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We address a general periodic review inventory control model with the simultaneous presence of the following
complications: (a) bilateral inventory adjustment options, via procurement orders and salvage sales or returns
to the supplier; (b) fixed costs associated with procurement orders and downward inventory adjustments (via
salvage sales or returns); and (c) capacity limits associated with upward or downward inventory adjustments.
We characterize the optimal adjustment strategy, both for finite and infinite horizon periodic review models,
by showing that in each period the inventory position line is to be partitioned into (maximally) five regions.

Our results are obtained by identifying a novel generalized convexity property for the value functions,
which we refer to as strong (C1K1,C2K2)-convexity. To our knowledge, we recover most existing structural
results for models with exogenous demands as special cases of a unified analysis.
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1. Introduction. The seminal papers by Arrow et al. [1] and Dvoretzky et al. [8] initiated the
field of stochastic inventory theory, more than 65 years ago. These authors proposed a single-item
base model with a finite planning horizon in which an order can be placed at the beginning of
each period to increase the inventory level. The base model assumes that orders of an arbitrary,
unlimited size may be placed and that the associated order costs are proportional to the order
sizes. Demands are random but independent across time. Additional costs consist of inventory
carrying and stockout or backlogging costs, assumed to be proportional with the end-of-the-period
inventory levels and backlogging sizes, respectively. In the base model, it was shown that a so-called
base-stock policy is optimal, in each period. Under such a policy, the inventory level is increased
to a “base-stock” level, whenever it is found to be below that level; otherwise, it is optimal not
to place any order. Scarf [28] showed that, under backlogging of stockouts, a base-stock policy
continues to be optimal in the presence of an order lead-time, except that the policy acts on a
different inventory measure, the so-called inventory position = inventory level plus all outstanding
orders.

It was quickly understood that the base model needed to be generalized to address various
complications that arise in practice, for example fixed order costs or capacity limits for individual
order sizes. When fixed order costs are included to the base model, Scarf [28] and Iglehart [22]
showed that, under broad general conditions, an (s,S)-policy is optimal, for finite and infinite
horizon models, respectively. Under an (s,S)-policy, it is optimal to elevate the inventory position
to an order-up-to level, S, but only if the period’s starting inventory position is at or below a second
threshold s < S (as opposed to S itself in the absence of fixed order costs). Federgruen and Zipkin
[12, 13] showed that order capacity limits result in the optimality of a so-called modified base-stock
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policy: at the beginning of each period, an order is placed to bring the inventory position as close
to the base-stock level as is feasible.

But, what if both complications (fixed order costs and capacity limits for individual orders)
prevail simultaneously? As Federgruen and Zipkin [13] wrote:

“If the production costs have a fixed (as well as a variable) component, it might be reasonable
to expect that the modified (s,S) policy would be optimal: when the inventory level falls below
a critical number s, produce enough to bring total stock up to S, or as close as possible, given
the production capacity; otherwise do not produce.”
However, Wijngaard [38] and later on Shaoxiang and Lambrecht [32] and Shaoxiang [31] identified

counterexamples, both in finite and infinite horizon models. Indeed, a more complex structure
emerges.

Similarly, some authors, starting with Whisler [37] and Constantinides and Richard [6], have
considered settings where inventories may be adjusted downwards (as well as upwards) via sales
in secondary channels (jobbers, discounters, outlet stores, etc) or returns to the supplier. Several
authors have addressed inventory models with bilateral inventory adjustment options, i.e., procure-
ment orders along with salvage sales and/or returns to the suppliers, for example Dai and Yao [7]
and Feinberg and Lewis [15, 16], see also the references therein. However, to our knowledge, no one
has considered settings where the size of the inventory adjustments is subject to capacity limits,
for example.

This paper synthesizes and generalizes the existing literature with exogenously specified demands
by addressing a general model with the simultaneous presence of the above-mentioned complica-
tions, specifically,

(a) bilateral inventory adjustment options, via procurement orders and salvage sales or returns to
the supplier;

(b) fixed costs associated with procurement orders and downward inventory adjustments (via salvage
sales or returns);

(c) capacity limits associated with upward or downward inventory adjustments.
We provide a full characterization of the optimal inventory adjustment strategy, both for finite

and infinite horizon periodic review models, by showing that in each period the inventory position
line is to be partitioned into (maximally) five regions: in the most far left (right) region, it is
optimal to place an order (initiate a salvage sale) of a specific easily calculable magnitude. In the
middle region, it is optimal to avoid any inventory adjustment. Finally, in the second region from
the left (right), the policy alternates between intervals where one stays put and those where an
order is to be placed (a salvage sale is to be initiated) of a size specified by a given function.

Our results are obtained by identifying a novel generalized convexity property for the value
functions, which we refer to as strong (C1K1,C2K2)-convexity. To our knowledge, we recover most
existing structural results for models with exogenous demands as special cases of a unified analysis.
(To our knowledge, the exceptions are uncapacitated models with non-linear order costs, of a type,
different from the fixed-plus-linear structure.)

The remainder of this paper is organized as follows: In Section 2 we review the related literature.
Section 3 introduces our general model and the associated notation. Section 4 derives the structure
of an optimal policy in a single period model. Section 5 covers a general finite horizon model; this
Section also recovers existing structures in the literature as special cases of our general results.
Section 6 shows how our structural results extend to stationary infinite horizon models, either
under the discounted total cost or the long-run average cost criterion. Section 8 ends the paper
with some concluding remarks.

2. (C1K1,C2K2)-convexity: A generalized convexity property and review of existing
literature. The structural results obtained in this paper are based on our identifying a new
generalized concept of convexity.
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Definition 1 ((C1K1,C2K2)-convexity). Given constants C1 > 0,K1 ≥ 0 and C2 > 0,K2 ≥
0, a real-valued continuous function f is called strongly (C1K1,C2K2)-convex if for any x≥ y, a ∈
[0,C1] and b∈ (0,C2],

f(x+ a) +K1 ≥ f(x) +
a

b

(
f(y)− f(y− b)−K2

)
. (1)

Denote SCC1K1,C2K2
as the set of all strongly (C1K1,C2K2)-convex functions. When (1) is required

only for x= y, we refer to the property as weak (C1K1,C2K2)-convexity.
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Figure 1. Geometric illustration of strongly (C1K1,C2K2)-convex functions

Figure 1 provides an intuitive way of understanding the strong (C1K1,C2K2)-convexity property.
For any two points y≤ x, select any point x+a with a∈ (0,C1] and any point y−b with b∈ (0,C2].
Raise the function value at point x+a by K1 and draw a ray from (x, f(x)) to (x+a, f(x+a)+K1).
Similarly raise the function value at point y− b by K2 and draw a ray from (y− b, f(y− b) +K2)
to (y, f(y)). Then f is strongly (C1K1,C2K2)-convex if the slope of the former ray is bigger than
or equal to the slope of the latter ray.

The (C1K1,C2K2)-convexity property generalizes many convexity properties, developed since
Scarf [28] identified K-convexity as the key structural property to establish optimality of the so-
called (s,S)-policies. Below, we list these earlier convexity properties in Table 1.

It appears that the basic convexity property goes back to Archimedes, in his treatise “On the
sphere and cylinder” in the third century B.C.E., see also Heath [20] and Dwilewicz [9]. It arises
as a special case of (C1K1,C2K2)-convexity with C1 = C2 =∞ and K1 =K2 = 0. It is, of course,
well known that for basic convexity, the weak and strong versions are equivalent: If the inequality
in Table 1 holds for all x= y—which defines “weak convexity”—it holds for all x≥ y, as well. In
other words, weak convexity implies strong convexity, and vice versa.
K-convexity corresponds with the special case where C1 =C2 =∞ and K1 ≥ 0,K2 = 0. The term

was coined by Scarf [28] to address models with fixed order costs, but no capacity limits or salvage
opportunities. Scarf [28] used the property to show that an (s,S)-policy is optimal under convex
holding and backlogging costs. Veinott [35] subsequently showed this optimality result for holding
and backlogging cost functions that are quasi-convex only, but (nearly) increasing over time. See
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Table 1. Summary of Commonly Used Convexity Properties

Convexity Property Definition Related Papers

convex
f(x+ a)≥ f(x) + a

b
[f(y)− f(y− b)],

∀y≤ x, a≥ 0, b > 0
Archimedes (3rd Century B.C.E.)

K-convex
f(x+ a) +K ≥ f(x) + a

b
[f(x)− f(x− b)],

∀a≥ 0, b > 0
Scarf [28], Veinott [35], Kolmogorov

and Fomin [23]

CK-convex
f(x+ a) +K ≥ f(x) + a

b
[f(x)− f(x− b)],

∀a∈ [0,C], b > 0
Gallego and Scheller-Wolf [18]

strongly CK-convex
f(x+ a) +K ≥ f(x) + a

b
[f(y)− f(y− b)],

∀y≤ x, a∈ [0,C], b > 0

Gallego and Scheller-Wolf [18],
Shaoxiang and Lambrecht [32],

Shaoxiang [31]

sym-K-convex
f(x+ a) + max{1, a

b
}K ≥ f(x) + a

b
[f(x)− f(x− b)],

∀a≥ 0, b > 0
Chen and Simchi-Levi [3, 4]

YD-(K1,K2)-convex
f(x+ a) +K1−max{1, a

b
min{K1,K2}} ≥

f(x) + a
b
[f(x)− f(x− b)−K2], ∀a≥ 0, b > 0

Ye and Duenyas [39]

weak (K1,K2)-convex or C(a, b)-convex
f(x+a)+K1 ≥ f(x)+ a

b
[f(x)−f(x−b)−K2],

∀a≥ 0, b > 0
Gallego and Özer [17] and Semple [30]

strongly (C1K1,C2K2)-convex
f(x+a)+K1 ≥ f(x)+ a

b
[f(y)−f(y−b)−K2],

∀y≤ x, a∈ [0,C1], b∈ (0,C2]
This paper

also the recent tutorial by Feinberg [14]. Gallego and Sethi [19] extended the K-convexity property
to functions that are defined on a general Euclidean space Rn, to address multi-product systems
with fixed order costs.

Gallego and Scheller-Wolf [18] addressed models with fixed order costs and capacity limits for
individual orders (but no salvage opportunities). These authors introduced the CK-convexity
property, again a special case of our general structure where C2 =∞ and K2 = 0. Gallego and
Scheller-Wolf [18] also pioneered the above distinction between “weak” and “strong” convexity
properties.

Chen and Simchi-Levi [3, 4] addressed a periodic review combined inventory control and pricing
model in which each period’s demand distribution may be controlled by selecting a unit retail
price from a closed price interval. The remaining assumptions are identical to those in the Scarf
model, i.e., the base inventory model with fixed order costs. Chen and Simchi-Levi [3] covers the
finite horizon case, while Chen and Simchi-Levi [4] address the long-run average and discounted
profit criterion; the models are confined to the case where the order lead time is zero. The authors
consider affine price-dependent demand functions, specified as:

Dn(p) = αndn(p) +βn, n= 1,2, . . . ,N, (2)

where dn(p) is a deterministic demand function and {αn} and {βn} are sequences of independent
random variables whose distributions are independent of the chosen retail price pn. In the finite
horizon model of Chen and Simchi-Levi [3], the authors show that the value functions continue to
be K-convex but only in the special case of an additive demand model, i.e., when αn = 1 for all n.
This implies that an (s,S) policy continues to be optimal in that case. However, K-convexity fails
to apply in the general affine demand model (2). Indeed, no (s,S) policy is necessarily optimal,
contrary to a conjecture by Thomas [34].

For the more general model, the authors identify the sym-K-convexity property and show that
the value functions satisfy this generalized K-convexity property, see Table 1. On that basis, they
showed that, in each period n, there are two threshold levels sn <Sn such that no order is placed
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when the beginning inventory level is above Sn and the inventory level is increased to Sn when it is
found to be below sn. However, when the beginning inventory level is between the two thresholds,
it is optimal to either refrain from ordering or to elevate the inventory level to Sn. In Chen and
Simchi-Levi [4], the author showed that in infinite horizon settings, with stationary parameters
and distributions, an (s,S)-policy is optimal in the general affine model (2), following a different
approach, aligned with that of Zheng [40].

Returning to inventory models with exogenously specified demand variables, Chen and Simchi-
Levi [5] addressed a model with bilateral inventory adjustments and fixed costs for each adjustment
(but no capacity limits). Their analysis is based on a further generalization of K-convexity, intro-
duced by Ye and Duenyas [39] which the authors refer to as (K1,K2)-convexity. To avoid confusion,
we label the property as “YD-(K1,K2)-convexity” with YD the initials of the authors. In the special
case where K1 =K2 =K, YD-(K1,K2)-convexity reduces to sym-K-convexity. The authors show
that all value functions are YD-(K1,K2)-convex under minor restrictions for the time-dependence
of the fixed adjustment costs K1 and K2. Chen and Simchi-Levi [5] follow Neave [27] who had
addressed the same model but failed to provide a complete analysis for the case where the two
fixed costs K1 and K2 differ from each other. Similarly, Feinberg and Lewis [16] employed the
Y D − (K1,K2)-convexity property to analyze the infinite horizon version of the stochastic cash
balance problem.

Ye and Duenyas [39] had introduced their YD-(K1,K2)-convexity property to analyze a capac-
ity adjustment model, with similar results to those in Chen and Simchi-Levi [5]. Semple [30]
introduced the “weak (K1,K2)-convexity” property as a further generalization of YD-(K1,K2)-
convexity. The author showed, again under the same parameter restrictions as in Ye and Duenyas
[39], that all value functions are weakly (K1,K2)-convex if the terminal value function has this
property; moreover, all structural results obtained in Ye and Duenyas [39] can be obtained under
this more general convexity property. Clearly, weak (K1,K2)-convexity is a special case of our
“strong (C1K1,C2K2)-convexity” property under the special parameter choices C1 =C2 =∞ and
weakening the definitional inequality (1) to hold only for y = x. Unbeknownst to Semple, Gallego
and Özer [17] had, six years earlier, introduced the same “weak (K1,K2)-convexity”, under the
name C(a, b)-convexity. The authors used this property to establish optimality of a state-dependent
(s,S) policy in an inventory model with advanced demand information.

Caliskan-Demirag et al. [2] introduced a new convexity property that includes the strong CK-
convexity property of Gallego and Scheller-Wolf [18], Shaoxiang and Lambrecht [32] and Shaoxiang
[31], and the sym-K convexity property of Chen and Simchi-Levi [3] as special cases. The authors
replace on the right side of inequality (1), the fixed cost K, by a general function σ(K,a):

f(x+ a) +σ(K,a)≥ f(x) +
a

b
(f(y)− f(y− b) for any y≤ x,a∈ [0,C], b > 0.

The authors employ this property, which they refer to as σ(K,z)-convexity, to characterize the
structure of an optimal policy, when there are two possible fixed order costs, K1 <K2 ≤ 2K1, with
the lower fixed cost K1 applicable iff the order size is below a given threshold. (The model is
uncapacitated and inventory adjustments are in the upward direction only.)

Lu and Song [24], subsequently, identified another variant of σ(K,z)-convexity for a model with
a convex piecewise-linear order cost function. These authors refer to their structure as strong
(K,c, q)-convexity. K-approximate convexity, introduced in Lu et al. [25, 26] is a related approach,
in approximate rather than exact dynamic programming. The fundamental idea is to approximate
the exact one-period cost structure on the cost-to-go functions, respectively, with a convex function
such that the maximal approximation error is at most K, and derive bounds for the distance
between the exact and approximate value functions. See Caliskan-Demirag et al. [2] and Lu and
Song [24] for a review of other models with a non-linear order cost function, different from the
standard fixed-plus-linear structure.
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Federgruen et al. [11] have employed the strong (C1K1,C2K2)-convexity properly to characterize
the structure of the optimal inventory adjustment strategy in a dual sourcing setting with salvage
opportunities, fixed inventory adjustment costs and capacity limits for orders and salvage batches.

Proposition 1 summarizes the above relationships among the various convexity properties.

Proposition 1. (a) convexity⇒ K-convexity⇒ sym-K-convexity⇒ YD-(K1,K2)-convexity
⇒ weak (K1,K2)-convexity ⇒ strong (C1K1,C2K2)-convexity

(b) convexity ⇒ strong K-convexity ⇒ strong CK-convexity ⇒ strong (C1K1,C2K2)-convexity

Lemma 1 establishes various preservation properties for strongly (C1K1,C2K2)-convex functions.

Lemma 1 (Properties of SCC1K1,C2K2
). (i) If f(x)∈ SCC1K1,C2K2

, then f(−x)∈ SCC2K2,C1K1
.

(ii) If f(x) ∈ SCC1K1,C2K2
, then f(x) ∈ SCC′1K′1,C′2K′2 for any C ′1 ≤ C1,C

′
2 ≤ C2, K ′1 ≥K1,K

′
2 ≥

K2.
(iii) If f(x) ∈ SCC1K1,C2K2

and g(x) ∈ SCC1K
′
1,C2K

′
2
, then for any α,β ≥ 0, αf(x) + βg(x) ∈

SCC1(αK1+βK′1),C2(αK2+βK′2). As a special case, when g(x) is convex, hence g(x) ∈ SCC10,C20,
αf(x) +βg(x)∈ SCC1(αK1),C2(αK2) for any β ≥ 0.

(iv) If f(x) ∈ SCC1K1,C2K2
, then f(x− a) ∈ SCC1K1,C2K2

for any real number a. Moreover, for
any random variable Y with E|f(x−Y )|<∞, Ef(x−Y )∈ SCC1K1,C2K2

.

Proof. Parts (i) and (ii) are immediate.
(iii) Let h(x) = αf(x) +βg(x), for any x≥ y, a∈ [0,C1], b∈ (0,C2] we have

∆ = αK1 +βK ′1 +h(x+ a)−h(x)− a
b

(
h(y)−h(y− b)−αK2−βK ′2

)
= αK1 +βK ′1 +αf(x+ a) +βg(x+ a)−αf(x)−βg(x)

− a
b

(
αf(y) +βg(y)−αf(y− b)−βg(y− b)−αK2−βK ′2

)
= α

[
K1 + f(x+ a)− f(x)− a

b

(
f(y)− f(y− b)−K2

)]
+β
[
K ′1 + g(x+ a)− g(x)− a

b

(
g(y)− g(y− b)−K ′2

)]
≥ 0

(iv) Using (iii) this is immediate. �

3. Model. We consider a single-item periodic review model with a single supplier. Extensions
with multiple suppliers are addressed in Federgruen et al. [11]. At the beginning of each period, an
order may be placed with the supplier, possibly subject to a time-dependent capacity limit. In each
period, there may also be a (limited) salvage option to reduce inventory by sales to a secondary
channel (discounters, jobbers, outlet stores, etc.) or returns to the supplier. The lead time is L
periods, both for ordering and for salvaging, when available as an option. The cost associated with
any given order has a fixed and variable component; similarly, a fixed cost is incurred when a salvage
sale is initiated, along with revenues that are proportional with the size of the salvage batch. All
stockouts are backlogged. In addition to the ordering and salvaging costs and revenues, there are
standard holding and backlogging costs, assumed to be proportional or convexly increasing with
the end-of-the-period inventory levels and backlog sizes.

We consider a planning horizon of N ≤∞ periods and our objective is to minimize the total
expected discounted costs over the full planning horizon. We index the periods backward from 1 to
N . (Section 6 covers the long-run average cost criterion)

The sequence of events in period n is as follows: at the beginning of the period, any order placed
[salvage batch initiated] in period n+L is added to [removed from] the inventory. Based on the
inventory position (= inventory on hand – backlogs + all outstanding orders), the firm then decides
on a new order size, or a salvage quantity to be initiated, if it wants to reduce the inventory position.
Stochastic demand is then realized and satisfied with on-hand inventory. At the end of the period,
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any leftover inventory is carried forward to the next period, while any unsatisfied demand is fully
backlogged.

We show below that the single inventory position measure suffices to make optimal decisions;
moreover, it is never optimal to simultaneously place an order and initiate a salvage batch.

We now state the notation employed in our model:

Kn,Cn = fixed cost and capacity limit for an order placed in period n,
Kv
n,C

v
n = fixed cost and capacity limit for any salvage quantity initiated in period n,
L= order lead time,
cn = unit price charged by the supplier in period n,
cvn = unit revenue received when salvaging inventory in period n,
α= discount factor, 0≤ α≤ 1.

The sequence of demands {Dn} represents independent random variables with general distribu-
tions. We make the following assumption.

Assumption 1. cn ≥ cvn, n=N, . . . ,1.

This ranking is satisfied in all practical settings and precludes it ever being optimal to place
an order and initiate a salvage batch in the same period. (Assume, to the contrary, that in some
period n, it is optimal to place an order of size qn, along with the initiation of a salvage batch
of size q̄n. Under Assumption 1, money is saved by reducing the order to (qn− q̄n) and canceling
the salvage batch, if qn ≥ q̄n; alternatively, if q̄n > qn, money may be saved by reducing the salvage
batch to (q̄n− qn) and canceling the order.)

Settings without actual salvage opportunities may be represented as having such opportunities,
however, with cvn =−M , where M denotes a sufficiently large constant. This representation allows
for a unified treatment of models with and without salvage opportunities.

For n=N, . . . ,1, let

xn = the inventory position at the beginning of period n, before any inventory adjustement;
yn = the inventory position at the beginning of period n,after any inventory adjustmenet.

Inventory and backlogging related costs are assumed to depend on the end-of-period inventory
levels only, it is well known since Scarf [28] that under full backlogging, an equivalent representation
of the controllable parts of the total expected discounted cost over the planning horizon is obtained
by charging to period n+L, the expected value of the actual costs incurred at the end of period n.
This follows from the sample path relationship between yn, the inventory position at the beginning
of period n, and the inventory level In−L at the end of period n−L:

In−L = yn−D(L)
n ,

where D(L)
n =Dn +Dn−1 + · · ·+Dn−L is the aggregate demand in time interval [n,n−L].

For all n=N, . . . ,1, let

Ln(xn + qn) = the expected value of all inventory and backlogging related costs
at the end of period n−L discounted back to period n

and impose a standard assumption regarding these functions, satisfied for most common cost
structures.

Assumption 2. (i) The function Ln(·) is convex and Ln(y) =O(|y|p) for some p≥ 1, n=
N, . . . ,1. Also, E(Dp

n)<∞ for n=N, . . . ,1.
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(ii) cvn ≤ −
∂−Ln(x)

∂x
for n = N, . . . ,1, where ∂−Ln(x)

∂x
denotes the left derivative of the function

Ln(·).1

Assumption 2 (ii) ensures that, in every period n, the marginal backlogging cost is in excess of
the unit salvage value.

Beyond Assumptions 1 and 2, we need a few additional parameter restrictions.

Assumption 3. For n=N, . . . ,1,

Kn ≥ αKn−1, Kv
n ≥ αKv

n−1, (3)
Cn ≤Cn−1, Cv

n ≤Cv
n−1. (4)

The inequalities (3) were already recognized as essential in the base model with fixed order costs,
see Scarf [28] and Zipkin [41]. The inequalities (4) indicate that capacity limits for order and salvage
quantities may not decline over time; this is typically the case in practical applications.

To introduce the dynamic programming formulation, define the following value functions:

fn(x) = the optimal expected discounted total costs in the last n periods, assuming period n
is started with an inventory position of x units;

f1
n(x) = the optimal expected discounted total costs in the last n periods, assuming period n

is started with an inventory position of x units and no salvage batch is initiated;
f2
n(x) = the optimal expected discounted total costs in the last n periods, assuming period n

is started with an inventory position of x units and a salvage batch is initiated.

Clearly, since, as shown, it is never optimal to place an order and to initiate a salvage sale in the
same period, we have for n=N, . . . ,1:

fn(x) = min{f1
n(x), f2

n(x)}, (5)
f1
n(x) = min

xn≤yn≤xn+Cn

{Knδ(yn−xn) + cn(yn−xn) +Ln(yn) +αEfn−1(yn−Dn)}, (6)

f2
n(x) = min

min{[xn−Cv
n]+,xn}≤yn≤xn

{Kv
nδ(xn− yn) + cvn(yn−xn) +Ln(yn) +αEfn−1(yn−Dn)}, (7)

for a given terminal value function f0(·) satisfying:

Assumption 4. The terminal value function f0(·)∈ SCC0K0,C
v
0K

v
0

and is non-increasing on the
negative half-line.

The dynamic programming formulation exploits the fact that it is never optimal to simultane-
ously place a procurement order and to initiate a salvage sale. It also utilizes the simple state
dynamics xn−1 = yn−Dn. The lower bound for yn in (7), i.e., yn ≥min{[xn−Cv

n]+, xn}, reflects the
fact that, at least in physical inventory models, there are no salvage opportunities when xn ≤ 0,
while salvage opportunities are bounded by min{xn,Cv

n} when xn > 0. Instead of analyzing the
DP (5)–(7) directly, we relax the feasible action set in (7) to xn−Cv

n ≤ yn ≤ xn, giving rise to the
relaxed DP:

f̃n(x) = min{f̃1
n(x), f̃2

n(x)}, (8)

f̃1
n(x) = min

xn≤yn≤xn+Cn

{Knδ(yn−xn) + cn(yn−xn) +Ln(yn) +αEf̃n−1(yn−Dn)}, (9)

f̃2
n(x) = min

xn−Cv
n≤yn≤xn

{Kv
nδ(xn− yn) + cvn(yn−xn) +Ln(yn) +αEf̃n−1(yn−Dn)}. (10)

We first show that this relaxation can be adopted without affecting the optimal policies.

1 A convex function has left and right derivatives everywhere.



Federgruen, Liu and Lu: A Generalized Convexity Property in Inventory Management
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 9

Theorem 1. For i = N, . . . ,1, let y∗i (xi) denote the optimal inventory policy in the relaxed
dynamic program (8)–(10) when the inventory position at the beginning of period i is xi, then
(a) If xi ≤ 0, then y∗i (xi)≥ xi, i.e., it is optimal not to salvage;
(b) If xi > 0, then y∗i (xi)≥ 0, i.e., it is optimal to maintain a non-negative inventory position.

Proof. (a) Suppose, to the contrary, that 0<a= xi− y∗i (xi). We show that a cost improvement
can be achieved on any sample path ω, by perturbing the time series {y∗i (xi), ȳj = y∗j (xj), j =
i− 1, . . . ,1} to {ȳi = xi, ȳj = y∗j (xj), j = i− 1, . . . ,1}. In other words, the perturbation involves the
cancellation of the salvage batch in period i, and reducing the inventory adjustment in period
i− 1 by a units. Note that after the inventory adjustment in period i− 1, the remaining sample
path until the end of the planning horizon, remains unaltered. Let ∆ denote the incremental costs
incurred due to the perturbation,

∆≤
[
−Kv

i + acvi + a
∂−Li(0)

∂x

]
+α[Kv

i−1 + amax{−ci−1,−cvi−1}]

=−(Kv
i −αKv

i−1) + a

(
cvi +

∂−Li(0)

∂x

)
− amax{ci−1, c

v
i−1}< 0 (11)

To justify the first inequality, note that the first term to its right denotes the cost savings in the
first period due to the cancellation of the salvage batch in period i. This cancellation results in a
saving of Kv

i , the fixed cost of this batch and a reduction of the backlog size at the end of period

i, by a units, at a per-unit saving of at least ∂−Li(0)

∂x
; on the other hand, a loss of revenues, hence

an increase in costs of acvi emerges from the canceled salvage transaction.
The second term to the right of the first inequality in (11) is an upper bound for the additional

costs incurred in period i−1; here, the decrease in the inventory adjustment may save the fixed cost
Ki−1, in case this decrease cancels an order or, at worst, it may initiate a salvage batch in period
i− 1, thus adding αKv

i−1 to the total cost. In addition, the modified inventory adjustment results
in either a reduction of the variable cost ci−1 or an additional revenue cvi−1 per unit. The total
additional variable cost in period i− 1 are therefore bounded from above by −amax{ci−1, c

v
i−1}.

The second inequality in (11) follows from Assumptions 2 and 3.
(b) Suppose, to the contrary, that y∗i (xi)< 0. Let b=−y∗i (xi)> 0. Define

zj =−
i∑

k=j+1

Dk(ω)≤ 0, j = i, i− 1, . . . ,1.

Consider the following modification to the optimal policy δ∗: in period i reduce the size of the
salvage batch by b units; thereafter, stay put until the first period in which y∗j ≥ zj, if any. Let
l = max{j ≤ i− 1 : y∗j (xj)≥ zj}, where l = 0 when this index set is empty. If l ≥ 1, place an order
in period l for y∗j − zj units. We distinguish between two cases: (b1) l≥ 1 and (b2) l= 0.

Proof for case (b1): after period l, the modified policy implements the same actions as the orig-
inal policy δ∗. Let ∆ denote the incremental cost due to the policy perturbation. By part (a) and
the definition of the time period l, we have for all j = i− 1, . . . , l+ 1 that

xj ≤ y∗j < zj. (12)

Note that the sample paths of the modified and the original policies coincide from period l on.
Thus, the cost differential ∆ arises due to cost differences in the interval [i, l] only. Thus, let
∆ = ∆1 + ∆2 + ∆3, where

∆1 = difference in procurement and salvage costs in periods i− 1, . . . , l;
∆2 = lost revenues in period i due to the reduction of the salvage batch in that period by b units;
∆3 = difference in backlogging and holding costs in the entire interval [i, l].
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Note that, by the definition of the period index l:

ql = y∗l −xl = y∗l − (y∗l+1−Dl+1)> y∗l − zl+1 +Dl+1 = y∗l − zl > 0.

Thus, the original as well as the modified policy initiate a salvage batch in period i and place
an order in period l, and the salvage batch and order size under the modified policy are smaller
than their counterparts under the original policy δ∗. Since the modified policy avoids inventory
adjustments in the intermediate periods in (i, l), it follows that ∆1 ≤ 0. Also ∆2 = bcvi , while

∆3 ≤ b∂
−Li(0)

∂x
, since the backlog size at end of period i is b units smaller under the modified policy

and at the end of all remaining periods j = i−1, . . . , l+1, the modified policy has a smaller backlog

size than the original policy δ∗, see (12). Thus, ∆≤ b
(
cvi + ∂−Li(0)

∂x

)
< 0 by Assumption 2.

Proof for case (b2): In this case, the modified policy reduces the salvage batch in period i by b
units and stays put for the remainder of the planning horizon, ending the planning horizon with
an inventory level z1 −D1, as opposed to an ending inventory level y∗1 −D1 under the original
policy. The proof for case (b1) shows that the modified policy incurs a lower total of procurement,
salvage, holding and backlogging costs. However, in this case, ∆ contains the additional differential
f0(z1−D1)− f0(y∗1 −D1)≤ 0, by Assumption 4 and y∗1 < z1. �

In view of Theorem 1, we proceed without loss of optimality, with the relaxed dynamic pro-
gram (8)–(10), omitting the ∼ sign on top of the value functions f̃(·), f̃1(·), f̃2(·).

4. The single period problem. It follows from the dynamic programming recursions (8)–
(10) that, in each period n, we face an optimization problem of the following structure

g1(x) = min
y∈[x,x+C1]

{K1δ(y−x) +β1(y−x) + g(y)}, (13)

g2(x) = min
y∈[x−C2,x]

{K2δ(x− y) +β2(y−x) + g(y)}, (14)

g0(x) = min{g1(x), g2(x)} (15)

with g1(·) = f1
n(·), g2(·) = f2

n(·), g0(·) = fn(·), β1 = cn, β2 = cvn,K1 = Kn,K2 = Kv
n,C1 = Cn,C2 = Cv

n

and g(y) =Ln(y) +αEfn−1(y−Dn).
We now analyze this single stage optimization problem (13)–(15), under the assumption that

the terminal cost formulation g(·) has the strong (C1K1,C2K2)-convexity property for specific
parameter values C1,K1,C2,K2.

Define auxiliary functions

g̃1(x) =K1 + min
y∈[x,x+C1]

{β1(y−x) + g(y)}, (16)

g̃2(x) =K2 + min
y∈[x−C2,x]

{β2(y−x) + g(y)}, (17)

as counterparts of g1(x) and g2(x), under definitive inventory adjustment, i.e., definitively incurring
fixed costs for ordering or salvaging, respectively, and let Ai(x) = g̃i(x)− g(x) be the increase in
minimal cost if forced to order (for i= 1) or salvage (for i= 2).

To characterize the structure of an optimal policy, we need to define some critical points, with
the convention that the infimum (supremum) of an empty set equals +∞ (−∞).
Definition 2 (Critical Points). For a continuous function g(·) ∈ SCC1K1,C2K2

and any
β1, β2, define

B = inf
{

arg min
y
{β1y+ g(y)}

}
, b= inf{x : A1(x)≥ 0}, b̄= sup{x : A1(x)< 0}, (18)

S = sup
{

arg min
y
{β2y+ g(y)}

}
, s= sup{x : A2(x)≥ 0}, s= inf{x : A2(x)< 0}. (19)
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These critical points play important roles in the structure of the optimal strategy. By its defini-
tion, B is the (smallest) global minimizer of g̃1(x) if C1 =∞, i.e., the smallest order-up-to level for
sufficiently small x if ordering is better than staying put. Similarly, S is the (largest) global mini-
mizer of g̃2(x) if C2 =∞, .i.e., the biggest salvage-down-to level for sufficiently large x if salvaging
is better than staying put; b is the smallest among all inventory levels where ordering is not better
than staying put; b̄ is the largest among all inventory levels where ordering is better than staying
put; s is the largest among all inventory levels where salvaging is not better than staying put; s is
the smallest among all inventory levels where salvaging is better than staying put.

Note that b= b̄ [s= s] if the function A1(·) [A2(·)] has a single root. We have observed this single
root property to hold in all problem instances we have encountered, see Section 7. It can, however,
not be guaranteed, for general (C1K1,C2K2)-convex functions, which may have many local optima,
see Figure 1.

The Proposition below characterizes the ranking of the critical points, which is important when
developing the optimal policy structure.

Proposition 2 (Critical Points). Assume β1 ≥ β2 and g(·)∈ SCC1K1,C2K2
, then

(i) −∞≤ b≤ b̄≤ s≤ s≤∞;
(ii) −∞≤ b≤B ≤ S ≤ s≤∞;
(iii) If C2 =∞ and K1 ≥K2, then b̄≤B; if C1 =∞ and K1 ≤K2, then S ≤ s;
(iv) If C1 =∞ and K2 = 0, then b= b̄; if C2 =∞ and K1 = 0, then s= s. If C1 = C2 =∞ and

K1 =K2 = 0, then b= b̄=B,S = s= s.

In this Proposition, (i) ranks four critical points. (ii) ranks and locates the global minimizers
B and S between b and s. (iii) and (iv) lead to simple policy structures, in certain special cases,
which will be discussed later.

To prove this Proposition, we first need some auxiliary lemmas. Note that by definition we have

g1(x) = min{g(x), g̃1(x)}, A1(x)< 0 ∀x< b, A1(x)≥ 0 ∀x> b̄, (20)
g2(x) = min{g(x), g̃2(x)}, A2(x)< 0 ∀x> s, A2(x)≥ 0 ∀x< s. (21)

The following lemma shows that all regions where it is optimal to order (order regions) are to
the left of all regions where it is optimal to salvage inventory (salvage regions).

Lemma 2 (Separation of Order/Salvage Regions). Assume β1 ≥ β2 and g(·)∈ SCC1K1,C2K2
,

then
(i) if g̃2(y)< g(y) for some y, then g(x)≤ g̃1(x) for any x≥ y;
(ii) if g̃1(y)< g(y) for some y, then g(x)≤ g̃2(x) for any x≤ y.

Proof. (i) Given g̃2(y)< g(y), by the definition of g̃2(·) we have

g̃2(y) =K2 +β2(−b) + g(y− b)< g(y) for some b∈ (0,C2],

where b cannot take the value of 0 because K2 ≥ 0. Equivalently,

g(y)− g(y− b)−K2 >−β2b.

Hence by strong (C1K1,C2K2)-convexity of g(·), for any x≥ y and a∈ [0,C1] we have

K1 + g(x+ a)− g(x)≥ a

b

(
g(y)− g(y− b)−K2

)
≥−β2a≥−β1a,

where the last inequality follows from β1 ≥ β2. Equivalently,

K1 +β1a+ g(x+ a)≥ g(x).

As this holds for any a ∈ [0,C1], we obtain g̃1(x)≥ g(x). It can also be verified that if K1 > 0, we
have strict inequality as g̃1(x)> g(x). Case (ii) can be proved in a similar way and the details are
omitted here. �
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Intuitively, (i) shows that if salvaging is better than staying put at a given level y, then staying
put is better than ordering at or above y. In other words, ordering is never optimal above a
“salvaging” point. Similarly, (ii) shows that if ordering is better than staying put at a given level
y, then staying put is better than salvaging at or below y, i.e., salvaging is never optimal below an
“ordering” point.

The following corollary shows that if at a given level y, salvaging is strictly preferred, it is
optimal not to order for any inventory level x> y. Similarly, if at a given level y, ordering is strictly
preferred, it is optimal not to salvage for any inventory level x< y.

Corollary 1. Assume β1 ≥ β2 and g(·)∈ SCC1K1,C2K2
, then

(i) if g2(y)< g1(y) for some y, then g2(x)≤ g1(x) for any x≥ y;
(ii) if g1(y)< g2(y) for some y, then g1(x)≤ g2(x) for any x≤ y.

Proof. To verify (i), notice that g2(y)< g1(y) implies g̃2(y)< g(y) since g1(y)≤ g(y) and g2(y) =
min{g(y), g̃2(y)}. By Lemma 2 (i), g(x) ≤ g̃1(x), which implies g2(x) ≤ g1(x) since g2(x) ≤ g(x)
and g1(x) = min{g(x), g̃1(x)}. Similarly, we can prove (ii): g1(y)< g2(y) implies g̃1(y)< g(y) since
g2(y) ≤ g(y) and g1(y) = min{g(y), g̃1(y)}. By Lemma 2 (ii), g(x) ≤ g̃2(x), which implies g1(x) ≤
g2(x) since g1(x)≤ g(x) and g2(x) = min{g(x), g̃2(x)}. �

Certain monotonicities of the functions concerned play an important role in formulating optimal
policy structure, as are shown in the lemma below.

Lemma 3 (Monotonicity). Assume g(·)∈ SCC1K1,C2K2
and finite |b̄|, |s|, 2 then

(i) if K2 = 0, β1x+ g(x) is strictly decreasing on (−∞, b̄);
(ii) if K1 = 0, β2x+ g(x) is strictly increasing on (s,∞).

Proof. Here we prove (i) as (ii) can be shown similarly, and we prove the general case where
K2 ≥ 0 noted by the footnote. Consider x1 <x2 < b̄ with x2−x1 ≤C2, then there exists b0 ∈ (x2, b̄)
such that A1(b0)< 0 by the definition of b̄ and the continuity of A1(·). Hence we have

g(b0)> g̃1(b0) =K1 +β1(z− b0) + g(z),

for some z ∈ (b0, b0 +C1]. Note that z cannot take the value of b0 since otherwise K1 < 0. Equiva-
lently,

β1b0 + g(b0)>K1 +β1z+ g(z).

Then by the strong (C1K1,C2K2)-convexity of β1x+ g(x) we have

β1b0 + g(b0)>K1 +β1z+ g(z)≥ β1b0 + g(b0) +
z− b0

x2−x1

(
(β1x2 + g(x2))− (β1x1 + g(x1))−K2

)
,

which implies
β1x2 + g(x2)<β1x1 + g(x1) +K2,

i.e., β1x+ g(x) is strictly non-K2-increasing on (−∞, b̄). Specially, if K2 = 0, β1x+ g(x) is strictly
decreasing on (−∞, b̄). �

We are now ready for the proof of Proposition 2.
Proof of Proposition 2.

(i) First, we show b̄ ≤ s by contradiction. Suppose b̄ > s, then by the definition of b̄ and s in
(18) and (19), respectively, and the continuity of A1(·) and A2(·), there exist x and y such
that s < x < y < b̄ for which A2(x)< 0 and A1(y)< 0, or g̃2(x)< g(x) and g̃1(y)< g(y). This
contradicts Lemma 2 and hence b̄≤ s. Next, we show b≤ b̄ also by contradiction. Assume b > b̄,
then by the definition of b in (18), A1(z)< 0 for any z ∈ (b̄, b), which contradicts the definition
of b̄. Hence we have b≤ b̄. We can prove s≤ s in a similar way.

2 Finite |b̄| and |s| can be implied by A1(x)< 0 for some x and A2(y)< 0 for some y, respectively.
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(ii) First, we show B ≤ S. Let

h1(y) = β1y+ g(y), h2(y) = β2y+ g(y) = h1(y)− (β1−β2)y,

which are both strongly (C1K1,C2K2)-convex according to Lemma 1.(iii). Then by (18) and
(19) we have

B = inf{arg min
y

h1(y)}, S = sup{arg min
y

h2(y)},

which imply that h1(x)>h1(B) for all x<B. Then for any x<B, we have

h2(x) = h1(x)− (β1−β2)x> h1(B)− (β1−β2)x≥ h1(B)− (β1−β2)B = h2(B),

where the second inequality follows from β1 ≥ β2. This implies that B ≤ S by the definition of
S.

Next, we show b≤B and S ≤ s. For b≤B, suppose on the contrary b >B, then by (20) we
have A1(B)< 0, hence

g(B)> g̃1(B) =K1 + min
B≤y≤B+C1

{β1y+ g(y)}−β1B =K1 + g(B),

where the last equality follows from the fact that B is a global minimizer of β1y+ g(y). This
contradicts K1 ≥ 0 and hence it should be b≤B. In a similar way we can show S ≤ s.

(iii) We prove the case where C2 =∞ and K1 ≥K2 by contradiction; the other case where C1 =∞
and K1 ≤K2 can be proved in the same way. Assuming b̄ > B, there exists x∈ (B, b̄) such that
A1(x)< 0 by the definition of b̄ in (18). Then

g(x)> g̃1(x) =K1 + g(z) +β1(z−x) (22)

for some z ∈ (x,x+C1]. Notice that z cannot take value of x because that results in K1 < 0.
By the definition of B in (18) and z > x>B, we have

g(z) +β1z ≥ g(B) +β1B,

or equivalently,

g(B)− g(z)≤ β1(z−B). (23)

By strong (C1K1,∞K2)-convexity of g(·) we have

K1 + g(z)≥ g(x) +
z−x
x−B

(
g(x)− g(B)−K2

)
,

or equivalently,

g(x)≤ x−B
z−B

(
K1 + g(z)

)
+
z−x
z−B

(
g(B) +K2

)
=K1 + g(z) +

z−x
z−B

(
g(B) +K2−K1− g(z)

)
≤K1 + g(z) +

z−x
z−B

(
g(B)− g(z)

)
≤K1 + g(z) +β1(z−x),

where the second inequality follows from the assumption K1 ≥ K2 and the last inequality
follows from (23). This contradicts (22), thus we have shown b̄≤B.
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(iv) We first prove by contradiction the case where K2 = 0; the other case where K1 = 0 can be
shown in the same way. By part (i), it suffices to show that the assumption b < b̄ results in a
contradiction. By the definition of b and b̄ in (18) there exist x and y such that b≤ x < y < b̄
and A1(x)≥ 0, A1(y)< 0. Since K2 = 0 and x< y < b̄, Lemma 3 (i) implies

β1x+ g(x)>β1y+ g(y). (24)

By (iii) of this Lemma, b̄ ≤ B, thus, since C1 =∞ and since B is a global minimizer of the
function β1y+ g(y),

g̃1(x) =K1 +β1B+ g(B)−β1x, (25)
g̃1(y) =K1 +β1B+ g(B)−β1y. (26)

Noticing the definition of A1(·) in Definition 2, A1(x)≥ 0 and A1(y)< 0 together with (24)–(26)
yield

K1 +β1B+ g(B)≥ β1x+ g(x)>β1y+ g(y)>K1 +β1B+ g(B),

a clear contradiction. Hence, b= b̄.
Next, we consider the case where K1 = K2 = 0. We prove b̄ = B; the equality S = s can

be shown in the same way. First notice that b̄ ≤ B by (iii) of this Lemma. Suppose, to the
contrary, b̄ < B, then by the definition of b̄ in (18) there exists x ∈ (b̄,B) that A1(x)≥ 0, or
g̃1(x)≥ g(x) by the definition of A1(·). With K1 = 0, this implies that

g̃1(x) = β1B+ g(B)−β1x≥ g(x),

which contradicts the definition of B, as x<B. Hence b̄=B. �
We now proceed to the optimal single-period policy structure, in the following Theorem.

Theorem 2 (Single Period Optimal Policy Structure). Assume β1 ≥ β2 and g(·) ∈
SCC1K1,C2K2

, then g0(x) and the corresponding minimizer y∗(x) are characterized by Table 2 and
Figure 2, in which g̃1(·) and g̃2(·) are defined by (16) and (17), respectively. If y∗(x) is specified as
a two-element set {·, ·}, either one of the two elements may apply. Let

B(x) = inf B(x) where B(x) = arg min
x≤y≤x+C1

{β1y+ g(y)}, (27)

S(x) = supS(x) where S(x) = arg min
x−C2≤y≤x

{β2y+ g(y)} (28)

denote minimizers of g̃1(x) and g̃2(x), respectively. Let b(x) =B(x)−x and s(x) = x−S(x) denote
the corresponding order and salvage quantity.

Table 2. Single period optimal policy structure

x (−∞, b) [b, b̄) [b̄, s] (s, s] (s,∞)

g0(x) g̃1(x) min{g̃1(x), g(x)} g(x) min{g̃2(x), g(x)} g̃2(x)
y∗(x) B(x) {B(x), x} x {S(x), x} S(x)

Proof.
• x∈ (−∞, b). x< b implies that A1(x)< 0 by (20), so g̃1(x)< g(x) and by Lemma 2 g(x)≤ g̃2(x).

It follows that g0(x) = g1(x) = g̃1(x) and y∗(x) =B(x), the minimizer of g̃1(x).
• x∈ [b, b̄). By the definition of b̄ in (18), there exists y ∈ (x, b̄) such that A1(y)< 0, i.e., g̃1(y)< g(y).

Then g(x)≤ g̃2(x) by Lemma 2. It is therefore optimal to either place an order or to keep the
inventory position unaltered. The minimizer y∗(x) therefore equals B(x) or x.
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Figure 2. Illustration of single period optimal policy structure

• x ∈ [b̄, s]. x ≥ b̄ implies that A1(x) ≥ 0 by (20), so g̃1(x) ≥ g(x). Similarly x ≤ s implies that
A2(x)≥ 0 by (21), so g̃2(x)≥ g(x). Therefore g0(x) = g1(x) = g2(x) = g(x) and y∗(x) = x.

• x ∈ (s, s]. By the definition of s in (19), there exists y ∈ (s,x) such that A2(y)< 0, i.e., g̃2(y)<
g(y). Then g(x)≤ g̃1(x) by Lemma 2. Therefore it is optimal to either initiate a salvage batch
or stay put, and the minimizer y∗(x) equals S(x) or x.

• x ∈ (s,∞). x > s implies that A2(x)< 0 by (21), so g̃2(x)< g(x) and by Lemma 2 g(x)≤ g̃1(x).
It hence follows that g0(x) = g2(x) = g̃2(x) and y∗(x) = S(x), the minimizer of g̃2(x). �
In other words, four critical points partition the inventory position line into five regions. In

the two extreme regions, (−∞, b) and (s,∞), a positive order or salvage transaction needs to
be initiated, respectively; in the middle region, [b̄, s], it is optimal to stay put; in the second
region, [b, b̄), it is optimal to either order or to stay put, and in the fourth region, (s, s], it is
optimal to either initiate a salvage transaction or to stay put. Within the latter two regions, it
is possible that the optimal policy alternates several times between ordering or salvaging versus
staying put, a phenomenon already discovered in simpler models without salvage opportunities,
see e.g., Shaoxiang and Lambrecht [32] and Shaoxiang [31].

As mentioned, if the functions A1(·) and A2(·) have a single root, b = b̄ and s = s, so that
the second and fourth region vanish. In all of our numerical experience, this single root property
prevails. In this case, the five-region policy simplifies to a three-region policy, and Table 2 and
Figure 2 simplify to the following Table 3 and Figure 3. However, Ye and Duenyas [39], dealing
with the special case of our model with unrestricted order sizes, identified an instance where a
five-region policy emerges because the functions A1(·) and A2(·) have multiple roots.

Table 3. Simplified optimal
policy structure

x (−∞, b) [b, s] (s,∞)

g0(x) g̃1(x) g(x) g̃2(x)
y∗(x) B(x) x S(x)

The following monotonicity properties enable further simplification when computing an optimal
policy.
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Figure 3. Illustration of single period optimal policy structure

Proposition 3 (Monotonicity). (a) The functions B(·) and S(·) are increasing for all n=
N, . . . ,1.

(b) The optimal order-up-to level y∗(x) is increasing in x, almost everywhere, for all n=N, . . . ,1.
Lack of full monotonicity may occur in terms of downward jumps and these may arise at the,
at most finitely many, breakpoint values where the optimal policy switches between ordering
and staying put, or between staying put and salvaging.

(c) If the function g(·) is convex, b(·) is decreasing and s(·) is increasing.

Proof. (a) We prove the monotonicity of the function B(·); the proof for the function S(·) is
analogous. It suffices to show that the family of sets {B(x) : −∞ < x <∞} is increasing in the
standard partial order ≥p for subsets of a lattice, see Vives [36] (p 23): for a pair of sets B1,B2,
B1 ≥p B2 if for any b1 ∈B1 and b2 ∈B2, sup(b1, b2)∈B1 and inf(b1, b2)∈B2. Note that the feasibility
intervals [x,x+C], subsets of the real line R, are increasing in x. Since the minimand in (27) is
independent of x, hence has decreasing differences in (x, y), the monotonicity of the sets {B(x) :
−∞<x<∞} follows from Theorem 2.3 (b), in combination with Remark 10, in Vives [36].
(b) An immediate corollary of part (a) is that y∗(·) is increasing on any interval on which the
optimal policy prescribes “ordering” or any interval on which it prescribes “staying put”. The
remaining characterization of the function y∗(·) is immediate.
(c) We prove that b(x) is decreasing in x. The monotonicity proof for s(·) is analogous. Similar to
the proof of part (a), define

Ω(x) = arg min
0≤q≤C1

{β1(x+ q) + g(x+ q)} (29)

and note that b(x) = inf Ω(x). Since g(·) is convex, it has increasing differences in (x, q). Applying
Theorem 2.3 (b) in Vives [36] to a minimization problem, we get that the sets {Ω(x) :−∞< x<
∞} are decreasing in the partial order ≥p, defined in the proof of part (a). In particular, b(·) is
decreasing as well. �

Downward jumps of the function y∗(·) in a few points, may indeed occur, as exhibited by the
common Example in Shaoxiang and Lambrecht [32] and Shaoxiang [31]: the order-up-to level
exhibits a downward jump at x= 6. Note that this example pertains to an infinite horizon model
with stationary inputs, and hence, a fortiori, in finite horizon models with non-stationary inputs.
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In spite of the fact that the order-up-to policy y∗(·) fails to be perfectly monotone, the structure
in Proposition 3 may be exploited to simplify the dynamic programming calculations, no less
than in models where perfect monotonicity can be shown. Assuming y∗(·) is calculated on a grid
{x1, x2, . . .}, we may exploit the fact that y∗(xi)∈ [y∗(xi−1),∞)∪{xi}.

The convexity assumption of the function g(·) is usually satisfied in a true single-period setting,
where g(y) = L(y). Unfortunately, it often fails in multi-period settings. The monotonicity of the
function g(·) implies that every interval on which it is optimal to order may be partitioned into
two (possibly empty) subintervals: in the first subinterval, it is optimal to order up to capacity; in
the second subinterval the order quantity decreases. Similarly, any interval in which it is optimal
to salvage, may be partitioned into two (possibly empty) subintervals: in the first subinterval, the
salvage quantity increases; if this quantity reaches the capacity level, there is a second subinterval
on which the salvage quantity equals the capacity level.

Based on Theorem 2 and the previous lemmas, we have the following three corollaries that
capture special cases where the optimal policy takes on simpler or more specific forms.

First, as mentioned, a setting without a salvage option corresponds with the parameter choices
β2 =−M,K2 = 0,C2 =∞. In this case, s=∞, and the four-region structure in Table 2 reduces to
three regions only. Similar simplifications due to s=∞ arise in the special cases discussed below.

Corollary 2 (No-Salvage Models). When there is no salvage option and g(·) ∈
SCC1K1,∞0, the structure of the optimal policy in the one-period problem is displayed by the first
three columns in Table 2, since s=∞.

Corollary 3 (Uncapacitated Models). When C1 = C2 = ∞, part of the optimal policy
structure in Theorem 2 takes on simpler forms summarized by Table 4.

Table 4. Special optimal policy structures when C1 =C2 =∞
(a) When K1 ≥ K2 (If K2 = 0, b = b̄ and the shaded column
disappears)

x (−∞, b) [b, b̄) [b̄, s] (s, s] (s,∞)

g0(x) g̃1(x) min{g̃1(x), g(x)} g(x) min{g̃2(x), g(x)} g̃2(x)
y∗(x) B {B,x} x {S(x), x} S

(b) When K1 ≤ K2 (If K1 = 0, s = s and the shaded column
disappears)

x (−∞, b) [b, b̄) [b̄, s] (s, s] (s,∞)

g0(x) g̃1(x) min{g̃1(x), g(x)} g(x) min{g̃2(x), g(x)} g̃2(x)
y∗(x) B {B(x), x} x {S,x} S

(c) When K1 =K2 = 0

x (−∞,B) [B,S] (S,∞)

y∗(x) B x S

Proof. In this case we clearly have

B(x) = inf{arg min
y≥x

{β1y+ g(y)}}=B, for x≤B;

S(x) = inf{arg min
y≤x

{β2y+ g(y)}}= S, for x≥ S.
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By Proposition 2 (ii), for x< b≤B, y∗(x) =B; for x> s≥ S, y∗(x) = S. This verifies the structure
in the two outer regions for both K1 ≥K2 and K1 ≤K2. For the shaded regions in subtable (a)
and (b):
• When K1 ≥K2, , b̄≤B by Proposition 2 (iii), hence for any x< b̄≤B, g0(x) = g̃1(x) and y∗(x) =
B. Specially, if K2 = 0, Proposition 2 (iv) indicates b= b̄, and the shaded region in Table 4 (a)
does not exist.

• When K1 ≤K2, S ≤ s by Proposition 2 (iii), hence for any x> s≥ S, g0(x) = g̃2(x) and y∗(x) = S.
Specially, if K1 = 0, Proposition 2 (iv) indicates s= s, and the shaded region in Table 4 (b) does
not exist.

For the special case where K1 = K2 = 0, as given by subtable (c) simply follows from Proposi-
tion 2 (iv). �

When there are no capacity limits but a fixed cost for ordering or salvaging does exist (as in
subtables (a) and (b)), the following simplifications arise: the two outer regions have simple constant
order-up-to and salvage-down-to levels B and S, respectively. Depending on the relative size of
K1 and K2, the second or fourth region also has a specific target adjustment level. Finally, when
either K1 or K2 is zero, the second or fourth region does not exist. This makes the corresponding
ordering or salvaging decision a simple “(s,S)”–type policy. Furthermore, when there are no fixed
costs, subtable (c) displays a three-region structure where both ordering and salvaging decisions
become “base stock”–type policies.

The characterization in Table 4 is similar to that in Theorem 1 in Ye and Duenyas [39], with
additional simplifications indicated when one or both of the fixed costs are zero, see also Semple
[30]. Dai and Yao [7] consider a continuous review variant of this model where the demand process
is given by a Brownian motion; the authors also confine themselves to stationary models under the
long-run average cost criterion, further assuming that L= 0. For this case, they establish optimality
of the following 4 threshold policy: there exist threshold d < D < U < u, such that inventory is
increased (decreased) to D (U) when it reaches the level d (u); no inventory adjustment is made
as long as the inventory level resides in (d,u).

Corollary 4 (No-Fixed Costs Models). When either K1 = 0 or K2 = 0, part of the opti-
mal structure can be characterized with more specificity, as is shown in Table 5, in which

B̄(x) = inf{ arg min
b̄≤y≤x+C1

{β1y+ g(y)}, for x≥ b̄−C1;

S(x) = sup{ arg min
x−C2≤y≤s

{β2y+ g(y)}, for x≤ s+C2;

1+
b = 1(b > b̄−C1), 1−b = 1(b < b̄−C1);

1+
s = 1(s > s+C2), 1−s = 1(s < s+C2).

Proof. We first consider the case where K2 = 0; the case where K1 = 0 is symmetric and can be
shown similarly. When K2 = 0, by Lemma 3 (i), β1x+ g(x) is strictly decreasing on (−∞, b̄).
• x < min{b̄− C1, b}. x < b implies that g0(x) = g̃1(x) by the general optimal policy in Table 2.

Since β1y+ g(y) is strictly decreasing on (−∞, b̄) and x+C1 < b̄, clearly y∗(x) = x+C1.
• min{b̄−C1, b} ≤ x<max{b̄−C1, b}. It is presumed that b̄−C1 6= b since otherwise this interval

is empty and there is nothing to show. Then there are two cases to consider:
(a) b < b̄−C1. The interval is b≤ x< b̄−C1. Clearly x∈ [b, b̄) so g0(x) = min{g̃1(x), g(x)} by the

general optimal policy in Table 2. By the same argument as in the previous interval, if an
order is placed, it is optimal to place a full capacity order. Therefore y∗(x)∈ {x+C1, x}.
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Table 5. Special optimal policy structures (partly) when K1 = 0 or/and K2 = 0

(a) When K2 = 0. (Structure on [b̄,∞) same as in Table 2)

x (−∞,min{b̄−C1, b}) [min{b̄−C1, b},max{b̄−C1, b}) [max{b̄−C1, b}, b̄)
g0(x) g̃1(x) g̃1(x) min{g̃1(x), g(x)}
y∗(x) x+C1 {x+C1, x}1−b + B̄(x)1+

b {B̄(x), x}

(b) When K1 = 0. (Structure on (−∞, s] same as in Table 2)

x (s,min{s+C2, s}] (min{s+C2, s},max{s+C2, s}] (max{s+C2, s},∞)

g0(x) min{g̃2(x), g(x)} g̃2(x) g̃2(x)
y∗(x) {S(x), x} {x−C2, x}1+

s +S(x)1−s x−C2

(c) When K1 = K2 = 0 and
C1 <∞,C2 =∞. (Structure on
[b̄,∞) same as in Table 2)

x (−∞, b̄−C1) [b̄−C1, b̄)

g0(x) g̃1(x) g̃1(x)
y∗(x) x+C1 b̄

(b) b > b̄−C1. The interval is b̄−C1 ≤ x< b. Again x< b implies that g0(x) = g̃1(x) by the general
optimal policy in Table 2. Since b̄≤ x+C1 and β1y+ g(y) is strictly decreasing on (−∞, b̄),
y∗(x) = B̄(x).

• max{b̄−C1, b} ≤ x< b̄. Clearly x∈ [b, b̄) so g0(x) = min{g̃1(x), g(x)} by the general optimal policy
in Table 2. Since b̄≤ x+C1 and β1y+ g(y) is strictly decreasing on (−∞, b̄), if it is optimal to
place an order then y∗(x) = B̄(x)∈ [b̄, x+C1]. Thus, y∗(x)∈ {B̄(x), x}.
Next we prove the optimal policy structure given by Table 5 (c) under K1 =K2 = 0 and C1 <

∞,C2 =∞. Notice that this is a special case of subtable (a), where we also have K1 = 0 and C2 =∞.
We only need to show b= b̄= B̄(x),∀x∈ [b̄−C1, b̄] so that subtable (a) becomes subtable (c). First
we show β1x+ g(x) is increasing on (b̄,∞), which directly implies B̄(x) = b̄,∀x ∈ [b̄−C1, b̄] by the
definition of B̄. To see this, it follows from (20) and K1 = 0 that for any x> b̄ and y ∈ [x,x+C1],

A1(x)≥ 0⇒ β1y+ g(y)−β1x≥ g(x)⇔ β1x+ g(x)≤ β1y+ g(y).

Then we show b= b̄. By Lemma 3 (i), β1x+ g(x) is strictly decreasing on (−∞, b̄). Therefore for
any x≤ b̄−C1,

β1x+ g(x)>β1y+ g(y)⇒ β1y+ g(y)−β1x< g(x), ∀y ∈ (x,x+C1]⇒ g̃1(x)< g(x)⇒A1(x)< 0.

This implies b≥ b̄−C1 noticing the definition of b in (18). Suppose b̄−C1 ≤ b < b̄. By the definition
of b and b̄ in (18) there exist x and y such that b̄−C1 ≤ b≤ x< y < b̄ and A1(x)≥ 0, A1(y)< 0. It
is shown above that B̄(s) = b̄,∀s∈ [b̄−C1, b̄], hence

g̃1(x) = β1b̄+ g(b̄)−β1x, g̃1(y) = β1b̄+ g(b̄)−β1y.

Therefore

A1(x)≥ 0⇒ g̃1(x)≥ g(x)⇒ β1b̄+ g(b̄)−β1x≥ g(x),
A1(y)< 0⇒ g̃1(y)< g(y)⇒ β1b̄+ g(b̄)−β1y < g(y),

which imply the following obvious contradiction:

β1b̄+ g(b̄)≥ β1x+ g(x)>β1y+ g(y)>β1b̄+ g(b̄),

where the middle inequality follows from Lemma 3 (i) as x< y < b̄. Hence, b= b̄. �
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Observe that B(x) [S(x)] denotes the optimal inventory position to order up to [salvage down
to] when the period is started with an inventory position of x units and assuming one is committed
to initiate an order [a salvage batch]. B̄(x) [S(x)] restricts the choice for the optimal order-up-to
[salvage-down-to] levels to those above [below] b̄ [s]. Corollary 4 shows that, when K2 = 0, the
(ordering) half line (−∞, b̄) may be partitioned into three intervals, see Table 5 (a): in the left most
interval, it is optimal to place a maximum size order and in the right most interval, it is optimal to
place an order or to stay put (but salvaging is suboptimal). In the middle interval, it is optimal to
place an order when b > b̄−C1; when b≤ b̄−C1, it is optimal to either place a maximum size order
(C1) or to stay put. A similar specification may be provided for the (salvage) half line (s,+∞)
when K1 = 0, see Table 5 (b). When K1 =K2 = 0 and C1 <∞,C2 =∞, Table 5 (c) shows that the
(ordering) half line (−∞, b̄) displays a modified base-stock policy for the ordering decision.

5. The multi period problem. The (C1K1,C2K2)-convexity is preserved under the mini-
mization operations specified by (13)–(15). This enables us to extend the structural results, above,
to general multi-period planning horizons.

Proposition 4 (Preservation of strong (C1K1,C2K2)-convexity). Assuming β1 ≥ β2, if
g(·) is strongly (C1K1,C2K2)-convex, then

g1(x) = min
y∈[x,x+C′1]

{K1δ(y−x) +β1(y−x) + g(y)},

g2(x) = min
y∈[x−C′2,x]

{K2δ(x− y) +β2(y−x) + g(y)},

g0(x) = min{g1(x), g2(x)}

are also strongly (C1K1,C2K2)-convex for any C ′1 ≥C1,C
′
2 ≥C2.

Proof of Proposition 4. See the Appendix.
We are now ready for our main result.

Theorem 3 (Multi Period Optimal Policy Structure). (a) Assume f0(·)∈ SCC0K0,C
v
0K

v
0

and f0(x) =O(|x|p) for some integer p≥ 1. Then fn(x) ∈ SCCnKn,Cv
nK

v
n

and fn(x) =O(|x|p)
for n=N,N − 1, . . . ,1.

(b) In each period n=N,N −1, . . . ,1, the optimal policy structure is as defined in Theorem 2 and
Proposition 3 (a) and (b), with g1(·) = f1

n(·), g2(·) = f2
n(·), g0(·) = fn(·), β1 = cn, β2 = cvn,K1 =

Kn,K2 =Kv
n,C1 =Cn,C2 =Cv

n and g(y) =Ln(y) +αEfn−1(y−Dn).

Proof. (a) We prove this theorem by induction. By our assumption, the theorem holds for n= 0.
Suppose the result holds for period n−1, i.e., fn−1(·)∈ SCCn−1Kn−1,C

v
n−1K

v
n−1

and fn−1(x) =O(|x|p).
We first prove that fn(x) =O(|x|p). Since fn−1(x) =O(|x|p), there exists a constant A> 0 such that
|fn−1(x)| ≤A|x|p; so that |Efn−1(y−Dn)| ≤AE|y−Dn|p ≤AE(|y|+Dn)p =A

∑p

l=0

(
p
l

)
EDp−l

n |y|l ≤
Bmax{|y|p,1} for some constant B > 0. Since Ln(y) = O(|y|p) by Assumption 2 (i), there exists
a constant C > 0 such that |Ln(y)| ≤C|y|p. Let y∗(x) achieve the minimum in (9), then |f1

n(x)| ≤
Kn + cn|y∗|+ |Ln(y∗)|+ αB|y∗|p ≤ Kn + cn(|x|+ Cn) + C(|x|+ Cn)p + αBmax{1, (|x|+ Cn)p} =
O(|x|p), thus f1

n(x) =O(|x|p). By similar argument, f2
n(x) and hence fn(x) are also O(|x|p).

We then approve that fn(x) ∈ SCCnKn,Cv
nK

v
n
. Since fn−1(·) ∈ SCCn−1Kn−1,C

v
n−1K

v
n−1

, by
Lemma 1 (iii), (iv) and Assumption 3,

αEfn−1(y−Dn)∈ SCCn−1(αKn−1),Cv
n−1(αKv

n−1) ⊂ SCCnKn,Cv
nK

v
n
. (30)

Since Ln(·) is convex, by Lemma 1 (iii) we have

g(y) =Ln(y) +αEfn−1(y−Dn)∈ SCCnKn,Cv
nK

v
n
. (31)

It then follows from Proposition 4 that f1
n(·), f2

n(·), fn(·)∈ SCCnKn,Cv
nK

v
n
.

(b) Immediate from Theorem 2 and Proposition 3 (a) and (b). �
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Pursuant to Proposition 3 in Section 4, we discussed the implications of the everywhere mono-
tonicity property of Proposition 3 (a), and the almost everywhere monotonicity property of Corol-
lary 3 (b). The same observations pertain to the general multi-period setting. Proposition 3 (c)
fails to apply to the general multi-period model, since the convexity assumption, there, typically
fails.

6. The infinite horizon model: minimizing total expected discounted costs as well
as long-run average costs. In this section, we prove that all of our structural results carry over
to stationary infinite horizon models, assuming either the present value of all costs and revenues
is to be minimized, or the long-run average cost value.

In extending our results from finite horizon to infinite horizon models, we follow the approach
in Huh et al. [21], closely; we therefore adopt much of the notation there.

A deterministic Markov policy δ is a sequence of decision rules {δ1, δ2, . . . ,} such that in period
t, δt prescribes a specific feasible action to any potential state of the system. Under a given Markov
policy δ and starting state s, let φ(St,At) denote the net costs charged in period t when St is
the state of the system, and At the action (order size, salvage batch) chosen, then. Let Jα(δ, s) =
Eδ[
∑∞

t=1α
tφ(St,At)] denote the expected infinite-horizon present value of costs under policy δ when

starting in state s. A policy δα is called discounted cost optimal under a given discount factor α,
if, simultaneously, for every starting state s∈ S,

Jα(δα, s) = inf
δ
Jα(δ, s).

The long-run average cost under a Markov policy δ and starting state s∈ S is defined as

Φ(δ, s) = limsup
T→∞

1

T

T∑
t=1

φ(St,At).

A stationary policy δ∗ is long-run average cost optimal if, simultaneously for all s∈ S

Φ(δ∗, s) = inf
s′∈S

inf
δ

Φ(δ, s′).

We show the existence of a stationary discounted cost optimal policy, for any discount factor α<
1, as well as the existence of a stationary long-run average cost optimal policy and the even stronger
preservation property establishing a strong relationship between the two optimality criteria. We
show that our model has the preservation property in that there exists a stationary policy δ∗

satisfying the following properties.
(i) δ∗ is “long-run average cost optimal” stationary in the sense that

Φ(δ∗, s) = inf
s′∈S

inf
δ

Φ(δ, s′) (32)

for all s∈ S, and
(ii) δ∗ is “limit discount optimal” in the following sense: for any starting state s and any αm ↑ 1,

there exit a subsequence {αmk
} and a sequence {sk} converging to s such that

δ∗(s) = lim
k→∞

δαmk (sk). (33)

Theorem 4 (Infinite Horizon Optimality). (a) (Discounted Cost Optimality) For every
0<α< 1, there exits a sequence of finite-horizon optimal policies {δα(·)} that converges point-
wise to a discounted cost optimal policy δα(·) as T approaches ∞. The discounted optimal
policy δα(·) has the structure described in Theorem 3.
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(b) (Long-Run Average Cost Optimality) There exits a stationary long-run average cost optimal
policy δ∗. Moreover, the preservation property described in (32) and (33) holds.

Theorem 4 corresponds with Theorem 3.1 in Huh et al. [21] where it is shown to hold for any
inventory management Markov Decision Process (MDP) that satisfies Assumptions 1 and 2, as well
as Condition (SC) there. The authors show that under these three conditions, the MDP satisfies the
conditions in Schäl [29]. The framework addressed in Huh et al. [21] is very broad and, in some ways,
more general than the broad model addressed in this paper: it allows for demand distributions and
capacity values that are Markov modulated, i.e., determined by an underlying world state variable
which evolves according to a given Markov chain; it also allows for combined inventory control and
pricing problems, where, as discussed in Section 2, in each period a price level is chosen along with
an inventory adjustment and where the price level may impact the demand distribution. However,
Huh et al. [21] did not allow for salvage opportunities, i.e., bilateral inventory adjustments.

To ensure that Assumption 1 in Huh et al. [21] is satisfied, we merely require the additional
Assumption:

Assumption 5. In the stationary infinite-horizon model, per definition, the sequence {Dn} is
assumed to be i.i.d. as a random variable D, and Cn =C for all n. Moreover, ED<C.

The restriction ED<C is, of course, necessary to ensure that the inventory process can be gov-
erned in a way that it remains stable and the long-run average costs remain finite. See Federgruen
and Zipkin [13] for a more detailed discussion in the special case where no salvage opportunities
exist and no fixed inventory adjustment costs are incurred.

Assumption 2 in Huh et al. [21] requires us to limit the type of expected holding and backlogging
cost functions that may be used:

Assumption 6. L(y) = Eh((y −Dl+1)+) + Ep((Dl+1 − y)+), where h(·) and p(·) are bounded
from below and above by affine functions, i.e., strictly positive constants h, h̄, p, p̄ exist with

h≤ h(z′)−h(z′′)

z′− z′′
≤ h̄, p≤ p(z′)− p(z′′)

z′− z′′
≤ p̄

for any pair of distinct nonnegative numbers z′ and z′′.

The holding and backlogging cost structure in Assumption 6 is the commonly used structure,
both in the literature and in practice. However, some models allow for h(·) and p(·) that grow
superlinearly, but are bounded by a polynomial function of a higher degree, as in Assumption 2.
This generalization will be discussed in Section 8.

To prove Theorem 4, it therefore suffices to be shown that Condition (SC) in Huh et al. [21] is
satisfied. We need some additional notation. Let

X0
t = the inventory level at the beginnning of period t after any inventory adjustments initiated

L periods earlier
X l
t =X0

t + inventory adjustments to take effect within the next l periods, l= 1, . . . ,L− 1,
XL
t = yt =X0

t + all inventory adjustments to take effect within the next L periods.

A function g : Rn→R is a symmetrically linearly bounded above (SLBA) function if there exist
positive scalers ζ and ρ such that g(x)≤ ζ+ρ‖x‖ with ‖x‖ the 1-norm of x. A function g :Rn→R
is a symmetrically quadratically bounded above (SQBA) function if there exist positive scalers ζ, ρ
and ξ such that g(x)≤ ζ + ρ‖x‖+ ξ(‖x‖)2.
Condition (SC) Let X = (X0,X1, . . . ,XL−1) be an arbitrary vector of inventory levels in any

given period. There exist constants M̄ ≥ 0 and M ≤ 0 satisfying the following.
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(a) Let X′ = (X ′0,X ′1, . . . ,X ′L−1) denote an inventory vector identical to X except for one com-
ponent, say l ∈ {0, . . . ,L−1}. There exists a a real-valued function ηl(X,X′) with the following
properties.

(i) For any Markov policy δ, there exists a Markov policy δ′ such that for all N ≥ 1:

JN(δ′,X′)≤ JN(δ,X) + ηl(X,X′),

where JN(δ,X) [JN(δ′,X′)] denotes the expected total costs over a planning horizon of
N periods when starting with the inventory vector X [X] and following policy δ [δ′].

(ii) If X l ≥ M̄ and X ′l = I l− 1, then ηl(X,X′)≤ 0.
(iii) If X l < I ′l ≤M , then ηl(X,X′)≤ 0.
(iv) If I l = 0, then ηl(X,X′) is a SQBA function of X′l.

(b) Let XL be such that y =XL >max{M̄,XL−1} and let δ be any Markov policy. Then, there
exists an action X ′L = y′ such that XL−1 ≤X ′L ≤max{M̄,XL−1} and a policy δ′ such that
for any N ≥ 1,

JN(X ′L, δ′,X)≤ JN(XL, δ,X),

where JN(XL, δ,X) [JN(X ′L, δ′,X)] denotes the expected total costs over a planning horizon
of N periods when the initial inventory vector is X and the initial inventory position is set
to XL [X ′L].

The following Lemma shows that Condition (SC) is, indeed, satisfied. Together with Assump-
tion 6 this provides the proof for Theorem 4.

Lemma 4. Condition (SC) holds under Assumptions 1–6.

Proof. See the Appendix.
As pointed out in Huh et al. [21], the preservation property establishes that, for any discount

factor 0 < α < 1, a discounted cost optimal stationary policy exists and that this policy inherits
the structural properties established in Theorem 3. As far as the long-run average cost policy δ∗

is concerned, the preservation property “however, is, in itself, insufficient to show that δ∗ inherits
the structural properties” in Theorem 3. However, the proof of the long-run average cost policy δ∗

sharing these properties can be complicated, with similar arguments as those employed in Section 5
of Huh et al. [21] for the inventory models addressed there.

7. Easily implementable heuristics: numerical examples The structure of the optimal
policy may be too complex for implementation, in several managerial settings. This applies, in
particular, to the most general model where there may be intervals on which the order-up-to or
salvage-down-to quantity is given by general non-linear functions {Bn(·), Sn(·)}. One recommenda-
tion is to replace these functions by a linear (or possibly piecewise linear) function, far more easily
understood and accepted.

More specifically, it is easily verified that in any period n=N, . . . ,1, values Ln <Un exist such
that y∗n(xn) = Cn for all xn < Ln, and y∗n(xn) = x− Cv

n for all x > Un. Procurement models are
typically solved on a rolling-horizon basis and only the policy rule pertaining to the first period,
period N , needs to be implemented. In case the functions {BN(·)} and {SN(·)} have nonlinear
components, replace, on [LN ,UN ], y∗N(·) by ỹN(·) as follows: on any interval [x, x̄] in which the
optimal policy prescribes an order [salvage quantity], throughout, replace the curve corresponding
with {y∗N(·)} by the line connecting (x, y∗N(x)) and (x̄, y∗N(x̄)). On all other intervals, maintain the
policy rule y∗N(·) without any modifications.

As mentioned, the second and fourth interval in Table 2 and Figure 2 vanish when the functions
A1(·) and A2(·) have at most one root. In all of our numerical experience, this is always the case,
reducing the policy structure to that in Table 3 and Figure 3. Moreover, in all of our numerical
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experience dealing with unimodal demand distributions, the complexity of a nonlinear B(·) or
S(·) function never arises, so that the above suggestions for a simplified policy structure never
applied, because the structure of the exact optimal policy {y∗n(·)} is already of the desired, simple
(piecewise linear) form. The possibility of nonlinear B(·) functions was exemplified by Gallego and
Scheller-Wolf [18] dealing with the special case of our model, where salvaging is not an option. The
authors identified one such instance by entertaining an artificial demand distribution with {1,6,7}
as its three-point support such that P[D= 1] = P[D= 7] = 0.15 and P[D= 6] = 0.7.

We illustrate our results with a set of 13 instances obtained by the systematic variation of 7 key
parameters in the model. All instances use stationary data and demand distributions. All demand
distributions are Normals truncated at zero. The 13 instances share the parameters h= 1,ED =
5,Kv = 2,Cv = 10, cv = 1.3. The remaining parameters are specified in Table 6.

Table 6. Parameter setting for numerical studies

Scenario K C c α l p σ

base case 2 10 3 1 2 5 2
high fixed ordering cost 10 10 3 1 2 5 2
low fixed ordering cost 0 10 3 1 2 5 2

large order capacity 2 20 3 1 2 5 2
small order capacity 2 2 3 1 2 5 2

high unit ordering cost 2 10 20 1 2 5 2
low unit ordering cost 2 10 1.5 1 2 5 2

small α 2 10 3 0.7 2 5 2
long lead time 2 10 3 1 5 5 2
zero lead time 2 10 3 1 0 5 2

high service level 2 10 3 1 2 49 2
volatile demand 2 10 3 1 2 5 5
stable demand 2 10 3 1 2 5 0.5

The base case example is illustrated by Figure 4, in which we display the function y∗N(·) on the
left panel and the value functions fN(·), f1

N(·) and f2
N(·) on the right panel. For x< 9, it optimal to

place a maximum size order; for 9≤ x< 16, it is optimal to order up to the level 19. For 16≤ x≤ 32
it is optimal to stay put, and for 32<x< 38, it is optimal to salvage down to the level 28. Finally
for x≥ 38 it is optimal to initiate a maximum salvage quantity. Parallel figures for the remaining 12
instances are contained in the online appendix. Note that y∗N(·) is piecewise linear in all instances
so that the suggested policy simplifications do not need to be undertaken.

8. Concluding remarks. This paper analyzes a general periodic review inventory planning
model that allows for the simultaneous treatment of three prevalent complicating factors: (a) bilat-
eral inventory adjustments, (b) capacity limits for such adjustments, and (c) fixed costs for any
such adjustments. Prior literature has addressed only subsets of these complications. We charac-
terize the structure of an optimal policy, both for finite and infinite horizon models. We also show
that earlier structural results can be obtained as corollaries of our general theory. The analyses are
enabled by the identification of a new convexity property that generalizes all existing ones, as in
Table 1.

It is of interest to generalize our results further. Specific directions include combined inventory
control and pricing models, i.e., allowing the demand distribution to be endogenously controlled,
for example by the dynamic selection of a price level. This would generalize the work of Federgruen
and Heching [10] and Chen and Simchi-Levi [3, 4] which fail to allow for inventory reductions or
capacity limits.

We are also confident that some of the technical restrictions can be relaxed, for example Assump-
tion 6. Assumption 2 ensures that the Ln(·) functions are polynomially bounded. It should be
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Figure 4. A numerical example of optimal policy and value functions

possible to eliminate Assumption 6 by generalizing Condition (SC) in Huh et al. [21] to allow for
cost differentials η(·, ·) that are “symmetrically polynomially bounded above”.
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Appendix. Proofs

The proof of Proposition 4 is rather involved and lengthy and requires us to first demonstrate
the preservation result in the special case where β1 = β2 = 0, as per the following Lemma.

Lemma 5 (Preservation Property). If a function g(·) is strongly (C1K1,C2K2)-convex,
then

f1(x) = min
y∈[x,x+C′1]

{K1δ(y−x) + g(y)},

f2(x) = min
y∈[x−C′2,x]

{K2δ(x− y) + g(y)},

f(x) = min{f1(x), f2(x)}.

are also strongly (C1K1,C2K2)-convex for any C ′1 ≥C1,C
′
2 ≥C2.

Proof of Lemma 5 (I) First, we show f1(·)∈ SCC1K1,C2K2
. Let

∆1 =K1 + f1(x+ a)− f1(x)− a
b

(
f1(y)− f1(y− b)−K2

)
. (34)

It suffices to show that ∆1 ≥ 0 for y ≤ x,a ∈ [0,C1] and b ∈ (0,C2]. To this end, we consider the
following four different cases for the pair of values f1(x+ a) and f1(y− b).

(a) f1(x+ a) = g(x+ a) and f1(y− b) = g(y− b). In this case, we have

∆1 =K1 + g(x+ a)− f1(x)− a
b

(
f1(y)− g(y− b)−K2

)
≥K1 + g(x+ a)− g(x)− a

b

(
g(y)− g(y− b)−K2

)
≥ 0,

where the first inequality follows from the definition of f1(·), and the second inequality follows
from the strong (C1K1,C2K2)-convexity of g(·).
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(b) f1(x+ a) = g(x+ a) and f1(y− b) = g(y− b+u) +K1 with some u∈ [0,C ′1]. In this case, we
have

∆1 =K1 + g(x+ a)− f1(x)− a
b

(
f1(y)− g(y− b+u)−K1−K2

)
.

Based on the value of f1(y) we consider the following two subcases:
(b.1) f1(y)≤ g(y− b+u) +K1 +K2. Since a ∈ [0,C1]⊂ [0,C ′1] we know f1(x)≤ g(x+ a) +K1,

hence
∆1 ≥K1 + g(x+ a)− f1(x)≥K1 + g(x+ a)− (g(x+ a) +K1)≥ 0.

(b.2) f1(y)> g(y− b+u) +K1 +K2. Knowing that 0≤ u≤C ′1, first we show u < b. Obviously,
this is true if C ′1 < b. Otherwise consider b≤C ′1, suppose on the contrary that b≤ u≤C ′1,
then y≤ y− b+u≤ y+C ′1 and by the definition of f1(·) we have

f1(y)≤ g(y− b+u) +K1,

which together with the subcase assumption f1(y)> g(y− b+ u) +K1 +K2 implies that
K2 < 0, contradicting the fact that K2 ≥ 0. Hence we have shown that 0≤ u < b, which
implies b−u∈ (0,C2]. Therefore

∆1 ≥K1 + g(x+ a)− f1(x)− a

b−u

(
f1(y)− g(y− b+u)−K1−K2

)
≥K1 + g(x+ a)− g(x)− a

b−u

(
g(y)− g(y− b+u)−K2

)
≥ 0,

where the second inequality follows from f1(x)≤ g(x) and f1(y)≤ g(y) +K1 by the defi-
nition of f1(·), and the last inequality follows from the strong (C1K1,C2K2)-convexity of
g(·).

(c) f1(x+ a) = g(x+ a+u) +K1 with some u∈ [0,C ′1] and f1(y− b) = g(y− b). Since u∈ [0,C ′1], we
have f1(x)≤ g(x+u) +K1 and therefore

∆1 =K1 + g(x+ a+u) +K1− f1(x)− a
b

(
f1(y)− g(y− b)−K2

)
≥K1 + g(x+u+ a)− g(x+u)− a

b

(
g(y)− g(y− b)−K2

)
≥ 0,

where the last inequality follows from the strong (C1K1,C2K2)-convexity of g(·).
(d) f1(x+ a) = g(x+ a+u) +K1 and f1(y− b) = g(y− b+w) +K1 with some u,w ∈ [0,C ′1]. In this

case, ∆1 defined by (34) can be written as

∆1 =K1 + g(x+ a+u) +K1− f1(x)− a
b

(
f1(y)− g(y− b+w)−K1−K2

)
. (35)

Based on the value of f1(y) we consider the following two subcases:
(d.1) f1(y)≤ g(y− b+w) +K1 +K2. In this case if a+u≤C ′1, we know f1(x)≤ g(x+a+u)+K1

and hence by (35) we have

∆1 ≥K1 + g(x+ a+u) +K1− f1(x)
≥K1 + g(x+ a+u) +K1− (g(x+ a+u) +K1) =K1 ≥ 0.

If a+u>C ′1, again by (35) we have

∆1 ≥K1 + g(x+ a+u) +K1− (g(x+C ′1) +K1)− a
b

(
f1(y)− g(y− b+w)−K1−K2

)
≥K1 + g(x+ a+u)− g(x+C ′1)− a+u−C ′1

b

(
f1(y)− g(y− b+w)−K1−K2

)
≥K1 + g(x+ a+u)− g(x+C ′1)− a+u−C ′1

b

(
g(y+w)− g(y+w− b)−K2

)
≥ 0,
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where the first inequality is from the definition of f1(·), the second inequality follows from
the fact that 0<a+u−C ′1 ≤ a and the case assumption f1(y)≤ g(y−b+w)+K1 +K2, the
third inequality is again implied by the definition of f1(·) such that f1(y)≤ g(y+w)+K1,
and the last inequality follows from the strong (C1K1,C2K2)-convexity of g(·) noticing
that 0<a+u−C ′1 ≤ a≤C1 and x+C ′1 ≥ y+w.

(d.2) f1(y)> g(y− b+w) +K1 +K2. With the same proof as in (b.2) we can show that 0≤w<
b, implying b−w ∈ (0,C2], hence using u∈ [0,C ′1] we have,

∆1 ≥K1 + g(x+ a+u) +K1− f1(x)− a

b−w

(
f1(y)− g(y− b+w)−K1−K2

)
≥K1 + g(x+ a+u) +K1− (g(x+u) +K1)− a

b−w

(
g(y)− g(y− b+w)−K2

)
≥K1 + g(x+u+ a)− g(x+u)− a

b−w

(
g(y)− g(y− b+w)−K2

)
≥ 0,

where the first inequality follows from a
b
≤ a

b−w , since 0< b−w≤ b, the second inequality
follows from the definition of f1(·) such that f1(x)≤ g(x+u) +K1 and f1(y)≤ g(y) +K1,
and the last inequality follows from the strong (C1K1,C2K2)-convexity of g(·).

Combining (a)-(d) we have shown that f1(x)∈ SCC1K1,C2K2
.

(II) Next we prove that f2(x)∈ SCC1K1,C2K2
. We first re-denote f1 and f2 more precisely as

f g1,CK(x) = min
y∈[x,x+C]

{Kδ(y−x) + g(y)}, f g2,CK(x) = min
y∈[x−C,x]

{Kδ(x− y) + g(y)},

where both f1 and f2 are functions of g,C,K, and x. In part (I) we have essentially proved that
g(·)∈ SCC1K1,C2K2

implies f g
1,C′1K1

(·)∈ SCC1K1,C2K2
for C ′1 ≥C1, and in this part we want to show

that g(·)∈ SCC1K1,C2K2
also implies f g

2,C′2K2
(·)∈ SCC1K1,C2K2

for C ′2 ≥C2.

Applying Lemma 1 (i), if g(x) ∈ SCC1K1,C2K2
, then h(x) := g(−x) ∈ SCC2K2,C1K1

, and hence by
part (I) we know fh

1,C′2K2
(x)∈ SCC2K2,C1K1

. We can make further manipulations as

fh1,C′2K2
(x) = min

y∈[x,x+C′2]
{K2δ(y−x) +h(y)}= min

−y∈[−x−C′2,−x]
{K2δ(−x− (−y)) +h(y)}.

Transforming variable y′ =−y, we get

fh1,C′2K2
(x) = min

y′∈[−x−C′2,−x]
{K2δ(−x−y′)+h(−y′)}= min

y′∈[−x−C′2,−x]
{K2δ(−x−y′)+g(y′)}= f g

2,C′2K2
(−x),

implying that f g
2,C′2K2

(−x) ∈ SCC2K2,C1K1
. Applying Lemma 1 (i) again we see f g

2,C′2K2
(x) ∈

SCC1K1,C2K2
, confirming the strong (C1K1,C2K2)-convexity of f2(x).

(III) Finally we show f(x)∈ SCC1K1,C2K2
. Let

∆ =K1 + f(x+ a)− f(x)− a
b

(
f(y)− f(y− b)−K2

)
. (36)

We consider the following four different cases for the pair of values f(x + a) and f(y − b) to
show that ∆≥ 0 for all y ≤ x,a ∈ [0,C1] and b ∈ (0,C2]. Notice that the definition of f(x) implies
f(x)≤ f1(x) and f(x)≤ f2(x).

(a) f(x+ a) = f1(x+ a) and f(y− b) = f1(y− b). We have

∆ =K1 + f1(x+ a)− f(x)− a
b

(
f(y)− f1(y− b)−K2

)
≥K1 + f1(x+ a)− f1(x)− a

b

(
f1(y)− f1(y− b)−K2

)
≥ 0,

where the last inequality follows directly from the strong (C1K1,C2K2)-convexity of f1(x).
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(b) f(x+ a) = f1(x+ a) and f(y− b) = f2(y− b). We can rewrite (36) as

∆ =K1 + f1(x+ a)− f(x)− a
b

(
f(y)− f2(y− b)−K2

)
. (37)

Per definition, f2(y − b) = g(y − b) or f2(y − b) = g(y − b− u) +K2 with some u ∈ (0,C ′2]. We
consider these two subcases:
(b.1) f2(y− b) = g(y− b). Since f1(y−b)≤ g(y−b) by the definition, we have f(y−b) = f1(y−b)

and this subcase becomes case (a) and ∆≥ 0 follows.
(b.2) f2(y− b) = g(y− b−u) +K2 for some u∈ (0,C ′2]. Then (37) becomes

∆ =K1 + f1(x+ a)− f(x)− a
b

(
f(y)− g(y− b−u)−K2−K2

)
≥K1 + f1(x+ a)− f(x)− a

b

(
g(y−u)− g(y−u− b)−K2

)
,

where the inequality follows from f(y)≤ f2(y)≤ g(y−u)+K2, by the definitions of f and
f2. Now if f1(x+ a) = g(x+ a), we have

∆≥K1 + g(x+ a)− f(x)− a
b

(
g(y−u)− g(y−u− b)−K2

)
≥K1 + g(x+ a)− g(x)− a

b

(
g(y−u)− g(y−u− b)−K2

)
≥ 0,

where the second inequality follows from f(x)≤ g(x) and the last inequality follows from
the strong (C1K1,C2K2)-convexity of g(x). Otherwise if f1(x+a) = g(x+a+w) +K1 for
some w ∈ (0,C ′1], we have

∆≥K1 + g(x+ a+w) +K1− f(x)− a
b

(
g(y−u)− g(y−u− b)−K2

)
≥K1 + g(x+ a+w) +K1− f1(x)− a

b

(
g(y−u)− g(y−u− b)−K2

)
≥K1 + g(x+ a+w) +K1− (g(x+w) +K1)− a

b

(
g(y−u)− g(y−u− b)−K2

)
≥K1 + g(x+w+ a)− g(x+w)− a

b

(
g(y−u)− g(y−u− b)−K2

)
≥ 0,

where the second and third inequalities follow from f(x)≤ f1(x) and f1(x)≤ g(x+w)+K1

with w ∈ (0,C ′1], respectively, and the last inequality follows from the strong (C1K1,C2K2)-
convexity of g(x).

(c) f(x+ a) = f2(x+ a) and f(y− b) = f2(y− b). The proof is analogous to case (a).
(d) f(x+ a) = f2(x+ a) and f(y− b) = f1(y− b). We can rewrite (36) as

∆ =K1 + f2(x+ a)− f(x)− a
b

(
f(y)− f1(y− b)−K2

)
. (38)

By its definition, f1(y− b) = g(y− b) or f1(y− b) = g(y− b+w) +K1 with some w ∈ (0,C ′1]. We
consider these two subcases:
(d.1) f1(y− b) = g(y− b). Since f2(y− b)≤ g(y− b), per definition, we have f(y− b) = f2(y− b)

and this subcase becomes case (c) and ∆≥ 0 follows.
(d.2) f1(y− b) = g(y− b+w) +K1 with some w ∈ (0,C ′1]. Then (38) becomes

∆ =K1 + f2(x+ a)− f(x)− a
b

(
f(y)− g(y− b+w)−K1−K2

)
. (39)

We first show that f(y) ≤ g(y − b+w) +K1 +K2 always holds in this subcase. To this
end, note that b∈ (0,C2] and w ∈ (0,C ′1], if w≥ b, then w− b∈ [0,C ′1) and hence

f(y)≤ f1(y).= inf
u∈[y,y+C′1]

{K1δ(u−y)+g(u)} ≤ g(y+(w−b))+K1 ≤ g(y−b+w)+K1 +K2,
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otherwise if w< b, then b−w ∈ (0,C2) and hence

f(y)≤ f2(y) = inf
u∈[y−C′2,y]

{K2δ(y−u)+g(u)} ≤ g(y−(b−w))+K2 ≤ g(y−b+w)+K1 +K2.

We have thus proved that given b∈ (0,C2] and w ∈ (0,C ′1],

f(y)≤ g(y− b+w) +K1 +K2. (40)

Similarly we can prove that given a∈ [0,C1] and u∈ (0,C ′2],

f(x)≤ g(x+ a−u) +K1 +K2. (41)

Next we consider the possible values of f2(x+a). If f2(x+a) = g(x+a), then by (39) and
(40),

∆ =K1 + g(x+a)− f(x)− a
b

(
f(y)− g(y− b+w)−K1−K2

)
≥K1 + g(x+a)− f1(x)≥ 0,

where the last inequality follows from the definition of f1(x). On the other hand if f2(x+
a) = g(x+ a−u) +K2 with some u∈ (0,C ′2], then by (39), (40) and (41)

∆ =K1 + g(x+ a−u) +K2− f(x)− a
b

(
f(y)− g(y− b+w)−K1−K2

)
≥ 0.

Consequently, combining (a)-(d) we have proved that f(x)∈ SCC1K1,C2K2
. The proof of this propo-

sition is also completed. �

Proof of Proposition 4. We first prove that g0(·) is continuous. Note that

g0(x) = min

{
min

x≤y≤x+C1

{K1 +β1(y−x) + g(y)}, min
x−C2≤y≤x

{K2 +β2(y−x) + g(y)}, g(x)

}
.

Thus, continuity of g0(·) follows by showing that minx≤y≤x+C1
{K1 +β1(y−x)+g(y)} is continuous

in x and minx−C2≤y≤x{K2 +β2(y−x)+g(y)} is continuous in x. Both continuity results follow from
Berge’s Maximum Theorem result, since the minimands are continuous functions and the feasible
sets are continuous correspondences of x, see e.g. Theorem 9.14 in Sundaram [33].

It is not hard to see g(·) ∈ SCC1K1,C2K2
⇒ g1(·), g2(·) ∈ SCC1K1,C2K2

: Lemma 1 (iii) shows
that g(y) ∈ SCC1K1,C2K2

⇒ g(y) + β1y ∈ SCC1K1,C2K2
for any β1; then by Lemma 5, g1(x) +

β1x= miny∈[x,x+C′1]{K1δ(y−x) +β1y+ g(y)} ∈ SCC1K1,C2K2
, and hence g1(x)∈ SCC1K1,C2K2

using
Lemma 1 (iii) again. Similarly we can show g2(x)∈ SCC1K1,C2K2

.
Note that if β1 6= β2 we cannot directly apply Lemma 5 to claim strong (C1K1,C2K2)-convexity

of g0(·).
For any x≥ y, u∈ [0,C1] and t∈ (0,C2], we need to show that

0≤∆ =K1 + g0(x+u)− g0(x)− u
t

(
g0(y)− g0(y− t)−K2

)
. (42)

As is in the proof of Lemma 5 (III), we consider the following four cases for the pair of values
g0(x+u) and g0(y− t):

(a) g0(x+u) = g1(x+u), g0(y− t) = g1(y− t);
(b) g0(x+u) = g1(x+u), g0(y− t) = g2(y− t);
(c) g0(x+u) = g2(x+u), g0(y− t) = g2(y− t);
(d) g0(x+u) = g2(x+u), g0(y− t) = g1(y− t).
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First note that both g1(·), g2(·)∈ SCC1K1,C2K2
, therefore case (a) and (c) can be easily proved in

the same way as (a) and (c) of Lemma 5 (III), respectively.
For case (b), given g0(x+ u) = g1(x+ u)≤ g2(x+ u), if g1(x+ u) = g2(x+ u), this becomes case

(c). Otherwise, g1(x+ u)< g2(x+ u); then, by Corollary 1 (ii), we have g1(y− t)≤ g2(y− t) since
y− t≤ x+u. Thus, g0(y− t) = g1(y− t) = g2(y− t), so that case (a) applies.

Thus, only case (d) remains to be proven. Notice that if g2(x+u) = g(x+u), then the relations

g2(x+u) = g0(x+u)≤ g1(x+u)≤ g(x+u) = g2(x+u)

implies g0(x+ u) = g1(x+ u) = g2(x+ u), so that case (a) applies. Similarly if g1(y− t) = g(y− t),
we can deduct that g0(y− t) = g1(y− t) = g2(y− t) and case (c) applies. Therefore we only need to
consider the distinct situations where

g1(y− t) = g̃1(y− t) =K1 + g(B(y− t)) +β1(B(y− t)− y+ t)< g(y− t), (43)
g2(x+u) = g̃2(x+u) =K2 + g(S(x+u)) +β2(S(x+u)−x−u)< g(x+u), (44)

where B(·) and S(·) are defined by (27) and (28) with C1 and C2 replaced by C ′1 and C ′2, respectively.
For notational simplicity, we henceforth denote B(y − t) and S(x+ u) by B̃ and S̃, respectively.
Noticing that B̃ ∈ (y− t, y− t+C ′1], S̃ ∈ [x+ u−C ′2, x+ u) and u ∈ [0,C1], t ∈ (0,C2], it is easy to
see that

g0(y)≤

{
g1(y)≤K1 +β1(B̃− y) + g(B̃), if y≤ B̃, (since B̃ ≤ y− t+C ′1 < y+C ′1)

g2(y)≤K2 +β2(B̃− y) + g(B̃), if y > B̃; (since B̃ > y− t≥ y−C ′2)
(45)

g0(x)≤

{
g1(x)≤K1 +β1(S̃−x) + g(S̃), if x< S̃, (since S̃ < x+u≤ x+C ′1)

g2(x)≤K2 +β2(S̃−x) + g(S̃), if x≥ S̃. (since S̃ ≥ x+u−C ′2 ≥ x−C ′2)
(46)

We therefore distinguish among the 4 cases determined by the relative position of y vis-à-vis B̃
and x vis-à-vis S̃.

(a) y≤ B̃, x < S̃. In this case, by (45) and (43) we have

g0(y)≤K1 +β1(B̃− y) + g(B̃) = g1(y− t)−β1t. (47)

Taking (44), (46) and (47) into (42), we get

∆ =K1 + g2(x+u)− g0(x)− u
t

(
g0(y)− g1(y− t)−K2

)
≥K1 +K2 + g(S̃) +β2(S̃−x−u)−K1−β1(S̃−x)− g(S̃)

− u
t

(
g1(y− t)−β1t− g1(y− t)−K2

)
≥K2−β1u+

u

t

(
β1t+K2

)
=
(

1 +
u

t

)
K2 ≥ 0,

where the second inequality follows from

β2(S̃−x−u)−β1(S̃−x) = (β2−β1)(S̃−x−u)−β1u≥−β1u

by S̃ < x+u and the assumption β1 ≥ β2.
(b) y≤ B̃, x≥ S̃. In this case, taking (44), (46) and (47) into (42) we have

∆ =K1 + g2(x+u)− g0(x)− u
t

(
g0(y)− g1(y− t)−K2

)
≥K1 +K2 + g(S̃) +β2(S̃−x−u)−K2−β2(S̃−x)− g(S̃)

− u
t

(
g1(y− t)−β1t− g1(y− t)−K2

)
=K1 +

u

t
K2 + (β1−β2)u≥ 0.
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(c) y > B̃,x≥ S̃. In this case, taking (43)–(46) into (42) we have

∆ =K1 + g2(x+u)− g0(x)− u
t

(
g0(y)− g1(y− t)−K2

)
≥K1 +K2 + g(S̃) +β2(S̃−x−u)−K2−β2(S̃−x)− g(S̃)

− u
t

(
K2 +β2(B̃− y) + g(B̃)−K1− g(B̃)−β1(B̃− y+ t)−K2

)
≥K1−β2u+

u

t

(
β2t+K1

)
=
(

1 +
u

t

)
K1 ≥ 0,

where the third inequality follows from

β2(B̃− y)−β1(B̃− y+ t) = (β2−β1)(B̃− y+ t)−β2t≤−β2t

by B̃ > y− t and the assumption β1 ≥ β2.
(d) y > B̃,x < S̃. Note that in this case we must have u ∈ (0,C1], since if u = 0 there cannot be

x< S̃ by S̃ ∈ [x+u−C ′2, x+u). It then follows that

g0(x)≤ g2(x)≤K2 +β2(S̃−u−x) + g(S̃−u), (since x−C ′2 ≤ S̃−u< x) (48)

g0(y)≤ g1(y)≤K1 +β1(B̃+ t− y) + g(B̃+ t). (since y < B̃+ t≤ y+C ′1) (49)

Depending on the order of B̃+ t and S̃−u, we consider the following two situations:
(d.1) B̃+ t≤ S̃−u. The following ranking applies:

y− t < B̃ < y < B̃+ t≤ S̃−u< x< S̃ < x+u,

where the first inequality follows from B̃ =B(y− t)> y− t and the last inequality from
S̃ = S(x+u)<x+u.

Taking (43), (44) and (48), (49) into (42) we get

∆ =K1 + g2(x+u)− g0(x)− u
t

(
g0(y)− g1(y− t)−K2

)
≥K1 +K2 + g(S̃) +β2(S̃−x−u)−K2−β2(S̃−u−x)− g(S̃−u)

− u
t

(
K1 +β1(B̃+ t− y) + g(B̃+ t)−K1− g(B̃)−β1(B̃− y+ t)−K2

)
=K1 + g(S̃)− g(S̃−u)− u

t

(
g(B̃+ t)− g(B̃)−K2

)
≥ 0,

where the last inequality follows from the definition of strong (C1K1,C2K2)-convexity of
g(·) with x= S̃−u, y= B̃+ t and u∈ [0,C1] and t∈ (0,C2].

(d.2) B̃+ t > S̃−u. Now the following rankings apply:

y− t < B̃ < y < B̃+ t, S̃−u< B̃+ t, S̃−u< x< S̃ < x+u. (50)

Note that (48) and (49) still hold.
Using (43) and (44), (42) can be written as

∆ =K1 + g2(x+u)− g0(x)− u
t

(
g0(y)− g1(y− t)−K2

)
=K1 +K2 + g(S̃) +β2(S̃−x−u)− g0(x)

− u
t

(
g0(y)−K1− g(B̃)−β1(B̃− y+ t)−K2

)
.

Having mentioned that u> 0 in this case, ∆≥ 0 is equivalent to

g0(y) +β1y− g(B̃)−β1B̃−K1−K2

t
− g(S̃) +β2S̃− g0(x)−β2x+K1 +K2

u
≤ β1−β2.

(51)
Conditioning on the signs of the two numerators on the left hand side of (51), three
subcases need to be considered:
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(i) g0(y) +β1y− g(B̃)−β1B̃−K1−K2 ≤ 0. Then using (46),

g0(y) +β1y− g(B̃)−β1B̃−K1−K2

t
− g(S̃) +β2S̃− g0(x)−β2x+K1 +K2

u

≤−g(S̃) +β2S̃− g0(x)−β2x+K1 +K2

u

≤−g(S̃) +β2S̃− [K1 + g(S̃) +β1(S̃−x)]−β2x+K1 +K2

u

=
(β1−β2)(S̃−x−u)−K2

u
+ (β1−β2)≤ β1−β2,

where the last inequality follows from S̃ < x+u and the assumption β1 ≥ β2.
(ii) g(S̃) +β2S̃− g0(x)−β2x+K1 +K2 ≥ 0. Then using (45),

g0(y) +β1y− g(B̃)−β1B̃−K1−K2

t
− g(S̃) +β2S̃− g0(x)−β2x+K1 +K2

u

≤ g0(y) +β1y− g(B̃)−β1B̃−K1−K2

t

≤ [K2 + g(B̃) +β2(B̃− y)] +β1y− g(B̃)−β1B̃−K1−K2

t

=
(β1−β2)(y− t− B̃)−K1

t
+ (β1−β2)≤ β1−β2,

where the last inequality follows from B̃ > y− t and the assumption β1 ≥ β2.
(iii) g0(y) +β1y− g(B̃)−β1B̃−K1−K2 > 0 and g(S̃) +β2S̃− g0(x)−β2x+K1 +K2 < 0.

Before proving (51) we first show that, in view of (50), there exist t0 and u0 with
0< y− B̃ ≤ t0 ≤ t and 0< S̃−x≤ u0 ≤ u such that

g(y− t0) =K1 +β1(B̃− y+ t0) + g(B̃), (52)

g(x+u0) =K2 +β2(S̃−x−u0) + g(S̃). (53)

For v ∈ [y− B̃, t], let

h(v) = g(y− v)− [K1 +β1(B̃− y+ v) + g(B̃)],

which is a continuous function. Then, since

h(y− B̃) = g(B̃)− [K1 +β1 · 0 + g(B̃)] =−K1 ≤ 0,

h(t) = g(y− t)− [K1 +β1(B̃− y+ t) + g(B̃)] = g(y− t)− g̃1(y− t)≥ 0,

by the mean value theorem there exists t0 ∈ [y− B̃, t] such that h(t0) = 0, i.e., g(y−
t0) =K1 + β1(B̃− y+ t0) + g(B̃). Similarly we can show the existence of a value u0

satisfying 0< S̃−x≤ u0 ≤ u and (53).
Next we proceed to prove (51). We have

g0(y) +β1y− g(B̃)−β1B̃−K1−K2

t
− g(S̃) +β2S̃− g0(x)−β2x+K1 +K2

u

≤ g0(y) +β1y− g(B̃)−β1B̃−K1−K2

t0
− g(S̃) +β2S̃− g0(x)−β2x+K1 +K2

u0

=
g0(y)− [K1 +β1(B̃− y+ t0) + g(B̃)]−K2 +β1t0

t0

− K1 + [K2 +β2(S̃−x−u0) + g(S̃)]− g0(x) +β2u0

u0

=
g0(y)− g(y− t0)−K2

t0
− K1 + g(x+u0)− g0(x)

u0

+β1−β2 ≤ β1−β2,
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where the first inequality follows from the conditions specifying case (iii); the last
inequality follows from the strong (C1K1,C2K2)-convexity of g(·) and the fact that
g0(·)≤ g(·), specifically,

K1 + g(x+u0)− g0(x)− u0

t0

(
g0(y)− g(y− t0)−K2

)
≥K1 + g(x+u0)− g(x)− u0

t0

(
g(y)− g(y− t0)−K2

)
≥ 0,

which implies (noticing t0 and u0 are both positive)

g0(y)− g(y− t0)−K2

t0
− K1 + g(x+u0)− g0(x)

u0

≤ 0.

�

Proof of Lemma 4. The proof is analogous to that in Sections C.1 and C.2 in the electronic
companion of Huh et al. [21]. The proof is given in three parts:
Condition SC (a): X ′l1 >X

l
1: We compare two inventory level vectors X1 and X′1. Assume that

these two vectors are identical except X ′l1 >X l
1 form some l ∈ {0,1, . . . ,L− 1}. Let ∆ =X ′l1 −X l

1.
We will then prove parts (i), (iii) and (iv) of Condition (SC) (a). (Part (ii) is not applicable since
we consider the X ′l1 >X

l
1 case in in this part.)

For any Markov policy δ, let δ′ be the following policy. If l < L− 1, then X ′L−1
1 = XL−1

1 . Let
the δ′ policy order or salvage the same quantity as the δ policy in every period. We call this the
“mimic” policy of δ. If l = L− 1, then the δ′ policy initiates the same salvage batches as the δ
policy, but does not order anything for the first ∆ units ordered by the δ policy, and then matches
δ’s orders unit-by-unit. Recall ut =XL

t −XL−1
t is the number of units ordered by δ in period t≥ 1.

Then, the order quantity u′t of the δ′ policy is given by, for t≥ 1,

u′t =

{
[
∑t

t′=1 ut′ −∆]+ if
∑t−1

t′=1 ut′ <∆

ut otherwise
.

Note that u′t is a feasible inventory adjustment quantity. In every period t≥ 1: let t∗ denote the
first period in which u′t∗ > 0. Then u′t = 0 or u′t = ut for all t < t∗ and u′t = ut for all t > t∗, both
feasible. Moreover,

0≤ u′t∗ =
t∗∑
t′=1

u′t−∆≤
t∗∑
t′=1

u′t−
t∗−1∑
t′=1

u′t = ut∗ ,

hence feasible as well, where the inequality follows from
∑t∗−1

t′=1 u
′
t ≤∆ by the definition of t∗. We

say δ′ is a “wait-and-mimic” policy of δ.
The remainder of the proof is analogous to that in Huh et al. [21].

Condition SC (a): X ′l1 <X
l
1: The proof is is analogous to that in Huh et al. [21] with the following

adaptation: In case l < L− 1, let δ′, the mimic policy of δ, order and salvage the same quantity as
the δ policy in every period. For the case where l = L− 1, the policy δ′ mimics δ for the first T0

periods, i.e., it orders and salvages the same quantity as policy δ; thereafter, the specification of δ′

is identical to that in Huh et al. [21].
Condition SC (b): Analogous to the proof in Huh et al. [21]. �
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Appendix. Online companion for numerical examples

Figure 5. Numerical example: high fixed ordering cost (big K)

Figure 6. Numerical example: low fixed ordering cost (small K)
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Figure 7. Numerical example: large ordering capacity (big C)

Figure 8. Numerical example: small ordering capacity (small C)

Figure 9. Numerical example: high unit cost (big c)
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Figure 10. Numerical example: low unit cost (small c)

Figure 11. Numerical example: small α

Figure 12. Numerical example: long lead time (big l)
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Figure 13. Numerical example: zero lead time (l= 0)

Figure 14. Numerical example: high service level (big p)

Figure 15. Numerical example: volatile demand (big σ)
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Figure 16. Numerical example: stable demand (small σ)


	Introduction.
	(C1 K1, C2 K2)-convexity: A generalized convexity property and review of existing literature.
	Model.
	The single period problem.
	The multi period problem.
	The infinite horizon model: minimizing total expected discounted costs as well as long-run average costs.
	Easily implementable heuristics: numerical examples
	Concluding remarks.

