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a b s t r a c t 

Operations Researchers support Supply Chain Management and Supply Chain Planning by developing ad- 

equate mathematical optimization models and providing suitable solution procedures. In this paper we 

discuss what adequate could mean. Therefore, we may ask several questions concerning “optimality” in 

Supply Chain Planning under causal and temporal uncertainty: What is an optimal solution? When is it 

optimal? For how long is it optimal? How should the design of a supply chain be changed when con- 

ditions and requirements ask for new structures? In particular, we discuss new approaches to Supply 

Chain Planning in order to give an optimal transformation from an initial solution over multiple periods 

to a desired one rather than just specifying an optimal snapshot solution. Time and uncertainty are the 

factors triggering the whole discussion. In particular, several flaws often found when dealing with these 

factors result in so-called “time traps”. We look at the impact of recent technological developments like 

the Internet of Things or Industry 4.0 on operational supply chain planning and control, and we show 

how online optimization can help to cope with real-time challenges. Moreover, we re-coin the concept 

of risk in the realm of Supply Chain Planning. Here the question is how to measure supply chain specific 

risks and how to incorporate them “adequately” into mathematical models. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Supply Chain Planning—as an important subtask of Supply

hain Management—is the process of allocating resources over a

etwork of interrelated locations with the goal to satisfy customer

equirements. It spans all movements and storage of raw materi-

ls, work-in-process inventory, and finished goods from the point-

f-origin to the point-of-consumption. Operations Researchers sup-

ort Supply Chain Planning by developing mathematical optimiza-

ion models and providing suitable solution procedures. 

The concept of optimality describes the property of a solution

hich imposes the best feasible decision obtainable under spe-

ific conditions. These conditions need to be identified, gathered,

nd appropriately expressed by formulating mathematical models,

hich abstract from restrictions of the real world. If models do not

apture the most relevant features and do not yield to applicable

asks or useful managerial insights, their solutions will never be
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egarded as good enough for practical implementation—although

hey are optimal from a strictly mathematical point of view. 

Especially global supply chains have to face a rich variety of

otential requirements. Not all of them can be considered within

onstraints, but some of them must be respected. Since Supply

hain Planning strongly depends on the ability to grasp future

evelopments in order to balance supply and demand, the main

hallenge during the identification of important requirements is

mposed by the weighting and the incorporation of characteris-

ics that describe the future. Major components of the future are

ime and uncertainty. While the former refers to the “amount”

f future to consider, the latter describes the degree and type

f knowledge available about future developments. Ignoring an

ppropriate way of dealing with these two aspects—isolated or

ogether–leads to what we call “time traps”, which is a term in-

icating that the relevance of time is perceived but not adequately

reated. 

In this paper we claim that the existing optimization models

or supporting Supply Chain Planning lack to address the future

ppropriately and thus, do not assure that optimal solutions repre-

ent applicable plans and provide intelligible benefits. We address

hree major topics that overlap with respect to their treatment of

he future, namely: online optimization models, multi-period plan-

ing models, and risk-aware models. 

http://dx.doi.org/10.1016/j.ejor.2016.07.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2016.07.016&domain=pdf
mailto:fabian.dunke@kit.edu
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Fig. 1. Division of the time line under forecast-based planning methods in current APS systems. 
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Handling short-term future uncertainty can be accomplished by

online optimization models (cf. Dunke, 2014 ). The discussion that

we provide in the current paper regarding online optimization ap-

proaches gives a contribution to answering the following question:

What is an appropriate optimality concept with respect to a steady in-

formation inflow as facilitated by modern ICT (Internet of Things and

Industry 4.0)? 

Multi-period planning models are of great relevance in the con-

text of strategic Supply Chain Planning, e.g., in Supply Chain Net-

work Design (see Alumur, Kara, and Melo, 2015a and Nickel &

Saldanha-da-Gama, 2015 ). Related to this aspect, the relevant ques-

tion that we aim at answering in this paper is the following: How

long can we consider a previously calculated solution for a snap-

shot of the overall problem as optimal? When should it be changed?

To what extent? Which components of the solution should be

modified? 

The consideration of unexpected mid- to long-term develop-

ments can be subsumed under the “family” of risk-aware formu-

lations ( Heckmann, Comes, & Nickel, 2015 ). Although risk-aware

model formulations can be found in the literature, the definition

of supply chain risk is most often treated in a cursory manner and

leads to oversimplification and misestimation. By putting the fo-

cus on time, in the current work we answer the following central

question: How does supply chain risk evolve over time? 

The three previous paragraphs disclose a central aspect in the

current work: time. Fig. 1 provides a simplistic view on how plan-

ning for future activities is currently integrated with time. In par-

ticular, we emphasize the fact that most of today’s planning and

scheduling systems rely on forecast-based approaches ( Stadtler,

Kilger, & Meyr, 2015 ). A major contribution of the current paper

is to show that considering alternative views to this typical “ap-

proach” may render better solutions when dealing with time and

uncertainty. We note that this does not mean that “forecast-based

approaches” should be ignored. Our goal is simply to discuss pos-

sible alternatives. 

It is important to point out that Fig. 1 and its variations pre-

sented throughout the paper are used schematically. For instance,

in strategic risk-aware SC planning time buckets are different (e.g.,

months or years) from those in operational planning (e.g., days or

hours). Nevertheless, it is worth noticing that Section 3 provides a

tool for applying mathematical models irrespective of how a time

bucket is defined. 

In the following sections we discuss how the three model types

mentioned above can handle time and/or uncertainty and also

how, by doing so, they can help improving Supply Chain Planning

decisions. We offer insights about common flaws as well as new

concepts and definitions that may be of great help for achieving

our goal. Furthermore, we provide appropriate illustrations to show

the relevance of the aspects discussed. 

This paper is not aimed at focusing specific aspects such as ro-

bustness, flexibility, stochasticity or resilience. Our focus is on Sup-

ply Chain Planning and what is necessary for that. 

The remainder of this paper is organized as follows.

Section 2 discusses limits of optimization paradigms and reveals

how online optimization with look-ahead may be considered as
 S  
n alternative. Section 3 uncovers inadequateness of single period

lanning models in the context of many Supply Chain Planning

roblems. Section 4 reveals how the flawed perception of supply

hain risk leads to an imprecise and incomplete definition of

his concept. In Section 5 we highlight the links between the

ajor aspects discussed in Sections 2 –4 and we present some

onclusions drawn from the work done. 

. Online optimization with look-ahead 

Operational tasks in Supply Chain Planning are often coined by

ata being received in a steady flow of information. Hence, op-

imization algorithms have to be employed repetitively and deci-

ions have to be communicated on-the-line. For that reason, short-

erm decision making problems arising in environments with dy-

amic information flows are called online optimization problems

 Fiat & Woeginger, 1998 ). While in the classical discipline of online

ptimization decisions are made only upon knowledge of the past

nd the current information, the field of online optimization with

ook-ahead additionally takes into account a preview of certain fu-

ure information ( Dunke & Nickel, 2016 ) which can be used in an

vent-based planning approach as indicated in Fig. 2 . This informa-

ion is made available through so-called look-ahead devices such as

arcode scanners, RFID or GPS chips, or sensor modules. 

Considering the transition from static to dynamic information

rovision in Supply Chain Planning through the mentioned stan-

ard devices, we realize that these technologies allow us to turn

he uncertain future gradually into a certain one. In new appli-

ation fields such as Industry 4.0 or Advanced Manufacturing it

s even an essential prerequisite to know at each point what is

urrently going on Tassey (2014) . Using information-transmitting

evices, decision makers obtain more relevant data from different

ntities involved in their business processes. However, in order to

ake use of the data, suitable online methods and algorithms are

equired. Hence, bringing together the physical entities of a sup-

ly chain with data analytics and online optimization algorithms

epresents the methodological key to establishing the Internet of

hings as an important part of Industry 4.0. Observe that the above

echnologies are mainly used in operational planning and control;

onetheless the use of information-transmitting devices (e.g., sen-

ors) can help also on the tactical and strategic planning horizon

o better anticipate future events and incorporate them in multi-

eriod models (cf. Section 3 ) and risk-aware supply chain plan-

ing (cf. Section 4 ). However, only because technologies have ma-

ured, it does not imply that the scientific methods also did. Quite

o the contrary, the theories of decision making in near real time

nd online optimization with look-ahead are still in a rather im-

ature state, and a systematic approach to optimization under un-

ertainty in near real time is not yet established ( Dunke, 2014;

rötschel, Krumke, & Rambau, 2001 ). The core reason for this can

e traced back to the difficulties in finding a suitable concept of

ptimality that can be applied in sequential decision making un-

er incomplete information. In Section 2.1 we discuss weak links

f different optimality concepts when applied to online settings.

ection 2.2 then shows that some of the issues can be resolved
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Fig. 2. Division of the time line under consideration of near-future data as transmitted by look-ahead devices. 
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n a general framework for online optimization with look-ahead.

astly, Section 2.3 exemplifies the benefits of this approach. 

.1. Flaws 

Real-valued key performance indicators (KPIs) are often used to

valuate performance. Hence, a straightforward approach would be

o define a function KPI ( σ 1 , …, σ m 

, x 1 , …, x n ) which gives the

PI value for given inputs σ 1 , …, σ m 

and selected decisions x 1 ,

, x n with m, n ∈ N . Because the ≤ -relation yields a total order

n R , this concept allows us to figure out under which inputs

hich decisions are needed to achieve the best value of KPI . The

implicity of the KPI concept with respect to “what is good” and

what is bad” is a major reason for its success both in industry

nd academia. However, it possesses several drawbacks concerning

ime and uncertainty. 

.1.1. Neglect of sequentiality 

The function KPI ( σ 1 , …, σ m 

, x 1 , …, x n ) suggests that KPI can

e evaluated immediately once all of the arguments (inputs and

ecisions) are given. Unfortunately, this becomes real only when

he planning horizon has expired. Contrarily, the entrepreneurial

ractice in the operational planning horizon is characterized by

ecisions x 1 , …, x n to be made successively without all of the in-

uts σ 1 , …, σ m 

known. Mathematically speaking, we seek for a se-

uential optimization method under imperfect information. Clearly,

ithout overall knowledge on the inputs, we cannot expect to find

ecisions x 1 , x 2 , …, x n one after another such that KPI ( σ 1 , …, σ m 

,

 1 , …, x n ) is optimal retrospectively. Thus, there is neither a natural

oncept of optimality in online optimization nor is there any evi-

ence that solving partial problems to optimality leads to an op-

imal overall solution ( Dunke, 2014 ). Although we cannot expect

ptimality in terms of the overall decision vector x 1 , …, x n , many

embers of the online optimization community use omniscience

s the basis for their substitute concept of optimality—competitive

nalysis (cf. also Borodin & El-Yaniv, 1998 ): In a minimization prob-

em, an algorithm is called c -competitive if for all input realiza-

ions, the decisions of this algorithm lead to a KPI -value at most

 -times as large as the value of KPI that results from an optimal

hypothesized) offline algorithm. 

According to competitive analysis, an optimal online algorithm

hen is a c -competitive algorithm with the smallest possible value

f c among all online algorithms. It is easy to find numerous criti-

isms for this substitute concept of optimality ( Dorrigiv, 2010; Fiat

 Woeginger, 1998 ), e.g., the limited significance for practical ap-

lications due to exclusive worst case considerations or the reduc-

ion to a single number. In fact, the counterintuitivity of this mea-

ure has been observed in practice: for instance, in online variants

f basic routing problems such as the traveling salesman prob-

em, it is known from experiments that look-ahead improves the

erformance ( Dunke, 2014 ) whereas in competitive analysis this

an hardly be replicated ( Allulli, Ausiello, Bonifaci, & Laura, 2008 ).

onetheless, the real time character of many industrial planning

roblems ( Ghiani, Laporte, & Musmanno, 2013 ) shows that there
s a need for a comprehensive framework for online methods pro-

iding answers to the following questions: When should we solve

 snapshot problem? Under which objective should we solve the

napshot problem? Which method (exact/heuristic) should we use

o solve the snapshot problem? How does the solution type of the

napshot problem migrate to the overall problem, i.e., is the effort

f generating an optimal partial solution justified? The modeling

art of the framework in Section 2.2 will help in addressing these

uestions. 

.1.2. Oblivion to uncertainty 

Part of the data input required by operational planning prob-

ems is generated by event occurrences which cannot be known in

dvance. Hence, one or another of the inputs σ 1 , …, σ m 

is afflicted

ith uncertainty. Mathematically, these inputs as well as KPI are

andom variables. Hence, what is needed for comprehensive deci-

ion making is more detailed information on the distribution of the

PI value and how it depends on the uncertain input data. Trans-

ated into mathematics, we need a stochastic model—although in

any applications there is often no reliable stochastic information

vailable. 

In order to compare random variables, stochastic orders have

een introduced (cf. also Müller & Stoyan, 2002 ). The simplest

pproach uses expectations: random variable KPI 1 is said to be

tochastically smaller in expectation than random variable KPI 2 if

nd only if the expectation of KPI 1 is smaller than the expectation

f KPI 2 . An alternative is to consider stochastic dominance defined

s follows: random variable KPI 1 is stochastically smaller than ran-

om variable KPI 2 if for all p ∈ R it holds that the probability for

PI 1 being smaller than p is larger or equal than the probability

f KPI 2 being smaller than p , i.e., the ≤-relation is transferred to

robabilities. 

Unfortunately, in the expectation-based definition, variability

nd outliers are ignored; on the other hand, stochastic dominance

oes not admit a total order among random variables. To the best

f the authors’ knowledge, there is not a natural stochastic concept

f optimality that allows us to compare arbitrary random variables.

he evaluation part of the framework in Section 2.2 will present a

ossibility to evaluate the quality of algorithms without having to

ncorporate strong probabilistic assumptions. 

.2. New concepts and definitions 

Based on Dunke (2014) and Dunke and Nickel (2016) we

resent a formal framework for online optimization problems with

ook-ahead. We subdivide it into two parts: a modeling part and

 performance evaluation part. For compatibility with the related

iterature, we denote the sequence of input elements by σ =
(σ1 , ..., σm 

) . Instead of using a function KPI we will denote the per-

ormance of an algorithm ALG on input σ by ALG ( σ ). 

.2.1. Modeling 

In offline optimization, σ is known in advance. In contrast,

nline optimization assumes that σ is not known entirely at the

eginning of the planning horizon ( Borodin & El-Yaniv, 1998 ). An
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Fig. 3. Effect of look-ahead on a problem and its instances. 
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online optimization problem is characterized by the fact that

partial decisions have to be made by ALG repetitively based on

partial knowledge of σ . Hence, ALG has to be applied to several

subsequences σ≤i = (σ1 , ..., σi ) with i ≤ m and monotonously

increasing i . We refine these notions by introducing online opti-

mization problems with look-ahead to obtain a smooth passage

between online and offline optimization. To this end, we view an

online optimization problem with look-ahead as an optimization

problem that is derived from a reference online optimization

problem (without look-ahead capabilities), but with an improved

process of information release ( Dunke, 2014 ). 

In order to advance to a more formal definition of the look-

ahead setting, we recall a general definition of an optimization

problem ( Ausiello et al., 2003 ): a single-objective optimization

problem � is a quadruple ( I , S , f , opt) where I is a set of instances,

S is a (multi-valued) function returning the set of solutions S ( i ) for

any i ∈ I , f is a function returning the objective value for any pair ( i ,

s ) ∈ I × S ( i ), and opt ∈ {min , max } is the optimization goal. This

definition works well for offline problems, but since it does not

address sequentiality, applying it to the online setting is cumber-

some. To consider sequentiality explicitly, we refine this definition

with two elements ( Dunke & Nickel, 2016 ): first, we ascribe a so-

called instance revelation rule to each instance; second, we ascribe

a so-called rule set to each problem. 

We define an instance revelation rule as a rule that governs

the temporal course of events in the release of information on the

problem instance. Thus, it determines how information becomes

known over time. We give four examples of general nature for an

instance revelation rule: 

• σi +1 with i = 1 , 2 , . . . is revealed when σ i is considered finished

(processing-dependent online release). 
• σ1 , σ2 , . . . are revealed at prescribed release times τ1 , τ2 , . . . (in-

dependent online release). 
• σ1 , σ2 , . . . are revealed at prescribed release times τ1 − D, τ2 −

D, . . . with fixed D (independent online release with time look-

ahead). 
• σ is known completely at time 0 (offline release). 

On the other hand, once the information is known we may ask

what we can do with it. Here the rule set comes into play. A rule

set of a problem is a set of restrictions on the solution to an in-

stance of the problem. Thus, it determines how information can

be used when it became known already. We give three examples

which may appear as elements of a rule set. Note that the first

rule cannot be used in conjunction with the second or third rule,

respectively. 

• σ i with i = 1 , 2 , . . . has to be finished before σ j with j > i can

be processed (successive processing). 
• The finishing order of the input elements in σ is arbitrary (ar-

bitrary processing). 
• At most m ∈ N input elements with m > 1 can be finished at
the same time (limited processing). e  
The instance revelation rule and the rule set allow us to dis-

inguish between the informational implications caused by look-

head and the consequences on processing of the input elements

nherent to look-ahead. For instance, in a packing problem it may

e that boxes become known according to the independent on-

ine release with look-ahead. Then, in successive processing we

an only make use of the information about the box specifications,

hereas under arbitrary processing we may pack the box once its

ata is given. Summing up, an online optimization problem can be

escribed as a quadruple ( I , S , f , opt) along with a rule set and an

nstance revelation rule for each instance i ∈ I . 

With these two extensions we define an online optimization

roblem with look-ahead as an online optimization problem that

rises from a reference online optimization problem through the

nstance-wise exchange of the instance revelation rule by an im-

roved instance revelation rule. This ensures that at each point

n time the information known in the problem with look-ahead is

omprising the information known in the reference problem. Op-

ionally, the rule set of the reference problem may be exchanged

ith another rule set which explicitly makes use of the look-ahead

nformation. Fig. 3 , taken from Dunke and Nickel (2016) , summa-

izes the situation. 

.2.2. Performance evaluation 

In order to depict algorithm quality in a comprehensive and dif-

erentiated way, we take on an approach which essentially con-

ists of a distributional analysis of both the individual outcome of

n algorithm as well as of the relative outcome of an algorithm

ith respect to a benchmarking algorithm ( Dunke & Nickel, 2013;

016; Hiller, 2009 ). The individual outcome of an online algorithm

LG provides an overall image of algorithm behavior over all in-

tances whereas the outcome of ALG relative to that of a reference

nline algorithm ALG ref yields a comparison to a suitable bench-

ark. We first provide definitions for the objective value and per-

ormance ratio. Given an optimization problem ( I , S , f , opt), an in-

tance i ∈ I , an algorithm ALG , and a reference algorithm ALG ref ,

et s ALG , s ALG re f 
∈ S(i ) be the solutions selected by ALG and ALG ref ,

espectively. We define 

 ALG (i ) = f (i, s ALG ) , 

he objective value of ALG on i , and 

 ALG,ALG re f 
(i ) = 

f (i, s ALG ) 

f (i, s ALG re f 
) 
, 

he performance ratio of ALG relative to ALG ref on i . 

In the next step, we compute the so-called counting distri-

ution of both the objective value and the performance ratio. A

ounting distribution is a distribution where each possible real-

zation of the random variable under consideration (in our case

he random variable describes the instance from set I ) is weighted

qually such that no (possibly biased) prior information or pref-

rences are required. The resulting distribution hence objectively
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Fig. 4. Objective value of Alg over instance set I and corresponding counting distribution function plot. 

c  

o  

i  

t  

s  

t  

i  

f  

t  

i  

a  

t  

c  

e

 

o

F

 

t

F

 

a

2

 

h  

p  

w  

t  

t

2

 

t  

g  

o  

e  

t  

o  

T  

c  

m  

M  

n  

d

 

 

 

 

 

 

 

 

 

n  

a  

l  

a  

f  

f  

u  

w  

s  

c  

c  

o  

r

 

p  

d  

o

 

n  

d  

a  

f  

d  

t  

n  

3  

i  

t  

p  

s

 

a  

l  

a  

a  
ounts how many out of all realizations would lead to a certain

bjective value or performance ratio, respectively. Fig. 4 schemat-

cally shows how the information about the objective values at-

ained over the instance set I can be translated into the corre-

ponding counting distribution function. On the left of the figure,

he plot of the objective values attained by algorithm ALG over the

nstance set I is displayed; on the right of the figure the relative

requencies of the attained objectives are illustrated by means of

he corresponding counting distribution function F ALG (v ) . Consider-

ng that in ad-hoc decision making it is often impossible to make

ny prediction on what an algorithm will have to cope with next,

his approach presents a natural way of displaying the range of up-

oming uncertainty that is inspired by maximum entropy consid-

rations ( Jaynes, 1957a,b ). 

Formally, we can define the counting distribution function

f the objective value of ALG over I by 

 ALG (v ) = 

| i ∈ I | v ALG (i ) ≤ v | 
| I| . 

The counting distribution function of the performance ra-

io of ALG relative to ALG ref over I is defined as 

 ALG,ALG re f 
(r) = 

| i ∈ I | r ALG,ALG re f 
(i ) ≤ r | 

| I| . 

We can provide ALG and ALG ref with different levels of look-

head in order to examine the value of additional information. 

.3. Examples and results 

The general framework of online optimization with look-ahead

as been instantiated in a number of theoretical problems and

ractical applications ( Dunke, 2014; Dunke & Nickel, 2015 ). Along

ith the outlined performance measurement approach it facili-

ated an evaluation of the value of look-ahead and the identifica-

ion of promising algorithms and control strategies. 

.3.1. Truck entrance control 

Dunke and Nickel (2015) examine how the arrival process of

rucks at the main gate of a factory site can be coordinated by the

ate operators in order to ensure that the raw materials loaded

n the trucks are delivered to the production sites in time. To this

nd, it is assumed that the gate consists of four check-in coun-

ers where the trucks coming from the road have to enqueue in

ne of them and be served first before accessing the factory site.

he leading research goal was to check whether the operator de-

isions can be improved by additional data collection and trans-

ission technologies as considered in Industry 4.0 and Advanced

anufacturing settings. To this end, six different technology sce-

arios were considered which could equip the decision maker with

ifferent types of real-time and look-ahead data: 
1. No additional data, i.e., drivers choose the lane themselves

(baseline scenario). 

2. Additional data about the lane occupations (in terms of the

number of trucks), e.g., through a camera system. 

3. Additional data about the current check-in counter statuses,

e.g., through electronic data interchange. 

4. Additional data about the expected (remaining) workloads for

gate service of all trucks in a lane, e.g., through status protocols.

5. Additional data about the types and amounts of loaded raw

materials and about the production demands at factory site,

e.g., through forwarding truck load information. 

6. Additional data about the geographical position of the trucks,

e.g., by track and trace technology. 

Observe that Scenarios 2–4 are concerned with gate data, Sce-

ario 5 considers load and demand data, and Scenario 6 takes into

ccount spatial truck data which can be translated into a time

ook-ahead. For each scenario, simple rule-based heuristics were

pplied that make use of the provided information in a straight-

orward manner to minimize the penalty costs that would result

rom stopped production due to missing raw materials. The sim-

lation study comprised 100 simulation replications of a 14-hour

ork day with 300 trucks arriving randomly. Gate service is as-

umed to take between 2 and 5 minutes, but breakdowns of lane

ounters with a duration ranging from 15 to 100 minutes may oc-

ur. In case of a lane breakdown, the corresponding counter is out

f service for the duration of the disturbance which may severely

educe the truck throughput at the gate. 

The simulation results (depicted in Fig. 5 ) show that the com-

any should refrain from using the baseline policy where drivers

ecide themselves on the queuing process rather than the gate

perators. 

It can be observed that simple structured information such as

umber of trucks currently in some lane leads to an average re-

uction of daily penalty costs of approximately 3 percent. Also in

 distributional analysis the benefit of this type of additional in-

ormation is clearly visible from a stable left-shift of the counting

istribution function corresponding to Scenario 2 when compared

o Scenario 1. Moreover, all strategies making use of gate data (Sce-

arios 2–4) lead to average reductions at a similar level of roughly

 percent. The negligible differences in the average case analysis

s confirmed by the counting distribution functions. Since for all

hree scenarios, the plots intersect with each other, there is no

oint in declaring any of the three technological scenarios to be

uperior. 

When factory demand data and truck loading information can

lso be used, supply and demand information are better matched

eading to another penalty cost reduction of around 4.5 percent on

verage. On the other hand, there is no substantial surplus from

dditionally using positioning data of the trucks (corresponding to
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Fig. 5. Average penalty costs (left) and empirical counting distribution functions of penalty costs (right) in 10,0 0 0 monetary units (case study investigated in Dunke & Nickel 

(2015) ). 
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time look-ahead) as they are still approaching the gate on the road.

Given that the gate plays the role of a bottleneck in the entire pro-

duction system, there are always enough trucks with a requested

load available in the immediate vicinity of the gate such that the

information about what happens on the road becomes nearly irrel-

evant. This is also confirmed by the counting distribution functions

corresponding to Scenarios 5 and 6 whose plots are intersecting

permanently making it impossible to claim that one of the tech-

nologies is better than the other. Summing up, Scenario 5 (where

truck loads and factory demands as well as the lane statuses

are forwarded to the operators) represents the most recommend-

able control strategy. For further details, see Dunke and Nickel

(2015) . 

2.3.2. Benefit of look-ahead 

Considering the increased usage of data collection and trans-

mission devices, we can tackle short-term uncertainty by utilizing

look-ahead devices, which turn parts of the previously uncertain

future into certain. To describe the structure of an online problem

directly, a classification scheme α | β | γ | δ was proposed in Dunke

(2014) and Dunke and Nickel (2016) . In this scheme, α describes

the look-ahead type (indicating the instance revelation rule, e.g.,

request look-ahead, time look-ahead, property-based look-ahead);

β gives the processing mode and order (indicating handling as-

pects of the rule set); γ yields the processing accessibility (indi-

cating temporal aspects of the rule set); finally, δ indicates the al-

gorithm execution mode. Using this classification scheme it is then

possible to organize literature on applications of online optimiza-

tion with look-ahead. In particular, it becomes apparent that dif-

ferent authors consider look-ahead differently. 

The classification scheme is then used as a starting point for

the analysis of look-ahead effects in applications. Depending on the

complexity of the problem setting, different approaches were used

in Dunke (2014) . The authors carried out an exact distributional

analysis of algorithm performance in rudimentary versions of aca-

demic problems such as the traveling salesman problem (TSP) and

the bin packing problem (BPP). The analysis reproduced an exact

image of algorithm behavior over all input sequences (including

competitive analysis). Already in very simple problem settings it

is observed that the magnitude of the look-ahead effect depends

strongly on the problem itself. Improvements in the BPP are small

and hard to obtain, whereas in the TSP additional look-ahead im-

mediately helps. As a result of an increased usage of geographic

information systems (GIS) and global positioning systems (GPS),

the research focus in routing has in fact shifted from the static

to the dynamic version of the problem ( Psaraftis, 1995 ); the latter

also refers to the online version of vehicle routing. Given the fact
hat in traditional worst-case analysis only minor improvements

ere found for different types of look-ahead ( Allulli et al., 2008;

aillet & Wagner, 2006 ), our results strongly support observations

rom practice that additional information allows to create bet-

er routes. Complementing the theoretical results, the authors fol-

owed an experimental approach and conducted numerical exper-

ments on several standard problems (TSP, BPP, machine schedul-

ng, and paging). Again, significant differences were observed de-

ending on the problem settings. Based on the results, an infor-

ation pool delivering quick explanations for look-ahead effects in

ifferent problem classes was built. An important result was that

ver all problem classes, sophisticated re-optimization algorithms

utperformed simple methods only in case of large look-ahead.

or small to medium look-ahead, simple heuristics often even fare

etter. Finally, the effect of look-ahead in two real world applica-

ions (manual order picking system, pickup-and-delivery service)

as analyzed by simulation. These systems exhibit a higher com-

lexity due to additional random events, realistic restrictions upon

perations, and relevance of multiple performance criteria. For ex-

laining the observed behavior of performance criteria over time, it

as possible to make use of the information pool that was built up

efore in the theoretical and experimental approach for elemen-

ary problems. 

The examples presented above show that the framework of on-

ine optimization with look-ahead along with the presented ap-

roach of performance measurement offers a tool for identifying

ook-ahead effects and successively designing control strategies for

ogistics systems. 

These developments are of relevance as a means for capturing

hort-term uncertainty and thus obtaining solutions that can bet-

er anticipate the near future. Accordingly, this can be of use when

lanning for operational tasks in SCM. However, when we focus

n strategic decisions, we often need to go further into the future

amely when the decisions have a long lasting effect such as some

ocational decisions that are typically part of Supply Chain Network

esign (SCND). In such a situation, Fig. 2 may no longer provide

 correct representation of the time line and online optimization

ith look-ahead may no longer render the best approach for sup-

orting decision making. This is what we discuss in the following

ection. 

. Multi-period planning 

The simplest and most common way for embedding the fu-

ure into a model consists of forecasting the relevant parameters

nd then assuming the entire future as a single static block (on-

ine optimization with certain look-ahead goes in this direction).
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Fig. 6. Division of the time line into multiple periods setting the time frame for multi-period planning methods. 
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his leads to a so-called static model : a decision is made here-

nd-now—no recourse is possible, i.e., no further decision can be

ade that is able to “correct” in some way decisions already made

nd implemented. An alternative is to explicitly consider time in

he models. In this case, we may either complement the online

ptimization models with the future that is beyond the one de-

ned by the short-term look-ahead or we can simply consider the

uture starting from the present setting. The former case is often

ackled by means of hierarchical planning since it calls for the de-

omposition of the overall planning problem into partial plans. The

eader should refer to Stadtler et al. (2015) for further details. In

his paper we do not focus on hierarchical planning since we are

utting the emphasis on elements required by individual optimiza-

ion models supporting Supply Chain Planning and not in the way

everal different complementary models may be used. 

As we discuss later in this section, embedding time explicitly

nto optimization models gives the possibility of capturing many

eatures of practical relevance and thus, of making the models

ore comprehensive and realistic. The need for explicitly includ-

ng time into a model calls for some changes in Fig. 2 such as

hose conveyed by Fig. 6 . In particular, we emphasize the situa-

ion in which time is no longer looked at as a static block. In this

ection we discuss in detail this re-designed time line. In particular

e focus on different aspects related to time-dependent optimiza-

ion models in the context of Supply Chain Planning. A particular

mphasis is given to the case in which decisions related to the net-

ork structure (e.g., locational decisions) have to be made. As we

ill observe, the contents of this section turn out to be crucial for

he uncertainty issues discussed in Section 4 . 

The current section is organized as follows. In Section 3.1 we

iscuss different issues that if neglected may easily lead to mis-

eading or at least not so realistic models. In Section 3.2 we discuss

everal relevant concepts and definitions in terms of multi-period

lanning models. Finally, in Section 3.3 we use an example for il-

ustrating some of those concepts and definitions. 

.1. Flaws 

When time is not explicitly included in optimization models

upporting Supply Chain Planning we often oversimplify the real-

ty and overlook several important decisions that may be relevant

n the decision making process. 

.1.1. “Collapsing” the future 

For many years (e.g., in the 1970s and 1980s) available technol-

gy (computational resources, software, etc.) was still much lim-

ted. Nonetheless, the scientific community early realized the rel-

vance of explicitly considering time in optimization models used

or supporting locational decisions within the context of produc-

ion/distribution decisions (see, e.g., Nickel & Saldanha-da-Gama,

015 ). This called for more complex and comprehensive models

o be developed and thus more difficult to tackle. This difficulty

together with the lack of technology) is possibly the reason why

or several decades static location models were prevalent in the

iterature. 
Nowadays, in the context of Supply Chain Network Design, a

tatic model is looked at as an oversimplification of the reality

ince it misses many features of practical relevance (see, e.g., Melo,

ickel, & Saldanha-da-Gama, 2006 ). When future is collapsed into

 single “block”, a here-and-now decision is to be made and im-

lemented. As a result, relevant changes in the underlying condi-

ions are ignored. This may render a solution too much insensi-

ive to changes in relevant parameters such as demand levels or

ransportation costs, just to mention a few. In other words, a static

odel may completely overlook changes that could be predicted a

riori and thus anticipated. In fact, the major motivation for con-

idering time explicitly in an optimization model for Supply Chain

lanning is exactly that: to better anticipate the future. Even if we

re facing a “deterministic future” (i.e., the values for underlying

arameters and their changes can be accurately predicted for a rea-

onable amount of time using some forecasting method), this often

alls for a forecast-based time-dependent model. 

Finally, it is important to point out that collapsing the future

nto a single “block” is often not feasible namely when it comes to

aking decisions involving large structures. For instance, the full

perational capacity of a large manufacturing plant is often not at-

ained in a single step but in different phases over the future (see,

.g., Melo, Nickel, and Saldanha-da-Gama, 2008 for a deeper dis-

ussion). In this case, we talk of a progressive phase-in of a facility.

.1.2. Inability to adapt 

By ignoring time as a dimension to explicitly account for in

 planning tool for strategic Supply Chain Planning, we are typi-

ally led to a single-step phase-in problem. This can be observed

n the literature (see, e.g., Alumur et al., 2015a ) and means that a

ew system is to be built in a single step from scratch or an ex-

sting system is to be expanded also in a single step (which can

e converted—for mathematical modeling purposes—into the first

ase). However, reality may call for something totally different. In

any situations, companies have a supply chain already operating

nd wish to plan for adapting it to predictable changes in the un-

erlying conditions (or simply to modernize it). This may call, for

xample, for some structures to be removed (e.g., relocation of a

roduction plant to an area with lower labor costs). Accordingly,

n terms of SCND we find phase-in/phase-out problems in which

ome new facilities are opened throughout time while some oth-

rs are removed (possibly as the result of relocation). 

Related to the previous aspect it is worth noticing that deci-

ions associated to capacity changes cannot be captured by a static

odel. Due to technological or customer behavior changes, pro-

uction capacity has often to be adapted. This does not necessar-

ly mean installing a new facility or removing an existing one. A

rade-off is to consider capacity adjustments (expansion, reduction,

r transfer) within a time-dependent modeling framework. 

Last but not the least, additional constraints such as those re-

ated to the available budget or “project management constraint”

ay call for a time-dependent model to be considered. In the

ormer case, we note that budget limitations may easily emerge

ince shareholders’ interests have to be taken into account. Con-

erning the latter, it is important to point out that implementing
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a large project at once can be difficult (or even impossible) for

organizational reasons or lack of resources. The reader should re-

fer to Nickel, Saldanha-da-Gama, and Ziegler (2012) , Alumur et al.

(2015a) , Melo et al. (2006) , and Melo, Nickel, and Saldanha-da-

Gama (2009) for further details. 

3.1.3. Length of a planning horizon 

Nowadays, we can find much literature embedding future in

optimization models within the context of Supply Chain Planning

(see, Alumur et al., 2015a; Arabani and Zanjirani Farahani, 2012 ,

and Melo et al., 2009 as well as the references therein). Interest-

ingly, we find no discussion neither about the appropriate length

of the planning horizon nor about the length of a single time

bucket (i.e. the discretization width). Moreover, even the concept

of planning horizon is not properly discussed in the literature. Most

of the authors (not to say all) simply assume that some plan

should be developed for a time frame given in advance. 

In the context of Supply Chain Network Design, several deci-

sions may last for far more time than the planning horizon during

which they were made and implemented. Furthermore, in many

cases there is no “end” planned for some system or structure,

which means that in principle, the system should be planned for

working over an “infinite” planning horizon. Nevertheless, much of

the work found in the literature assumes models built based upon

finite planning horizons; the obvious question emerges: what ex-

actly is an optimal solution for such a model? Without a proper

answer to this question, the usefulness of many modeling frame-

works become questionable. 

In Section 3.2 we give a contribution for the clarification of

these aspects. 

3.1.4. Errors in the data 

Supply Chain Planning is well-known as a very practical-

oriented topic. Many optimization models can be found in the lit-

erature for solving different problems in this area. In most cases,

particular emphasis is put on solving models to optimality (see

Arabani and Zanjirani Farahani, 2012 and Melo et al., 2009 ). What

is the relevance of doing so? In other words, what is the mean-

ing of an “optimal solution” if the model does not properly rep-

resent the problem? The issue emerges because even if correctly

describing the problem on hands, a model must be loaded with

data. Such data often suffers from errors (e.g., typos or forecasting

errors). Cordeau, Pasin, and Solomon (2006) argue that solving a

real-life problem to optimality is usually not meaningful due to er-

rors contained in the data estimates. Since the error margin tends

to be larger than 1 percent, those authors claim that it is adequate

to run a mathematical solver until a feasible solution within 1 per-

cent optimality has been identified. We note that this discussion

is motivated by a static problem—the one investigated in that pa-

per. If we consider a time-dependent model that obviously should

be loaded with data associated with a large time frame, then the

issue may become even more relevant; easily the 1 percent error

mentioned above increases. In particular, the larger the length of

the planning horizon the more likely it is to observe an increase

in the data errors. Accordingly, does it make sense to solve such a

model to optimality? Even if the model gives a perfect description

of the problem to be solved (we recall that many models repre-

sent in fact a simplification of the reality) is the data trustworthy?

Is the setting reliable? 

Again, these questions need a proper answer without which the

optimization models used for supporting decision making can be

questioned. 

3.1.5. International facilities 

Nowadays, large companies think “globally” when it comes to

designing and managing their supply chains. Accordingly, modern
upply chains often span several countries across the globe and

hus across different time zones. This makes international opera-

ions very hard to formulate realistically. 

The relevant aspect for our discussion is that in a global supply

hain, we have so-called international facilities (a company installs

acilities in countries different from the one in which the company

s registered). The location of international facilities is not a recent

opic. This is a situation in which a static model may totally over-

ook practical aspects. 

Issues such as taxes, duties, tariffs, exchange rates, transfer

rices, local content rules, transportation modes, etc., become of

elevance and can hardly be neglected. This fact has been rec-

gnized by some researchers who have proposed time-dependent

odels for better capturing the problems’ features. The reader

an refer to Canel and Khumawala (1997) , Canel and Khumawala

2001) , Gutierrez and Kouvelis (1995) , and Syam (20 0 0) for exam-

les of time-dependent models which focus on advanced decision

aking in the area of international facility location. These models

ake into account some of the aspects discussed above. 

.2. New concepts and definitions 

When the parameters underlying a Supply Chain Planning prob-

em are variable and can be predicted, we can think of using a

eterministic time-dependent model. For instance, if we have pre-

ictable but variable demand, it makes sense to embed this infor-

ation into a time-dependent model. 

.2.1. Planning horizon 

When time is to be explicitly embedded in an optimiza-

ion model within the context of Supply Chain Planning, a

rst aspect to look at is the so-called planning horizon ; but

hen, a natural question emerges: what exactly is the planning

orizon? 

We first note that a plan devised for some time frame does not

ecessarily mean that at the end everything is “shutdown” and the

ystem comes to an end. This is particularly true in Supply Chain

lanning where the planning horizon may simply be an indication

f how far into the future a decision maker can go in terms of

ollecting meaningful information. 

In a time-dependent supply chain optimization model, the

lanning horizon can be defined as the time frame corresponding

ither to the available data (meaningful/trustworthy information)

r to the time span defined by a decision maker for having the

ystem fully operational and/or appropriately adapted to the cir-

umstances. This may be dependent on a specific industry/product.

or instance, in Fleischmann and Koberstein (2015) the authors ex-

mplify with the specific case of the automotive that the plan-

ing horizon for strategic decision making typically covers up to

2 years. This is closely motivated by the life-cycle of many car

odels. 

The previous definition makes it clear that a planning hori-

on may simply result from a time frame previously de-

ned by a decision maker for implementing a new system

r adjusting an existing one. However, it may be industry- or

roduct-dependent. 

A planning horizon is a fundamental element in a time-

ependent model. Therefore, by using such type of model, we

an avoid collapsing the future into a single block. In this

ase, the focus changes from “what should be done” (static

etting) to “what should be done and when” (time-dependent

etting). 

From a practical point of view, a time-dependent model can be

f great relevance since it allows embedding other decisions, such

s those related with (i) inventory management, (ii) progressive
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hase-out of existing facilities, (iii) progressive phase-in of new fa-

ilities, (iv) adjustment of the operating capacities (which, from a

ost point of view may be preferable to opening new facilities), etc.

Even if the underlying parameters (e.g., consumer preferences,

emand levels, transportation costs, etc.) do not induce a time-

ependent model, some other conditions may do so. Above we

ave already mentioned the possibility of having to deal with an

xogenous budget constraint, which may impose the development

f a time-dependent plan for building/adjusting a system. 

.2.2. Discrete- versus continuous-time models 

When working with a time-dependent model we can distin-

uish between continuous- and discrete-time models. In the first

ase, there are no specific moments for implementing the deci-

ions; the best moment for performing changes in the system may

e endogenous or exogenous. In the former situation, these mo-

ents are themselves a decision to make; in the latter, we fall in

he field of even-driven planning: some event triggers a change in

he system. The reader should refer to Stadtler et al. (2015) for

 deeper discussion of even-driven planning in the context of

upply Chain Management. Some works in line with endogenous

oments for performing changes in the system are Drezner and

esolowsky (1991) , Orda and Rom (1991) , Puerto and Rodríguez-

hía (1999) , and Zanjirani Farahani, Drezner, and Asgari (2009) .

hese works also discuss typical decisions in the strategic scope

f Supply Chain Planning, e.g., decisions on facility locations. 

A large majority of the literature assumes a discrete-time

odel, i.e., it is assumed that the planning horizon is divided into

everal time periods. It is possible to enumerate a few reasons jus-

ifying the use of such a type of model. 

1. The models are easier to handle. Typically, decision variables

can be associated with the different periods of the planning

horizon and thus, a mixed-integer mathematical programming

model can often be derived. 

2. Looking more into the future, we possibly face more uncer-

tainty (less accurate information is available) that nonetheless

is typically gathered using a discrete time scale (e.g., weekly,

monthly, yearly). 

3. The length of a time period is primarily determined by the de-

cisions to be planned. Nevertheless, depending on the informa-

tion we have, the length of a time period can be easily adjusted

if the decision maker wishes so: if we have more information

we can consider a daily planning; otherwise we can go into a

monthly or yearly planning, for instance. 

4. The organization of the data makes multi-period models more

natural. For instance, we often find or look for daily, weekly or

monthly demand levels. This is also connected to a large extend

with forecasting systems that typically work with time periods

no matter their length. 

5. In nowadays planning systems, multi-period is the minimum

time consideration that is possible. 

When considering a discrete-time model for a Supply Chain

lanning problem we simply partition the relevant time frame into

everal “slices”—time periods as illustrated in Fig. 6 . The time pe-

iods do not have to be of the same length; it is the available data

nd the goals set by the decision makers that will define them.

urthermore, a discrete-time model can also be looked at as a

eans for aggregating continuous time intervals into single time

oints. Somehow, what we are considering is the possibility of tak-

ng into account the look-ahead (short-term uncertainty) discussed

n the previous section and “enlarge” the future time frame to be

mbedded into the model. 
.2.3. The value of the multi-period solution 

When we consider a multi-period optimization model, we are

onsidering one extra dimension in the problem—time. The corre-

ponding optimization models tend to become much larger than

he static ones. A relevant question is whether it is worth consider-

ng such a larger model (and thus possibly more difficult to tackle).

n other words, is it not possible that a solution obtained using an

ppropriate static model represents a good approximation to the

ulti-period problem? A first answer to this question was given by

lumur, Nickel, Saldanha-da-Gama, and Verter (2012) in the con-

ext of a reverse logistics network design problem. Later, this as-

ect was formalized by Nickel and Saldanha-da-Gama (2015) in the

eneral context of multi-period facility location problems. 

A central concept for evaluating the relevance of considering

 multi-period model is that of a static counterpart problem . It

an be defined as a problem that takes into account the informa-

ion available for the entire planning horizon and looks for a static

time-invariant) solution that holds for every period. 

This concept is very easy to capture within the context of SCND.

n that case, decisions have to be made regarding the network

tructure; these are typically strategic decisions that once made

ill influence the more tactical and operational decisions (e.g.,

hipment of commodities through the network). In a multi-period

CND problem, several parameters such as transportation costs and

emand levels are assumed to change over time. A static counter-

art is a problem obtained from the original one that allow us to

efine a network design that can be implemented at the begin-

ing of the first period and remains unchanged until the end of

he planning horizon. 

One possibility for building a static counterpart is to some-

ow aggregate the information available for all periods. For in-

tance, suppose that we are dealing with time-varying demands.

f facilities (e.g., manufacturing plants, central distribution centers)

re uncapacitated, then several possibilities emerge for aggregating

hat information: (i) the demands can be averaged over the plan-

ing horizon, or ii) a reference value can be determined (e.g., the

aximum value observed throughout the planning horizon). If ad-

itional constraints exist (e.g., capacity constraints), then choosing

 reference value may render the resulting static solution infea-

ible in some periods. In this case, one possibility for building a

tatic counterpart is to define the (time-invariant) demand of each

ustomer according to the maximum value observed across all pe-

iods. In any case, the adequate aggregation of multi-period data is

ery much problem-dependent. 

Once a static counterpart is defined, we can finally evaluate the

elevance of using a multi-period modeling framework. We define

he value of the multi-period solution as the arithmetic differ-

nce between two other values: (i) the (multi-period) value of the

ptimal solution to a static counterpart (when that solution is fea-

ible for the multi-period problem), and (ii) the optimal value of

he original multi-period problem. 

When the value of a multi-period solution is obtained by aggre-

ating the data for all periods, it is referred to as a weak value of

he multi-period solution (see Alumur et al., 2012 and Nickel &

aldanha-da-Gama, 2015 ). On the other hand, a strong value of

he multi-period solution is obtained if no aggregation is per-

ormed in the data. This is a possibility in some cases, namely

hen we can add a set of constraints to the multi-period problem

tating that some or all decisions are to be the same in all peri-

ds of the planning horizon (the reader should refer to Nickel and

aldanha-da-Gama (2015) or further details and for an example). 

.2.4. Rolling horizon planning 

Many multi-period models in the context of Supply Chain Plan-

ing can be used in later periods exactly as in the beginning, as

ar as the decisions already implemented are fixed, i.e., as far as



822 F. Dunke et al. / European Journal of Operational Research 264 (2018) 813–829 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

v  

l  

t  

a  

e  

m  

c

 

t  

t  

l  

m  

p  

m

 

t  

p  

p  

(  

b  

e  

c  

y  

i  

s  

a  

s  

b  

t

m  

m  

m  

s  

t  

m  

T  

s

4

 

p  

t  

i

 

m  

a  

f  

t  

p  

t  

e

 

p  

c  

t  

o  

u  

c  

t  

r  

a  

s  

a  
we “freeze” the periods already in the past. In such a case, the

model is used to plan for the “remaining” future but the decisions

to be made should take into account what has already been imple-

mented. By doing so, we obtain a model which is able to “react” to

the decisions already implemented considering new or more accu-

rate information made available in the meanwhile. This is a typical

situation in which new technologies (e.g. sensors) can be used to

fine-tune the available information and thus turn the uncertain fu-

ture gradually into a certain one. When only operational decisions

are involved, this procedure is well-known as rolling horizon plan-

ning (see Stadtler et al., 2015 for further details). There is no reason

for not using the same term when strategic decisions are involved.

In particular we can formalize these concepts, which we do next. 

In a time-dependent supply chain optimization model involving

strategic decisions (e.g. locational decisions), a recourse model is

the model that we obtain from the original one when in some fu-

ture period we fix the decisions already made (and implemented),

thus aiming at finding a plan for the remaining future. The periods

whose decisions are fixed in the recourse model are referred to in

Heckmann (2015) as frozen periods . The process of solving a series

of recourse models is called rolling horizon strategic planning .

This aspect is explored by Alumur et al. (2012) and Alumur, Nickel,

Saldanha-da-Gama, and Seçerdin (2015b) and we refer the reader

to those references for further details and examples. 

3.3. Examples and results 

The use of discrete-time optimization models in the context of

Supply Chain Planning is not new (the reader can refer to Melo

et al. (2009) as well as to the references therein). In this section

we refer to a more recent application namely, the case study in-

spired by a real-life problem in Germany in the context of reverse

logistics network design for washing machines and tumble dryers

(see Alumur et al., 2012 ). 

In that study, the authors investigate the collection of washing

machines and tumble dryers. In particular, 40 collection centers

are considered, namely those installed by the municipalities in the

40 most populated cities within Germany. Initially, a 5-year plan-

ning horizon was considered. The reverse logistics network stud-

ied includes: collection centers, inspection/disassembly centers, re-

manufacturing plants, and secondary markets. Decisions are to be

made concerning: (i) the location and capacity of inspection cen-

ters, (ii) the location and capacity of re-manufacturing plants, (iii)

the flow of materials through the network, (iv) the procurement

at the re-manufacturing plants, and (v) the inventories to hold at

re-manufacturing plants. Capacities are modular both in the in-

spection centers and in the re-manufacturing plants. These capaci-

ties can be expanded throughout the planning horizon if necessary.

This is accomplished by the installation of a set of additional mod-

ules in the corresponding facility. 

The authors proposed a multi-period planning model that was

loaded with real data (when available). In order to evaluate the

sensitivity of the results to variations in the data, the authors built

18 instances that differ in set-up costs and capacities. This is justi-

fied by the lack of real data associated with those parameters. 

In this section we summarize the analysis performed in that

paper concerning both the length of the planning horizon and the

value of the multi-period solution. 

After developing an appropriate static counterpart Alumur et al.

(2012) evaluated the value of the multi-period solution for each of

the 18 instances considered. The results are replicated in Fig. 7 ,

where we observe that the percentage difference between the op-

timal solution to the multi-period problem and the multi-period

solution derived from a static model can be up to approximately

11 percent of the optimal cost. 
The largest differences (percent) were reported for instances 13

nd 14 with 11.56 percent and 11.40 percent, respectively. These

alues are associated with a gain in the profits of about 5.6 mil-

ion Euros. Those instances differ from the other ones in terms of

he fixed set-up costs for the facilities which are the highest tested

nd in terms of the capacity configurations that are the tight-

st analyzed. This resulted in instances for which a multi-period

odeling framework clearly outperforms the static counterparts

onsidered. 

The case study we are mentioning is also a good example that

he extra dimension induced by time can still lead to models

ractable by means of a general purpose solver. This is particu-

ar relevant for practitioners who often do not master advanced

ethodological skills for integer and combinatorial optimization

roblems but can easily use a commercial solver for solving a

odel. 

To the best of the authors’ knowledge, Alumur et al. (2012) was

he first to evaluate the impact associated with the length of the

lanning horizon and also to find its appropriate size for modeling

urposes. The authors considered what they called a base instance

the instance from which all the other instances were generated

y varying some parameters) and for that instance they consid-

red planning horizons ranging from 1 to 7 years. The authors con-

luded that the additional computational effort when using a 5-

ear model instead of a single-period model is negligible (although

n the latter case a more comprehensive and realistic model is con-

idered and a clear financial benefit is achieved as we observed

bove). The extra computational effort required by an off-the-shelf

olver for planning horizons with a larger number of periods can

e significant. In Fig. 8 we depict the corresponding CPU times ob-

ained in Alumur et al. (2012) . This figure shows that a trade-off

ay have to be considered between the comprehensiveness of a

ulti-period model and the effort necessary to solve it. Further-

ore, Alumur et al. (2012) emphasize that given the amount of as-

umptions that may have to be taken regarding the problem data,

he computational effort associated with the multi-period model

ay be reduced by allowing a gap in solving the problem instance.

his stays in line with the discussion about errors in the data pre-

ented in Section 3.1 . 

. Risk-aware supply chain planning 

In the previous section we have seen that multi-period models

lay a major role in Supply Chain Planning. However, a model cap-

uring a medium or long planning horizon has some uncertainty

nherent which has to be adequately considered. 

Usually decision makers are aware of the uncertain develop-

ent of some information required for making decisions. For ex-

mple expectations about customer demand deviate in most cases

rom the initial outlook. Means for predicting uncertain informa-

ion may include historic data or expert knowledge. Nowadays,

roprietary planning tools still restrict uncertainty to demand fluc-

uations and encapsulate volatilities in demand forecasts ( Melo

t al., 2009 ). 

Over the last decades supply chains evolved into highly com-

lex, internationally-acting systems and are since then caught in a

rossfire of additional environmental influences. This evolution led

o an increase of uncertain information and to a broadened range

f uncertainty. In particular, incidences that lead to sudden and

nexpected modifications at different locations within the supply

hain attracted the attention of decision makers. Natural disas-

ers such as earthquakes can easily destroy production facilities or

oads, thus forestalling the possibility of satisfying customer needs

s promised. Besides these so-called disruptions, unpredictable and

lightly aggravating deviations also affect a supply chain’s goals

chievement. Exchange rate fluctuations, variability of oil prices, or
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Fig. 7. The value of the multi-period solution illustrated (case study investigated in Alumur et al., 2012 ). 

Fig. 8. Length of the planning horizon—CPU time (case study investigated in Alumur et al., 2012 ). 
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ncreased labor costs have the potential to reduce the profit mar-

in and hence the competitive advantage of supply chain partners.

hus, unexpected deviations and disruptions—subsumed under the

otion of supply chain risk —impede the availability of resources,

he realization of the devised plans, the satisfaction of customer

emand, and consequently the achievement of global supply chain

bjectives. Taking these aspects into account, the time line that has

een used throughout this paper can now be refined according to

ig. 9 . 

The perils that have the potential to derogate the supply chain

re accounted under the research topic known as supply chain risk

anagement ( Waters, 2007; Zsidisin & Ritchie, 2008 ). Over the last

ecade there has been a growing interest concerning the inclusion

f risk aspects in supply chain optimization models. This develop-

ent has led to the adoption of risk concepts, terminologies and

ethods that have been defined and applied in a broad variety of

elated research fields and methodologies. However, for the pur-

ose of supply chain risk management the suitability of risk, as

t is coined in these domains, is up for discussion, see Heckmann

t al. (2015) . 

In this section we highlight the importance of time aspects

nderlying uncertain developments. Additionally, we discuss their

H  
ffects on the extent of supply chain risk. We follow the same

tructure already used in Sections 2 and 3 . Therefore, we start by

resenting and discussing common flaws in terms of supply chain

isk perception and the way(s) they aggravate a reliable supply

hain risk assessment. Next, we present new concepts related

ith time-dependent risk consideration. Finally, we provide some

ogistics insights. 

.1. Flaws 

Most of today’s supply chain risk definitions start from the

ssumption that events are the decisive factor determining risk

 Waters, 2007 ). Supply chain risk evaluation and assessment,

herefore, focus on an event-by-event analysis and assume that

he consequences of an initial triggering event can be uniquely de-

ermined. However we believe that this event-focused perception,

efinition and assessment of supply chain risk is flawed since it

eads to misinterpretation and oversimplification. Next, we briefly

mbrace the essence of this definitional fiat and then we focus on

aws that result from ignoring time as a relevant dimension in the

lanning process. 

Global supply chains are exposed to many potential threats.

ardly is it possible to consider and manage each and every risk.
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Fig. 9. Division of the time line under additional consideration of risk and uncertainty measures. 
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1 A phenomena closely related to the neglect of available preparation time is for- 

mulated within the Black Swan Theory ( Taleb, 2007 ). It defines an event to be a 

Black Swan , when it is unexpected, has major impact and is rationalized in hind- 

sight. The latter means that the information and data available before the event are 

re-interpreted in the light of the new insights. A Black Swan , therefore, is an event 

that could have been anticipated. 
Accordingly, supply chain managers apply heuristics thinking and

try to focus on managing the “most important” risks. In order

to determine what actually is “most important“, the product of

probability of an event and the related severity is commonly ac-

cepted and used as a risk measure. However, this can be mis-

leading. For illustrative purposes consider the example of a me-

teor strike. Since the risk of a meteor striking the Earth affects not

only specific communities or countries, but imposes a threat for

the entire mankind, its assessment is a very sensitive topic. Only

recently is it possible to accurately detect the frequency of such

strikes. A dependable statistic is therefore missing. Accordingly, a

probability estimation for meteor strikes is especially difficult to

obtain. Additionally, an estimation of the impact of such an event

is quite hard because the magnitude of severity is strongly related

to the geographic point of impact. On February 15, 2013, for ex-

ample, an asteroid entered Earth’s atmosphere over Russia and ex-

ploded above the city of Chelyabinsk. The impact was considerably

low when compared to the potential results had this meteor not

exploded miles over the surface but hit a major city like London,

New York or Paris. Hence, the risk of a meteor strike depends not

only on probability and severity, but also on numerous aspects that

have not been considered, respected or even modeled so far. One

of these essential characteristics is time. For instance, the point in

time a meteor enters the atmosphere has an influence on the ge-

ographic point of its impact and consequently on the severity of

the event. In the particular case of supply chain risk, time—having

influence on the “degree” of uncertainty—is often ignored or ne-

glected. We denote this biased practice as the time trap of supply

chain risk . 

Next, we focus on describing different settings that uncover the

lack of considering distinct aspects related with time. Note that

while we discuss these flaws, we claim that their common and ul-

timate source is the oversimplified but still prevailing definition of

supply chain risk. 

4.1.1. Ignorance of dynamics 

As it was emphasized in Section 3 , most existing approaches for

Supply Chain Planning are based on a problem environment, where

certain parameters are treated as constant over all time. In those

cases, it is assumed that supply chain structures (including re-

source allocation) are established and remain constant over years.

However, product portfolio, production technology as well as in-

ternational price politics change over time together with other pa-

rameters such as transportation costs, supplier reliability, and lead

time. The dynamics of uncertainty associated with the evolution

of supply chain parameters is usually neglected—especially when it

comes to the assessment of supply chain risk. Following the preva-

lent supply chain risk understanding, the extent of a risk is calcu-

lated by the product of probability of an occurring event and the

severity of its consequences. Since the “degree” of uncertainty as-

sociated with a situation and its evolution may evolve over time

(new information becomes available), the probabilities associated

with some risk may change, as well. This can lead to misjudg-

ments of risk relevance or even to its ignorance: if the probabil-

ity of a highly ranked risk decreases over time, the risk becomes

less prominent and should have been rejected from the priority
ist. If the probability of a low-ranked risk increases, the risk be-

omes more relevant and it would have been better to have con-

idered this risk in the priority list. Instead, initial risk assessment

s considered to be valid for the entire time horizon of the decision

evel. 

What is clear when we look into risk assessment considered

owadays is that the dynamics of uncertainty evolution is simply

gnored. 

.1.2. Neglect of preparation time 

The complexity of modern supply chains together with the

ncertain evolution of important parameters and the unknown

ropagation of disruptions through the networks (see, e.g., Ivanov,

okolov, and Dolgui, 2014 on the ripple effect in supply chains)

ake the management of supply chain risks awkward. Accord-

ngly, most decision makers accept the recurrent appearance of

isruptions and come together in a so-called war-room right af-

er a disruption occurs. This approach has the potential of yielding

ar worse consequences namely if relevant events are not consid-

red appropriately. This may occur if the relevance of an event is

eglected either explicitly or implicitly, which easily happens in

ase of unprecedented events that have not yet been identified.

ost supply chain disruptions are declared to have an earthquake

omentum: they appear suddenly without any warning. How-

ver, there are many events, such as labor strikes, price changes,

nd even natural catastrophes evolving over time, which provide

arly warnings and which can be anticipated prior to their occur-

ence. The volcanic ash cloud that affected Europe in April 2010

that is estimated to have caused losses of US$4.7 billion in global

DP ( Oxford Economics, 2010 )) is an example of unused prepa-

ation time. Although this event has been frequently called un-

recedented and unexpected ( Lynch, 2012; Rogers, Pawar, & Brazi-

tis, 2012 ), it was neither. Volcanic activities in Iceland compa-

able to the 2010 eruption occur on average every 20–40 years

 Sammonds, McGuire, & Edwards, 2010 ). This volcanic activity only

ecomes a problem for air traffic in Europe when it coincides

ith rare north to north-westerly wind movements ( Leadbetter &

ort, 2011 ). While the ash cloud can be considered unusual, it was

ar from unprecedented and unexpected: the volcano had been in

ruption for four weeks before the ash cloud reached the airspace

f the United Kingdom on April the 15 th , which was more than

nough time for launching contingency plans—had these existed. 1 

A conclusion is clear from the above discussion: the extent

f supply chain risk can increase significantly by neglecting the

reparation time available prior to the occurrence of a disruption. 

.1.3. Non-sub-additivity of supply chain risk over time 

Financial risks are quantified by the evaluation of risk measures.

inancial risk measures must satisfy certain axioms, including sub-

dditivity, which refers to the diversification potential of several
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Fig. 10. Event e triggers malfunction of a supply chain process, which propagates through the entire network and affects supply chain’s performance, SCP , in terms of 

functionality and/or efficiency. 
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ortfolios compared to a single one. Mathematically, a sub-additive

unction is a function for the sum of two elements that returns

omething less than or equal to the sum of the function’s values at

ach element. 2 Especially when considering the duration of unex-

ected changes the sub-additivity axiom does not hold for evaluat-

ng supply chain risk. An example is the West Coast Port lockout:

fter weeks of negotiations between the international long-shore

nd warehouse union on one side and the pacific maritime associ-

tion on the other, workers of all ports of the US West Coast went

n strike for 10 days. The incident was not totally unexpected, and

ed New United Motor Manufacturing Incorporated (NUMMI) to in-

rease stock levels. Increased inventories, however, can overcome

upply shortages only for a limited time. The duration of the labor

trike was too long for the inventory to compensate late goods. For

his reason, NUMMI installed an additional supply channel via air

reight. 

The duration of relevant changes has tremendous influence on

he extent of supply chain risk. Thus, supply chain risk metrics

eed to reflect the effect of time aspects, such as the duration

f unexpected changes. From the above it is obvious that a good

upply chain risk function cannot be separable in time, since this

ould very likely lead to a violation of the sub-additivity axiom.

nother indicator for the importance of time in supply chain risk. 

.1.4. Biases of mitigation planning 

The aforementioned time aspects, which if overlooked at result

n time traps of supply chain risk, usually need to be respected

hile designing and planning supply chains. However, modeling

nd assessing of supply chain risk are oversimplified, as it is the

lanning of proper mitigation measures, also referred to as recov-

ry planning and business contingency planning ( Tang & Tomlin,

008; Tang, 2006a; 2006b; Tomlin, 2006 ). 

Decision models for Supply Chain Planning problems consider

isk at distinct planning levels. Traditionally, a hierarchical plan-

ing scheme is employed such that strategic supply chain deci-

ions are the first ones to be made. Afterward, they are used as

n input for consecutive, e.g. tactical and operational decision lev-

ls. Often, decision makers argue that risks yielding to huge per-

ormance deteriorations should be handled on a strategic level

hereas medium and small risks should be accounted for at tacti-

al and operational decision levels, respectively. Due to the nature

f most supply chain risks (including the type of uncertainty and

ts future development), it might be necessary to split this deci-

ion process. Consider as an example a Swiss chemical producer

rying to limit the loss evoked by a breakdown of its production

rocess ( Logistik Heute, 2010 ). Typically, companies strive to limit

he loss they might encounter by closing insurance contracts. How-

ver, in the case of the above mentioned Swiss company, the major

e-insurer refused to insure the production breakdown since the

eplacement time of the batch reactor was estimated to be over
2 f (x + y ) ≤ f (x ) + f (y ) . 

w  

I  

s  
 year (the reader should refer to Logistik Heute, 2010 for further

etails). The producer had to identify another mitigation alterna-

ive in order to be prepared for disrupted production: the com-

any established an agreement with a major competitor to share

roduction capacity in case of a production breakdown. The miti-

ation for the huge disruption of reactor destruction was handled

ia strategic contract negotiation. In contrast to increased safety

tock (which is effective over the whole planning horizon), the

forementioned measure becomes effective on an operational level

right after a disruption occurs). Contrary, increased inventory lev-

ls supported some of the major European automotive manufactur-

rs when supply shortages occurred during the (short-term) events

hat surrounded the European ash cloud. 

The belief that distinct types of supply chain risks can be as-

igned to different planning levels is naive—especially since deci-

ion makers do not know how the disruption’s severity may evolve

ver time. In order to offer reliable mitigation options or even ro-

ust and flexible supply chain designs and plans, it is necessary to

vercome the time traps of supply chain risk described above. In

he next section we introduce important concepts and definitions

hat facilitate the modeling of relevant time aspects. 

.2. New concepts and definitions 

The exclusive probabilistic and event-related understanding of

upply chain risk leads to an incomplete and insufficient percep-

ion of risk and impedes its appropriate and effective management.

ext, we present some key elements and concepts that are needed

o understand the dynamics of supply chain risk and to design ap-

ropriate risk-aware decision models. For further reading we refer

o Heckmann (2015) . 

.2.1. Causalities 

The biases discussed in the previous paragraphs are based on

n analysis of supply chain risk that focuses on the simplified eval-

ation of the disruptive trigger and the performance deterioration.

evertheless, triggering events can yield different outcomes. More-

ver, distinct performance deteriorations may result from different

vents. Accordingly, a triggering event can be assumed only as the

root” cause of performance deterioration. In fact, a single event

r a sequence of consecutive events only becomes an issue if they

egatively affect one or several supply chain processes and if their

onsequences propagate through the entire supply network—see

ig. 10 . We define a supply chain process as an individual activity

nvolved in procuring, producing, storing, and distributing goods as

ell as services for the sake of goal achievement of the underly-

ng supply chain. Supply chain processes can result from different

ypes of operations like transportation, production, manufacturing,

torage, handling, shipment, engineering design functions, or even

egal processing ( Hopp, 2008 ). Once an event occurs it is irrelevant

hether it has arisen internally or externally to the supply chain.

t is the interplay of all supply chain processes and their actual

tates of supply chain characteristics that determine if a supply
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Fig. 11. Exemplary uncertainty profiles of supply chain factor values and related 

level of supply chain performance. 
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chain is able to absorb modifications. This interaction determines

whether the first impact of an initial event on the supply chain

provokes the inefficiency or/and ineffectiveness of consecutive pro-

cesses, propagates through the entire network and finally results in

a performance deterioration—see Fig. 10 . 

We define a potential trigger as an event that has the poten-

tial to negatively affect the efficiency and effectiveness of a supply

chain process, which may result in a performance deterioration. 

The eruption of the Icelandic volcano is considered to have

evoked a perfect storm of consequences such as ash cloud, aircraft

grounding, lead time increase, delays, halt of production and de-

layed customer orders. European supply chains were only hit by

air transportation starting or ending in Europe. Nevertheless, for

some of them, the increase in the lead time of air-shipped goods

was large enough to result in supply chain disruptions. 

A potential trigger is called a disruptive trigger when its oc-

currence results in the deterioration of supply chain performance. 

A potential trigger along with a vulnerable supply chain (i.e., a

supply chain that is not able to handle modifications in its char-

acteristics) uncover the existence of one or several supply chain

risks. However, inefficiency or ineffectiveness can be evoked by any

known or unknown disruptive trigger. Instead of starting risk anal-

ysis by the identification, gathering and assessment of potential

events that may serve as a disruptive trigger, we consider that the

main task of supply chain risk analysis is to evaluate the potential

effect of modifications of supply chain characteristics and assess

their influence on key performance indicators. 

4.2.2. Uncertainty profile 

The occurrence of triggering events may affect the actual status

of supply chain processes. The status of a process is determined by

attributes that further describe its use and capacity. The effective-

ness and efficiency of supply chain processes such as transporta-

tion, production, storage, handling, or shipment can for example be

characterized by attributes like costs, capacity and time. In what

follows we denote these attributes of supply chain processes as

supply chain factors . 

We define a supply chain factor (SCF) as the quantitative de-

scription of a specific attribute of a certain supply chain process. 

Production capacity, transportation lead time, customer de-

mand, or detailed inventory levels for finished goods at some dis-

tribution center are all examples of supply chain factors. In order

to evaluate the potential effects of supply chain factor modifica-

tions, it is necessary to anticipate how their values may develop

over time. A deviation may lead to specific supply chain risks when

it takes positive (e.g., lead times, prices) or negative values (e.g.,

capacities). Considering a single potential trigger, the development

of a supply chain factor over time can be described by temporal

and quantitative aspects. Important aspects are: time interval be-

tween two distinct deviations, duration of a deviation (includes du-

ration of peak-moment and time for the deviation decay), speed

to maximum deviation and speed to full recovery, point in time

of information availability or deviation detection (this may coin-

cide with the start of change, lie before or after the beginning of

changing factors), time to respond, magnitude of deviations over

all affected time periods. 

Note that the relation between time and performance deteriora-

tion as introduced in Sheffi (2007) , Sheffi and Rice (2005) and dis-

cussed by several further authors (e.g., Asbjornslett, 2009; Behdani,

2013; Craighead, Blackhurst, Rungtusanatham, & Handfield, 2007;

Lynch, 2012; Melnyk, Rodrigues, & Ragatz, 2008; Snyder et al.,

2012 ) is referred to as a disruption profile. In this paragraph, we

highlighted the uncertainty development referring to the relation

between time and value deviation of supply chain factors. Depend-

ing on the type of supply chain factors, uncertainty profiles look

different and can be described by statistical moments like expected
alue, variance, skewness, and kurtosis. The use of new technolo-

ies (e.g. seismic sensors) is a means for improving the accuracy of

he forecasts and consequently of the above mentioned measures.

n particular, more information about uncertain developments can

e gathered. 

.2.3. Performance deterioration 

There is a vast amount of literature available that discusses

oth the importance of performance measurement (cf. Akyuz &

rkan, 2010; Beamon, 1999; Li, Ragu-Nathan, Ragu-Nathan, & Rao,

006 ) and the difficulty of choosing the “appropriate” measures (cf.

ccles, 1991; Lapide, 20 0 0 ). Due to the complexity of globally oper-

ting supply chains, the variety of activities within a supply chain

ystem as well as the subjective assessment of goal achievement

f supply chain partners, the choice of supply chain performance

easures is a critical task ( Elrod, Murray, & Bande, 2013 ). In par-

icular, choosing the appropriate measure might be difficult to ac-

omplish; if there are several such measures their relative impor-

ance must be taken into account as well ( Sawik, 2015 ). 

Having identified the performance measures that best reflect

nd assess supply chain strategy and the related objectives with

espect to efficiency and effectiveness, it becomes necessary to de-

ermine the target level for these performance measures as well as

he acceptable degree of level deterioration. Quite often managers

now what they can bear. A service-level reduction of 2 percent

ight be acceptable, while an increase of overall logistics costs

y 50 percent may simply be unacceptable. A potential supply

hain performance deterioration , SCP D , is defined as the differ-

nce between the planned or targeted supply chain performance

alue, SCP P , and the actual performance value, SCP A . A performance

eterioration becomes critical if it exceeds the acceptable value

f performance deterioration aSCP D . The evaluation of the perfor-

ance deterioration is a subjective concept and depends on the

references of the decision maker ( French, Maule, & Papamichail,

009 ). The importance of a (potential) loss depends on both or-

anizational and individual goals and constraints. Some decision

akers accept only small deviations from the planned supply chain

erformance while others allow higher changes. 

.3. Examples 

After having set the basis for a new and time-dependent supply

hain risk perception, we give strength to our definitions through

xamples. 

Consider the case of a labor strike that affects the lead time

etween a core supplier and the major production site. At the
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Fig. 12. Interaction between the different types of models discussed and the main “future” components. 
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eginning the strike yields only minor but recurrent lead time

ncreases, because emergency supplies are still delivered. After a

ew days, however, the staff of the major supplier carrier starts 

 general strike that results in a large lead time increase. By

eans of temporal and quantitative concepts introduced above

he uncertainty profile of the supply chain factors involved can be

odeled. 

Fig. 11 highlights an exemplary development of such a factor

odification. Additionally, this figure shows how the factor change

ffects the supply chain performance, which can be described for

xample through the overall service level. The effect of a factor

hange becomes visible when the planned or targeted supply chain

erformance cannot be met. The deviation of the target perfor-

ance level only becomes critical if the acceptable level of per-

ormance is deteriorated. 

As it can be observed in Fig. 11 , if a supply chain ships only

mall amounts by the transportation link associated to the lead

ime fluctuations (as exemplified above) or is endowed with suf-

cient back-up inventory units, overall supply chain performance

ight not be affected. The potential loss is acceptable, which refers

o the non-existence of supply chain risk. This is reflected by

he fact that the first minor to moderate changes can be han-

led or compensated by the supply chain. If the transportation

ink is, however, used more frequently, back-up inventory units

re too few or used up too early, and thus performance deteriora-

ion grows up continuously over time. This development could take

lace slightly or with up-and-down movements. Within the figure

his situation is reflected after the third lead time increase, when

he supply chain cannot adhere to the acceptable level of perfor-

ance deterioration. The associated loss is not acceptable and un-

overs the existence of supply chain risk. 

Due to the limits of explanatory power provided by the supply

hain risk definition and the methodology deduced from this

efinition, numerous biases emerge. The assessment of risk as

he product of event-related probability by impact may lead

ot only to faulty identifications, but also to deficient conclu-

ions. Statements about the future are difficult and have to be

andled carefully. Besides prospective developments, it is the

nderstanding of how changes affect the supply chain that need

o be thoroughly evaluated. For many years it has been difficult

o get access to a sufficient amount of information necessary to

escribe supply chain complexity and interactions. Nowadays,

ue to technical innovations, data acquisition and preparation are

asier. What is still missing is the understanding of the supply

hain dynamics that cause the existence of supply chain risk. The
issing consideration of relevant interactions forestalls the pos-

ibility to understand, model and analyze all potential disruptive

riggers, all available countermeasures, and their interaction with

nough detail. Having understood the dynamics that affect the

oal attainment of underlying supply chains, the formulation and

olution of optimization models should resume the determination

f risk-aware supply chain designs and plans. Commonly used

ountermeasures such as additional suppliers, safety stocks, and

apacity fall back positions would still be used but should be

etermined by the mathematical model formulation. 

. Discussion and conclusion 

When we review the findings analyzed in Sections 2 –4 , we ob-

erve two central underlying aspects: time and uncertainty. Each

f those sections was built around the need for handling at least

ne of these aspects. As a result, we were led to different classes

f models depending on the features captured. In particular, we

bserved that the time line from the introductory section was too

implistic and had to be refined or adapted progressively depend-

ng on the emerging circumstances analyzed. Furthermore, uncer-

ainty is often present in the re-designed time lines. 

In synthesis, the contents of Sections 2 –4 are strongly linked

o each other by time and uncertainty. This is illustrated in

ig. 12 with those two (central) aspects in the interior of the

riangle. Then, we observe online models with look-ahead when

apturing short-term uncertainty is the goal. In this case, time is

ot the main driving aspect and thus we locate “models for online

roblems with look-ahead” in the lower-left corner of the triangle.

evertheless, we observe a common edge between online models

ith look-ahead and multi-period models. This makes clear the

act that when considering online models we are already capturing

ime (future) although in the short term. In this situation we have

o be aware that we are talking about a “deterministic” future (the

ook-ahead ). It is crucial for planners to be able to determine which

ook-ahead is still feasible. On the other hand, when time is the

riving aspect we need to consider time-dependent models: we

ove up and right in the triangle. All the ingredients are gathered

y risk-aware models. In this case, we look far into the future

nd thus we have to deal with stochasticity in an explicit way.

 big challenge is to bring such models into Advanced Planning

ystems (which is obviously needed). In Fig. 12 the risk-aware

odels are represented in the right corner of the triangle and

ave a common link with multi-period models (the multi-period
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setting) and also with online models (uncertainty as a key driving

aspect). 

In this paper we discussed the relevance of time and uncer-

tainty in the context of Supply Chain Planning. We observed that

depending on the driving aspect we should consider a different

type of model. We identified several flaws in the existing knowl-

edge or, in other words, we enumerated some issues that have

not been appropriately accounted so far. In particular, we dis-

cussed new approaches to Supply Chain Planning. We looked into

the impact of recent technological developments like the Inter-

net of Things or Industry 4.0 on supply chains, and we showed

how online optimization models can help coping with real-time

challenges. Finally, we re-coined the concept of risk in the realm

of Supply Chain Planning and we answered to the questions of

how to measure supply chain specific risks and how to incorpo-

rate them into mathematical models. 

We strongly believe that the findings of this paper will lead to

interesting new OR models, both for academic research and for in-

tegrating realistic planning tools suitable for practitioners. 

Acknowledgments 

The authors thank the three anonymous reviewers for their use-

ful insights that helped improving the manuscript. 

References 

Akyuz, G. A., & Erkan, T. E. (2010). Supply chain performance measurement: A liter-
ature review. 

Allulli, L. , Ausiello, G. , Bonifaci, V. , & Laura, L. (2008). On the power of looka-

head in on-line server routing problems. Theoretical Computer Science, 408 (2–3),
116–128 . 

Alumur, S. , Kara, B. , & Melo, T. (2015a). Location and logistics. In G. Laporte,
S. Nickel, & F. Saldanha-da-Gama (Eds.), Location science (pp. 419–441). Berlin,

Heidelberg, New York: Springer . 
Alumur, S. A., Nickel, S., Saldanha-da-Gama, F., & Seçerdin, Y. (2015). Multi-period

hub network design problems with modular capacities. Annals of Operations Re-

search Doi: 10.1007/s10479-015-1805-9 . 
Alumur, S. A. , Nickel, S. , Saldanha-da-Gama, F. , & Verter, V. (2012). Multi-period

reverse logistics network design. European Journal of Operational Research, 220 ,
67–78 . 

Arabani, A. B. , & Zanjirani Farahani, R. (2012). Facility location dynamics: An
overview of classifications and applications. Computers & Industrial Engineering,

62 , 408–420 . 

Asbjornslett, B. E. (2009). Assessing the vulnerability of supply chains. In G. A. Zsi-
disin, & B. Ritchie (Eds.), Supply chain risk . In International Series in Operations

Research & Management Science: vol. 124 (pp. 15–33). Springer . 
Ausiello, G. , Crescenzi, P. , Kann, V. , Marchetti-Spaccalema, A. , Gambosi, G. , &

Spaccamela, A. (2003). Complexity and approximation: Combinatorial optimiza-
tion problems and their approximability properties (2nd ed.). Berlin, Heidelberg:

Springer . 

Beamon, B. M. (1999). Measuring supply chain performance. International Journal of
Operations & Production Management, 19 , 275–292 . 

Behdani, B. (2013). Handling disruptions in supply chains: An integrated framework
and an agent-based model . Netherlands: Technische Universiteit Delft . (Ph.D.

thesis) 
Borodin, A. , & El-Yaniv, R. (1998). Online computation and competitive analysis . Cam-

bridge, UK: Cambridge University Press . 

Canel, C. , & Khumawala, B. M. (1997). Multi-period international facilities location:
An algorithm and application. International Journal of Production Economics, 35 ,

1891–1910 . 
Canel, C. , & Khumawala, B. M. (2001). International facilities location: A heuristic

procedure for the dynamic uncapacitated problem. International Journal of Pro-
duction Economics, 39 , 3975–40 0 0 . 

Cordeau, J.-F. , Pasin, F. , & Solomon, M. M. (2006). An integrated model for logistics

network design. Annals of Operations Research, 144 , 59–82 . 
Craighead, C. W. , Blackhurst, J. , Rungtusanatham, M. J. , & Handfield, R. B. (2007).

The severity of supply chain disruptions: Design characteristics and mitigation
capabilities. Decision Sciences, 38 , 131–156 . 

Dorrigiv, R. (2010). Alternative measures for the analysis of online algorithms . Canada:
University of Waterloo . (Ph.D. thesis) 

Drezner, Z. , & Wesolowsky, G. O. (1991). Facility location when demand is time de-
pendent. Naval Research Logistics, 38 , 763–777 . 

Dunke, F. (2014). Online optimization with lookahead . Germany: Karlsruhe Institute

of Technology . (Ph.D. thesis) 
Dunke, F. , & Nickel, S. (2013). Simulative algorithm analysis in online optimization

with lookahead. In W. Dangelmaier, C. Laroque, & A. Klaas (Eds.), Simulation
in Produktion und Logistik: Entscheidungsunterstützung von der Planung bis zur

Steuerung (pp. 405–416). HNI-Verlagsschriftenreihe . 
unke, F. , & Nickel, S. (2015). Simulation-based optimisation in industry 4. 0.
In M. Rabe, & U. Clausen (Eds.), Simulation in production and logistics 2015

(pp. 69–78). Stuttgart: Fraunhofer IRB Verlag . 
unke, F. , & Nickel, S. (2016). A general modeling approach to online optimization

with lookahead. Omega, 63 , 134–153 . 
ccles, R. G. (1991). The performance measurement manifesto. Harvard Business Re-

view, 69 , 131–137 . 
lrod, C. , Murray, S. , & Bande, S. (2013). A review of performance metrics for supply

chain management. Engineering Management Journal, 25 , 39–50 . 

Fiat, A. , & Woeginger, G. J. (1998). Online algorithms: The state of the art . Berlin, Hei-
delberg, New York: Springer-Verlag . Lecture Notes in Computer Science, 1442 

Fleischmann, B. , & Koberstein, A. (2015). Strategic network design. In H. Stadtler,
C. Kilger, & H. Meyr (Eds.), Supply chain management and advanced planning

(pp. 107–123). Berlin-Heidelberg: Springer . 
rench, S. , Maule, J. , & Papamichail, N. (2009). Decision behaviour, analysis and sup-

port . Cambridge University Press . 

hiani, G. , Laporte, G. , & Musmanno, R. (2013). Introduction to logistics systems plan-
ning and control (2nd ed.). Chichester, UK: Wiley . 

rötschel, M., Krumke, S., & Rambau, J. (Eds.). (2001). Online optimization of large
scale systems . Berlin, Heidelberg: Springer-Verlag . 

utierrez, G. J. , & Kouvelis, P. (1995). A robustness approach to international sourc-
ing. Annals of Operations Research, 165 , 165–193 . 

eckmann, I. (2015). Towards supply chain risk analytics: Fundamentals, simulation,

optimization . Germany: Karlsruhe Institute of Technology . (Ph.D. thesis) 
eckmann, I. , Comes, T. , & Nickel, S. (2015). A critical review on supply chain

risk—Definition, measure and modeling. Omega, 52 , 119–132 . 
iller, B. (2009). Online optimization: Probabilistic analysis and algorithm engineering .

Germany: Technische Universität Berlin . (Ph.D. thesis) 
opp, W. J. (2008). Supply chain science . Long Grove, Illinois: Waveland Press . 

vanov, D. , Sokolov, B. , & Dolgui, A. (2014). The ripple effect in supply chains:

trade-off ‘efficiency-flexibility-resilience’ in disruption management. Interna-
tional Journal of Production Research, 52 , 2154–2172 . 

Jaillet, P. , & Wagner, M. (2006). Online routing problems: Value of advanced infor-
mation as improved competitive ratios. Transportation Science, 40 (2), 200–210 . 

aynes, E. (1957). Information theory and statistical mechanics. Physical Review, 106 ,
620–630 . 

aynes, E. (1957). Information theory and statistical mechanics II. Physical Review,

108 , 171–190 . 
apide, L. (20 0 0). What about measuring supply chain performance? Achieving Sup-

ply Chain Excellence Through Technology, 2 , 287–297 . 
Leadbetter, S. J. , & Hort, M. C. (2011). Volcanic ash hazard climatology for an erup-

tion of Hekla volcano, Iceland. Journal of Volcanology and Geothermal Research,
199 , 230–241 . 

i, S. , Ragu-Nathan, B. , Ragu-Nathan, T. S. , & Rao, S. S. (2006). The impact of sup-

ply chain management practices on competitive advantage and organizational
performance. Omega, 34 , 107–124 . 

ogistik Heute (2010). Leihproduktion als Backup. Logistik Heute , 54–55 . 
ynch, G. (2012). Supply chain disruptions: Theory and practice of managing risk. 

elnyk, S. A . , Rodrigues, A . , & Ragatz, G. L. (2008). Using simulation to investi-
gate supply chain disruptions. In G. A. Zsidisin, & B. Ritchie (Eds.), Supply chain

risk—A handbook of assessment, management, and performance (pp. 103–122).
Springer . 

Melo, M. T. , Nickel, S. , & Saldanha-da-Gama, F. (2006). Dynamic multi-com-

modity capacitated facility location: A mathematical modeling framework for
strategic supply chain planning. Computers & Operations Research, 33 , 181–

208 . 
elo, M. T. , Nickel, S. , & Saldanha-da-Gama, F. (2008). Network design decisions in

supply chain planning. In P. Buchholz, & A. Kuhn (Eds.), Optimization of logistics
systems: Methods and experiences (pp. 1–19). Dortmund: Verlag Praxiswissen . 

elo, M. T. , Nickel, S. , & Saldanha-da-Gama, F. (2009). Facility location and sup-

ply chain management—A review. European Journal of Operational Research, 196 ,
401–412 . 

üller, A. , & Stoyan, D. (2002). Comparison methods for stochastic models and risks .
Chichester, UK: Wiley . 

ickel, S. , & Saldanha-da-Gama, F. (2015). Multi-period facility location. In G. La-
porte, S. Nickel, & F. Saldanha-da-Gama (Eds.), Location science (pp. 289–310).

Berlin, Heidelberg, New York: Springer . 

Nickel, S. , Saldanha-da-Gama, F. , & Ziegler, H.-P. (2012). A multi-stage stochastic
supply network design problem with financial decisions and risk management.

Omega, 40 , 511–524 . 
rda, A. , & Rom, R. (1991). Location of central nodes in time varying computer net-

works. Operations Research Letters, 10 , 143–152 . 
xford Economics (2010). The economic impacts of air travel restrictions due to

volcanic ash. Technical Report Oxford Economics, Oxford, UK . 

saraftis, H. (1995). Dynamic vehicle routing: Status and prospects. Annals of Oper-
ations Research, 61 (1), 143–164 . 

uerto, J. , & Rodríguez-Chía, A. (1999). Location of a moving service facility. Mathe-
matical Methods of Operations Research, 49 , 373–393 . 

ogers, H. , Pawar, K. , & Braziotis, C. (2012). Supply chain disturbances: Contextual-
ising the cost of risk and uncertainty in outsourcing. In H. K. Chan, F. Lettice,

& O. A. Durowoju (Eds.), Decision-making for supply chain integration . In Decision

engineering: Vol. 1 (pp. 145–164). London: Springer . 
ammonds, P. , McGuire, B. , & Edwards, S. (2010). Volcanic hazard from Iceland:

Analysis and implications of the Eyjafjallajökull eruption. Technical report . Lon-
don, UK: University College London. Institute for Risk and Disaster Reduction . 

http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0001
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0001
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0001
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0001
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0001
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0001
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0002
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0002
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0002
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0002
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0002
http://dx.doi.org/10.1007/s10479-015-1805-9
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0004
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0004
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0004
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0004
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0004
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0004
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0005
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0005
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0005
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0005
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0006
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0006
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0007
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0007
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0007
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0007
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0007
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0007
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0007
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0007
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0008
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0008
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0009
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0009
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0009
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0010
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0010
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0010
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0010
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0011
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0011
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0011
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0011
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0012
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0012
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0012
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0012
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0014
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0014
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0014
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0014
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0014
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0014
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0015
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0015
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0015
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0016
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0016
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0016
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0016
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0017
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0017
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0017
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0018
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0018
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0018
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0018
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0019
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0019
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0019
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0019
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0020
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0020
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0020
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0020
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0021
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0021
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0022
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0022
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0022
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0022
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0022
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0023
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0023
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0023
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0023
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0023
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0024
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0024
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0024
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0024
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0025
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0025
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0025
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0025
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0025
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0026
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0026
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0026
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0026
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0026
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0027
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0028
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0028
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0028
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0028
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0029
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0029
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0029
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0030
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0030
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0030
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0030
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0030
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0031
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0031
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0031
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0032
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0032
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0033
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0033
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0033
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0033
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0033
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0034
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0034
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0034
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0034
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0035
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0035
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0036
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0036
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0037
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0037
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0038
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0038
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0038
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0038
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0039
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0039
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0039
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0039
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0039
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0039
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0040
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0040
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0041
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0041
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0041
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0041
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0041
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0042
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0042
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0042
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0042
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0042
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0043
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0043
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0043
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0043
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0043
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0044
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0044
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0044
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0044
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0044
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0045
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0045
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0045
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0045
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0046
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0046
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0046
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0046
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0047
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0047
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0047
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0047
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0047
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0048
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0048
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0048
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0048
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0049
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0049
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0050
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0050
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0051
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0051
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0051
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0051
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0052
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0052
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0052
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0052
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0052
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0053
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0053
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0053
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0053
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0053


F. Dunke et al. / European Journal of Operational Research 264 (2018) 813–829 829 

S  

S  

S  

S  

 

S  

S  

T  

T  

T  

T  

T  

T  

W  

Z  

 

Z  

 

awik, T. (2015). On the fair optimization of cost and customer service level in a
supply chain under disruption risks. Omega, 53 , 58–66 . 

heffi, Y. (2007). The resilient enterprise: Overcoming vulnerability for competitive
advantage. MIT Press Books : vol. 1. Cambridge: The MIT Press . 

heffi, Y. , & Rice, B. (2005). A supply chain view of the resilient enterprise. Technical
report . Cambridge, MA: MIT Sloan Management Review . 

nyder, L. V., Atan, Z., Peng, P., Rong, Y., Schmitt, A. J., & Sinsoysal, B. (2012). OR/MS
models for supply chain disruptions: A review. Available at SSRN: http://ssrn.

com/abstract=1689882 or doi: 10.2139/ssrn.1689882 . 

tadtler, H., Kilger, C., & Meyr, H. (Eds.). (2015). Supply chain management and ad-
vanced planning: Concepts, models, software, and case studies (5th ed.). Springer . 

yam, S. S. (20 0 0). Multiperiod capacity expansion in globally dispersed regions.
Decision Sciences, 31 , 173–195 . 

aleb, N. N. (2007). The Black Swan—The impact of the highly improbable . New York:
Random House . 

ang, C. , & Tomlin, B. (2008). The power of flexibility for mitigating supply chain

risks. International Journal of Production Economics, 116 (1), 12–27 . 
ang, S. (2006). Perspectives in supply chain risk management. International Journal
of Production Economics, 103 , 451–488 . 

ang, S. (2006). Robust strategies for mitigating supply chain disruptions. Interna-
tional Journal of Logistics, 9 , 33–45 . 

assey, G. (2014). Competing in advanced manufacturing: The need for improved
growth models and policies. Journal of Economic Perspectives, 28 , 27–48 . 

omlin, B. (2006). On the value of mitigation and contingency strategies for manag-
ing supply chain disruption risks. Management Science, 52 (5), 639–657 . 

aters, D. J. (2007). Supply chain risk management . Philadelphia, PA: Kogan Page

Limited . 
anjirani Farahani, R. , Drezner, Z. , & Asgari, N. (2009). Single facility location and

relocation problem with time dependent weights and discrete planning horizon.
Annals of Operations Research, 167 , 353–368 . 

sidisin, G. , & Ritchie, B. (2008). Supply chain risk management—Development, is-
sues and challenges. In Supply chain risk—A handbook of assessment, manage-

ment, and performance . Springer . 

http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0054
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0054
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0055
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0055
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0056
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0056
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0056
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0056
http://ssrn.com/abstract=1689882
http://dx.doi.org/10.2139/ssrn.1689882
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0057
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0058
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0058
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0059
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0059
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0060
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0060
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0060
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0060
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0061
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0061
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0062
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0062
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0063
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0063
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0064
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0064
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0065
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0065
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0066
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0066
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0066
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0066
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0066
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0067
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0067
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0067
http://refhub.elsevier.com/S0377-2217(16)30553-7/sbref0067

	Time traps in supply chains: Is optimal still good enough?
	1 Introduction
	2 Online optimization with look-ahead
	2.1 Flaws
	2.1.1 Neglect of sequentiality
	2.1.2 Oblivion to uncertainty

	2.2 New concepts and definitions
	2.2.1 Modeling
	2.2.2 Performance evaluation

	2.3 Examples and results
	2.3.1 Truck entrance control
	2.3.2 Benefit of look-ahead


	3 Multi-period planning
	3.1 Flaws
	3.1.1 “Collapsing” the future
	3.1.2 Inability to adapt
	3.1.3 Length of a planning horizon
	3.1.4 Errors in the data
	3.1.5 International facilities

	3.2 New concepts and definitions
	3.2.1 Planning horizon
	3.2.2 Discrete- versus continuous-time models
	3.2.3 The value of the multi-period solution
	3.2.4 Rolling horizon planning

	3.3 Examples and results

	4 Risk-aware supply chain planning
	4.1 Flaws
	4.1.1 Ignorance of dynamics
	4.1.2 Neglect of preparation time
	4.1.3 Non-sub-additivity of supply chain risk over time
	4.1.4 Biases of mitigation planning

	4.2 New concepts and definitions
	4.2.1 Causalities
	4.2.2 Uncertainty profile
	4.2.3 Performance deterioration

	4.3 Examples

	5 Discussion and conclusion
	 Acknowledgments
	 References


