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Abstract

This paper studies how spatial pricing and search friction can impact the taxi market in
New York City. We use a mean field model, in which the taxi drivers strategically search for
customers in different neighborhoods across the city, taking into account the spatial and tem-
poral distribution of the supply and demand as well as the prices across the city. Our model
captures the interplay between spatial pricing, where prices depend on either the origin of the
ride alone or both its origin and destination, and search friction, due to empty taxis and cus-
tomers within the same neighborhood failing to pair efficiently. Spatial pricing can incentivize
relocation of empty taxis to a neighborhood while the use of mobile applications can alleviate
search friction within that neighborhood. We fit our model to a dataset of New York City taxi
rides over four years and conduct a series of counterfactual studies to explore how spatial pricing
impacts demand for and supply of rides, consumer welfare, and drivers’ profit. Our analysis re-
veals that spatial prices that only use origin information can increase consumer surplus by 7.0%
of the average fare and serve 2.6% more customers without hurting the drivers’ profit. More-
over, we find that eliminating the (local) search inefficiency alone can increase consumer surplus
by 13.9% of the average fare and serve 4.3% more customers while simultaneously increasing
drivers’ profit by 2.5% of the average fare. We also observe that improving search efficiency pri-
marily impacts under-served neighborhoods such as upper Manhattan, Brooklyn and Queens,
while pricing primarily impacts well-served neighborhoods, for example, the airports, midtown,
and downtown Manhattan. This underscores the value of a hybrid mechanism. We propose
a mechanism in which (local) search is eliminated in all neighborhoods while spatial pricing is
only used in well-served neighborhoods. This mechanism increases consumer surplus by 21.5%
of the average fare and serves 8.7% more customers, while avoiding price discrimination in less
affluent neighborhoods of the city. The proposed mechanism achieves 96.3% of the benefits of a

citywide spatial pricing and friction removal mechanism.
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1 Introduction

Taxi industry is an essential part of the transportation sector.! For example, in New York City (NYC),
taxis offer over 150 million rides per year (TLC 2014). In this market, taxis and customers search for each
other. This search friction results in a substantial welfare loss. Prices set by the taxi industry affect the inter-
temporal and spatial distribution of the supply and demand and the interaction between them, impacting
the consumer surplus and drivers’ profit. This paper explores spatial pricing, a mechanism that prices rides
based on their origin and destination. In this context, we study the following questions: How does spatial
pricing impact consumer surplus and drivers’ profit? What is the pattern of the optimal spatial prices? How
does pricing based solely on the origin of the ride compare with pricing based on the origin-destination pair?
How does spatial pricing compare with removing the local search friction using mobile applications??

We consider two inefliciencies: First, the mismatch between supply and demand. Second, the (local)
search friction. To address these, we consider spatial pricing and friction removal (through a better matching
technology) as levers. Although spatial pricing® is not widely used in the taxi industry or ride-sharing
platforms, it can help match supply and demand. Supply can be redistributed since the profitability of
different neighborhoods is closely tied to prices and taxi drivers make relocation decisions to maximize their
profit. The distribution of demand can also be adjusted since customers are price sensitive. By adjusting both
supply and demand, spatial pricing provides the policy maker with a unique and powerful tool to intervene
in the details of the market. Moreover, spatial pricing can be implemented with the existing equipment* and
technological solutions such an mobile applications.

Spatial pricing does not resolve all the inefliciencies. The search by customers for taxis is spatially
localized. A customer looks for a taxi only within a relatively small geographical area at any given time.
Although empty taxis have more freedom and may relocate to different areas to seek customers, within
any single area their ability to connect with customers is imperfect. As the spatial densities of customers
and taxis increase, a higher fraction of customers are matched with taxis. However, it is not uncommon
to find both empty taxis and unfulfilled customers in the same area. On the one hand, spatial pricing can
impact the relocation decisions of the empty taxis. This in turn, impacts the spatial density of taxis, and
consequently, the efficacy of the search. On the other hand, mobile (search) applications can improve the

search efficacy as well, enabling better connections between empty taxis and customers even in locations

1With an annual revenue of $18.9 billion and annual profit of $1.5 billion, taxi and limousine industry is one of
the major segments of the US economy; see e.g., Sayler (2017).

Internet-based mobile applications such as Arro and Curb can provide a better match between customers and
taxis; see https://www.ridearro.com and https://main.gocurb.com.

3Spatial pricing should not be confused with dynamic pricing.

“Smart, meters installed on all NYC yellow taxis (since 2009) report all the information (longitude and latitude
of the pick-up and drop-off locations) required for the implementation of spatial prices. Mobile applications such as
Arro and Curb can inform customers of their fare before they hail a taxi.


https://www.ridearro.com
https://main.gocurb.com

with low density of customers and empty taxis, as measured by the number of customers and the number
of empty taxis per street mile, respectively. Relocation of empty taxis induced by spatial pricing and the
reduction of search friction complement each other. Understanding the interplay between spatial pricing
and the removal of (local) search friction is the primary focus of this paper. Although removing the (local)
search friction resolves the issue of having unfulfilled customers and unutilized taxis simultaneously at the
same location, it is merely a local solution. It has little to no impact on neighborhoods with high density of
supply and demand, where the majority of rides initiate (due to the already high efficacy of search in these
neighborhoods). In other words, removing the (local) search friction does not address the global mismatch
between supply and demand; see e.g., Lagos (2000).

The contributions of this paper are threefold: First, we propose a suitably refined spatial model and study
spatial pricing in a setting where spatial redistribution of empty taxis is crucial and truly complementary
to search. We also propose a matching model that captures the spatial aspect of the search friction and the
interplay between the density of supply/demand and the efficiency of matching. Putting these together, we
study the resulting mean field equilibrium. Second, we fit the model to the data of yellow taxi trips in NYC
from January 2010 to December 2013 to estimate the primitives of the model. Certain primitives, such as
demand, can be useful beyond this paper. Third, we quantify the impact of origin-only and origin-destination
spatial pricing on consumer surplus and drivers’ profits, study the pattern of the optimal spatial prices, and
show that spatial pricing is complementary to removing the (local) search friction. This underscores the
value of a "hybrid" mechanism, where pricing is used as a tool to shape supply of taxis in well-served areas,
and removal of search friction induces appropriate supply in less-served ones. It is worth noting that a
matching model that captures the spatial aspect of the search friction and a granular model for prices are
crucial in capturing the complementarity of removing friction and spatial pricing.

Our model captures the interaction of supply and demand both locally and globally. To capture the
global aspect, we use a mean field model that approaches the problem from a macroscopic perspective. In
this model, an individual taxi driver is irrelevant and the focus is on the distribution of the taxis. To capture
the local aspect, we use an aggregate matching function that captures the spatial and microscopic aspect of
the search.

We take the view of a social planner and optimize total consumer surplus. We observe that a spatial
pricing scheme that prices rides based on their origin and destination and allows prices to change between
50% and 150% of the current prices® in NYC can increase consumer surplus by $168, 000 in every day shift
(30.79 per ride or 8.5% of the average fare), serve 3.2% more customers, and increase customer miles (total

number of miles traveled by customers) by 7.4%, without hurting the drivers’ profit. A similar spatial pricing

°In this paper, we do not change the ratio of the price per mile to the fixed portion of the fare. Instead, we use
price multipliers to change the fares; see Section 6.



scheme that only uses origin information can increase consumer surplus by $135, 000 in every day shift ($0.63
per ride or 7.0% of the average fare), serve 2.6% more customers, and increase customer miles by 3.9%.
Prices in under-served areas (such as upper Manhattan, Brooklyn, and Queens)® increase to attract more
taxi drivers. Due to higher prices, each served customer in under-served areas is worse off. However, this
effect is offset by the increase in the number of served customers. In well-served areas, prices increase in

nodes with low demand or shorter trips and decrease in nodes with high demand and longer trips.

Table 1: Improvement in various parameters of interest under spatial pricing and removing friction
(prices deviation is limited to 50% ).

- Origin- Removing . Citywide Origin-
Origin-Only Hybrid Proposed Only Pricing &

Destination Local Search

Pricing Pricing Friction Mechanism = Mechanism  gyiction Removal

Consumer Surplus

Total increase $135K $168K $268K $322K $417K $433K

Per ride $0.63 $0.79 $1.26 $1.52 $1.96 $2.04

In terms of average fare 7.0% 8.5% 13.9% 16.7% 21.5% 22.4%
Number of served customers 2.6% 3.2% 4.3% 5.7% 8.7% 8.9%
Miles traveled by customers 3.9% 7.4% 6.2% 8.1% 11.7% 12.0%
Drivers’ Profit $0 $0 $48K $0 $0 $0

Considerably higher prices in the less affluent neighborhoods of the city (upper Manhattan, Brooklyn,
and Queens) is an undesirable outcome of using spatial pricing alone. This effect can be mitigated by
removing the (local) search friction. Table 1 compares the impact of origin-only spatial pricing (with price
deviation smaller than 50%) and removing friction on various metrics of interest. Removing the (local)
search friction alone (with no spatial pricing) can increase consumer surplus by $1.26 per ride, serve 4.3%
more customers, and increase drivers’ profit by $0.22 per ride. The majority of the benefits of removing the
(local) search friction come from under-served nodes while the majority of the benefits of spatial pricing are
from well-served nodes. This highlights the value of a hybrid mechanism. A hybrid mechanism, that uses
spatial pricing in well-served neighborhoods and removes friction in under-served neighborhoods (keeping
the price pattern), can increase consumer surplus by $1.52 per ride. Under the hybrid mechanism, we need
only a little price variation to achieve the majority of the benefits. Table 1 also presents the impact of
citywide spatial pricing and friction removal. This mechanism (with only 50% price variation) increases
consumer surplus by $2.04 per ride, which is considerably higher than spatial pricing or removing friction
alone. Since policy makers prefer avoiding price discrimination in less affluent neighborhoods of the city,
we propose a mechanism in which friction is removed in the entire city while spatial pricing is used only in
well-served neighborhoods. The mechanism captures almost all the benefits of citywide spatial pricing and

friction removal.

5See Figure 14 for the definition of these geographical areas.



Spatial prices can increase drivers’ profits, as well. Spatial prices, that only use origin information and
do not deviate from the current prices in NYC by more than 50%, can increase drivers’ profits by $100,000
in every day shift ($0.47 per ride or 5.3% of the average base-fare), without lowering consumer surplus.

An important antecedent of this paper is the work of Buchholz (2018) that also studies removing the
(local) search friction and origin-only spatial pricing (with four pricing neighborhoods). We use a different
matching model to capture the spatial aspect of the search friction and study a more refined pricing scheme.
This allows us to unveil the complementarity between removing friction and spatial pricing. Consequently,
we obtain different results; see Sections 2-3 for a detailed comparison.

The rest of the paper is organized as follows. Section 2 reviews the literature. Section 3 introduces the
mean field model. Section 4 describes the data. Section 5 describes the estimation procedure and results.
Section 6 describes the counterfactual analysis and Section 7 concludes. Appendix A discusses the procedure
used to define the nodes/neighborhoods. Appendix B provides complementary discussions on the matching
model. Appendices C-D provides supplementary material for the Data and Estimations sections, respectively.
Appendix E describes a Monte Carlo simulation study to illustrate the identification of our model. Appendix
F uses five-fold cross-validation to examine the ability of our model in predicting the relocation decisions of
the drivers. Appendix G provides supplementary material for the counterfactual analysis and Appendix H

studies spatial pricing for maximizing drivers’ profit. Appendix I provides the proofs and derivations.

2 Literature Review

This paper is related to four streams of literature. The first stream focuses on mechanisms and regulations
used for improving the performance of the taxi market. The second stream studies spatial models of search
with an emphasis on the ride-hailing industry. The third stream focuses on dynamic discrete choice models.
The last stream studies mean field games and their applications.

Mechanisms and regulations used for improving the performance of the taxi market have been studied
extensively. Entry restrictions and price controls are the most studied mechanisms in the literature; see
e.g., Coffman and Shreiber (1977), Foerster and Gilbert (1979), Schroeter (1983), and Héckner and Nyberg
(1995). The common theme in many of these papers is that price regulations and entry restrictions are helpful
since they increase the availability of taxis in times and locations with low demand.” Frechette et al. (2016)
follows this literature by showing that search frictions and entry restrictions are important inefficiencies in
the taxi market, and one reason for the success of ride-sharing platforms is the fact that they can address

these issues. Similar to Frechette et al. (2016), we observe that search friction is a major issue and removing

"This is achieved by reducing the friction of price negotiation and ensuring a suitable minimum profit for the
drivers. For example, in exchange for serving all neighborhoods of a city, a firm could be granted a monopoly
position.



it increases consumer surplus and drivers’ profit by $1.26 and $0.22 per ride, respectively.

Following the success of ride-sharing platforms, taxi industry has received increasing scrutiny. Cramer
and Krueger (2016) shows that the utilization of Uber drivers is higher than the utilization of taxi drivers.
They argue that this is in part due to Uber’s efficient matching technology and inefficient regulations in the
taxi industry. Buchholz (2018) proposes a model of spatial search of taxi rides and computes the gain in
consumer surplus from perfect matching of customers and taxis in each neighborhood. Buchholz concludes
that although the elimination of the (local) search friction in NYC results in a 7.1% increase in the number of
served customers, it has a negative impact on consumer surplus. In contrast, we observe that the elimination
of the (local) search friction results in a 4.3% increase in the number of served customers while increasing
consumer surplus by $1.26 per ride. The majority of these benefits come from neighborhoods with low
density of supply and demand. Our observation is consistent with the conclusions made in Lam and Liu
(2017) and Shapiro (2018) that a platform that posses a superior matching technology outperforms NYC
yellow taxis primarily in neighborhoods with low density of supply and demand.

Another class of mechanisms closely related to this paper is dynamic and spatial pricing in ride-hailing
networks. This literature can be divided into spatial and non-spatial treatments of the problem. Banerjee
et al. (2015), Bai et al. (2016), Ozkan and Ward (2017), and Cachon et al. (2017) use a non-spatial analytical
approach. Banerjee et al. (2015) models the problem of dynamic pricing of rides in a single region as a
queueing system. It shows that the throughput and revenue of no dynamic pricing strategy can exceed that
of the optimal static pricing policy. However, dynamic pricing strategies are more robust to fluctuations in
the system parameters. Relevant empirical non-spatial studies include Hall et al. (2015), Cohen et al. (2016),
Ming et al. (2017), Lam and Liu (2017), and Shapiro (2018). Cohen et al. (2016) uses data on Uber rides in
four major cities in the United States and estimates that for each dollar spent by customers, 1.6 dollars of
consumer surplus is generated. Lam and Liu (2017) uses a dynamic choice model in which customers in NYC
choose between Uber, Lyft, and Taxi rides. It finds that customers who use ride-sharing platforms gain 0.72
dollars for every dollar spent on rides and 64% of this gain is due to dynamic pricing. Although our paper
focuses on spatial pricing and we observe more modest increases in consumer surplus from pricing and using
a better matching technology (e.g., an increase in consumer surplus of $2.04 per ride, 22.4% of the average
ride, from city-wide spatial pricing and friction removal), important qualitative insights of Lam and Liu
(2017) agree with ours. For example, Lam and Liu (2017) observes that pricing is more welfare-enhancing in
thick markets (such as midtown Manhattan) while the matching technology is most beneficial in the outer
boroughs.

The second stream of literature studies spatial search models. Lagos (2000) is one of the first papers

that studied the taxi market with an emphasis on its spatial aspect and the strategic behavior of its drivers.



Lagos (2000) proposed a model in which taxi drivers search for customers on a graph, and highlighted the
friction resulting from this search. A number of papers followed this work, by generalizing it, or using it to
address other issues in the ride-hailing industry.

Bimpikis et al. (2016) builds on Lagos (2000) to study spatial pricing in ride-sharing platforms. It shows
that if the demand pattern is not balanced, spatial pricing is beneficial and optimal prices can be written in
terms of the optimal dual variables corresponding to the flow balance equations. Under the assumption that
prices and compensations can be decoupled, the authors are able to solve for the optimal prices by focusing
on the mass balance equations only. Since in the taxi market in NYC the entire fare is collected by the drivers
and the Taxi and Limousine Commission (TLC) does not collect a fee, prices and compensations cannot be
decomposed in our setting. Hence, no such simplification occurs in our analysis. Our paper allows for a
non-complete graph with different distances/travel times between nodes, a non-uniform demand pattern on
the graph, and inter-temporal variations in the system.

Buchholz (2018) builds upon Lagos (2000) to study the pricing of taxi rides based on pick-up location,
time of day, and the distance of the ride. It concludes that distance-based pricing outperforms pricing based
on the pick-up location and time of day. Buchholz finds that distance-based pricing outperforms origin-only
pricing by 766% with respect to the increase in consumer surplus and by 356% with respect to the increase
in the number of served customers. Although our paper does not analyze distance-based pricing, the origin-
destination pricing subsumes distance-based pricing. However, we see a more modest increase with respect
to consumer surplus (24%) and the number of served customers (23%) in origin-destination compared to
origin-only pricing.

Other related papers in the spatial literature are Braverman et al. (2016), Banerjee et al. (2016), Yang
et al. (2017), Afeche et al. (2018), and Besbes et al. (2018). Braverman et al. (2016) studies centralized
empty car routing in ride-shairng platforms. It shows that a fluid-based optimization can be used to solve
for the optimal network utility, which is an upper bound on the utility of all static and dynamic routing
policies in the finite-car system. Banerjee et al. (2016) studies pricing in shared vehicle systems where taxis
do not relocate when they are empty. It proposes a static spatial pricing algorithm with an approximation
ratio that improves as the average number of vehicles per location grows. Aféche et al. (2018) takes prices as
fixed and studies admission control of customers and centralized re-positioning of drivers and shows that the
value of these control policies are largest at moderate capacity and they increase with demand imbalances.
Besbes et al. (2018) uses a stylized model on a line, where taxis make myopic decisions based on the next
ride and can relocate instantaneously. They show that the pricing problem can be spatially decomposed
based on the attraction regions. The platform can use prices to create regions in which driver congestion is

artificially high in order to motivate drivers to relocate to more profitable regions.



The third stream of literature studies discrete choice theory and structural estimation; see Ben-Akiva
et al. (1985) for an introduction and Anderson et al. (1992) for examples. The most relevant papers in this
area are Rust (1987), Nair (2007), and Su and Judd (2012). Rust (1987) studies a structural model in which
a manager has to decide in each period whether to replace a bus engine or postpone the decision. Nair (2007)
studies an equilibrium model in which consumers decide when to purchase a durable product based on their
expectation of future prices and the seller decides on the optimal temporal pricing scheme. In a setting
similar to Nair (2007), in this paper, taxi drivers make relocation decisions based on their expectation of
future supply and demand, and the central planner sets the prices hoping to impact the relocation decisions
of the drivers. Su and Judd (2012) shows that structural estimation problems can be viewed as constrained
optimization problems. We use an approach similar to Su and Judd (2012) in Sections 5-6. Other relevant
papers in this area include Aksin et al. (2013, 2016)%, Li et al. (2014), Zheng (2016), and Zheng et al. (2018).

The last stream of literature studies mean field games. The mean field games theory was developed
to study systems with an infinite number of rational agents in competition. The theory was developed
independently by the mathematics community in Lasry and Lions (2007) and by the engineering community
in Huang et al. (2003). This framework has been used to model various economic and engineering systems.
Examples of such papers in the operations community include Adlakha and Johari (2013), Xu and Hajek
(2013), Iyer et al. (2014), Adlakha et al. (2015), Gummadi et al. (2013), and Balseiro et al. (2015).

3 Model

This section introduces the empirical model used to estimate the effect of spatial pricing of taxi rides
in NYC. We index the months between January 2010 and December 2013 by k € {1,..., K} (K =48). In
what follows, we fix k£ and focus on non-holiday weekdays of month k. We assume that the primitives of the
model are the same in all weekdays of the same month. In other words, although there is variation across
months, we assume that the non-holiday weekdays in a month are i.i.d. copies of each other. Consider a
connected directed graph G = (V, £) with n nodes, i.e. |V| = n. Each node represents an area in Manhattan,
Brooklyn, Queens or one of the airports (La Guardia and JFK). Any pair of distinct nodes are connected
with at most two directed edges, denoted by (4,j) and (j,4), respectively. Furthermore, each node has a
loop, which represents travel within the area/node.

Let t € {1,...,T} index time. Each ¢ represents a five-minute interval between the hours of 6am and 4
pm (a typical NYC day-time shift), corresponding to T' = 120. For all ¢, j € V, the average time and distance

to travel from node i to node j are denoted by 7;; and d;, respectively.® We allow (7ij,dij) to be different

8Ata et al. (2017) and Ata and Peng (2017) rigorously establish the existence and uniqueness of the equilibria in
a similar setting.
°Tf (i,§) € &, 7i; and d;; are the travel time/distance on the edge connecting i to j. Otherwise, 7;; and d;;



from (7;;, dji)m and do not impose a relationship between 7;; and d;;. We assume that 7;; is integer-valued

for all 7,5 € V and 1;; = 1 for all 4. To facilitate the analysis to follow, define

1 it (i) €€,
Sij:{ (i,5)

0 otherwise.

Let P;; and Fj; denote the price per mile and the fixed portion of the fare, respectively, for a ride from
node ¢ to node j. The fare paid by a customer to his driver for a ride from node 7 to node j is Fj; + P;;d;;.
The fixed portion is used to model the flag-drop and the JFK flat fare.!! Taxes and tolls are not included in
the calculations as they are fixed (over time) and taxis do not keep them. The price per mile and the fixed
portion of the fare are allowed to depend on the origin and the destination of the ride in order to capture the
flat fare structure of rides between JFK and Manhattan.'? This also gives us sufficient flexibility to explore
the origin-destination pricing in our counterfactual study.

Given prices I' = [Fj;]i%_; and P = [P;;]}%_;, the arrival rate (per period) of potential customers who

wish to go to node j from node i in period ¢, denoted by Aﬁj (F,P), is given as follows:
A(FP) = Al [Fyj + Pyjdi;]” exp(Bk)  for all i, j, . (1)

The parameter Aﬁj is the fixed effect of demand and a < 0 is the price-elasticity. As will be shown in Section
4, our data exhibits a trend over time (see Figure 3) and § captures the monthly trend in demand. Since
a does not depend on the fare, the demand model in (1) is a constant-elasticity demand model.'® The

(potential) demand at node i in period ¢, denoted by AL(F,P), is given by
ANFP) = Y AL (FP) for all i,¢.
j=1

The probability that a customer at node ¢ is headed to node j, denoted by wfj(F, P), is equal to

_ AL(EP)

ij

correspond to the travel time/distance of full taxis, that are calculated from the data.

10This allows us to capture the spatial variation in the traffic speed as well as the impact of one-way streets and
streets with different traffic speeds in each direction.

"'The fare of a ride from JFK to Manhattan (and vice versa) after September 2012 is $52 plus the $4.5 rush hour
surcharge (4Pm to 8PM on weekdays, excluding legal holidays). Since this paper focuses on the day shift (6am to 4
pM) on weekdays, the rush hour surcharge is not included in the calculations.

12Consider a customer at JFK airport at a non-rush hour time in September of 2012. If he is headed to Manhattan,
his fare is $52. This corresponds to F;; = 52 and P;; = 0. However, if he is headed to another location, for example
to La Guardia airport for a connecting flight, his fare is calculated based on the distance he intends to travel. In this
case, Fj; = 2.5 and P;; = 2.5 per mile.

13See Van Zandt (2012, Page 152) for a discussion on constant-elasticity demand models.
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Figure 1: Timing of events and definition of variables in each period.

In what follows, we denote satisfied demand at node 4 in period ¢ by A!. Note that \! < Al(F,P).

The timing of events in each period is depicted in Figure 1. We denote the number of active taxis during
the day shift by M and the average of M across the 48 month by M. We normalize the number of active
taxis to an M/M mass (as done usually in mean field models).!* The mass of empty cars at node i at the
begining of period ¢ is denoted by m!. Also, let mﬁj denote the mass of empty cars that decide to relocate
from node i to node j at the end of period ¢, and f] denote the mass of full cars that picked up a customer
at node ¢, who wishes to go to node j, in period t.

An empty taxi at node ¢ in period ¢ that could not pick up a customer relocates to node j with probability
qu. In particular, it stays idle at node 7 until the next period with probability ¢!;. These probabilities arise
endogenously as drivers make their relocation decisions. Letting A(7) = {j : S;; = 1} denote the set of nodes
that can be reached from node 7, an empty taxi at node i can only relocate to nodes in A(7). Moreover,

since ¢f. = {qf; : j € A(i)} is a probability distribution for all 7, it follows that

> gy =1 forallit,

JEA(D)
qu =0 for all j ¢ A(i),
qu >0 for all 4, j, t.

Let ¢ denote the mean travel cost per mile (incurred by the drivers). We assume that the cost of traveling
from node i to node j is equal to cd;; + €;j, where ¢;; denotes a Gumbel Min'® (minimum extreme value type
I) distributed idiosyncratic shock to the travel cost of the driver. The idiosyncratic cost shocks correspond
to unobservable variables in the empirical industrial organization literature (see, e.g., Rust (1987)), which
are observed by the driver but not recorded in the data. The cost shocks are assumed to be i.i.d. with
mean zero and scale parameter o. Furthermore, we let V (i,t) denote the value function of an empty taxi’s

driver at node i in period ¢ (before customers arrive); and N; denotes the number of regions in node i. What

14Using M/M as opposed to the unit mass in all months allows us to capture the variation in the number of active
taxis while ensuring that all quantities of interest are comparable across months.

15 A Gumbel Min distributed random variable has the same distribution as the negative of a Gumbel Max (commonly
referred to as Gumbel) distributed random variable.
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constitutes a region will be discussed below in detail.
For the remainder of this section, we assume that the problem primitives M, M, N;, ¢, Fi;, Pi;, Tij,

dij, Sij, Afj, @, B, k, o, and the initial distribution of empty taxis, m}, are given for all i, j,t. We then

proceed to characterize Aj, mf, mi;, ff;, qi;, and V (i,t) by deriving a set of equations they must satisfy.
To characterize the satisfied demand \!, we focus on the following question: If there are m tazis and A
customers at the beginning of a period in an area (node), what is the expected number of served customers
(matches between taxis and customers)? The answer depends on whether the matching of customers and
taxis is perfect (frictionless) or imperfect (with friction). Matching can be perfect in nodes where customers

and taxis are matched through a mobile application. In most other cases, the matching is imperfect and

taxis need to search for customers block by block.

Perfect Matching. When matching is perfect, the number of matches is the minimum of the number

of taxis and customers in the node in that period, i.e.
A = min (m}, AL(F,P)). (3a)

When matching is imperfect, there can be unfulfilled customers and unutilized taxis simultaneously. We
propose the following matching model in this case. Consider a node partitioned into N > 2 regions, which
can be done so that it takes one period (i.e. five minutes) for a taxi to explore any of the regions.'® We
assume that customers and taxis randomly choose one of N regions (with equal probabilities) to explore and
the number of matches in each region is the minimum of the number of customers and taxis in that region.
The total number of matches in the node is equal to the sum of the matches made in the N regions.

Since customers and taxis choose regions with equal probabilities, all regions have the same expected
number of matches. Consider an arbitrarily chosen region. Let X and Y denote the number of taxis and
customers that chose that region. Since there are m taxis and each taxi chooses this region with probability
1/N, we have X ~ Binomial(m,1/N). Similarly, Y ~ Binomial(A,1/N). Therefore, the expected number
of matches in the region is equal to E[min(X, Y)}, and that in the node is equal to N X ]E[min(X, Y)} We
would like to find a tractable approximation for N x E[min(X,Y)| that is monotone in A and equals zero
when A = 0. To do so, we use a normal approximation to the Binomial distribution that is further refined

by a linear approximation for small values of demand to ensure monotonicity.'”

16Regions are the smallest geographic units in our model and they are obtained by dividing the street miles in a
node such that each region takes exactly one period to explore. One way to compute the number of regions N is to
use the data on the average speed of taxis and the total street-miles in that node.

7Our numerical results are robust to the approximation used in small values of demand. This approximation is
required at demand values much smaller than one customer per period, which are observed in less than 1% of the
(4,t) pairs in the numerical experiments of Section 6.
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Imperfect Matching. When matching is imperfect, we propose the following model:

G(ALm?) if AL > A,
v={ t " (3h)
G(Amg;mﬁ) A otherwise,

where G(A;m) = AD(v) + mP(—v) — (m — A) ¢(v) /v with ®(-) and ¢(-) denoting the cdf and pdf of the

standard normal distribution, respectively,

and A,, = min {A > 0 : G(A;m) is strictly increasing on (A, oo)}; see Appendix 1.1 for the derivation of
(3b).

The term G(A;m) in (3b) is derived using a normal approximation for the Binomial distributions.
Although this approximation elegantly captures the key features of search friction that we seek to model,
it is not monotone in a neighborhood of the origin and fails to satisfy A! = 0 when A} = 0. The linear
approximation at A! < f\m:_, in (3b) remedies these two issues and retains the other desirable features of the
normal approximation.

Buchholz (2018) tailors the imperfect matching model proposed in Burdett et al. (2001) to the taxi
market. In Buchholz (2018)’s model, first the number of drivers and their locations are revealed to the
customers. Then, each customer chooses a taxi. When more than one customer chooses a taxi, only one
of the customers is served and the others leave the system unfulfilled. In our matching model, taxis and
customers in each region observe each other (and not the taxis and customers in other regions) and matching
in each region is frictionless. Due to this frictionless matching in each region, our matching model results in
a higher expected number of matches when the number of taxis and customers are sufficiently higher than
the number of regions (nodes with high density of supply and demand). However, when the number of taxis
or customers is low (nodes with low density of supply or demand), due to the fact that taxis can be matched
only with customers in their region, our matching model results in a lower number of matches. For a detailed
comparison of our matching model with the matching model of Buchholz (2018), see Appendix B.

Next, we describe the flow balance equations and the Bellman equation, governing the system dynamics
and the relocation decisions of empty taxis, respectively. These equations hold under both the perfect and

imperfect matching.

Flow Balance of Full Cars. The mass of empty cars that picked up a customer at node 4 headed to

t

node j in period ¢, f;;, must be equal to AL, the satisfied demand at node 7 in period ¢, multiplied by the
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probability that the customers are headed to node j, ij(F, P). Therefore, we must have

o= ANim(FRP) foralli,jt. (4)

)

Flow Balance of Empty Cars. The mass of empty cars that decided to relocate from ¢ to j at the

end of period ¢ (after they could not obtain a customer), m!., must be equal to the mass of empty cars after

J )
the customers are served, (mf - )\f), multiplied by the probability that a car will relocate to node j, q;?j; see

Figure 1 for the timing of events in a period. Therefore, we must have
mf; = (mf— ) q}; for all 4, 7, t. (5)

Flow Balance at Nodes. The mass of empty cars in node 4 at the begining of period ¢ is equal to the
sum of the mass of empty cars that arrived at node ¢ in period ¢ and the mass of full cars that dropped their

customer at node ¢ in period t. Therefore, we must have

Z mt T Z AL for all i,t. (6)

JEA()

Mass Balance. Since taxis are either empty or full and the mass of (relocating) empty taxis and full

taxis at any period t must sum to M /M, the total mass of taxis on the graph, we must have

Z Z im —l—ZiZJ = M/M  forallt. (7)
i=1jeA(1) s=1 i=1 j=1 s=1

Next, we describe how taxi drivers make their relocation decisions.

Bellman Equation. Consider an infinitesimal driver and assume that the mass of the empty and full
taxis, [mf;]7;_; and [f};]i';=,, and satisfied demands, [A{]},, are given for all ¢ € {1,...,T}. The driver
moves around on the graph until ¢ = T, picks up customers, delivers them to their destination and makes
relocation decisions when he can not pick up a customer. The objective of the driver is to maximize his total
profit. Recall that the travel cost of the infinitesimal driver from node ¢ to node j is equal to cd;; + €5,
where ¢€;; denotes a Gumbel Min (minimum extreme value type I) distributed idiosyncratic shock to the
travel cost of the driver. The cost shocks are assumed to be i.i.d. with mean zero and scale parameter o.
The state of the empty infinitesimal taxiis s = (i,¢,¢"), wherei € {1,...,n} denotes the location (node)
of the taxi, t € {1,..., T} denotes the period, and () = (eij 1] € A(z)) is the vector of iid cost shocks. Each
element of ¢?) has a Gumbel Min (minimum extreme value type I) distribution with mean zero and scale

parameter 0. We denote the observable (to the researcher) state of the empty taxi by = = (¢,t). Therefore,
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s = (i,t,e®) = (z,¢®). The driver of the empty taxi at state s = (4,t,¢(*)) can choose to relocate to node
j € A(i). Therefore, the action set of the driver at state s = (i,t,e®) is A(i). The following proposition

characterizes the driver’s value function and the relocation probabilities; see Appendix 1.2 for its proof.

Proposition 1. The value function of the infinitesimal empty tazi is given by

V(i _i(zﬁ (F,P) ( j+ [Py —c}dij) +Z7Tfj(F,P)V(j,t+Tij)>
7 j=1

% U+ 7i5) —cdij
+ a(l—m—’t> log{ Z exp(V(]7 +7(;j) ¢ ])] foralli andt < T, (8)
‘ JEA®)

and V(i,t) =0 for all i and t > T. The relocation probabilities are given by

xp | |V (fit+7i)—cdij| /o
ep([ o 2 ) for j € A(i),
qu = Yicaq €xXP ([V(l,t—&-nl)—cd“} /‘7) (9)

0 otherwise.

Proposition 1 applies to any matching model. The first term on the right-hand side of Equation (8)
captures the expected value of picking up a customer and the second term captures the expected value of
the best relocation decision, where \!/m! is the probability of picking up a customer. The value of picking
up a customer is the expected fare of the ride plus the expected value function at the destination of the
ride. Note that the arguments in the exponential function are the scaled values of the value function at the
destination of the ride minus the travel cost. For an analysis of strategic relocation of the drivers that is
similar to ours, see Lagos (2000) and Buchholz (2018).

Next, we define the mean field equilibrium, and Theorem 1 establishes its existence; see Appendix 1.3

for its proof.

Definition 1. Given the problem primitives M, M, N;, c, Fij, Pij, 7, dij, Sij, AW a, B, k, o, and m}

the solution ()\t ml mﬁj, Z],q”,V(i,t)) to Equations (3)-(9) is called the mean field equilibrium.

Theorem 1. Given the problem primitives M, M, N;, c, Fyj, Py, 1ij, dij, Sij, AL, a, B, k, o, and mi,

77

there exists a mean field equilibrium.

4 Data

Our data set is the NYC yellow taxi trip record data spanning four years from January 2010 to December

2013.'% In this time-span, NYC yellow taxis offered an average of 477,497 rides per day (174.3 Million per

NYC taxi trip record data set is released by the NYC Taxi and Limousine Commission (TLC).
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year). NYC yellow taxis are only available through street hails.'® For each ride, the data set specifies the
time-stamp (date and time up to the second) and location (longitude and latitude) of the pick-up/drop-off
and itemized fares (fares, taxes, tolls, and tips) paid by the customers. The data set also includes identifiers
for the taxi drivers that offered each ride. Therefore, we observe the status (full/empty) of the taxis at all
times, the times at which taxis pick up or drop off customers, and the destinations of the customers. Note
that we only observe the location of the taxis when they pick up or drop off a customer.

A preliminary look at the data indicates that weekdays and weekends as well as day and night shifts
exhibit significant spatial and inter-temporal variations in the ride traffic. Figure 2 depicts the number of
pick-ups per minute in the entire city on an average day. The number of pick-ups fluctuates between a
minimum of 66 customers per minute (around 5:00am) and a maximum of 507 customers per minute (around
7:30em).2° To focus on relatively busy hours of the day when the ride traffic is relatively stable, in the
remainder of this paper, we focus on the day shift on weekdays (i.e., 6am to 4pm). Furthermore, we disregard
trips with a duration more than three hours or a distance longer than a hundred miles. These instances are
a combination of out-of-town trips and inaccurate data entries and account for less than 0.5% of the trips.
Figure 3 depicts the average number of pick-ups during the day shift on a weekday in each month between
January 2010 and August 2012. Prices did not change in this time-span. The dashed line in Figure 3, which
depicts the regression of the average number of pick-ups on the month index & as in (1), highlights the trend

in the average number pick-ups.
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Figure 2: Average number of pick-ups per Figure 3: Average number of pick-ups in

minute in NYC. The dashed vertical lines de- NYC during the day shift on a weekday of
pict the begining and the end of the day shift each month. The dashed line highlights the
(6am and 4pwm, respectively). monthly trend in the number of pick-ups.

There is significant spatial variation in the number of pick-ups across the city, with 93.8% of the rides

(during the day shift) originating at Manhattan, 3.5% in the airports, 1.2% in Brooklyn, 1.4% in Queens,

YPrearranged services are offered by For-Hire-Vehicles (FHV).
20A similar analysis can be carried out for the night shift.
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and less than 0.1% of the rides originating in Staten Island and Bronx. We focus our analysis on the rides
taking place between the two airports (JFK and La Guardia) and parts of Manhattan, Brooklyn, and Queens
that have sufficiently high traffic; see Appendix A. This area constitutes 99.4% of the pick-ups, 98.5% of the
drop-offs, and 97.9% of the pick-up, drop-off pairs in NYC.2! We divide this area into seventy five nodes and
study trip statistics in each of them; see Figure 16 for the nodes. This node definition provides sufficient
separation between the major hubs of the city. Note that in the definition of the nodes, both size and density
matter. This gives rise to a trade-off between size and density; for further details on the node definitions, see
Appendix A. The average number of pick-ups and drop-offs in each of the seventy five nodes are depicted in
Figure 4. Half of the pick-ups belong to the top ten nodes, with the top four nodes constituting a quarter of

all pick-ups.

W 95% - 100% [10956,18425)
W 75% - 95% [4685,10956)
50% - 75% [450,4685)
W 25% - 50% [80,450)

W 0% - 25%  [0,80)

W 95% - 100% [11669,22957)
W 75% - 95%  [3996,11669)
50% - 75% [408,3996)
W 25% - 50% [124,408)

W 0% - 25%  [0,124)

(a) Average number of pick-ups. (b) Average number of drop-offs.

Figure 4: Average number of pick-ups and drop-offs during the day shift on weekdays in each node.

A trip on average is 2.7 miles and 13.2 minutes long. There is considerable spatial variation in the average
trip duration and distance across the city; see Figures 19-20 in Appendix C. Trips originating in Manhattan
are the shortest with an average of less than three miles in most nodes and trips originating in the airports
are the longest with an average of nine miles in La Guardia and fifteen miles in JFK. Trips originating in
Brooklyn and Queens fall in between with an average of three to five miles.

In summary, our analysis focuses on 217,051,494 taxi rides taken place between 6am and 4pm on weekdays

2I'Note that only 97.5% of the trips in the data set have pick-up coordinates that fall within the boundaries of NYC.
Inaccurate pick-up coordinates (zero entry for longitude or latitude) account for 2.0% of the trips and out-of-town
trips account for the remaining 0.5% of the trips.
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(excluding federal holidays) from January 2010 to December 2013, with pick-up and drop-off coordinates in

the shaded area in Figure 16.

5 Estimation

This section uses the nodes depicted in Figure 16 to estimate the primitives of the model; see Appendix
D for a summary of the primitives. The procedure used to construct the nodes is outlined in Appendix A.
The estimation is carried out in three steps. First, we directly estimate the problem primitives 7;;, dij, Sij,
¢, N;, M, and m}. Second, given 7;;, d;j, Sij, ¢, N;, M, and m;, for each o, we characterize the mean
field equilibrium (X!, m!, mi;, fi;s i, V (i, t)) at each month. The data set provides the sequence of pick-ups
and drop-offs of the taxi drivers. For each o, we use the equilibrium relocation probabilities to calculate the

likelihood of the observed sequence of pick-ups and drop-offs. Then, we use maximum likelihood estimation

to estimate o. Third, we use the estimated (potential) demand at the estimated o to estimate the demand

¢

curve parameters, A”-, a, and B. Appendix F uses five-fold cross validation to examine the performance of

our model in capturing the strategic relocations of the taxi drivers.

5.1 Offline Estimation of the Primitives 7,;, d;;, Si;, ¢, N;, M, and m]

We use the trip duration and distances in the data set to estimate 7;; and d;;. We set S;; = 1 if nodes ¢
and j share a border or they are connected through a tunnel or bridge. Since JFK is geographically isolated
and it does not share a border with any node, we add an arc between JFK and all nodes on the eastern
border of Queens and Brooklyn. We use the fuel cost per mile and the depreciation cost per mile to estimate

22 and

the cost of travel ¢, in each month. The fuel cost can be estimated from the historical gas prices
the depreciation cost can be estimated from the salvage value of the taxis and the miles driven at the time
of salvage.?3 Following Farber (2008) and Frechette et al. (2016), we define a shift of a taxi driver as a
consecutive sequence of trips, where breaks between two trips cannot be longer than five hours. We use the
shifts of the taxis drivers to calculate the number of active taxi drivers during the day. From 8am to 4pm, the
number of active taxi drivers shows little variation. Although the number of active taxi drivers between 6am
and 8awm is considerably lower than the rest of the day shift, for simplicity, we assume that the number of

active taxis is fixed throughout the shift and let M equal to the average (across weekdays) of the maximum

number of active taxi drivers during the day shift. Moreover, we use the distribution of the first pick-up of

2https://www.nyserda.ny.gov /Researchers-and- Policymakers /Energy- Prices/Motor-Gasoline/
Monthly- Average-Motor-Gasoline-Prices.

23In this calculation, we use the price of the dominant NYC Taxi model (Camry), $24, 000 including taxes, the
average retired taxi salvage value of $3,000, and the average mileage of the NYC taxis at the time of retirement,
350, 000; See https://nycitycab.com/Business/cabsforsalelist.aspx.
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the taxis in the first fifteen minutes (average search time of the taxis until their next pick-up) of the day
shift as the initial distribution of cars.

We estimate the number of regions in non-airport nodes as follows: Consider node i. Regions in node ¢
are defined such that it takes a taxi exactly one period (five minutes) to explore each region. Therefore, it
takes a taxi N; periods (5 x N; minutes) to search all the streets in node 7. Thus, N; can be estimated by
dividing the average time it takes a taxi drivers to search all the streets of node ¢ by the length of a period
(five minutes). We use the average traffic speed in each zone and the shape file of NYC streets?* to compute
the average time it takes to explore all the streets in a node; see Table 5 and Figure 14 in Appendix A for

the average traffic speeds. At the airports, we set N; equal to the number of taxi stands in that airport.2®

5.2 Estimation of the Standard Deviation of Cost Shocks

Identification. We assume that taxi drivers in our dataset relocated rationally based on the model in
Proposition 1. As proved in Proposition 1, taxi drivers relocate to those nodes for which the difference of
their value function and the travel cost is higher with higher probabilities. However, the impact of the value
function at the destination diminishes with o. For small values of o, taxi drivers almost always relocate to the
destination with the highest value function minus travel cost. As ¢ increases, drivers relocate to destinations
with lower value function minus travel cost with a higher probability, i.e., relocation probabilities become

more uniform. Intuitively, the impact of o on the relocation probabilities helps us identify o.

Estimation. We estimate o in two steps. First, for each o, we characterize the equilibrium. We use
the equilibrium relocation probabilities to calculate the likelihood of the sequence of pick-ups and drop-offs
observed in the data set for each feasible 0. We then use maximum likelihood estimation to estimate o.
Recall that we index the months with k € {1,..., K} and our data covers the months January 2010
through December 2013, i.e., K = 48. To emphasize the month dependence, we attach superscript k to

various quantities of interest in the remainder of this section. We estimate A¥, the satisfied demand at node

1 in period t of month k, and ijk (F*P*), the distribution of the destinations of the customers at node i in

period ¢ of month k at fare structure (F¥P*)26_ directly from the data. Given M, M* N;, m* c* Fk Pk

(] YR @5

7 (F5P*), and X%, for each o, we solve for the mean field equilibrium that satisfies the Equations (4)-(9)

Zhttps:/ /data.cityofnewyork.us/City-Government /NY C-Street- Centerline- CSCL- /exjm-f27b /data.

25Taxi operation in airports is accurately captured by (3b). In each stand, taxis and customers see each other and
matching is perfect. However, taxis and customers in different stands cannot be matched.

26Between January 2010 and August 2012, during the day shift, the fare of a ride between JFK and Manhattan
was $45 and the fixed portion of the fare and price per mile in the rest of the city were $2.5 and $2.0, respectively. On
September 4th 2012, the fare structure of NYC taxi rides changed. The fare of a ride between JFK and Manhattan
increased to $52 and the price per mile increased to $2.5. No price changes occurred between September 2012 and
December 2013. We do not include Monday September 3rd 2012 in our analysis.
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Next, we discuss how to use the equilibrium relocation probabilities and the sequence of pick-ups and
drop-offs observed in the dataset to estimate 0. Let m € {1,...,M*} and d € {1,..., D*} index taxis and
days, respectively, where D* denotes the number of non-holiday weekdays in month k. Let Lyn.a,5(0) denote
the likelihood of taxi m having the set of drop-off and subsequent pick-ups observed in the data on day d of
month % that are not longer than two hours apart; see Appendix D for the calculation of £y, qx(c). In the
dataset, a taxi driver on average searches for 2.5 periods after a drop-off until it picks up his next customer.
Therefore, we omit drop-off and subsequent pick-up tuples that are longer than two hours apart from the
likelihood function because they are likely due to breaks the drivers may be taking in their shifts. Indeed,
the great majority of these occur around noon and likely correspond to lunch breaks. Such drop-off and
pick-up tuples constitute less than 3% of all such tuples.

The likelihood of observing the set of drop-off and subsequent pick-ups (that are not longer than two
hours apart) observed in the data set given o is L(o) = Hszl H%:l HdDzkl Lim.ax(0), where Ly, 41(0) is

given in Equation (13) of Appendix D. Therefore, the maximum likelihood estimator of o is the solution to
maximize log (L(c)) subject to (4)-(9), (P1)

given M, M*, Ny, mi*, ¢*, F¥, P, zl&(FkP¥), and Xi* (estimated directly from data) for all , j,t, k. We
solve Equations (4)-(9) for each month k € {0,..., K} and o using the nonlinear optimization solver Knitro
(Byrd et al. (2006)). Then, we compute the likelihood of each o and search R with a precision of 0.0001
for the solution to Problem (P1). We obtain the maximum likelihood estimate of o = 1.4048; see Figure 21
for a graph of log-likelihood values. To compute its standard error, we use the parametric bootstrap method
(see e.g., Horowitz (2001)). We generate 100 simulated datasets with the same size as our dataset using
the estimated 0. We then estimate parameters of the simulated datasets and compute the standard error.
This procedure results in the standard error of 0.001, a 95% confidence interval of (1.4015,1.4056). We also
conduct a Monte Carlo experiment to show that Problem (P1) can recover the true o; see Appendix E for

details.

5.3 Estimation of Demand Curve Parameters

In this section, we use the mean field equilibrium at the estimated o to estimate the demand curve

¢

parameters A;;, «, and 5. Recall that demand model parameters are assumed to be the same in all non-

holiday weekdays of the same month. Equation (3b) is monotone in A! for all m!. Therefore, given the

2"This approach and Definition 1 both characterize the mean field equilibrium. In Definition 1, A} satisfies equation
(3) while in this characterization, \! is estimated from the data.
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satisfied demand A! and the mass of empty taxis m!, there exists a unique estimate for (potential) demand
AR (F* PF) that satisfies (3b). Using this estimate, we set®® Af¥(FK P*) = wlk(F¥ P*) A*(F* PF) for all
i,7,t, k. This gives the demand for rides from node ¢ to node j in period ¢ of a day in month k. Recall that
ijk (F% P*) has been estimated directly from the data. Since there are D¥ non-holiday weekdays in month
k, the (realized) total demand for rides from node i to node j in period ¢ across all non-holiday weekdays
in month £ is Yz’;”“ =M DkA%“(F k P*) customers.?? Similarly, given the demand curve parameters Afj, a,
and 3, by equation (1), the expected total demand for the same rides is ZWD’“Afj [Ff; + PZ’;d”]a exp(Bk)
customers.

We use a negative binomial (NB-2) model®? to estimate the primitives of the demand model. To be more

specific, we assume
Yi?k ~ Negative Binomial(]\?DkA’;j [FZZ + Pi’;-dl-j]a exp(Bk), 5) (10)

and use maximum likelihood estimation to estimate its parameters. The parameter § captures the over-
dispersion of the estimated demands. As ¢ goes to zero, the negative binomial model approaches the Poisson
model. For similar treatments and further details on negative binomial regression, see Hilbe (2011), Hardin
et al. (2007, Chapter 13), and Lawless (1987). We obtain a price-elasticity estimate of & = —0.4735 with
standard error 0.0033, a monthly trend estimate of 8 = 0.0024 with standard error 1.7E-5 (equivalent to an
annual trend of 2.92% with standard error 0.02%)3!, and a dispersion parameter estimate of § = 0.1082 with
standard error 1.5E-4. The estimated demand across the forty eight months do not show drastic changes.
For brevity, we focus on September 2012 and provide an overview of the demand estimates in this month.
The estimated potential and satisfied demand during the day in the entire city and Brooklyn are depicted
in Figure 5. As discussed in Section 3, the efficiency of matching is positively correlated with the density of
supply and demand. Therefore, in Manhattan, where the density of supply and demand is high (see Figure
6), the majority of customers are served. In Brooklyn, however, due to high friction as a result of low density

of supply and demand, only a small fraction of customers are served. Increasing matching efficiency could

28Gince customers who hailed a taxi are randomly chosen from all customers who needed a ride, the distribution
of the destination of the served customers coincides with the distribution of the destinations of all customers.

2°The term Af;“ (F% P*) is the (normalized) mean field demand. By multiplying Af? (F% P*) by the average number
of active taxis M and the number of weekdays D* in month k, we obtain the expected total number of customers
who wanted a ride from node ¢ to node j in period ¢ on a weekday in month k.

30 A random variable Y is said to have a negative binomial distribution with parameters (i, d) if Y ~ Poisson(Au),
where u ~ I'(,1/6). In other words, a negative binomial model can be thought of as a Poisson model with gamma
heteregeneity, where the gamma noise has a mean of one. As a result, negative binomial is commonly referred to as
the Poisson-Gamma mixture. In a negative binomial model, the ratio of variance to mean is 14 du. As § goes to zero,
the gamma noise vanishes and the negative binomial model approaches the underlying Poisson model. We use the
negative binomial model as opposed to the commonly used Poisson model because it can capture the over-dispersion
(variance being greater than the mean) observed in the estimated demand.

31Note that the trend of potential demand is not equal to the trend of satisfied demand; see Figure 3.
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add substantial value, particularly in locations with low density of supply/demand, by increasing the number
of served customers. Furthermore, better matching could impact the power of spatial prices; see Section 6.2

for further details.
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Figure 5: Estimated potential and satisfied demand (per period) during the day shift. The solid
lines correspond to potential demand and the dashed lines correspond to satisfied demand.

6 Counterfactual Analysis

Using the model primitives estimated in Section 5, this section studies the impact of spatial pricing of
taxi rides and removing the (local) search friction on the taxi market in NYC. Following Section 5, we focus
our analysis on September 2012 and study spatial prices that maximize the consumer surplus; see Appendix
H for a similar analysis that focuses on maximizing drivers’ profit. In what follows, we denote the fixed
portion of the fare and the price per mile that were used in September 2012 by Fij and Pij, respectively,
and refer to them as the base prices. We assume that Fj; = mjfij and P;; = nij?ij, where 7;; denotes
the ratio of the price/fare to the base price/fare for rides from node ¢ to node j. We refer to 7;; as the

price multiplier for rides from node i to node j. We assume this particular form because of computational

simplicity. Moreover, for the case of origin-destination pricing, this form is without loss of generality.

6.1 Spatial Pricing

Since the demand curve introduced in Equation (1) has a constant price-elasticity and demand is (locally)
inelastic,? consumer surplus under this demand model is infinite. We use a truncation approach to tackle

this issue (for a similar treatment, see Cohen et al. (2016) and Buchholz (2018)). We truncate the demand

32The absolute value of the price-elasticity of rides around the base prices is less than one.
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Figure 6: Average number of customers and empty taxis (in a five-minute period) during the day
shift on weekdays in September 2012 (these are obtained through estimation; see Problem (P1) in
Section 5).

at some price multiplier 9§ > 1. This is equivalent to assuming that no customer is willing to pay more than
7] times the base fare for a ride. We refer to 7 as the maximum price multiplier. The next proposition derives

the consumer surplus; see Appendix 1.4 for its proof.

Proposition 2. Consumer surplus resulting from the rides from node i to node j in period t under price

multiplier n;; 1s equal to

Al =5 5
OS5 (mij) = 7oy My (B P) [Fij + Pijdyg]

[,ﬁ(a-l—l) _ nij(a+l)]
: N(EP) |

1+«

(11)

We start by studying pricing based on the origin of the rides. Let V(i,t) denote the value function of
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the taxi drivers under the base prices (Pij,fij) and consider the following pricing formulation.

n n T
maxri“mize Z Z Z CSEJ- (i) (P2)

i=1j=1t=1

subject to (3)-(9) and

i =11 <7 (P2a)
(Fijs Pij) = ni (Pijvﬁij) (P2b)
> miv(i,0) =Y miV(i,0). (P2c)
=1 i=1

We call the solution {n;};cy to Problem (P2) the optimal origin-only price multipliers (or equivalently the
optimal origin-only prices) with a maximum price variation of 7. Note that in Problem (P2), price multipliers
only depend on the origin of the ride. Constraints (3)-(9) ensure that equilibrium conditions are satisfied.
Constraints (P2a)-(P2b) ensure that prices do not deviate from the base prices by more than a factor of
7. Constraint (P2c) ensures that the drivers’ profit is not hurt by the new pricing scheme (i.e., the average
value function of the drivers in the begining of the day shift under the new pricing scheme is greater than or
equal to the average value function of the taxi drivers in the begining of the day shift under the base prices.).

The increase in consumer surplus for four plausible values of maximum price multiplier 7 is presented
in Table 2. As shown in Table 2, using an origin-only pricing scheme with a maximum price variation of
20% results in an increase in consumer surplus of $94, 000 - $325, 000 on every day shift on weekdays. This is
equivalent to an increase in consumer surplus of $0.44 - $1.53 per ride (4.9%-17.0% of the average fare paid
by the customers). Although the increase in consumer surplus is sensitive to maximum price multiplier 7} (as
shown in Table 2), the pattern of prices is not sensitive to 7); see Figure 24 in Section G.3. Therefore, in the
remainder of this section we use maximum price multiplier 7 = 5, which is equivalent to assuming that for
a ride of $9 (average fare before tax and tips in September 2012), no customer is willing to pay more than

$45. This is a conservative choice for 7 considering its impact on consumer surplus (see Table 2).33

Table 2: Consumer surplus under origin-only optimal spatial prices, with maximum price variation
n=0.2.

Maximum price multiplier (7)) 5 10 20 50
Total CS under the base prices $4.8M $8.4M $13.7M  $24.4M
Total increase in CS $94K  $130K $196K  $325K
Increase in CS per ride $0.44  $0.61  $0.90 $1.53

Increase in CS in terms of average fare 4.9%  6.8%  10.0%  17.0%

33In a similar setting, Cohen et al. (2016, Section 4) makes the conservative assumption that no customer is willing
to pay more than 4.9 times the base prices for an Uber ride.
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Table 3 presents the increase in consumer surplus, number of served customers, and the miles traveled
by customers for different maximum price variations, 77. We observe that larger values of 7 results in larger
increases in consumer surplus, as one would expect. However, the returns to the change in 77 are diminishing,.
The reason for the diminishing returns is illustrated in Figure 7. As the maximum price variation 7; increases,
fewer nodes require a price variation higher than 7. Table 3 indicates that the optimal origin-only pricing
scheme (for maximizing consumer surplus) results in a 2.6% increase in the number of served customers and

a 3.9% increase in the miles traveled by customers for a maximum price variation of 77 = 0.5.34

Table 3: Impact of maximum price variation on various performance metrics (maximum price

multiplier 7 = 5).

Maximum price variation () 10%  20%  30% 40% 50%
Consumer surplus
Total increase $62K $94K $113K $126K $135K
Per ride $0.29 $0.44 $0.53  $0.59  $0.63
In terms of average fare 33% 49% 59%  6.6%  7.0%
Number of served customers 1.1% 1.7% 2.1%  24%  2.6%
Miles traveled by customers  1.8% 2.7% 32%  3.6%  3.9%

s
Price Multiplier
s
Price Multiplier

r0.9

(a) Maximum price variation 77 = 0.2 (b) Maximum price variation 77 = 0.5

Figure 7: Optimal origin-only price multipliers for different maximum price variations 7 (maximum

price multiplier 7 = 5).

Given the decomposition of the consumer surplus provided in Proposition 2, we expect the average

fraction of customers served, demand, and the fare to impact the optimal price multiplier of a node. In what

34By using the total number of served customers or miles traveled by customers as objectives in Problem (P2), we
can find spatial prices that result in larger increases in these metrics. However, such spatial prices result in a lower

consumer surplus .
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follows, we study the impact of these parameters on the optimal origin-only price multipliers.

The price multiplier of rides from node ¢ to node j impacts consumer surplus only through the fraction of
customers served, \{/AL(F, P), and the term ((®*D —n(@+1) /(1+a). As higher prices attract more drivers,
they increase the fraction of customers served. The term (77(‘”‘1) — 77("+1)) / (1 + a)7 however, decreases in
price. Depending on which term dominates, the consumer surplus of a node could be increasing or decreasing
in its price multiplier.

In well-served nodes, a high fraction of customers are served and the impact of price multiplier on the
fraction of customers served is minimal. Therefore, in such nodes, the last term dominates and the consumer
surplus is decreasing in the price multiplier. In contrast, in under-served nodes, a lower fraction of customers
are served and the impact of price multiplier on the fraction of customers served is substantial. In under-
served nodes, the first term dominates and the consumer surplus is locally increasing in the price multiplier.
In such nodes, both customers and drivers benefit from higher prices. Therefore, the optimal price multiplier
of these nodes is expected to be greater than one.

Nodes in which less than 80% of the customers are served (under the base prices) are marked with a star
in Figure 8. We refer to these as under-served nodes. These nodes belong to upper Manhattan, Brooklyn
and Queens, in which the supply of taxis is low; see Figure 6 for the map of the average supply and demand
under the base prices. These nodes have a price multiplier greater than one. In response to a increase in
prices in these nodes, more taxis relocate to them, which increases the supply of rides at these nodes; see
Figure 8a. As a result of this increase in supply, a higher fraction of customers are served; see Figure 8b for
the change in the fraction of customers served. This indicates that in these nodes the first term on the right
hand-side of Equation (11) is dominant.

The fact that prices increase in less affluent neighborhoods in the city (upper Manhattan, Brooklyn, and
Queens) highlights the necessity to use other mechanisms in addition to spatial prices (such as facilitating
matching between customers and taxis through mobile applications) or subsidizing these neighborhoods.
This issue is further explored in Section 6.2.

We refer to nodes in which at least 80% of the customers are served under the base prices as well-served
nodes. For such nodes, the terms Aﬁj (F, P) and Fij —&—?ijdij are the critical drivers of consumer surplus. To
see this, consider the potential revenue that can be collected at a node, Zthl Z?:l Al (E, P) [Fyj + Pijdy;].
Note that both demand and fare impact the potential revenue of a node. In the majority of the well-served
nodes with high potential revenue prices decrease while in the majority of well-served nodes with low potential
revenue prices increase; see Figure 9.

Next, we study origin-destination pricing; see Appendix G.1 for its mathematical formulation. Similar

to origin-only pricing, we use maximum price variation 7 = 0.5 and maximum price multiplier 7 = 5; see
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Figure 8: Percentage change in the average number of empty taxis and the fraction of served cus-
tomers under the optimal origin-only prices compared to the base prices (maximum price variation
7 = 0.5 and maximum price multiplier 7 = 5).
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Figure 9: Well-served nodes with high (star) Figure 10: Average price multipliers for rides

and low (diamond) potential revenue. Prices originating at each node in the city under
decrease in 88% of the nodes with high poten- origin-destination spatial pricing (the average
tial revenue and increase in 92% of the nodes is calculated with respect to the demand from
with low potential revenue. the node to each destination).

Appendix G.2 for further details. Origin-destination prices result in a $0.79 increase in consumer surplus
per ride, which is 24.4% higher than the increase in consumer surplus from origin-only pricing. They also
results in a 3.2% increase in the number of served customers and an 7.4% increase in the miles traveled by

customers.
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The average optimal origin-destination price multipliers for the maximum price variation of 50% are
depicted in Figure 10. Comparing Figures 7b and 10, we observe that the pattern of the average optimal
origin-destination prices looks similar to the pattern of optimal origin-only prices. In the (majority of)
under-served nodes, the same price is used for all destinations. In these nodes, the benefit of attracting more
drivers by using higher average prices outweighs the benefit of price discrimination based on destinations.
In the well-served nodes, however, price discrimination based on destinations is valuable. Figure 11 provides
two examples of how destinations could impact the prices. Let us start with the node marked by a star
in Figure 11a. Under origin-only pricing (see Figure 7b), the price of all rides from this node increase by
39%. However, under origin-destination pricing, the price of rides from this node to (parts of) Brooklyn are
reduced. This reduction in prices increases the demand for rides to Brooklyn, which in turn, helps further
increase the average number of the empty taxis in this region. That is, this increases the supply of taxis in
Brooklyn for future rides. Since only 15% of the customers are headed to these destinations, this pricing
pattern maintains (almost) the same average price as the origin-only pricing scheme. The pattern of reducing
the price of rides headed to (some) under-served neighborhoods while increasing the price of rides headed
to (some) well-served nodes is observed frequently. Figure 11b depicts another example of this pattern.
Under origin-only pricing (see Figure 7b), the price of all rides from this node decrease by 3% (almost no
change in prices). Under origin-destination pricing, the price of rides to midtown and parts of downtown
increase while the price of all other rides decrease. This decreases the future supply in midtown and parts
of downtown and increases the future supply in the rest of the city, particularly in Brooklyn and Queens.
The price multiplier of the rides originating at this node range between 0.5 and 1.35 (a substantial change
in prices). These examples exhibit how using destinations alongside origins in the pricing scheme allows us
to maintain an average price similar to the origin-only pricing scheme while adjusting supply and demand

in a more refined manner.

6.2 Removing Local Search Friction

Mobile application (such as Arro and Curb) can remove the local search friction by matching customers
and taxi drivers in each neighborhood. The impact of such applications can be modeled by replacing the
matching model (3b) with that in (3a).

Table 4 shows removing the local search friction alone results in a $268, 000 increase in consumer surplus
in every day shift, a 4.3% increase in the number of served customers, and an 6.2% increase in customer
miles. Tt also compares the improvement with those from spatial pricing. Removing the (local) search friction
is on par with spatial pricing in terms of the number of served customers and customer miles. However,

its impact on consumer surplus is considerably higher. Furthermore, although spatial prices introduced in
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(a) A node in downtown Manhattan. (b) A node in upper east side.

Figure 11: Optimal price multipliers under origin-destination pricing for the rides originating at the
node denoted by a star (maximum price variation 77 = 0.5 and maximum price multiplier 7 = 5).

Section 6.1 have no impact on drivers’ profit by design, since removing the local search friction increases the
total number of served customers without changing the prices, drivers’ profit increase by $48,000 in every
day shift when search friction is removed.

For brevity, we focus on origin-only pricing in the remainder of this section. Figure 12 depicts the
change in consumer surplus from origin-only spatial pricing and removing the (local) search friction alone.
The majority of the change in consumer surplus from spatial pricing is due to nodes with high demand and
average fare, such as midtown Manhattan and the airports. Contrary to spatial pricing, when the local
search friction is removed, well-served nodes (the majority of the nodes in Manhattan and the airports)
do not benefit much, whereas under-served nodes enjoy the highest increase in consumer surplus. Under-
served nodes benefit more from removing the (local) search friction than form spatial prices. In such nodes,
matching is the key. In contrast, well-served nodes benefit more from spatial pricing than from removing
the local search friction. In such nodes, spatial pricing is the key. This suggest that the impact of spatial
prices and removing local search friction are complementary to each other. Therefore, we study a hybrid
mechanism.

To be specific, the hybrid mechanism removes (local) search friction in under-served nodes and uses
spatial prices in well-served nodes; see Appendix G.1 for its mathematical formulation. Table 4 provides a
comparison of the impact of spatial prices, removing the (local) search friction, and the hybrid mechanism
on consumer surplus and drivers’ profits. The hybrid mechanism with maximum price variation 77 = 0.2

captures 99.4% of the increase in consumer surplus from a hybrid mechanism with 77 = 0.5. This mechanism
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Figure 12: Change in consumer surplus from spatial pricing and removing the search friction (max-
imum price multiplier /) = 5).

needs only a little price variation, because the optimal price multipliers of the well-served nodes are close to

one (see Figure 7).

Table 4: Comparison between spatial prices, removing local search friction, and the hybrid mecha-
nism (7 = 0.5).

Origin- Removing Citywide Origin-

Origin-Onl, ; o
& Y Destination Local Search Hybrid Proposed Only Pricing &

Pricing

Pricing Friction Mechanism = Mechanism  yiction Removal
Consumer Surplus
Total increase $135K $168K $268K $322K $417K $433K
well-served nodes $79K $109K $33K $82K $182K $186
under-served nodes $56K $59K $235K $240K $235K $247K
Per ride $0.63 $0.79 $1.26 $1.52 $1.96 $2.04
In terms of average fare 7.0% 8.5% 13.9% 16.7% 21.5% 22.4%
Number of served customers 2.6% 3.2% 4.3% 5.7% 8.7% 8.9%
Miles traveled by customers 3.9% 7.4% 6.2% 8.1% 11.7% 12.0%
Drivers’ Profit
Total increase $0 $0 $48K $0 $0 $0
Per ride $0 $0 $0.22 $0 $0 $0
In terms of average fare 0% 0% 2.5% 0% 0% 0%

Next, we study citywide spatial pricing and friction removal. The optimal price multipliers of this
mechanism are the solution to Problem (P2), where (3b) is replaced with (3a). As shown in Table 4, using
citywide spatial pricing and friction removal generates $433,000 of consumer surplus. This is equivalent
to a 34.4% improvement over the hybrid mechanism. The majority of this improvement is in well-served

nodes. The optimal price multipliers under this mechanism are depicted in Figure 13. Although the pattern
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of optimal prices in well-served nodes (under the base prices) is similar to the pattern of optimal prices in
presence of friction (see Figure 7a), once (local) search friction is removed in well-served nodes, it is optimal
to use more aggressive price variations in these nodes (i.e., we observe a larger deviation from the base-prices,
both in nodes that have a price multiplier greater than one and those that have a price multiplier less than
one). This implies that in the absence of friction, spatial prices are more powerful.

Policy makers may prefer to avoid price discrimination in less affluent neighborhoods of the city. As such,
we propose a mechanism in which friction is removed in the entire city while spatial pricing is used only in
well-served neighborhoods; see Appendix G.1 for its mathematical formulation. The proposed mechanism
increases consumer surplus by $1.96 per ride (96.3% of the consumer surplus generated by citywide spatial

pricing and friction removal), serves 8.7% more customers, and increases customer miles by 11.7%.

Price Multiplier

0.6

0.5

Figure 13: Optimal price multipliers under citywide origin-only pricing and friction removal (max-
imum price variation 77 = 0.5 and maximum price multiplier 7 = 5).

7 Concluding Remarks

We study the impact of spatial pricing on the taxi market in New York City. We use a mean field model,
in which taxi drivers strategically search for customers in different neighborhoods across the city taking into
account the spatial and temporal distribution of the supply and demand as well as the prices across the city.
Our analysis reveals that spatial prices that only use origin information can increase consumer surplus by
$0.63 per ride, 7.0% of the average fare, and serve 2.6% more customers without hurting the drivers’ profit.
Similarly, spatial prices that utilize both origin and destination information can increase consumer surplus by
$0.79 per ride, 8.5% of the average fare, and serve 3.2% more customers. The optimal spatial prices increase

in the under-served areas (e.g., Brooklyn, Queens, and upper Manhattan) whereas they decrease in some
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well-served areas (e.g., midtown), encouraging the taxis to relocate accordingly, and hence, redistributing
supply so as to increase consumer welfare.

We find that removing the local spatial search friction alone can increase consumer surplus by $1.26 per
ride, 13.9% of the average fare, and serve 4.3% more customers while simultaneously increasing drivers’ profit
by $0.22 per ride. Removing the local search friction primarily impacts the under-served neighborhoods,
whereas spatial prices primarily impact the well-served neighborhoods. This underscores the value of a
hybrid mechanism. We propose a mechanism in which (local) search is eliminated in all neighborhoods
while spatial pricing is only used in well-served neighborhoods. This mechanism increases consumer surplus
by 21.5% of the average fare and serves 8.7% more customers, while avoiding price discrimination in less
affluent neighborhoods of the city. The proposed mechanism achieves 96.3% of the benefits of a citywide
spatial pricing and friction removal mechanism.

Our analysis has some limitations. First, a social planner might be most concerned with the impact
of spatial pricing on the customer that is hurt by it the most. We limit the worst case impact of spatial
pricing by introducing a maximum price constraint. Moreover, although we show that both customers and
taxi drivers benefit from higher prices in the under-served areas in the presence of search friction, we do not
study the implications of this phenomena fully. This phenomena leads to interesting work on subsidies and
voucher mechanisms that is beyond the scope of our paper. However, our study of the hybrid mechanisms
is motivated by this concern. Lastly, this paper uses the NYC taxi dataset from an era, 2010-2013, in which
taxi substitutes were limited.?® Future work in this area is needed to study the impact of spatial pricing on

customers and taxi drivers in the presence of competition.
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A Node Definitions

This section discusses the procedure used to draw the boundaries of the nodes in Figure 16. We use
the approach commonly referred to as regionalization/districting (e.g., see Duque et al. (2012)). In this
approach, one starts with a set of small districts and aggregates them to create nodes of appropriate size.
We use 2010 census tracts®® as districts in our analysis and use a MIP (Mixed Integer Program) to aggregate
the census tracts into nodes. Census tracts are permanent statistical subdivisions of a county defined by
the United States Census Bureau and used in many statistical spatial analyses that require this level of
granularity. NYC consists of 2166 census tracts of various shapes and sizes.?” We limit our analysis to the
488 census tracts that have a minimum of one customer per street mile per day and are not isolated from
the rest of the cluster (except for JFK airport). These census tracts cover 99.42% of the pick-ups in NYC

between January 2010 and December 2013.

Objective. One of the assumptions used in the matching model introduced in Proposition ?? is that
customers are uniformly distributed within the node. Therefore, we would like the census tracts that are
aggregated to create a node to share similar demand densities (we use the number of pick-ups as a proxy for
demand). We would also like the nodes to satisfy certain spatial contiguity, shape, and demand constraints.
Specifically, we would like to avoid isolated census tracts in a node, avoid long and narrow nodes, and ensure
a minimum number of pick-ups in each node. Moreover, we would like the number of regions (the only
notion of node size in the matching model; see Section 3) in the nodes to show little variation across the city.
This prevents the size of nodes from being a factor in the relocation decisions of the taxi drivers. We aim to
achieve this goal by ensuring that the street miles in a node are such that it takes a taxi between t and ¢ hours
to search all the streets in the node.?® Due to the significant spatial variation in the average traffic speed and
density of pick-ups in NYC, we divide the city into six zones; see Figure 14 for the boundaries of the zones.
These zones correspond to i) downtown/lower Manhattan (south of 14th street), ii) midtown Manhattan
(14th street to 59th street), iii) central park area (59th street to about 110th street excluding central park),
iv) upper Manhattan (north of 110th street to Inwood),3? v) Brooklyn, and vi) Queens (excluding La Guardia

and JFK airports). The average traffic speed and the density of pick-ups in each zone are presented in Table

36Census tracts should not be confused with the regions discussed in Section 3. Regions are defined in the matching
section of this paper to model the search of taxi drivers for customers within a node. Census tracts, however, are
permanent subdivisions of a county defined by the US Census Bureau that provide a stable set of geographic units
for the presentation of statistical data.

37See https://data.cityofnewyork.us/City- Government /2010-Census- Tracts /fxpq-c8ku/data.

38The lower bound ensures that nodes are sufficiently large for computational tractability of the equilibrium. The
upper bound helps avoid long travel times between adjacent nodes. Long travel times on adjacent nodes create an
unintended incentive for taxi drivers to stay in their current node and avoid relocation due to the opportunity cost
of long travels.

39For further information on Manhattan zones, see https://www.nybits.com/manhattan.
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Formulation. Next, we discuss the formulation we use to aggregate the census tracts in a fixed zone
into nodes whilst satisfying the aforementioned conditions. We start by introducing the notation. Then, we
proceed to the formulation and discuss each constraint in detail. This formulation is conceptually similar
to the formulation used in Gentry et al. (2015). Let (V¢, £¢) denote the graph of the census tracts that we
would like to aggregate into nodes, where (¢,7) € £ and for i # j, (i,j) € £ if census tracts ¢ and j share a
border (of positive length). Let A° denote the adjacency matrix of the graph, i.e, A, = 1if (i,5) € £ and
zero otherwise.

We would like the census tracts that will be aggregated into a node to be physically close to each other,
i.e., we would like to avoid long and narrow nodes if possible. Therefore, we use an approach similar to
Gentry et al. (2015) and choose a census tract as the center of each node and assign each census tract to
the node whose center is physically closer to it. To that end, let z; be a binary decision variable such that
z; is equal to one if census tract ¢ is chosen as the center of a node and zero otherwise. Let x;; be a binary
variable that is equal to one if census tract 7 is assigned to the node whose center is census tract j and let y;
be a non-negative decision variable that denotes the maximum variation in the density of pick-ups (pick-ups
per mile) across the census tracts assigned to the node whose center is census tract j. If census tract j is
not the center of a node, y; = 0.

Denote the average number of pick-ups per period in census tract ¢ by D; and the street miles of this
census tract by S;. Similarly, denote the lower bound on the number of pick-ups per period in a node by D
and the lower and upper bounds on the street miles in a node by S and S, respectively. Let Sij denote the
distance between the geometric centers of census tracts ¢ and j and gijk =1if &j < &-k and zero otherwise.
Also, let 6 denote the maximum allowable distance between the census tracts assigned to a node. We use a

& that is equivalent to 10 minutes of travel in the zone.
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The optimal node definition is the solution to

migiﬁize Z Yj (PO)
jeve
subject to Z D;xij > Dz; for all 7, (P0a)
icve
Z Siwij < ?zj for all 7, (POb)
icve
Z Sixij > Sz; for all 7, (P0c)
icve
3> i (xij + T — 1) for all 4, j, k, (P0d)
Z Af T > T4 for all 7 # j, (POe)
keve
> dikwin <1-z for all 4, j, (POf)
keve
Z x5 =1 for all 4, (POg)
jeve
x5 < 2 for all 4, j, (POh)
D; D . .
y; > ‘ - =k (mij +xp — 1) for all i, 4, k (P0i)
S; Sk
zij,2 € {0,1}, y; >0 for all 4, j. (P0j)

Problem (P0) minimizes the sum of the maximum variations in the density of pick-ups in each node (a
measure of the heterogeneity in the density of demand within the nodes). We will show that in the optimal
solution, if census tract j is not the center of a node, y; = 0.

The constraints of Problem (P0) can be categorized into three groups: constraints concerning the demand
and size of the nodes, constraints concerning the assignment of the census tracts, and constraints concerning
the definition of the decision variables. We start with Constraints (P0a)-(P0d) that focus on the demand
and size of the nodes. Constraint (POa) ensures that all nodes have a minimum of D pick-ups per period.
Similarly, Constraints (POb)-(P0c) ensure that the street miles in each nodes fall between the lower bound
of S and the upper bound of S. Constraint (POd) ensures that the census tracts in a node are not more that
& miles apart. This constraint helps avoid long and narrow nodes. Note that the right hand-side of (P0d) is
less than or equal to zero unless both census tracts ¢ and k are assigned to the node whose center is census
tract j, in which case the right-hand side of (P0d) is equal to bik.

Constraints (P0e)-(P0g) focus on the assignment of the census tracts. Constraint (POe) ensures that a
census tract that is not the center of its node is connected to at least one other census tract in that node.

Because, if census tract ¢ is assigned to the node whose center is census tract j, the right-hand side of
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(POe) is equal to one. Therefore, there must be at least one census tract connected to census tract ¢ who is
also assigned to the node whose center is census tract j.4° Constraint (POf) ensures that census tracts are
assigned to the node whose center is closest to them. Because, if census tract j is the center of a node, the
right hand side of (P0f) is equal to zero. This ensures that zr; = 0 for all nodes k in which Sijk =1 1In
other words, if census tract j is the center of a node, census tract ¢ can not be assigned to a node whose
center is further from ¢ than census tract j; see Gentry et al. (2015) for a similar treatment. Constraints
(POg) ensures that all census tracts are assigned to a node.

Constraints (POh)-(P0j) focus on the consistency in the definition of the decision variables. Constraint
(POh) ensures the consistency in the definitions of z;; and z;, i.e., if census tract ¢ is assigned to the node
whose center is census tract j, then z; = 1. Constraint (P0i), alongside the objective function, ensures that
y; (at the optimal solution) is equal to the maximum variation in the density of pick-ups among the census
tracts assigned to the node whose center is census tract j. Note that if census tract j is not the center of a
node, the right-hand side of (PO0i) is less than or equal to zero and y; = 0 at the optimal solution. Finally,

Constraint (P0j) enforces that z;; and z; are binary decision variables and y; are non-negative.

Inputs. In what follows, we attach a subscript [ to various quantities to indicate they correspond to zone I.
Note that S; = Average Traffic Speed in Zone [ x t;, where §; denotes the lower bound on the total number
of miles in nodes in zone [ and ¢; is the minimum time a taxi has to spend to travel all streets in a node in
zone [. Similarly, S; = Average Traffic Speed in zone [ x ;, where S; and #; are the analogous upper bounds.
Recall that D;/S; denotes the pick-up density of census tract ¢ and Vf denotes the set of census tracts in
zone [ for | = 1,..., L, where L denotes the number of zones. We observe that {D;/S; : i € Vi} exhibits

significant variation for all zones; see the third column of Table 5 for their coefficient of variation. Define

> ieve Di
PD, = =V fori=1,...,L
Ziev; Si
as the average pick-up density for zone [. There is also substantial variation in {PD; : | = 1,...,L}; see

the second column of Table 5. For example, the pick-up density in midtown Manhattan is two orders of
magnitude higher than pick-up density in Brooklyn. Therefore, to avoid vacuous constraints in nodes with

high pick-up density, we use a lower bound D; (for zone [) on demand that is proportional to the average

4ONote that Constraint (POe) does not enforce spatial contiguity, rather it ensures that no census tract is isolated
(unless it is the center of a node). One can enforce spatial contiguity by using the notion of contiguity order (e.g., see
Duque et al. (2012)). Such constraints increase the size of the MIP significantly, which has motivated Duque et al.
(2012) to propose an approximation algorithm to their problem. Motivated by this observation, we do not introduce
such constraints in Problem (PO0).
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pick-up density of zone [. That is, defining the overall pick-up density PD =", D;/>". S;, we set

PD, -
LD

Ql:ﬁ 9

where D is a tuning parameter that relates the lower bounds across zones. We use ¢, = (1-0.25 CVl)f
and t; = (1 + 0.25 CVl) t, where f is a tuning parameter common across zones and CV; is the coefficient
of variation of pick-up density in zone [.*! Note that the term 0.25CV; is used to allow variation in the
pick-up densities of various tracts in a node in zone [ in Problem (P0); and it is equivalent to controlling the
variation in pick-up densities of the various tracts in zone .

Let LT(#, D) denote the fraction of arcs in € (see Section 3) which take longer than one period to traverse.

That is,

H(Z,j) e&: Tij > 1}|

LT({,D) = 5

We would like to choose £ and D such that this fraction is sufficiently small and that D is sufficiently large

to ensure considerable demand in all nodes. Next, for each fixed 13, we consider min LT(i, D) As depicted
i

in Figure 15, this shows a steady increase for D <59 and a sharp increase beyond D = 5.9. Therefore, to

accommodate both goals, we choose D = 5.9 and ¢ = argmin LT(£,5.9) = 1.2.
i

Results. The solution to Problem (P0) for (£, D) = (1.2,5.9) is depicted in Figure 16. In particular, this
node definition provides sufficient separation between the major hubs of the city. In Figure 16, the nodes
that accommodate the major hubs of the city are highlighted. JFK and La Guardia airports are colored in
red and blue, respectively. The nodes accommodating the major railroad terminals, Penn Station and Grand
Central Terminal, are colored in yellow and purple, respectively. The node accommodating the major bus

terminal, Port Authority Bus Terminal, is colored in green.

Table 5: Parameters used in Problem (PO).

Traffic  Average density CV of density Maximum distance

speed?! of pick-ups? of pick-ups within a node (§)3
Lower Manhattan 11.8 2.36 0.8 2.0
Midtown Manhattan 8.6 6.92 0.8 1.4
Central Park Area 10.2 4.75 0.7 1.7
Upper Manhattan 11.8 0.16 1.7 2.0
Brooklyn 11.4 0.08 1.8 1.9
Queens 12.8 0.08 1.6 2.1

1 Miles per hour. 2 Pick-ups per period per mile. 3 Miles.

“1Sensitivity analysis displays that node definitions show little sensitivity to the choice of the coefficient of CV;.
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Figure 16: The boundaries of the seventy five nodes used in the analysis and the area under
consideration.

B Further Discussion on the Matching Model

This section compares our matching model with that of Buchholz (2018). Buchholz uses the friction
model introduced in Burdett et al. (2001).*> Burdett et al. (2001) provides a formula for friction in the

following setting: Suppose that n buyers each want one unit of a good and m sellers each have one unit.

42This was initially formulated as an urn-ball problem in Hall (1979), where n balls are randomly placed in m urns.
In this problem, a match (only) occurs for the first ball placed in any urn.
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First, sellers are revealed to buyers, and then each buyer chooses a seller. If more than one buyer chooses a
seller, the seller can serve only one of the buyers. Burdett et al. (2001) refers to this phenomena as friction
and calculates the expected number of sales (matches between buyers and sellers) given n and m. Burdett
et al. (2001) does not allow the buyers to search for sellers if they fail in their first attempt. It also assumes
that buyers know the number of sellers and their exact location (sellers are revealed to buyers).

Buchholz (2018) tailors the imperfect matching model proposed in Burdett et al. (2001) to the taxi
market. This imperfect matching model is equivalent to the following setting: First the number of drivers
and their locations are revealed to the customers. Then, each customer chooses a taxi. When more than
one customer chooses a taxi, only one of the customers is served and the others leave the system unfulfilled.
Therefore, given m taxis and A customers in a node, the expected number of matches (served customers) is
m(l -[1-1/ m]A); see Burdett et al. (2001) for the derivation. Buchholz introduces an efficiency parameter

~v and models the expected number of matches as follows:

1
Expected Number of Matches = m(l — [1 - —}A>
ym

Lower values of v correspond to more efficient matching.

Figure 17a depicts an example of matching under the model of Buchholz (2018). In this example,
Customers 1 and 2 choose Taxi 1 and Customer 3 chooses Taxi 3. Taxi 1 chooses Customer 1 and Customer
2 is left without a taxi. He can not choose Taxi 2 although they are very close to each other. Figure 17b
depicts the matches in the same example under our matching model with three regions. In this case, after
failure to obtain a taxi in the first attempt, Customer 2 is allowed to re-choose among the remaining empty

taxis in its region. Customer 2 chooses Taxi 2 and there are no unfulfilled customers left.

P - c—_ s . i e
QIS QIUTeyS EQESSOS R e el e o ™0

/\ [\ /

Customer 1 Customer 2 Customer 3 Customer 1 Customer 2 Customer 3

(a) Matching in the model of Buchholz (2018). (b) Matching in our model with three regions.

Figure 17: An illustration of matching in our imperfect matching model and the model of Buchholz
(2018).

Figure 18 depicts the percentage increase in the number of matches under our matching model with

N = 10 and N = 20, respectively, compared to the matching model of Buchholz (2018) with v = 0.84
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(as estimated by Buchholz for midtown Manhattan).*3> We observe that for small number of taxis and
customers, which is common in areas such as Brooklyn and Queens, our matching model results in fewer
matches. However, for large number of taxis and customers, which is common in areas such as midtown

Manhattan, our matching model results in more matches.
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20% o] 20%
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(a) N =10 (b) N =20

Figure 18: Percentage change in the number of matches in our imperfect matching model compared
to the imperfect matching model of Buchholz (2018).

C Supplemental Material for Section 4

The histograms of the average trip duration and distance (for rides originating at each node) are depicted
in Figure 19. Recall that a trip on average is 2.7 miles and 13.2 minutes long. There is considerable spatial
variation in the average trip duration and distance across the city. Figure 20 depicts the average trip duration

and distance for rides originating at each node.

D Supplemental Material for Section 5

Table 6 provides a summary of the model primitives. The estimation of these primitives is carried out
in three steps; see Section 5 for further detail.

Next, we discusses the calculation of the likelihood of taxi m observing the sequence of drop-off and
subsequent pick-ups on day d of month k that are no longer than two hours apart. We start by introducing

some notation. Then, we calculate the likelihood of taxi m observing the entire sequence of drop-off and

We use N = 10 and 20 as the number of regions in the overwhelming majority of the nodes in Figure 16 fall
between these numbers.
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Figure 19: Histograms of the average trip duration and distances across nodes.

Table 6: Summary of the primitives.

Parameter Number of elements FEstimation type

« 1 Endogenous
15} 1 Endogenous
o 1 Endogenous
Agj 120 x 75 x 75 Endogenous
Sij 75 X 75 Exogenous
Tij 75 x 75 Exogenous
d;j 75 x 75 Exogenous
ml1 75 x 48 Exogenous
N; 75 Exogenous
M 48 Exogenous
c 48 Exogenous

subsequent pick-ups on day d of month k. We conclude this section by removing the drop-off and subsequent
pick-up tuples that are longer than two hours apart.

Let Ny, 4,1 denote the number of riders that taxi m served on day d of month k. We denote the pick-up
periods of taxi m on day d of month k by tfi’)d,k - ,t;ad,k ,.. ,tgle"”,f‘k), where superscript [ denotes the
number of the pick-up. Similarly, we denote the pick-up and drop-off nodes of taxi m on day d of month

k by ig?d’k ye e vifqlz),d,k yeee ,iggif’k) and jg’)d,k yeee ,jr(,ll)’d,,C yeen ,jT(n]\i’i':;j’k), respectively. Then, the likelihood of
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M 30.0 - 50.0 MW 10-20
M 25.0 - 30.0 W75-10
W 20.0 - 25.0 W50-75
17.5 - 20.0 4.0-5.0
15.0 - 17.5 3.0 - 4.0
12.5 - 15.0 2.5-3.0
W 10.0-125 W20-25
M 0.0-10.0 W00-20

(a) Average trip duration (min). (b) Average trip distances (in miles).

Figure 20: Average trip duration and distance for rides originating at each node.

taxi m observing the entire sequence of pick-ups on day d of month & is

() (D) (1) (Nm.a.k) :(Nm.ak) (Nm.dk)
]P{(tmdk’ mdk’jmdk) (tm,d,kdk 77’m,d,d Vdekdk )}

Nopm.,d,k
1 ! 1 I-1) (-1
:[ H IP{ gn)dlw iz)dk’jﬁn)dk‘ fnd?c’ fnd.zc’]fnd;c}] (12)
=2
1 1 1 1
X ]Pl{tgn)d kot 'En)d k7-77(n)d k} X IPF{tmdlc? gn)d k’jr(n)dk (13)

where IPI{tm P gi)d k,jfi’)d,k} is the probability that the customer picked up at period tfi?d’k at node ig?d,k

for destination ],,(n)d i is the first pick-up of the driver, P F{tffl) Ak ii) Ak ]7(7? d, k} is the probability that the
(1)

customer picked up at period t( 4. atnode i, -, for destination jT(n) a4k 18 the final pick-up of the driver, and

]P{tﬁfl)d ot gl)d k,jf,ll)d k Sl dlzc, ng dlgc,jfn d ,l} is the probability that the driver picks up his [-th customer in

period t( ) i at node e o . given that his previous customer was picked up in period

¢ dgc at node i’ di for destination j'* d,)c Note that the distribution of (¢ fn) dp fi) d jfn) ) depends on

all elements of (tﬁfl dliz’ quli,jffl dll)q) Because, all three elements of ( "lldlij, fidli,jffl dll)c) impact the period

d.k for destination j,

and node at which the taxi drops its (I — 1)-th customer and starts the search for the I-th customer. Since

it takes 7; ; periods to transport a customer from node i to node j, the term

O] (1) (1) ne 1) -(-1) .(I1-1)
IP{tmdk’ by doke> T d mdk’lm,d,k’]m,d,k} (14)
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is equal to the probability that driver m picks up his next customer in period tgi) 4 at node igi) a5 for

destination jr(é) 4. if he starts empty in period tfj;dl’?c + Ty ) at node jT(,l;dl,)C

We are interested in the likelihood of drop-off and subséciuent pick-ups that are no longer than two hours
apart. Therefore, we must omit drop-off and subsequent pick-up tuples that take longer than two hours. To
do so, let J(t2,4%, j2|t!, i, j1) = P{t%,i% j2|t*,i',j1} if £* — ' — 7j1 ;» > 24 and one otherwise. Define J;
and Jp in a similar manner for the initial and final pick-up. Then, the likelihood of taxi m observing the

sequence of drop-off and subsequent pick-ups on day d of month &k that are no longer than two hours apart

is

Non,d,k
_ O W O |- -1 -1
Lin,ak(0) l ]___[ J(tm,d,k’Zm,d,k7jm,d,k’tm,d,k7Z7n,d,k’jm,d,k>] (15)
=2

1 (1 (1 ! (1 (1
X Jr (tgn?d,kvlfn,)d,kajfn,)d,O x Jp (tgn),d,k’Zv(n),d,k’an),d,k>'

To compute (14), we transform the graph of the problem to an augmented graph, in which all arcs have
length one. This can be achieved by adding n — 1 auxiliary equi-spaced nodes on each arc of length n (for all
n). Movements of an empty taxi on the augmented graph follow a non-homogeneous discrete time Markov
Chain and (14) can be computed from the transition matrix of this Markov chain. As discussed in Section 5,
solving (P1) using (15) gives an estimate of o = 1.4048; see Figure 21 for log likelihood values in the vicinity

of the maximum likelihood estimate o = 1.4048.
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Figure 21: Log likelihood values in the vicinity of the maximum likelihood estimate o = 1.4048.

Next, let us illustrates through an example how an augmented graph is created and used to compute
(14). Consider the graph in Figure 22, where 712 = 791 = 1 and 793 = 732 = 2. The augmented graph is
generated by placing node 4 on arc (2,3) and node 5 on arc (3,2), such that 794 = 743 = 735 = 752 = 1 and

nodes 4 and 5 do not have a loop. The augmented graph is depicted in Figure 23. The relocation decisions of
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Figure 22: Original graph. Figure 23: Augmented graph.

an empty taxi on the augmented graph correspond to the relocation decisions of the same taxi on the original
graph. Consequently, the (path-wise) relocations of an empty taxi on the augmented graph are defined as

follows:

1. If the taxi decides to relocate on an arc of unit length in the original graph, it relocates on the same
arc in the augmented graph. For example, a taxi relocating from node 1 to node 2 in the original

graph relocates from node 1 to node 2 in the augmented graph.

2. If the taxi decides to relocate on a long arc (arc of length longer than one period) in the original graph,
it relocates to the first node created as a replacement of the long arc in the augmented graph. For
example, a taxi relocating from node 2 to node 3 in the original graph relocates from node 2 to node

4 in the augmented graph.

3. If the taxi is currently on an auxiliary node in the augmented graph (which corresponds to a taxi
relocating on a long arc in the original graph), it relocates on the only arc originating from the
auxiliary node. For example, a taxi on node 4 of the augmented graph relocates to node 3 and a taxi

on node 5 of the augmented graph relocates to node 2.
Given the aforementioned relocation policy on the augmented graph, the transition matrix of the augmented

graph in period t is

(ﬁl (I§2 0 0 0

QEl qu 0 q§3 0

Q=10 o0 ¢y 0 gl (16)
0 0 1 0 0
0 1 0 0 0

where qu are relocation probabilities on the original graph. Let B! be a matrix whose (i, j)-th element is
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given by

ALy & .
=2y for i<n,
Bij: . i

i for @ >n,
and denotes the probability that an empty taxi at node i does not pick up a customer in period t and
relocates to node j. Following the numbering in Figure 23, since n is the number of nodes on the original
graph, @ < n corresponds to a node common to the original and the augmented graph and ¢ > n corresponds
to an auxiliary node on the augmented graph.

Next, let us compute the probability that the taxi driver picks up his next customer in period ¢; at node
i1 for destination j; if he starts empty in period ¢y at node jo, denoted by P{tl,il,jl‘to,jo}. Computing

this probability is equivalent to computing (14).** By the definition of B*, we have

ty
P{t1,i1, j1|to jo} = {H?:_tolBt} o Wfll,jl (FP). (17)
i=jo,j=t1 '""i1

The first term on the right hand side is the probability that a taxi driver who starts empty at period #y in
node jo unsuccessfully searches for customers until he arrives in period ¢; at node ¢;. The second term on
the right hand side is the probability that the driver picks up a customer in period t; at node ¢1, and the
third term is the probability that the destination of the customer is node j;.

We conclude this section by discussing the details of the equilibrium calculations. Given M, M*, N;, c*,
F;;, PZ} ijk(F kPF), and ng , for each o, we would like to solve for the mean field equilibrium that satisfies
Equations (4)-(9) and A\** < m!*, with m} having the same distribution as the first pick-up of the taxis in the

first fifteen minutes of the day shift. However, due to the potential misspecification of the initial distribution

1

of taxis m;, such an equilibrium may not exist (in some months). Consider the following formulation:

e - 112
minimize Zl |mi — ;| (18)
subject to (4)-(9) and (19)
AL <ml (20)

In this formulation, m} denotes the initial distribution of empty taxis used in equilibrium calculations
and 7} represents the desired (empirical) distribution (distribution of the first pick-up of the taxis in the

first fifteen minutes of the day shift). Problem (18) searches among all mean-field equilibria (that satisfy

“Note that (14) is equal to the probability that driver m picks up his next customer in period tEfi 4,1 at node ig,ll ak
for destination j,(fl)d i if he starts empty in period t,(fl_dlgc +Ta-n Sa-1 at node jf,ll_dl,l.
o v "m,d, kI m,d,k o

49



constraints (19)-(20) given the estimated primitives) for the equilibrium whose initial distribution is closest
(in the L? sense) to the desired (empirical) initial distribution. Numerical experiments show that the optimal
objective function value of Problem (18) is non-zero in less than a handful of months. In other words, in the

overwhelming majority of the months, there exists an equilibrium whose m} has the desired distribution.

E Monte Carlo Experiments

This section uses Monte Carlo experiments to evaluate the capability of the maximum likelihood esti-
mator described in Section 5 in identifying the true o. We generate 100 simulated datasets (of pick-ups and
drop-offs) assuming a true o and estimate new o¢’s from the simulated datasets. Then, we construct the 95%
confidence interval and check whether the assumed true value falls within the confidence interval.

Pk

Assuming the true value of o = 0.7 and using the estimated values of M, M*, N;, ml* c* Fk i

K
Wf]k (FkPF), and )\ﬁk from Section 5, we calculate the mean field equilibrium for each month. For simplicity,
the month index k is suppressed in the remainder of this section. Using the mean field equilibria (for all
months), we generate 100 simulated datasets with the same size as the original dataset (same number of

months/days/active taxi drivers). To simulate the movements of the drivers, we use the following procedure

for each active taxi driver on each weekday of each month.
1. Set t = 1 and generate a discrete r.v. with distribution ml = {mj1 :1 <j <n}. Thisr.v. corresponds

to the initial location of the taxi. Set i equal to this location.

2. For an empty taxi in period ¢ at node i, generate a Bernoulli r.v. with success probability A!/m!, to

simulate the search of the taxi for customers.

(a) If the Bernoulli r.v. is equal to one (driver picking up a customer), generate r.v. X with

distribution 7} = {m},; : 1 <j <n}.

(b) If the Bernoulli r.v. is equal to zero (driver failing to pick up a customer), generate r.v. X with

distribution ¢ == {q} ; : j € A(i)}.
3. Update i <~ X and add ¢ <t + 7;;.
4. If t < T, return to Step 2.

Estimating o from the simulated datasets results in the 95% confidence interval of (0.699,0.702). We observe
that the (assumed) true o falls within the confidence interval. This shows that our estimator can recover

the true structural parameter o from the data.
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F Cross-Validation

This section uses five-fold cross-validation to examine the ability of our model in predicting the relocation
decisions of the empty taxi drivers (Kohavi et al. (1995)). We randomly split the non-holiday weekdays in
the dataset into five groups of roughly equal sizes. Keeping the node definitions in Figure 16, we hold out
one of the groups and use the other groups to estimate the primitives of the model (see Appendix D for a
summary of the primitives and Section 5 for the estimation procedure). The goal is to use the estimated
primitives from the other groups to make predictions about the hold-out group and assess the accuracy of
the prediction. The relocation probabilities would be an ideal performance metric. However, in the data, we
do not observe the location of the empty taxis at all times. Therefore, we use the distribution of the next
pick-up location as a proxy.

Let ,uf%l denote the ex ante distribution of the next pick-up location for a taxi driver who dropped off
his customer at node i in period ¢ of a weekday in month k and group I. Let /5! denote the corresponding
empirical quantity and wf! denote the number of drop-offs at node i in period t of a weekday in month k

and group I. Furthermore, let D(-,-) be a measure of similarity between two (spatial) distributions. We take

5 K T
D1 ket Z?:l > wzktl D(Ni‘gtlv Vfl)
5 K T X
PIHERD Dyt ZZT'L:1 >t w?tl

; (21)

the weighted average?® of the similarity between the ex ante and empirical distributions of next pick-up
location, as the performance metric for cross-validation. We consider three different similarity measures.

The first similarity measure is the total variation distance

Dr(p,v) = max|u(E) = v(E)| = 5> |n@) - v(@)] € [0,1],

Total variation distance is the most well-known tool for quantifying the similarity between two probability
distributions. It captures the largest difference in the probability assigned to sets £ C £. We also consider

Bhattacharyya distance (Bhattacharyya (1946))

n

Di(u,v) = —~log (D Viu@r(D) € [0,00]

=1

that is commonly used in the information theory and pattern recognition literature; e.g., see Kailath (1967),
Basseville (1989), and Aherne et al. (1998). Since the total variation and Bhattacharyya distances do not

take advantage of the spatial aspect of the problem, we also consider earth mover’s distance (also referred

45We use the number of drop-offs in a period at a node as weights in the performance metric since pf, and v
describe the relocation behavior of a taxi driver who just dropped off his customer. Recall that we only observe the
sequence of pick-ups and drop-offs of the taxi drivers.
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to as Wasserstein distance). Earth mover’s distance, that is commonly used in the transportation literature,
is defined as the minimum cost of turning one distribution (or pile of dirt) into the other, where the cost is
assumed to be the mass moved from one node/location to the other times the distance between them (Pele
and Werman (2009); Carlsson et al. (2018)). In other words,
n n
Dg(p,v) =  inf )Z ZAij'Yij € [O,H%?,XAU],

P (s,
VEP () i T

where P(u,v) denotes the collection of all probability measures on £ x £ with marginals p and v, and
[Ajj]ijee is a metric distance matrix. The distance matrix A must have zero diagonal entries, positive

off-diagonal entries, be symmetric, and satisfy the triangle inequality. We use

(dij + dji)/2 for 1 # j,

0 for 1 =17,

Aij =

that satisfies the necessary conditions of a metric distance and it is derived from the travel distances (d,;, d;;)
estimated from the data.

Table 7 provides a summary of the cross-validation results. A performance metric of 0.22 under total
variation distance can be interpreted as a maximum deviation of 22% between the ex ante and empirical
distributions (in estimating the number of pick-ups in any set of nodes/locations). A performance metric
of 0.52 under earth mover’s distance can be interpreted as an average deviation of 0.52 miles between the
next pick-up location under the ex ante and empirical distributions. This performance metric is particularly
meaningful when we compare it to the 2.26 miles average distance between (distinct) adjacent nodes or the

1.41 miles average distance between (distinct) non-airport adjacent nodes.

Table 7: Cross-validation results.

Performance Metric

Total variation distance 0.22
Bhattacharyya distance 0.08
Earth mover’s distance 0.52

G Supplemental Material for Section 6

This section provides the mathematical formulation of the mechanisms discussed in the paper and a

discussion on origin-destination spatial pricing.
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G.1 Mathematical Formulations of the Mechanisms

This section discusses the mathematical formulation of the mechanisms introduced in the paper. The
mathematical formulations are introduced in the order they appear in the paper. For numerical results and

discussions on each mechanism, see Section 6.

G.1.1 Origin-Destination Pricing.
Consider the following pricing formulation.

T

maximize Z Z Z CSZJ 1ij) (P3)

i i=1 j=1t=1
subject to (3)-(9) and
mij — 1 <7

(Fl]?P ) - 771](

Pij,
Zm V(i,0) zn: miv(i,0).

We call the solution {7;;}; jev to Problem (P3) the optimal origin-destination price multipliers (or equiv-
alently the optimal origin-destination prices) with a maximum price variation of 7. Note that in Problem
(P2), price-multipliers only depend on the origin of the ride while in Problem (P3), price multipliers depend

on the origin-destination pair.

G.1.2 Hybrid Mechanism.

Let R denote the set of nodes in which less than 80% of customers are served under the base prices and

refer to them as under-served nodes. Consider the following pricing formulation.

maxmuze Z Z Z CSZJ ;) (P4)

=1 j=1t=1

subject to (4)-(9) and

(3b) and |n; — 1| <7 VigR (P4a)
(3a) and n; =1 VieR (P4b)
(FUvP ) = ni( v?ij)

Pi;
Zm}V(i,O) > Zml\/(z 0)
i=1 i=1
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We call the solution {n;};cy to Problem (P4) the optimal price multipliers for the hybrid mechanism (with
origin-only pricing). In Problem (P4), local search friction is removed in under-served nodes and spatial
pricing is used in well-served nodes. Constraint (P4a) ensures that in well-served nodes, friction is present
and spatial pricing is used. In contrast, Constraint (P4b) ensures that in under-served nodes, friction is
removed and spatial pricing is not used. The remaining constraints are similar to the ones in Problem (P2)

in Section 6.1.

G.1.3 Proposed Mechanism.

Similar to Section G.1.2, let R denote the under-served nodes. Consider the following pricing formulation.

n o n T
maxri“mize ; ; ; CS:fj (i) (P5)
subject to (4)-(9) and

(3a) and |n; — 1| <7 VidR (P5a)

(3a) and n; =1 VieR (P5b)
ij)

ijs 4 g
> miV(i,0) = > mV(i,0).
=1 i=1

(Fijs Pij) = mi (

5!

We call the solution {7;};cy to Problem (P5) the optimal price multipliers for the proposed mechanism
(with origin-only pricing). In Problem (P5), local search friction is removed in all nodes while spatial pricing
is limited to well-served nodes. Constraint (P5a) ensures that in well-served nodes, both friction removal
and spatial pricing are used. In contrast, Constraint (P5b) ensures that in under-served nodes, friction is
removed while spatial pricing is not used. The remaining constraints are similar to the ones in Problem (P2)

in Section 6.1.

G.2 Further Discussion on Origin-Destination Pricing

Table 8 presents the increase in consumer surplus for different maximum price variations 7 when using
the optimal origin-destination pricing scheme. Similar to origin-only pricing, when using origin-destination
pricing, larger values of 7 results in larger increases in consumer surplus. However, there are diminishing
returns to change in 7. Origin-destination pricing with a maximum price variation of 50% results in a $0.79
increase in consumer surplus per ride, which is 24.4% higher than the increase in consumer surplus from
origin-only pricing. The gap between origin-destination pricing and origin-only pricing is increasing in the

maximum price variation 7. Origin-destination pricing (with a maximum price variation of 50%) also results
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in a 3.2% increase in the number of served customers and an 7.4% increase in the miles traveled by customers.

Table 8: Impact of maximum price variation when using origin-destination pricing on various per-
formance metrics (maximum price multiplier 77 = 5).

Maximum price variation ()  10%  20%  50%
Consumer surplus
Total increase $69K  $112K  $168
Per ride $0.33  $0.53  $0.79
In terms of average fare 3.6% 58% 85%
Over origin-only pricing 11.3%  19.1% 24.4%
Number of served customers — 1.3% 1.8%  3.2%
Miles traveled by customers  2.0%  3.9%  7.4%

G.3 Further Discussion on the Impact of Maximum price multiplier on optimal
spatial prices

The optimal origin-only price multipliers for the maximum price multipliers of 77 = 5 and 77 = 50 are

depicted in Figure 24. The pattern of prices is not sensitive to 7). Therefore, in this paper, we use maximum

price multiplier 7} = 5, which is equivalent to assuming that for a ride of $9, no customer is willing to pay

more than $45. This is a conservative choice for 7} considering its impact on consumer surplus (see Table 2).

1.2

s

Price Multiplier
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Price Multiplier

r0.9

r 0.9

0.8 0.8

(a) Maximum price multiplier 7 =5 (b) Maximum price multiplier 7 = 50

Figure 24: Optimal origin-only price multipliers for different maximum price multipliers 7 (maxi-
mum price variation 77 = 0.2).
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H Maximizing Drivers’ Profit

This section focuses on the spatial prices that maximize drivers’ profit. Consider the following pricing

formulation.

maximize Z m}V(i,0) (P6)

i i—1

subject to (3)-(9) and

n n T n n T
PIPIPICHCIED BH PP BLe=HEN (P6a)

We call the solution {7;};cy to Problem (P6) the optimal origin-only price multipliers (or equivalently the
optimal origin-only prices) subject to minimum consumer surplus with a maximum price variation of 7. Note
that in Problem (P6), price multipliers only depend on the origin of the ride. Constraint (P6a) ensures that
the consumers surplus is not hurt by the new pricing scheme. The remaining constraints are similar to the
ones in Problem (P2) in Section 6.1.

The increase in drivers’ profit for four plausible values of maximum price multiplier 7 is presented in
Table 9. As shown in Table 9, using a origin-only pricing scheme with a maximum variation of 20% results
in an increase in driver’s profit of $64,000-$144,000 on every day shift on weekdays. This is equivalent to
an increase in drivers’ profit of $0.30- $0.71 per ride (3.4%-7.9% of the average fare paid by the customers).
Since similar to Section 6.1, the pattern of the optimal origin-only prices is insensitive to the maximum price
multiplier 7, in the remainder of this section we use /) = 5. This is a conservative choice for 7 considering

its impact on drivers’ profit (see Table 9).46

Table 9: Impact of origin-only prices on drivers’ profit (maximum price variation 77 = 0.2).

Maximum price multiplier (7)) 5 10 20 50
Total increase $64K $81K $105K $144K
Increase per ride $0.30 $0.39 $0.51  $0.71

Increase in terms of average fare 3.4% 4.3% 5.6%  7.9%

Table 10 presents the increase in drivers’ profit for different maximum price variations 77. We observe
that larger values of 7 results in larger increases in consumer surplus. Table 10 indicates that the optimal

origin-only pricing scheme (for maximizing drivers’ profit) has minimal impact on the the number of served

6Tn a similar setting, Cohen et al. (2016, Section 4) makes the conservative assumption that no customer is willing
to pay more than 4.9 times the base prices for an Uber ride.
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customers and the miles traveled by customers. This is not surprising since the objective function of Problem

(P6) is drivers’ profit as opposed to a measure of consumer welfare.

Table 10: Impact of maximum price variation on drivers’ profit (maximum price multiplier 77 = 5).

Maximum price variation (77) 10%  20%  30%  40%  50%
Drivers’ profit
Total increase $43K  $64K $79K $91K $100K
Per ride $0.20 $0.30 $0.38 $0.43 $0.47
In terms of average fare 23% 34% 42% 4.8% 5.3%
Number of served customers -0.5% -0.6% -0.7% -0.8% -0.8%
Miles traveled by customers — 0.3% 0.4% 04% 05% 0.5%

The optimal origin-only price multipliers (with a maximum price variation of 50%) for maximizing
consumer surplus and drivers’ profit are depicted in Figure 25. The pattern of the optimal prices are similar.
In upper Manhattan, Brooklyn, and Queens, prices increase since both customers and drivers benefit from the
increase in prices. Higher prices in the high demand /fare areas in downtown and midtown Manhattan as well
as the airports generate consumer surplus. This consumer surplus is then transformed into drivers’ profits
through higher prices in low demand/fare neighborhoods. In Figure 25b, the increase in consumer surplus
from better serving the under-served neighborhoods is transformed into drivers’ profit through (slightly)

higher prices compared to Figure 25a in the well-served neighborhoods.
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(a) Maximizing consumer surplus. (b) Maximizing drivers’ profit.

Figure 25: Comparison of the optimal origin-only price multipliers for maximizing consumer surplus
and drivers’ profit (maximum price variation 77 = 0.5 and maximum price multiplier 7 = 5).
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I Miscellaneous Proofs and Derivations
This section provides a collection of proofs and derivations for the propositions, theorems, and equations

discussed in the paper. The proofs/derivations are discussed in the order they appear in the paper.

I.1 Derivation of (3b)

We start by deriving G(A,m). Then, we discuss the non-monotonicity of G(-,m) at small values of
A and use a linear approximation to resolve this issue. Consider node i in period t. Let us denote the
de-normalized mass of empty taxis by m, the de-normalized potential demand by A, and the de-normalized

satisfied demand by A. Then,
(22)

m = Mm!, A = M ALYEP), A= M.
Recall that the expected number of matches innode i is A = N; xIE[min(X,Y)], where X ~ Binomial(m, NL)

and Y ~ Binomial(A, ]\1, ). By approximating the Binomial distributions with Normal distributions, we ob-

tain
A~ N; x E[min(X,Y)], (23)

where X ~ N (i, 01) and Y ~ N (up, o) are independent random variables with

m 9 m 1
= — = — (1 — —
= W amdoh = R )
A A 1
HA = ﬁi, and 0'12\ = ﬁl(l_ﬁl)
By substituting (22) into (23), we obtain
t 1 .
A = 7 x N; x E[min(X,Y)], (24)
where X ~ N (tiyn, 0m) and Y ~ N (up, 0p) are independent random variables with
Mmt 1
O R Syl .
MA! 1
A = N and o% = pp (1 — E) (26)

o8



Using Equation (2) of Clark (1961), (24) simplifies to

Ao —umq>(7’“7“’” ) - be(iumim ) + /o2, +0A¢( _fm )
’ M Vo2, + o3 Vo2, + o3 Vo2 + o3

(27)

_ Ny, T N T oy
M|"" /o2 ¥ 2 Vo2, + o3 AN o2 02|

where @(-) and ¢(-) are the cumulative distribution function and probability density function of the standard

normal distribution. Then, by plugging v £ (j,m — pa)/\/02, + 03 into (27), we obtain

X = ]]E(umcwu) i) — o2 +a£¢<v>),

Ni m
= T (i) ) — 2 ) (28)
_ Mm!t MA?
N, (Mm! MA -
_ M( NR(w) ) - Vqs(u)), (29)

m—Aﬁ

= m; ®(—v) + AjO(v) — ®), (30)

where (28) follows from the definition of v and (29) follows from (25)-(26). Next, we rewrite v in terms of

m! and Al as follows:

_ (o —pa) (u — 1ia)
Vo2 + o3 \/ MmﬂLMA),

Mm! WA
(& £)

_ N N;
N [ 1 /Mmi MAL (32)
TN N; + N;

w; (mi = Aj)

\ﬁﬁm

)
\/1—15 Vmi + Al

(31)

where (31)-(32) follow from (25)-(26).
For small value of m!, (30) is not monotone in A! for small values of Af. This issue follows from the

inaccuracy of the normal approximation for the binomial distributions of X and Y at small values of m! and
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Al. We use a linear approximation to resolve the issue. In other words, we use

v G (A} mf) it AL > A,
L — K .
' G(Amg,mf) AAif otherwise,

mk

where G(A,m) = A®(v) +m ®(—v) — =2 ¢(v) follows from (30) and A, = min {A >0:G(A,m) is strictly increasing on (

I.2 Proof of Proposition 1

First, we derive the expected payoff of the driver in each state from each action. Then, we derive the state
transition matrix of the driver. We conclude the proof by writing out the Bellman equation and simplifying
it. Consider the empty infinitesimal driver at state s = (i,t,€). For readability and ease of notation, in the

remainder of this proof, we write €(*) as ¢ and ¢;; as ¢;. Assume that the driver chooses action j € A(s) = {j :
A

t
mi

S;; > 0}. The driver picks up a customer with probability p(s) = and relocates to node j with probability

1 — p(s). If the driver picks up a customer, his expected payoff will be > ;" wf,(F,P) (Fil + Pyd; — cil),
where ¢;; = cd;; + € is the cost of traveling from node i to node [ at state s = (,¢,¢). If the driver does not
pick up a customer, he will receive the payoff —c¢;; = —cd;; —¢;. Therefore, the expected (immediate) payoff

of the driver at state s = (4,t,€) from action j € A(s) is
u;(s) £ p(s) [iwfl(F,P) (Fiu + Pydy — cil)] - [1=p(s)]ciy
I=1
= p(s) anﬁfz(F,P) (Fil + Pudy —cdy — €l> = [1=p(s)](cdy; +¢)
1=1
and the state transition probabilities are

]P(s’ = (@1, ¢)

s=(i,t,€), a :j) - IP(:E’ = (i, 1)

z=(i,t), a = j) x g(€),

where

p(S) ﬂ-fi’(EP) if 4/ 75] and t =t +dy,
113(;5/: (@' )|z = (i,t), a:j) = pls)ntu (FP)+ (1 —p(s)) if i' =j and t=t+ dis,
0 otherwise.
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Let v(i,t,€) denote the value function of the driver at state s = (i,¢,€). Then, by Bellman’s equation, the

value function must satisfy

v(s) = max {uj(s) + Ey {U(s’|s,a :j)}}

JEA(s)

= max { szl (E,P) (Fy + Pyd; — cdy — el) — [1 — p(s)] (cdij + ej)

JEA(s)
/< Zﬂu EP)v(l,t+74,¢) — [1 —P(S)]v(t+Tij,jvf/)>g(f/)d€l}~

Let V(i,t) = [w(i,t,€)de denote the integrated value function of the driver at (the observable state) z =

(i,t). Then,

—

o(s'ls,a = )| }g<e>de

— . E.
[ e - 2

max { Zﬂ'tl (F,P) (Fy + Pydy — cdy — q) - [1 - p(s)} (cdij + 6j)

/( z:: v(l,t+ T, €) + [1—p(s)]v(j,t+nj,e')>

}

= /jlenjé { Zmz (F,P) (Fu + Puda — cdy — e1) — [1—p(s)] (cdij + €;)
o [0 DR 7 gl
+ /[1_p(s)}v(jat+Tij7€l)g<€l>d€/}g(€>d€7

where in the last equality we have separated the integral over ¢’ into two parts. Then, by linearity of

integration, we have
V(i t) = / Ienj(x) {p s) Z Fy + Pydy — cdyy — el) — [1 — p(s)] (c dij + ej)
JEA(s —
Zwll F.P) / (It + 7, €)g(€)de

+ [1=p(s)] /v(j,t+Tij76')9(6')d6’}9(6)d6-
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Next, using the definition of the integrated value function, we obtain

Vi, t) = / max { szl EP) (Fy + Pydy — cdy — el) — [1 —p(s)] (cdz-j + ej)

JEA(s)

Zm (EP)V(,t+7) + [1 —P(S)]V(jvt+ﬁj)}9(€)d€-

The first term in the maximum does not depend on j. Therefore, we can take it out. Thus,

V(i) = /(

Fy+ Pydy —cdy — €) + jlgljé) { — [1=p(s)] (cdij + €;)

) 2 mlF
Z V(lLt+1) + [1 —p(S)]V(j7t+Tij)}>g(6)d6

/ Zﬂ—zl F,P) (Fiy + Pydy — cdgy — €) g(e)de

+ / max { — [1=p(s)] (cdsj +€5)

JEA(s)

NE

+ p(s) Y mTH(FBP)V(Lt+74) + [1—p(s)|V(jt+ Tij)}g(e)de.

=1

The expected value of the cost shocks is zero. Thus, we can simplify the first term of the equation. Further-

more, the second term in the maximum does not depend on j and e. Therefore, we can take it out of the
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maximization and integration. Combining these two steps gives

M=

V(i t) =p(s) > 7h(FP) (Fy + Pydy — Z V(l,t+73)

Il
_

+ / max { — [1=p(s)](cdij +¢;) — [L—p(s)| V(. t+ Tij)}g(e)de

JEA(s)

T (EP) V(I t + Tar)

M:
NIE

=p(s) > 7Y (EP) (Fu + Pydy — cdy) + p(s)

I
-
-~
Il
-

JEA(s

+ [1 —p(s)] / _max) {V(j,t+7ij) — cdij — ez}g(e)de

=p(s)

NE

T (B P) (Fi + Pudi — Zml (FP)V(I,t+713)

Il
-

+ o[l —p(s)] log [ Z exp (V(J7t+nj) — Cdij):|

g
JEA(s)

(ZM (FP) ( Fy + [Py — c]d ) Zﬂzl (F,P)V lt—i—nl))
o[1 - p( 1og[ > e (¥ it ) — du)],

g
JEA(s)

where p(s) = A\f/m!, and

exp (I:V(j,t+7'i‘7)_(5dij:| /U> .
for j € A(s),

t

4;; = 2lea(s) XP ([V(lthrT“)*Cd"’l]/”)

0 otherwise.

1.3 Proof of Theorem 1

First, we show that a mean field equilibrium is a solution (mz, V (i, t)) to Equations (6) and (8), where

AL, mi;, fi;, and ¢f; are characterized by Equations (3), (4), (5), and (9). Next, we use Brouwer’s Fixed

Point Theorem to show that there exists a solution (mf,V(i,t)) to Equations (6) and (8).

Assume that the problem primitives M, M, N;, ¢, Fi;, Pij, 7ij, dij, Sij, AL, as, Bi, k, o, and the

lj7

1

initial distribution of (empty) cars m; are given. By Definition 1, a mean field equilibrium is a solution

()\t mt,mt.

i fh, 4, V(1)) to Equations (3)-(9). Given (mf,V(i,t)), the equilibrium values X!, !

zy’ 35

and ¢f; are uniquely determined by Equations (3), (4), (5), and (9). In fact, Equations (3), (4), (5), and

(9), provide no further information besides determining the values of \f, ”, ! ], and ql given ( £V (i, t))
Therefore, we can think of a mean field equilibrium as a solution (mﬁ, V(i,t)) to Equations (6) and (8),
where \! m”, f”, and q” are characterized by Equations (3), (4), (5), and (9). Note that Equation (7) is

satisfied by any solution to Equations (4)-(6) and we need not worry about it.
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Let

V= (V(i,t): ie{l,...,n},te{l,...,T})
m = (mﬁ: ie{l,...,n},te{l,...,T})

denote the n x T" dimensional vectors of the value function and the distribution of the empty taxis. Further-

more, let

SV = {V Z t)| < (max{ +P1Jdu}+10g(’l’b)) X (T—Z)}

Spm = {m: [Im[]y <T,m >0}

Let G : S, X Sy — Sy be the continuous function on the right-hand side of (8), i.e.,

Slow

g( :f(zﬂ'” FP ( + [Pz] - C] dij) + zn:ﬂ'f](EP) V(j,t“rT”))

5 exp (V) e)

JEA()

t
T 0(1 7@)

Similarly, let F : S, x Sy — S, be (a continuous function) such that the (z,t)-th element of F for t =1 is

the initial condition, m}, and (i,¢)-th element of F for ¢ > 1 is given by

Fa(m, V) = 3 a5 " (my 7 = A7) ZM T (R ),
JEA()

where A} and g;; are given by (3b) and (9). A mean field equilibrium is a solution (ml, V(i,t)) to Equations

(6) and (8), which is equivalent to a solution (m,V’) to the fixed point equation
(m,V) = (F(m,V),G(m,V)) (33)

given the initial distribution m} and terminal value V (i,t) = 0 for ¢ > T. Since F and G are continuous
mappings, (m,V) — (.7’-"(m,V)7 g(m,V)) is a continuous mapping from the compact convex set S,,, X Sy onto
itself. Therefore, by Brouwer’s Fixed Point Theorem (see Royden and Fitzpatrick (1968, Section 10.3)),

there exists a solution to (33). Hence, there exists a mean field equilibrium.

I.4 Proof of Proposition 2

Let H;; = Fjj + P;;d;; denote the total fare paid for a ride from node ¢ to node j. Following the notation

introduced in Section 6, ﬁij denotes the fare paid under the base prices (sz JF; ), and H;; denotes the fare
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paid under (P, Fj;). By the definition of 1;;, it follows that H;; = n;;H;; for all i, j. By Equation (1), the
demand for rides from i to j in period ¢ at fare level Hy; is equal to A;(H;) = Aj; H. Therefore, the
consumer surplus®? generated by all customers who want a ride from node i to node j in period t at fare

level H;; < ﬁﬁij is equal to

7Hj
Csns) = [ A (34)
NH ij
= / AL hedh
Hij
ﬁﬁu .
= [ A (35)
HU'
" O
= | AGHG ntdy (36)
¢ ety [T,
= Aszw /1 dn
Ala+1) (a+1)]
_ At”ﬁ(lqﬂ) [77 n
6 1+a
S(at1) _ o (atl)
AT T L n' ]
Aij(Hij)sz 1+a
t _ [+ — (et 1]
= Aij(F,P) [Fij —&—Pmdlﬂ 7o (37)

Equation (34) follows from the definition of consumer surplus,*® Equations (35)-(36) use the change of
variables h = nH,;, and Equation (37) uses the definition of demand curve and H;;.
Since A!/AL(F, P) fraction of the customers who want a ride originating at node i in period ¢ are served,

the consumer surplus generated by the served customers for rides from node 7 to node j in period ¢ is equal

to
t /\FL Jqt
Csij(mj) = mcsij(mj)
AL o _ [ﬁ(a+1) — 77(““)}
= WAEJ(F’ P)[Fij + Pijdi;) T a

47See Van Zandt (2012, Page 59) for an introduction to consumer surplus.
48 Consumer surplus is defined as the difference between the total amount that consumers are willing to pay for a
ride (indicated by the demand curve) and the total amount that they pay (fare).
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