedited : the optimal long-run average cost (Cost*) and base-stock level(Se), assuming

the fast supplier is used as the single supplier;



Federgruen, Liu and Lu: A General Model for Inventory Management with Dual Sources
26 Article submitted to Manufacturing & Service Operations Management; manuscript no. MS-0000-0000.00

(g) Single–Regular : the optimal long-run average cost (Cost*) and base-stock level(Sr), assuming

the regular supplier is used as the single supplier.

The first panel in the table investigates the impact of a widening gap between the two lead times,

assuming the expedited orders are delivered instantaneously. With a one-period difference in the

lead times, only 2.2% of demands are covered by procurements from the fast supplier. Nevertheless,

the availability of this fast supply source allows for a cost saving of up to 8.9%. The availability

of the expedited supply source, allows one to reduce the base-stock level for the regular supplier

from 13.3 to 12.7. Moreover, it allows one to avoid many stockouts under unusually large demands.

Orders with the fast supplier are placed in about 1 out of 5 periods.

As the lead time difference increases from one to five periods, the cost savings grows to 30.2%.

This extensive cost saving is accomplished, even though, even in this case, little more than 10%

of sales are sourced from the fast supplier (and order is placed with the fast supplier in less than

60% of the periods). Across the board, it is significantly cheaper to use the regular supplier as an

exclusive source, as opposed to the fast supplier, as long as the difference in the per-unit prices

amounts to $10.

In the second panel, we fix the lead time difference to be ∆l= lr− le = 2, but increase le from 0

to 4, in increments of 1. The cost saving achieved by dual sourcing is largest in the first instance

(16.9%) and monotonically decreases to 3.2%. This pattern is intuitive: in the single source setting,

the long-run average inventory-related cost is proportional with the square root of the lead time;

therefore, the differential in the inventory related costs under exclusive usage of the regular versus

the expedited supplier is proportional with
√
le + ∆l−

√
le = ∆l/(

√
le + ∆l+

√
le), which decreases

monotonically with le for a fixed value of ∆l. Again, remarkably, the 16.9% cost saving is achieved

even while assigning less than 5% of the business to the fast supplier.

In the third panel, we investigate the impact of the cost differential c. When c= 1, it is cheaper

to use the fast, as compared to the slow, supplier as an exclusive source. However, the opposite

is true when c≥ 2.5. Either way, significant savings—up to 14.1% in this set of instances—can be

achieved with a dual sourcing approach. Note that when c= 1, the optimal dual sourcing policy

uses the fast supplier for only 20% of the total procurement value and only 81.8% of the time, even

though she is the preferred choice in a single sourcing strategy.

In the fourth panel, we vary the value of the backlogging cost rate p, so that the corresponding

service level index SL = p/(h + p) varies between 70% and 99%. The cost savings due to dual

sourcing increases monotonically from 0.4% to 6.5% as a higher service level is targeted; this is

consistent with our explanation above, i.e., that the primary benefit of an expedited supply source
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Table 8 Numerical results for settings with fixed cost

Varying parameters l e l r c K h p SL µ σ Cost*% Savings s e S e s r S r % Expedited Expedite Freq Cost* s e S e Cost* s r S r
0 1 10 10 5 495 99% 5 1 28.13 4.5% 6 7 12 13 0.6% 2.3% 29.46 12 13
0 2 10 10 5 495 99% 5 1 31.89 3.5% 12 12 18 18 1.7% 15.9% 33.05 18 19
0 3 10 10 5 495 99% 5 1 33.95 7.8% 17 18 22 23 4.9% 15.9% 36.83 23 25
0 4 10 10 5 495 99% 5 1 35.65 10.1% 22 23 27 28 4.9% 15.9% 39.66 29 30
0 5 10 10 5 495 99% 5 1 37.37 12.2% 27 28 32 33 4.9% 15.9% 42.55 35 36
0 2 10 10 5 495 99% 5 1 31.89 3.5% 12 12 18 18 1.7% 15.9% 74.42 7 7 33.05 18 19
1 3 10 10 5 495 99% 5 1 35.97 2.4% 17 18 23 24 0.6% 2.3% 79.51 12 13 36.83 23 25
2 4 10 10 5 495 99% 5 1 38.83 2.1% 23 24 29 30 0.6% 2.3% 83.10 18 19 39.66 29 30
3 5 10 10 5 495 99% 5 1 42.49 0.2% 28 29 35 36 0.0% 0.1% 86.88 23 25 42.55 35 36
4 6 10 10 5 495 99% 5 1 44.61 0.8% 34 35 40 41 0.6% 2.3% 89.71 29 30 44.95 40 41
2 4 1 10 5 495 99% 5 1 38.05 0.0% 18 19 18 19 100.0% 100.0% 38.05 18 19
2 4 2.5 10 5 495 99% 5 1 38.47 3.0% 23 24 28 29 4.9% 15.9% 45.56 18 19
2 4 5 10 5 495 99% 5 1 38.67 2.5% 23 24 29 30 0.6% 2.3% 58.07 18 19
2 4 10 10 5 495 99% 5 1 38.83 2.1% 23 24 29 30 0.6% 2.3% 83.10 18 19
2 4 20 10 5 495 99% 5 1 39.16 1.3% 23 24 29 30 0.6% 2.3% 133.14 18 19
2 4 10 0 5 495 99% 5 1 28.41 4.2% 24 24 30 30 1.7% 15.9% 73.10 18 19 29.66 29 30
2 4 10 10 5 495 99% 5 1 38.83 2.1% 23 24 29 30 0.6% 0.02 83.10 18 19 39.66 29 30
2 4 10 20 5 495 99% 5 1 49.07 1.2% 23 24 29 30 0.6% 0.02 93.09 17 19 49.66 29 30
2 4 10 30 5 495 99% 5 1 56.62 0.0% 20 27 28 35 0.0% 0.00 101.08 17 24 56.63 28 35
2 4 10 40 5 495 99% 5 1 61.63 0.0% 20 27 28 35 0.0% 0.00 106.09 17 24 61.65 28 35
2 4 10 10 5 7.5 60% 5 1 20.86 0.0% 14 17 23 26 0.0% 0.0% 68.70 13 16 20.86 23 26
2 4 10 10 5 20 80% 5 1 25.65 0.0% 19 21 25 27 0.1% 0.1% 72.64 15 16 25.65 25 27
2 4 10 10 5 45 90% 5 1 29.59 0.1% 20 22 26 28 0.1% 0.1% 75.37 16 17 29.62 26 28
2 4 10 10 5 95 95% 5 1 33.14 0.1% 21 23 27 29 0.1% 0.1% 77.94 16 18 33.18 27 29
2 4 10 10 5 495 99% 5 1 38.83 2.1% 23 24 29 30 0.6% 2.3% 83.10 18 19 39.66 29 30
2 4 10 10 5 495 99% 5 0.1 14.99 0.0% 20 20 26 26 0.0% 0.0% 65.00 12 16 14.99 22 26
2 4 10 10 5 495 99% 5 0.5 25.52 0.0% 21 22 27 28 0.0% 0.0% 71.55 15 17 25.53 26 28
2 4 10 10 5 495 99% 5 1.0 38.83 2.1% 23 24 29 30 0.6% 2.3% 83.10 18 19 39.66 29 30
2 4 10 10 5 495 99% 5 1.5 53.09 2.2% 25 26 31 32 3.1% 9.2% 94.61 20 21 54.29 31 33
2 4 10 10 5 495 99% 5 2.0 66.97 2.9% 26 28 33 35 1.5% 2.8% 105.98 21 23 68.99 33 36

29 30

Fixed cost K

Parameters Dual Sourcing Single - Expedited Single - Regular

Lead time 
difference
l r -l e

74.42 7 7

Service level
SL = p /(h+p )

Demand volatility σ

Lead times l r , l e
(fixing l r -l e )

Unit cost c 39.66

Note. Setting: Normal demands for 100,000 periods; full backlogging.

is to avoid stockouts without acquiring excessive regular inventory investments. Similarly, both the

optimal base-stock levels Se and Sr increase monotonically with SL. Comparing the two extreme

instances in this panel, when an SL level of 70% is targeted, an order is placed with the fast

supplier in only 5% of the periods as opposed to 27.6% of the periods when SL= 99%.

Dependence on the demand volatility is assessed by varying the coefficient of variation of the

demand distribution from 2% to 40%, with the base value of 20% as its midpoint. In this case,

the relative cost saving remains almost constant, at the approximate level of 6.5%. Similarly, the

frequency with which orders are placed with the fast supplier is approximately 27.6% across all

instances, but the average order quantity with the fast supplier increases (somewhat sublinearly)

with the value of σ.

We now turn to Table 8 where a fixed order cost K is added in each of the evaluated scenarios.

The format of the table is identical to the previous one, except that we now report the optimal

values of the reorder and order-up-to level (se, Se, sr, Sr) are now reported. We choose K = 10 as

the base value for the fixed order cost.
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In general, we note that the average cost values increase significantly when comparing corre-

sponding instances in the two tables. As a consequence, the relative cost savings due to dual

sourcing are invariably lower when the fixed order costs are added.

In the first panel, we again vary lr, the lead time for the regular supplier from lr = 1 to lr = 5.

The long-run average cost increases monotonically from 28.13 to 37.37, as does the cost savings

due to dual sourcing which increases from 4.5% to 12.2%. (In the absence of fixed order costs, these

cost savings vary from 8.9% to 30.2%, in the corresponding first panel of Table 7.) In the presence

of fixed order cost, there is a reduced incentive to place parallel orders with both suppliers. For

example, when lr = 1, the fast supplier is retained in only 2.3% of the periods, as opposed to 19.3%

of the time when no fixed costs are involved. When lr = 5, the corresponding frequencies are 15.9%

versus 58.1%.

In the second panel, we maintain a lead time difference ∆l = 2, but increase le (and hence lr)

by one period at a time. Quite intuitively, the long-run average cost value as well as all 4 policy

parameters (se, Se, sr, Sr) increase monotonically with the lead times. The relative cost savings due

to dual sourcing now decrease from 3.5% to 0.8%, as le and lr = le + 2 are increased. These cost

saving percentages are, again, significantly lower than for the corresponding instances in the second

panel of Table 7 (16.9% and 3.2%, respectively).

In the third panel, we gauge the impact of the unit price differential. As in the case where

K = 0, see Table 7, when c= 1, the fast supplier is the better single source. Moreover, with a fixed

order cost K = 10, no cost savings can be achieved with a dual sourcing policy, while a 12.5% cost

improvement is possible when K = 0. When c ≥ 2.5, the “regular” supplier is cheaper than the

fast supplier in a single source setting, but in these cases additional cost savings of up to 3% are

possible with a dual sourcing strategy.

In the fourth panel, we vary the value of K, the fixed order cost, from K = 0 to K = 40, in

increments of $10, all while maintaining le = 2 and lr = 4. When K = 0, the cost savings due to

dual sourcing amount to 4.2%. With K = 10, the cost savings reduce to 2.1%. When K ≥ 30, the

fixed order costs make it unattractive to split orders, any time. In this case, the optimal dual

sourcing policy relies exclusively on the regular supplier and achieves no cost savings, whatsoever.

Clearly, as K increases, so does the long-run average cost value; the same monotonicity applies to

κ= Sr− sr = Se− se.

The impact of the backlogging cost rate p is gauged in the fifth panel, where SL = p/(p+ h)

is varied between 60% and 99%. When a level of SL = 60% is targeted, there is no use for the

expedited supplier whose main function is to protect against surges in the demand stream. Usage
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of the fast supplier increases monotonically with SL (and hence with p). In the base case where

SL= 99%, this implies a 2.1% cost saving due to dual sourcing.

Finally, the sixth and last panel assess the impact of the demand volatility, as measured by

the coefficient of variation of the demand distribution. Clearly, the optimal cost value increases

monotonically with σ, as does the cost saving percentage due to dual sourcing. With a low demand

volatility, i.e., coefficient of variation ≤ 0.1, there is no use for the expedited supplier. In other

words, the risk of large demand surges is not large enough to justify placing orders, ever, with the

fast supplier. Recall that, in this panel, the cost savings due to dual sourcing are 6.5% when K = 0;

they are less than 2.9% when K = 10.

7. Concluding Remarks

This paper addresses a general periodic review model, to identify an optimal procurement policy in

the presence of two suppliers, differentiated by their lead time and per-unit cost price. The model

allows for salvage opportunities, capacity limits and fixed costs associated with orders and salvage

transactions. We have provided a full characterization of the optimal procurement strategy in the

general model as well as various special cases that arise when only part of the above complications

prevail. Our exact results are confined to the case where the lead times of the two suppliers differ

by a single period only (Even in the base model without fixed cost, capacity limits or salvage

opportunities, it is well known that only a one-period lead time difference allows for an optimal

policy that acts on a single inventory measure.) However, our structural results for this special case

suggest effective heuristics for general lead time combinations, as demonstrated in Section 6.

Indeed, significant cost savings can be achieved with dual sourcing. Remarkably, such savings

can be obtained even when the expedited supplier is only used for a small part, say 5% of all pro-

curement. The availability of the fast(er) supplier allows one to forgo major inventory investments

to achieve a given service level or to prevent costly stockouts under a given inventory investment.

In practice, a second expedited supplier may only be available if a minimum sales volume can

be guaranteed, or a minimum frequency with which orders are placed. Future work should address

such “participation” constraints.

It is also important to extend our results to settings with more than two suppliers. Generalizations

of our structural results are possible when the lead time of any given supplier differs from that

of the next fast supplier by a single period. This extension was carried out by Feng et al. (2005)

in the base model. Moreover, we believe that these results continue to suggest effective heuristic

strategies under general lead time differences.
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