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Abstract

We study the problem a diagnostic expert (e.g., a physician) faces when offering a diagnosis to

a client (e.g., a patient) that may be based only on her own diagnostic ability or supplemented by

a diagnostic test revealing the client’s true condition. The expert’s diagnostic ability (or type) is

her private information. The expert is impurely altruistic in that she cares about both the client’s

utility and her own reputational payoff that depends on the peer perception about her diagnostic

ability. The decision of whether to perform the test, which is costly for the client, provides

the expert with an opportunity to influence that perception. We show a unique separating

equilibrium exists in which the high-type expert does not resort to diagnostic testing and offers

a diagnosis based only on her own diagnostic ability, whereas the low-type expert performs the

test. Furthermore, we establish that the high-type expert may skip necessary diagnostic tests

to separate her from the low-type expert. Interestingly, the effect of reputational payoff on

under-testing is non-monotonic, and the desire to appear of high type leads to under-testing

only when the reputational payoff is intermediate. Our results also suggest a more altruistic

expert may be more likely to engage in under-testing. Furthermore, efforts to encourage testing

by providing financial incentives or by raising malpractice-lawsuit concerns may, surprisingly,

help fuel under-testing in the equilibrium.
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P.S.—If you don’t receive this letter, write and let me know, and I’ll send you another.

— Anonymous

1. Introduction

Few issues in the healthcare market are more salient than the provision of diagnostic tests: an

estimated 30% of medical-testing decisions are deemed inappropriate (Brody 2010; Fisher et al.

2003), which may entail either over- or under-provision. All too frequently, the public attention has

centered on over-provision. By comparison, under-provision of diagnostic testing has received little

attention in the mass media, but frequently appears in the medical literature: a Harvard Medical

School research team examining 15 years’ worth of medical-testing literature—covering 1.6 million

results from 46 of the 50 most commonly used diagnostic tests—finds under-testing may well be

more prevalent than over-testing (Zhi et al. 2013). According to Dr. Ramy Arnaout, a member

of the research team, “underutilization is at least as bad a problem as overutilization... This is a

robust finding. This is for real” (O’Reilly 2014). Under-testing is the leading cause of what Landro

(2013) refers to as “the biggest mistake doctors make”—diagnostic error, which is attributed to

severe harm and death for approximately 160,000 patients per year (Newman-Toker et al. 2013;

Singh et al. 2013). The economic impact of under-testing is equally striking, with some estimating

it as high as 38% of total healthcare expenditure (Sollman 2015).

Motivated by the phenomenon of under-testing in the healthcare market, our paper develops

an analytical lens for understanding its drivers. Specifically, we examine a physician’s diagnostic

decision under both information asymmetry and diagnostic uncertainty. Consider the physician-

patient encounter in a physician’s office. A patient consults with a physician about the nature of a

medical problem, which may be either positive (sick) or negative (healthy). During a consultation,

the physician collects and synthesizes patient history, which helps her figure out the likelihood or

the base rate that the patient’s condition is positive. The physician also acquires a private signal—a

“hunch”—indicative of the nature of the problem.1 A more competent physician is able to generate

a more accurate signal of the patient’s condition. Even the best physicians may not be able to

perfectly infer the patient’s health. Diagnostic testing (e.g., blood test, ultra-sound, and X-ray) is

often called for. The physician does not always perform a diagnostic test, which imposes monetary

and other burdens on the patient. Although a physician reputed for high diagnostic ability among
1Siddhartha Mukherjee (2017, p. 53), in a New Yorker article in which he details clinical encounters of Dr. Lindsey

Bordone, a dermatologist from Columbia University, provides an example of this private signal: “The diagnostic
moment [of an encounter] came to Bordone in a flash of recognition.”

2



primary care physicians, triage nurses, OPD doctors, and other experts (collectively referred to as

“generalist peers” or simply “peers”) may enjoy more referrals, her competence level may not be

immediately obvious to her peers. However, the physician can possibly manage perceptions about

her diagnostic ability by making certain diagnostic-testing decisions. Anticipating such observational

learning, the physician has an opportunity to choose a diagnostic pathway (i.e., the process to reach

the eventual diagnosis, which may or may not involve diagnostic testing) to influence the perception

of her diagnostic ability. We would like to emphasize that this paper focuses on the diagnostic aspect

of the physician-patient encounter. We do not incorporate treatments in our analysis, because we

do not intend the physician’s incentives to profit from her informational advantage to contaminate

her diagnostic decisions.2

Our model captures several features of the physician-patient encounter. In a healthcare setting,

similar to many other regulated services, the service providers do not set the prices. Payers (e.g.,

Medicare) usually set them; the Affordable Care Act has been more directed at setting prices. In

addition, the opacity in pricing in the healthcare market is a well-known phenomenon that separates

this market from markets for most goods and services, as Uwe Reinhardt (2013, p. 1927) pointedly

remarks in a JAMA article:

[P]rices were kept as trade secrets. Rare are the physicians, hospitals, imaging

centers, or other clinicians or health care centers who post on their websites the prices

for frequently performed procedures. Furthermore, few health care practitioners or

centers are willing to quote prices over the phone for even standard procedures, such as

a normal vaginal delivery. As a consequence, the often advanced idea that American

patients should have “more skin in the game” through higher cost sharing, inducing

them to shop around for cost-effective health care, so far has been about as sensible as

blindfolding shoppers entering a department store in the hope that inside they can and

will then shop smartly for the merchandise they seek. So far the application of this idea

in practice has been as silly as it has been cruel.

For decades, health economists such as Reinhardt (2013) have called in vain for price transparency.

The bipartisan Congressional Budget Office (2008), on the other hand, by citing empirical evidence

from other industries, contends that increasing transparency in the healthcare market can result in

higher prices. Consistent with the industry practice we aim to capture, we assume experts (e.g.,

physicians) do not set prices for their diagnostic services.
2In our main analysis, we abstract away from the physician’s financial incentives, which we investigate in an

extension presented in Section 6.1.
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In a healthcare setting, considerable uncertainty is associated with physicians’ diagnostic

accuracy. Furthermore, the difference in the skill levels across experts may not be transparent to

patients (Gawande 2004; Makary 2013). Indeed, information asymmetry plays a pivotal role in

the expert’s decision-making process. The information asymmetry manifests itself in two different

aspects: (1) the patient as well as the physician’s peers, who refer the patient to the expert physician,

do not know about the diagnostic ability of the physician ex ante, which is the physician’s private

information; and (2) the patient or the peers cannot observe the physician’s private signal, which

the physician cannot credibly communicate. In addition, the patient does not have the medical

expertise to analyze her own medical history and determine the likelihood of having some medical

condition.

A patient visits a physician, who may perform a diagnostic test, when referred to by an OPD

doctor, primary care physician, triage nurse, or some other expert. A diagnostic test imposes a

cost on the patient. This cost may include any monetary or inconvenience cost the patient incurs.

The payer—not the physician—typically determines this cost, which has little, if anything, to do

with the physician’s diagnostic ability. We also assume the physician is “impurely altruistic” in

the sense that she is concerned about both the patient’s welfare and her own reputational payoff.

The physician’s reputational payoff captures her gain from peer referrals when she is believed to be

of high ability as opposed to low ability. It may also include respect among peers, advantageous

employment prospects, and job satisfaction, among other—potentially intrinsic—benefits.

We consider a client, whose state as assigned by nature is either positive or negative, visits

a diagnostic expert to learn about her state.3 The expert, who can be of either high or low type,

learns the likelihood of the client’s state being positive and receives an informative signal of the

client’s state. A high-type expert receives a more informative signal of the client’s state than a

low-type one does. The expert’s type information and private signal are both unobservable to the

client. The expert cares about both the client’s utility and her own reputational payoff. The expert

offers a diagnosis that may be either based only on her private signal or on a diagnostic test that

perfectly reveals the client’s state. Our model reflects the observation that diagnostic expertise and

testing may substitute each other in a variety of settings (see, e.g., Johnson 1988; Doyle et al. 2010;

Clark et al. 2012; Silver 2016; Rosenbaum 2017).4 The belief about the expert’s diagnostic ability
3In the model, we refer to the physician as a diagnostic expert, or simply an expert, and to the patient as a client.
4In particular, Doyle et al. (2010) examine a large sample of patients randomly assigned to two physician teams, and

found that one team had significantly lower costs than the other team. The difference in costs stem from differences in
diagnostic testing; that is, patients assigned to one team were more likely to experience diagnostic tests than patients
assigned to the other team. Still, the two teams achieved comparable treatment outcomes by all measures, including
mortality and readmissions.
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or type is updated by her peers based on the diagnostic pathway the expert chooses. We model the

expert’s sequential decision-making process and characterize the perfect Bayesian equilibrium; peers

have prior beliefs about the type of the expert (either high or low), which are updated using Bayes’

rule after observing the expert’s testing decisions. We look for separating equilibria in which the

two types of experts have externally different pathways leading to the eventual diagnosis. Consider,

for example, a candidate equilibrium in which the high-type expert performs the test regardless

of whether her private signal is positive or negative, whereas the low-type expert performs the

test if and only if her private signal is negative. In this case, the peers cannot separate the two

types by merely observing the expert’s chosen diagnostic pathway, because the two types of experts’

diagnostic pathways are different only when each of them receives a positive private signal, yet

the expert’s private signal is unobservable to the peers. Furthermore, the physician does not have

pricing power, and therefore prices cannot serve as a signaling device.

An important objective of the work is to investigate whether the expert’s diagnostic pathway

can act as a signal of her diagnostic ability. Our analysis approaches the question using a generic

modeling framework. We show a unique separating equilibrium exists in which the high-type expert

does not perform the test and offers a diagnosis that is consistent with her private signal, whereas

the low-type expert tests. The intuition is as follows. A diagnostic test offers the benefit of precise

learning of the client’s state, but comes at a cost to the client. The cost of testing does not vary

across expert types. However, the incremental benefit is larger when the low-type expert performs

the test, because the low-type expert receives a less informative signal of the client’s state. The

high-type expert forgoes the small incremental benefit of performing the test for the reputational

payoff she would receive as a result of the belief that she is a high-type expert. The low-type expert

finds not performing the test is too costly, because of her less precise private signal.

We also show the separating equilibrium exists only when the reputational payoff is neither

too high nor too low. In other words, the effect of the reputational payoff on the expert’s signaling

incentive is non-monotonic. If the reputational payoff is low, the high-type expert’s incentive-

compatibility constraints drive the equilibrium. An increase in the reputational payoff makes

separation more attractive to the high-type expert, and the equilibrium exists in the wider range of

the parameter space. On the other hand, if the reputational payoff is high, the low-type expert’s

incentive-compatibility constraints drive the equilibrium. An increase in the reputational payoff

makes mimicking the high-type expert more attractive for the low-type expert, and therefore reduces

the high-type expert’s incentive to separate. As a result, the equilibrium exists over a smaller range

of the parameter space.
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Given the unique separating equilibrium in which the high-type expert does not perform the

test, a natural question arises: Does the high-type expert under-test? We show the high-type expert

chooses to skip testing for certain clients, although testing would have been deemed necessary for

these clients in the full-information case. The information asymmetry about the expert type induces

the high-type expert to perform too few tests in order to prevent her from being perceived as a

low-type expert. The low-type expert, on the other hand, does not over-test and uses the same

diagnostic strategy as in the full-information case. In the separating equilibrium, the high-type

expert sacrifices client utility by under-testing for her own reputational gains. Would a more

altruistic expert be more or less likely to engage in under-testing? We find a more altruistic expert

may be more likely to engage in under-testing, because if the expert is more altruistic, the low-type

expert is more likely to test and less likely to mimic the high-type expert, who forgoes testing for

reputational payoffs.

Building on our baseline model, we consider an extension in which the expert receives a

financial incentive for performing the diagnostic test. In the healthcare context, this type of

financial incentive is referred to as “fee-for-service” and is frequently viewed as a major source of

over-provision of medical tests (Epstein et al. 1986). Notwithstanding the potential misalignment

under a fee-for-service environment, we show that in certain cases, a strong financial incentive for

diagnostic tests may help mitigate under-testing and improve client welfare. In other cases, quite

surprisingly, a strong financial incentive for diagnostic tests can facilitate the high-type expert’s

under-testing. Along similar lines, an effort to incentivize testing by raising lawsuit concerns among

diagnostic experts can potentially backfire and result in more under-testing.

Complementing our main analysis, we also examine a case with a tamper-proof technology

(see, e.g., Ichikawa et al. 2017) that allows the expert to reliably disclose her private evaluation.

We show that in this case, a separating equilibrium in which the type-h expert signals her ability

by disclosing her private evaluation and then performing the test does not exist. We also confirm

that the separating equilibrium discussed in the baseline model continues to exist even when signal

disclosure is possible. Interestingly, a pooling equilibrium with potential over-testing may exist in

which the expert, regardless of her type, chooses to disclose her private evaluations before testing.

Our result that under-testing arises as a separating device echoes the widely held belief in the

medical decision-making literature (e.g., Schroeder et al. 1974; Yeh 2014) that “high utilizers would

tend to be less competent physicians who attempt to compensate for clinical deficiencies” (Schroeder

et al. 1974, p. 710). It is also directionally aligned with a recent finding by, for example, Arkes et

al. (2007), Probst (2008), Joshi and Wolf (2011), and Wolf (2014), that peers tend to “derogate the
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diagnostic ability of physicians” who rely on diagnostic tools in reaching their diagnosis (Wolf 2014,

p. 288). The result has important implications for the US healthcare system, in which under-testing

has emerged as an important source of misdiagnosis but has not received due attention from either

the public or the healthcare research community. Our paper represents an initial attempt to model

physician-patient encounters behind this phenomenon, and in doing so, establishes a formal linkage

between diagnostic uncertainty and information asymmetry. In addition, we derive several surprising

results including a non-monotonic effect of reputational payoff, that a more altruistic expert may

engage in more under-testing, and that efforts to incentivize testing by offering financial incentives

or by raising lawsuit concerns may backfire and result in more under-testing. The findings of the

paper may be applicable to other settings where the diagnostic experts (e.g., auto mechanics, failure

analysis engineers, lawyers, and management consultants) cannot use prices to signal their types,

possibly because they are employees of a firm and receive largely fixed compensation that does not

crucially depend on their utilization.

1.1 Literature

Much of the literature on expert services has focused on the joint provision of diagnosis and

intervention. In this literature, the expert’s incentives to maximize profits when selling products or

services influence her diagnosis. In a seminal paper, Darby and Karni (1973) show that branding

and customer relationships can serve as a monitoring mechanism to reduce fraud by experts selling

diagnoses and services. Taylor (1995) considers an expert who determines if the consumer (or her

product) is healthy or diseased, and performs treatment. He shows the information asymmetry may

create demand for health insurance by risk-neutral consumers. Emons (1997) argues a non-fraudulent

equilibrium can possibly exist because consumers may be able to infer an expert’s incentives after

observing market data. Ely and Välimäki (2003) consider an auto mechanic who cares about her

reputation for being scrupulous. They show reputational concerns may induce the mechanic to

perform minor repairs even when a major repair is in order. In the context of an expert providing

a diagnosis and solving an uninformed customer’s problems, Fong (2005) proposes that expert

cheating may arise as a substitute for price discrimination: experts may target high-valuation and

high-cost customers. Jiang, Ni, and Srinivasan (2014) consider experts who may be either purely

altruistic or purely self-interested, and study experts’ pricing strategy that serves to signal the

expert’s type.

Diagnostic experts do not always sell additional products or services. The diagnoses these

experts provide may not be influenced by their incentive to perform a subsequent, costly, and often
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unnecessary service. Dublin and Iyer (2009) consider an expert who cares about her reputation

for incorruptibility, and offers advice (or a diagnosis) to an uninformed decision-maker in the

presence of a third party that tries to influence the expert’s advice through unobservable bribes. The

authors show bribes can help restore truthful communication that would otherwise not occur. Singh

(2017) considers an agent who evaluates competing firms and recommends a firm for purchase in a

procurement auction. He shows the buyer’s increased monitoring effort of the agent can result in a

higher likelihood of selection of an inferior firm. Gardete and Bart (2018) study how information

environment and communication costs influence an expert’s communication strategy and market

outcomes. We contribute to the literature on diagnostic expert services by examining an expert’s

incentives to offer a diagnosis that is based solely on her imperfect private information or to perform

a diagnostic test that perfectly reveals the client’s state. Most of the literature assumes the expert

acquires perfect client information that is unknown to the clients. In our model, by contrast, the

expert receives an informative but imperfect signal of the client’s state. Aligned with empirical

evidence on diagnostic expertise in the labor economics literature (see, e.g., Currie and MacLeod

2017), we focus on the case in which experts may differ in their diagnostic accuracy, and highlight

the consideration that even an expert with the best expertise and the best intentions may be unable

to reach a perfect assessment of the client’s status.

Our paper is related to the marketing literature on diagnostic services. Sarvary (2002) shows

a market for second opinions may arise in the expert diagnosis service as a result of temporal

differentiation. Arora and Fosfuri (2005) examine pricing of diagnostic information to the consumers

who are privately informed about the value of the information. Jiang, Ni, and Srinivasan (2014)

study experts’ pricing strategy that serves to signal the expert’s type. They assume the expert can

perfectly and costlessly acquire client information, and focus on the case in which the expert can be

either ethical or purely self-interested. By contrast, in our baseline model, the expert is not driven

by financial interests but is nevertheless impurely altruistic in that the expert has a reputation

consideration that may be tied to peers’ observational learning of the expert’s diagnostic pathway.

Also, the expert in our setting is imperfectly informed about the client’s state unless she performs

a diagnostic test. We investigate the expert’s financial incentives in an extension of our baseline

model.

Our paper is also related to the work by Miklos-Thal and Zhang (2013) on a firm’s “de-

marketing” strategy that entails purposely reducing its salesforce efforts to create a perception that

its product is of high quality. In our paper, a high-type expert may choose not to perform necessary

tests to signal her type to clients. Note that in our model, not performing a diagnostic test does
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not reduce demand for expert services. Our paper also differs from Miklos-Thal and Zhang (2013)

in that ours models a diagnostic expert whose principal focus is to choose a course of action to

diagnose the client condition, which may be either positive or negative. By contrast, their paper

models a firm that chooses the optimal level of sales effort to maximize its own profit.

Our paper, by examining the phenomenon of under-provision, contributes to the literature on

the economics of service provision. This literature focuses on the phenomenon of over-provision by

diagnostic experts and uncovers myriad drivers such as insurance structure (Dai, Akan, and Tayur

2017), unverifiable service requirements (Debo, Toktay, and van Wassenhove 2008), lawsuit concerns

(DeKay and Asch 1998), and conflicts of interest (Alger and Salanie 2006; Paç and Veeraraghavan

2015). In contrast to this stream of literature, our paper is motivated by under-provision, which is

an equally important aspect in many service industries (particularly healthcare) but has not received

due attention. Our paper proposes and examines a novel strategic reason for the phenomenon of

under-provision by diagnostic experts: high-ability experts may use under-testing as a way to signal

their ability, because diagnostic testing and expertise can substitute for each other.

Our paper also contributes to the marketing literature on health-related topics. Amaldoss and

He (2009) investigate seemingly wasteful direct-to-consumer advertising of prescription drugs. Dukes

and Tyagi (2009) examine in vitro fertilization clinics’ incentives to offer money-back guarantees, and

the effect of these guarantees on couples’ choices. Cui, Desai, and Wang (2016) characterize a medical

insurance plan’s decision to include drugs in the formulary to reduce costs, the bargaining process,

and the copay amount. Bala, Bhardwaj, and Chintagunta (2017) study a drug manufacturer’s

allocation decision for the category-defense effort and direct-sales effort when facing likely recall of

a competing drug. We contribute to this evolving literature by examining a diagnostic expert’s (or

physician’s) incentives that may result in prescribing fewer diagnostic tests than optimal.

The rest of the paper is organized as follows. Section 2 describes our modeling environment

and the full-information benchmark. Section 3 characterizes the equilibrium. Section 4 presents the

analysis. Section 5 analyzes the case in which the expert can opt to disclose her private evaluations

before testing. Section 6 presents three extensions of the baseline model. Section 7 concludes.

2. Model

Consider a client whose state (θ) is either positive (θ = 1) or negative (θ = 0). In a physician-

patient encounter, for instance, a positive state means the patient suffers from a medical condition,

whereas a negative state means the patient is healthy. At the beginning of the game, nature draws
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the state from a Bernoulli distribution and assigns it to the client. The client’s state is positive

(θ = 1) with prior probability α, and is negative (θ = 0) with the complementary probability. The

prior-probability α is a client characteristic and represents the base rate with which she acquires a

certain medical condition. The client does not observe the true state θ. If the state θ is correctly

revealed to the client, the adverse effects associated with a positive state can be remedied.

The client visits a diagnostic expert to seek diagnosis. The expert’s service starts with

consultation, during which she learns client’s α and receives a private signal of the client’s state.

The expert’s private signal is captured by se ∈ {0, 1}, where e ∈ {l,h} represents the type of the

expert and determines whether the precision of the expert’s signal is low (ρl) or high (ρh). The

prior probability that the expert is of type h is γ ∈ (0, 1). The expert’s type e and her private signal

se are unobservable to the client. The signal se = 1 indicates a positive state and se = 0 indicates

a negative state. The expert cannot verifiably deliver her private signal to the client.5 A type-e

expert’s private signal has a precision of ρe, that is,

Pr(se = 0|θ = 0) = Pr(se = 1|θ = 1) = ρe, for e = h, l.

We assume ρh > ρl to reflect that a type-h expert tends to make more accurate judgments than a

type-l expert; both ρh and ρl are above 1/2, so the diagnostic accuracy of either type is better than

tossing a coin. The expert can either reach a diagnosis that is based on the signal she has received

about the client’s state or perform a diagnostic test. Let t ∈ {0, 1} denote the expert’s testing

decision and let a ∈ {0, 1} denote the expert’s diagnosis decision. After the consultation, the expert

has three possible actions: (1) perform the diagnostic test (i.e., t = 1) and diagnose according to its

outcome; (2) provide a positive diagnosis without performing the test (i.e., t = 0, a = 1); and (3)

provide a negative diagnosis without performing the test (i.e., t = 0, a = 0).

We assume the diagnostic test, if performed, reveals the client’s true condition to both the

expert and the client. Performing the test comes at a cost of c, incurred to the client. Here, we

provide two motivating examples for this setup. In the case of an emergency department (ED),

when patients complain of dizziness/vertigo, an estimated 35% of underlying strokes are missed,

despite the fact that a diagnostic test can “identify more than 99% of strokes” (Newman-Toker et

al. 2013). As another example, in a catheterization laboratory (commonly known as “cath lab”), an

interventional cardiologist often decides whether to conduct a percutaneous coronary intervention

(PCI, also known as “stenting”) by visually assessing a coronary angiogram (“eyeballing”), a process
5In Section 5, we provide a formal discussion of the case in which the expert attempts to signal her ability by first

disclosing her private signal and then performing the test.
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Table 1: Client payoff as a function of the expert’s diagnosis outcome

Expert’s diagnosis
Client’s true state a = 1 (positive diagnosis) a = 0 (negative diagnosis)
θ = 1 (positive) B −D
θ = 0 (negative) −d 0

with significant subjectivity and associated with a significant proportion of inappropriate PCI

procedures (Desai et al. 2015). An advanced intracoronary test such as fractional flow reserve (FFR)

provides a nearly objective measure of the appropriateness of a PCI procedure, and “almost seems

too good to be true,” according to Dr. William Fearon of Stanford University (Fornell 2013). The

FFR test, however, is intrusive and may introduce additional health risk to patients (Topol 2008).

The value of the expert’s service is B if the expert diagnosis correctly identifies a positive

client state (either through consultation only or through both consultation and diagnostic testing),

and is −D if the expert provides a negative diagnosis when the true state is positive; both B and D

are positive.6 Consider, for example, a patient suffering from a medical condition. If the physician

correctly diagnoses the condition, the patient may be put on a treatment and fully recover; that

is, the correct diagnosis of the medical condition offers a benefit B to the patient. However, if

the physician’s diagnosis incorrectly suggests the patient is healthy, the patient’s condition might

deteriorate, requiring more extensive treatment or incomplete recovery; the parameter D captures

this loss due to a misdiagnosis. Now suppose the patient is healthy but the physician diagnoses the

patient’s state as positive. In this case, the patient may be put on an unnecessary treatment or

incur a psychological burden. We capture the disutility of the expert’s positive diagnosis, when the

client’s true state is negative, by −d (d > 0). We further assume c < d. We normalize the client’s

payoff from a true-negative diagnosis (i.e., when both the true state and the expert’s diagnosis are

negative) to zero. We summarize the client’s payoff from the diagnostic service (without accounting

for the cost of a potential diagnostic test) as a result of the expert’s diagnosis outcome in Table 1

and illustrate the sequence of events in Figure 1.

We derive the type-e expert’s beliefs be (α|se) about the probability of the client’s state being

θ = 1 using Bayes’ rule. The beliefs are given by

be (α|se) ,


αρe

αρe+(1−α)(1−ρe) if se = 1,
α(1−ρe)

α(1−ρe)+(1−α)ρe if se = 0.
(1)

6Throughout the paper, we define the client’s payoff as the change in client utility as a result of the diagnostic
service. Alternatively, one can define the client’s payoff as the client’s absolute utility. In that case, B can have a
negative value, and we can replicate all our results.
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Nature assigns type to the
expert and state to the

client

Expert performs a diagnostic test
or offers a diagnosis based on her

signal
All payoffs are realized

Expert learns α and
receives a signal of the

client’s state

Beliefs about the expert’s
type are updated

Figure 1: Timing of the Game

Now we describe the client’s expected utility given the expert’s signal se and her decisions t

and a. If the expert tests (t = 1), the client incurs a cost c and the test reveals her state θ. The client

learns the state is θ = 1 with probability be (α|se) and receives a benefit B, whereas with probability

1− be (α|se), the client learns the state is θ = 0 and receives a payoff of zero. Therefore, in this case,

the client’s expected utility is be (α|se) ·B− c. If the expert chooses not to perform a diagnostic test,

she would have to decide whether to follow her private signal in reaching her diagnosis. Suppose her

diagnosis is consistent with her signal (a = se). The client’s expected utility in this case is given by

be (α|se) ·B+ [1− be (α|se)] · (−d) if se = 1, and be (α|se) · (−D) if se = 0. However, if the expert’s

diagnosis is not consistent with her signal (i.e., a = 1 if se = 0 and a = 0 if se = 1), the client’s

expected utility is given by be (α|se) · (−D) if se = 1, and be (α|se) ·B + [1− be (α|se)] · (−d) if

se = 0. A purely altruistic expert, who is solely concerned about the client’s utility, would choose

to perform the test if the client’s expected utility is higher when the diagnosis is based on the test

instead of her private signal.

The expert is impurely altruistic in that she is concerned about both the client’s utility and

her own reputation as a type-h professional among her peers. The expert cares about her reputation

among peers because an expert who is believed to be of high ability receives more referrals from

her peers. In the healthcare industry, studies have widely documented that patients are unable

to observe the quality difference between experts (Gawande 2004; Makary 2013). Partly as a

result of this knowledge gap, patients do not actively choose physicians on their own (Harris 2003;

Victoor et al. 2012); rather, they largely rely on the referrals from experts’ peers (e.g., primary

care physicians, triage nurses, OPD doctors, and other experts) for advice on visiting specialized

experts (Dealey 2005). On the physician’s side, the literature has shown physicians rely on referrals

from their generalist peers, and their patient volume increases as their reputation formed among

those peers grows (Navathe and David 2009). Consistent with the aforementioned observation that

diagnostic testing and expertise may substitute for each other, a high-ability expert receives a more

informative signal of the client’s state and is thus less likely than a low-ability expert to recommend
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a diagnostic test; in this sense, better expertise leads to higher value. For this reason, a diagnostic

expert perceived by her peers as being of high ability might receive more referrals. We capture the

reputational payoff by r, which can be interpreted as the gain in the present value of the expert’s

future payoff through higher referrals when her peers believe she is of type-h instead of type-l.

For example, imagine a two-period model in which in the first period, the expert signals her

type using her diagnostic pathway, and in the second period, peers make referrals to a new set of

patients to receive diagnosis from the expert. The expert has an incentive to signal her type to her

peers in the hope of generating a large number of future referrals. Her peers make referrals decisions

based on their updated beliefs about the expert type, because they not only prefer their patients to

receive better diagnostic service (Choudhry et al. 2014), but also benefit from their association with

a highly reputable colleague (Shortell and Anderson 1971). In this case, the reputational payoff r

represents the present value of the expert’s payoff gain in the second period due to higher referrals

when the expert is believed to be a type-h expert instead of a type-l expert.

Peers know the client’s prior probability α and update their beliefs β (t, a) about the expert

type after observing the diagnostic pathway the expert chose.7 The expert’s diagnostic pathway can

become observable to her peers in many different ways. Specifically, because of the prevalence of

electronic medical records, consolidation of hospitals and medical practices, and an emphasis of care

coordination and communications between physicians, a client’s medical records are increasingly

shared among general practitioners and specialists providing care. In addition, hospitals routinely

conduct peer-review programs through which an expert’s peers evaluate her medical decisions for

the purpose of in-house training or enhancing care quality (Landro 2017).

We normalize the reputational payoff of the expert known to be of type-l to zero. Therefore,

the reputational payoff of the type-h expert is simply r. The expert’s payoff is the weighted sum

of (1) her reputational payoff r · β (t, a) and (2) the client’s expected utility U from her diagnostic

service. The expert’s expected payoff is given by

ue = φU + (1− φ) rβ (t, a) ,

where φ ∈ [0, 1] is the weight the expert puts on the client’s utility. It is convenient to define

ω , (1−φ)/φ as the relative weight the expert puts on her own reputational payoff compared to the

client’s utility. The parameter ω captures the extent of selfishness of the expert. A fully altruistic
7All the results presented in the paper continue to hold even if we assume the treatment outcomes are also

observation to the expert’s peers. The intuition is that the expert knows her diagnostic ability but is only imperfectly
informed about the client’s state. Therefore, the chosen diagnostic pathway becomes more informative about expert’s
ability than the random treatment outcomes given her diagnostic decision.
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expert has ω = 0, and a completely selfish one has ω =∞. To rule out the trivial case in which the

expert never performs the test for any clients, we make the assumption that B +D > cd/(d− c).

2.1 Full-Information Benchmark

As a benchmark, we first consider the full-information case in which the expert’s type is common

knowledge. The expert is only concerned about her clients’ expected utility when deciding her

diagnostic pathway. The following proposition provides the expert’s optimal testing policy under

the full-information case. For convenience of exposition, we define (derived in the appendix)

¯
αe1 ,

(1− ρe)c
(1− ρe)c+ ρe(B +D− c)

and ᾱe1 ,
(1− ρe)(d− c)

(1− ρe)(d− c) + ρec

as the decision thresholds for the case in which the type-e expert receives a positive private signal

(se = 1). In addition, we define

¯
αe0 ,

ρec

ρec+ (1− ρe)(B +D− c)
and ᾱe0 ,

ρe(d− c)
ρe(d− c) + (1− ρe)c

as the decision thresholds for the case in which the type-e expert receives a negative private signal

(se = 0). All proofs are presented in the appendix.

Proposition 1. Under symmetric information about expert type, for s = 0, 1 and e = h, l, a type-e

expert

(i) provides a positive diagnosis without performing the test if α > ᾱes,

(ii) performs the test if
¯
αes < α ≤ ᾱes,

(iii) provides a negative diagnosis without performing the test if α ≤
¯
αes.

The results presented in the above proposition are fairly intuitive. If the prior probability α

that the client’s state is positive is sufficiently high or sufficiently low, the test is not needed. If

α is high enough (α > ᾱes), the expert diagnoses the state as θ = 1. If α is sufficiently low, she

diagnoses the state as θ = 0. A costly test is valuable only when the uncertainty about the client’s

state is sufficiently high (i.e.,
¯
αes < α ≤ ᾱes). A comparison of the testing thresholds reveals

¯
αe1 < ¯

αe0

and ᾱe1 < ᾱe0 for e = h, l. An expert, regardless of her type, is more likely to diagnose the client as

positive (and less likely to diagnose the client as negative) if her private signal is positive, and is less

likely to diagnose the client as positive (and more likely to diagnose the client as negative) if her

private signal is negative. We also find ᾱe1 − ¯
αe1 and ᾱe0 − ¯

αe0 are both decreasing in ρe, indicating a
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high-ability expert performs the test over a smaller range of α compared to a low-ability expert.

This finding is consistent with the empirical evidence that expertise may substitute for testing in

the healthcare context (see, e.g., Doyle et al. 2010; Clark et al. 2012; Silver 2016; Rosenbaum 2017).

To ensure the analysis captures all the possible combinations of expert decisions (e.g., both types

do not perform test, only type-h performs test, only type-l performs test, and both types perform

test), we assume
¯
αe0 < ᾱe1.

We now compare both types of expert’s diagnostic pathways. A comparison of expert’s

diagnostic decisions in the different ranges of α reveals no α exists for which the two types of experts

choose externally separating diagnostic pathways. In order words, an observer, who is not informed

about the expert type or her signal, will be unable to identify the two types of experts based on

their chosen strategies for any α. For example, no α exists for which one type of expert always

performs the test and the other type does not. This result has the following implication: suppose

the clients do not have knowledge about the expert’s type information; then a costless separating

equilibrium—in which both types of experts behave as in the full-information benchmark—does

not exist, because any equilibrium identical to the full-information benchmark cannot be externally

separating to clients.

3. Diagnostic Pathway and Expert Type

In this section, we consider the asymmetric-information case in which peers have no information

about the expert’s type ex ante. They have a prior belief γ about the probability that the expert is

of a high type, and update the belief β (t, a) based on their observation of the expert’s diagnostic

pathway. We will examine whether the expert is able to signal her type by strategically choosing

the diagnostic pathway. To do so, we begin with defining the expert’s strategy space as consisting

of externally separating diagnostic pathways and enumerating all possible candidates for separating

equilibria, which allows us to establish the uniqueness of the form of the separating equilibrium, in

which a type-h expert does not perform the test and a type-l expert does. We then characterize the

condition for such a separating equilibrium to exist.

3.1 Candidate Equilibria

Suppose a separating equilibrium exists in which the type-h expert credibly signals her type by

choosing a particular diagnostic pathway different from that of the type-l expert. What would each

type’s strategy be in that equilibrium? The answer is not immediately obvious, due to the generic
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nature of our modeling environment. Thus, we start with defining the expert’s strategy space and

enumerating possible separating equilibria. In our setting, for an equilibrium to be separating, each

type of expert must exhibit an externally different diagnostic pathway than the other type. In

other words, in a separating equilibrium, if a type-h expert chooses one of the three possible actions

(performing the test, providing a positive diagnosis without testing, providing a negative diagnosis

without testing), a type-l expert would have to choose from the remaining set of actions. Using

this criterion, we identify 18 possible candidates for separating equilibria, as listed in Table 2 in the

appendix. For example, under candidate equilibrium 1, the type-h expert performs a diagnostic test

regardless of the private signal she receives, whereas the type-l expert chooses not to perform the

test and diagnoses based on her private signal.

A candidate separating equilibrium must survive a set of incentive-compatibility (IC) and

individual-rationality (IR) constraints to qualify as an equilibrium. The underlying logic is that each

type of expert must be internally consistent in its choice of diagnostic decisions; that is, neither type

of expert would have the incentive to masquerade as the other type, or deviate from the diagnostic

pathway specified in the equilibrium. In addition, the chosen diagnostic pathway must result in a

non-negative payoff for the expert. In total, we need eight IC constraints and four IR constraints to

specify each candidate separating equilibrium. We provide an illustrative example of the IC and IR

constraints for a candidate equilibrium in the appendix.

By examining the IC and IR constraints for all 18 candidate separating equilibria, we generate

two properties for the separating equilibrium to sustain, and present them in Lemmas 1 and 2.

Lemma 1. No separating equilibrium exists in which the type-h expert performs the test.

The proof is fairly technical, and here we provide some basic intuition. If the type-h expert

performs the test, for the two types of experts to have externally separating diagnostic pathways,

the type-l expert must not perform the test. In this case, the type-l expert has a strong incentive to

mimic the type-h expert, which provides the dual benefits of (1) being perceived as a type-h expert

and (2) delivering a more accurate diagnosis to the client. As a result, if the type-h expert attempts

to separate from the type-l expert by performing the test, the type-l expert would find mimicking

the type-h expert’s strategy to be more lucrative. A consequence of Lemma 1 is that if a separating

equilibrium exists, it necessarily involves the type-h expert’s not performing the test.

Next, we present another lemma that helps us screen the candidate separating equilibria.

Lemma 2. In any separating equilibrium, if the type-h expert does not perform the test, her

diagnosis must be consistent with her private signal.
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Here, we provide the guiding intuition behind Lemma 2. One expects the type-h expert to

offer a diagnosis that is inconsistent with her private signal in two cases: (1) if her private signal

sh = 1, and the prior probability that the client’s state is positive (α) is very low; and (2) if her

private signal sh = 0, and α is very high. However, when α is very high or very low, the type-l

expert may not need to perform the test either. Thus, separating herself from the type-l expert is

challenging for the type-h expert in these cases.

Remarkably, by jointly applying Lemmas 1 and 2, we can rule out 17 of the 18 candidates for

separating equilibria (see Table 2 in the appendix): Candidates 1–4 and Candidates 9–12 violate

Lemma 1, whereas Candidates 6–8 and Candidates 13–18 violate Lemma 2. Candidate 5—whereby

the type-h expert does not perform the test and offers a diagnosis consistent with her private

signal, and the type-l expert performs the test regardless of her private signal—emerges as the only

surviving candidate separating equilibrium. Thus, we have the following proposition:

Proposition 2. There is only one type of candidate separating equilibrium, in which

(i) the type-h expert chooses t = 0 and a diagnosis a = se; that is, the type-h expert does not

perform the test and offers a diagnosis consistent with her signal; and

(ii) the type-l expert chooses t = 1; that is, she performs the test regardless of her private signal.

Proposition 2 states that if a separating equilibrium exists at all, it must be the case that the

type-h expert does not perform the test whereas the type-l does. This uniqueness property is a

significant result, especially because we start with a fairly generic setting.

3.2 Can the Diagnostic Pathway Signal Expert Type?

In the previous section, we established that the only remaining candidate separating equilibrium

is one in which the type-h expert does not perform the test and provides a diagnosis consistent

with her private signal, whereas the type-l expert performs the test regardless of her private

signal. Understanding the expert’s trade-offs in her testing decision is useful before examining the

conditions that must hold for the separating equilibrium to exist. The expert is concerned about

the implications of her actions for a client’s utility. As a result of performing the test, the client

may receive a benefit B. She may also avoid the cost due to a false negative diagnosis (D) and the

cost due to a false positive diagnosis (d). In the expert’s mental accounting system, two costs are

associated with the decision to perform the test: (1) the client would incur a cost (c), and (2) the

expert would not be able to earn the reputational payoff (r). The expert’s decision to test is also
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driven by her own signal precision (i.e., ρe), and she is more likely to perform the test under a lower

precision, because a low signal precision increases her likelihood of reaching an incorrect diagnosis.

We capture these trade-offs in the expert’s testing decisions below.

To be able to separate herself from the type-l expert, according to Proposition 2, the type-h

expert does not perform the test. If, however, the benefit to the client from a true positive diagnosis

(B) is sufficiently large, the expert would find it desirable to perform the test. We define an upper

bound B (derived in the appendix), beyond which the separating equilibrium would not exist,

because the type-h expert’s incentives to perform the test would be too strong, as

B ,
(

ρh
1− ρh

)2
· (rω+ c)2

d− rω− c
+ rω+ c−D. (2)

In addition, we expect the type-l expert to perform the test in the equilibrium. Correspondingly, a

lower bound B exists such that if B < B, the type-l expert’s expected payoff from performing the

test would be so low that she would not have the incentive to perform the test. We define B as

B ,
(

ρl
1− ρl

)2
· (rω+ c)2

d− rω− c
+ rω+ c−D. (3)

The separating equilibrium exists only if B ∈ [B,B]. In the separating equilibrium, each

type of expert must find that following her own equilibrium strategy dominates the other type’s

strategy, and that her expected payoff is non-negative. An examination of these conditions provides

the necessary and sufficient conditions for the existence of the only surviving candidate separating

equilibrium characterized in Proposition 2. We present these conditions in the following proposition.

For simplicity of exposition, we define a threshold

B̂ ,
ρh

1− ρh
· ρl

1− ρl
· (rω+ c)2

d− rω− c
+ rω+ c−D.

Proposition 3. A unique separating equilibrium—in which the type-h expert does not perform the

test and offers a diagnosis consistent with her private signal, and the type-l expert performs the test

regardless of her private signal—exists if and only if α ∈ [
¯
α, ᾱ], where

(
¯
α, ᾱ) =


(

ρl(rω+c)
ρl(rω+c)+(1−ρl)(B+D−rω−c) ,

(1−ρl)(d−rω−c)
ρl(rω+c)+(1−ρl)(d−rω−c)

)
if B ≤ B ≤ B̂,(

(1−ρh)(d−rω−c)
ρh(rω+c)+(1−ρh)(d−rω−c) ,

ρh(rω+c)
ρh(rω+c)+(1−ρh)(B+D−rω−c)

)
if B̂ < B ≤ B.

The range [B,B]—in which the separating equilibrium exists—depends on the precision of
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the expert’s signal. As the difference in the two types widens, the separating equilibrium exists in a

larger range of B. The intuition is as follows. As the type-h expert’s signal becomes more precise

(i.e., as ρh increases), the expected utility loss from the expert’s not performing the test becomes

smaller. The type-h expert becomes increasingly willing to reach her diagnosis based on her private

signal without performing the test. Similarly, as the type-l expert’s signal becomes less precise, she

becomes likely to perform the test. Therefore, the more dissimilar the two types are in their signal

precision, the larger the range of α in which the separating equilibrium exists.

The magnitude of the client’s benefit from a true positive diagnosis (B) drives the existence of

the equilibrium in the following way: the equilibrium is dictated by the type-l expert’s IC constraints

under a small B (B ≤ B̂), and by the type-h expert’s under a large B (B > B̂). The basic intuition

is that all else being equal, the type-l expert is more willing to perform the test than the type-h

expert, due to the noisier signal she receives. Nevertheless, if B is small, the type-l expert may be

tempted to skip testing despite her relatively imprecise private signal. For the separating equilibrium

to hold, the overarching constraint is that the type-l expert has no incentive to mimic the type-h

expert. In other words, the type-l expert has to be able to generate at least an equal amount

of surplus from performing the diagnostic test as from following her private signal. If B is large,

however, the type-h expert may be tempted to perform the test because it offers attractive benefits

to the client if a positive condition is correctly revealed, which may be compromised if the type-h

expert follows her private signal in reaching the diagnosis. Thus, for the equilibrium to sustain, the

overarching constraint is that the type-h expert has no incentive to mimic the type-l expert.

4. Analysis

In this section, we generate managerial insights based on the unique separating equilibrium charac-

terized in the previous section. We compare the asymmetric-information case (Section 3) with the

full-information benchmark (Section 2.1) to generate implications for the provision of diagnostic

testing. Then we weigh the role of reputational payoff. We conclude this section with a brief note of

client utility from different types of experts.

First, we draw implications on the expert’s provision of diagnostic testing. In the equilibrium,

the type-h expert does not perform the test and provides a diagnosis consistent with her private

signal, whereas the type-l expert performs the test regardless of her private signal. Two questions

arise: (1) Does the type-h expert under-test? and (2) Does the type-l expert over-test? Note the

type-h expert’s equilibrium strategy of not performing the test cannot necessarily be interpreted
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as under-testing. Likewise, the type-l expert’s equilibrium strategy of always performing the test

cannot necessarily be interpreted as over-testing. To draw meaningful conclusions about over- or

under-testing, we would need to compare the expert’s strategies in the asymmetric-information

equilibrium against those in the full-information benchmark (Section 2.1). We say the expert

under-tests if she does not perform the test in the asymmetric-information equilibrium but does

perform the test in the full-information benchmark. On the flip side, we say the expert over-tests if

the expert performs the test in the asymmetric-information equilibrium but does not perform the

test in the full-information benchmark. We have the following proposition:

Proposition 4. If a separating equilibrium exists, a continuum of α in which the type-h expert

under-tests must also exist. Furthermore, the type-l expert does not over-test in the equilibrium.

In the separating equilibrium, the type-h expert is less likely to perform the test than in the

full-information benchmark, to separate herself from the type-l expert. Because the precision of the

type-l expert’s signal is lower than that of type-h expert’s, the type-l expert finds mimicking the

type-h expert’s strategy of not performing the test to be too costly. Although the type-l expert

always performs the test in the equilibrium, she does not over-test, because her testing strategy is

the same as in the full-information case and not influenced by the information asymmetry about

the expert type.

Under-testing that originates from the information asymmetry about the expert type may

be among the factors accounting for the prevalence of under-testing in the US healthcare market

reported in the literature (see, e.g., Zhi et al. 2013). The policy implication of this finding is echoed

by the healthcare community’s call for better transparency in the quality of care (see, e.g., Makary

2013)—policymakers should aim to eliminate or reduce the information asymmetry about the expert

type. For example, experts may be required to make their academic credentials public. Disclosing

experts’ success and failure stories may also help. Reducing the information asymmetry about the

expert type may lead to fewer instances of missed diagnoses. Because our focus in this paper is on

offering an explanation for under-testing in the healthcare context, we restrict our attention to the

separating equilibrium (in which under-testing arises due to the high-ability expert’s reputational

concern). Pooling equilibria also exist in our model setting. For example, a pooling equilibrium, in

which both types of experts diagnose the client’s condition as positive (negative) regardless of their

private evaluation, exists if the prior probability α is sufficiently high (low).

Next, we analyze the impact of reputational payoff. The type-h expert takes the costly action

of not performing the test to separate herself from the type-l expert, because an expert who is

believed to be of type-h receives a reputational payoff r. We examine the effect of an increase in
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the reputational payoff r on the type-h expert’s incentives to separate from the type-l expert. The

range of α, in which the separating equilibrium exists, captures the expert’s incentives to separate.

The following proposition describes the effect of the reputational payoff on the range of α in which

the separating equilibrium exists. (The thresholds
¯
r, r̂, and r̄ are defined in the appendix.)

Proposition 5. The type-h expert fails to separate from the type-l expert if r is too low (i.e., r <
¯
r)

or too high (i.e, r > r̄). In the intermediate range (i.e.,
¯
r ≤ r ≤ r̄), as the reputational payoff r

increases, the range of α for which the separating equilibrium exists first increases (if r ≤ r̂) and

then decreases (if r > r̂).

0

1
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↑

r

|

r̂

|

r̄

|

r →

Separating Equilibrium

Figure 2: Effect of reputational payoff r

The results above are graphically presented in Figure 2. Clearly, the reputational payoff r

plays an instrumental role in the characterization of the equilibrium. We discover an interesting

non-monotonic effect of r on the range of α in which the equilibrium exists. If reputational gains

are too small (r <
¯
r), the type-h expert does not find it worthwhile to sacrifice client utility for

reputational gain. Therefore, if r is too small, no α exists for which the separating equilibrium exists.

If r is further increased (
¯
r ≤ r ≤ r̂), the equilibrium is driven by the type-h expert’s incentive not

to perform the test. The type-h expert finds reputational incentives strong enough to justify her

decision not to perform the test. The type-l expert, on the other hand, continues to find performing

the test worthwhile, because her private signal is less precise. An increase in r decreases the type-h

expert’s incentive to perform the test. As a result, the range of α in which the equilibrium exists

expands. If r̂ < r ≤ r̄, the equilibrium is now primarily driven by the type-l expert’s incentives. The
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reputational incentives become strong enough such that the type-l experts may also be tempted not

to perform the test. Because an increase in r makes the type-l expert more likely not to perform the

test, the range of α—in which the separating equilibrium arises—becomes narrower with an increase

in r. Finally, if r is sufficiently high (r > r̄), suppose the type-h expert chooses not to perform the

test; the type-l expert would then be tempted to mimic the type-h expert by not performing the test

either—in the expert’s mental accounting system, the loss in patient utility would be compensated

for by the gain from peer perception. The separating equilibrium collapses.

Next, we discuss the effect of the expert’s selfishness ω on the type-h expert’s incentive to

separate herself from the type-l expert. The separating equilibrium exists only if the expert is

neither too selfish nor too altruistic (
¯
ω ≤ ω ≤ ω̄). (The thresholds

¯
ω, ω̂, and ω̄ are defined in the

appendix.) If the expert is too altruistic (ω <
¯
ω), she would not want to sacrifice client utility for

her own reputational gain. Also, if the expert is too selfish (ω > ω̄ ), she would always want to

sacrifice client utility for her own reputational gain. The parameter space in which the separating

equilibrium exists first expands (if
¯
ω ≤ ω ≤ ω̂) and then contracts (if ω̂ ≤ ω ≤ ω̄) with an increase

in the selfishness ω of the expert. If
¯
ω ≤ ω ≤ ω̂, the type-h expert’s incentive to not perform the

test drives the equilibrium. An increase in the selfishness ω makes reputational gain more rewarding

for the type-h expert. The type-h expert becomes less willing to perform the test, and the range of

α in which the separating equilibrium exists expands. If ω̂ ≤ ω ≤ ω̄, the type-l expert’s incentive to

perform the test drives the equilibrium. An increase in the selfishness ω makes the type-l expert less

willing to perform the test. As a result, the parameter space in which the separating equilibrium

exists contracts.

Finally, we discuss the client’s expected utility in the separating equilibrium. We often hold

the belief that more competent experts offer better services—a type-h expert receives a more precise

signal of the client’s state and should therefore be able to offer a better diagnosis. This scenario is

indeed the case in the full-information benchmark. Under asymmetric information, however, the

expert has a desire to manage her own reputation and may thus distort her decision to induce

favorable beliefs. In the separating equilibrium characterized in Section 3, the type-h expert chooses

not to perform the test in cases in which she should perform the test, which undermines the client’s

expected utility from visiting the type-h expert. Notwithstanding the fact that the client has no

information about the expert type ex ante, one natural question arises: Could a client receive an

even lower expected utility from visiting a type-h expert as opposed to a type-l one? We answer

this question by comparing the client’s expected utility from visiting each type of expert in the

separating equilibrium. We find that in the separating equilibrium, the client has a lower expected
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utility if she happens to be diagnosed by a type-h expert than if she is diagnosed by a type-l

expert if c < (1− ρh) [α (B +D) + (1− α) d], and vice versa. This result is driven by the type-h

expert’s under-testing behavior—skipping the test when doing so is in the client’s best interest—as

a signaling device. A low cost of testing means, all else being equal, the client is more likely to

receive the test in the full-information benchmark. When the cost of diagnostic testing is sufficiently

low, the client’s expected utility from visiting a type-l expert becomes higher than that from visiting

a type-h expert, because the type-l expert performs the test but the type-h does not (even if, or

particularly because, the diagnostic test comes at a very low cost).

5. Disclosing Private Evaluations before Testing

In the baseline model presented in Section 2, we assumed the expert’s private evaluation (i.e.,

private signal of her client’s state) cannot be used to signal her ability because she cannot verifiably

communicate her private evaluation to her peers. Now suppose a tamper-proof technology (e.g.,

Ichikawa et al. 2017) is in place such that the expert cannot modify her disclosure after conducting

a test. In this section, we examine the expert’s expanded strategy space in which she may disclose

her private evaluation (e.g., by making a note in the patient record that her peers can access) before

offering a diagnosis to the client that may be based only on her private signal or supplemented by

testing. All the other assumptions are the same as in the baseline model. In this setting, peers

may use the observed difference between the disclosure and the outcome of the diagnosis to update

their beliefs about the expert’s type. We explore the possibilities of a separating equilibrium and a

pooling equilibrium, respectively.

5.1 (Non-)Existence of Separating Equilibrium

We start with investigating the existence of a separating equilibrium. We represent the expert’s

private-evaluation-disclosure decision by b ∈ {0, 1}, where b = 1 indicates the private signal is

disclosed and b = 0 indicates otherwise. We look for a separating equilibrium in which the type-h

expert signals her expertise by disclosing the private evaluation before subsequently performing the

test. The type-l expert must play one of the following three strategies in the separating equilibrium:

(1) not disclosing private evaluation (b = 0), not performing the test (t = 0), and providing a

diagnosis that is consistent with the private evaluation; (2) not disclosing private evaluation (b = 0),

not performing the test (t = 0), and providing a diagnosis that is inconsistent with the private

evaluation; and (3) not disclosing private evaluation (b = 0), and performing the test (t = 1). If the
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type-l expert discloses her private evaluation but does not perform the test, the signal recipient

(peers) would ignore the disclosed information. In other words, the private-evaluation disclosure is

not credible unless it is accompanied by testing. A formal analysis (see the appendix for a sketch)

reveals the type-l expert has no incentive to follow any of the aforementioned three strategies for

the following reason. Along the equilibrium path, updated beliefs are not dependent on whether

test results actually confirm the private evaluation; they are simply a function of chosen strategies.

A type-l expert, who mimics the type-h expert’s equilibrium strategy, is believed to be of type-h

regardless of the outcome of the test. Therefore, disclosing private evaluations before testing does not

function as a signal of high expert ability. In addition, we confirm that the separating equilibrium

from the baseline model continues to exist even with the disclosure option.

5.2 Existence of Pooling Equilibrium

Next, we investigate the existence of a pooling equilibrium. We specify the belief that the expert is

of type h for out-of-equilibrium diagnostic pathways as zero. In other words, whenever the expert

chooses to deviate from the pooling equilibrium, peers will form the belief that the probability that

the expert is of type h is zero. According to this specification, whenever the expert chooses to

conduct a test, she is better off disclosing her private evaluation beforehand. Conversely, if an expert

deviates from the diagnostic pathway specified in the pooling equilibrium, she will not perform a

test and will reach her diagnosis based on her own diagnostic ability.

Upon observing the expert’s disclosure and the result of the subsequent test, peers use Bayes’

rule to form a belief about the expert’s type, depending on whether her disclosure is confirmed by the

result of the subsequent test: if her disclosure is confirmed by the test, peers form a belief that she is

of type h with probability γ̄ = γρh
γρh+(1−γ)ρl

; if her disclosure is contradicted by the test, peers form

a belief that she is of type h with probability γ = γ(1−ρh)
γ(1−ρh)+(1−γ)(1−ρl)

. Clearly, 0 < γ < γ < γ̄ < 1.

In other words, when peers observe that the expert discloses a private evaluation supported by the

test, they would believe her probability of being of type h is above the prior (γ), and vice versa. For

ease of exposition, we define r1 , γ̄ωr and r2 , γωr. In the following proposition, we characterize

the condition under which a pooling equilibrium sustains for the range of α ∈ [1− ρl, ρl].

Proposition 6. If c ≤ min{r1, r1+r2+d
2 }, for α ∈ [1− ρl, ρl], regardless of whether the private

evaluation is positive or negative, neither type of expert has an incentive to deviate from the pooling

equilibrium in which she discloses her private evaluation before subsequently conducting a test.

We now jointly examine the pooling equilibrium characterized above and the full-information
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benchmark analyzed in Section 2.1. Recall from Proposition 1 that, in the full-information benchmark,

the type-h expert conducts a test only if α ∈ [
¯
αh1 , ᾱh0 ], where ¯

αh1 = (1−ρh)c
(1−ρh)c+ρh(B+D−c) and ᾱh0 =

ρh(d−c)
ρh(d−c)+(1−ρh)c

. By comparing this range of α with that in Proposition 6, we have the following

corollary.

Corollary 1. If c < min{r1, d2}, in the pooling equilibrium in which she discloses her private

evaluation before subsequently conducting a test, scenarios exist in which the type-h expert overtests.

Corollary 1 shows the existence of the over-testing in the pooling equilibrium in which the

expert discloses her private evaluation before subsequently conducting a test. Note that this pooling

equilibrium is possible thanks to the availability of the aforementioned tamper-proof technology.

This result, along with our analysis in sections 4 and 6 of the paper, has implications for ways to

address the phenomenon of under-testing.

6. Extensions

In this section, we present three extensions of our baseline model. Section 6.1 extends the model by

incorporating payment-related issues. In Section 6.2, we discuss the impact of malpractice concerns

on diagnostic testing decisions. Section 6.3 provides an analytical foundation generating testable

predictions that can help distinguish between our reputation-based theory and an alternative theory

of overconfidence.

6.1 Financial Incentives

So far, in our analysis, we have assumed the expert is not influenced by possible payments from

performing a diagnostic test and that the client bears the full cost of the diagnostic test (if any). In

the real world, the expert may receive a payment that is contingent on performing the test, and the

client, due to insurance coverage, is only partially responsible for the cost of diagnostic testing. In

this section, we first relax the assumption about no monetary motive on the expert’s side. Recall

that in the baseline model, the client incurs a cost c if the expert performs the test. We incorporate

the financial-incentive consideration by assuming that if the expert performs the test, she receives as

a fee a proportion δ of the cost c incurred to the client. In addition, toward the end of this section,

we briefly discuss the impact of insurance coverage along the same line of reasoning.

As a benchmark, we consider the symmetric-information setup in which the client is informed

of the expert’s type. The expert’s incentive to perform the test intensifies as a result of the fee. As
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one would expect, we find the expert performs the test under a larger parameter space regardless of

her signal: as δ increases, both ᾱe0 and ᾱe1 become larger, and both
¯
αe0 and

¯
αe1 become smaller.

Next, we examine the asymmetric-information setup in which the expert type is unknown to

the client. Similar to the baseline model, a unique separating equilibrium exists for α ∈ [
¯
αf , ᾱf ] in

which the type-h expert does not perform the test and the type-l expert does. The diagnosis of the

type-h expert is consistent with her signal. The effect of the financial incentive (δ) on the parameter

space (4αf , ᾱf −
¯
αf ) in which the separating equilibrium exists depends on the magnitude of

the client’s benefit from a true positive diagnosis (B). We describe this result in the following

proposition.

Proposition 7. There exist some threshold B̂f such that a higher-power financial incentive (i.e., a

larger δ)

(i) reduces the range of α for which the separating equilibrium exists (∆αf ) if the client’s payoff

from a true positive diagnosis is large enough (i.e., B > B̂f ), and

(ii) increases the range of α for which the separating equilibrium exists (∆αf ) if the client’s payoff

from a true positive diagnosis is large enough (i.e., B ≤ B̂f ).

Without fee-for-service
With fee-for-service

Figure 3: Effect of financial incentive on the existence of separating equilibrium

The above results are illustrated in Figure 3. Intuitively and as expected, if B > B̂f , a higher-

powered financial incentive results in the existence of a separating equilibrium (under-testing by

type-h expert) over a smaller parameter space. Surprisingly, however, if B ≤ B̂f , a higher-powered
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financial incentive can lead to under-testing over a wider parameter space. The intuition is the

following. The presence of (or expansion in) the fee-for-service environment increases the expert’s

incentives to perform the test. As in the baseline model, if the benefit from correctly identifying

the positive state (B) is large, the type-h expert may experience a large disutility as a result of

not performing the test. Providing a financial incentive for testing only intensifies this effect. As a

result, the range of α for which the separating equilibrium exists becomes smaller. If B is small, the

type-l expert does not incur a large cost when she does not perform the test. The presence of (or

increase in) a financial incentive increases the cost of not performing the test for the type-l expert.

Mimicking the type-h expert becomes increasingly difficult for the type-l expert. As a result, the

separating equilibrium exists over a larger set of α.

As we have seen from Section 4, under-testing by diagnostic experts may result in a lower

surplus for the clients. Accordingly, policymakers may weigh initiatives with the potential to induce

the high-type expert to deviate from resorting to under-testing as a signaling device. One may

expect that providing a financial incentive for performing the test would result in more tests by both

types of experts. The above result about the effect of δ has interesting and unexpected implications

in this aspect and reveals the incentive effect hinges on the client’s payoff from a true positive

diagnosis (B). On the one hand, if B is high (i.e., B > B̂f ), a higher-power financial incentive will

discourage under-testing. On the other hand, if B is small (i.e., B ≤ B̂f ), a higher-power financial

incentive, quite unexpectedly, will result in more under-testing. Thus, a sensible policy initiative

may entail either strengthening or curbing the financial incentive, depending on the magnitude of

the client’s payoff from a true positive diagnosis.

Impact of Insurance Coverage. Before we conclude this section, we briefly discuss the impact

of the client’s insurance coverage (e.g., health insurance in a healthcare context) on the expert’s

under-testing behavior. Insurance coverage reduces a client’s out-of-pocket expense. As a result,

one might expect under-testing to be less salient because the expert is less concerned about the cost

of the diagnostic test. Our modeling framework, on the other hand, implies insurance coverage may

lead to either more or less salient under-testing behavior; see the Appendix for a proof sketch. The

intuition behind this result is as follows: when B is small (i.e., B ≤ B̂), the type-l expert does not

suffer from a large loss (from client utility) when she does not perform the test. Insurance coverage

increases a client’s net benefit from diagnostic testing, which, equivalently, increases the cost of not

performing the test for the type-l expert. Therefore, mimicking the type-h expert becomes more

costly for the type-l expert. For this reason, due to insurance coverage, the separating equilibrium

exists over a larger set of α.
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6.2 Malpractice Concerns

We now consider an extension in which the expert has concerns about possible malpractice lawsuits.

One way to model malpractice concerns is to introduce a “misdiagnosis cost” m · 1(t = 0), where

m > 0 is the cost the expert incurs when she opts not to order a diagnostic test. The expert’s

payoff function is now ue = φU + (1− φ) rβ (t, a)−m · 1(t = 0). In the context of healthcare, this

misdiagnosis cost reflects a cost to the physician because of concerns about potential lawsuits in the

future. In anticipation of the legal future, the physician views imaging tests not only as diagnostic

tools, but also as evidence that can be presented to the court when needed. The misdiagnosis cost

is a real cost incurred to the physician, and essentially captures the non-financial aspect of the

physician’s expected costs due to potential malpractice lawsuits—in practice, the physician can

present tests in court as evidence of providing adequate medical care in the case of a malpractice

lawsuit. Thus, it is a “burden of proof” that decreases in the intensity of testing (i.e., increases

in the chosen service rate). For example, the assumption that misdiagnosis costs decrease with

additional testing may simply reflect the fact that physicians attach psychological costs to skipping

certain tests. This assumption is robust in healthcare environments in which no evidence exists

that the objective probability of malpractice suits (or the premiums for malpractice insurance)

increases in the frequency of diagnostic testing. Nevertheless, a physician’s subjective expectation

of malpractice suits may decrease in the frequency of diagnostic testing, which would translate itself

into lower psychological costs.8

With the help of some algebra, we can show the additional term m · 1(t = 0) in the expert’s

payoff function above can be incorporated into client utility U by redefining the cost of diagnostic

testing as ĉ = c−m/φ. In other words, in terms of modeling the impact on physician decision-

making, incorporating malpractice concerns is equivalent to a reduction in the net cost of diagnostic

testing. We can proceed to show under-testing exists. Indeed, due to this additional consideration,

under-testing may be more salient; see the Appendix for a sketch of the proof. To understand the
8Echoing our above formulation, Kessler and McClellan (2002) highlight the notion of “malpractice pressure,”

and contend such pressure can be both financial and non-financial. The financial part does not play a significant
role because “malpractice insurance is community rated” and the premium rarely depends on malpractice claims.
However, “no insurance is possible against the unpleasant experiences and considerable time commitment over months
or years. For example, in discovery, a physician may be required to answer both written and oral questions about
her competence and judgment and to respond to questions and other requests from lawyers for the patient, for the
malpractice insurer, and for the hospital and its malpractice lawyer.” In a similar spirit, Currie and MacLeod (2008)
state, “Doctors’ premiums are not experience-rated, but are set at the specialty-area level. Hence, short of moving
from a high-premium area to another area, or leaving her specialty entirely, there is little a doctor can do to affect her
premiums.” Thus, Currie and MacLeod contend, “doctors generally face little financial risk from malpractice claims.”
Yet doctors “apparently care so deeply about the problem of legal liability” and their concerns constitute a real cost
because of noninsurable costs that include the psychological and time burden in response to malpractice lawsuits.
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intuition behind this result, note that when B is small (i.e., B ≤ B̂), the cost of the diagnostic

test becomes an important concern in the expert’s mental accounting problem. The existence of

malpractice concerns—or, mathematically, a change from c to ĉ—increases the type-l expert’s cost

of not performing the test, and thus makes mimicking the type-h expert more costly for the type-l.

As a result, the separating equilibrium exists over a larger set of α.

6.3 Overconfidence

One alternative explanation for under-testing is expert overconfidence. In this paper, to highlight

the role of reputational payoff, we have abstracted away from considering overconfidence in our

baseline model. Notwithstanding that overconfidence may lead to under-testing, in this section, we

show that under-testing due to reputation concerns is likely to arise when the prior of a positive

condition (α) is neither very high nor very low, whereas under-testing due to overconfidence tends

to arise when the prior of a positive condition (α) is very high or very low.

Below, we present our analysis to elucidate the idea. Because under-testing is specific to

type-h experts in our model, we will only present our analysis for the case in which the expert is

type-h. Consider a type-h expert who suffers from overconfidence.9 To be specific, whereas her

actual diagnostic precision is ρh, the expert’s self-perceived diagnostic precision is ρ̂h > ρh. For ease

of exposition, we define the following functions:

¯
α1(ρ) ,

(1− ρ)c
(1− ρ)c+ ρ(B +D− c)

, ᾱ1(ρ) ,
(1− ρ)(d− c)

(1− ρ)(d− c) + ρc
;

¯
α0(ρ) ,

ρc

ρc+ (1− ρ)(B +D− c)
, ᾱ0(ρ) ,

ρ(d− c)
ρ(d− c) + (1− ρ)c .

In the Appendix, we characterize the diagnostic-testing policies of both an overconfident type-h

expert and a self-aware expert. By comparing the diagnostic-testing policies across the overconfident

expert and the self-aware expert, we find the overconfident expert misses tests for clients with

α satisfying either (a) ᾱ1(ρ̂h) ≤ α < ᾱ1(ρh) if sh = 1, or (b)
¯
α0(ρh) < α ≤

¯
α0(ρ̂h) if sh = 0.

Drawing from the above two cases, we find an overconfident expert under-tests when the prior of

the problem “agrees with” what the expert’s private signal suggests, that is, when α is sufficiently

high (i.e., α ≥ ᾱ1(ρ̂h)) and the expert’s private signal is positive, or when α is sufficiently low (i.e.,

α ≤
¯
α0(ρ̂h)) and the expert’s private signal is negative. For a third-party observer’s perspective,

the overconfident expert misses tests when α is sufficiently high or sufficiently low.
9An overconfident type-l expert acts in a similar fashion and the expressions for her decision thresholds can be

obtained by replacing ρ̂h with ρ̂l.
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We now consider the case in which an expert is perfectly self-aware but has reputation concerns.

Note that our paper has established this type of under-testing arises only when the expert is of

type h. As Proposition 3 alludes, the type-h expert would choose to skip necessary tests only when

α is neither very large nor very small. Specifically, Proposition 4 suggests that in the presence

of reputation concerns, the expert under-tests only when
¯
α ≤ α ≤ ᾱ, and this range is the same

regardless of the expert’s private signal.

By comparing the analyses of under-testing due to overconfidence and reputation concerns,

respectively, we generate the following testable prediction that can help distinguish between a

reputational theory and a theory of overconfidence: whereas under-testing due to overconfidence

tends to arise when the prior of a positive condition (α) is very high or very low, under-testing due

to reputation concerns is likely to arise when the prior of a positive condition (α) is neither very

high nor very low.

7. Concluding Remarks

In many professional services, diagnostic experts may not be able to immediately reach correct

diagnoses for their clients’ conditions, and often resort to diagnostic testing with cost implications

(e.g., money, time, privacy, discomfort, or side effect) to the clients. For example, in the diagnosis of

dementia among elderly persons, history-taking and mental examination during consultations are

essential, but laboratory testing is often required for a more definite assessment of patient conditions.

Under-testing has been well documented in this situation and presents health hazards (NIH 1987).

One may expect experts’ diagnostic testing decisions to reflect both uncertainty underlying

clients’ situations and the experts’ diagnostic accuracy. When experts’ diagnosis accuracy is their

private information and they desire to be perceived as high-ability professionals among peers, they

have an opportunity to choose a diagnostic pathway (i.e., the process to reach the eventual diagnosis,

which may or may not involve diagnostic testing) to influence perception of their ability.

In this paper, we formulate a diagnostic expert’s pathway-selection problem when the peers

observe these decisions and form beliefs about the expert’s skill level accordingly. We have shown

how a high-type diagnostic expert may use her diagnostic pathway to credibly inform peers of her

skill level. We find that, due to information asymmetry, the high-type expert’s optimal diagnostic

pathway may entail not performing the test even when the test generates a positive surplus to the

clients. Furthermore, we show this type of under-testing pattern is the unique pattern allowing the

high-type expert to credibly signal her type.
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We have established the existence of the separating equilibrium depends on the magnitude of

reputational payoff in a non-monotonic fashion: for separation between different types of experts to

occur, the reputational payoff can be neither too low nor too high. The desire to be viewed as being

of high ability leads to under-testing only when the expert’s reputational payoff is intermediate.

Furthermore, we show that under some conditions, a more altruistic expert may be more likely than

a less altruistic expert to engage in harmful under-testing.

We generally think of monetary incentives (e.g., fee-for-service in the healthcare setting) as

presenting a source of misalignment between an expert’s and her client’s interests. Our model

provides a more balanced view: receiving additional payments for performing the diagnostic test

may induce a behavior-modification effect in experts. Specifically, although a low-type expert may

be more likely to perform unnecessary diagnostic tests, a high-type expert, because of this financial

incentive, may be more likely to act in the best interests of her clients, with a lower tendency to

under-test. On the other hand, we also show that in some cases, providing a stronger financial

incentive to perform the test may lead to more salient under-testing by the high-type expert.

Our paper represents an initial attempt to formalize the linkage between information asymme-

try about expert type and the diagnostic pathway. When the diagnostic pathway shapes expert-client

communication, the decision of whether to perform the diagnostic test not only affects the quality

of the diagnostic service, but may also serve as a signaling device of expert type. Our model

broadly reflects and has implications for various professional service settings. For example, in the

US healthcare market, whereas what dominates the contemporary discourse has been over-testing,

recent medical research (e.g., Zhi et al. 2013) has revealed the prevalence of under-testing, with

crucial impacts on the quality of medical care. We expect some of our findings that are relevant to

physicians’ under-testing behavior, especially driven by monetary considerations (e.g., a stronger

financial incentive may lead to more salient under-testing), may be tested in the laboratory or in the

field. We also generate testable hypotheses about comparison of overconfidence-driven under-testing

and reputation-driven under-testing.

Relevant to the phenomenon of under-provision of diagnostic testing, multiple alternative

theories exist, several of which hinge on uncertainty in decision-making (see, e.g., Davis et al. 2000;

Epstein, Begg, and McNeil 1984). Our contribution in this paper is that in addition to capturing

the uncertain nature of diagnostic expert decision-making, we theoretically explore a novel and

little-explored aspect of the complicated piece of puzzle. Among multiple, concurrent factors behind

the phenomenon, our research uncovers a compelling driving force that may guide policymakers as

they navigate through strategies to elicit appropriate provision of healthcare resources.
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Appendix

Proof of Proposition 1.

Let us say the type-e expert receives a signal se = 0. The expert compares the client’s utility from three

possible decisions, that is, (1) t = 0, a = 1, (2) t = 1, and (3) t = 0, a = 0, in arriving at her decisions. We

write the client’s utility for the three decisions as follows:

U(α|se = 0) =


b (α|se) ·B + [1− be (α|se)] · (−d) if t = 0, a = 1

be (α|se) ·B − c if t = 1

be (α|se) · (−D) if t = 0, a = 0

,

where be (α|se) is the type-e expert’s beliefs that the client’s state is θ = 1 and is described in (1). A

comparison of the client’s expected utility corresponding to the three possible decisions reveals the expert

(1) does not perform the test and diagnoses the client as positive (t = 0 and a = 1) if α > ᾱe0, where

ᾱe0 , ρe(d−c)
ρe(d−c)+(1−ρe)c , (2) does not perform the test and diagnoses the client as negative (t = 0 and a = 0) if

α ≤
¯
αe0, where ¯

αe0 , ρec
ρec+(1−ρe)(B+D−c) , and (3) performs the test (t = 1), otherwise.

The proof for the case in which the expert receives signal se = 1 proceeds in the same manner. The

corresponding thresholds (ᾱe1 and
¯
αe1) are

(1−ρe)(d−c)
(1−ρe)(d−c)+ρec and (1−ρe)c

(1−ρe)c+ρe(B+D−c) , respectively. Q.E.D.

List of Candidate Separating Equilibria

In Table 2, we list the 18 possible separating equilibria. In each candidate equilibrium, different types

of experts exhibit externally different diagnostic pathways. In other words, in each candidate separating

equilibrium, if a type-h expert chooses one of the three possible actions (performing the test, providing a

positive diagnosis without testing, providing a negative diagnosis without testing), a type-l expert has to

choose from the remaining set of actions.

An Illustrative Example of IC and IR Constraints for a Candidate Equilibrium

Below, as an illustrative example, we describe all the IC and IR constraints for the candidate equilibrium 5

specified in Table 2 (the type-h expert does not test and diagnose following the private signal; the type-l

expert performs a diagnostic test). The constraints for all other candidate equilibria can be written in a similar

manner. We represent the type-e expert’s expected utility when she chooses not to perform the test (i.e.,

t = 0) and reaches a diagnosis of a0 ∈ {0, 1} given a private signal of s0 ∈ {0, 1} by ue(t = 0, a = a0|se = s0).

Also, we represent the expert’s expected utility when she performs the test by ue(t = 1|se = s0). We have

the following IC constraints:
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Table 2: List of candidate separating equilibria

Number Private signal se Type-h expert’s action Type-l expert’s action

1 1 t = 1 t = 0, a = 1
0 t = 1 t = 0, a = 0

2 1 t = 1 t = 0, a = 0
0 t = 1 t = 0, a = 1

3 1 t = 1 t = 0, a = 0
0 t = 1 t = 0, a = 0

4 1 t = 1 t = 0, a = 1
0 t = 1 t = 0, a = 1

5 1 t = 0, a = 1 t = 1
0 t = 0, a = 0 t = 1

6 1 t = 0, a = 0 t = 1
0 t = 0, a = 1 t = 1

7 1 t = 0, a = 0 t = 1
0 t = 0, a = 0 t = 1

8 1 t = 0, a = 1 t = 1
0 t = 0, a = 1 t = 1

9 1 t = 1 t = 0, a = 1
0 t = 0, a = 0 t = 0, a = 1

10 1 t = 1 t = 0, a = 0
0 t = 0, a = 1 t = 0, a = 0

11 1 t = 0, a = 0 t = 0, a = 1
0 t = 1 t = 0, a = 1

12 1 t = 0, a = 1 t = 0, a = 0
0 t = 1 t = 0, a = 0

13 1 t = 0, a = 1 t = 1
0 t = 0, a = 1 t = 0, a = 0

14 1 t = 0, a = 0 t = 1
0 t = 0, a = 0 t = 0, a = 1

15 1 t = 0, a = 1 t = 0, a = 0
0 t = 0, a = 1 t = 1

16 1 t = 0, a = 0 t = 0, a = 1
0 t = 0, a = 0 t = 1

17 1 t = 0, a = 1 t = 0, a = 0
0 t = 0, a = 1 t = 0, a = 0

18 1 t = 0, a = 0 t = 0, a = 1
0 t = 0, a = 0 t = 0, a = 1
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1. The type-l expert performs the test along the equilibrium path, but the type-h expert does not. The

type-h expert should prefer to play her own equilibrium strategy (of not performing the test, and

providing a diagnosis that is consistent with her private signal) instead of mimicking the type-l expert

by performing the test, that is,

u(t = 0, a = 0|sh = 0) ≥ uh(t = 1|sh = 0), (IC-1)

u(t = 0, a = 1|sh = 1) ≥ uh(t = 1|sh = 1). (IC-2)

2. The type-l expert should prefer to perform the test and not mimic the type-h expert by not performing

the test, and providing a diagnosis according to her private signal, that is,

ul(t = 1|sl = 0) ≥ ul(t = 0, a = 0|sl = 0), (IC-3)

u(t = 1|sl = 1) ≥ ul(t = 0, a = 1|sl = 1). (IC-4)

3. In the equilibrium, we expect the type-h expert to provide a diagnosis that is consistent with her

private signal. The type-h expert should be unwilling to provide a diagnosis that is not consistent with

her private signal. The following two constraints ensure the type-h expert has no incentive to deviate

from the equilibrium by choosing not to perform the test, and providing a diagnosis inconsistent with

her private signal, that is,

u(t = 0, a = 0|sh = 0) ≥ uh(t = 0, a = 1|sh = 0), (IC-5)

uh(t = 0, a = 1|sh = 1) ≥ uh(t = 0, a = 0|sh = 1). (IC-6)

4. The constraints (IC-3) and (IC-4) above ensure the type-l expert does not deviate by not performing

the test, and providing a diagnosis that is consistent with her private signal. We must also ensure the

type-l expert has no incentive to deviate from the equilibrium by choosing not to perform the test, and

providing a diagnosis inconsistent with her private signal, that is,

ul(t = 1|sl = 0) ≥ ul(t = 0, a = 1|sl = 0), (IC-7)

ul(t = 1|sl = 1) ≥ ul(t = 0, a = 0|sl = 1). (IC-8)

In addition, four IR constraints ensure each type of expert has a non-negative utility along the equilibrium

path under any private signal:

u(t = 0, a = 1|sh = 1) ≥ 0, (IR-1)

uh(t = 0, a = 0|sh = 0) ≥ 0, (IR-2)

ul(t = 1|sl = 1) ≥ 0, (IR-3)
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u(t = 1|sl = 0) ≥ 0. (IR-4)

Proof of Lemma 1.

We prove this lemma by contradiction, and consider three possible cases, all of which entail the type-h expert

performing the test.

(i) Suppose there is a separating equilibrium in which the type-h expert performs the test regardless of her

signal. Because the type-h expert performs the test, for the two types of experts to exhibit externally separating

diagnostic pathways, the type-l expert must not perform the test. The type-l expert does not recommend a = 1

when she receives sl = 1, because ul (t = 0, a = 1|sl = 1) < ul (t = 1|sl = 1) if the type-h expert performs the

test on sh = 1 in the equilibrium. Similarly, the type-l expert does not recommend a = 0 when she receives

sl = 0, because ul (t = 0, a = 0|sl = 0) < ul (t = 1|sl = 0) if the type-h expert performs the test on sh = 0 in

the equilibrium. Therefore, the type-l expert’s recommendation cannot be consistent with her signal. We must

have ul (t = 0, a = 1|sl = 0) ≥ ul (t = 0, a = 0|sl = 0) and ul (t = 0, a = 0|sl = 1) ≥ ul (t = 0, a = 1|sl = 1).

However, both conditions cannot be simultaneously satisfied for ρl > 1
2 . This is a contradiction. Therefore, a

separating equilibrium does not exist in which the type-h expert performs the test regardless of her signal.

(ii) Suppose a separating equilibrium exists in which the type-h expert tests only when she receives sh = 1.

Since type-h expert performs the test only when she receives sh = 1, she has to choose a diagnosis of

either a = 0 or a = 1 when she receives sh = 0. Suppose she chooses a = 0. The type-l expert must

recommend a = 1. However, as shown in Part (i), in a separating equilibrium, if type-h expert performs

the test on receiving sh = 1, the low type finds mimicking the type-h expert to be more profitable than

recommending a = 1. Therefore, the type-h expert does not recommend a = 0 when she receives sh = 0. Now

suppose she recommends a = 1. The type-l expert, to exhibit an externally separating diagnostic pathway,

has to choose a = 0. However, in an equilibrium, if the type-h expert recommends a = 1 on receiving

sh = 0, ul (t = 0, a = 1|sl = 0) > ul (t = 0, a = 0|sl = 0). This is a contradiction. Therefore, no separating

equilibrium exists in which the type-h expert tests only when she receives sh = 1.

(iii) Suppose a separating equilibrium exists in which the type-h expert tests only when she receives sh = 0.

The proof is by contradiction, and proceeds in a similar fashion as in that of part (ii), and is therefore not

presented here.

By jointly examining all the above cases, we have enumerated all pairs of externally separating diagnostic

pathways in which the type-h expert performs the test. Therefore, a separating equilibrium does not exist in

which the type-h expert performs the test. Q.E.D.

Proof of Lemma 2.

The type-h expert’s recommendation may be inconsistent with her signal in three different ways that we will

eliminate one at a time below.
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(i) The type-h expert recommends a = 0 regardless of her signal, making her recommendation inconsistent

with her signal if sh = 1.

Because the type-h expert recommends a = 0, for the two types of experts to have externally separating

diagnostic pathways, the type-l expert has to either perform the test or recommend a = 1. However, in an

equilibrium, if the type-h expert recommends a = 1 on receiving sh = 1, the type-l expert prefers to mimic

the type-h expert instead of performing the test or recommending a = 1. Therefore, a separating equilibrium

does not exist in which the type-h expert recommends a = 0 regardless of her signal.

(ii) The type-h expert recommends a = 1 regardless of her signal, making her recommendation inconsistent

with her signal if sh = 0.

In this case, the type-l expert must either perform the test or recommends a = 0. However, given that the

type-h expert recommends a = 1 on receiving sh = 0 the type-l expert would find it more lucrative to mimic

the type-h expert instead of performing the test or recommending a = 0 when she receives sl = 0. Therefore

a separating equilibrium in which the type-h expert recommends a = 1 regardless of her signal is not possible.

(iii) The type-h expert recommends a = 0 if sh = 1 and a = 1 if sh = 0.

Here, the type-l expert must perform the test but she finds deviation to not testing and recommending a = 0

more attractive when she receives sl = 1. As a result, this scenario is also ruled out.

Therefore, the type-h expert’s recommendation must be consistent with her signal in any separating equilibrium.

The type-l expert must perform the test regardless of her signal. Q.E.D.

Proof of Proposition 2.

Proposition 2 follows directly from Lemma 1 and Lemma 2. According to Lemma 1, a candidate separating

equilibrium that involves the type-h expert performing the test cannot survive. Candidates 1–4 and Candidates

9–12 (in described in Table 2) involve the type-h expert performing the test and therefore violate Lemma

1. Lemma 2 requires the type-h expert’s diagnosis to be consistent with her signal. Candidates 6–8 and

Candidates 13–18 involve the type-h expert offering a diagnosis that is inconsistent with her private signal

and therefore violate Lemma 2. The only candidate equilibrium that survives both Lemmas 1 and 2 is the

candidate equilibrium 5. In the candidate equilibrium 5, the type-h expert does not perform the test and her

diagnosis is consistent with her signal, whereas the type-l expert performs the test. Q.E.D.

Proof of Proposition 3.

Consider the following separating equilibrium: The type-h expert never performs the test, and always provides

a diagnosis that is consistent with the her signal; the type-l expert always performs the test. For this outcome

to constitute an equilibrium, we need to check both IC and IR constraints.

IC Constraints: Eight IC constraints exist as described above in Section 3.1. We start by simplifying (IC-1)

(having received a private signal of sh = 0, the type-h prefers to play her equilibrium strategy instead of
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mimicking type-l) . The expert’s relevant expected utilities can be written as uh(t = 0, a = 0|sh = 0) =
φ(1−ρh)α(−D)

(1−ρh)α+ρh(1−α) + (1− φ) and uh(t = 1|sh = 0) = φ
(

(1−ρh)αB
(1−ρh)α+ρh(1−α) − c

)
. Substituting utilities in the

expression for (IC-1) gives

rω+ c ≥ α(1− ρh)(B +D)

α(1− ρh) + (1− α)ρh
. (IC-1)

Similarly, (IC-2), which means the type-h prefers to play her equilibrium strategy instead of mimicking type-l

in the case of sh = 1, reduces to

rω+ c ≥ (1− α)(1− ρh)d
(1− α)(1− ρh) + αρh

. (IC-2)

The constraints (IC-3) and (IC-4) ensure the type-l expert has no incentive to mimic the type-h expert by

not performing the test and providing a diagnosis according to the signal observed during the consultation.

Simplifying these constraints yields

rω+ c ≤ α(1− ρl)(B +D)

α(1− ρl) + (1− α)ρl
, (IC-3)

rω+ c ≤ (1− α)(1− ρl)d
(1− α)(1− ρl) + αρl

. (IC-4)

The constraints (IC-5) and (IC-6) ensure the type-h expert has no incentive to deviate from the equilibrium

by choosing not to perform the test and providing a diagnosis that is not completely consistent with the

observed signal. They reduce to:

α ≤ ρhd

ρhd+ (1− ρh)(B +D)
, (IC-5)

α ≥ (1− ρh)d
ρh(B +D) + (1− ρh)d

. (IC-6)

The constraints (IC-7) and (IC-8) ensure the type-l expert has no incentive to deviate from the equilibrium

by choosing not to perform the test and providing a diagnosis that is not completely consistent with the

observed signal. These constraints reduce to:

rω+ c ≤ (1− α)ρld
(1− α)ρl + α(1− ρl)

, (IC-7)

rω+ c ≤ αρl(B +D)

αρl + (1− α)(1− ρl)
. (IC-8)

IR Constraints. Four IR constraints (as described in Section 3.1) exists. Substituting appropriate utility

expressions, we have

uh(t = 0, a = 1|sh = 1) = φ

(
αρhB − (1− α)(1− ρh)d
αρh + (1− α)(1− ρh)

)
+ (1− φ) r ≥ 0, (IR-1)

uh(t = 0, a = 0|sh = 0) = φ

(
α(1− ρh)(−D)

α(1− ρh) + (1− α)ρh

)
+ (1− φ) r ≥ 0, (IR-2)
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ul(t = 1|sl = 1) = φ

(
αρlB

αρl + (1− α)(1− ρl)
− c
)
≥ 0, (IR-3)

u(t = 1|sl = 0) = φ

(
α(1− ρl)B

α(1− ρl) + (1− α)ρl
− c
)
≥ 0. (IR-4)

It is straightforward to show (IC-7) and (IC-8) are redundant given (IC-4) and (IC-3), respectively. The IC

constraints (IC-1)–(IC–6) are equivalent to

α ≥ max
{

(1− ρh)(d− rω− c)
ρh(rω+ c) + (1− ρh)(d− rω− c)

, ρl(rω+ c)

ρl(rω+ c) + (1− ρl)(B +D− rω− c)
, (1− ρh)d
ρh(B +D) + (1− ρh)d

}
,

and

α ≤ min
{

ρh(rω+ c)

ρh(rω+ c) + (1− ρh)(B +D− rω− c)
, (1− ρl)(d− rω− c)
ρl(rω+ c) + (1− ρl)(d− rω− c)

, ρhd

(1− ρh)(B +D) + ρhd

}
.

Claim 1: All the four IR constraints are satisfied given rω(B +D+ d) ≥ dD, and rωB ≥ cD.

First, (IR-3) follows from (IR-4). We only need to consider (IR-1), (IR-2), and (IR-4).

Second, we show that given rω(B+D+d) ≥ dD, Constraint (IR-1) is redundant, because α ≥ (1−ρh)d
ρh(B+D)+(1−ρh)d

gives

αρhB − (1− α)(1− ρh)d+ rω[αρh + (1− α)(1− ρh)]

≥ 1
ρh (B +D) + (1− ρh) d

· ρh(1− ρh) [−dD+ rω(B +D+ d)] ≥ 0,

which yields
αρhB − (1− α)(1− ρh)d
αρh + (1− α)(1− ρh)

+ rω ≥ 0

given that rω(B +D+ d) ≥ dD.

Third, we show (IR-2) is redundant under the condition that rωB ≥ cD. This is because (IC-1) is equivalent

to

α ≤ ρh (rω+ c)

ρh(rω+ c) + (1− ρh)(B +D− rω− c)
, (4)

whereas (IR-2) is equivalent to

α ≤ ρhrω

ρhrω+ (1− ρh)(D− rω)
. (5)

We can verify that (5) follows from (4) given rωB ≥ cD.

Last, note that (IR-4) is also redundant under the condition that rωB ≥ cD. This is because (IC-7) is

equivalent to

α ≥ ρl(rω+ c)

ρl(rω+ c) + (1− ρl)(B +D− rω− c)
, (6)
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whereas (IR-4) is equivalent to

α ≥ ρlc

ρlc+ (1− ρl)(B − c)
. (7)

We can verify that (7) follows from (6) given rωB ≥ cD.

Claim 2: If 1
B+D + 1

d >
1

rω+c , the thresholds for α can be simplified to

¯
α =

ρl(rω+ c)

ρl(rω+ c) + (1− ρl)(B +D− rω− c)
and ᾱ =

(1− ρl)(d− rω− c)
ρl(rω+ c) + (1− ρl)(d− rω− c)

.

(Note, in Claims 3 and 4 we show the separating equilibrium does not exist in this parameter space.)

To show this, note the condition 1
B+D + 1

d >
1

rω+c yields
rω+c
d−rω−c >

B+D−rω−c
rω+c , B+D

d−rω−c >
B+D−rω−c

rω+c , B+D−rω−c
rω+c <

rω+c
d−rω−c , and B+D

d < rω+c
d−rω−c . In addition, we have from ρh > ρl > 1/2 that ρh

1−ρh >
1−ρl
ρl

, and 1−ρh
ρh

< ρl
1−ρl .

Therefore, we have

¯
α = max

{
(1− ρh)(d− rω− c)

ρh(rω+ c) + (1− ρh)(d− rω− c)
, ρl(rω+ c)

ρl(rω+ c) + (1− ρl)(B +D− rω− c)
, (1− ρh)d
ρh(B +D) + (1− ρh)d

}
,

= max
{

1
ρh

1−ρh
rω+c
d−rω−c + 1

, 1
1 + 1−ρl

ρl
B+D−rω−c

rω+c

, 1
1 + ρh

1−ρh
B+D
d

}

=
1

1 + 1−ρl
ρl

B+D−rω−c
rω+c

=
ρl(rω+ c)

ρl(rω+ c) + (1− ρl)(B +D− rω− c)
,

and

ᾱ = min
{

ρh(rω+ c)

ρh(rω+ c) + (1− ρh)(B +D− rω− c)
, (1− ρl)(d− rω− c)
ρl(rω+ c) + (1− ρl)(d− rω− c)

, ρhd

ρhd+ (1− ρh)(B +D)

}
= min

{
1

1 + 1−ρh
ρh

B+D−rω−c
rω+c

, 1
1 + ρl

1−ρl
rω+c
d−rω−c

, 1
1 + 1−ρh

ρh
B+D
d

}

=
1

1 + ρl
1−ρl

rω+c
d−rω−c

=
(1− ρl)(d− rω− c)

ρl(rω+ c) + (1− ρl)(d− rω− c)
.

Claim 3: A necessary condition for a separating equilibrium to sustain is 1
B+D + 1

d ≤
1

rω+c . (Note, in Claim

4 we show this condition is redundant.)

We prove the above claim by contradiction. Suppose the condition is not satisfied. In that case, following

Claim 2, we can show that
¯
α > ᾱ. This is because

¯
α = ρl(rω+c)

ρl(rω+c)+(1−ρl)(B+D−rω−c) = 1
1+ 1−ρl

ρl

B+D−rω−c
rω+c

>

1
1+ ρl

1−ρl
rω+c

d−rω−c
. Therefore, the condition 1

B+D + 1
d ≤

1
rω+c must be satisfied in the separating equilibrium.

Claim 4: The separating equilibrium exists in the interval

(
¯
α, ᾱ) =


(

ρl(rω+c)
ρl(rω+c)+(1−ρl)(B+D−rω−c) ,

(1−ρl)(d−rω−c)
ρl(rω+c)+(1−ρl)(d−rω−c)

)
if B ≤ B ≤ B̂(

(1−ρh)(d−rω−c)
ρh(rω+c)+(1−ρh)(d−rω−c) ,

ρh(rω+c)
ρh(rω+c)+(1−ρh)(B+D−rω−c)

)
if B̂ < B ≤ B

,
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where B̂ = rω+ c−D+ ρh
1−ρh

ρl
1−ρl

(rω+c)2

(d−rω−c) .

The condition 1
B+D + 1

d ≤
1

rω+c , implies

rω+ c

d− rω− c
≤ B +D

d
≤ B +D− rω− c

rω+ c
.

The implication is that (IC-5) and (IC-6) are redundant. We may proceed to verify that

(1− ρh)(d− rω− c)
ρh(rω+ c) + (1− ρh)(d− rω− c)

>
ρl(rω+ c)

ρl(rω+ c) + (1− ρl)(B +D− rω− c)
,

if and only if B > rω + c−D+ ρh
1−ρh

ρl
1−ρl

(rω+c)2

(d−rω−c) . In addition,

ρh(rω+ c)

ρh(rω+ c) + (1− ρh)(B +D− rω− c)
<

(1− ρl)(d− rω− c)
ρl(rω+ c) + (1− ρl)(d− rω− c)

.

if and only if B < rω + c−D+ 1−ρh
ρh

1−ρl
ρl

(rω+c)2

(d−rω−c) .

Next, we show the condition

rω+ c−D+
ρ2
l

(1− ρl)2
(rω+ c)2

(d− rω− c)
≤ B ≤ rω+ c−D+

ρ2
h

(1− ρh)2
(rω+ c)2

(d− rω− c)
. (8)

is the sufficient and necessary condition for the separating equilibrium to exist, because (8) is equivalent to

(1− ρh)(d− rω− c)
ρh(rω+ c) + (1− ρh)(d− rω− c)

≤ ρh(rω+ c)

ρh(rω+ c) + (1− ρh)(B +D− rω− c)
and

ρl(rω+ c)

ρl(rω+ c) + (1− ρl)(B +D− rω− c)
≤ (1− ρl)(d− rω− c)
ρl(rω+ c) + (1− ρl)(d− rω− c)

,

and is thus equivalent to
¯
α ≤ ᾱ.

Also note the condition B ≤ rω+ c−D+
ρ2
h

(1−ρh)2
(rω+c)2

(d−rω−c) implies 1
B+D + 1

d ≤
1

rω+c . Therefore, the condition
1

B+D + 1
d ≤

1
rω+c is redundant. Q.E.D.

Proof of Proposition 4.

(i). Proposition 1 implies that in the full-information benchmark, the type-h physician performs the test for

α ∈ [
¯
αh1 , ᾱh0 ]. Thus, we need to show the intersection of the two sets [

¯
α, ᾱ] and [

¯
αh1 , ᾱh0 ] is not an empty set.

We can establish this result by examining the following two cases:

(a) If (rω+c)2

(d−rω−c)(B+D−rω−c) <
1−ρh
ρh

1−ρl
ρl

, we have from Proposition 3 that

ᾱ =
ρh(rω+ c)

ρh(rω+ c) + (1− ρh)(B +D− rω− c)
and

¯
α =

(1− ρh)(d− rω− c)
ρh(rω+ c) + (1− ρh)(d− rω− c)

.
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Thus,

¯
αh1 =

(1− ρh)c
(1− ρh)c+ ρh(B +D− c)

<
ρhc

ρhc+ (1− ρh)(B +D− c)
<

ρh(rω+ c)

ρh(rω+ c) + (1− ρh)(B +D− rω− c)
= ᾱ,

and

ᾱh0 =
ρh(d− c)

ρh(d− c) + (1− ρh)c
>

(1− ρh)(d− rω− c)
ρh(rω+ c) + (1− ρh)(d− rω− c)

=
¯
α.

Because
¯
αh1 < ᾱ and

¯
α < ᾱh0 , the intersection of the two sets [

¯
α, ᾱ] and [

¯
αh1 , ᾱh0 ] is non-empty.

(b) If (rω+c)2

(d−rω−c)(B+D−rω−c) ≥
1−ρh
ρh

1−ρl
ρl

, we have from Proposition 3 that

ᾱ =
(1− ρl)(d− rω− c)

ρl(rω+ c) + (1− ρl)(d− rω− c)
and

¯
α =

ρl(rω+ c)

ρl(rω+ c) + (1− ρl)(B +D− rω− c)
.

Thus,

¯
αh1 =

(1− ρh)c
(1− ρh)c+ ρh(B +D− c)

<
ρlc

ρlc+ (1− ρl)(B +D− c)
<

ρl(rω+ c)

ρl(rω+ c) + (1− ρl)(B +D− rω− c)
=

¯
α,

and

ᾱh0 =
ρh(d− c)

ρh(d− c) + (1− ρh)c
>

(1− ρl)(d− rω− c)
ρl(rω+ c) + (1− ρl)(d− rω− c)

= ᾱ.

Therefore, we have [
¯
α, ᾱ] ⊂ [

¯
αh1 , ᾱh0 ].

(ii). When (rω+c)2

(d−rω−c)(B+D−rω−c) <
1−ρh
ρh

1−ρl
ρl

, we have from Proposition 3 that

ᾱ =
ρh(rω+ c)

ρh(rω+ c) + (1− ρh)(B +D− rω− c)
and

¯
α =

(1− ρh)(d− rω− c)
ρh(rω+ c) + (1− ρh)(d− rω− c)

.

In addition, (rω+c)2

(d−rω−c)(B+D−rω−c) <
(1−ρh)(1−ρl)

ρhρl
ensures that

ρh (rω+ c)

ρh (rω+ c) + (1− ρh) (B +D− rω− c)
<

(1− ρl) (d− rω− c)
ρl (rω+ c) + (1− ρl) (d− rω− c)

,

and

(1− ρh) (d− rω− c)
ρh (rω+ c) + (1− ρh) (d− rω− c)

>
ρl (rω+ c)

ρl (rω+ c) + (1− ρl) (B +D− rω− c)
.

Therefore, to show the type-l expert does not over-test in the entire range of α in which the separating

equilibrium exists, it suffices to show that

¯
αl0 <

ρl (rω+ c)

ρl (rω+ c) + (1− ρl) (B +D− rω− c)
, and
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ᾱl1 >
(1− ρl) (d− rω− c)

ρl (rω+ c) + (1− ρl) (d− rω− c)
.

It is straightforward to show that both the above conditions hold for all r > 0. Therefore, the type-l expert

does not over-test in the separating equilibrium. Q.E.D.

Proof of Proposition 5.

First, we define thresholds
¯
r, r̂, and r̄ such that (1) the type-h expert prefers not to perform the test if r <

¯
r,

(2) the type-l expert considers not performing the test if r > r̂, and (3) the type-l expert does not performs

the test if r > r̄. The expressions for
¯
r, r̄, and r̂ are positive solutions to the following equations respectively:

¯
rω+ c−B −D+

(
ρh

1− ρh

)2 (
¯
rω+ c)

(d−
¯
rω− c)

= 0,

r̄ω+ c−B −D+

(
ρl

1− ρl

)2 (r̄ω+ c)

(d− r̄ω− c)
= 0,

r̂ω+ c−B −D+

(
ρh

1− ρh

)(
ρl

1− ρl

)
(r̂ω+ c)

(d− r̂ω− c)
= 0.

We also have
¯
r < r̂ < r̄. The range of α for which the separating equilibrium exists, as described in Proposition

3, can be written as

(
¯
α, ᾱ) =


(

(1−ρh)(d−rω−c)
ρh(rω+c)+(1−ρh)(d−rω−c) ,

ρh(rω+c)
ρh(rω+c)+(1−ρh)(B+D−rω−c)

)
, if r ≤ r ≤ r̂

ρl(rω+c)
ρl(rω+c)+(1−ρl)(B+D−rω−c) ,

(1−ρl)(d−rω−c)
ρl(rω+c)+(1−ρl)(d−rω−c) , if r̂ ≤ r ≤ r.

The parameter space [
¯
α, ᾱ] is empty, if r < r or r > r. In addition,

∂

∂r
(ᾱ−

¯
α)

> 0 if r < r < r̂

< 0 if r̂ < r < r.

This completes the proof. Q.E.D.

The Effect of Altruism in Section 4.

The proof is similar to the proof of Proposition 5. Here we provide only the main results. We define thresholds

¯
ω, ω̂, and ω̄ such that (1) the type-h expert prefers not to perform the test if ω <

¯
ω, (2) the type-l expert

considers not performing the test if ω > ω̂, and (3) the type-l expert does not performs the test if ω > ω̄.

The expressions for
¯
ω, ω̂ , and ω̄ are given by the positive solutions to the following equations respectively:

r
¯
ω+ c−B −D+

(
ρh

1− ρh

)2 (r
¯
ω+ c)

(d− r
¯
ω− c)

= 0,
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rω̂+ c−B −D+

(
ρh

1− ρh

)(
ρl

1− ρl

)
(rω̂+ c)

(d− rω̂− c)
= 0,

rω̄+ c−B −D+

(
ρl

1− ρl

)2 (rω̄+ c)

(d− rω̄− c)
= 0.

It follows that
¯
ω < ω̂ < ω̄. A unique separating equilibrium exists for the range of α given by

(
¯
α, ᾱ) =


(

(1−ρh)(d−rω−c)
ρh(rω+c)+(1−ρh)(d−rω−c) ,

ρh(rω+c)
ρh(rω+c)+(1−ρh)(B+D−rω−c)

)
, if

¯
ω ≤ ω ≤ ω̂

ρl(rω+c)
ρl(rω+c)+(1−ρl)(B+D−rω−c) ,

(1−ρl)(d−rω−c)
ρl(rω+c)+(1−ρl)(d−rω−c) , if ω̂ ≤ ω ≤ ω̄.

No separating equilibrium exists if ω <
¯
ω or ω > ω̄. The parameter space [

¯
α, ᾱ] is empty if ω <

¯
ω or ω > ω̄.

In addition,

∂

∂ω
(ᾱ−

¯
α)

> 0 if
¯
ω < ω < ω̂

< 0 if ω̂ < ω < ω̄.

Q.E.D.

Analysis of Client Utility in Section 4.

Throughout the proof, we consider the separating equilibrium characterized in Propositions 2–3. Consider a

client (who does not know the expert type) who is diagnosed by a type-l expert. If the client’s true state

is 1 (with probability of α), the client’s payoff is B − c. However, if the true state is 0 (with probability of

(1− α)), the client’s payoff is −c. Thus, the client’s expected payoff from visiting a type-l expert is given by

Ul = αB − c. Now suppose the client, unaware about the expert type, visits a type-h expert. The type-h

expert does not perform the test and her diagnosis is consistent with her signal. Therefore, if the client’s true

state is 1 (with probability of α), the client’s expected payoff is ρhB + (1− ρh) (−D), and if her true state is

0 (with probability of (1− α)), the client’s expected payoff is (1− ρh) (−d). The client’s expected payoff

from visiting a type-h expert can be written as Uh = α[ρhB − (1− ρh)D]− (1− α) (1− ρh) d. The client’s

expected utility from visiting a type-h expert is higher than her expected utility from visiting a type-l expert

if uh > ul, or, equivalently, c > (1− ρh) [α (B +D) + (1− α) d] . The client’s expected utility from visiting a

type-h expert is lower than her expected utility from visiting a type-l expert, otherwise. Q.E.D.

Proof of Results in Section 5.1

Because none of the three possible candidate equilibria exists, we only provide a subset of conditions that

establish that the particular candidate equilibrium does not exist.

(1) First, consider the candidate equilibrium in which the type-h expert discloses her private signal (b = 1)

and performs the test (t = 1), whereas the type-l player does not disclose her private signal (b = 0), does
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not perform the test (t = 0), and provides a diagnosis that is consistent with her private signal. The type-h

expert must prefer to disclose her private signal (b = 1) and perform the test (t = 1) compared to mimicking

the type-l expert if her private signal sh = 0. This condition can be written as uh (b = 1, t = 1|sh = 0) ≥

uh (b = 0, t = 0, a = 0|sh = 0), or, equivalently, φ
(

(1−ρh)αB
(1−ρh)α+ρh(1−α) − c

)
+ (1− φ) r ≥ φ

(
(1−ρh)α(−D)

(1−ρh)α+ρh(1−α)

)
,

which can be reorganized as

ωr− c ≥ − (1− ρh)α(B +D)

(1− ρh)α+ ρh (1− α)
.

Similarly, the type-l expert should prefer to not disclose her signal (b = 0), to not perform the test (t = 0),

and to offer a diagnosis (a = 0) that is consistent with her private evaluation (sl = 0) instead of mimicking

the type-h expert. The condition can be written asul (b = 0, t = 0, a = 0|sl = 0) ≥ ul (b = 1, t = 1|sl = 0),

which can be reorganized as

ωr− c ≤ − (1− ρl)α(B +D)

(1− ρl)α+ ρl (1− α)
.

Because the above two conditions cannot be simultaneously satisfied, the candidate separating equilibrium

described above does not exist.

(2) Next, consider the candidate separating equilibrium in which the type-h expert discloses her private signal

(b = 1) and then performs the test (t = 1), whereas the type-l expert does not disclose her private signal

(b = 0), does not perform the test (t = 0), and provides a diagnosis that is inconsistent with the private

signal. The type-l expert must prefer to offer a diagnosis that is inconsistent with her private signal to one

that is consistent with her private signal. Equivalently,

ul (b = 0, t = 0, a = 1|sl = 0) ≥ ul (b = 0, t = 0, a = 0|sl = 0) ,

ul (b = 0, t = 0, a = 0|sl = 1) ≥ ul (b = 0, t = 0, a = 1|sl = 1) .

Similar to part (1) above, it is straightforward to show the above two conditions cannot be satisfied

simultaneously. Therefore, this candidate separating equilibrium does not exist.

(3) Now consider the candidate separating equilibrium in which the type-h expert discloses her private signal

(b = 1) and then performs the test (t = 1), whereas the type-l expert does not disclose private signal (b = 0)

but does perform the test (t = 1). If the type-l expert deviates and discloses her private signal, she would be

believed to be a type-h expert regardless of whether the test confirms the private signal. Because disclosing

the private signal has no associated costs, disclosing her own private signal is a profitable deviation for the

type-l expert. Therefore, this candidate separating equilibrium does not exist. Q.E.D.

Proof of Proposition 6.

To establish the proposition, we introduce and prove three lemmas, namely, Lemmas 3–5.

First, we rule out the case in which either type of expert has an incentive to falsely disclose her private

evaluation, which leads to a condition stated in the following lemma:
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Lemma 3. In the pooling equilibrium in which the expert discloses her private evaluation before subsequently

testing, for her to truthly disclose the private evaluation, a necessary condition is:

ρl ≤ α ≤ 1− ρl. (9)

Proof. In the case of se = 1, we achieve so by requiring that the expert’s reputational payoff from disclosing

a positive evaluation is (weakly) higher than from disclosing a negative evaluation; that is,

be(α|1)(B + r1) + [1− be(α|1)]r2 − c ≥ be(α|1)r2 + [1− be(α|1)](B + r1)− c,

which gives

be(α|1) ≥
1
2 , (10)

or, equivalently,

α ≥ 1− ρe. (11)

In a similar fashion, we rule out the case in which the expert has an incentive to falsely disclose her private

evaluation by requiring that in the case of se = 0, the expert’s reputational payoff from disclosing a negative

evaluation is (weakly) higher than otherwise; that is,

be(α|0)(B + r2) + [1− be(α|0)]r1 − c ≥ be(α|0)(B + r1) + [1− be(α|0)]r2 − c,

which gives

be(α|0) ≤
1
2 , (12)

or, equivalently,

α ≤ ρe. (13)

For (11) and (13) to hold for both expert types, because ρh > ρl, we need

α ∈ A = [1− ρl, ρl], (14)

which we will impose as a necessary condition for the pooling equilibrium to sustain. The proof of Lemma 3

is complete.

Next, we consider the conditions for the pooling equilibrium to sustain for the cases in which the private

evaluation is positive (i.e., se = 1) and negative (i.e., se = 0), leading to Lemmas 4 and 5, respectively. We
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first examine the case in which the expert’s private evaluation is positive (se = 1). By disclosing her private

evaluation before subsequently conducting a test, she gains a utility of

φ {be(α|1)(B + r1) + [1− be(α|1)]r2 − c} . (15)

We represent the expert’s utility by deviating from the diagnostic pathway specified in the pooling equilibrium.

In this case, because of our specification for out-of-equilibrium diagnostic pathways, the expert gains a

reputational payoff of zero. Thus, the expert’s utility is

φmax{be(α|1) ·B + [1− be(α|1)] · (−d), be(α|1) · (−D)}

=

φ {be(α|1) ·B + [1− be(α|1)] · (−d)} , if be(α|1) ≥ d
B+D+d ,

φ [be(α|1) · (−D)] otherwise.
(16)

Comparing (15) with (16), we have the following two conditions, one of which has to hold for the pooling

equilibrium to sustain:

be(α|1) ≥
d

B +D+ d
and (r1 − r2 − d)be(α|1) ≥ c− r2 − d, (17)

be(α|1) <
d

B +D+ d
and be(α|1) ≥

c− r2
B +D+ r1 − r2

. (18)

We have the following lemma from conditions (9), (17), and (18):

Lemma 4. If c ≤ min{r1, r1+r2+d
2 }, for α ∈ [1− ρl, ρl], in the presence of a positive private evaluation,

neither type of expert has an incentive to deviate from the pooling equilibrium in which she discloses her

private evaluation before subsequently conducting a test.

Proof. Clearly, condition (18) cannot be satisfied, because be(α|1) < d
B+D+d contradicts (10). So we only

need to analyze (17).

(a) First, we examine the case in which r1 − r2 > d. In this case, we simplify (17) as be(α|1) ∈ B1a, in

which

B1a =


[ d
B+D+d , 1] if c ≤ (B+D)(r2+d)+dr1

B+D+d

[ c−r2−d
r1−r2−d , 1] if (B+D)(r2+d)+dr1

B+D+d < c ≤ r1

∅ if c > r1

,
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which is equivalent to α ∈ Ae1a, where

Ae1a =


[ d(1−ρe)
d(1−ρe)+(B+D)ρe

, 1] if c ≤ (B+D)(r2+d)+dr1
B+D+d

[ (c−r2−d)(1−ρe)
(c−r2−d)(1−ρe)+(c−r1)ρe

, 1] if (B+D)(r2+d)+dr1
B+D+d < c ≤ r1

∅ if c > r1

.

By incorporating condition (14), we have the following range of α in which the pooling equilibrium

sustains:

α ∈ A∩Ah1a ∩Al1a =


[1− ρl, ρl] if c ≤ r1+r2+d

2

[ (c−r2−d)(1−ρl)
(c−r2−d)(1−ρl)+(c−r1)ρl

, ρl] if r1+r2+d
2 < c ≤ r1

∅ if c > r1

. (19)

(b) Next, we examine the case in which r1 − r2 = d. In this case, (r1 − r2 − d)be(α|1) ≥ c− r2 − d is

equivalent to c ≤ r2 + d = r1. Thus, (17) is equivalent to be(α|1) ∈ B1b, in which

B1b =

[ d
B+D+d , 1] if c ≤ r1

∅ if c > r1

,

which is equivalent to α ∈ Ae1b, where

Ae1b =

[ d(1−ρe)
d(1−ρe)+(B+D)ρe

, 1] if c ≤ r2 + d

∅ if c > r1

.

By incorporating condition (14), we have the following range of α in which the pooling equilibrium

sustains:

α ∈ A∩Ah1b ∩A
l
1b =

[1− ρl, ρl] if c ≤ r1

∅ if c > r1

. (20)

(c) Finally, we examine the case in which r1 − r2 < d. In this case, (r1 − r2 − d)be(α|1) ≥ c− r2 − d is

equivalent to be(α|1) ≤ r2+d−c
d−r1+r2

. Thus, (17) is equivalent to be(α|1) ∈ B1c, in which

B1c =


[ d
B+D+d , 1] if c ≤ r1

[ d
B+D+d , r2+d−c

d−r1+r2
] if r1 < c ≤ (B+D)(r2+d)+dr1

B+D+d

∅ if c > (B+D)(r2+d)+dr1
B+D+d

,
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which is equivalent to α ∈ Ae1c, where

Ae1c =


[ d(1−ρe)
d(1−ρe)+(B+D)ρe

, 1] if c ≤ r1

[ d(1−ρe)
d(1−ρe)+(B+D)ρe

, (c−r2−d)(1−ρe)
(c−r2−d)(1−ρe)+(c−r1)ρe

] if r1 < c ≤ (B+D)(r2+d)+dr1
B+D+d

∅ if c > (B+D)(r2+d)+dr1
B+D+d .

.

By incorporating condition (14), we have the following range of α in which the pooling equilibrium

sustains:

α ∈ A∩Ah1b ∩A
l
1b =


[1− ρl, ρl] if c ≤ r1

[1− ρl,
(c−r2−d)(1−ρh)

(c−r2−d)(1−ρh)+(c−r1)ρh
] if r1 < c ≤ (B+D)(r2+d)+dr1

B+D+d

∅ if c > (B+D)(r2+d)+dr1
B+D+d

. (21)

We complete the proof of Lemma 4 using (19)–(21).

We now move on to the case in which the expert’s private evaluation is negative (se = 0). By disclosing her

private evaluation before subsequently conducting a test, she gains a utility of

φ {be(α|0)(B + r2) + [1− be(α|0)]r1 − c} . (22)

We represent the expert’s utility by deviating from the diagnostic pathway specified in the pooling equilibrium

as

φmax{be(α|0) ·B + [1− be(α|0)] · (−d), be(α|0) · (−D)}

=

φ {be(α|0) ·B + [1− be(α|0)] · (−d)} , if be(α|0) ≥ d
B+D+d ,

φ [be(α|0) · (−D)] otherwise.
(23)

Comparing (22) with (23), we have the following two conditions, one of which has to hold for the pooling

equilibrium to sustain:

be(α|0) ≥
d

B +D+ d
and (r2 − r1 − d)be(α|0) ≥ c− r1 − d, (24)

and

c− r1
B +D+ r2 − r1

≤ be(α|0) ≤
d

B +D+ d
. (25)

The above conditions, along with condition (9), give the lemma that follows:

Lemma 5. If c ≤ r1, for α ∈ [1− ρl, ρl], in the presence of a negative private evaluation, neither type of

expert has an incentive to deviate from the pooling equilibrium in which she discloses her private evaluation

52



before subsequently conducting a test.

Proof. In (24), clearly, r2 − r1 − d < 0. Thus, (24) is equivalent to

d

B +D+ d
≤ be(α|0) ≤

r1 + d− c
d− r1 + r2

. (26)

For the pooling equilibrium to sustain, either (25) or (26) has to be satisfied, which is equivalent to be(α|0) ∈ B0,

where

B0 =


[ c−r1
B+D+r2−r1

, 1] if 0 < c ≤ r2

[ c−r1
B+D+r2−r1

, d+r1−c
d+r1−r2

] if r2 < c ≤ (B+D)(r1+d)+dr2
B+D+d

∅ if c > (B+D)(r1+d)+dr2
B+D+d

,

which is equivalent to α ∈ Ae0, where

Ae0 =


[ (c−r1)ρe
(c−r1)ρe+(B+D+r2−c)(1−ρe) , 1] if c ≤ r1

[ (c−r1)ρe
(c−r1)ρe+(B+D+r2−c)(1−ρe) ,

(d+r1−c)ρe
(d+r1−c)ρe+(d−r2+c)(1−ρe) ] if r1 < c ≤ (B+D)(r2+d)+dr1

B+D+d

∅ if c > (B+D)(r2+d)+dr1
B+D+d

.

By incorporating condition (14), we have the following range of α in which the pooling equilibrium sustains:

α ∈ A∩Ah0 ∩Al0 =


[1− ρl, ρl] if c ≤ r1

[1− ρl,
(d+r1−c)ρl

(d+r1−c)ρl+(d−r2+c)(1−ρl)
] if r1 < c ≤ (B+D)(r2+d)+dr1

B+D+d

∅ if c > (B+D)(r2+d)+dr1
B+D+d .

(27)

The above condition completes the proof of Lemma 5.

Finally, Proposition 6 is immediate from Lemmas 4 and 5. Q.E.D.

Proof of Corollary 1.

Note that c < min{r1, d2} means w ≤ min{r1, r1+r2+d
2 }, meaning the condition in Proposition 6 is satisfied.

So the pooling equilibrium characterized therein sustains. In addition, c < min{r1, d2} means c < d
2 <

B+D
2 ,

which, along with ρh > ρl, gives [ ¯
αh1 , ᾱh0 ] ⊂ [1− ρl, ρl]. In other words, there exists some α ∈ [1− ρl, ρl] such

that the type-h physician does not conduct a test in the full-information equilibrium but does in the pooling

equilibrium, meaning over-testing exists as a result of pooling. Q.E.D.
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Proof of Proposition 7.

Because the proof of results presented in this section proceed in the manner as those from the baseline model,

we only list the main results here.

First, consider the full information case. Suppose the type e expert receives signal se = 0. The expert does

not perform the diagnosis test (t = 0) and provides a positive diagnosis (a = 1) if α > ᾱe0; she performs no

diagnosis test (t = 0) and provides a negative diagnosis (a = 0) if α <
¯
αe0; and she performs the test (t = 1)

otherwise. The cutoffs
¯
αe0 and ᾱe0 are given by

¯
αe0 = ρtc(1−δ)

(1−ρt)(B+D)+(2ρt−1)c(1−δ) , and ᾱe0 = ρt[d−c(1−δ)]
ρtd−c(1−δ)(2ρt−1) .

Similarly, if the expert receives a signal se = 1, the cutoffs
¯
αe1 and ᾱe1 are given by

¯
αe1 = c(1−δ)(1−ρt)

ρt(B+D)−c(1−δ)(2ρt−1) , and ᾱ
e
1=

[d−c(1−δ)](1−ρt)
(1−ρt)d+c(1−δ)(2ρt−1) .

Next, consider the asymmetric information setup in which the client is not informed about the expert type.

A separating equilibrium exists if and only if

1− ρh
ρh

≤ rω+ c(1− δ)√
[B +D− rω− c (1− δ)] [d− rω− c (1− δ)]

≤ 1− ρl
ρl

.

The interval [
¯
αf , ᾱf ] for which the separating equilibrium exists is described by

{
¯
αf , ᾱf} =


{

(1−ρh)[d−rω−c(1−δ)]
ρh[rω+c(1−δ)]+(1−ρh)[d−rω−c(1−δ)] ,

ρh[rω+c(1−δ)]
ρh[rω+c(1−δ)]+(1−ρh)[B+D−rω−c(1−δ)]

}
, if B > B̃f{

ρl[rω+c(1−δ)]
ρl[rω+c(1−δ)]+(1−ρl)[B+D−rω−c(1−δ)] ,

(1−ρl)[d−rω−c(1−δ)]
ρl[rω+c(1−δ)]+(1−ρl)[d−rω−c(1−δ)]

}
, otherwise

where B̃f , rω+ c (1− δ)−D+ ρhρl[rω+c(1−δ)]2
(1−ρh)(1−ρl)[d−rω−c(1−δ)] . It is straightforward to show that ∂

∂δ

(
ᾱf −

¯
αf
)
<

0 if B > B̃f , and ∂
∂δ

(
ᾱf −

¯
αf
)
> 0 if B ≤ B̃f . Also, note that ∂

∂δ B̃f < 0. Therefore, if we increase δ

from some δl ≥ 0 to δh = δl + ε, there exists some B̂f ∈
(
B̃f |δ=δl , B̃f |δ=δh

)
such that [

¯
αf |δ=δh , ᾱf |δ=δh ] ⊂

[
¯
αf |δ=δl , ᾱ

f |δ=δl ] if B > B̂f and [
¯
αf |δ=δh , ᾱf |δ=δh ] ⊃ [

¯
αf |δ=δl , ᾱ

f |δ=δl ] if B ≤ B̂f . The range 4αf for which

the separating equilibrium exists shrinks if B > B̂f and expands if B ≤ B̂f . Q.E.D.

Proof of the Result about Insurance Coverage in Section 6.1.

Recall from Proposition 3 that ifB ≤ B ≤ B̂, the signaling range is [
¯
α, ᾱ], where

¯
α = 1

1+ 1−ρl
ρl

·B+D−rω−c
rω+c

increases in c,

and ᾱ = 1
ρl

1−ρl
· rω+c
d−rω−c+1

decreases in c. Therefore, a reduction in c can lead to a wide signaling range and

allude to more salient under-testing behavior. Q.E.D.
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Proof of the Result about Malpractice Concerns in Section 6.2.

We can draw from Proposition 3 that if B ≤ B ≤ B̂, the type-h expert’s signaling range is [
¯
α, ᾱ], where

¯
α = 1

1+ 1−ρl
ρl

·B+D−rω−ĉ
rω+ĉ

< 1
1+ 1−ρl

ρl
·B+D−rω−c

rω+c

and ᾱ = 1
ρl

1−ρl
· rω+ĉ
d−rω−ĉ+1

> 1
ρl

1−ρl
· rω+c
d−rω−c+1

. Therefore, a reduction

in the cost of diagnostic testing from c to ĉ can lead to a wide signaling range. Q.E.D.

Proof of Results in Section 6.3.

Using a procedure similar to the proof of Proposition 1, we can show that an overconfident type-h expert

chooses the following diagnostic-testing policy: if the expert receives a signal of sh = 0, 1, she provides a

positive diagnosis without performing the test if α > ᾱsh(ρ̂h), performs the test if
¯
αsh(ρ̂h) < α ≤ ᾱsh(ρ̂h),

and provides a negative diagnosis without performing the test if α ≤
¯
αsh(ρ̂h).

A self-aware type-h expert, by comparison, chooses a similar diagnostic-testing policy but with different

decision thresholds: if the expert receives a signal of sh = 0, 1, the expert provides a positive diagnosis

without performing the test if α > ᾱsh(ρh), performs the test if
¯
αsh(ρh) < α ≤ ᾱsh(ρh), and provides a

negative diagnosis without performing the test if α ≤
¯
αsh(ρh).

We do not consider the trivial case in which the expert suffers from an extreme level of overconfidence

such that the expert misses all the necessary tests. By comparing the diagnostic-testing policies across

the overconfident expert and the self-aware expert, we identify the following two scenarios in which the

overconfident expert misses necessary diagnostic tests: (i) in the case in which the private signal is positive

(i.e., sh = 1), because ᾱ1(ρ) is a decreasing function, we have ᾱ1(ρ̂h) < ᾱ1(ρh), indicating the overconfident

expert misses tests for clients with α satisfying ᾱ1(ρ̂h) ≤ α < ᾱ1(ρh); (ii) in the case in which the private

signal is negative (i.e., sh = 0), because
¯
α0(ρ) is an increasing function, we have

¯
α0(ρ̂h) > ¯

α0(ρh), indicating

the overconfident expert misses tests for clients with α satisfying
¯
α0(ρh) < α ≤

¯
α0(ρ̂h). Q.E.D.
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