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Despite efforts to increase the supply of donated organs for transplantation, organ shortage keeps increasing

as the demand outpaces supply. We study the use of marginal organs for transplantation in a queueing-

theoretic framework. We establish that self-interested individuals who optimize their own well-being while

competing with other candidates set their utilization levels more conservatively in equilibrium than the

socially efficient level. To help reduce the resulting gap, we offer policy incentives through candidates return-

ing to the waiting list for re-transplantation. We show that a lenient policy that compensates returning

candidates, who have accepted marginal organs, for giving up their position on the waiting list increases

the equilibrium utilization of organs while also improving social welfare. We also show that the degree of

improvement increases monotonically with the level of compensation provided by the policy.

In practice, such a policy can be implemented by preserving some fraction of the waiting time previously

accumulated by the returning candidates. Detailed numerical study for the U.S. renal transplant system

suggests that introduction of such a policy helps significantly reduce kidney discard rate (baseline: 17.4%).

Depending on the strength of response given by the population to the policy, discard rate can be as low

as 5.4% (strong response), 9.5% (moderate response), or 15.7% (weak response), which translates to 1746,

1148, or 241 more transplants per year, respectively. Moreover, KDPI of transplanted kidneys increases by

0.8-3.7 depending on the strength of response, but the resulting graft survival 1-year post-transplant remains

stable around 94.7%-94.9% versus 95.0% for baseline.
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1. Introduction1

Transplantation is the preferred mode of treatment for thousands of patients with organ failure.2

In the United States, the number of organ transplants since the year 2000 has exceeded half a3

million, increasing at an annual rate of 3% (OPTN 2018a). In this study, we focus on deceased4

donor organs, which compose 82% of all organs harvested for transplantation (OPTN 2018a).15

Allocation of deceased donor organs in the U.S. are managed through nationwide waiting lists.6

Every 10 minutes a new candidate is added to the transplant waiting lists, while demand-supply7

imbalance results in 15 patient deaths every day while waiting for a transplant. There are close to8

115,000 candidates currently waiting for an organ in the U.S. transplant waiting lists.9

Despite the growing need for donor organs, those harvested for transplantation are frequently10

declined by patients/physicians and discarded in large volumes. In 2016, more than 14% of all11

organs recovered for transplantation are discarded, with highest rates for kidney (20%) and pan-12

creas (24%). Reasons for high discard rates include inefficiencies in the organ allocation systems13

that expend the window of viability of organs before finding willing recipients (Massie et al. 2009)14

and behavioral attitudes of patients/physicians (e.g., concerns over using relatively higher risk15

organs) (Schold et al. 2009). In 2016, almost 40% of discarded kidneys were due to not locating16

any recipient after exhausting the entire waiting list (Israni et al. 2018).17

Increasing pressures towards meeting the demand of the growing waiting lists recently promoted18

the idea of using, instead of discarding, organs that are less than optimal for transplantation, also19

known as marginal organs. Although there is no consensus on the definition, the lower part of20

the organ quality spectrum is regarded as marginal organs. In particular, an organ is generally21

considered marginal if there is a risk of initial poor function, primary non-function, or if it carries22

any factor (e.g., elderly donor or a donor with known diseases) that may cause late graft failure.23

Marginal organs, albeit having worse outcomes than standard organs,2 are argued as viable alter-24

natives for patients dying while waiting for a transplant (Busuttil and Tanaka 2003). An increasing25

number of retrospective observational studies in the recent medical literature document the bene-26

fits of using marginals organs, signaling a room for improvement in utilizing these organs. Massie27

et al. (2014) report that older patients and patients in centers with high median time to transplant28

benefit the most from accepting a marginal kidney, instead of exposing themselves to the risk of29

death while waiting for a better kidney. Ojo et al. (2001) further report that recipients of marginal30

kidneys have a substantial reduction in mortality and improvement in life expectancy compared31

1 While living donors offer an important additional source, transplants in the U.S. are predominantly due to organs
recovered from deceased donors; living donors compose 31.8% of all transplanted kidneys, 4.1% of transplanted livers,
and they are practically nonexistent for all other solid organ transplants (Israni et al. 2018, OPTN 2018a).

2 For instance, average kidney graft half-life is 8.8 years for standard deceased-donor transplants, while 6.4 years for
higher risk transplants (Lamb et al. 2011).
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to dialysis patients in the waiting list. These, however, are small, single-center reports and do not1

provide a full picture of the effect of utilizing marginal organs on the overall welfare.2

A direct approach to increase the utilization of available organs is to penalize or prevent rejection3

of offered organs. However, such penalties are prohibited by the U.S. laws that establish that4

the final decision to accept/reject an offered organ is the prerogative of the patient and/or the5

transplant surgeon/physician responsible for the care of the patient. Another approach would be to6

restrict marginal organ offers to those candidates, who declare their willingness to accept such offers.7

Some form of this approach is readily implemented in the U.S. by allowing wait-listed candidates to8

declare certain criteria before organs are offered to them (e.g., they can declare maximum acceptable9

donor age and cold ischemic time as well as their willingness to accept non-heart-beating donors,10

or donors with Hepatitis B, C, a history of diabetes or hypertension). Although the effectiveness11

of this program has not been formally evaluated, the current state of the U.S. system indicates a12

need for additional approaches to help reduce discarded organs.13

Our goal in this paper is to investigate the effect of implementable nudge mechanisms, such as14

those that promote (but not enforce) acceptance of certain types of organ offers, within the confines15

of the current system, instead of mechanisms that redesign the system. Our main contribution16

emanates from the following simple observation. When accepting an organ offer, a patient loses her17

position in the waiting list, foregoing the opportunity of transplanting a higher quality organ in18

the future. Can an incentive mechanism that compensates the potential losses of patients accept-19

ing organs of certain types induce the desired behavior of higher utilization of available organs?20

Assuming the desired behavior is achieved, would it also result in increased social welfare?21

We settle both questions affirmatively through identifying such a mechanism that exploits a22

rather unexplored component of the transplant system: return events. Most transplant recipients23

live long, healthy lives after transplantation and do not need a repeat transplant during the rest of24

their lifetime. However, some recipients outlive the life of the grafts they have received and, upon25

experiencing graft failure, they return back to the waiting list for a repeat transplant opportunity.26

OPTN data indicates that this group amounts to more than 11% overall, with highest rates for27

kidney (12.7%) and pancreas (17.5%), for which the discard rates are also highest (OPTN 2018a).28

Transplants using marginal organs are typically associated with higher rates of graft failure (Lamb29

et al. 2011) and concomitantly with higher rates of returning candidates to the waiting list. There-30

fore, increasing the use of marginal organs, on the one hand, intensifies the competition for the31

limited set of organs, while at the same time it softens the competition by increasing the pool of32

available organs. The net effect to the equilibrium behavior of patients is less than clear.33

Recognizing that the fear of being in need of a repeat transplant may drive more conservative34

patient behavior towards marginal organs, we introduce an incentive mechanism that compensates35
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the returning recipients of marginal organs for exposing themselves to higher risks of graft failure.1

This mechanism simply classifies candidates as eligible or ineligible based on their willingness to2

accept a set of organs, defined a priori, and provides probabilistic priority to the eligible returning3

candidates. While this mechanism is rich theoretically, its implementation in practice, for example,4

can correspond to preserving some fraction of the previously accumulated waiting times for eligible5

returning candidates, hence it provides the opportunity to reclaim the previous (or even better)6

waiting list positions for such recipients.7

We theoretically analyze this mechanism via developing a multiclass queueing model with reneg-8

ing and delayed feedback. Our model allows heterogeneity in the types of candidates in need of9

an organ transplant and in the quality of organs. We use quality-adjusted life expectancy (QALE)10

to measure candidates’ utility from transplantation and define the social welfare function as the11

difference between the total QALE obtained from transplantation and the social costs associated12

with transplantation (caused by the heterogeneity in organ qualities). We identify the socially13

efficient utilization of organs that maximize social welfare and the equilibrium behavior of self-14

interested individuals who optimize their own well-being while competing with other candidates.15

Our results suggest that candidates set their utilization level more conservatively in equilibrium16

than the socially efficient level. This finding offers an explanation to the low utilization of marginal17

organs observed in current practice. We next establish that the equilibrium outcome of the pro-18

posed mechanism strictly increases the utilization of organs, helping reduce the observed gap, as19

well as the social welfare. We also show that the degree of improvement increases monotonically20

with the degree of incentive (i.e., level of compensation) offered by the mechanism.21

We complement our theoretical analysis with detailed simulation results for the U.S. renal trans-22

plant system. Our simulation results suggest that introduction of the proposed mechanism helps23

significantly reduce kidney discard rate (baseline: 17.4%). Depending on the strength of response24

given by the population to the policy, discard rate can be as low as 5.4% (strong response),25

9.5% (moderate response), or 15.7% (weak response), which translates to 1746, 1148, or 241 more26

transplants per year, respectively. Moreover, KDPI of transplanted kidneys deteriorates by 0.8-27

3.7 depending on the strength of response, but the resulting graft survival 1-year post-transplant28

remains stable around 94.7%-94.9% versus 95.0% for baseline.29

Rest of the paper is organized as follows. Current U.S. organ allocation rules and relevant30

literature on organ transplantation is briefly summarized in Section 2. Section 3 presents the31

details of our baseline model formulation and its analysis, establishing the gap between socially32

efficient and equilibrium utilization of organs. Section 4 presents a revised model that incorporates33

returning candidates to the baseline model and derives structural results for the revised model.34

In particular, it corrects the equilibrium characterization obtained in Section 3 in the absence of35
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returning candidates, and establishes that equilibrium is, in fact, less conservative but a positive gap1

still exists. Section 5 introduces the policy incentive and its analysis concluding with the proposed2

incentive as a possible remedy that helps achieve the desired effects. Our simulation results in3

Section 6 demonstrate the magnitude of improvements and we conclude in Section 7. Proofs of all4

theoretical results are provided in Appendix A.5

2. Background6

2.1. An Overview of the U.S. Transplantation System7

With the enactment of National Organ Transplant Act (NOTA) in 1984, US Congress established8

the Organ Procurement and Transplantation Network (OPTN) to regulate the management and9

allocation of donated organs (NOTA 1984). Later in 1998, the U.S. Department of Health and10

Human Services (DHHS) published the “Final Rule” as a regulatory binding document to “achieve11

equitable allocation of organs among patients” (DHHS 1998). The Final Rule established the12

fundamental principles of an allocation policy including: placing emphasis on medical urgency,13

seeking to achieve effective use of organs, preventing organ wastage while preserving patients’14

ability of declining an offer, and reducing disparities in waiting times (Gibbons et al. 2000). In15

accordance with the Final Rule, separate allocation policies are developed for each organ, which16

have been reviewed periodically and revised as appropriate to this date (See Stegall et al. (2017),17

Schilsky and Moini (2016), Meyer et al. (2015), Pullen (2018) for brief history of allocation policies).18

Each allocation policy employs a sophisticated algorithm to determine the offer sequence among19

the active candidates in the waiting list for each harvested organ. We provide an overview of the20

current allocation rules for adult candidates in the US for the three largest transplant volume organ21

types and refer interested readers to the OPTN policy document (OPTN 2018b) for other details.22

Geography plays an important role in all allocation rules. The US is divided into 11 mutually23

exclusive collectively exhaustive geographic regions, which are further subdivided into 58 local24

donation service areas (DSA). Each DSA is served by one organ procurement organization (OPO)25

that coordinates the harvesting and matching of donated organs to candidates, and by one or more26

transplant hospitals, donor hospitals, and histocompatibility laboratories.27

The current kidney allocation system (KAS) classifies adult candidates through Estimated Post28

Transplant Survival (EPTS) scoring based on their (i) time on dialysis, (ii) diagnosis of diabetes,29

(iii) prior organ transplant, and (iv) age to identify candidates with longer expected post-transplant30

survival time. KAS also classifies deceased donors kidneys through Kidney Donor Profile Index31

(KDPI) that represents the cumulative risk of graft failure compared to a reference population based32

on several donor characteristics including age, ethnicity, creatinine level, history of hypertension,33
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diabetes and Hepatitis C (medical complications), cause of death, height and weight. Accordingly,1

KAS categorizes kidneys based on KDPI scores, and assigns allocation rules for each category, where2

it prioritizes candidates with top %20 EPTS when offering an organ with %20 KDPI. Within each3

classification, candidates are sorted first according to kidney allocation points, which is calculated4

based on waiting time, whether the candidate is a prior living organ donor, candidate’s likelihood of5

being incompatible with an average donor (estimated through Calculated Panel Reactive Antibody6

(CPRA) score) or the intended donor, and whether the candidate is under 18 years of age, and7

then according to their date of registration. Conforming to these priorities, kidneys from deceased8

donors are matched to candidates with permissible blood types searching through the DSA and9

region of the harvested kidney as well as through the nation.10

The current liver allocation system classifies and prioritizes adult candidates based on their11

geography and medical urgency. For each harvested liver, candidates are geographically re-labeled12

as local, regional, or national depending on the relative geographies of the candidate and the13

harvested organ. Candidates with a life expectancy of less than 7 days without a transplant are14

labeled as Status 1, while all other candidates are labeled with one of 35 MELD (Model for End-15

Stage Liver Disease) categories, which reflects the candidate’s probability of death within the next 316

months. Within each pair of (geography, medical urgency) classification, candidates are prioritized17

according to their blood type compatibility and waiting time.18

The current heart allocation system classifies and prioritizes adult candidates through (i) a heart19

status, namely Status 1A, 1B and 2, that reflects a candidate’s medical urgency for transplant,20

(ii) a geographical label, based on whether their transplant hospital is in the same DSA as the21

hospital harvesting the heart, and if not, then the distance between the two hospitals, (iii) blood22

type matching using a primary or secondary match. Within each classification, candidates are23

sorted according to their respective waiting times.24

2.2. Related Literature25

This paper contributes to the growing operations management literature on organ transplantation.26

One stream in the literature focuses on individual’s accept/reject decisions while waiting for a27

transplant as an optimal stopping time problem (David and Yechiali 1985, Ahn and Hornberger28

1996, Howard 2002, Alagoz et al. 2007, Sandıkçı et al. 2013). Another stream studies the design of29

optimal organ allocation policies considering the trade-off between efficiency and equity (David and30

Yechiali 1995, Zenios et al. 2000, Su and Zenios 2005, 2006, Akan et al. 2012, Bertsimas et al. 2013).31

Several papers also develop simulation models to analyze the performance of alternative allocation32

policies (Zenios et al. 1999, Shechter et al. 2005, Hasankhani and Khademi 2017). Our paper33

consolidates these three streams, and focuses on self-interested patient’s accept/reject decisions34
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concomitantly considering the effect of these decisions on the overall welfare of the society, proposes1

policy incentives to direct decentralized behavior of individual candidates to socially desirable2

levels, and illustrates the impact of the proposed policy using a clinically detailed simulation model.3

Our work is relevant to several studies examining the queueing models for organ allocation. Su4

and Zenios (2006) utilize mechanism design to propose efficient incentive compatible kidney allo-5

cation policies, where patients declare their own type information to choose the queue they would6

like to join. They identify the optimal assignment of kidneys to patients in terms of maximizing the7

efficiency or the equity of the allocation. Our work focuses on accept/reject decisions of patients,8

and aim to promote better utilization of available organs under the existing allocation policy. Dai9

et al. (2017) uses a queueing theoretic approach to study whether incentivizing donation through10

promising priority to individuals who sign up as donors if they ever need an organ transplant in11

the future can increase the pool of donors. They adapt an approach provided by Kessler and Roth12

(2012, 2014) to define the social cost of being a donor, and analyze the impact of donor prioriti-13

zation on organ donation decisions in equilibrium. Our work studies the problem of expanding the14

pool of organs from a different perspective; we assume that donor organs are scarce and limited,15

and focus on the utilization of available organs.16

Alleviating the growing concern for organ wastage, due to high discard rates of “marginal”17

organs, is at the core of this paper. Su and Zenios (2004) study the organ wastage problem by18

conducting welfare analysis for different queueing disciplines while allowing individual patients to19

defer organ offers. They exploit an idea proposed in Hassin et al. (1985), and conclude that, when20

allocating organs, switching from a first-come-first-serve queue to a last-come-first-serve queue,21

although being practically infeasible, increases organ utilization and social welfare. They assume22

that patients are homogeneous, and welfare does not include any social costs. We model hetero-23

geneous set of patients, who faces discrepancies in accessing to organs, and consider social cost of24

transplantation. Bandi et al. (2018) study the problem of estimating the waiting time of a customer25

with incomplete system information under a multiclass queueing system using a mixed-integer pro-26

gramming formulation. They illustrate an application of their model in the kidney allocation system27

with the motivation of inducing better informed offer acceptance decisions through reliable waiting28

time estimates. We assume that patients possess accurate estimations about the system dynamics,29

including waiting times, and concentrate on accept/reject decisions of candidates. Finally, Agarwal30

et al. (2017) perform an empirical analysis to study the organ wastage problem by predicting the31

accept/reject decisions from real data, and comparing the outcome metrics of a set of alternative32

mechanisms. Our work distinguishes itself from the literature by incorporating candidates return-33

ing to the waiting list for a repeat transplant opportunity and offering a viable incentive mechanism34

through these candidates to mitigate the burden of organ wastages.35
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3. Model Formulation1

We formulate a multiclass queueing model with reneging to study the organ transplant waiting list.2

Consider K different types of candidates in need of an organ transplant. Candidate types can be3

formed, for example, around age groups, geographies (e.g., those candidates that join the waiting4

list from the same DSA, the same region, or the same zone), medical conditions (e.g., MELD scores5

in liver, listing status in heart, time on dialysis in kidney), or comorbidities (e.g., those candidates6

that have a history of diabetes or hypertension). Each candidate type arrives to the waiting list7

according to a Poisson process independent of everything else. The total arrival rate of candidates8

to the waiting list is given by λ=
∑K

k=1 λk, where λk denotes the arrival rate of type-k candidates.9

Candidates depart from the waiting list either when they die while waiting for an organ or when10

they receive a transplant, whichever happens first. The time until death for type-k candidates is11

assumed to follow an exponential distribution with mean 1/dk. The transplant event depends on12

the availability of organs as well as the accept/reject decisions of candidates on the waiting list.13

Organs arrive to the system according to an independent Poisson process with a rate normalized14

to µ= 1. We consider the heterogeneity among the quality of organs for an accurate representation15

of the diversity of post-transplant benefits. Accordingly, we define a quality score q with q ∈ [q, q]16

corresponding to each organ. Although the definition of the term “marginal donor organ” still17

requires clarification, it usually refers to suboptimal quality organs whose survival benefits are18

inferior compared with those of standard organs. We categorize organs into two groups based19

on their quality scores using a threshold qm ∈ [q, q]. Organs with quality score q ≥ qm are called20

standard donor organs, and those with quality score q < qm are called marginal organs. Organ21

quality scores are iid uniform on [q, q]. A general cumulative distribution function can also be22

used; however, the clinical data shows evidence for uniformity over donated organ quality. As an23

example, Figure 1 provides the distribution of donor organs recovered between 2012 and 2017 in24

terms of KDPI scores and shows that donor KDPI score is almost uniform over [0,100].25

Current organ allocation policies result in discrepancies in patients’ access to organs, which is best26

observed in transplant statistics stratified by patient type and/or organ quality. For example, the27

median waiting time until transplantation varies greatly by medical status of the candidates (e.g.,28

87 days for Status 1A recipients versus 726 days for Status 2 recipients in heart transplantation29

(Colvin et al. 2018)), by their blood type (e.g., 127 days for blood type AB recipients versus 1,66230

days for type O recipients in liver transplantation (Kim et al. 2018)), and by the geographic location31

of the candidates (e.g., between 285 and 1,872 days depending on the recipient’s listing DSA in32

kidney transplantation (Hart et al. 2018)). Furthermore, patients’ access to organs can also vary33

by the quality of harvested organs (e.g., since 2014, patients 55 years of age or older received about34

the same number (∼ 21,000) of kidney transplants as those younger than 55; but only 10.5% of the35
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Figure 1 The distribution of donor kidneys in terms of KDPI scores between 2012 and 2017.

kidneys received by the older group was high quality (KDPI ≤ 20%) while this fraction triples to1

30.6% for the younger group). We model such discrepancies with a static randomized policy through2

the parameter pk(q), which denotes the probability that an arriving organ of quality q is offered3

to type-k candidates. The offer probability pk(q) imposes the level of access of type-k candidates4

to organs of quality q, and also determines the stationary waiting time until transplantation for5

type-k candidates. In Appendix B, we provide a closed form representation of stationary waiting6

time until transplantation as a function of pk(q).7

Organ offers in practice do not always translate to transplantation since patients have the pre-8

rogative to reject offers. We assume risk-neutral patients decide on offered organs jointly with their9

physicians. An offer is rejected typically when a better quality organ is anticipated for the patient10

under consideration. (Detailed discussions of the accept/reject problem in organ transplantation11

can be found in, for example, Sandıkçı et al. 2013, 2008, Alagoz et al. 2007, Howard 2002). We12

capture this phenomenon through focusing on equilibrium behavior of patients, in which a type-k13

candidate sets a threshold qk that represents the organ quality for which the patient is indiffer-14

ent between accepting or rejecting, accepts organs with quality higher than qk and rejects those15

with quality lower than qk. The scarcity of available organs raises competition between candidates16

and the offer probability pk(q) regulates this competition for a particular organ of quality q. In17

particular, given thresholds qk for k= 1, · · · ,K,18

(i) pk(q) = 0 for q ∈
[
q, qk

)
for all k; that is, we model type-k candidates’ rejection of organs that19

do not meet their quality threshold qk through their offer probabilities, and20

(ii)
∑

k : qk≤q

pk(q) = 1 for all q; that is, we model the competition among candidate types who are21

willing to accept an organ of quality q through their offer probabilities.22

Without loss of generality, we associate lower indices with candidate types that have higher access23

to the top quality organs q, and assume that this ordering is preserved for any other organ q among24
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patient types who are interested in q. That is, pk(q)> p`(q) for k < ` and q ∈ [qk, q]. As a result,1

at the extreme, candidates who have the lowest access (i.e., type-K candidates) face a notable2

disadvantage when competing for highly demanded organs. If, however, these candidates settle for3

organs that are not of interest to other candidates, they can significantly increase their share from4

the organ pool.5

Given threshold qk and offer probabilities pk(·), the arrival rate µk(·) of organs to type-k candi-

dates can be obtained by adjusting the organ pool that is of interest to this group with the offer

probabilities to these patients. In particular,

µk(qk) =
q− qk
q− q ·

∫ q

qk

pk(q)
1

q− qk
dq=

∫ q
qk
pk(q) dq

q− q (1)

For any patient type k, we assume that candidate and organ arrival rates, λk and µk, are consid-6

erably larger than the death rate, dk. This assumption enables the use of asymptotic results to7

characterize the stationary behavior of our multiclass queueing model .8

We use quality-adjusted life expectancy (QALE) to measure candidates’ utility from transplan-9

tation. The life expectancy of a candidate is composed of pre- and post-transplant periods, which10

are functions of the organ quality threshold set by the candidate. In particular, the pre-transplant11

life expectancy Φk of type-k candidates is defined as the duration between the time of arrival to12

the waiting list and the times of death or receiving a transplant, whichever occurs first, and can13

be calculated as14

Φk(qk) = Expected time until transplant given transplant occurs before death ·πk(qk)

+Expected time until death given death occurs before transplant · [1−πk(qk)],

where πk(qk) denotes the probability that a type-k candidate having the organ threshold qk will be

offered an organ. In steady-state, this probability can be approximated by the fraction of organs

that are offered to type-k candidates. Therefore, we have

πk(qk)≈min

{
1,
µk(qk)

λk

}
. (2)

Furthermore, given that transplant occurs before death, expected time until transplant asymptot-

ically approaches zero, and therefore, pre-transplant life expectancy can be approximated as

Φk(qk)≈
1

dk
max

{
0,
λk−µk(qk)

λk

}
. (3)

Relying on a fluid limit approximation, Zenios (1999) provides a formal proof of the closed-form15

expressions given in equations (2) and (3).16
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The post-transplant life expectancy of type-k candidates is defined as the life years the candidate

is expected to enjoy following the transplant and is given by

Ek[Ψk(q) | q≥ qk] =

∫ q

qk

Ψk(q)
pk(q)∫ q

qk
pk(q) dq

dq, (4)

where Ek[·] is the expectation taken over q with respect to pk(·), Ψk(q) denotes the average life1

span of a type-k candidate after transplanting an organ of quality q. We assume that Ψk(q) is2

strictly increasing in q for all k to represent that higher quality organs provide longer life benefits.3

A quality-of-life score between 0 (denoting death) and 1 (denoting perfect health state) is typi-4

cally used in the medical literature to adjust for the quality of life under different medical conditions5

compared to having perfect health (Guyatt et al. 1993). Following this convention, we denote the6

quality-of-life score for the pre- and post-transplant periods as α and β, respectively, and assume7

that the quality of life improves after transplantation (i.e., β >α).8

We can, therefore, write the expected QALE for type-k candidates having threshold qk as

Lk(qk) = αΦk(qk) +βπk(qk)Ek[Ψk(q) | q≥ qk]. (5)

In the remainder of the paper, to represent organ scarcity, we assume that µk
(
q
)
≤ λk for all k.

The analysis of the case where µk
(
q
)
>λk for a type-k candidate is not of practical interest because

of the gap present between the demand and supply for organs in the United States. As a result,

using equations (1) to (5), the expected QALE for type-k candidates reduces to

Lk(qk) = α
1

dk

(
1−

∫ q
qk
pk(q) dq

λk
(
q− q

) )+β
1

λk
(
q− q

) ∫ q

qk

Ψk(q)pk(q) dq. (6)

Proposition 1 provides the QALE maximizing thresholds of each type-k candidate to optimize9

their expected QALE.10

Proposition 1. QALE-maximizing threshold q∗k of a type-k candidate is unique over the interval

[q, q] and given by

q∗k = min

{
q,max

{
q,Ψ−1

k

(
α

βdk

)}}
, for k= 1, . . . ,K.

The boundary conditions q∗k = q and q∗k = q in Proposition 1 are provided for mathematical com-11

pleteness, but they are unlikely to be observed in practice. The solution q∗k = q happens only if the12

life expectancy from transplanting the highest quality organ is lower than that from staying in the13

waiting list until death, implying a system where transplantation is a non-value adding activity.14

The solution q∗k = q represents the other extreme case and happens only if the life expectancy from15

transplanting the lowest quality organ is higher than that from staying in the waiting list until16
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death, implying a system where staying in the waiting list is non-value adding. Staying on the wait-1

ing list may be more valuable than transplanting certain types of organs, as evidenced by frequent2

rejection of organs in practice, as well as a lack of interest declared in advance by some transplant3

centers for particular types of organ offers (Israni et al. 2018, Jay and Schold 2017). Therefore,4

neither of these extremes represent a scenario observable in practice. As a result, expected QALE of5

type-k candidates is maximized when they set their quality threshold to q∗k = Ψ−1
k

(
α
βdk

)
, implying6

that type-k candidates should accept all organs that have a longer life expectancy than staying in7

the waiting list to maximize their QALE.8

The expected QALE in equation (6) considers only life benefits, whereas one should also acknowl-9

edge the social costs associated with the heterogeneity in organ qualities (Kessler and Roth 2012).10

Compared to a typical organ that is generally accepted by transplant centers as standard, trans-11

planting a lower quality organ induces a cost. This cost can manifest itself in the form of real12

costs such as lower life expectancy and medical complications, or psychological costs such as feeling13

underprivileged, or a combination of both. Transplanting a higher quality organ, on the other hand,14

may be perceived as an additional reward due to, for example, higher life expectancy, anticipation15

of fewer medical complications, or feeling privileged. Similar to Kessler and Roth (2012), we define16

c(q) as the cost of transplanting an organ with quality q and assume that it is (i) decreasing in17

q, and (ii) additively separable from expected QALE. The case when c(q) > 0 is interpreted as18

the cost, while the case when c(q)< 0 is interpreted as the reward of transplanting an organ with19

quality q. The expected cost paid by a type-k candidate having threshold qk is given by20

Ck(qk) = πk(qk) ·Ek[c(q) | q≥ qk] (7a)

=

∫ q
qk
pk(q) dq

λk(q− q)

∫ q

q
k

c(q)
pk(q)∫ q

qk
pk(q) dq

dq (7b)

=
1

λk(q− q)

∫ q

qk

c(q)pk(q) dq. (7c)

Thus, the social welfare function can be written as

S(q1, . . . , qK) =
K∑
k=1

λk
λ

[Lk(qk)−Ck(qk)]. (8)

Proposition 2 specifies socially efficient thresholds for all patient types that maximize the social21

welfare function.22

Proposition 2. Socially efficient threshold qsk of a type-k candidate is unique over the interval

[q, q] and given by

qsk = min
{
q,max

{
q, q′k

}}
, for k= 1, . . . ,K,
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where q′k is the unique solution of the following equation:

βΨk(q
′)− c(q′) =

α

dk
.

Similar to Proposition 1, the boundary conditions qsk = q and qsk = q in Proposition 2 are again1

provided for mathematical completeness. In the remainder of the paper, we assume that these two2

solutions are not attainable for notational convenience. We establish an ordering of the QALE-3

maximizing and socially efficient quality thresholds in Corollary 1.4

Corollary 1. For any candidate type k,

q∗k < qsk if c(q∗k)> 0,

q∗k ≥ qsk if c(q∗k)≤ 0.

The case c(q∗k)≤ 0 in Corollary 1 corresponds to a situation where there is a social reward asso-5

ciated with transplanting organs of quality q∗k—those organs that maximize the expected QALE6

of type-k candidates. Therefore, the social planner who recognizes this reward decides to set the7

socially efficient threshold qsk lower than the QALE-maximizing threshold q∗k. The case c(q∗k) > 08

corresponds to the alternative where there is a social cost associated with transplanting quality-q∗k9

organs. Therefore, the social planner who wants to avoid this cost acts more conservatively and10

sets the socially efficient threshold qsk higher than the QALE-maximizing threshold q∗k. In both11

cases, the social planner sets the socially efficient threshold at the expense of expected QALE, but12

compensates for this loss by maximizing the overall welfare to the society that also includes the13

social costs/rewards of transplantation.14

Corollary 1 offers some insight for the idea that gains increasing popularity in the medical15

literature—the idea of using marginal organs for individuals that have a significant disadvantage16

in accessing standard organs (e.g., the proposal to use organs from elderly donors for elderly17

candidates). Marginal organs are perceived as ‘marginal’ in the medical community because of18

their sub-standard performance when used for transplantation. Accordingly, marginal organs in19

our modeling framework would correspond to those that are associated with positive costs (i.e.,20

c(q)> 0). When this is the case, Corollary 1 implies that QALE-maximizing planner, who ignores21

the social costs of transplanting, would utilize more marginal organs than the socially efficient level.22

However, marginal organs have relatively higher cost among all utilized organs, and therefore, the23

social planner uses such organs more conservatively despite their QALE benefits.24

Self-interested individuals, on the other hand, optimize their own well-being while competing25

with other candidates, and their decisions may not coincide with those of a social planner or a26
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QALE-maximizing planner. We next examine the equilibrium decisions of self-interested individ-1

uals. When an organ is offered to a candidate, she faces a trade-off between the costs/benefits2

of accepting and rejecting. Accepting the organ provides the QALE benefit as well as the cost of3

transplanting that particular organ, increases the pool of organs utilized by her type, but forgoes4

the possibility of a higher-quality organ. Rejecting, on the other hand, allows for the possibility of5

obtaining a higher benefit of transplantation through a higher-quality organ, but forgoes the ben-6

efit of transplanting the current organ, exposes the patient to the risk of death without receiving a7

transplant, and decreases the pool of organs utilized by her type. In equilibrium, type-k candidates8

are indifferent between accepting or rejecting the organs of quality qek. All type-k candidates accept9

organs that are at least as good in quality as the equilibrium threshold qek, and reject those that do10

not meet the threshold qek. We characterize the equilibrium behavior of candidates in Proposition 3.11

Proposition 3. The equilibrium threshold qek of type-k candidates exists uniquely and is given

by the solution of the following equation

βΨk(q
′)− c(q′) =

α

dk
· [1−πk(q′)] +Ek[βΨk(q)− c(q) | q≥ q′] ·πk(q′). (9)

Comparing the equilibrium threshold qek with the socially efficient threshold qsk, we establish in12

Corollary 2 that candidates set their quality thresholds more conservatively in equilibrium than13

the socially efficient level.14

Corollary 2. For any candidate type k, qsk < q
e
k.15

Corollary 2 offers a potential explanation to the low utilization of marginal organs observed in16

practice. The gap between the socially efficient and the equilibrium thresholds results from the lack17

of appropriate incentive mechanisms for candidates to accept lower quality organs for the common18

good. Instead of transplanting these organs having relatively lower QALE benefits and higher costs,19

candidates would prefer staying in the waiting list enjoying, in expectation, the average benefits20

that anyone with their access level can get. Lowering the equilibrium threshold qek, for any candidate21

type k, until the socially efficient threshold qsk creates a positive externality to the system. However,22

individuals’ failing to internalize this externality results in the gap observed in Corollary 2.23

One approach to close this gap would be through increasing the left-hand side of equation (9);24

since its right-hand side is decreasing beyond qsk (see the proof of Proposition 3), any increase in its25

left-hand side would shift the equilibrium threshold qek towards qsk. A popular means of achieving26

such an increase is to raise awareness of the social benefits, which corresponds to decreasing the27

social costs, of transplanting marginal organs that are wastefully discarded in the current system.28

Promoting and publicizing these benefits is a major motivation for the burgeoning medical litera-29

ture on the utilization of marginal organs (Reese et al. 2016, Massie et al. 2014, Heuer et al. 2010,30
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Lee et al. 2005, Busuttil and Tanaka 2003, Alexander and Zola 1996). The intended increase in the1

left-hand side of equation (9) can also be achieved by offering, for example, monetary compensation2

for accepting marginal organs. Using financial incentives to alleviate the burden of organ shortage3

have indeed been proposed by economists (e.g., see Becker and Elias (2007)). However, financial4

incentives related to any phase of organ donation and transplantation are generally perceived as5

unethical (Arnold et al. 2002) and currently unlawful in the US (NOTA 1984). Therefore, offering6

monetary compensations of any form to promote marginal organs can be assumed impractical.7

Alternatively, the gap between qsk and qek, for any candidate type k, can be reduced by decreasing8

the right-hand side of equation (9); since its left-hand side is strictly increasing (see the proof of9

Proposition 3), any decrease in its right-hand side would shift the equilibrium threshold qek towards10

qsk. Such a decrease may be achieved by mechanisms that reduce the access of type-k candidates to11

relatively higher quality organs in exchange for higher access to lower quality organs. This exchange12

among access levels to different organ types would correspond to decreasing the expectation term13

in equation (9). If, however, the mechanism also lowers the probability of receiving any offer14

πk(·), it would create further injustice and render itself unimplementable. Therefore, any successful15

implementation that lowers qek should offer some increase in πk(·), while appropriately altering the16

access levels, for a net decrease in the right-hand side of equation (9). The Eurotransplant Senior17

Program introduced in Section 1 constitutes a nice example in this direction.18

To help reduce the gap between the socially efficient and the equilibrium thresholds, we offer19

yet another alternative through considering the candidates returning to the waiting list for re-20

transplantation—a significant aspect of the organ transplant systems that has not received much21

attention in the operations literature. In the next section, we expand our queueing model to include22

returning candidates and analyze its impact on the system outcomes, which leads us to the alter-23

native mechanisms that help reduce the gap without compromising social welfare.24

4. Returning Candidates Due to Failed Organs25

A transplant recipient in practice can outlive the life of the graft she has received. Such cases arise26

when the recipient experiences irreversible graft failure but she is not necessarily dead and, in fact,27

can live longer if an alternative is found to replace the functions of the failed graft (e.g., dialysis28

for kidney recipients or retransplantation). Such transplant recipients typically3 return back to the29

waiting list for a new transplant opportunity. Data summarized in Table 1 shows that 10.6% of all30

additions to the waiting list and 9.5% of all transplant recipients were repeat transplant candidates.31

Table 1 also displays variation in the rate of repeat transplantation across organs, with kidney and32

pancreas facing the highest rates. In this section, due to their significance in transplant systems,33

we incorporate returning candidates into our model.34

3 Graft-failed transplant recipients do not always return back to the waiting list if they cannot clear the eligibility
protocol of the transplant center for wait-listing.
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Table 1 Previous transplant status by organ between January 1, 1995 and March 31,

2018

Waiting list additions Transplant recipients

Primary Repeat Primary Repeat

Kidney 604,968 (87.1 %) 89,678 (12.9 %) 320,086 (88.3 %) 42,596 (11.7 %)
Liver 234,029 (93.0 %) 17,586 ( 7.0 %) 128,077 (92.7 %) 10,111 ( 7.3 %)
Pancreas 13,978 (82.6 %) 2,946 (17.4 %) 7,059 (87.9 %) 972 (12.1 %)
Heart 80,839 (95.5 %) 3,821 ( 4.5 %) 53,392 (96.6 %) 1,897 ( 3.4 %)
Lung 48,548 (95.5 %) 2,294 ( 4.5 %) 32,498 (96.2 %) 1,268 ( 3.8 %)
Intestine 4,136 (89.2 %) 500 (10.8 %) 2,546 (89.5 %) 299 (10.5 %)

All Organs 986,498 (89.4 %) 116,825 (10.6 %) 543,658 (90.5 %) 57,143 ( 9.5 %)

When compared to Section 3, the competition for organs becomes stiffer with the involvement1

of returning candidates, since the supply of organs is not affected by these returns. Furthermore,2

this involvement becomes even more prominent when patients increasingly utilize marginal organs,3

as such organs are, by definition, associated with lower graft survival. As a result, while increasing4

the use of marginal organs may soften the competition through increasing the pool of available5

organs, it can also intensify the competition for the limited set of donated organs.6

We analyze the resulting tradeoff and its impact on equilibrium outcomes by incorporating7

returning candidates as delayed feedback in our queueing model. Let rk(q) denote the probability8

that a type-k candidate who has received an organ transplant of quality q outlives her graft and9

returns to the waiting list. Assume that rk(q) is nonincreasing in q for all patient types k, which is10

consistent with the definition of quality q. We consider any general probability function for rk(·) in11

our analysis. But, for practical applications, it can take simple forms such as a step function that12

takes value 0 for high quality organs q above some level q̂ (i.e., recipients are outlived by the graft)13

and the value 1 for low quality organs q≤ q̂ (i.e., recipients outlive the graft).14

For analytical tractability of the model, we assume that returning patients inherit their original15

types. An important implication of this assumption is that repeat transplant recipients enjoy the16

same post-transplant life distribution as that of primary transplant recipients. For kidney recipients,17

this assumption is justified by Figure 2a, which displays Kaplan-Meier patient survival estimates for18

primary and repeat transplants. This figure demonstrates that survival rates are not significantly19

different between primary and repeat transplant recipients, except repeat transplant recipients20

seems to have a slightly higher 5-year survival probabilitiy, which is explained by selection bias in21

practice (repeat transplant recipients are younger than primary transplant recipients). In agreement22

with this figure, analyzing long-term survival trends, Andre et al. (2014) and El-Husseini et al.23

(2017) also report that kidney allograft outcomes and patient survival are comparable in primary24

and repeat kidney transplant recipients.25
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(b) Graft versus patient survival

Figure 2 Kaplan-Meier survival estimates for kidney transplants performed during 2008-2015 (based on OPTN

data as of April 6, 2018)

4.1. Preliminaries1

The delayed feedback to the queue, in general, can potentially distort the memoryless property2

of the effective arrival process. However, if the arrivals of the first-time candidates crowds out3

the arrivals of the returning candidates, then the dependency between the two arrival processes4

becomes negligible and the effective arrival process converges to a Poisson process. The crowding5

out naturally happens when the returns are rare relative to first-time arrivals, which seems to6

hold in the US transplant system, where, on average, only 10 repeat arrivals occur for every 907

first-time arrivals (see Table 1). Peköz and Joglekar (2002) formalizes this observation by scaling8

up the delay time distribution and proves the convergence of the effective arrival process to a9

Poisson process. Therefore, the effective arrival rate equals the first-time arrival rate inflated by10

the expected number of returns. We allow candidates to return back to the waiting list at most11

once, since multiple returns are not widely observed in organ transplantation.4 As a result, the12

effective arrival rate of type-k candidates having quality threshold qk is given by13

λ̃k(qk) := λk +µk(qk)Ek[rk(q) | q≥ qk], (10)14

which is equivalent to λ̃k(qk) = λk(1+πk(qk)Ek[rk(q) | q≥ qk]). Observe that the return event is only15

defined for transplanted organs and, therefore, the mean number of returns includes the probability16

πk(qk), since only those candidates that receive a transplant may return.17

Allowing patients to return back to the waiting list impacts several quantities of interest including

expected QALE and equilibrium decisions of each candidate type as well as social welfare. With

4 Based on OPTN data as of September 30, 2017, the fraction of patients who received two or more repeat transplants
(of the same organ type) has peaked at 0.8% (for kidney recipients) and can be as low as 0.1% (for lung recipients).
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candidates returning back to the waiting list for a re-transplant, the probability of type-k candidate

having a quality threshold qk being offered a transplant is revised as

π̃k(qk) =
µk(qk)

λ̃k(qk)
, (11)

and the pre-transplant life expectancy is revised as

Φ̃k(qk) =
1

dk

[
1− µk(qk)

λ̃k(qk)

]
. (12)

With the introduction of the possibility of returning to the waiting list for a re-transplant1

opportunity, it becomes critical to separate graft survival from patient survival. Graft survival is2

concerned with the time until irreversible graft failure, signified by a need for retransplantation3

or patient death, whereas patient survival is only concerned with the time until patient death.4

Kaplan-Meier survival estimates for kidney transplant recipients in Figure 2b show significant dif-5

ferences between graft and patient survivals, emphasizing the importance of distinguishing between6

these two concepts. For this purpose, let Ψ̃k(q) denote the average life of an organ of quality q7

transplanted to a type-k candidate. We should note that, when patients outliving their graft are8

not allowed to return to the waiting list as in Section 3, the distinction between graft and patient9

survivals is less critical since the quality-adjusted average life span βΨk(q) used in Section 3 can10

be viewed as11

βΨk(q) = βΨ̃k(q) +αrk(q)
1

dk
. (13)12

The right-hand side of equation (13) is composed of the life expectancy from the graft and the life13

expectancy without a transplant after a failed graft adjusted by the probability of patient outliving14

the graft, in which case patient was assumed to not return for a retransplant opportunity.15

Using the updated quantities in equations (10) to (13), the expected QALE for type-k candidates

having threshold qk is revised as

L̃k(qk) =
(
αΦ̃k(qk) +βπ̃k(qk)Ek

[
Ψ̃k(q)

∣∣∣ q≥ qk]) · λ̃k(qk)
λk

, (14)

where the term inside the parantheses corresponds to expected QALE per arrival, and therefore,

it is adjusted by the factor
λ̃k(qk)

λk
to obtain expected QALE per candidate. Similarly, the expected

cost incurred by a type-k candidate is revised as

C̃k(qk) = π̃k(qk) ·Ek[c(q) | q≥ qk] ·
λ̃k(qk)

λk
= πk(qk) ·Ek[c(q) | q≥ qk] =Ck(qk). (15)

Observe that the revised expected cost C̃k(·) is the same as the original expected cost Ck(·), since

the social cost c(·) of transplanting an organ depends only on the quality of the organ (and,
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therefore, it is independent of whether the organ is used in a primary or a repeat transplant).

Equations (14) and (15) yield the revised social welfare function:

S̃(q1, . . . , qK) =
K∑
k=1

λk
λ

(
L̃k(qk)− C̃k(qk)

)
. (16)

The difference L̃k(qk)− C̃k(qk)) in equation (16) is measured in welfare generated per candidate,1

and therefore, it is weighted by
λk
λ

, the fraction of type-k candidates.2

4.2. Structural Results3

Proposition 4 characterizes QALE-maximizing and socially efficient thresholds for each type-k4

candidate when candidates are allowed to return to the waiting list. Compared to Propositions 15

and 2, Proposition 4 captures the possibility of outliving the graft when maximizing expected6

QALE or social welfare, and it reveals that the potential benefit from returning to the waiting list7

should also be considered when setting QALE-maximizing and socially efficient thresholds.8

Proposition 4. When returns are allowed, for any type-k candidate,9

(a) QALE-maximizing threshold q̃∗k is unique the unique solution of the following equation:

βΨ̃k(q̃) =
α

dk
(1− rk(q̃)), (17)

(b) socially efficient threshold q̃sk is the unique solution of the following equation:

βΨ̃k(q̃)− c(q̃) =
α

dk
(1− rk(q̃)). (18)

Corollary 3 follows immediately from Propositions 1, 2 and 4, offering a rather surprising result.10

Accordingly, introduction of returning candidates to the waiting list due to failed organs has no11

effect on the QALE-maximizing or the socially efficient utilization levels of organs, as measured by12

organ quality thresholds, which can be explained by two main factors acting together: (i) a QALE-13

maximizing planner or a social planner has no preference between allocating an organ to primary14

or repeat transplant candidates, and (ii) organ arrivals are not affected by returning candidates.15

Corollary 3. For any candidate type k, q̃∗k = q∗k and q̃sk = qsk.16

We next characterize, in Proposition 5, the equilibrium threshold of type-k candidates when17

returns are allowed. Compared to Proposition 3, Proposition 5 identifies an equilibrium through18

exploiting the possibility of patient outliving the graft and getting re-listed, in addition to the19

immediate benefits of transplanting.20
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Proposition 5. When returns are allowed, for any type-k candidate, equilibrium threshold q̃ek

exists and is given by a solution to the following equation

βΨ̃k(q̃)− c(q̃) =

(
α

dk
[1− π̃k(q̃)] +Ek

[
βΨ̃k(q)− c(q)

∣∣∣ q≥ q̃]π̃k(q̃))( λ̃k(q̃)
λk
− rk(q̃)

)
. (19)

Furthermore, the equilibrium is unique if
rk(q)

λ̃k(q)
is nondecreasing in q.1

The condition for the uniqueness of the equilibrium can be interpreted as follows. Relaxing organ2

acceptance threshold for type-k candidates from q to q̂ increases their worst-case return probability3

as well as their effective arrival rate. The condition stipulates that the relative change
rk(q̂)

rk(q)
in the4

worst-case return probability should be no more than the relative change
λ̃k(q̂)

λ̃k(q)
in the effective5

arrival rate. Violating this condition would imply that the increase in the return probability by6

accepting a lower quality organ q̂ may not be matched with an increase in the effective arrival rate,7

and thus, candidates who used to be in equilibrium at q can exploit this mismatch and benefit8

from accepting the inferior quality q̂, potentially resulting in multiple equilibria.9

Although QALE-maximizing and socially efficient thresholds remain unchanged with the intro-10

duction of the possibility of returning to the waiting list, we find in Corollary 4 below that allowing11

returns strictly decreases equilibrium thresholds. That is, considering the potential benefits from12

retransplantation allows self-interested individuals to accept lower quality organs than those when13

they overlook the possibility of retransplantation. Corollary 4 further establishes that the equilib-14

rium thresholds with and without considering returns coincide if and only if it is impossible for the15

patient to outlive her graft, which happens only if her organs of interest are supreme quality.16

Corollary 4. For any candidate type k, q̃sk < q̃
e
k ≤ qek. Furthermore, q̃ek = qek iff rk(q̃

e
k) = 0.17

Although considering returns helped move the equilibrium thresholds closer to the socially effi-18

cient level, we find in Corollary 4 that it falls short of completely closing the gap between the two.19

The existence of this positive gap explains the flurry of activity in the medical literature focusing on20

documenting the realized benefits of transplanting marginal organs (Ojo et al. 2001, Busuttil and21

Tanaka 2003, Massie et al. 2014). However, to the best of our knowledge, the correlation between22

transplanting marginal organs and returning back to the waiting list has not been spotted as an23

opportunity to incentivize the use of marginal organs. We next exploit the return events to offer24

novel incentive mechanisms that further increase the equilibrium utilization of organs towards the25

socially efficient level.26

5. A Remedy: Preserve Waiting Times27

This remedy is motivated from marketing strategies (i) to promote a substandard product with low28

reliability (Li et al. 2013) and (ii) to encourage consumers with valuation uncertainty, who face risk29
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bearing decisions (Su 2009). Lenient return policies and warranty incentives are also shown to play1

an important role in customer decisions (Davis 2001). Manufacturers may compensate risk-bearing2

decisions of customers through insurance mechanisms to promote their products (Xie and Shugan3

2001). A transplant candidate may reject a marginal organ offer because she may not have any4

intrinsic motivation to accept this higher risk organ with substandard survival expectancy, which5

would also require giving up her current position in the waiting list. In light of this observation, a6

policy that compensates the recipient of a marginal organ for freeing up her spot in the waiting list7

in exchange for a substandard organ may be very appealing for some candidates to be receptive of8

such organs. Since the organ does not necessarily always last shorter, which would have forced its9

recipient into a re-transplant situation, we may consider offering the compensation only if the graft10

fails and the recipient returns back seeking re-transplantation. This may as well be deemed more11

fair, since no candidate is forced, but instead those who suffer are compensated. In practice, this12

compensation may correspond to preserving some fraction of the previously accumulated waiting13

times of the candidates returning to the waiting list for a re-transplant.14

We formalize the above discussion by introducing the (δ, q̊) policy to our queueing framework.15

Under this policy, candidates who transplant organs with quality at most q̊ are considered eligible16

for priority. If an eligible type-k candidate returns back to the waiting list for a repeat transplant17

opportunity, she is given priority in her queue (of type-k candidates) with probability δ ∈ [0,1]. At18

one extreme, setting δ = 0 corresponds to the baseline studied in Section 4, in which accumulated19

waiting time is lost at the time of transplantation. At the other extreme, setting δ = 1 corresponds20

to inflating the waiting time by a large value (e.g., ∞), and therefore, giving absolute priority21

to eligible returning candidates. In between these two extremes, one may consider partial-priority22

policies that preserve fractions (or, if desired, multiples) of the accumulated waiting time until23

first transplantation. The full spectrum of partial-priority policies correspond to allowing any value24

between 0 and 1 for δ.25

Eligibility parameter q̊ in a (δ, q̊) policy can take any value in [q, q]; setting q̊ = qm corresponds26

to giving eligibility to marginal organ recipients only, q̊ = q makes every recipient eligible while27

q̊ = q makes no recipient eligible.5 Social planner strategically sets q̊ as a means to influence the28

equilibrium behavior of candidates and achieve socially efficient utilization levels of organs. In doing29

so, setting the eligibility parameter too conservatively (i.e., q̊� q̃ek for any patient type k) would30

weaken the strength of incentive for type-k candidates, and the (δ, q̊) policy may not at all achieve31

the desired effect over such patients. On the other hand, setting q̊ too generously (i.e., q̊� q̃ek)32

would correspond to promoting a subset of organs that type-k candidates are willing to accept33

5 Observe that, in a (δ, q̊) policy, q̊ is irrelevant when δ= 0, and similarly, δ is irrelevant when q̊= q.
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in the absence of any promotion, and thus, it may not achieve the full potential of an optimally1

designed (δ, q̊) policy. In Proposition 6, we characterize the equilibrium behavior of candidates after2

introducing the (δ, q̊) policy for any q̊. Compared to Proposition 5 that considers the expected3

benefits of re-listing without any priority, Proposition 6 identifies an equilibrium through exploiting4

the additional possibility of receiving priority when being re-listed.5

We start with preliminaries that are used in Proposition 6. Let λ
?

k(·) and λ̊k(·) denote the arrival

rates of eligible and ineligible returning type-k candidates, respectively. Observe that λ̃k(qk) =

λk +λ
?

k(qk) + λ̊k(qk) and, for any (δ, q̊) policy, λ
?

k(qk) and λ̊k(qk) satisfy

λ
?

k(qk) =

{
0 for qk > q̊

µ
?

k(qk)Ek[rk(q) | qk ≤ q≤ q̊] for qk ≤ q̊
(20)

and

λ̊k(qk) =

{
µk(qk)Ek[rk(q) | qk ≤ q] for qk > q̊

[µk(qk)−µ? k(qk)]Ek[rk(q) | q̊≤ q] for qk ≤ q̊
(21)

where µ
?

k(qk) denotes the pool of organs that makes their recipients eligible and is given by

µ
?

k(qk) =
q̊− qk
q− q ·

∫ q̊

qk

pk(q)
1

q̊− qk
dq=

∫ q̊
qk
pk(q) dq

q− q . (22)

Observe that λ
?

k(qk)≤ µ? k(qk)≤ µk(qk) for any qk, and therefore, under any (δ, q̊) policy, a δ fraction

of λ
?

k(qk) receive an organ with probability that asymptotically approaches 1, and their expected

time until transplant converges to 0 (Zenios 1999). The probability of receiving an organ offer

for the remaining set of candidates (arriving with rate λ̃k(qk)− δλ
?

k(qk)), which includes eligible

candidates that return to the waiting list but do not receive priority as well as returning ineligible

candidates and candidates arriving for the first time, is given by

π̃δk(qk) =
µk(qk)− δλ

?

k(qk)

λ̃k(qk)− δλ
?

k(qk)
.

The priority probability δ can take any value in [0,1]. However, from the perspective of a social6

planner, some values of δ may not be easily implementable due to fairness considerations, or they7

may even be undesirable. In particular, the degree of incentive brought in by some values of δ8

may encourage lowering organ acceptance thresholds below the socially efficient level. Such an9

outcome, however, would be undesirable by the social planner since it implies a loss in realized10

social welfare compared to what can be achieved at the socially efficient level. That is, the social11

planner would only implement (δ, q̊) policies, called admissible policies, that avoids such outcomes.12

We next provide technical definition of admissible policies from the perspective of a social planner,13

and defer intuitive explanation of the terms that define such a policy until after Proposition 6.14
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Definition 1. An admissible (δ, q̊) policy is any (δ, q̊) policy such that δ ∈ [0, δs], where

δs := min
{

1, min
k
{δsk}

}
,

and, for any candidate type-k, δsk is the solution6 to the following equation:

δsk + (1− δsk) · π̃δk(q̃sk) = Γk, (23)

where Γk =

λ̃k(q̃)

λk
· π̃k(q̃sk) ·Ek

[
βΨ̃k(q)− c(q)− α

dk
+ α

dk
rk(q)

∣∣ q≥ q̃sk]
rk(q̃sk) ·Ek

[
βΨ̃k(q)− c(q)− α

dk

∣∣ q≥ q̃sk] .1

In Proposition 6, we characterize the equilibrium behavior of candidates under any admissible2

(δ, q̊) policy and emphasize the importance of setting the eligibility parameter q̊ in this character-3

ization. In particular, we establish in part (b) that the (δ, q̊) policy would not achieve any desired4

effect for type-k candidates, if the social planner chooses a q̊ below q̃sk. Therefore, the planner5

should only consider setting q̊ above q̃sk. However, setting q̊ in the interval [q̃sk, q̃
e
k) risks the possi-6

bility of not achieving any effect for type-k candidates, as q̃ek is preserved as an equilibrium when7

q̊ ∈ [q̃sk, q̃
e
k) (see part (a-2)). On the other hand, setting q̊ in the interval [q̃ek, q] eliminates q̃ek from8

being preserved as an equilibrium, which we formally prove in Corollary 5 below, and therefore,9

guarantees achieving the desired effect (see part (a-1)). Furthermore, part (a-1) also establishes a10

sufficient condition for the uniqueness of the equilibrium when q̊ ∈ [q̃ek, q]. Observe that the term11

rk(q)π̃δk(q)

µk(q)
in this sufficient condition is a simple generalization of the similar term

rk(q)

λ̃k(q)
=

rk(q)π̃k(q)

µk(q)
12

given in Proposition 5. In the rest of this section, for clarity of presentation, we assume that the13

uniqueness condition specified in Proposition 5 holds.714

Proposition 6. Under any admissible (δ, q̊) policy, for any type-k candidate, any equilibrium15

threshold q̃
e,(δ,q̊)
k ∈ [q, q̊] solves the following equation:16

immediate benefit from
transplanting q̃︷ ︸︸ ︷
βΨ̃k(q̃)− c(q̃) +

prob. of
return︷ ︸︸ ︷
rk(q̃)

(
δ

expected benefit from transplan-
tation given priority︷ ︸︸ ︷

Ek
[
βΨ̃k(q)− c(q)

∣∣∣ q≥ q̃
]

+(1− δ)

( expected benefit from wait-listing
given no priority︷ ︸︸ ︷

α

dk

(
1− π̃δk(q̃)

)
+Ek

[
βΨ̃k(q)− c(q)

∣∣∣ q≥ q̃
]
π̃δk(q̃)

))
=

(
α

dk

(
1− π̃δk(q̃)

)
+Ek

[
βΨ̃k(q)− c(q)

∣∣∣ q≥ q̃
]
π̃δk(q̃)︸ ︷︷ ︸

expected benefit from wait-listing
given no priority

)(
1 +

(1− δ)λ
?

k(q̃) + λ̊k(q̃)

λk︸ ︷︷ ︸
fraction of

non-prioritized
returns

)
+
δλ
?

k(q̃)

λk︸ ︷︷ ︸
fraction of
prioritized

returns

Ek
[
βΨ̃k(q)− c(q)

∣∣∣ q≥ q̃
]

︸ ︷︷ ︸
expected benefit from

transplantation given priority

, (24)

and any equilibrium threshold q̃
e,(δ,q̊)
k ∈ [̊q, q] solves equation (24) with δ = 0.17

(a) If q̊≥ q̃sk, and18

6 Observe that the solution of equation (23) is given by δsk =
[
Γk − π̃k(q̃sk)

]
·
[
1 + (Γk − 1)

λ
?

k(q̃sk)

λ̃k(q̃sk)
− π̃k(q̃sk)

]−1

.

7 When this assumption is relaxed and multiple equilibria exists, q̃ek is taken as the maximum of those equilibria.
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(a-1) If q̊ ≥ q̃ek, then q̃
e,(δ,q̊)
k exists only in the interval [q, q̊] and it is unique when

rk(q)π̃δk(q)

µk(q)
1

is nondecreasing in q.2

(a-2) If q̊ < q̃ek, then q̃
e,(δ,q̊)
k exists uniquely in the interval (q̊, q] and equals q̃ek. Furthermore,3

any solution to equation (24) in the interval [q, q̊] leads to multiple equilibria.4

(b) If q̊ < q̃sk, then q̃
e,(δ,q̊)
k exists uniquely in the interval [q, q] and equals q̃ek.5

Moreover, no equilibrium exists in the interval [q, q̃sk).6

Equation (24) plays a key role in the equilibrium characterization of organs that are of interest7

to type-k candidates under any (δ, q̊) policy. Its left hand-side is interpreted as the expected payoff8

from accepting the organ of quality q̃
e,(δ,q̊)
k , which is composed of the life benefits from transplanting9

the organ in question and, if the candidate outlives this organ, a continuation payoff associated10

with returning to the waiting list for a repeat transplant opportunity. This continuation payoff11

includes the possibility of receiving priority when the candidate returns to the waiting list. The12

right hand-side of equation (24), on the other hand, is interpreted as the expected payoff from13

rejecting q̃
e,(δ,q̊)
k in hopes of a better organ. When the candidate has no priority —this happens14

for all first-time candidates as well as for all ineligible returning candidates and (1− δ)-fraction15

of eligible returning candidates—, she is exposed to the risk of death without a transplant while16

waiting for the better organ. When the candidate has priority —this happens only for δ-fraction17

of eligible returning candidates—, with probability asymptotically approaching 1, she receives an18

organ that is better, on average, than the current organ in question.19

In light of Proposition 6, we can intuitively interpret the terms in Definition 1. Observe, after

some algebra, that equation (23) is equivalent to equation (24) evaluated at q̃ = q̃sk. Therefore, δsk

denotes the degree of incentive δ required by type-k candidates to set their equilibrium threshold

equal to the socially efficient level. A solution δsk > 1 of equation (23) implies that the degree

of incentive under any (δ, q̊) policy would not be strong enough (since, by definition, δ ∈ [0,1])

to achieve the socially efficient utilization of organs for type-k candidates. On the other hand, a

solution δsk ≤ 1 of equation (23) implies that the socially efficient utilization of organs is achievable

by type-k candidates and, therefore, any δ ∈ (δsk,1] is undesirable by the social planner. Observe

that δsk > 1 if and only if Γk > 1. To interpret Γk, note that at q= q̃sk, Proposition 4(b) implies

βΨ̃k(q̃
s
k)− c(q̃sk) +

α

dk
rk(q̃

s
k) =

α

dk
. (25)

Adding the numerator of Γk to the right hand-side of equation (25) yields the expected benefit20

from rejecting the organ of quality q̃sk, which equals the right hand-side of equation (24). Therefore,21

the numerator of Γk corresponds to the incremental expected benefit from a prospective transplant22

compared to dying without a transplant, after rejecting q̃sk. Similarly, adding the denominator of23
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Γk to the left hand-side of equation (25) yields the expected benefit from accepting q̃sk assuming1

absolute priority if re-listed, which equals the left hand-side of equation (24) when δ = 1. Therefore,2

the denominator of Γk corresponds to the incremental expected benefit from a prospective re-3

transplant compared to dying without a transplant when re-listed, after accepting q̃sk. As a result,4

for any type-k candidate, Γk > 1 corresponds to the case when the expected benefit from rejecting5

q̃sk dominates that from accepting q̃sk even under absolute priority, implying that socially efficient6

utilization of organs is not achievable by type-k candidates under any degree of incentive δ≤ 1.7

The equilibrium characterization in Proposition 6 implies that (δ, q̊) policy may result in multiple8

equilibria. By establishing, in Corollary 5(a-1), that no equilibrium emerges outside the interval9

[q̃sk, q̃
e
k] for any type-k candidate, we conclude that all admissible (δ, q̊) policies are innocuous to10

the system. We also find in Corollary 5(a-2) that any δ > 0 strictly improves the utilization of11

organs with an appropriate selection of q̊, and that maximum possible organ utilization of type-k12

candidates can only be achieved by setting δ = δsk. If δsk > 1, however, socially efficient utilization13

of organs by type-k candidates is not achievable under any admissible (δ, q̊) policy (Corollary 5(a-14

3)). For any admissible (δ, q̊) policy, to distinguish the social planner’s preference among multiple15

equilibria, we define the Pareto efficient equilibrium for type-k candidates as the one that maximally16

utilizes organs.8 In Corollary 5(b), we establish that the utilization of organs achieved at the Pareto17

efficient equilibrium strictly increases with increasing degree of incentive δ.18

Corollary 5. Under any admissible (δ, q̊) policy, for candidate type k:19

(a) Any equilibrium q̃
e,(δ,q̊)
k satisfies the following:20

(a-1) q̃
e,(δ,q̊)
k ∈ [q̃sk, q̃

e
k].21

(a-2) If q̊≥ q̃ek, then q̃
e,(δ,q̊)
k ∈ (q̃sk, q̃

e
k) for δ /∈ {0, δsk}.22

(a-3) If δsk > 1, then q̃
e,(δ,q̊)
k ∈ (q̃sk, q̃

e
k].23

(b) Among Pareto efficient equilibria, q̃
e,(δ,q̊)
k < q̃

e,(δ′,q̊)
k for δ′ < δ.24

The performance of an admissible (δ, q̊) policy is clearly affected by the social planner’s choice of25

the eligibility parameter q̊. We characterize the effect of choosing q̊ on the equilibrium utilization26

of organs in Corollary 6, where it is assumed, for expositional clarity, that the uniqueness condition27

identified in Proposition 6 holds.928

Corollary 6. For any admissible (δ, q̊) policy with δ 6= 0, with respect to utilization of organs29

by type-k candidates,30

(a) if q̊ ∈ (q̃ek, q], then (δ, q̊) policy is strictly dominated by the (δ, q̃ek) policy,31

8 Note that if q̊ ≥ q̃ek and the assumption in Proposition 6(a-1) holds, then the Pareto efficient equilibrium coincides
with the unique equilibrium.

9 When the uniqueness assumption is relaxed, Corollary 6 remains valid for Pareto efficient equilibria.
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(b) if q̊ ∈ [q, q̃ek), and the realized equilibrium is1

(b-1) q̃
e,(δ,q̊)
k = q̃ek, then (δ, q̊) policy is strictly dominated by any (δ, q) policy with q≥ q̃ek,2

(b-2) q̃
e,(δ,q̊)
k ≤ q̊, then (δ, q̊) policy strictly dominates any (δ, q) policy with q > q̊.3

Corollary 6(a) establishes that setting q̊ > q̃ek would be a poor design choice. The suboptimality4

of such a choice is intuitively explained through observing that it wastes the potential benefits5

of the (δ, q̊) policy by encouraging the use of organs that are already being demanded by type-k6

candidates without any incentive. An immediate consequence of Corollary 6(a) is that setting q̊7

above the equilibrium threshold of the most conservative candidate type would be an ineffective8

choice for the overall utilization of organs, and thus, for the resulting social welfare.9

On the other hand, for any admissible (δ, q̊) policy with q̊ < q̃ek, Proposition 6(a-2) implies that10

the baseline equilibrium q̃ek is always preserved, while new equilibria q̃
e,(δ,q̊)
k ≤ q̊ may also emerge,11

for type-k candidates. The question of whether the selected q̊ is a good design choice (i.e., achieves12

the desired effect) or not depends on which equilibrium is realized. If the baseline equilibrium q̃ek13

is realized, then Corollary 6(b-1) implies that setting q̊ < q̃ek would be a poor choice. If, however,14

the equilibrium q̃
e,(δ,q̊)
k < q̊ is realized, then Corollary 6(b-2) implies that setting q̊ < q̃ek would be15

a good choice. Although any of these equilibria may be realized, one of them, known as the focal16

equilibrium, may distinguish itself as being more relevant and/or natural than others (Schelling17

1980, Myerson 2007). For example, the focal equilibrium may correspond to the baseline equilibrium18

q̃ek as it represents the status quo, rendering the (δ, q̊) policy ineffective in achieving its desired effect.19

Moreover, by definition, the choice of q̊ < q̃ek provides no incentive for any organ of quality q ∈ (q̊, q̃ek),20

and thus, when candidates are forced to accept these non-incentivized organs to gain access to the21

set of incentivized organs, it may be perceived as a burden to any equilibrium q̃
e,(δ,q̊)
k < q̊. It can22

be argued that such a perception of burden would also push the focal equilibrium to q̃ek. When q̊23

is set more conservatively, the burden of non-incentivized organs increases, resulting in increased24

attractiveness of q̃ek. At the extreme, if this burden exceeds beyond a threshold, then no equilibrium25

q̃
e,(δ,q̊)
k < q̊ emerges, making q̃ek the unique equilibrium.26

Recognizing the burden of non-incentivized organs, however, candidates may no longer behave27

as imposed by the model, in which a single acceptance threshold is assumed. In particular, for28

any patient type k, setting q̊ < q̃ek, may result in anomalous behavior involving disjoint acceptance29

regions, in which the candidate is not interested in any organs of quality q ∈ (q̊, q̃ek) to avoid the30

burden, but she is interested in all organs of quality q ∈ [q̃
e,(δ,q̊)
k , q̊] ∪ [q̃ek, q], where q̃

e,(δ,q̊)
k solves31

equation (24) after adjusting pk(q) such that
∫ q̊
q̃e
k
pk(q) dq= 0. Removing the burden through disjoint32

acceptance regions increases the attractiveness of q̃
e,(δ,q̊)
k < q̊, resulting in increased likelihood of33

achieving the desired effect. When disjoint acceptance regions are allowed, since our derivations34
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do not impose any assumptions on pk(q), all of the results in this section continue to hold (except1

Corollary 6(b-2), in which case the domination guarantees are dropped).2

Having characterized the candidates’ equilibrium behavior under a (δ, q̊) policy, we are now ready3

to study the resulting social welfare. In Proposition 7, we establish that social welfare improves4

with the introduction of a (δ, q̊) policy.5

Proposition 7. Introduction of any admissible (δ, q̊) policy with δ 6= 0 increases social welfare.6

We conclude this section with an intuitive explanation for the underlying causes of why an7

appropriately designed (δ, q̊) policy achieves the desired effect of increased marginal organ utiliza-8

tion while also improving social welfare. Any (δ, q̊) policy constitutes an incentive mechanism for9

candidates (particularly, those having relatively lower access to organs) to internalize the benefits10

of accepting a target set of organs. Social planner can specify the target set as he wishes, but it11

makes sense to define it as the set of organs that he struggles allocating (e.g., marginal organs12

that are currently being rejected in the absence of an incentive). By accepting such an organ, a13

candidate clearly unloads the waiting list. If the recipient of such an organ returns back to the14

waiting list due to graft failure, then she re-loads the waiting list, resulting in no effective change15

on the size of the waiting list. The real concern in this case, however, is the candidates’ fear of16

losing her position on the waiting list by accepting the organ in question. Such concerns can be17

alleviated by promising the candidate her previous position, which is exactly what a (δ, q̊) policy18

is designed for. (Note that, the (δ, q̊) policy gives the planner the flexibility to assign a returning19

candidate to any position on the prioritized waiting list through the parameter δ.) If, on the other20

hand, the recipient of such an organ does not experience graft failure, and thus, not return to the21

waiting list, then the candidate is served by the transplant system as best as feasibly possible,22

while others on the waiting list enjoy the reduced load. Therefore, the candidate as well as the rest23

of the society are better off with such a transplantation.24

6. Numerical Study25

Our theoretical results are very strong and encouraging, but they only inform about the direction26

of change with the proposed mechanism. To quantify the magnitude of impact associated with the27

proposed mechanism, we resort to simulation. Although the proposed (δ, q̊) policy is not limited28

to any specific organ, we demonstrate its application focusing on the U.S. kidney transplantation29

system. In our implementation, we take the eligibility parameter q̊ as the KDPI cutoff and the30

priority parameter δ as the waiting time adjustment factor set by the system designer. In particular,31

setting KDPI cutoff q̊ ∈ [0%,100%] makes a recipient eligible for priority if she has accepted a32

kidney with a KDPI score of q̊ or worse (i.e., KDPI score ≥ q̊). Setting waiting time adjustment33
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factor δ ∈ [0,∞] grants eligible candidates, if they return back to the waiting list, their previously1

accumulated waiting times multiplied by δ.2

The U.S. transplant policy makers use a software called kidney-pancreas simulated allocation3

model (KPSAM) to evaluate proposals regarding the kidney transplant system. When kidney4

allocation was extensively revised in 2014, KPSAM was used to demonstrate the projected changes5

in the demographics of transplant recipients and post-transplant outcomes under their proposed6

revisions (Gustafson et al. 2016). KPSAM is also made available to the public as an executable7

file. However, its lack of source code offers very little flexibility to its users in evaluating different8

policies. In fact, KPSAM could not be used in its current form to evaluate our proposed mechanism.9

We have developed a clinically detailed simulation model for the entire U.S. kidney transplant10

system as an alternative to KPSAM. Similar to KPSAM, key events in the simulation, such as11

arrivals of organs and patients, as well as status updates for candidates (including, among many12

other things, active/inactive status and removal from the waiting list due to death or other rea-13

sons), are linked to an actual transplant database obtained from OPTN/SRTR. This key database14

includes all transplant candidates that were listed in the US transplant waiting lists between 198715

and 2018, history of updates for all wait-listed candidates, follow-up records for transplant recip-16

ients, as well as all deceased donor organs that were harvested during the same time frame. The17

database contains de-identified records with demographic as well as clinical variables, and collec-18

tively amounts to more than 30 million records and close to 1,000 variables. This simulation model19

implements the most recent UNOS deceased-donor kidney allocation policy (OPTN 2018b) and is20

demonstrated to closely match the real outcomes indicated from the database.21

In §6.1-6.2, we present results quantifying the impact on several outcomes of the (δ, q̊) policy for22

various choices of δ ∈ [0,∞] and q̊ ∈ [0%,100%]. For this purpose, given a pair of (δ, q̊) values, we23

simulate the U.S. kidney waiting list for a 3-year period from January 2015 to January 2018. We24

report statistics for each (δ, q̊) after 100 independent replications of the simulation.25

6.1. How does an individual candidate benefit from the (δ, q̊) policy?26

As we assert at the beginning of Section 5, the proposed mechanism, when compared to the current27

system without the mechanism, would yield more favorable results in access to transplantation for28

eligible re-listed candidates. We now demonstrate the validity of this assertion under the assumption29

that candidates maintain their offer acceptance behavior as in the current system without the (δ, q̊)30

policy. We choose this simplified setting for clarity of exposition, but note that our results remain31

structurally identical when this assumption is relaxed as in Section 6.2.2.32

Figures 3a and 3b present the fraction transplanted and time until transplantation, respectively,33

for re-listed candidates during the simulation period under various (δ, q̊) pairs. Observe that setting34
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Figure 3 Access to transplantation for re-listed candidates during the simulation period under the (δ, q̊) policy.

Colored shadings around each line denote 99% confidence interval around the point estimates.

δ = 0 corresponds to the current system, in which accumulated waiting time is lost at the time of1

transplantation. It can also be viewed as a delusive implementation of the proposed mechanism,2

as it publicizes a set of ‘incentivized kidneys’ without offering any compensation. As δ increases,3

for any fixed q̊, not only a larger fraction of eligible re-listed candidates receive a transplant, but4

they also access to transplantation in significantly shorter durations, validating the aforementioned5

assertion. For instance, when q̊ = 85%, as we increase δ from 0 to ∞, the fraction transplanted6

for eligible re-listed candidates monotonically increases from 38.31% to 89.28%, while, at the same7

time, their average time until transplantation decreases from 193.3 days to 48 days. On the other8

hand, as expected, varying δ for any q̊ does not affect the access to transplantation for ineligible9

re-listed candidates (results not included in Figure 3 to avoid overcrowding).10

Figure 3 offers additional insights about the proposed mechanism. First, in contrast to theory11

(see Section 5), the fraction transplanted among eligible re-listed candidates remains strictly less12

than 100% and their time until transplantation remains strictly above 0, despite δ →∞. This13

is mainly caused by the fact that real-life queueing dynamics is affected by several factors other14

than waiting time (e.g., blood type compatibility, HLA typing, sensitization). Second, setting δ = 215

achieves comparable access levels as setting δ =∞, implying that one does not require impractical16

(and potentially inadmissible) levels of δ to attain an impactful implementation. Third, the twofold17

benefit of the proposed mechanism may not always materialize, particularly for small values of δ.18

For instance, setting δ = 0.5, when compared to δ = 0, leads to a larger fraction of transplantation19

among eligible relistings, but their time to transplantation do not differ significantly.20
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Figure 4 Simulation results under baseline offer acceptance.

Last, but not least, the impact with respect to q̊ is influenced by δ. Figure 3 displays that access1

to transplantation improves (worsens) as the set of incentivized kidneys expands when δ is low2

(high, respectively). This rather nontrivial finding can be explained by two competing forces. On3

the one hand, the definition of q̊ introduces a selection bias. As q̊ increases, the set of eligible4

candidates narrows down to those facing increasing difficulty in receiving kidney offers due to5

exogenous factors (e.g., hard to match HLA typing, blood type, geography). Therefore, access to6

transplantation is expected to worsen with increasing q̊. On the other hand, a larger value for q̊7

results in weaker competition among eligible relistings, who, consequently enjoy more from the8

priority offered by the proposed mechanism. Therefore, access to transplantation is now expected9

to improve with increasing q̊. We find in Figure 3 that the former force prevails when δ is low,10

while the latter prevails when δ is high. The resulting funnel shapes in Figure 3 implies that the11

marginal impact of δ on an eligible re-listed candidate’s access to transplantation can be increased12

by selecting q̊ more conservatively.13

6.2. Societal impact of the (δ, q̊) policy14

Introducing a change to the organ allocation policy may naturally result in changes in patients’ offer15

acceptance behavior. In our baseline simulation model (representing the current system without16

the (δ, q̊) policy), we have implemented the kidney offer acceptance model developed by SRTR17

(SRTR 2018) to determine each candidate’s likelihood of accepting a kidney offer. This model uses18

a detailed logistic regression, which includes a generalized linear model with a logit link and a19

semi-parametric baseline hazard function, to estimate odds ratios of acceptance from kidney match20

run data. The model is stratified across donor quality and adult/pediatric status, and is adjusted21

for donor and candidate characteristics including donor-candidate interactions.22

Figure 4 presents simulation results under this baseline acceptance behavior and reveals a poten-23

tial concern associated with the introduction of the (δ, q̊) policy. While this policy does not affect24
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the annual number of transplants overall (about 12,000 per year), it alters the distribution of1

transplants between primary versus repeat candidates, where repeat candidates receive increasingly2

higher share with increasing δ or decreasing q̊. We are interested in the impact of this alteration3

to overall social welfare.4

Section 5 (Proposition 7) established that introduction of (δ, q̊) policies does no harm to social5

welfare. To elaborate on this result, we use the given baseline acceptance behavior in Section 6.2.16

and estimate the worst-case societal impact of the proposed mechanism. We next modify this7

baseline acceptance behavior in Section 6.2.2 to capture candidates’ responses to the introduction8

of the (δ, q̊) policy and obtain a more realistic estimate of the societal impact.9

6.2.1. Worst-Case Analysis: Candidates are Oblivious to the Proposed Mechanism10

The worst-case scenario associated with the proposed mechanism arises when it is introduced at11

full strength (i.e., q̊= 0 and δ =∞), but it is not reciprocated in candidates’ acceptance behavior.12

In such a case, the social planner not only offers eligibility to every recipient but also grants13

absolute priority to every returning candidate, distorting the system dynamics at the policy’s14

maximum potential. Nevertheless, candidates remain oblivious to such a generous offering and15

thereby nullifying the efforts of the planner.16

Several simulated outcomes under this setting are summarized in Table 2 along with baseline17

results. We find that there is no significant difference in the numbers of kidneys discarded (or,18

equivalently, kidneys transplanted), candidates died while waiting, or the size of the waiting list at19

the end of the simulation period. Furthermore, post-transplant outcomes (namely, the number of20

graft failures as well as 1-year graft survival rate) also remain comparable. The only statistically21

significant difference is observed in the time until transplantation, which is about a week shorter22

under the worst-case scenario and a result of shorter waiting times experienced by prioritized23

relistings (see Figure 3b). These results demonstrate that even an aggressive implementation of the24

(δ, q̊) policy coupled with no response in candidates’ acceptance behavior does not hurt the social25

welfare, which is a function of the pre- and post-transplant outcomes attained by the population.26

6.2.2. Candidates Respond to the Proposed Mechanism In this section, we model can-27

didates’ response to the introduction of the (δ, q̊) policy by adjusting SRTR’s offer acceptance28

model. This acceptance model estimates an individual’s offer acceptance probability using the29

inverse logit function eβx

1+eβx , where eβx denotes the odds of acceptance and x is a vector encapsulat-30

ing donor and candidate attributes. We model candidates’ response through adjusting their baseline31

odds of acceptance, so that the odds of accepting an organ of quality q after the introduction of32

the (δ, q̊) policy is multiplied by a factor, which we call the relative odds(q).33
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Table 2 Worst case performance analysis results for the (δ, q̊) policy

Baseline Worst-case (q̊= 0, δ =∞)

Outcome Median Mean 99% CI Median Mean 99% CI

Number of discarded kidneys† 2 528 2 529 ± 7.80 2 529 2 532 ± 7.73
Number died while waiting† 4 304 4 303 ± 2.34 4 303 4 303 ± 2.41
Size of the waiting list∗ 92 867 92 873 ± 24.23 92 854 92 854 ± 20.92
Time until transplantation (days) 797 1 011 ± 1.25 789 1 005 ± 1.25
Number of graft failures† 729 732 ± 4.24 729 730 ± 3.88
1-year graft survival (%) 95.00 94.99 ± 0.03 94.99 94.99 ± 0.03

† Average per year from January 1, 2015 to January 1, 2018.
* Number of candidates as of January 1, 2018.

We model relative odds using a simple yet expressive linear form. It is natural to expect that1

candidates respond only to a subset of incentivized kidneys, which we take as those with a KDPI2

in the interval [̊q, qb] with parameter qb > q̊ denoting the point where baseline response is restored.3

Assuming that peak response, denoted R, is attained at q̊ (i.e., the best in the set of incentivized4

kidneys), we obtain:5

relative odds(q) = 1 +φ(q) · (R− 1), (26)6

where

φ(q) =

{
qb−q
qb−q̊

if q ∈ [̊q, qb],

0 otherwise.
(27)

Observe that φ(q) = 0 corresponds to the baseline response, where relative odds is 1; and φ(q̊) = 17

(i.e., relative odds attains its peak R at q̊). We take qb =∞ to capture the scenario that relative8

odds remains constant at R for all q≥ q̊. Choosing R< 1 implies that introduction of the proposed9

incentive mechanism discourages candidates and makes them even more selective than their base-10

line acceptance levels. However, such a choice is impractical, as candidates should maintain their11

baseline acceptance behavior in the worst-case had they perceived the mechanism is not in their12

best interest. Figure 5 illustrates various forms of interest that the relative odds function can take.13
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Figure 5 Modeling candidates’ response to the introduction of the (δ, q̊) policy.

Figure 5a illustrates equal response to all incentivized kidneys q ≥ q̊. Note that this setup does14

not imply equal likelihood of acceptance for all q ≥ q̊; it rather increases the baseline odds of15
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acceptance by the same factor for all q ≥ q̊, hence retaining the ratio of odds unchanged for any1

q1, q2 ≥ q̊. On the other hand, given a particular implementation of the (δ, q̊) policy, patients may2

not respond equally to all incentivized organs as in Figure 5a. In fact, their response may worsen as3

the quality of the organ decreases, since all incentivized organs are compensated at the same level δ4

but higher quality organs are expected to provide higher post-transplant benefit. Figures 5b and 5c5

illustrate this phenomenon: the former demonstrates gradually decreasing response as the quality6

of kidneys decrease and the latter demonstrates a confined response to a local neighborhood of q̊.7

(a) Equal response (b) Gradual response (qb = 100) (c) Local response (qb = q̊ + 20)
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Figure 6 Overall discard rate of deceased-donor kidneys under the (δ, q̊) policy (δ= 1).

Using the response adjustment model (26)-(27), we are now able to provide more realistic esti-8

mates of the societal impact of the (δ, q̊) policy. Figure 6 presents discard rates of donated kidneys9

for various choices of q̊, qb, and R. We find the overall discard rate of kidneys to be 17.4% in the10

baseline. Results in Figure 6a demonstrate that, given an acceptance level measured by the peak11

response parameter R, discard rate decreases monotonically with q̊ and attains its minimum at12

q̊= 0 (i.e., when the policy makes all recipients eligible). Under such a policy, if odds of acceptance13

doubles from its baseline level, discard rate decreases by 11.2 percentage points to 6.2%. More-14

over, discards can be entirely eliminated if the policy stimulates very strong response (denoted by15

R=∞). Observing that there is no distinguishable difference in discard rates between R=∞ and16

R= 10 in Figure 6a, we drop R=∞ for clarity of exposition in the rest of our results.17

Figures 6b and 6c present discard rates when candidates’ relative odds of acceptance does not18

remain constant across incentivized kidneys. Observe that the savings in kidneys discarded decrease19

as we move from Figure 6a (stronger response) to 6c (weaker response), reflecting the reductions20

in the strength of population’s response to the policy. As response weakens, discard is minimized21

with a more conservative setting of q̊. If candidates’ response decreases gradually as in Figure 5b,22

optimal q̊ is found around 40% (see Figure 6b). If, under such a setting, peak response R doubles23
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(a) Local response (qb = q̊ + 15) (b) Local response (qb = q̊ + 10) (c) Local response (qb = q̊ + 5)
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Figure 7 Overall discard rate with weakening candidate response to the (δ, q̊) policy (δ= 1).

from its baseline level, discard rate decreases by 5 percentage points to 12.4%. On the other hand, if1

candidates’ response remains local as in Figure 5c, selection of q̊ becomes more critical in minimizing2

the discard rate (see Figure 6c). In particular, while setting q̊ around 80% minimizes discard rate,3

we also find that deviating from this level in either direction can waste the entire potential of the4

proposed mechanism. The definition of locality (i.e., qb− q̊) clearly influences the discard rates. As5

qb − q̊ decreases (i.e., response weakens), we find that the savings in kidneys discarded decreases6

and optimal q̊ to around 85% (see Figure 7).7
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Figure 8 Other simulated outcomes under the (δ, q̊) policy.
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Benefits of the (δ, q̊) policy is not limited to alleviating the burden of discarded kidneys, as1

demonstrated by the results summarized in Figure 8. As a direct consequence of the kidneys saved2

from getting discarded, we find significant reductions in the size of the waiting list (Figure 8a)3

and the number of patient deaths while waiting for a transplant (Figure 8b). It is also important4

to note that, despite using relatively inferior kidneys compared to the baseline, the (δ, q̊) policy5

maintains comparable 1-year graft survival post-transplantation (Figure 8c).6

7. Concluding remarks7

Organ transplantation is life-saving. The demand for this life-saving treatment continues to8

increase, adding up to more than 100,000 patients currently waiting in the United States. Avail-9

ability of donated organs forms the main bottleneck in offering this life-saving treatment to the10

thousands dying while waiting. Despite the widely documented scarcity, more than 14% of all11

organs recovered for transplantation are discarded, because organs arrive in many shapes and12

forms, but most candidates wish to only use ‘better’ organs. This traditional approach is recently13

being challenged in the transplantation community. Less than ideal organs, that are traditionally14

discarded, are now argued as viable alternatives for the many who would die without a transplant15

(Reese et al. 2016, Massie et al. 2014, Lee et al. 2005). Yet, there is still a wide gap between what16

is proposed in the medical community and how individual decisions are made.17

We have studied the problem of how to increase the utilization of available organs within the con-18

fines of the current U.S. allocation systems. Our initial theoretical analysis establishes that a gap19

between the socially efficient and equilibrium utilization of self-interested individuals is inevitable.20

To mitigate this observed gap, we have proposed an incentive mechanism that compensates the21

recipient of marginal organs by promising them priority in case they return back to the waiting list22

for a re-transplant. Our theoretical results suggest that such a mechanism indeed shifts the equi-23

librium behavior of self-interested individuals towards socially desirable levels and does so without24

harming social welfare. We have also analyzed the optimal design of the proposed mechanism.25

An incentive mechanism, similar to ours in the spirit of not enforcing, called the Eurotransplant26

Senior Program (ESP), has been successfully implemented in Europe (Branger and Samuel 2016).27

ESP was first established in 1999 for kidney transplantation as an old-to-old allocation system,28

where kidneys from deceased donors aged 65 years or older are exclusively allocated to ESP-enrolled29

candidates of the same age group. Since the implementation of ESP, not only the fraction of kidneys30

retrieved from donors over 65 years of age increased from 10% to 14.2% (Cohen et al. 2004), but31

also the ratio of kidney recipients older than 65 years also increased from 3.6% to 19.7% (De Fijter32

2009). Overall, ESP has been associated with a notable increase in marginal organ transplantation33

(Bahde et al. 2014, Fabrizii et al. 2005).34
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A program similar to ESP, however, currently does not exist in the U.S. transplant system. Our1

results in this paper provide theoretical as well as numerical evidence into the achievability of lower2

organ discards through establishing appropriately defined incentive mechanisms. In particular,3

numerical simulations for the U.S. renal transplant system suggests that an optimal implementation4

of the proposed mechanism can lower the kidney discard rate from 17.4% (baseline) down to 5.4%5

(when the mechanism faces strong response from the candidates), 9.5% (moderate response), or6

15.7% (weak response). Compared to the baseline, these reductions translate to 1746, 1148, or 2417

more transplants per year, respectively. Moreover, despite utilizing marginally lower quality kidneys8

(as measured by the KDPI score) under the proposed mechanism, the resulting graft survival 1-9

year post-transplant remains stable around 94.8% (versus 95.0% for baseline). A potential concern10

associated with the mechanism is that it distorts the distribution of transplants across primary11

versus repeat cases in favor of repeat cases. However, our worst-case analysis concludes that such12

a distortion, when compared to the baseline, does not cause inferior transplant outcomes. In fact,13

candidates who choose to accept incentivized kidneys benefit from significantly shorter waiting14

times and higher likelihood of transplantation.15

Considering the optimization of the δ and q̊ parameters that define the proposed mechanism,16

we find that one does not need impractical values for δ to achieve a notable impact. For instance,17

δ = 1, which grants eligible returning candidates their previous waiting time without any inflation,18

serves the purpose. Considering q̊, we find that the optimal KDPI cutoff is around 85%, which19

coincides with the generally accepted definition of marginal organs in the medical community.20
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Appendix A: Proofs of Results23

Proposition 1. QALE-maximizing threshold q∗k of a type-k candidate is unique over the interval [q, q]

and given by

q∗k = min

{
q,max

{
q,Ψ−1

k

(
α

βdk

)}}
, for k= 1, . . . ,K.

Proof of Proposition 1. From equation (6), we have

∂

∂qk
Lk(qk) =

pk(qk)

λk
(
q− q

)[ α
dk
−βΨk(qk)

]
, (28)

which gives ∂
∂q

k

Lk(q′k) = 0, when q′k satisfies,

Ψk(q′k) =
α

βdk
. (29)

Since Ψk(q) is strictly increasing in q ∈ [q, q], we find (i) q′k satisfying equation (29) is unique,24

(ii) ∂
∂q

k

Lk(qk)> 0 for qk < q
′
k, and (iii) ∂

∂q
k

Lk(qk)< 0 for qk > q
′
k. Hence Lk(qk) is strictly increasing in qk for25

qk < q
′
k and strictly decreasing in qk for qk > q

′
k. Then q∗k satisfying Ψk(q∗k) = min{Ψk(q),max{Ψk

(
q
)
, α
βd

k

}},26

or equivalently, q∗k = min{q,max{q,Ψ−1
k ( α

βd
k

)}} is the unique maximizer of Lk(q) over q ∈ [q, q]. �27
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Proposition 2. Socially efficient threshold qsk of a type-k candidate is unique over the interval [q, q] and

given by

qsk = min
{
q,max

{
q, q′k

}}
, for k= 1, . . . ,K,

where q′k is the unique solution of the following equation:

βΨk(q′)− c(q′) =
α

dk
.

Proof of Proposition 2. Consider any candidate type k= 1, . . . ,K. Using equation (8), we have

∂

∂qk
S(·) =

∂

∂qk

λk
λ

[Lk(qk)−Ck(qk)] =
pk(qk)

λ
(
q− q

)[ α
dk
−βΨk(qk) + c(qk)

]
, (30)

which gives ∂
∂q

k

S(·) = 0 when q′k satisfies

βΨk(q′k)− c(q′k) =
α

dk
, (31)

which has a unique solution because βΨk(qk)− c(qk) is increasing in qk since ∂
∂q

Ψk(q)> 0 and ∂
∂q
c(q)≤ 0 for1

q ∈ [q, q]. Similar to the proof of Proposition 1, we find that S(·) is strictly increasing in qk for qk < q′k and2

strictly decreasing in qk for qk > q
′
k, where q′k is the unique solution of equation (31). Therefore, the socially3

efficient threshold of type-k candidates, qsk, maximizing S(·) is given by qsk = min
{
q,max

{
q, q′k

}}
. �4

Corollary 1. For any candidate type k,

q∗k < qsk if c(q∗k)> 0,

q∗k ≥ qsk if c(q∗k)≤ 0.

Proof of Corollary 1. We prove the results by contradiction. Consider any patient type k and the case

c(q∗k)> 0. Assume, to the contrary, that q∗k ≥ qsk. Then it must be that Ψk(q∗k)≥Ψk(qsk) because Ψ(q) is strictly

increasing in q. Furthermore, 0< c(q∗k)≤ c(qsk), where the last inequality follows since c(q) is decreasing in

q. However, from Propositions 1 and 2, we have

βΨk(qsk) =
α

dk
+ c(qsk) = βΨk(q∗k) + c(qsk)>βΨk(q∗k),

which contradicts with the condition Ψk(q∗k)≥Ψk(qsk). It must be that the initial assumption is incorrect,5

and therefore, q∗k < q
s
k must hold.6

The proof for the case when c(q∗k)≤ 0 follows similarly, and is omitted. �7

Proposition 3. The equilibrium threshold qek of type-k candidates exists uniquely and is given by the

solution of the following equation

βΨk(q′)− c(q′) =
α

dk
· [1−πk(q′)] +Ek[βΨk(q)− c(q) | q≥ q′] ·πk(q′). (9)

Proof of Proposition 3. The equilibrium threshold qek of a type-k candidate is the point where she is

indifferent between accepting or rejecting the offered organ. For an organ with quality qek, accepting the
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organ provides the benefit of transplantation, whereas rejecting this organ gives the patient an opportunity

to transplant a higher quality organ at the risk of dying without a transplant. That is,

βΨk(qk)− c(qk) =
α

dk
· [1−πk(qk)] +Ek[βΨk(q)− c(q) | q≥ qk] ·πk(qk) (32a)

=
α

dk
[1−πk(qk)] +πk(qk) ·

∫ q

q
k

[βΨk(q)− c(q)] pk(q)∫ q
q
k

pk(q) dq
dq (32b)

=
α

dk

(
1−

∫ q
q
k

pk(q) dq

λk
(
q− q

) )+β
1

λk
(
q− q

) ∫ q

q
k

Ψk(q)pk(q) dq− 1

λk(q− q)

∫ q

q
k

c(q)pk(q) dq (32c)

For notational convenience in the rest of the proof, let L(qk) and R(qk) denote the left- and right-hand side

of equation (32c), respectively. Since Ψk(q) is strictly increasing and c(q) is decreasing in q ∈ [q, q], L(qk)

is a strictly increasing function of qk. Furthermore, note that R(qk) = Lk(qk)− Ck(qk) (see equations (6)

and (7c)). We have found in the proof of Proposition 2 that Lk(qk)− Ck(qk) is decreasing when qk ≥ q′k,

where q′k is the unique solution of the following equation:

L(q′k) := βΨk(q′k)− c(q′k) =
α

dk
. (33)

Observe that

R(q′k) =
α

dk
+

1

λk
(
q− q

)[∫ q

q′

k

(
βΨk(q)− c(q)− α

dk

)
pk(q) dq

]
(34a)

>
α

dk
+

1

λk
(
q− q

)[∫ q

q′

k

(
βΨk(q′k)− c(q′k)− α

dk

)
pk(q) dq

]
(34b)

=
α

dk
(34c)

where inequality (34b) follows since βΨk(q)− c(q) = L(q) is strictly increasing in q, which, when combined

with equation (33), yields equation (34c). As a result, we find L(q′k)<R(q′k). Furthermore,

R)(q) =
α

dk
· [1−πk(q)] +Ek[βΨk(q)− c(q) | q≥ q] ·πk(q)

≤ [βΨk(q)− c(q)] · [1−πk(q)] + [βΨk(q)− c(q)] ·πk(q)

=L(q),

where the inequality follows from equation (33) along with that βΨk(q)− c(q) is strictly increasing in q, and1

πk(q) ∈ [0,1]. This concludes, by the intermediate value theorem, that the equilibrium threshold qek exists,2

and it is unique, in (q′k, q].3

On the other hand, when qk < q
′
k, we have (from equation (32b))

R)(qk) =
α

dk
[1−πk(qk)] +πk(qk) ·

∫ q

q
k

[βΨk(q)− c(q)] pk(q)∫ q
q
k

pk(q) dq
dq

>L(qk) · [1−πk(qk)] +πk(qk) · [βΨk(qk)− c(qk)] (35)

=L(qk),

where inequality (35) follows since βΨk(q)− c(q) = L(q) is strictly increasing in q and L(qk)< L(q′k) = α
d

k

.4

Therefore, equation (32) can not have any solution when qk < q
′
k.5

This concludes that the equilibrium defined in equation (32) uniquely exists over
[
q, q
]
. �6
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Corollary 2. For any candidate type k, qsk < q
e
k.1

Proof of Corollary 2. For any candidate type k, consider the socially efficient threshold qsk and the2

equilibrium threshold qek. Proposition 2 requires that qsk satisfies βΨk(qsk)− c(qsk) = α
d

k

. We have also found3

in the proof of Proposition 3 that qek > q
′
k, where q′k is the unique solution of equation (33) and, therefore, it4

coincides with qsk. This concludes that qek > q
s
k. �5

Proposition 4. When returns are allowed, for any type-k candidate,6

(a) QALE-maximizing threshold q̃∗k is unique the unique solution of the following equation:

βΨ̃k(q̃) =
α

dk
(1− rk(q̃)), (17)

(b) socially efficient threshold q̃sk is the unique solution of the following equation:

βΨ̃k(q̃)− c(q̃) =
α

dk
(1− rk(q̃)). (18)

Proof of Proposition 4. Consider any candidate type k= 1, . . . ,K.7

(a) From equation (14), we have,

L̃k(qk) =
α

dk

(
1 +

µk(qk)

λk
Ek[rk(q) | q≥ qk]− µk(qk)

λk

)
+β

µk(qk)

λk
Ek
[
Ψ̃k(q)

∣∣∣ q≥ qk]
=
α

dk

(
1−

∫ q
q
k

pk(q) dq

λk(q− q)

)
+

1

λk(q− q)

∫ q

q
k

[
α

dk
rk(q)pk(q) +βΨ̃k(q)pk(q)

]
dq,

and

∂

∂qk
L̃k(qk) =

pk(qk)

λk(q− q)

[
α

dk
− α

dk
rk(qk)−βΨ̃k(qk)

]
. (36)

Equation (13), combined with the assumption that Ψk(q) is strictly increasing in q, implies that

βΨ̃k(qk) + α
d

k

rk(qk) is strictly increasing in qk. Therefore, ∂
∂q

k

L̃k(qk)≥ 0 for qk ≤ q′ and ∂
∂q

k

L̃k(qk)< 0

for qk > q
′, where q′ is the unique solution of

α

dk
− α

dk
rk(qk)−βΨ̃k(qk) = 0. (37)

Therefore, q̃∗k satisfying equation (17) is the unique maximizer of L̃k(q) over q ∈ [q, q].8

(b) From equation (16), we have

∂

∂qk
S̃(·) =

∂

∂qk

λk
λ

(
L̃k(qk)−Ck(qk)

)
=

pk(qk)

λ(q− q)

[
α

dk
−βΨ̃k(qk)− α

dk
rk(qk) + c(qk)

]
,

which yields ∂
∂q

k

S̃(·) = 0 when qk satisfies

α

dk
−βΨ̃k(qk)− α

dk
rk(qk) + c(qk) = 0, (38)

which has a unique solution since c(qk) is decreasing, and βΨ̃k(qk) + α
d

k

rk(qk) is strictly increasing in9

qk, and accordingly βΨ̃k(qk) + α
d

k

rk(qk)− c(qk) is strictly increasing in qk. As a result, S̃(·) is strictly10

increasing for qk ≤ q′, and strictly decreasing for qk > q′, where q′ is the unique solution of equa-11

tion (38). Therefore, the socially efficient threshold q̃sk of type-k candidates satisfying equation (18)12

is the unique maximizer of S̃(·) over q ∈ [q, q]. �13
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Corollary 3. For any candidate type k, q̃∗k = q∗k and q̃sk = qsk.1

Proof of Corollary 3. Consider any candidate type k = 1, . . . ,K. We show that q̃sk = q̃sk, and omit the

proof of q̃∗k = q∗k as it follows similarly. Proposition 4(b) establishes that, when returns are allowed, the

socially efficient threshold q̃sk is obtained at the unique solution to the equation

βΨ̃k(q) +αrk(q)
1

dk
− c(q) =

α

dk
. (39)

Equations (13) and (39) imply that

βΨk(q)− c(q) =
α

dk
. (40)

Furthermore, Proposition 2 establishes that, when returns are not allowed, the socially efficient threshold qsk2

is the unique solution of equation (40). Therefore, the unique solutions q̃sk and qsk must coincide. �3

Proposition 5. When returns are allowed, for any type-k candidate, equilibrium threshold q̃ek exists and

is given by a solution to the following equation

βΨ̃k(q̃)− c(q̃) =

(
α

dk
[1− π̃k(q̃)] +Ek

[
βΨ̃k(q)− c(q)

∣∣∣ q≥ q̃]π̃k(q̃)

)(
λ̃k(q̃)

λk
− rk(q̃)

)
. (19)

Furthermore, the equilibrium is unique if r
k
(q)

λ̃
k
(q)

is nondecreasing in q.4

Proof of Proposition 5. The equilibrium threshold q̃ek of a type-k candidate is the point where she is

indifferent between accepting or rejecting the offered organ. Accepting an organ with quality q̃ek provides the

benefit of transplanting q̃ek and, if the candidate outlives this organ, a continuation payoff associated with

returning to the waiting list for a repeat transplant opportunity. Rejecting q̃ek, on the other hand, exposes

the patient to the risk of dying without a transplant but it also offers a potential benefit from transplanting a

higher quality organ and, if the candidate receives an organ and outlives it, a continuation payoff associated

with returning to the waiting list for a repeat transplant opportunity. That is, q̃ek is a solution to

βΨ̃k(qk)− c(qk) + rk(qk) ·
(
α

dk
· [1− π̃k(qk)] +Ek

[
βΨ̃k(q)− c(q)

∣∣∣ q≥ qk] · π̃k(qk)

)
=

(
α

dk
· [1− π̃k(qk)] +Ek

[
βΨ̃k(q)− c(q)

∣∣∣ q≥ qk] · π̃k(qk)

)
·
(

1 +
µk(qk)

λk
Ek[rk(q) | q≥ qk]

)
, (41)

which, after substituting for π̃k(qk) and µk(qk), and rearranging terms, can be equivalently written as

βΨ̃k(qk)− c(qk) +
α

dk
rk(qk)

=− rk(qk)

λ̃k(qk)
(
q− q

) ∫ q

q
k

(
βΨ̃k(q)− c(q)− α

dk

)
pk(q) dq

+
α

dk
+

1

λk(q− q)

∫ q

q
k

α

dk
rk(q)pk(q) dq+

1

λk(q− q)

∫ q

q
k

(
βΨ̃k(q)− c(q)− α

dk

)
pk(q) dq

=
α

dk
+

1

λk(q− q)

∫ q

q
k

α

dk
rk(q)pk(q) dq+

[
1

λk(q− q) −
rk(qk)

λ̃k(qk)
(
q− q

)]∫ q

q
k

(
βΨ̃k(q)− c(q)− α

dk

)
pk(q) dq

=
α

dk
+

rk(qk)

λ̃k(qk)
(
q− q

) ∫ q

q
k

α

dk
rk(q)pk(q) dq

+

[
1

λk(q− q) −
rk(qk)

λ̃k(qk)
(
q− q

)]∫ q

q
k

(
βΨ̃k(q)− c(q)− α

dk
+
α

dk
rk(q)

)
pk(q) dq (42)
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For notational convenience in the rest of the proof, let L(qk) and R(qk) denote the left and right hand-side

of equation (42), respectively. Observe that, since c(q) is decreasing in q, equation (13) implies that L(qk) is

strictly increasing in qk. Furthermore, for qk ≥ q′, where q′ satisfies

βΨ̃k(q′)− c(q′)− α

dk
+
α

dk
rk(q′) = 0, (43)

we have

∂

∂qk
R(qk) =

α

dk

∂rk(qk)

∂qk

(
1 +

λk(q− q)∫ q
q
k

rk(q)pk(q) dq

)
−
λk(q− q)rk(qk)pk(qk)(∫ q

q
k

rk(q)pk(q) dq
)2 rk(qk)

(1 +
λk(q− q)∫ q

q
k

rk(q)pk(q) dq

)−2

(44a)

−
[

1

λk(q− q) −
rk(qk)

λ̃k(qk)
(
q− q

)] ·(βΨ̃k(qk)− c(qk)− α

dk
+
α

dk
rk(qk)

)
pk(qk) (44b)

− 1

(q− q)

(
∂

∂qk

rk(qk)

λ̃k(qk)

)
·
∫ q

q
k

(
βΨ̃k(q)− c(q)− α

dk
+
α

dk
rk(q)

)
pk(q) dq (44c)

≤ 0, (44d)

where the last inequality follows from observing (i) ∂r
k
(q

k
)

∂q
k

≤ 0 since rk(qk) is assumed to be decreasing, and

therefore, 44a is non-positive; (ii) rk(qk) ≤ 1 and λ̃k(qk) ≥ λk imply that the term in square brackets in

44b is non-negative, and βΨ̃k(q)− c(q)− α
d

k

+ α
d

k

rk(q) increasing in q and equals zero at q = q′, where q′ is

the solution of equation (43), imply that the term in parantheses in 44b is non-negative for qk ≥ q′, and

therefore 44b is non-positive; and (iii)
∫ q
q
k

(
βΨ̃k(q) + α

d
k

rk(q)− c(q)− α
d

k

)
pk(q) dq is non-negative for qk ≥ q′

due to the observation in (ii) and ∂
∂q

k

r
k
(q

k
)

λ̃
k
(q

k
)
≥ 0 since r

k
(q)

λ̃
k
(q)

is assumed to be increasing in q, and therefore

44c is non-positive. It follows from inequality 44d that R(qk) is decreasing in qk for qk ≥ q′, where q′ is the

unique solution of equation (43). Therefore, if an equilibrium exists to the right of q′, it must be unique.

We proceed to prove that such an equilibrium exists by showing that L(q) crosses R(q) at some q ∈ (q′, q].

Observe that

R(q′) =
α

dk
+

rk(q′)

λ̃k(q′)
(
q− q

) ·∫ q

q′

α

dk
rk(q)pk(q) dq

+

[
1

λk(q− q) −
rk(q′)

λ̃k(q′)
(
q− q

)] ·∫ q

q′

(
βΨ̃k(q)− c(q)− α

dk
+
α

dk
rk(q)

)
pk(q) dq

>
α

dk
+

[
1

λk(q− q) −
rk(q′)

λ̃k(q′)
(
q− q

)] ·∫ q

q′

(
βΨ̃k(q)− c(q)− α

dk
+
α

dk
rk(q)

)
pk(q) dq

≥ α

dk
=L(q′),

and

R(q) =

(
α

dk
[1− π̃k(q)] +Ek

[
βΨ̃k(q)− c(q)

∣∣∣ q≥ q]π̃k(q)

)
·
(
λ̃k(q)

λk
− rk(q)

)
+
α

dk
rk(q)

≤
[
[βΨ̃k(q)− c(q)] · [1− π̃k(q)] + [βΨ̃k(q)− c(q)] · π̃k(q)

]
·
(
λ̃k(q)

λk
− rk(q)

)
+
α

dk
rk(q)
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≤ βΨ̃k(q)− c(q) +
α

dk
rk(q) (45)

=L(q),

where inequality (45) follows from λ̃
k
(q)

λ
k

− rk(q) = (1 +πk(qk)Ek[rk(q) | q≥ qk])− rk(q)≤ 1. As a result, the1

equilibrium threshold q̃ek that solves equation (41) exists uniquely in (q′, q].2

We next show that equation (41) cannot have any solution in [q, q′). For any qk < q
′, we have

R(qk) =
α

dk
+

[
1

λk(q− q) −
rk(qk)

λ̃k(qk)
(
q− q

)] ·∫ q

q
k

(
βΨ̃k(q)− c(q)− α

dk
+
α

dk
rk(q)

)
pk(q) dq

+
rk(qk)

λ̃k(qk)
(
q− q

) ·∫ q

q
k

α

dk
rk(q)pk(q) dq (46a)

>
α

dk
·
[

1−
(

1

λk(q− q) −
rk(qk)

λ̃k(qk)
(
q− q

))∫ q

q
k

pk(q) dq

]

+

[
1

λk(q− q) −
rk(qk)

λ̃k(qk)
(
q− q

)] ·(βΨ̃k(qk)− c(qk) +
α

dk
rk(qk)

)∫ q

q
k

pk(q) dq (46b)

≥L(qk) ·
[

1−
(

1

λk(q− q) −
rk(qk)

λ̃k(qk)
(
q− q

))∫ q

q
k

pk(q) dq

]

+L(qk) ·
(

1

λk(q− q) −
rk(qk)

λ̃k(qk)
(
q− q

))∫ q

q
k

pk(q) dq (46c)

=L(qk),

where inequality 46b follows from rearranging 46a after dropping its non-negative last term and that βΨ̃k(q)−3

c(q) + α
d

k

rk(q) = L(q) is strictly increasing in q; and inequality 46c follows after observing that L(qk) ≤4

α
d

k

for qk ≤ q′, and

(
1

λ
k
(q−q) −

r
k
(q

k
)

λ̃
k
(q

k
)(q−q)

)∫ q

q
k

pk(q) dq ≤ 1
λ

k
(q−q)

∫ q

q
k

pk(q) dq = πk(qk) ≤ 1. This shows that5

equation (41) cannot have any solution in [q, q′), and concludes the proof. �6

Corollary 4. For any candidate type k, q̃sk < q̃
e
k ≤ qek. Furthermore, q̃ek = qek iff rk(q̃ek) = 0.7

Proof of Corollary 4. We have established in the proof of Proposition 5 that q̃ek > q′, where q′ is the8

unique solution of equation (43), which coincides with q̃sk (see Proposition 4(b)). This establishes q̃sk < q̃
e
k.9

Furthermore, we have

L(q̃ek) :=βΨk(q̃ek)− c(q̃ek)

=βΨ̃k(q̃ek)− c(q̃ek) +
α

dk
rk(q̃ek) (47a)

=
α

dk
+

1

λk(q− q) ·
∫ q

q̃e

k

(
βΨ̃k(q) +

α

dk
rk(q)− c(q)− α

dk

)
pk(q) dq

− rk(q̃ek)(
q− q

)
λ̃k(q̃ek)

·
∫ q

q̃e

k

(
βΨ̃k(q)− c(q)− α

dk

)
pk(q) dq (47b)

≤ α

dk
+

1

λk(q− q) ·
∫ q

q̃e

k

(
βΨ̃k(q) +

α

dk
rk(q)− c(q)− α

dk

)
pk(q) dq (47c)

=
α

dk
· [1−πk(q̃ek)] +Ek[βΨk(q)− c(q) | q≥ q̃ek] ·πk(q̃ek)

= :R(q̃ek),
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where equations (47a) and (47b) follow from equation (13) and Proposition 5, respectively, and inequality 47c1

follows from the assumption that transplantation, on average, is associated with higher life benefits than2

that from waiting until death without a transplant (i.e., Ek
[
βΨ̃k(q)− c(q)

∣∣∣ q≥ q̃ek]> α
d

k

).3

We have established in the proof of Proposition 3 that L(q) is strictly increasing in q, R(q) is strictly4

decreasing in q for q≥ qsk = q̃sk (last equality is due to Corollary 3), and L(qek) =R(qek). This combined with5

L(q̃ek)≤R(q̃ek) implies q̃ek ≤ qek, with strict inequalities holding if and only if rk(q̃ek) is nonzero. �6

Proposition 6. Under any admissible (δ, q̊) policy, for any type-k candidate, any equilibrium threshold7

q̃
e,(δ,q̊)
k ∈ [q, q̊] solves the following equation:8

immediate benefit from
transplanting q̃︷ ︸︸ ︷
βΨ̃k(q̃)− c(q̃) +

prob. of
return︷ ︸︸ ︷
rk(q̃)

(
δ

expected benefit from transplan-
tation given priority︷ ︸︸ ︷

Ek
[
βΨ̃k(q)− c(q)

∣∣∣ q≥ q̃
]

+(1− δ)

( expected benefit from wait-listing
given no priority︷ ︸︸ ︷

α

dk

(
1− π̃δk(q̃)

)
+Ek

[
βΨ̃k(q)− c(q)

∣∣∣ q≥ q̃
]
π̃δk(q̃)

))
=

(
α

dk

(
1− π̃δk(q̃)

)
+Ek

[
βΨ̃k(q)− c(q)

∣∣∣ q≥ q̃
]
π̃δk(q̃)︸ ︷︷ ︸

expected benefit from wait-listing
given no priority

)(
1 +

(1− δ)λ
?

k(q̃) + λ̊k(q̃)

λk︸ ︷︷ ︸
fraction of

non-prioritized
returns

)
+
δλ
?

k(q̃)

λk︸ ︷︷ ︸
fraction of
prioritized

returns

Ek
[
βΨ̃k(q)− c(q)

∣∣∣ q≥ q̃
]

︸ ︷︷ ︸
expected benefit from

transplantation given priority

, (24)

and any equilibrium threshold q̃
e,(δ,q̊)
k ∈ [̊q, q] solves equation (24) with δ = 0.9

(a) If q̊≥ q̃sk, and10

(a-1) If q̊≥ q̃ek, then q̃
e,(δ,q̊)
k exists only in the interval [q, q̊] and it is unique when

r
k
(q)π̃δ

k
(q)

µ
k
(q)

is nonde-11

creasing in q.12

(a-2) If q̊ < q̃ek, then q̃
e,(δ,q̊)
k exists uniquely in the interval (q̊, q] and equals q̃ek. Furthermore, any13

solution to equation (24) in the interval [q, q̊] leads to multiple equilibria.14

(b) If q̊ < q̃sk, then q̃
e,(δ,q̊)
k exists uniquely in the interval [q, q] and equals q̃ek.15

Moreover, no equilibrium exists in the interval [q, q̃sk).16

Proof of Proposition 6. Consider any candidate type k= 1, . . . ,K. Under any admissible (δ, q̊) policy, the17

equilibrium threshold q̃
e,(δ,q̊)
k of a type-k candidate is the point where she is indifferent between accepting or18

rejecting the offered organ. Candidates utilizing q̃
e,(δ,q̊)
k ∈ [q, q̊] as their acceptance threshold are potentially19

eligible for priority. Therefore, any equilibrium q̃
e,(δ,q̊)
k ∈ [q, q̊] should solve equation (24). On the other hand,20

candidates utilizing q̃
e,(δ,q̊)
k ∈ (q̊, q] as their acceptance threshold are not eligible for priority. Therefore, the21

search for any equilibrium in (q̊, q] should be performed under the baseline setting studied in Section 4, in22

which re-listed candidates are not prioritized. Accordingly, q̃
e,(δ,q̊)
k ∈ (q̊, q] should solve equation (24) after23

setting δ = 0, which is equivalent to equation (19).24

The left hand-side of equation (24) can be re-organized as

βΨ̃k(q̃)− c(q̃) + rk(q̃)

(
δEk

[
βΨ̃k(q)− c(q)

∣∣∣ q≥ q̃
]

+ (1− δ)

[
α

dk

(
1− π̃δk(q̃)

)
+Ek

[
βΨ̃k(q)− c(q)

∣∣∣ q≥ q̃
]
π̃δk(q̃)

])
= βΨ̃k(q̃)− c(q̃) + rk(q̃)

(
δ

[
α

dk
+Ek

[
βΨ̃k(q)− c(q)−

α

dk

∣∣∣ q≥ q̃
]]

+ (1− δ)

[
α

dk
+Ek

[
βΨ̃k(q)− c(q)−

α

dk

∣∣∣ q≥ q̃
]
π̃δk(q̃)

])
= βΨ̃k(q̃)− c(q̃) +

α

dk
rk(q̃) + rk(q̃) ·

[
δ+ (1− δ)π̃δk(q̃)

]
·Ek

[
βΨ̃k(q)− c(q)−

α

dk

∣∣∣ q≥ q̃
]
. (48)
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Similarly, the right-hand side of equation (24) can be re-organized as(
α

dk

(
1− π̃δk(q̃)

)
+Ek

[
βΨ̃k(q)− c(q)

∣∣∣ q≥ q̃
]
π̃δk(q̃)

)(
1 +

(1− δ)λ
?

k(q̃) + λ̊k(q̃)

λk

)
+
δλ
?

k(q̃)

λk
Ek
[
βΨ̃k(q)− c(q)

∣∣∣ q≥ q̃
]

=

(
α

dk

(
1− π̃δk(q̃)

)
+Ek

[
βΨ̃k(q)− c(q)

∣∣∣ q≥ q̃
]
π̃δk(q̃)

)(
λ̃k(q̃)− δλ

?

k(q̃)

λk

)
+
δλ
?

k(q̃)

λk
Ek
[
βΨ̃k(q)− c(q)

∣∣∣ q≥ q̃
]

=
α

dk

(
λ̃k(q̃)− δλ

?

k(q̃)

λk
− µk(q̃)− δλ

?

k(q̃)

λk

)
+Ek

[
βΨ̃k(q)− c(q)

∣∣∣ q≥ q̃
](µk(q̃)− δλ

?

k(q̃)

λk
+
δλ
?

k(q̃)

λk

)

=
α

dk

(
λ̃k(q̃)

λk
− µk(q̃)

λk

)
+Ek

[
βΨ̃k(q)− c(q)

∣∣∣ q≥ q̃
]µk(q̃)

λk
(49)

=

(
α

dk
[1− π̃k(q̃)] +Ek

[
βΨ̃k(q)− c(q)

∣∣∣ q≥ q̃
]
π̃k(q̃)

)
· λ̃k(q̃)

λk
.

= L̃k(qk)− C̃k(qk).

Combining equations (48) and (49), equation (24) can be equivalently written as

βΨ̃k(q̃)− c(q̃) +
α

dk
rk(q̃)

=
α

dk

(
λ̃k(q̃)

λk
− µk(q̃)

λk

)
+Ek

[
βΨ̃k(q)− c(q)

∣∣∣ q≥ q̃]µk(q̃)

λk
− rk(q̃) ·

[
δ+ (1− δ)π̃δk(q̃)

]
·Ek

[
βΨ̃k(q)− c(q)− α

dk

∣∣∣ q≥ q̃]
=
α

dk
+
µk(q̃)

λk
·Ek

[ α
dk
rk(q)

∣∣∣ q≥ q̃]+
µk(q̃)

λk
·Ek

[
βΨ̃k(q)− c(q)− α

dk

∣∣∣ q≥ q̃]
− rk(q̃) ·

[
δ+ (1− δ)π̃δk(q̃)

]
·Ek

[
βΨ̃k(q)− c(q)− α

dk

∣∣∣ q≥ q̃] (50)

For notational convenience, let L(q̃) and R(δ,q̊)(q̃) denote the left and right hand-side of equation (50),

respectively, under the (δ, q̊) policy. We next show that R(δ,q̊)(·) is decreasing in δ.

∂

∂δ
R(δ,q̊)(q̃) =− ∂

∂δ

{
rk(q̃) ·

[
δ+ (1− δ)π̃δk(q̃)

]
·Ek

[
βΨ̃k(q)− c(q)− α

dk

∣∣∣ q≥ q̃]} (51)

=− rk(q̃)Ek
[
βΨ̃k(q)− c(q)− α

dk

∣∣∣ q≥ q̃]
·

(
λ̃k(q̃)−µk(q̃)−λ

?

k(q̃)
)(
λ̃k(q̃)− δλ

?

k(q̃)
)

+λ
?

k(q̃)
(
δλ̃k(q̃) + (1− δ)µk(q̃)− δλ

?

k(q̃)
)

(
λ̃k(q̃)− δλ

?

k(q̃)
)2

=− rk(q̃)Ek
[
βΨ̃k(q)− c(q)− α

dk

∣∣∣ q≥ q̃] ·
(
λ̃k(q̃)−µk(q̃)

)(
λ̃k(q̃)−λ

?

k(q̃)
)

(
λ̃k(q̃)− δλ

?

k(q̃)
)2

<0, (52)

where inequality (52) follows since, by assumption, the expectation term is positive (transplantation, on1

average, provides higher life benefits than time until death without a transplant) and λ̃k(q̃)≥ µk(q̃).2

(a) Assume q̊≥ q̃sk.3

(a-1) Given q̊≥ q̃ek. We first show that no equilibrium exists in the interval (q̊, q]. Assume, to the contrary,4

that there exists an equilibrium q̃
e,(δ,q̊)
k ∈ (q̊, q]. As noted above, q̃

e,(δ,q̊)
k should solve equation (19).5

Proposition 5 establishes that the unique solution of equation (19) is q̃ek, but q̃
e,(δ,q̊)
k = q̃ek ≤ q̊6

contradicts with the assumption that q̃
e,(δ,q̊)
k ∈ (q̊, q].7
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We next show that an equilibrium exists in the interval [q, q̊]. For q̃= q, since R(δ,q̊)(q̃) is decreasing1

in δ, we have R(δ,q̊)(q)≤R(0,q̊)(q)≤ L(q), where the last inequality follows from inequality (45).2

For q̃= q̃sk, where q̃sk is the socially efficient threshold satisfying equation (18), we have L(q̃sk) = α
dk

3

and R(δ,q̊)(q̃sk)≥R(δs
k
,q̊)(q̃sk) since δ ∈ [0, δsk] for any admissible (δ, q̊) policy, where δsk is defined in4

Definition 1. Substituting equation (23) from Definition 1 into equation (50), we find R(δs
k
,q̊)(q̃sk) =5

α
dk

, implying thatR(δ,q̊)(q̃sk)≥L(q̃sk) for any admissible (δ, q̊) policy. By intermediate value theorem,6

we conclude that there exists an equilibrium q̃
e,(δ,q̊)
k that solves equation (24) in [q̃sk, q̊].7

Finally, to show the uniqueness of the equilibrium, we start with showing that equation (50) cannot

have any solution in q̃ ∈ [q, q̃sk). For any admissible (δ, q̊) policy and q̃ ∈ [q, q̃sk), we have

R(δ,q̊)(q̃)≥R(δs
k
,q̊)(q̃)

=
α

dk
+

(
µk(q′)

λk
− rk(q̃) ·

[
δsk + (1− δsk)π̃

δs
k

k (q̃)
])

Ek
[
βΨ̃k(q)− c(q)− α

dk
+
α

dk
rk(q)

∣∣∣∣ q≥ q̃]
+ rk(q̃) ·

[
δsk + (1− δsk)π̃

δs
k

k (q̃)
]
·Ek

[
α

dk
rk(q)

∣∣∣∣ q≥ q̃] (53a)

≥ α

dk

[
1−

(
µk(q′)

λk
− rk(q̃) ·

[
δsk + (1− δsk)π̃

δs
k

k (q̃)
])]

+

(
µk(q′)

λk
− rk(q̃) ·

[
δsk + (1− δsk)π̃

δs
k

k (q̃)
])(

βΨ̃k(q̃)− c(q̃) +
α

dk
rk(q̃)

)
(53b)

>L(q̃), (53c)

where inequality 53b follows from rearranging 53a after dropping its non-negative last term and8

that βΨ̃k(q) − c(q) + α
dk
rk(q) = L(q) is strictly increasing in q; and inequality 53c follows after9

observing that L(q̃)< α
dk

for q̃ < q̃sk. Inequality 53c implies that equation (50) cannot have a solution10

in [q, q̃sk).11

To complete the proof for the uniqueness of the equilibrium, observe that equation (50) can be

equivalently written as

βΨ̃k(q̃)− c(q̃) + rk(q̃)

(
δEk

[
βΨ̃k(q)− c(q)

∣∣∣ q≥ q̃]+ (1− δ) α
dk

)
=
α

dk
+
µk(q̃)

λk
·Ek

[ α
dk
rk(q)

∣∣∣ q≥ q̃]+

(
µk(q̃)

λk
− (1− δ)rk(q̃)π̃δk(q̃)

)
Ek
[
βΨ̃k(q)− c(q)− α

dk

∣∣∣ q≥ q̃]
=
α

dk
+
µk(q̃)

λk
Ek
[ α
dk
rk(q)

∣∣∣ q≥ q̃]+

(
1

λk
− (1− δ)rk(q̃)π̃δk(q̃)

µk(q̃)

)
µk(q̃)Ek

[
βΨ̃k(q)− c(q)− α

dk

∣∣∣ q≥ q̃]. (54)

The left-hand side of equation (54) is strictly increasing in q̃ since

∂

∂q̃

(
βΨ̃k(q̃)− c(q̃) + rk(q̃)

(
δEk

[
βΨ̃k(q)− c(q)

∣∣∣ q≥ q̃]+ (1− δ) α
dk

))
=

∂

∂q̃

(
βΨ̃k(q̃)− c(q̃) + (1− δ) α

dk
rk(q̃)

)
+ δ

∂

∂q̃

(
rk(q̃)Ek

[
βΨ̃k(q)− c(q)

∣∣∣ q≥ q̃])
≥ ∂

∂q̃

(
βΨ̃k(q̃)− c(q̃) + (1− δ) α

dk
rk(q̃)

)
+ δEk

[
βΨ̃k(q)− c(q)

∣∣∣ q≥ q̃] ∂
∂q̃
rk(q̃) (55a)

>
∂

∂q̃

(
βΨ̃k(q̃)− c(q̃) + rk(q̃)

[
βΨ̃k(q)− c(q)

])
(55b)

≥ 0, (55c)
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where inequality 55a follows from that ∂
∂q̃
Ek
[
βΨ̃k(q)− c(q)

∣∣∣ q≥ q̃] > 0 since βΨ̃k(q) − c(q) is

strictly increasing in q̃; inequality 55b follows since ∂
∂q̃
rk(q̃)≤ 0 and βΨ̃k(q)−c(q) is strictly increas-

ing in q̃; and equation (55c) follows since ∂
∂q̃
c(q̃)≤ 0 and equation (13) implies βΨ̃k(q̃)+rk(q̃)βΨ̃k(q)

is nondecreasing in q̃. Furthermore,
rk(q̃)π̃

δ
k
(q̃)

µk(q̃)
is nondecreasing in q̃ by assumption, and we have

1

λk
− (1− δ)rk(q̃)π̃δk(q̃)

µk(q̃)
≥ 1

λk
− (1− δ) rk(q̃)

λ̃k(q̃)− δλ̃k(q̃)
=

1

λk
− rk(q̃)

λ̃k(q̃)
≥ 0. (56)

Therefore, each of the three terms in the right hand-side of equation (54) is positive decreasing in1

q̃, which imply that the right hand-side of equation (54) is decreasing in q̃. This concludes that the2

equilibrium threshold is unique.3

(a-2) Given q̊ < q̃ek. We first show that q̃
e,(δ,q̊)
k exists uniquely in the interval (q̊, q] and equals q̃ek. As noted4

above, q̃
e,(δ,q̊)
k should solve equation (19). Observing that q̃ek is the unique solution of equation (19)5

(see Proposition 5), and q̊ < q̃ek, we conclude that q̃
e,(δ,q̊)
k = q̃ek is the unique equilibrium in the6

interval (q̊, q]. Furthermore, if equation (24) also has a solution q̃
e,(δ,q̊)
k in the interval [q, q̊], then7

multiple equilibria exist.8

(b) Assume q̊ < q̃sk. We have shown in the proof of part (a-1) that equation (24) has no solution in the9

interval [q, q̃sk), implying that no equilibrium can exist in the interval [q, q̊] since, by assumption, q̊ < q̃sk.10

Therefore, any equilibrium, if exists, must be in the interval (q̊, q]. As noted above, an equilibrium in11

(q̊, q] should solve equation (19), which has a unique solution q̃ek (see Proposition 5). Since q̊ < q̃sk < q̃ek12

(see Corollary 4), q̃ek emerges as the only equilibrium in the interval (q̊, q], which concludes the proof.13

Moreover, no equilibrium can exists in the interval [q, q̃sk), since equation (24) has no solution in [q, q̃sk)14

(see the proof of part (a-1)) and equation (19) only has solution in (q̃sk, q] (see the proof of part (b)). �15

Corollary 5. Under any admissible (δ, q̊) policy, for candidate type k:16

(a) Any equilibrium q̃
e,(δ,q̊)
k satisfies the following:17

(a-1) q̃
e,(δ,q̊)
k ∈ [q̃sk, q̃

e
k].18

(a-2) If q̊≥ q̃ek, then q̃
e,(δ,q̊)
k ∈ (q̃sk, q̃

e
k) for δ /∈ {0, δsk}.19

(a-3) If δsk > 1, then q̃
e,(δ,q̊)
k ∈ (q̃sk, q̃

e
k].20

(b) Among Pareto efficient equilibria, q̃
e,(δ,q̊)
k < q̃

e,(δ′,q̊)
k for δ′ < δ.21

Proof of Corollary 5. Proposition 6 states that for any candidate type k, any equilibrium of an admis-22

sible (δ, q̊) policy with q̊ ∈ (q̃ek, q] should solve equation (50). Following the notation used in the proof of23

Proposition 6, let L(q̃) and R(δ,q̊)(q̃) denote the left and right hand-side of equation (50), respectively. Note24

that R(δ,q̊)(·) is decreasing in δ (see the proof of Proposition 6).25

(a) Consider any admissible (δ, q̊) policy and any type-k candidate.26

(a-1) q̃
e,(δ,q̊)
k ≥ q̃sk follows trivially from Proposition 6, which establishes that no equilibrium exists in the27

interval [q, q̃sk). We next prove that q̃
e,(δ,q̊)
k ≤ q̃ek. If q̊ < q̃ek, then q̃

e,(δ,q̊)
k = q̃ek is the unique equilib-28

rium in the interval (q̊, q] (see Proposition 6(a-2)), implying q̃
e,(δ,q̊)
k ≤ q̃ek. To prove the result when29

q̊ ≥ q̃ek, assume, to the contrary, that there exists an equilibrium q̃
e,(δ,q̊)
k > q̃ek for some δ. Proposi-30

tion 6 states that, if q̊ ≥ q̃ek, any equilibrium q̃
e,(δ,q̊)
k solves R(δ,q̊)(q̃

e,(δ,q̊)
k ) = L(q̃

e,(δ,q̊)
k ), which implies31
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R(0,q̊)(q̃
e,(δ,q̊)
k )≥R(δ,q̊)(q̃

e,(δ,q̊)
k ) = L(q̃

e,(δ,q̊)
k ) since R(δ,q̊)(·) is decreasing in δ. Note that q̃

e,(0,q̊)
k = q̃ek,1

and therefore, Proposition 5 implies that q̃
e,(0,q̊)
k is unique. We also have R(0,q̊)(q)≤L(q) (see proof2

of Proposition 6(a-1)), implying by the intermediate value theorem that there exists an equilibrium3

q̃
e,(0,q̊)
k ≥ q̃e,(δ,q̊)k , which contradicts with the assumption that q̃

e,(δ,q̊)
k > q̃ek = q̃

e,(0,q̊)
k .4

(a-2) Consider any δ /∈ {0, δsk}. The proof for q̃
e,(δ,q̊)
k > q̃sk follows similarly to the proof in part (a-1). To show5

that q̃
e,(δ,q̊)
k < q̃ek, assume, to the contrary, that q̃

e,(δ,q̊)
k ≥ q̃ek. This implies that q̃

e,(δ,q̊)
k = q̃ek, since part6

(a-1) established q̃
e,(δ,q̊)
k ≤ q̃ek. We, therefore, find L(q̃ek) = L(q̃

e,(δ,q̊)
k ) =R(δ,q̊)(q̃

e,(δ,q̊)
k ) =R(δ,q̊)(q̃ek) <7

R(0,q̊)(q̃ek) = L(q̃ek), where the equalities between L(·) =R(·,q̊)(·) follows from the equilibrium condi-8

tions and the strict inequality follows since R(δ,q̊)(·) is decreasing in δ and δ 6= 0.9

(a-3) Follows similarly to the proof in part (a-1).10

(b) Assume, to the contrary, that q̃
e,(δ,q̊)
k ≥ q̃e,(δ

′,q̊)
k for some δ′ < δ. Since R(δ,q̊)(·) is decreasing in δ, we have11

R(δ,q̊)(q̃
e,(δ′,q̊)
k ) <R(δ′,q̊)(q̃

e,(δ′,q̊)
k ) = L(q̃

e,(δ′,q̊)
k ). We also have R(δ,q̊)(q̃sk) ≥ L(q̃sk) (see proof of Proposi-12

tion 6(a-1)), implying by the intermediate value theorem that there exists an equilibrium in the interval13

[q̃sk, q̃
e,(δ′,q̊)
k ) associated with δ, which contradicts with the assumption that q̃

e,(δ,q̊)
k is the Pareto efficient14

equilibrium for δ. �15

Corollary 6. For any admissible (δ, q̊) policy with δ 6= 0, with respect to utilization of organs by type-k16

candidates,17

(a) if q̊ ∈ (q̃ek, q], then (δ, q̊) policy is strictly dominated by the (δ, q̃ek) policy,18

(b) if q̊ ∈ [q, q̃ek), and the realized equilibrium is19

(b-1) q̃
e,(δ,q̊)
k = q̃ek, then (δ, q̊) policy is strictly dominated by any (δ, q) policy with q≥ q̃ek,20

(b-2) q̃
e,(δ,q̊)
k ≤ q̊, then (δ, q̊) policy strictly dominates any (δ, q) policy with q > q̊.21

Proof of Corollary 6. Consider any admissible (δ, q̊) policy with δ 6= 0.22

(a) For any q̊ ∈ (q̃ek, q], following the notation used in the proof of Proposition 6, let L(q̃) and R(δ,q̊)(q̃)

denote the left and right hand-side of equation (50), respectively. We have

∂

∂q̊
R(δ,q̊)(q̃) = rk(q̃)Ek

[
βΨ̃k(q)− c(q)− α

dk

∣∣∣ q≥ q̃]
·
δrk(q̊)pk(q̊)

(
λ̃k(q̃)− δλ

?

k(q̃)
)
− δrk(q̊)pk(q̊)

(
δλ̃k(q̃) + (1− δ)µk(q̃)− δλ

?

k(q̃)
)

(
q− q

)(
λ̃k(q̃)− δλ

?

k(q̃)
)2

= rk(q̃)Ek
[
βΨ̃k(q)− c(q)− α

dk

∣∣∣ q≥ q̃] · δ(1− δ)rk(q̊)pk(q̊)
(
λ̃k(q̃)−µk(q̃)

)
(
q− q

)(
λ̃k(q̃)− δλ

?

k(q̃)
)2

> 0, (57)

where inequality (57) follows since the expectation term is positive (by assumption, transplantation, on23

average, provides higher life benefits than time until death without a transplant), and λ̃k(q̃)≥ µk(q̃).24

Let q̃
e,(δ,q̊)
k denote the equilibrium threshold of a type-k candidate under (δ, q̊) policy. We show that25

there exists an equilibrium threshold under the (δ, q̃ek) policy that is strictly less than any equilibria26

that emerges under any admissible (δ, q̊) policy with q̊ ∈ (q̃ek, q]. Assume, to the contrary, that there27
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exists a (δ, q̊) policy with q̊ ∈ (q̃ek, q] such that q̃
e,(δ,q̊)
k is less than any equilibrium threshold q̃

e,(δ,q̃e
k
)

k .1

Inequality (57) implies R(δ,q̃e
k
)(q̃

e,(δ,q̊)
k )<R(δ,q̊)(q̃

e,(δ,q̊)
k ) =L(q̃

e,(δ,q̊)
k ).2

We also have R(δ,q̃e
k
)(q̃sk)≥ L(q̃sk) (see proof of Proposition 6(a-1)). These two inequalities imply, by3

the intermediate value theorem, that there exists an equilibrium q̃
e,(δ,q̃e

k
)

k to the left of q̃
e,(δ,q̊)
k , which4

contradicts with the assumption that q̃
e,(δ,q̊)
k is less than any equilibrium threshold q̃

e,(δ,q̃e
k
)

k .5

(b) For any q̊ ∈ [q, q̃ek), and if the realized equilibrium is6

(b-1) q̃
e,(δ,q̊)
k = q̃ek, then the result follows immediately from Corollary 5(a-2).7

(b-2) q̃
e,(δ,q̊)
k ≤ q̊, then the proof follows similarly to the proof in part (a). �8

Proposition 7. Introduction of any admissible (δ, q̊) policy with δ 6= 0 increases social welfare.9

Proof of Proposition 7. In the proof of Proposition 6, we find that the right hand-side of equation (24)10

is equivalent to L̃k(qk)− C̃k(qk). As a consequence, the social welfare function remains unchanged with the11

introduction of the (δ, q̊) policy, which implies that the socially efficient threshold q̃sk for any patient type k12

as well as the social welfare targeted by the social planner are unaffected by the (δ, q̊) policy.13

In the proof of Proposition 4(b), we find that, for any given k, the social welfare function S̃(q1, . . . , qK) is14

strictly decreasing in qk for qk > q̃
s
k. This implies that15

S̃(q̃
e,(δ,q̊)
1 , . . . , q̃

e,(δ,q̊)
K )> S̃(q̃e1, . . . , q̃

e
K),16

since q̃
e,(δ,q̊)
k ∈ [q̃sk, q̃

e
k] for all k and q̃

e,(δ,q̊)
k ∈ [q̃sk, q̃

e
k) for some k (Corollary 5(a-1) and (a-2), respectively). �17

Appendix B: Estimating waiting time18

Let Wk denote the stationary waiting time until transplantation for type-k candidates. In steady state, the

fraction of type-k candidates that receive an organ offer is µk
λk

, where µk denotes the arrival rate of organs

that are offered to type-k candidates and is given in equation (1). This fraction corresponds to the probability

that a type-k candidate receives an organ offer, which is characterized by the event that waiting time until

transplantation is no more than the time until death (i.e., Wk ≤Dk). Therefore, we have

µk
λk

= P (type-k candidate receives a transplant offer) = P (Wk ≤Dk) (58)

= e−Wk/dk , (59)

where the last equality follows since the time until death is exponentially distributed. Taking natural loga-

rithms of both sides of equation (59) results in the following approximation for Wk,

Wk = dk ln(
λk
µk

) = dk ln

(
λk
(
q− q

)∫ q
qk
pk(q) dq,

)
(60)

where the last equality is obtained after substituting for µk using equation (1). Zenios (1999) also proves19

equation (60) using a fluid limit approximation.20
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