
Model Development with Maple in PhD-level
Management Science Courses: A Personal

Account1,2

Mahmut Parlar

DeGroote School of Business

McMaster University

Hamilton, Ontario L8S 4M4

Canada

July 2021 / Revised October 2021 and February 2022

1Research supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC).

2The author is grateful to Dr. J. D. Pintér and two referees for their constructive comments.

parlar
Typewritten Text

parlar
Typewritten Text

parlar
Typewritten Text

parlar
Typewritten Text

parlar
Typewritten Text

parlar
Typewritten Text
To appear in SPRINGER NATURE OPERATIONS RESEARCH FORUM

Contents

1 Introduction 1

2 Stochastic Processes with Business Applications (PhD course) 4
2.1 Review of Basic Probability Theory . 4

2.2 Exponential Distribution and the Poisson Process 5

2.3 Renewal Theory . 6

2.4 Discrete-time Markov Chains . 7

2.5 Continuous-time Markov Chains . 8

2.6 Brownian Motion . 10

2.7 Innovative Use of Maple in the Stochastic Processes Course 10

3 Dynamic Programming and Optimal Control (PhD course) 11
3.1 Deterministic Dynamic Programming . 11

3.2 Stochastic Dynamic Programming . 13

3.3 Deterministic Optimal Control . 13

3.4 Stochastic Optimal Control . 15

3.5 Innovative Use of Maple in the Dynamic Optimization Course 15

4 Game Theory and Decision Analysis (PhD course) 16
4.1 What’s Game Theory? . 16

4.2 Static Games of Complete Information (Nash equilibrium) 17

4.3 Dynamic Games of Complete Information (Subgame perfect equilibrium) . . 19

4.4 Static Games of Incomplete Information (Bayesian Nash equilibrium) 20

4.5 Mechanism Design (Adverse Selection) . 21

4.6 Cooperative Games with Transferable Utility 22

4.6.1 Core . 23

4.6.2 Shapley value . 23

4.6.3 Nucleolus . 24

4.7 Innovative Use of Maple in the Game Theory Course 25

5 Conclusions 25

1

parlar
Highlight

parlar
Highlight

parlar
Highlight

Abstract

I have used the computer algebra system Maple for more than 30 years in my research

and three PhD-level management science courses I have taught. I also wrote a book on

Maple to illustrate its successful use in solving operations research / management science

problems. In this paper I will first present a detailed presentation of Maple’s use in my

course on Stochastic Processes and include relevant Maple worksheets. This is followed by a

description of Maple’s use in my course on Dynamic Programming and Optimal Control. The

paper ends with a discussion of my third PhD course on Game Theory. The complete list of

all Maple worksheets presented are available on my homepage at https://profs.degroote.

mcmaster.ca/ads/parlar/ORMapleBook/Parlar-Supplements-SpringerORForum.zip.

parlar
Highlight

1 Introduction

Computer Algebra Systems (CASs) are sophisticated mathematical software that can per-

form symbolic manipulations, perform complicated numerical computations and generate

publication-quality graphs. For example, they can symbolically integrate and differentiate

functions and solve differential equations. They can also integrate functions numerically for

which there exist no closed-form results [such as the integral of exp(−x2)], and numerically
solve ordinary and partial differential equations (and their systems). Many of these CASs

are also capable of plotting 2-D and 3-D graphs of functions, plot implicit functions and

contours of 3-D functions, among others.

Many CASs have a very rich knowledge base and they can perform impressive mathemat-

ical feats such as solving linear and non-linear optimization problems, manipulating Laplace

transforms and their inverses, performing symbolic random variable calculations, and per-

forming symbolic and numerical calculations in linear algebra. Depending on the availability

of the specific packages, they can also perform financial analyses such as calculating the

price of American and European options, curve fitting and mathematical logic. Some CASs

can also solve general global optimization problems; see, Pintér ([29] and [30]). I mention

Pintér’s books here as his Lipschitz Global Optimizer (LGO) was the engine behind the first

Global Optimization Toolbox (GOT) adopted by Maplesoft in Maple 9.5.

The knowledge base of the most advanced CASs cover nearly 3,000 years of accumulation

of mathematical knowledge, from basic Euclidean geometry to the currently popular deep

learning with neural networks. In addition to their mathematical “expertise,”many CASs

can export their input/output to LATEX, and translate their native code to Fortran, C and

Python, among others. They can also import/export data sets to and from other statisti-

cal software, such as R, Excel and SAS. The impressive abilities of the CASs listed above

have made them a clear choice for many instructors teaching advanced technical courses in

engineering and science faculties, and PhD-level operations research/management science

(OR/MS) programs in business schools.

The earliest fully-functional CAS was Macsyma (“Project MAC’s SYmbolic MAnipula-

tor”) which was originally developed in 1968 at MIT1. I never had the opportunity to exper-

iment with Macsyma, but I had read about it in an advertisement piece in the September

1984 issue of Scientific American. The Macsyma example shown was the computation of an

indefinite integral involving the error function erf(x) =
∫ x
0

(2/
√
π)e−u

2
du. The closed-form

1https://en.wikipedia.org/wiki/Macsyma

1

solution for the integral was found as,∫
erf(ax) erf(bx) dx = −

√
a2 + b2 erf(x+

√
a2 + b2)

ab
√
π

+ x erf(ax) erf(bx)

+
e−a

2x2 erf(bx)

a
√
π

+
e−b

2x2 erf(ax)

b
√
π

,

where a and b are any real numbers. The advertisement stated that Macsyma can solve
equations, differentiate functions, compute Laplace transforms and manipulate matrices and

it would operate on mainframe and minicomputers. In the early 1970s I had taken courses

in computer programming and numerical analysis with Fortran IV and I had used the IBM

360 mainframe computer, thus I was familiar with scientific computation. But the fact that

computers could now perform symbolic mathematics fascinated me. I should note that Maple

can also evaluate this integral easily as I have shown in IMacsyma-Integral-1.mwJ. This
and every other Maple file I refer to in this paper are available on my homepage at

https://profs.degroote.mcmaster.ca/ads/parlar/ORMapleBook/

Parlar-Supplements-SpringerORForum.zip.

I had my first hands-on experience with a CAS in the early 1980s when I purchased the

muMATH2 system which ran on my IBM-PC. (I had seen brief reviews of this software by

Edwards [6] and Williams [36] in BYTE magazine.) The syntax was simple and somewhat

crude, but it worked. muMATH was able to solve equations symbolically, perform symbolic

integration and it could even solve ordinary differential equations. All commands had to be

in capitals and the result was also printed in capitals. For example, to evaluate
∫ b
a
x2 dx, one

would enter DEFINT(X^2, X, A, B) and the result would appear as (-A^3 + B^3)/3, all in

1-D math notation. A more user-friendly version of muMATH appeared in late 1980s under

the new name, Derive3 which could do more and generate good-quality graphs in multiple

windows.

Currently, there are several dozen CASs available in the market4 which can run under

different operating systems including Windows, macOS, Linux and others. Among these

CASs, the market leaders appear to be Maple5 from Waterloo Maple, and Wolfram Mathe-

matica6 from Wolfram Research. My first encounter with Maple was in the late 1980s when

McMaster University had a licence to run Maple on a DEC VAX minicomputer. I continued

2https://en.wikipedia.org/wiki/MuMATH
3https://en.wikipedia.org/wiki/Derive_(computer_algebra_system)
4https://en.wikipedia.org/wiki/List_of_computer_algebra_systems
5https://en.wikipedia.org/wiki/Maple_(software)
6https://en.wikipedia.org/wiki/Wolfram_Mathematica

2

parlar
Highlight

parlar
Highlight

using Maple on VAX until I purchased the Windows version of Maple V R4 (“V”meaning

“Visual”) which was released in January 1996. The graphical user interface feature (“V”)

of this version made it so much easier to use and provided several new other mathematical

functions.

When version R5.1 was released in 1998 with even more features, I decided to use this

powerful software to write an operations research book which was published in 2000 (Parlar

[26]). With the experience I gained while writing my book, I became convinced that Maple

can be an excellent pedagogical tool in the three PhD-level management science courses I

teach in DeGroote School of Business at McMaster University, i.e., (i) Stochastic Processes

with Business Applications, (ii) Dynamic Programming and Optimal Control, and (iii) Game

Theory and Decision Analysis. As I will demonstrate in subsequent sections, Maple was very

useful in solving many problems analytically (i.e., in closed-form) which were not previously

possible. I will also describe several problems which can be solved numerically with Maple

using only a few lines of code, rather than a complicated set of commands using C++,

Fortran, etc. The examples presented in [26] have constituted the building blocks of the

courses mentioned above where Maple was used extensively in model building.

Since the late 1980s I have been teaching our PhD-level stochastic processes course.

In Section 2, I will describe how I have used Maple in this course since the early 2000s

to illustrate concepts in stochastic processes and solve realistic problems. My research in-

terests in dynamic optimization led me to teach a second PhD-level course on dynamic

programming and optimal control. In Section 3, I will show how I used Maple in this course

where Maple’s symbolic manipulation capabilities allowed me to present diffi cult and re-

alistic problems. I have also been interested in game theory applications in supply chain

management and have published several papers on this topic. About 10 years ago I decided

to leverage my interest and experience on this topic and offered a PhD-level course on game

theory and decision analysis. In Section 4, I will show how Maple was again helpful in

illustrating diffi cult concepts and help solve realistic problems. I will conclude the paper

in Section 5 with a few comments on other potential uses of Maple in advanced operations

research/management science courses. With certain exceptions, I will not include the Maple

output of the examples as they could be quite lengthy. Instead, for each example, I will

make available for the reader two files; one with the extension .mw (Maple Worksheet); the

other, the .pdf export of the .mw file. As mentioned above, these files will be available

on my homepage at https://profs.degroote.mcmaster.ca/ads/parlar/ORMapleBook/

Parlar-Supplements-SpringerORForum.zip.

3

parlar
Highlight

2 Stochastic Processes with Business Applications (PhD

course)

I have been teaching our PhD course Bus Q771: Stochastic Processes with Business Appli-

cations since the late 1980s. In my lectures I make use of Kao [12] and Ross [31]. The former

has excellent examples of the theoretical material covered in the latter. I also refer to Parlar

[26] for the Maple-related materials.

2.1 Review of Basic Probability Theory

After defining discrete- and continuos-time stochastic processes, I give some examples of such

processes and then move on to a quick review of probability theory. I give the definition of

a probability measure on σ-fields and continue with random variables and their moments.

One example I discuss involves two independent uniform random variables defined on (a, b),

i.e., X ∼ U(a, b) and Y ∼ U(a, b). When (a, b) = (0, 1) it is easy to find the p.d.f. of the sum

X + Y (which is triangular) and also evaluate probabilities such as Pr(X ≤ Y) = 1
2
. When

(a, b) are not specified, the p.d.f. of the sum fX+Y (t) is somewhat challenging to determine.

The Maple file ITwo-Uniforms.mwJ does this nicely for general (a, b) and produces the

following result for the density of the sum X + Y :

fX+Y (t) =

0, if t > a+ b and t > 2b,

2b− t
(b− a)2

, if t > a+ b and t < 2b,

−2a+ t

(b− a)2
, if t < a+ b and t > 2a,

0, if t < a+ b and t < 2a.

If a third uniform is involved as Z ∼ U(a, b), the p.d.f. of the sum fX+Y+Z(t) can still be

obtained relatively easily with Maple as shown in IThree-Uniforms.mwJ.
When I discuss jointly-distributed random variables, I give an example of the bivariate

normal and plot the surface of the joint p.d.f. in IBivariate-Normal-Plot.mwJ.
Probability generating functions (p.g.f.) and their inverses play an important role in

applied probability. Consider a discrete random variable X with the probability density

function a(k) = Pr(X = k), k = 0, 1, . . . and
∑∞

k=0 a(k) = 1. The p.g.f. of X is defined as

ΠX(z) = E(zX) =
∑∞

k=0 a(k)zk from which we obtain E(X) = Π′X(1) as the expected value

and Var(X) = Π′′X(1)− [Π′X(1)]2 + Π′X(1) as variance of X. If ΠX(z) is a general function of

4

parlar
Highlight

parlar
Highlight

parlar
Highlight

z, then a(k) are obtained as,

a(k) =
1

k!

(
dkΠX(z)

dzk

)
z=0

, k = 0, 1, . . . ,

see, Kao [12, Ch. 1] and Medhi [20, Ch. 1]. In the example I use, we have,

Π(z) =
4

(2− z)(3− z)2
.

After loading the with(genfunc) package, we use a := unapply(rgf_expand(PI, z, n),

n) to invert the p.g.f. Maple obtains the explicit result in IProbability-Generating-
Function.mwJ.
For continuous random variables (r.v.), Laplace transforms (LT) and their inverses play an

important role in applied probability. For a nonnegative r.v. X with p.d.f. fX(t), its Laplace

transform is defined f̃(s) =
∫∞
0
e−stfX(t) dt. A large number of these transforms can be in-

verted analytically by referring to the widely available tables. InILaplace-Transform.mwJ,
I start with the LT of the Erlang(4, λ) r.v. as f̃(s) = λ4/(s + λ)4 and invert it to find

this Erlang’s density as f(t) = 1
6
λ4t3e−λt. In another example, I consider a LT given as

g̃(s) = 1/((1 +
√
s)(s2 +

√
s)) for which (to my knowledge) no closed-form inverse exists.

Since the 2020 version, Maple has become capable of numerically inverting LTs based on

Abate and Whitt’s paper [1]. I use this feature of Maple and find the numerical inverse of

g̃(s) as g(t) and plot it in ILaplace-Transform.mwJ.

2.2 Exponential Distribution and the Poisson Process

I start this topic by showing that the exponential r.v. X with rate λ, mean E(X) = 1/λ, and

p.d.f. f(x) = λe−λx is memoryless. (In fact, it is the only memoryless continuous r.v.) I then

connect it to the Poisson process by stating that for this process with rate λ, the interarrival

times are always exponential with the same rate. To simulate the Poisson process with

exponential interarrival times, I load the with(Statistics) package and define the r.v. as

X := RandomVariable(Exponential(1/lambda)) where λ = 0.1. I generate a sample of 20

variates and use them to generate the Poisson arrivals with a plot. This material is presented

in the file IPoisson-Simulation.mwJ.
The above example is about simulating the Poisson process {N(t), t ≥ 0} as a special

type of counting process which requires the generation of exponential random variates as

the interarrival times. Maple can also generate random variates from the Poisson random

variable N with probability mass function Pr(N = n) = e−λλn/n!. I do this in the file

5

parlar
Highlight

parlar
Highlight

parlar
Highlight

IPoisson-Sampling.mwJ with λ = 5 where 100 samples are generated. First, I define N

:= RandomVariable(Poisson(5)) and then enter A := Sample(N, 10^2) to generate the

100 samples. The histogram of the sampled values are plotted and compared against the

theoretical histogram.

When the arrival rate λ(t) of a Poisson process becomes time-dependent (as in arrivals to

a restaurant), the problem becomes more complicated. In IM(t)-M-1-1.mwJ, I consider a
queueing system with a non-homogeneous Poisson arrival process, exponential service times,

one server and a system capacity of one space. The arrival rate is λ(t) = 100t(1− t) and the
service rate is µ = 7. For this problem we compute the transient probabilities for t ∈ [0, 1]

by solving a system of two DEs with variable coeffi cients. I also plot the p1(t) function

corresponding to the probability of a full system at time t.

2.3 Renewal Theory

Renewal theory extends the exponential/Poisson duality with the more general assumption

that the interarrival times of a counting process can be any nonnegative i.i.d. random

variables. In the simpler Poisson case the expected number of occurrences in the interval

(0, t] is simplyM(t) = E[N(t)] = λt. In the renewal theory framework, this expected number

(also known as the “renewal function”) is generalized toM(t) =
∫ t
0
λ(u) du where λ(u) is the

arrival rate at t. Calculation of the renewal function can be challenging if the interarrival

times have complicated densities.

If a Laplace transform can be developed for the renewal function, Maple can successfully

invert it (numerically, if necessary). A related quantity is the renewal “density”which is

defined as the derivative of the renewal function, i.e., m(t) = M ′(t). It can be shown that

the LT m̃(s) of m(t) can be expressed in terms of the LT f̃(s) of the interarrival time

density f(t) as m̃(s) = f̃(s)/[1− f̃(s)]. If m̃(s) can be inverted to obtain, one can then find

the renewal function from M(t) =
∫ t
0
m(u) du as a result of the Fundamental Theorem of

Calculus [noting that M(0) = 0]. In IErlang21.mwJ, I assume that f(t) is Erlang(n, λ)

with parameters (n, λ) = (2, 1) and with density f(t) = te−t for which the LT is given as

f̃(s) = 1/(1 + s)2. Inverting m̃(s) we find M(t) = −1/4 + t/2 + e−2t/4. A plot of M(t) with

its asymptote and the linear approximation is also provided.

Why does Poisson naturally occur in practice? The answer is if there is a very large

number of potential “customers”each with a very long mean interarrival time, one can use

renewal theory to prove that the interarrivals of the superposed process is exponential. I

prove this in the course using the forward recurrence time concept. This may seem sur-

prising, so in IPoisson-Natural-Uniform.mwJ, I assume that there are 20 independent

6

parlar
Highlight

parlar
Highlight

parlar
Highlight

parlar
Highlight

renewal processes (which is large enough for our purposes) each with uniformly-distributed

interarrival times with mean 500. Using simulation, I show that the superposed process is

approximately Poisson. I also present a histogram of the simulated interarrival times of the

superposed process.

Renewal Reward Theorem (RRT) is a powerful tool in formulating optimization mod-

els of regenerative stochastic processes, such as those encountered in inventory theory and

queueing. Once a regenerative cycle is identified, one calculates the average cost per time AC

simply as the ratio of the expected cycle cost EC to the expected cycle length EL. The aver-

age cost expression is normally a nonlinear function of one or more decision variables which

can be optimized using standard tools of nonlinear programming. In ICar-Buying.mwJ,
I consider a car replacement problem where the lifetime of a car X is random with c.d.f.

F (x). If the car breaks down before the end of its life, the owner must incur a breakdown

cost of c1 and the new car purchase cost of c2. Using standard conditioning arguments, it is

shown that EC(T) = c1 + c2F (T) and EL(T) = T [1 − F (T)] +
∫ T
0
x dF (x) where T is the

time of replacement. Assuming X ∼ U [0, 10] and (c1, c2) = (3, 1
2
) the average cost is found

as AC(T) = g(T) = (60+T)/(20T −T 2). Using with(Optimization) and NLPSolve(), the
optimal replacement time is found as T ∗ = 9.28 and g(T ∗) = 0.69. I also provide a graph of

the g(T) function over [0, 20].

2.4 Discrete-time Markov Chains

I start this chapter by considering a discrete-time stochastic process {Xn, n = 0, 1, 2, . . . }
with a finite or infinite state space S and the property that for any set of values j, i, in−1, . . . , i0
belonging to S,

Pr(Xn+1 = j | Xn = i, Xn−1 = in−1, . . . , X0 = i0) = Pr(Xn+1 = j | Xn = i) = p
(n,n+1)
ij ,

for n = 0, 1, 2, A time-homogeneous discrete-time Markov chain (DTMC) has the prop-

erty that the transition probabilities p(n,n+1)ij are constant over time; i.e., for all n = 0, 1, 2, . . . ,

we have Pr(Xn+1 = j | Xn = i) = pij, i, j ∈ S.
The first example I discuss involves a periodic-review inventory system with random

demand. Under an (s, S) ordering policy, I show that the inventory level process Xn is a

DTMC since Xn+1 depends on Xn, and some parameters. For the special case of Poisson

demand in each period with mean 1 and (s, S) = (1, 3), the 4×4 transition probability matrix

P is easily generated with a few lines of Maple code as I show in IPeriodic-sS.mwJ. [In
this case the state space is S = {0, 1, 2, 3} since shortages are not allowed.] Irreducibility of
a DTMC is an important property that is rather diffi cult to ascertain by simple inspection.

7

parlar
Highlight

parlar
Highlight

I have a Maple code in IIrreducible-sS.mwJ that implements an algorithm due to [7,

p. 448] which checks this property. For the (s, S) inventory problem, we find that the

chain is irreducible, i.e., has a single equivalence class (and ergodic). I then compute the

stationary probabilities (π0, . . . , π3) by solving a system of four linear equations as shown in

IPeriodic-sS-Stationary.mwJ.
Another problem in Kao [12, p. 172—174] with 10 states is shown to have three equiv-

alence classes E1 = {1, 3}, E2 = {2, 7, 9} and E3 = {6}, and four transient states T =

{4, 5, 8, 10} as presented in IReducible-MC-Simpler-N10.mwJ. I also present an exam-
ple from Isaacson and Madsen [10, p. 58] of a six-state DTMC which has two equiv-

alence classes E1 = {1, 3, 5}, and E2 = {2, 6}, and one transient state T = {4}, see
IIrreducible-Isaacson-Madsen-page-58.mwJ.
The n-step transition matrix P(n) of a DTMC can be computed by finding Pn. However,

as n increases, the computation of Pn may become tedious. There exists an exact approach

for computing the transient probabilities P(n) that is based on generating functions which

Maple can invert successfully. In ITransient-2by2.mwJ, I have a simple example of a
2-state DTMC whose transient probabilities are determined via the rgf_expand() function

of Maple. This is achieved by inverting the elements of the generating function matrix

G(z) = P(0)(I− zP)−1, where P(0) is defined as the identity matrix I.

The mean first passage times (MFPT) µij, i, j ∈ S are useful quantities in estimating the
average length of time it takes for a DTMC to visit state j given that it started in state i

at time 0. These mean times are obtained easily by solving a linear system of N2 equations

for a DTMC with N states. In Imuij.mwJ, I return to the (s, S) inventory problem and

compute the 16 MFPT µij, i, j ∈ {0, 1, 2, 3}.

2.5 Continuous-time Markov Chains

Consider a continuous-time stochastic process {X(t), t ≥ 0} with the property that for i, j ∈
S,

Pr[X(t+ s) = j | X(s) = i, X(u) = x(u), 0 ≤ u < s]

= Pr[X(t+ s) = j | X(s) = i]

for all s, t ≥ 0 and x(u), 0 ≤ u ≤ s. Such a process {X(t), t ≥ 0} is a continuous-time
Markov chain (CTMC) with state space S.
Similar to a discrete-time Markov chain, for a CTMC the conditional distribution of

X(t+s) given the past history over 0 ≤ u ≤ s depends only on the current stateX(s) at time

s. The process {X(t), t ≥ 0} is a time-homogeneous CTMC if the conditional probability

8

parlar
Highlight

parlar
Highlight

parlar
Highlight

parlar
Highlight

parlar
Highlight

parlar
Highlight

Pr[X(t + s) = j | X(s) = i] is independent of s. In this case we write Pr[X(t + s) =

j | X(s) = i] = pij(t) where pij(t) is called the transition function from state i to state j.

This quantity is analogous to the transition probability p(n)ij of a discrete-time Markov chain.

Defining the matrix of transition functions P(t) = [pij(t)], it can be shown that

P′(t) = QP(t), with P(0) = I

where I is the identity matrix, P′(t) = [p′ij(t)], and the diagonal elements of the ith row of

the infinitesimal generator Q matrix is the negative of the sum of all other elements in row

i. For example, for the Markovian queue with no waiting space (M/M/1/1), we obtain, p′00(t) p′01(t)

p′10(t) p′11(t)

 =

 −λ λ

µ −µ

 p00(t) p01(t)

p10(t) p11(t)

 . (1)

First, note that if we had a scalar differential equation given by p′(t) = qp(t), with

p(0) = 1, the solution would simply be p(t) = eqt =
∑∞

n=0(qt)
n/n!. It can be shown that

for the matrix DE system P′(t) = QP(t), P(0) = I , the solution assumes a similar form

as P(t) = eQt, where eQt =
∑∞

n=0(Qt)
n/n!. Loading with(LinearAlgebra), the function

MatrixExponential(Q, t) conveniently solves the matrix DE and produces the transient

solution for the transition functions pij(t), i, j ∈ S. The simplest example of the use of
MatrixExponential() is the solution of the system of DEs given by (1) as shown in the

Maple file IMatrixExponential-MM11.mwJ.
A more challenging problem (of a shoeshine shop) with three states and the exact solution

of the transition functions is provided in the file IMatrixExponential-Shoeshine.mwJ.
The transient solution to the unconditional probabilities pj(t), j ∈ S in the M/M/1

queue involves the modified Bessel function of the 1st kind, and it is calculated in the Maple

worksheet ITransient-MM1.mwJ.
In most problems it is suffi cient to find the limiting probabilities πj = limt→∞ pij(t) of a

CTMC. (These probabilities will exist provided that the transition matrix of the embedded

Markov chain for the CTMC is irreducible and positive recurrent.) To evaluate the limiting

probabilities, we establish the balance equations, i.e., for any state j ∈ S, we write, Output
rate from j = Input rate to j, which give rise to a system of N linear equations plus the

equation
∑

j∈S πj = 1. (One of the structural equations can be eliminated as the original

system is linearly dependent.) For example, for the M/M/1/1 queue described above, the

9

parlar
Highlight

parlar
Highlight

parlar
Highlight

balance equations result in the following linear equations for each state j = 0, 1:

Rate Out = Rate In

State 0: λπ0 = µπ1

State 1: µπ1 = λπ0.

Including π0+π1 = 1 and solving, gives [π0, π1] =
[

µ
λ+µ

, λ
λ+µ

]
for which Maple is not needed.

Returning to the three-state (shoeshine) example, the limiting probabilities are easily

obtained in the Maple file IShoeshine.mwJ. A generalized version of this problem with

extra capacity and five states becomes more complicated but Maple solves for the limiting

probabilities easily in IShoeshine-Extra.mwJ.
A truly challenging problem concerned with the ambulance use in two response areas

involves 9 states. The vector process (X1(t), X2(t)) is a CTMC with state space S = {(0, 0),

(0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}. This model is originally due to Carter,
Chaiken and Ignall [4], but it is also discussed in Tijms [35]. After presenting this model,

Tijms [35, p. 116] states (somewhat pessimistically): “These linear equations must be solved

numerically.”But Maple succeeds in solving the linear system symbolically (i.e., exactly!) in

IAmbulances.mwJ. This problem is also discussed in Kao [12, Examples 5.1.3 and 5.2.3].

2.6 Brownian Motion

When time permits, I provide a brief discussion of Brownian motion (BM) based on my

paper [27]. The Maple code in my paper was written in the early 2000s when Maple did not

provide a function for simulating the Brownian motion process. This is now available as a

function in the Finance package.

The function BrownianMotion(x[0],mu,sigma,t) simulates the stochastic differential

equation dX(t) = µ(t) dt + σ(t) dW (t) for the BM X(t) where µ(t) is drift and σ(t) is the

volatility and W (t) is the standard Wiener process. The Maple file IBM-Simulate.mwJ
provides a simple example.

2.7 Innovative Use of Maple in the Stochastic Processes Course

How can Maple help in the effective teaching of a graduate course in stochastic processes?

As I showed in several examples above, Maple can be useful in solving many problems

analytically (i.e., in closed-form) which were not previously possible. For example, the

ambulance problem discussed which was originally solvable only “numerically,”can now be

10

parlar
Highlight

parlar
Highlight

parlar
Highlight

parlar
Highlight

solved by Maple symbolically (i.e., exactly!). Such results allow the researcher to conduct

sensitivity analyses on the problem parameters without resorting to numerical techniques.

Maple’s ability to invert a large class of Laplace transforms symbolically makes it possible

to analyze challenging problems in renewal theory and continuous-time Markov chains. In

certain cases where symbolic inversion is impossible, Maple can now perform the inversion

numerically which provides an additional level of convenience in solving such problems.

Maple can also perform symbolic manipulation of random variables which is a non-trivial

problem. Finding the probability density function (p.d.f.) of a sum of i.i.d. uniform random

variables was illustrated above. Maple can also find the p.d.f. of a sum of exponential random

variables X1, X2, . . . , Xn (for given n) with possibly different parameters λ1, λ2, . . . , λn which

results in the generalized Erlang random variable. This problem can be solved in a manner

similar to the steps used in the file IThree-Uniforms.mwJ.
Maple’s simulation capabilities are also impressive and I demonstrated them by showing

that the superposition of a large number of renewal processes with large mean interarrival

times is approximated by the Poisson process.

There are several problems which can be solved numerically with Maple using only a

few lines of code, rather than a complicated set of commands using C++, Fortran, etc.

Numerically inverting, or finding high powers of (large-scale) matrices, and simulating the

Brownian motion process are such examples.

Thus, Maple’s ability to perform symbolics, numerics and graphics makes it an ideal tool

for teaching stochastic processes and provide innovative tools and techniques for dealing with

a large class of problems arising in this course.

3 Dynamic Programming and Optimal Control (PhD

course)

In this course I cover deterministic and stochastic dynamic optimization problems solved

by dynamic programming and optimal control theory. Books by Bertsekas [3], Kamien and

Schwartz [11] and Sethi and Thompson [33] can be consulted for rigorous expositions of these

topics.

3.1 Deterministic Dynamic Programming

I start this course with a brief description of the simplest network model that lends itself to a

dynamic programming (DP) formulation and solution. The “stagecoach”problem deals with

a hypothetical 19th-century stagecoach company that transports passengers from California

11

parlar
Highlight

to New York. Although the starting point (California) and the destination (New York) are

fixed, the company can choose the intermediate states to visit in each stage of the trip.
The solution with Maple is provided in IStageCoach.mwJ. For this problem, the value
function Vij is the minimum cost from any state i in stage j to the final state [New York]

using the optimal policy. Given the state j in stage i, the decision to travel to state k in

the next stage i+ 1 results in a cost (i.e., insurance premium) of cij(k). Thus, the dynamic

programming recursive equations are written as, V51 = 0 and Vij = mink {cij(k) + Vi+1,k},
where the expression inside the parenthesis is minimized by a suitable choice of the decision

variable k.

Models with linear system and quadratic cost are generally easily solved using the DP

approach. For example, consider the sequential problem with the cost function
∑2

t=0(x
2
t +

u2t) + x23 and the system equations xt+1 = xt + ut, t = 0, 1, 2 with x0 given as a constant.

The Maple file with the solution of this problem is ILQ.mwJ. It is interesting to note that
the optimal control law in such problems is always linear in the state variable xt.

Forming the DP functional equation, we have

Vt(xt) = min
ut

[x2t + u2t + Vt+1(xt + ut)], t = 0, 1, 2

V3(x3) = x23.

We note that the sequential optimization model described above can also be solved

as a standard nonlinear programming (NLP) problem with six decision variables (x,u) =

(x1, x2, x3, u0, u1, u2), the objective function f(x,u) =
∑2

t=0(x
2
t +u2t) +x23 and three equality

constraints h1 = x1 − x0 − u0 = 0, h2 = x2 − x1 − u1 = 0 and h3 = x3 − x2 − u2 = 0 with x0
as a given constant; see ILQ-NLP.mwJ.
Naturally, in more general cases one could minimize

∑N−1
t=0 (x′tQtxt+u′tRtut)+x′NQNxN

subject to xt+1 = Atxt + Btut, for t = 0, 1, . . . , N − 1, and x0 given, where Qt, Rt, At and

Bt are matrices and xt and ut are vectors (all appropriately dimensioned). Once again, the

optimal control law is obtained as a linear function of the state vector xt which requires the

evaluation of the discrete Riccati equations. One such problem with a two-dimensional state

vector xt and a scalar control variable ut is solved explicitly in terms of the discrete Riccati

equations in ILinearRegulator.mwJ. Interestingly, Maple now has a LinearAlgebra()
function named DARE() [Discrete Algebraic Riccati Equation] which solves the matrix Riccati

equation. See ILinearRegulator-DARE.mwJ for a comparison with the more cumbersome
expressions in ILinearRegulator.mwJ.

12

parlar
Highlight

parlar
Highlight

parlar
Highlight

parlar
Highlight

parlar
Highlight

parlar
Highlight

3.2 Stochastic Dynamic Programming

One of the fruitful applications of stochastic dynamic programming is the optimality proof

of the base stock policy for the periodic review inventory problem with stochastic demands.

It can be shown that if the demands in each period are i.i.d., then it is optimal to order

up to a level of Sn whenever the inventory level falls below Sn at the start of period n. In

IBaseStock.mwJ I illustrate this policy in a numerical example in a two-period problem.
In his seminal paper, Kelly [13] solves the following problem involving a gambler:

Vn(xn) = max
0≤un≤1

EwnVn−1(xn + unxnwn)

= max
0≤un≤1

[pVn−1(xn + unxn) + qVn−1(xn − unxn)]

with the boundary condition V0(x0) = log(x0) where Vn(xn) as the maximum expected

return if the gambler has a present fortune of xn and has n gambles left. One of the most

interesting features of this problem is the nature of its solution: The optimal strategy is

myopic (invariant) in the sense that regardless of the number of bets left to place (n) and

the current wealth (x), the optimal (nonnegative) fraction to bet in each period is the same,

i.e., u = p − q when p > 1
2
and u = 0 when p ≤ 1

2
. I solve a specific example of this in

IGamble-Myopic.mwJ.
The final example involves the regulator problem discussed above with the added twist

that the linear system is disturbed by the standardized normal i.i.d. r.v.’s wt, i.e., xt+1 =

xt+ut+wt. The numerical example for this problem is given inILinearRegulator-Scalar-
Stochastic.mwJ.

3.3 Deterministic Optimal Control

In this part of the course, we consider optimal control problems with the objective functional∫ T
0
F [x(t), u(t), y] dt subject to the state equations ẋ(t) = f [x(t), u(t), t] with the initial

condition specified as x(0) = x0 where x(t) is the state variable and u(t) is the control

variable. In many problems, one encounters constraints on the control variable g(u(t), t) ≥ 0,

on the state variable h(x(t), t) ≥ 0, or mixed-type constraints k(x(t), u(t), t) ≥ 0 which

complicate the problem. In some problems there could even be constraints on the final

value of the state variable x(T). These problems can be solved using either the Pontryagin’s

maximum principle or the Hamilton-Jacobi-Bellman equation; see, Sethi and Thompson [33,

p. 347] for an excellent coverage of the techniques and business applications of optimal

control theory.

One of the early examples in Sethi and Thompson [33, p. 42] is stated as max J =

13

parlar
Highlight

parlar
Highlight

parlar
Highlight

∫ 2
0

(2x− 3u− u2) dt s.t. ẋ = x+ u, x(0) = 5 and u(t) ∈ [0, 2]. The optimal control is found

as u(t) = sat[0, 2; e2−t − 2.5]. The Maple file IEx-2-5.mwJ solves this “saturation-type”

problem and also provides a numerical evaluation of the state trajectory x(t) and the value

of the objective functional.

One of the simple-looking but challenging problems in Sethi and Thompson [33, p. 48] has

a quadratic objective but the system dynamics includes a cubic term for the state variable.

The problem is to max J =
∫ 1
0
−1
2
(x2 + u2) dt s.t. ẋ = x3 + u, with x(0) = 5. The

two-point-boundary-value problem (TPBVP) arising from the necessary conditions are,

ẋ = x3 + u, x(0) = 5,

λ̇ = x+ 3x2λ, λ(1) = 0.

This is a nonlinear system of two ODEs and a closed-form solution seems not possible.

Sethi and Thompson solve the TPBVP using Excel. I solved this problem with Maple in

IEx-2-7.mwJ with the single command dsolve(System union ICS, numeric, output =
listprocedure, range = 0 .. 1). I also calculate the value of the objective as 0.8641.

In one of the earliest papers that uses control theory to solve a production problem,

Hwang, Fan and Erickson [9] formulate their problem to

max

∫ T

0

{
−1

2
c(u− û)2 − 1

2
h(x− x̂)2

}
dt

s.t. ẋ = u − s where s is the constant sales rate. Applying Pontryagin’s principle gives

u = û + λ/c and λ̇ = h(x − x̂) with λ(T) = 0 and ẋ = û + λ/c − s with x(0) = x0.

This is again a TPBVP but since we have a linear quadratic structure, it is possible to

find the optimal solution for u(t) and x(t) exactly with Maple’s help. This is shown in

IHwang-EtAl-Constant-s.mwJ where I also present a numerical example.
As a final example, let’s consider the problem of maximizing J = −

∫ 1
0
x dt, s.t. ẋ = u,

with x(0) = 1 and u ∈ [−1, 1]. Sethi and Thompson [33, p. 37] solve this problem explicitly

using the Pontryagin’s principle and find that the solution is bang-bang due to the bounds

on u, i.e., u(t) = bang[−1, 1;λ(t)] where λ(t) is the co-state variable. In my course I first

solve the problem explicitly but also show the students how it can be cast as a linear pro-

gramming problem since the integrand and the system ODE are both linear. With a suitable

discretization, I find the same result as in Sethi and Thompson, see, IEx-2-1-LP.mwJ. It
is interesting to note that the LP formulation of this control problem results in 202 decision

variables and 303 constraints.

14

parlar
Highlight

parlar
Highlight

parlar
Highlight

parlar
Highlight

3.4 Stochastic Optimal Control

This is a short chapter. I first discuss two of my earlier papers ([24] on stochastic control

and [27] on stochastic differential equations).

To illustrate the use of stochastic optimal control, I consider a stylized production plan-

ning model (Sethi and Thompson [33, p. 347] where the objective is tominE
∫ T
0

(u2t+X
2
t) dt+

BXT subject to dXt = (ut− st) dt+σdZt with the initial condition X0 = x0 as given. Defin-

ing V (x, t) as the value function, i.e., the minimum cost from time t in state xt = x to the

final time T given that the optimal policy is followed, the Hamilton-Jacobi-Bellman (HJB)

equation is,

0 = max
u

{
−(u2 + x2 + Vt + Vx(u− s) +

1

2
σ2Vxx

}
, V (xT , T) = BxT .

Differentiating and solving for u gives u = 1
2
Vx indicating that the optimal control law can

be obtained if Vx can be determined. To that end, one assumes a quadratic form for the

value function as V (x, t) = Q(t)x2+R(t)x+M(t). Computing Vt, Vx and Vxx, and inserting

these into the HJB equation results in a system of three nonlinear ODEs as,

Q̇ = 1−Q2, Q(T) = 0

Ṙ = 2sQ−RQ, R(T) = B

Ṁ = sR− 1

4
R2 − σ2Q, M(T) = 0,

where s is assumed constant. The numerical solution of the ODE system for a particular

set of parameter values and the resulting value function at t = 0, i.e., V (x, 0) = −0.76x2 +

5.46x−16.10 is presented in the Maple file IStochastic-Control-Numerical-System.mwJ
This file also evaluates the expression for the control law at t = 0 as u(x, 0) = −0.76x+2.73.

3.5 Innovative Use of Maple in the Dynamic Optimization Course

Discrete-time dynamic programming problems require the solution of recursive optimiza-

tion problems involving the value function. Maple’s ability to perform symbolic solution of

optimization problems allows the user to find the optimal policy in closed-form as in the

stochastic dynamic inventory problem. Here, the base stock policy is optimal, but requires

the solution of the non-trivial problem of finding the optimal order-up-to levels Sn. In most

cases, this problem is solved by approximating it as an infinite horizon problem. But, Maple

makes it possible to evaluate the value function as a function of the state variable for each

15

parlar
Highlight

time and find the optimal Sn.

Maple is also ideally suited for solving optimal control problems where a system’s evolu-

tion over time is represented by differential equation(s). The necessary conditions are usually

represented as two-point-boundary-value problems involving nonlinear differential equations

which, in many cases, Maple can successfully solve in closed-form. When closed-form solu-

tion is not possible, such problems can still be solved with a single Maple command dsolve

command as was presented in IEx-2-7.mwJ.
Thus, Maple’s symbolic and numerical solution facilities provide innovative techniques

for dealing with both dynamic programming and optimal control problems.

4 Game Theory and Decision Analysis (PhD course)

In this course I use two textbooks by Gibbons [8] and Peters [28]. I also refer to some of my

papers on game theory including Leng and Parlar [15], [16], [17], [18], Parlar [25] and Wu and

Parlar [37]. In addition to using Maple to solve problems, I also use the Gambit Software

available from http://www.gambit-project.org/. This software is capable of solving finite

games even with multiple players.

4.1 What’s Game Theory?

I start the course by discussing a few problems which can be formulated using game-theoretic

concepts. Peters [28, p. 3] has a simple example of a zero-sum game that takes place in the

South Pacific in 1943. The American admiral Kenney wants to bomb the Japanese admiral

Imamura’s troops which need to be transported to New Guinea across the Bismarck Sea.

Each have two options: Northern route or Southern route. The zero-sum game is modelled

as 2,−2 2,−2

1,−1 3,−3

where the row strategies for Kenney are North or South, and the column strategies for

Imamura are also North or South. In this matrix the numbers correspond to the number of

days Kenney can bomb and thus he must choose a strategy to maximize his payoff. As we

have a zero-sum game, for Imamura the opposite is true. By simple inspection, it can be

shown that saddle point for this game is at the first row and first column, i.e., (N,N) resulting

in a payoff of 2 days of bombing for Kenney. Since zero-sum games can also be solved using

linear programming, I show the class the file IBismarckSea-Battle.mwJ which finds the

16

parlar
Highlight

parlar
Highlight

same solution.

I also present a few examples of non-zero sum games and find their solution manually.

In the next section, such problems are discussed in greater detail.

Peters [28, p. 15] presents a simple example of a bargaining problem where the players

are to share a divisible good of unit quantity. If Player 1 receives a fraction α, his utility is

u1(α) = α and if Player 2 receives a fraction β , her utility is u2(β) =
√
β. The bargaining

solution requires maximizing the objective u1(α)u2(β) subject to the constraint α + β ≤ 1

and α, β ≥ 0, (Nash [21]). I solve this problem in IBargaining-alpha-beta.mwJ and find
α = 2

3
and β = 1

3
.

As a final example of introduction to game theory, let’s consider the Cournot game with

two firms with production quantities of qi, i = 1.2, respectively. The total production is

Q = q1+q2, and the market price is p = a−Q where a is the maximum market price as total
production approaches zero. Each firm’s production cost is ciqi, i = 1.2, respectively. The

profit functions are Pi(q1, q2) = qi(a−Q)− ciqi for i = 1, 2. The Nash equilibrium ([22],[23])

in this case is obtained by finding the best responses for each firm by differentiating the

profit functions with respect to a firm’s order quantity and equating to zero. Solving the

resulting system of linear equations gives q1 = 1
3
(a− 2c1 + c2), q2 = 1

3
(a+ c1 − 2c2) with the

firms’profits found as P1 = 1
9
(a − 2c1 + c2)

2, and P2 = 1
9
(a + c1 − 2c2)

2. These results are

shown in the Maple file ICournot.mwJ.

4.2 Static Games of Complete Information (Nash equilibrium)

Since every finite zero-sum game can be solved using linear programming as I showed in

IBismarckSea-Battle.mwJ above, I do not discuss these games in the remainder of the

course. The equilibrium solution for non-zero sum games requires an understanding of Nash’s

approach and I illustrate this through several examples. For simple finite games with only a

few rows and columns, manual inspections can help identify the equilibria. For larger games

one can use a quadratic programming (QP) formulation proposed by Mangasarian and Stone

[19]. If (A,B) are the payoff matrices for Player 1 and 2, and (x,y) are vectors of mixed

strategies, respectively, Mangasarian and Stone have shown that the solution of the following

QP will produce a Nash equilibrium, if one exists. (If there are multiple equilibria, starting

with different initial solutions gives rise to the other equilibrium points.)

max
a,b,x,y

x′(A + B)y − a− b

s.t. Ay − au ≤ 0, Bx− bv ≤ 0, u′x = 1, v′y = 1, x ≥ 0, y ≥ 0,

17

parlar
Highlight

parlar
Highlight

parlar
Highlight

where u = (1, 1, . . . , 1)′, v = (1, 1, . . . , 1)′, and a and b are the equilibrium payoffs to Players

1 and 2, respectively. As an example, consider the payoff matrices for each player,

A =

6 0 0

10 5 0

8 8 4

 , B =

6 10 8

0 5 8

0 0 4

 ,

where the rows and columns correspond to the prices levels chosen by each player, i.e., High,

Medium and Low, and the numbers are the payoffs. I solve this problem using Maple’s

QPSolve() function and the (unique and pure) Nash equilibrium is found as x = y = (0, 0, 1)

with a = b = 4 in IMangasarian-Stone-Pricing.mwJ.
In many business problems involving non-zero sum games, the players can choose from

a continuum of values. In such cases, Nash equilibrium can be found employing standard

calculus techniques. For example, in a two-person game, if f(x, y) and g(x, y) are the payoffs

(utilities) to each player where x and y are the possible continuous strategy choices, the Nash

equilibrium (if it exists) is computed as follows: Player 1 solves maxx f(x, y) for each value

of y to obtain his best response R1(y), and Player 2 solves maxy g(x, y) for each value of x,

to obtain her best response R2(x). These imply that to find the equilibrium, one needs to

solve a system of two (possibly nonlinear) equations given by

I1(x, y) =
∂f(x, y)

∂x
= 0, I2(x, y) =

∂g(x, y)

∂y
= 0.

I illustrate this in the Maple file IContinuous-Example.mwJ where f(x, y) = −2x2 + 5xy

and g(x, y) = −3y2 + 2xy + y. The equilibrium is found as (x, y) = (5
14
, 4
14

) with payoffs

(f, g) = (0.255, 0.244). The Maple file also illustrated the intersection of the two best

response relations.

Consider a simplified version of the competitive newsvendor model discussed in Parlar [25]

and Wu and Parlar [37]. The newsvendors face random demands X and Y with respective

densities f(x) and h(y) and if one newsvendor runs out of stock, some of the unsatisfied

customers may switch to the other newsvendor if he/she has any units available. With these

assumptions, the expected profit function of the first newsvendor (P1) in Wu and Parlar [37]

18

parlar
Highlight

parlar
Highlight

is given as,

J1(q1, q2) = s1

∫ q1

0

xf(x) dx+ s1q1

∫ ∞
q1

f(x) dx+ s1

∫ q1

0

∫ B

q2

b(y − q2)h(y)f(x) dy dx

+s1

∫ q1

0

∫ ∞
B

(q1 − x)h(y)f(x) dy dx− c1q1,

where s1 is the unit sales revenue, c1 is the unit purchase cost andB ≡ (q1−x)/b+q2, with b as

the fraction of P2’s demand that will switch to P1’s product when P2 is sold out. The second

newsvendor’s expected profit is obtained similarly. After computing ∂J1/∂q1 ≡ I1(q1, q2) = 0

and ∂J2/∂q2 ≡ I2(q1, q2) = 0, I prove the uniqueness of the Nash equilibrium for this problem.

The Maple file INewsvendors-Nash-Stackelberg.mwJ presents a numerical example with
exponential demand densities. This file also includes a related example of the Stackelberg

equilibrium where one newsvendor is the leader and the other a follower.

4.3 Dynamic Games of Complete Information (Subgame perfect

equilibrium)

In the static games of complete information discussed in the previous section (chapter in the

course) all players choose their strategies simultaneously and Nash is the solution concept for

such problems. However, in many business problems decisions are often made sequentially

and there may be a first mover (leader) and a second mover (follower). For example, in

a two-person game, if f(x, y) and g(x, y) are the payoffs (utilities) to each player where x

and y are the possible continuous strategy choices and leader optimizes f(x, y) and the fol-

lower optimizes g(x, y). Such problems are solved using the “backward induction”approach,

sometimes also known as the Stackelberg strategy and give rise to the subgame perfect equi-

librium. If the follower observes leader’s strategy choice of x, then for any value of x, the

follower solves maxy g(x, y) by finding her best response from ∂g/∂y = 0 which results in a

relation I2(x, y) = 0 in the (x, y)-plane. Since the game is one of complete information, the

leader can compute I2(x, y) = 0 and optimize his objective subject to this relation. That is,

the leader’s problem becomesmaxx f(x, y) s.t. I2(x, y) = 0. In some cases where I2(x, y) = 0

can be solved uniquely for y = φ(x), the leader’s problem simplifies to maxx f(x, φ(x)).

I have a very simple example in the Maple file IExtensive-Continuous.mwJ which

solves the socially optimal, individual optimization, Nash and Stackelberg problems. Here,

the objective for the leader’s is to minimize f(x, y) = (x− 1)2 + (y − 1)2 and the objective

of the follower is also to minimize g(x, y) = 2(x− 2)2 + (y − 2)2 − 2xy + 40.

The second and last example in this section again consider the newsvendor problem where

19

parlar
Highlight

parlar
Highlight

the Maple file INewsvendors-Nash-Stackelberg.mwJ considered above also computes the
Stackelberg strategy and find that in this problem there is an advantage to the first mover

(leader).

4.4 Static Games of Incomplete Information (Bayesian Nash equi-

librium)

In the last two sections (and chapters in the course) it was assumed that the information

about the players’payoff functions and other parameters was public knowledge. For example,

in the Cournot game discussed in Section 4.1, both firms were privy to the value of the

maximum market demand a , and their marginal production costs c1 and c2. In many

business problems this may be an oversimplification of reality as one firm may not know the

exact value of the other firm’s marginal cost.

As a simple example of a situation where there is incomplete information, let’s assume

that Firm 1’s production cost is C1(q1) = cq1 with marginal cost of c, and both firms know

this, (Gibbons [8, Ch. 3]). However, Firm 1 believes that Firm 2’s marginal production cost

is either cH [with conditional probability Pr(cH | c) = θ], or cL [with conditional probability

Pr(cL | c) = (1 − θ)] where cH > cL. Here, Firm 2 has an advantage over the other as it

knows both Firm 1’s marginal cost and its own, which is either cH or cL. The Bayesian Nash

equilibrium is obtained by formulating and solving new objective functions for both firms

as,

P̂1(q1; q2H , q2L) = θ{[a− (q1 + q2H)]− c}q1 + (1− θ){[a− (q1 + q2L)]− c}q1,
P̂2H(q1; q2H) = {[a− (q1 + q2H)]− cH}q2H ,
P̂2L(q1; q2L) = {[a− (q1 + q2L)]− cL}q2L,

where q2H and q2L are the production quantities for Firm 2 when its marginal cost is High,

or Low, respectively. Solving

∂P̂1
∂q1

= 0,
∂P̂2
∂q2H

= 0,
∂P̂2
∂q2L

= 0,

20

parlar
Highlight

gives the Bayesian Nash equilibrium quantities for both firms as,

q1 =
1

3
{a− 2c+ [θcH + (1− θ)cL]},

q2H =
1

3
(a− 2cH + c) +

1− θ
6

(cH − cL),

q2L =
1

3
(a− 2cL + c)− θ

6
(cH − cL).

These results are shown in the Maple file ICournot-Incomplete.mwJ.
The competitive newsvendor problem discussed in Section 4.2 can also be formulated

assuming incomplete information. The Bayesian Nash equilibrium for this version of the

problem is provided in the Maple file INewsvendor-Incomplete.mwJ, also covered in Wu
and Parlar [37].

4.5 Mechanism Design (Adverse Selection)

In the last three sections we used the Nash, subgame perfect and Bayesian Nash solution

concepts to find the equilibria of the resulting game models. These solution concepts have

found wide applicability in many business applications, but they lack an incentive mechanism

for a player (principal) to influence the actions of another (agent). In mechanism design

formulations of multi-player interactions, this is made possible.

In this section I will describe the adverse selection formulation of the interaction between

a principal who uses a menu of choices for the agent so that the latter’s incentives are

aligned with the former. In such problems, the agent has hidden knowledge/information

about certain aspects of a problem, such as her marginal cost, and the principal will design

an incentive system so that the agent will reveal her information. For excellent coverages of

these ideas, see, Dixit, Skeath and Reiley [5, Ch. 14] and Laffont and Martimort [14].

Consider a simple example where the agent could either be a low-cost, or high-cost

type with the marginal cost θ1 or θ2, respectively. The principal knows that the agent is

low-cost with probability ν and high cost with probability 1 − ν. The agent produces a

good for the principal for whom the utility (or, social value function) is S(q) for q units of

production. Since the principal does not know the agent’s type, he will offer her a menu

[(t1, q1), (t2, q2)] and pay her t1 for producing q1 units and t2 for q2 units. The principal’s

problem is to choose the optimal values of the menu parameters to maximize his expected

utility of ν[S(q1) − t1] + (1 − ν)[S(q2) − t2]. However, the principal must assure that the

agent participate in this arrangement so two participation constraints (PC) must be satisfied

as t1 − θ1q1 ≥ 0, and t2 − θ2q2 ≥ 0. Even thought these PCs are necessary, they are not

suffi cient for a complete formulation of the adverse selection problem. The principal also

21

parlar
Highlight

parlar
Highlight

must ensure that the agent does not “lie”about her marginal cost.

If the agent is low-cost, then her profit will be t1 − θ1q1. On the other hand, if she

claims to be high-cost when she is in fact low cost, then her profit is t2− θ1q2. The principal
should therefore add a new incentive compatibility (IC) constraint t2 − θ1q2 ≥ t2 − θ1q2 so
that the agent is incentivized to report her true (low-) cost. Similarly, for completeness, the

constraint t2 − θ2q2 ≥ t1 − θ2q1 must also be included so that a high-cost agent does not

pretend to be low-cost (which would not be beneficial, in any case). Thus, the principal’s

problem is to maximize the expected utility subject to the two PC and two IC constraints.

If we now define information rents paid to the agent as U1 = t1 − θ1q1, U2 = t2 − θ2q2,
when she is low-cost and high-cost, respectively, the problem can be re-stated as,

max
Ui,qi,i=1,2

ν[S(q1)− θ1q1] + (1− ν)[S(q2)− θ2q2]︸ ︷︷ ︸
Expected utility

− [νU1 + (1− ν)U2]︸ ︷︷ ︸
Information rent

s.t. U1 ≥ U2 + q2∆θ (IC1)

U2 ≥ U1 − q1∆θ (IC2)

U1 ≥ 0 (PC1)

U2 ≥ 0 (PC2)

where ∆θ = θ2 − θ1. Employing a few simple economic arguments, it can be shown that

U1 = q2∆θ and U2 = 0. That is, the low-cost agent receives a positive information rent,

whereas the high-cost one does not. For a numerical example of the complete model, see

ISecondBest-AdverseSelection.mwJ. In this example we set S(q) = 15q− 1
2
q2, (θ1, θ2) =

(3, 5), and ν = 2
3
, and find (U1, U2) = (12, 0), with (q1, q2) = (12, 6). This result shows that

the low-cost agent would have a positive information rent of U1 = 12 and receive a larger

order than a high-cost agent would.

4.6 Cooperative Games with Transferable Utility

In all the game-theoretic models presented so far (zero-sum and nonzero-sum), the players

had no reason, or incentive, to cooperate. However, in many realistic problems, especially

those involving supply chains (Leng and Parlar [17]), the players can cooperate and this can

result in improved performance for the system, i.e., “grand coalition.”The relevant question

now is to find a reasonable method of splitting the added benefits (savings, profits, etc.) so

that the whole group of players will continue cooperating.

In this section, I will present three concepts that are crucial to the analysis of cooperative

22

parlar
Highlight

games. I will first explain the concept of core, which may be empty or non-empty. I will then

discuss Shapley value as one possible solution concept for splitting the additional benefits

resulting from cooperation. Finally, I will present another important solution concept known

as the nucleolus. I will base my discussion on an example in Peters [28, p. 12].

4.6.1 Core

A power source serves three cities denoted by N = {1, 2, 3} which are at different distances
from the source. The cities can rent transmission links and if they cooperate, they can save

on costs of reaching the power source. Cities can establish coalitions for cooperation, defined

as subsets S of the set N . In the example, it is shown that the cost savings for different

coalitions are v({1}) = v({2}) = v({3}) = 0, v({1, 2}) = 90, v({1, 3}) = 100 , v({2, 3}) = 120

and for the grand coalition v({1, 2, 3}) = 220, where v(·) is the characteristic function of the
game. To determine how much each player (city) should gain from these savings, we define xi
as the payoff (imputation) to player i ∈ S. What should be a “reasonable”set of allocations
to each player? Since {1, 2} can already save 90 if they cooperate, to keep them in the game,
the total sum of payments to these two players should be at least 90, i.e., x1 + x2 ≥ 90.

Similarly, we have x1+x3 ≥ 100, x2+x3 ≥ 120 and for the grand coalition x1+x2+x3 = 220.

The core, is thus defined as the set C = {(x1, x2, x3) : xi ≥ 0, i = 1, 2, 3 and x1 + x3 ≥ 100,

x2 + x3 ≥ 120, x1 + x2 + x3 = 220}. In the Maple file ICoreGraph-ThreeCities.mwJ, the
core plotted in three dimensions as the middle section of the red plane bounded by three

planes arising from the boundary of the inequalities.

In some problems the core may be empty. It is easy to check this property by solving a

simple linear programming problem with the constraints arising from the coalitions’imputa-

tion constraints and minimizing the objective as, say, x1. If the feasible set to the LPSolve()

function exists, then the core is non-empty. Otherwise, if LPSolve() can’t find a feasible so-

lution, then the core must be empty. In our problem, the core is non-empty and this is shown

in the Maple fileICoreTest-ThreeCities.mwJ. This file has two other example with empty
cores; one is the well-known Divide the Dollar game where v({1}) = v({2}) = v({3}) = 0,

v({1, 2}) = v({1, 3}) =, v({2, 3}) = 1 and for the grand coalition v({1, 2, 3}) = 1.

4.6.2 Shapley value

This is one of the earliest solution concepts in cooperative game theory due to Shapley

[34]. The essential idea is to assign to each player the “average marginal contribution”she

makes to a coalition. For small number of players a simple manual procedure can be used to

compute the Shapley value. However, in general, Shapley value for player i in the cooperative

23

parlar
Highlight

parlar
Highlight

game (N, v) can be computed from,

Φi(N, v) =
∑

S⊆N , i/∈S

|S|!(n− |S| − 1)![v(S ∪ {i})− v(S)]

n!
,

where n is the number of players in grand coalition N , and |S| is the number of players
in coalition S. For the three cities example presented above, to find the Shapley value for

Player 1, the term inside the summation for S = {2} is 90/6 = 15. Similarly, for S = {3},
the term inside the summation is 100/6 and for S = {2, 3} it is 100/3. Summing these

terms, we obtain Φ1(N, v) = 65 as the Shapley value for Player 1. It is important to note

that even when the core is non-empty, Shapley value may be outside the core. The Maple

file IShapley-Baron-ThreeCities.mwJ (due to Barron [2, Ch. 5]) computes the Shapley

value for any cooperative game with three players, in particular the example with three

cities discussed above for which we find Φ = (65, 75, 80). The number of players can be

easily increased by adjusting the value of the parameter N , and by entering the relevant

values of the characteristic functions for any finite number of players.

4.6.3 Nucleolus

Recall that imputations in the core should satisfy the constraints
∑

i∈S xi ≥ v(S) for any

coalition S ⊆ N . But in some cases the core may be empty (as in the Divide the Dollar

game mentioned above). If so, one can try to satisfy the constraints as much as possible

by making the largest violation as small as possible; see, Schmeidler [32]. To that end, we

define the “excess”(unhappiness) of S at the imputation vector x as,

eS(x) = v(S)−
∑
i∈S

xi,

and make the most unhappy coalition as little unhappy as possible. Unlike the Shapley

value for which a closed-form formula for the imputations exists, computation of the nucleo-

lus requires an iterative approach for small problems, and the solution of a sequence of linear

programming problems for larger problems. However, the paper by Leng and Parlar [18]

provides closed-form formulas for nucleolus in any three-person cooperative game. These

formulas are incorporated into the Maple file INucleolus-ThreeCities.mwJ which com-

putes the nucleolus for the three cities problem and find the imputation as x = (562
3
, 762

3
, 862

3
)

which is slightly different from the Shapley value found in the same example.

24

parlar
Highlight

parlar
Highlight

4.7 Innovative Use of Maple in the Game Theory Course

Maple’s symbolics, numerics and graphics capabilities have made it an ideal computer algebra

system for teaching introductory mathematics courses and it has been adopted at numerous

science and engineering departments. To my knowledge, Maple is not widely-known by

academics who teach in economics and social sciences departments. However, game theory

is a popular course taught at undergraduate- and graduate-levels in almost every economics

department and the tools I presented in this section may be of benefit to instructors teaching

game theory courses.

In particular, the explicit results found in the Bayesian Nash equilibriummodel, simplicity

of computing the Shapley value and the simple modelling of the mechanism design problems

as shown in this section would make Maple a mathematical tool of innovation and value to

the economists teaching game theory.

It is also worth mentioning that two of the chapters in Parlar [26] covered stochastic

process and dynamic programming. However, game theory is not included in this book

which would make the contents of this section especially relevant in a game theory course.

5 Conclusions

Maple is one of the most popular and sophisticated computer algebra systems with a knowl-

edge base that includes, among others, geometry, calculus, differential equations, transform

techniques and optimization.

These features of Maple have made it an invaluable tool in the PhD-level management

science courses I have taught in the business school of my home university. Maple’s abil-

ity to perform symbolic manipulations, such as differentiation and integration, and solving

(systems of) differential equations makes it possible to go beyond the “toy”problems and

present realistic examples of management science problems in class. Maple is also capa-

ble of performing sophisticated numerical computations and generating publication-quality

graphics, such as 3-D surfaces and contour plots.

The topic of the present special issue is “Model Development for the Classroom” and

its purpose is to “present a collection of articles discussing the innovative use of model

development environments [e.g., Maple] in courses held at colleges and universities.”In this

paper I summarize my experience of using Maple in three of my PhD courses, i.e., stochastic

processes, dynamic programming and optimal control, and game theory. It is my hope that

the examples and cases I have presented here will be of benefit to the instructors of PhD-

level (or, other advanced) management science/operations research courses taught in business

25

schools, industrial engineering, and mathematics/statistics departments. I am confident that

Maple can also be successfully used in courses on queueing theory, nonlinear programming,

scheduling, probability and mathematical statistics, linear algebra and operations modelling,

providing realism in the examples and topics covered in these courses.

Conflict of interest statement: The corresponding author states that there is no
conflict of interest.

Data Availability Statement: Data sharing not applicable to this article as no

datasets were generated or analysed during the current study. However, the Maple files

cited will be available on the author’s homepage at https://profs.degroote.mcmaster.

ca/ads/parlar/ORMapleBook/Parlar-Supplements-SpringerORForum.zip.

References

[1] J. Abate and W. Whitt. A unified framework for numerically inverting Laplace trans-

forms. INFORMS Journal on Computing, 18(4):408—421, 2006.

[2] E. N. Barron. Game Theory: An Introduction. Wiley-Interscience, 2007.

[3] D. P. Bertsekas. Dynamic Programming: Deterministic and Stochastic Models. Prentice-

Hall, Englewood Cliffs, 1987.

[4] G. Carter, J. M. Chaiken, and E. J. Ignall. Response areas for two emergency units.

Operations Research, 20:571—594, 1972.

[5] A. Dixit, S. Skeath, and D. Reiley. Games of Strategy. W. W. Norton & Company, New

York, 3rd edition, 2009.

[6] S. Edwards. A computer-algebra-based calculating system. BYTE, 8(12):481, 1983.

[7] D. P. Gaver and G. L. Thompson. Programming and Probability Models in Operations

Research. Brooks/Cole, Monterey, Calif., 1973.

[8] R. Gibbons. Game Theory for Applied Economists. Princeton University Press, Prince-

ton, New Jersey, 1992.

[9] C. L. Hwang, L. T. Fan, and L. E. Erickson. Optimum production planning by the

maximum principle. Management Science, 13(9):751—755, 1967.

[10] D. L. Isaacson and R. W. Madsen. Markov chains: Theory and applications. Wiley,

1976.

26

parlar
Highlight

[11] M. I. Kamien and N. L. Schwartz. Dynamic optimization: the calculus of variations

and optimal control in economics and management. Elsevier, Amsterdam, 1991.

[12] E. P. C. Kao. An Introduction to Stochastic Processes. Duxbury, Belmont, California,

1997.

[13] J. L. Kelly. A new interpretation of information rate. Bell System Technical Journal,

35:917—926, 1956.

[14] J.-J. Laffont and D. Martimort. The Theory of Incentives: The Principal-Agent Model.

Princeton University Press, Princeton, New Jersey, 2002.

[15] M. Leng and M. Parlar. Game theoretic applications in supply chain management: a

review. INFOR, 43(3):187—220, August 2005.

[16] M. Leng and M. Parlar. Game-theoretic analysis of an ancient Chinese horse race

problem. Computers and Operations Research, 33:2033—2055, 2006.

[17] M. Leng and M. Parlar. Allocation of cost savings in a three-level supply chain with

demand information sharing: A cooperative-game approach. Operations Research,

57(1):200—213, January—February 2009.

[18] M. Leng and M. Parlar. Analytic solution for the nucleolus of a three-player cooperative

game. Naval Research Logistics, 57:667—672, 2010.

[19] O. L. Mangasarian and H. Stone. Two-person nonzero-sum games and quadratic pro-

gramming. Journal of Mathematical Analysis and Applications, 9(3):348—355, 1964.

[20] J. Medhi. Stochastic Processes. John Wiley, New York, 1994.

[21] J. Nash. The bargaining problem. Econometrica, 18:155—162, 1950.

[22] J. Nash. Equilibrium points in n-person games. Proceedings of the National Academy

of Sciences, 36:48—49, 1950.

[23] J. Nash. Non-cooperative games. The Annals of Mathematics, Second Series, 54(2):286—

295, September 1951.

[24] M. Parlar. Use of stochastic control theory to model a forest management system.

Applied mathematical modelling, 9(2):125—130, 1985.

[25] M. Parlar. Game theoretic analysis of the substitutable product inventory problem with

random demands. Naval Research Logistics, 35(3):397—409, 1988.

27

[26] M. Parlar. Interactive Operations Research with Maple: Methods and Models.

Birkhäuser, Boston, 2000.

[27] M. Parlar. A simplified treatment of Brownian motion and stochastic differential equa-

tions arising in financial mathematics. PRIMUS: Problems, Resources, and Issues in

Mathematics Undergraduate Studies, 14(3):269—287, 2004.

[28] H. Peters. Game Theory: A Multi-Leveled Approach. Springer-Verlag, Berlin, 2008.

[29] J. D. Pintér. Computational global optimization in nonlinear systems: an interactive

tutorial. Lionheart publishing, 2001.

[30] J. D. Pintér. Global optimization: scientific and engineering case studies, volume 85.

Springer Science & Business Media, 2006.

[31] S. Ross. Stochastic Processes. John Wiley, New York, 1983.

[32] D. Schmeidler. The nucleolus of a characteristic function game. SIAM Journal on

Applied Mathematics, 17:1163—1170, 1969.

[33] S. P. Sethi and G. L. Thompson. Optimal Control Theory: Applications to Management

Science and Economics. Springer, New York, 2nd edition, 2000.

[34] L. S. Shapley. A value for n-person games. In H. W. Kuhn and A. W. Tucker, editors,

Contributions to the Theory of Games II, pages 307—317. Princeton University Press,

Princeton, 1953.

[35] H. C. Tijms. Stochastic Modeling and Analysis. John Wiley, Chichester, 1986.

[36] G. Williams. The muSIMP/muMATH-79 symbolic math system, a review. BYTE, page

324, Nov. 1980.

[37] H. Wu and M. Parlar. Games with incomplete information: A simplified exposition with

inventory management applications. International Journal of Production Economics,

133:562—577, 2011.

28

