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Government subsidies are common in the agricultural sector to protect farmers from unexpected losses. Two

major forms of agricultural subsidies are price protection, under which farmers are subsidized when the

market price is low, and yield protection, under which farmers are subsidized when the crop yield is low.

While price protection is popular in both developed and emerging economies, implementing yield protection

in emerging economies is challenging due to the high costs of yield assessment for small farms. This research

examines the design of a recently emerged index-based yield protection policy, which triggers subsidies when

a pre-determined index, such as rainfall, predicts a low yield, thereby avoiding costly yield assessment.

Our analysis generates several intriguing findings. First, we show that while an increase in index-based

subsidy can increase farmers’ expected income, it can also increase their income variance due to imperfect

yield prediction of the index. Based on this result, we uncover a non-monotonic relationship between the

optimal subsidy amount and the accuracy of the index. Second, although price and yield protection are often

viewed as strategic substitutes since both can incentivize more planting, we show that they act as strategic

complements when the index accuracy is low. Finally, when the government can exert a costly effort to

improve index accuracy, contrary to expectations, we find that a tighter budget can lead to a higher optimal

investment in index accuracy. Collectively, these insights contribute to a more nuanced understanding of

index-based yield protection policies, aiding in developing effective agricultural subsidies.
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1. Introduction

Smallholder farming is recognized as the backbone of the agricultural industry, particularly in

emerging economies (Herger 2020). According to the United Nations’ Food and Agriculture Orga-

nization (FAO), smallholder farmers who farm on less than two hectares of land account for approx-

imately 84% of the world’s 570 million farmers and produce more than a third of the world’s food

(Lowder et al. 2021). Despite their sizable population and critical role in the world’s food sup-

ply, smallholder farmers are disproportionately exposed to risks like price fluctuations and severe

weather. For instance, the recent cocoa price depression due to oversupply has posed significant

livelihood challenges for smallholder cocoa farmers in West Africa (Taylor 2021). Similarly, in Cen-

tral America’s dry Pacific region, a drastic drought from 2014 to 2016 left 1.6 million farmers
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grappling with hunger and reliant on humanitarian aid due to low crop yields (Harvey et al. 2018).

Further, global food security can also be threatened by these risks if they push farmers to abandon

farming. Given these challenges, external support is essential for ensuring farmer welfare and food

security and facilitating the sustainable development of smallholder agriculture.

Government subsidies play an instrumental role in protecting farmers against unforeseen losses

arising from low prices or low crop yields. Two major types of agricultural subsidies are price

protection, which subsidizes farmers when the market price of the crop is low, and yield protection,

which subsidizes farmers when the crop yield is low. Both types of policies are widely implemented

in many developed countries, such as the United States. However, in emerging economies, while

price protection policies are commonly adopted, yield protection policies are much less prevalent

(Raithatha and Priebe 2020). This is mainly because subsidizing farmers based on their crop yields

requires yield assessment of individual farmers, which can be prohibitively costly in emerging

economies given the large number of smallholder farmers (Greatrex et al. 2015, Carter et al. 2017).

To overcome this challenge, an innovative index-based approach to yield protection has been

gaining popularity in emerging economies. Leveraging the fact that crop yields are significantly

affected by exogenous and regional factors, such as weather conditions, this approach triggers

payment to all farmers in a region when a pre-determined index, closely linked to the actual yields

in the region, predicts a low yield. For instance, in the past decade, the Indian government has

utilized weather-based index policies to subsidize more than 12 million farmers; one of the policy

schemes uses the rainfall during the planting season as an index, and farmers receive a payment

if the rainfall falls below a certain threshold (CCAFS 2013). Similarly, the Indonesian government

launched an area-yield index policy in 2022, where farmers are subsidized if an estimation of the

average yield in an area falls short of a specific benchmark (JICA 2022). As of 2017, over 20

emerging economies have started providing index-based yield protection to their farmers (Carter

et al. 2017). By using an index as a proxy, this approach significantly reduces administrative costs

by eliminating the need for individual yield assessments and makes yield protection a viable option

for smallholder farmers in emerging economies. Another advantage of this approach is that it

minimizes moral hazard because the payment to farmers is determined based on an index that

typically cannot be influenced by individual farmers.

Despite these merits, determining the appropriate subsidy level of an index-based policy remains

challenging. To see this, note that any agricultural subsidy policy must strike a balance between

providing adequate support to farmers and avoiding the provision of excessive subsidies that lead

to an oversupply of crops. This is a complex task in the presence of yield uncertainty even when

yield can be directly assessed (Alizamir et al. 2019). On top of this, an index-based policy adds an

additional layer of complexity because the subsidy payment is triggered based on an index rather
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than the actual yield of farmers. Due to the inevitable imperfect correlation between the index and

the actual yield, farmers may suffer from low actual yield without receiving a payment. Similarly,

farmers may receive a payment even when their actual yield is high. In this setting, the accuracy

of the index, namely, its ability to accurately predict the actual yield, plays a critical role in

determining the effectiveness of the policy. However, in practice, a popular approach is to determine

the payment to farmers based on the predicted yield as indicated by the index value, while the

accuracy of the index is typically not explicitly taken into consideration (see, e.g., Kenduiywo et al.

2021, for commonly used index policies in practice). Moreover, in the literature, while several recent

studies have examined the optimal design of agricultural subsidies that are based on the actual

price or actual yield (e.g., Alizamir et al. 2019, Chintapalli and Tang 2021, Guda et al. 2021),

an index-based subsidy has not been formally analyzed. Therefore, our first research question is:

How should a government optimally determine the subsidy amount under an index-based yield

protection policy, and how does this optimal amount vary with the index accuracy?

As mentioned earlier, price protection policies are common in emerging economies. When both

price and index-based yield protection policies are provided, the interplay between these two poli-

cies can be intriguing. On the one hand, because price and yield protection policies are designed

to safeguard farmers from low prices and low crop yields, respectively, combining both types of

policies may be more effective in protecting farmers than either policy alone. On the other hand,

since both policies can potentially incentivize more farmers to plant, excessive protection levels

under both policies can lead to oversupply and thus a drop in market price, which could be detri-

mental to farmers. Given these trade-offs, it is crucial for policymakers to understand how price

and yield protection policies interact with each other, especially when yield protection is imple-

mented through an index-based approach. This leads to our second research question: How does

the presence of price protection affect the optimal design and value of index-based yield protection,

and under what conditions are these two policies strategic complements or substitutes?

Lastly, under some index-based yield protection policies, the government may be able to exert a

costly effort to enhance the accuracy of the index. For instance, under an area-yield index policy

discussed earlier, an estimation of the average yield in an area is used as the index to determine

whether to subsidize farmers in the area. To improve the accuracy of such an index, the government

can, for example, increase the sample size for yield estimation or divide the area into more sub-areas

so that the estimation of yield in each (sub-)area can better reflect the actual yields of individual

farmers. Greater index accuracy can increase farmers’ chances of receiving subsidies when their

actual yield is low. However, enhancing the index accuracy may incur substantial costs. Under

tight budget constraints, an increase in investment toward improving index accuracy can result in

fewer funds available for subsidy payments, which may compromise the policy’s impact on farmer
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welfare. Therefore, a careful allocation of the budget between subsidy payment and index accuracy

is critical in ensuring the effectiveness of an index-based yield protection policy. This motivates our

third research question: When the government can invest in improving the index accuracy, how

should it optimally allocate its budget between the subsidy amount and index accuracy?

To address these research questions, we develop a game-theoretic model that consists of a unit

mass of farmers and a local government. Farmers make planting decisions for a single crop and

face uncertain crop yield. The uncertainty in crop yield further leads to uncertainty in the market-

clearing price. In this uncertain environment, farmers exhibit risk aversion when deciding whether

to plant the crop, and we capture such risk aversion by considering a mean-variance utility. The

government offers an index-based yield protection subsidy policy, where the index is partially

correlated with the actual yield, and farmers who plant receive a subsidy if the realized index

indicates a low yield. To capture the interactions between the government and farmers, we formulate

a Stackelberg game where the government first announces the subsidy policy, and then farmers

determine whether to plant the crop. The government determines the subsidy amount to maximize

the net benefit, defined as the total farmer surplus minus the government expenditure.

Our analysis unveils several insights for policymakers in designing index-based yield protection

subsidies. First, we find that while a higher subsidy can increase farmers’ expected income, it can

also increase their income variance, especially when the index accuracy is low. This leads us to

identify a non-monotonic relationship between the optimal subsidy amount and index accuracy:

the optimal subsidy amount initially increases and then decreases in index accuracy. This result

suggests that commonly used policies that base payments on the predicted yield without explicitly

considering index accuracy can be suboptimal, and underscores that it is crucial for policymakers to

carefully integrate the role of index accuracy into the design of index-based policies. Moreover, this

inverted-U-shaped relationship between the optimal subsidy amount and index accuracy provides

guidance for policymakers to tailor subsidy amounts based on the accuracy of available indices,

while cautioning against the risk of over-subsidization at both lower and higher ends of index

accuracy. Additionally, this result also enables us to characterize the effect of yield variability and

farmer risk aversion on the optimal subsidy amount at different levels of index accuracy.

Second, with both price and index-based yield protection policies in place, we characterize the

critical role of the index accuracy in determining the interplay between these two policies. Specif-

ically, we first show that if the index accuracy is sufficiently high, price and index-based yield

protection are generally strategic substitutes. This result parallels the finding by Alizamir et al.

(2019), who show that in a context where farmers are subsidized based on the actual price and

yield, protecting both price and yield may not offer added value over price protection alone. How-

ever, we also offer a contrasting perspective by showing that if the index accuracy is low, price and
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index-based yield protection can work as strategic complements, indicating that if a government

must employ a low-accuracy index for yield protection (possibly due to data limitations), price

protection can augment the value of index-based yield protection for farmers.

Finally, when the government can invest in improving index accuracy, we find that such invest-

ment is crucial when the crop yield variability is relatively high. Moreover, contrary to expectations,

it can be optimal for the government to allocate more budget to enhance index accuracy under

a tighter budget. This result underscores that a restricted budget does not automatically imply

a diminished investment in index accuracy, and it holds particular relevance given the increasing

budgetary constraints many governments face for crop subsidies as they also strive to address other

urgent needs.

The remainder of the paper is structured as follows. In §2, we present a review of related litera-

ture. In §3, we introduce our model setup. In §4, we analyze the optimal subsidy amount under an

index-based yield protection policy. In §5, we study how the presence of price protection affects the

design and value of index-based yield protection. In §6, we study the joint design of the subsidy

amount and index accuracy. In §7, we present a calibrated numerical study based on real data for

corn production to illustrate how our insights can map to practice. In §8, we present several model

extensions and show the robustness of our insights under alternative model setups. Finally, in §9,

we conclude with a summary of managerial insights and directions for future research.

2. Literature Review

Our paper contributes to two emerging streams of literature on sustainable and socially responsible

operations. First, we contribute to the growing literature on agricultural operations and supply

chains. In this research area, a set of papers examines farmers’ optimal decisions in farming activ-

ities, such as planting and farmland allocation, in the presence of yield uncertainty (Kazaz 2004,

Boyabatlı et al. 2019, Zhang and Swaminathan 2020). Given the vulnerability of farmers, especially

those in emerging economies, another set of papers analyzes the design of external interventions

for improving the welfare of farmers, such as providing information (Liao et al. 2019, Zhou et al.

2021, Shi et al. 2023), developing online platforms for trading or equipment sharing (Ferreira et al.

2017, Levi et al. 2020, Adebola et al. 2022), implementing contract farming (Federgruen et al. 2019,

de Zegher et al. 2019, Hu et al. 2019), offering government loans (Pay et al. 2022), and enabling

consumers to tip farmers (Alizamir et al. 2022). Like the latter set of papers, we also study the

design of interventions to improve farmer welfare, and we contribute to this literature by analyzing

a novel form of government support for farmers, index-based yield protection subsidies.

Second, our paper contributes to the operations literature that studies the optimal design of

government subsidies. Within this literature, several recent papers examine agricultural subsidies.
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For example, Alizamir et al. (2019) compare two crop subsidy policies in the U.S. that protect

farmers from low market price and low revenue (due to either low price or low yield), respectively;

Akkaya et al. (2021) study government subsidies to promote agricultural innovation; Ramaswami

et al. (2018), Guda et al. (2021) and Chintapalli and Tang (2021) examine a price protection policy

named minimum support price; and Fan et al. (2023) and Tang et al. (2023) analyze and compare

input- and output-based subsidy policies. Among these papers, the only work that studies subsidy

policies that subsidize farmers in low-yield scenarios in the presence of yield uncertainty is by

Alizamir et al. (2019). Nevertheless, their focus is on policies in the U.S. that subsidize farmers

based on actual crop yields, which are typically not suitable for emerging economies with small

farm sizes. In contrast, we study an index-based approach for yield protection for smallholder

farmers.

Several recent papers study government subsidies in other settings, including the use of subsidies

for promoting green energy and technology (e.g., Cohen et al. 2016, Babich et al. 2020) or improving

the availability and affordability of essential medicines (e.g., Taylor and Xiao 2014, Levi et al.

2019, Arifoğlu and Tang 2022). While these studies consider subsidies offered to consumers or large

producers, we focus on subsidies offered to smallholder farmers. Moreover, we study an index-based

approach under which the subsidy payment is determined based on an imperfect predictor of actual

outcomes, while in all aforementioned studies, the subsidy payment is determined based on actual

outcomes.

Finally, our work relates to the agricultural economics literature that studies interventions for

protecting smallholder farmers from low crop yields. Within this literature, a few recent papers

empirically examine the benefits of offering index-based yield protection subsidies in emerging

economies (e.g., Freudenreich and Mußhoff 2018, Cai et al. 2020). In addition, this literature also

explores the construction of indices using various data sources (e.g., Flatnes and Carter 2016,

Kenduiywo et al. 2021, Chen et al. 2023), and examines farmers’ demand and willingness to pay

for index-based insurance products for which farmers need to pay a premium to enroll (e.g., Clarke

2016, Takahashi et al. 2016, Ghosh et al. 2021). Our work complements these studies by analytically

studying the optimal design of government subsidies for index-based yield protection. Specifically,

we build an analytical model that endogenizes farmers’ planting decisions and thus the crop’s total

supply and its market-clearing price. This enables us to capture the broad implications of index-

based yield protection subsidies regarding their effects on the equilibrium planting amount, the

surplus of farmers and consumers, and the government expenditure, thereby providing nuanced

insights to guide the design of such subsidies.
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Figure 1 Sequence of Events

3. Model

We consider a unit mass of farmers and a local government. Farmers make planting decisions for a

single crop and face uncertain crop yield. To protect farmers from low crop yield, the government

offers an index-based yield protection policy such that farmers who plant will receive a subsidy if

the realized index indicates a low yield. To model the government’s subsidy choice and the farmers’

planting decisions, we formulate a Stackelberg game where the government first announces the

subsidy policy, and then farmers determine whether or not to plant the crop (see Figure 1 for an

illustration of the sequence of events). Overall, our model captures three features that are salient

in the context of index-based yield protection: (1) uncertain crop yield; (2) planting decisions

of heterogeneous and risk-averse farmers; and (3) subsidy payment based on an index that is

imperfectly correlated to the crop yield. We next describe these key model elements in detail.

Yield uncertainty and market-clearing price. Crop yields are profoundly shaped by various

environmental factors like weather conditions. The inherent uncertainties linked to these elements,

including unexpected rainfall patterns, varying temperatures, or extreme weather events, can cause

drastic variations in crop yields. To capture uncertain crop yields, we represent the yield level

of each farmer by a random variable Y . For analytical simplicity, we assume that Y can take

on two different outcomes: a low yield, µ − σ, and a high yield, µ + σ, where µ > 0 and σ ∈
(0, µ]. Both possibilities occur with equal probability. Therefore, the mean (i.e., expected value)

of the crop yield is E[Y ] = µ, and the variance is Var[Y ] = σ2. This two-point distribution is

commonly employed by the existing literature to model yield uncertainty (Boyabatlı et al. 2017,

Agrawal et al. 2022). Moreover, this assumption does not drive our main findings; we later show

that our insights continue to hold under more realistic yield distributions (see §7). To facilitate

analytical tractability, we adopt an assumption from existing studies on agricultural supply chains

by considering that the yield is perfectly correlated among all farmers (Hu et al. 2019, Alizamir

et al. 2019). This assumption aligns with the scenarios where exogenous and regional factors, such

as weather conditions, primarily drive yield variability. Furthermore, we relax this assumption in

§7, demonstrating that our main insights remain intact even when the yields of individual farmers

are different from each other.
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Given the uncertain nature of yields, the overall supply of the crop, and consequently, its market

price, are subject to fluctuation. Suppose a total of x ∈ [0,1] farmers choose to plant. Then, the

total supply of the crop, given the yield level Y , equates to xY . In line with several existing

studies on agricultural supply chains (e.g., Hu et al. 2019, Alizamir et al. 2019), we characterize

the market-clearing price of the crop as a− bxY , a decreasing function in the total supply xY ,

where a > 0 denotes the maximum possible price and b > 0 the sensitivity of the market price to

the supply of the crop. To ensure a positive price for any x∈ [0,1], we assume a− b(µ+σ)> 0.

Risk-averse farmers. Smallholder farmers are particularly vulnerable to income variability,

and empirical studies have revealed that they are typically risk-averse in their farming decisions

(see, e.g., Chavas et al. 2010). Accordingly, we consider that farmers are risk-averse when deciding

whether or not to plant the crop, and we capture such risk aversion through a mean-variance util-

ity. When a total of x farmers choose to plant, given the market price a− bxY , each farmer who

plants will earn a revenue (a− bxY )Y from selling the crop. To account for the diverse produc-

tion efficiencies among farmers, we consider a heterogeneous production cost h that is uniformly

distributed over [0, c]. Consequently, when government subsidy is not provided and if a total of x

farmers plant, the net income of the farmer with production cost h from planting is

π(h|x) = (a− bxY )Y −h.

Then, her mean-variance utility is

u(h|x) =E[π(h|x)]−λVar[π(h|x)] = aµ− bx(µ2 +σ2)−h−λ (aσ− 2bxµσ)
2
, (1)

where λ> 0 denotes the risk aversion coefficient.

Each farmer chooses to plant if and only if her utility defined by Equation (1) is positive. We

call the number of farmers who choose to plant in equilibrium the equilibrium planting amount.

For ease of exposition, we assume that farmers’ maximum production cost (i.e., c) is higher than a

threshold c1, which ensures that there exists a unique equilibrium planting amount that is strictly

less than one without subsidy.1 Similarly, we assume λ< µ+σ
2aσ2 , which avoids another extreme case

where no one plants. Under these conditions, the following lemma characterizes the equilibrium

planting amount when no government subsidy is provided, which we denote as x∗
0.

Lemma 1 (Equilibrium planting amount without government subsidy). The function u(xc|x)
is quadratic concave and strictly decreasing in x for x ∈ [0,1]. The equilibrium planting amount

without government subsidy, x∗
0, is the unique positive solution to u(xc|x) = 0, given by

x∗
0 =

−β0 +
√
β2
0 − 4α0γ0

2α0

∈ (0,1), (2)

1 Specifically, we assume c > c1 := max{aµ− b(µ2 + σ2)− λ(aσ − 2bµσ)2,4λabµσ2 − b(µ2 + σ2),2λab(µ− σ)2 µσ
µ+σ

−
1
2
b(µ−σ)2}.
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where α0 = 4λb2µ2σ2, β0 = b(µ2 +σ2)+ c− 4λabµσ2, and γ0 = λa2σ2 − aµ.

For any given planting amount x, we denote each farmer’s revenue in the low- and high-yield

scenarios as RL(x) = [a− bx(µ− σ)](µ− σ) and RH(x) = [a− bx(µ+ σ)](µ+ σ), respectively. For

ease of exposition, we assume RL(x
∗
0)<RH(x

∗
0). This assumption represents a prominent scenario

in which yield protection is most crucial, and it aligns with practical situations where farmers

typically suffer from low crop yields (Mgbenka et al. 2016, Fan and Rue 2020).

Index-based yield protection by the government. To safeguard smallholder farmers from

the risks associated with yield uncertainty, the government provides an index-based yield protection

policy. As discussed in §1, an index-based approach avoids the costly yield assessment of individual

farmers,2 making yield protection a viable option for smallholder farmers in emerging economies.

The index can take various forms, such as a weather-based index determined by the rainfall level

and temperature. We let a random variable I denote the value of the index. In line with the yield

variable Y , we assume that I can also take two values. Specifically, I = 1 indicates a prediction

of low yield, while I = 0 indicates a prediction of high yield. Hence, under the index-based yield

protection policy, farmers who plant will receive a subsidy s≥ 0 if I = 1.

For ease of exposition, we assume that the index variable I has the same marginal distribution

as the yield variable Y . That is, I = 1 with probability 1
2
and I = 0 otherwise. Later on, we will

relax this assumption and explore situations where the index I and the yield level Y have different

marginal distributions (see §8). Further, as discussed in §1, the index is generally an imperfect

prediction of the actual yield level. To capture such an imperfect correlation between the index I

and the yield level Y , we define r as the conditional probability P(I = 1|Y = µ−σ). In other words,

r indicates the likelihood that the index accurately predicts a low yield when the actual yield level

is low. This probability represents the accuracy of the index in yield prediction. Without loss of

generality, we assume that the index is at least as accurate as a random guess, that is, r≥ 1
2
. This

condition is equivalent to P(I = 1|Y = µ−σ)≥ P(I = 1).

Given the index I and the subsidy amount s, if a total of x farmers plant, the net income of the

farmer with production cost h from planting is adjusted as follows:

π(h|x, s) = (a− bxY )Y + sI −h.

Her mean-variance utility is now given by:

u(h|x, s) =E[π(h|x, s)]−λVar[π(h|x, s)]

= aµ− bx(µ2 +σ2)−h+
s

2
−λ

[
(aσ− 2bxµσ)

2
+
s2

4
+ s

(
r− 1

2

)
(2aσ− 4bxµσ)

]
. (3)

2 In our base model, it may seem easy to assess farmers’ yields given that they are assumed to be perfectly correlated.
However, we note that we make the assumption of perfect correlation only for analytical tractability, and we later
show that our key insights remain intact when farmers’ yields are no longer perfectly correlated (see §7).
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Same as before, we consider that each farmer chooses to plant if and only if her utility is positive.

Let x∗(s) denote equilibrium planting amount when the subsidy amount is equal to s.

To focus our analysis on a realistic range of subsidy amounts, we assume that farmers’ revenue

in the low-yield scenario plus the subsidy payment does not exceed their revenue in the high-

yield scenario. Specifically, let s̄ represent the lowest subsidy amount s at which RL(x
∗(s)) + s≥

RH(x
∗(s)), that is,

s̄= inf{s≥ 0 :RL(x
∗(s))+ s≥RH(x

∗(s))},

and whenever we discuss the subsidy amount s in the remainder of our analysis, we focus on

s∈ [0, s̄]. We note that this is without loss of generality because if the subsidy amount s has already

exceeded s̄, it is straightforward to show that farmers will be better off if the government starts

subsidizing them when the index indicates a high yield rather than a low yield. Moreover, our key

insights remain valid even if we consider any s≥ 0.

Optimal subsidy design. In practice, a primary goal of agricultural subsidies is to improve

the welfare of farmers (Hemming et al. 2018, Chintapalli and Tang 2021). Therefore, similar to

Chintapalli and Tang (2021), who study price protection subsidies, we consider that the govern-

ment chooses the subsidy s ∈ [0, s̄] to maximize the net benefit, which is defined as the expected

total farmer surplus (i.e., the aggregation of all farmers’ income) minus the expected government

expenditure. Specifically, given the subsidy amount s and the corresponding equilibrium planting

amount x∗(s), the expected total farmer surplus is
∫ x∗(s)

0
E[(a− bx∗(s)Y )Y + sI − xc] dx, and the

expected government expenditure is x∗(s)E[sI]. Therefore, the net benefit is as follows:

v(s) =

∫ x∗(s)

0

E[(a− bx∗(s)Y )Y + sI −xc] dx−x∗(s)E[sI]

= aµx∗(s)−
(
b(µ2 +σ2)+

1

2
c

)
(x∗(s))2 (4)

From Equation (4), we observe that the net benefit v(s) is a quadratic concave function of the

equilibrium planting amount x∗(s). Let xopt denote the planting amount that maximizes the net

benefit. Then, xopt = min{ aµ
2b(µ2+σ2)+c

,1}, and the optimal subsidy amount, which we denote as

s∗,3 must satisfy that, the corresponding equilibrium planting amount x∗(s∗) is equal to or as

close to xopt as possible. To avoid an uninteresting case where there is already too much planting

even without subsidy, we focus on scenarios with x∗
0 ≤ xopt in the remainder of this paper. This

assumption can be re-written as that farmers’ risk aversion coefficient λ is not too low.

We remark that, alongside enhancing farmer surplus, another possible function of agricultural

subsidies is to bolster consumer surplus by ensuring a sufficient supply of crops (Alizamir et al. 2019,

3 If there are more than one s that maximizes v(s), we define s∗ as the smallest one.
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Akkaya et al. 2021). We later extend our model to consider an alternate governmental objective

that incorporates consumer surplus and demonstrate that our key findings remain robust (§8).
Also, in our base model, we consider a scenario wherein the government works with a given index

and optimizes the subsidy amount s. We later develop our model to include a scenario where

the accuracy of the index can be improved by exerting a costly effort, thereby necessitating the

government to make joint decisions regarding the subsidy amount and the index accuracy (§6).
Table 1 below summarizes the notation of the basic model parameters defined in this section.

Table 1 Notation

Y = crop yield, where Y = µ−σ with probability
1

2
and Y = µ+σ with probability

1

2

a=maximum possible price

b= sensitivity of market price to the supply of the crop

h= farmers’ production cost, which is uniformly distributed over [0, c]

λ= farmers’ risk aversion coefficient

I = index, where I = 1 (low yield) with probability
1

2
and I = 0 (high yield) with probability

1

2

r= index accuracy, which is defined as P(I = 1|Y = µ−σ)

s= subsidy amount to farmers when the index indicates the yield level is low (i.e., when I = 1)

x∗(s) = equilibrium planting amount under subsidy amount s

v(s) = net benefit under subsidy amount s

4. Optimal Subsidy of Index-Based Yield Protection

In this section, we first examine farmers’ equilibrium planting amount under any given subsidy

amount for index-based yield protection (§4.1), and then analyze the structure of the optimal

subsidy amount and discuss its managerial implications (§4.2).

4.1. Equilibrium Planting Amount under Given Subsidy

Given farmers’ utility defined in Equation (3), we are able to derive a closed-form expression of

the equilibrium planting amount under given subsidy amounts, as shown in the following lemma.

Lemma 2 (Equilibrium planting amount with government subsidy). For any given government

subsidy amount s ∈ [0, s̄], the function u(xc|x, s) is quadratic concave and strictly decreasing in

x for x ∈ [0,1]. Moreover, for any given s ∈ [0, s̄], let x̂(s) denote the unique positive solution to

u(xc|x, s) = 0. Then, the equilibrium planting amount is x∗(s) =min{x̂(s),1} ∈ (0,1], with

x̂(s) =
−β(s)+

√
β2(s)− 4αγ(s)

2α
, (5)
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where α = α0 = 4λb2µ2σ2, β(s) = b(µ2 + σ2) + c− 4λabµσ2 + 4λb(r − 1
2
)µσs, and γ(s) = λa2σ2 −

ay − 2λa(r − 1
2
)σs− 1

2
s+ 1

4
λs2. Further, there exists a threshold c2 such that if c ≥ c2, then the

equilibrium planting amount under given subsidy amount s∈ [0, s̄] is x∗(s) = x̂(s)∈ (0,1).

Lemma 2 characterizes the equilibrium planting amount under given subsidy amounts. Moreover,

the lemma demonstrates that if farmers’ production cost is sufficiently high (i.e., c≥ c2), then the

equilibrium planting amount is strictly less than one. For ease of exposition, we focus on the case

where c ≥ c2 in the remainder of our analysis, which allows us to restrict our attention to the

interior solution of the equilibrium amount and avoid unnecessary technical complications. We also

note that our key insights remain valid even if this assumption is relaxed. Building on Lemma 2,

we next explore how the subsidy amount s affects the equilibrium planting amount.

Proposition 1 (Effect of subsidy amount on equilibrium planting amount). The equilibrium plant-

ing amount x∗(s) is a concave function of s. Moreover, there exists a threshold r1 ∈ [ 1
2
,1) such that

if r < r1, then x∗(s) increases in s if and only if s≤ s1, where s1 := argmax
s∈[0,s̄]

x∗(s) ∈ (0, s̄) and s1

increases in r. If r≥ r1, then x
∗(s) increases in s.

Proposition 1 demonstrates that the effect of an increase in the subsidy amount s can vary

significantly across different levels of index accuracy. In particular, if the index accuracy is higher

than a certain threshold (i.e., r≥ r1), a larger subsidy amount always leads to a higher equilibrium

planting amount, although with a diminishing return. However, if the index accuracy is low (i.e.,

r < r1), a larger subsidy amount encourages more planning only up to a certain point (i.e., s1).

When the subsidy amount exceeds this threshold, a further increase in subsidy no longer incentivizes

more planting. Moreover, the threshold s1 is increasing in the index accuracy r, implying that the

effectiveness of an index-based subsidy in incentivizing farmers to plant is enhanced when the index

accuracy r is higher. To gain intuition behind these results, the next proposition studies how an

increase in the subsidy amount affects the variance of farmer income.4

Proposition 2 (Effect of subsidy amount on farmer income variance). The variance of farmer

income Var[π(h|x∗(s), s)] is a convex function of s. Moreover, if r < 1, then Var[π(h|x∗(s), s)]

decreases in s if and only if s≤ s2, where s2 := argmin
s∈[0,s̄]

Var[π(h|x∗(s), s)] ∈ (0, s̄) and s2 is lower

than the threshold s1 in Proposition 1. If r= 1, then Var[π(h|x∗(s), s)] decreases in s.

Proposition 2 reveals that, if the index accuracy is one (i.e., subsidy is provided based on actual

crop yield), the variance of farmer income decreases in the subsidy amount. Such an effect is

4 For ease of exposition, we include the details about how the subsidy amount affects the expected farmer income
(i.e., E[(a− bx∗(s)Y )Y + sI − h]) within the proof of Proposition 2. Specifically, an increase in the subsidy leads to
an increase in the expected farmer income as long as the price sensitivity b is not too high.
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expected because a yield-protection subsidy is intended to improve farmers’ income for low-yield

scenarios.

However, with imperfect index accuracy (r < 1), the variance of farmer income is non-monotonic

in the subsidy amount. When the subsidy increases from a small level, the variance of farmer

income first decreases, resulting in an increase in the equilibrium planting amount. Such an increase

in planting amount, in turn, can lead to a decrease in the market price. Moreover, when the index

accuracy is low, there is a significant probability that farmers suffer from low actual yield without

receiving a subsidy. The combination of a reduced price, low yield, and no subsidy payment leads

to a scenario with an even lower income than when no subsidy is provided. Similarly, due to the

imperfect index, it is also possible that farmers receive a subsidy when the actual yield is high,

resulting in a higher income than when no subsidy is provided. Consequently, after the subsidy

amount exceeds a certain threshold (i.e., s2), a further increase in subsidy leads to an increase in

the variance of farmer income. This makes the subsidy less effective in increasing farmers’ utility

and incentivizing them to plant.

Collectively, Propositions 1 and 2 provide important insights regarding how an index-based yield

protection policy with a naturally imperfect index (i.e., r < 1) may have distinct implications from

a policy that subsidizes farmers based on actual yields (i.e., r = 1). In the following corollary, we

further characterize how the equilibrium planting amount and the variance of farmer income vary

with index accuracy.

Corollary 1 (Effect of index accuracy on equilibrium planting amount and farmer income vari-

ance). Consider a fixed subsidy amount s. Then, the equilibrium planting amount increases in the

index accuracy r, and the variance of farmer income decreases in the index accuracy r.

Corollary 1 shows that under a given subsidy, if the index accuracy is higher, the variance of

farmer income will be lower, and more farmers will be incentivized to plant. Thus, this result

reiterates that a higher index accuracy enhances the effectiveness of the subsidy in incentivizing

farmers to plant.

4.2. Optimal Subsidy Amount

From our analysis in §4.1, it is evident that the index accuracy plays a critical role in determining

the effectiveness of an index-based yield protection subsidy. Building on these results, we next

characterize how the optimal subsidy amount s∗ varies with the index accuracy.

Theorem 1 (Effect of index accuracy on optimal subsidy). There exists a threshold r2, where

1
2
≤ r2 ≤ r1, such that if the index accuracy is low (r < r2), the optimal subsidy amount s∗ increases

in the index accuracy r; otherwise (r≥ r2), it decreases in the index accuracy r.
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Theorem 1 uncovers a non-monotonic relationship between the optimal subsidy amount and the

index accuracy, showing that the optimal subsidy should first increase and then decrease in index

accuracy. The key reasoning behind this result is as follows: When the index accuracy is low, an

increase in the subsidy amount can increase the variance of farmer income, and therefore it is less

effective in improving farmers’ utility and incentivizing them to plant (as shown in Proposition 1).

Thus, a low subsidy amount maximizes the net benefit. When the index accuracy is higher, the

policy can more effectively protect farmers, justifying a higher subsidy. When the index accuracy

further increases, however, a high subsidy amount can lead to oversupply and thus a low market-

clearing price, which can be detrimental to farmers. In this case, a low subsidy is also preferred.

As mentioned earlier, the existing literature on the optimal design of agricultural subsidies has

predominately focused on policies that subsidize farmers based on the actual price and yield. To

the best of our knowledge, we are the first to observe this nuanced relationship between the optimal

subsidy and index accuracy under an index-based yield protection policy.

Theorem 1 offers critical insights for the design of index-based yield protection subsidies. First, in

current index-based yield protection policies, the payment to farmers is often determined based on

the predicted yield as indicated by the index value, whereas the index accuracy is often not explic-

itly taken into consideration (see, e.g., Kenduiywo et al. 2021, for commonly used index policies in

practice). Our analysis suggests that such an approach can be suboptimal and highlights that it is

crucial for policymakers to carefully choose the subsidy amount by explicitly taking into account

the role of index accuracy. Second, by uncovering a non-monotonic, inverted-U-shaped relationship

between the optimal subsidy amount and index accuracy, our findings provide insights for poli-

cymakers to tailor subsidy amounts based on the accuracy of available indices, ensuring effective

farmer support while avoiding over-subsidizing. Finally, with governments employing increasingly

accurate indices due to technological progress and new data sources (Benami et al. 2021), our find-

ings also offer timely guidance for effectively adapting subsidy policies to such increases in index

accuracy.

With Theorem 1, we are able to further characterize how two critical environmental and economic

factors, namely the variability in yield (i.e., σ) and farmers’ risk-aversion level (i.e., λ), affect the

optimal subsidy amount. Additionally, we also explore the role of index accuracy in mediating

these results.

Proposition 3 (Effect of yield variability and risk aversion on optimal subsidy). (i) The optimal

subsidy amount s∗ increases in the yield variability σ.

(ii) There exists a threshold λ1 > 0 such that if farmers’ risk aversion level is low (λ < λ1), the

optimal subsidy amount s∗ increases in the risk aversion level λ; otherwise (λ≥ λ1), it decreases

in λ. Moreover, the threshold λ1 increases in the index accuracy r.
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Proposition 3 (i) suggests that, as expected, the optimal subsidy amount should increase when

yield becomes more variable. On the other hand, while one may expect that a higher subsidy is

needed when farmers are more risk-averse, Proposition 3 (ii) reveals that this is only true when

farmers’ risk aversion level is low (i.e., λ < λ1), and the opposite is true otherwise; moreover, a

lower index accuracy results in a lower threshold of risk aversion level (λ1) at which the optimal

subsidy begins to decrease. This result can be understood as follows: As discussed earlier, when

the index accuracy is low, there is a significant probability that an increase in subsidy will decrease

the lowest possible income for farmers (due to a decrease in price and a high probability of not

receiving the subsidy when the actual yield is low), resulting in an increase in their income variance

(Proposition 2). Therefore, with a low index accuracy and if farmers are highly risk averse, the

value of index-based yield protection is limited, and thus a low subsidy amount is optimal.

5. Interplay between Yield and Price Protection

As discussed in §1, price protection policies that protect farmers from low market prices have been

widely implemented in emerging economies (Chintapalli and Tang 2021). In particular, a popular

price protection policy is called minimum support price (MSP), under which the government pays

farmers the difference between the market price and a pre-specified floor price if the market price

is below the floor price (Antonaci et al. 2014). In this section, we study how the presence of such

an MSP policy affects the optimal design of an index-based yield protection policy.

We consider an MSP policy with floor price m and an index-based yield protection policy with

index I and subsidy amount s. Then, if a total of x farmers plant, the net income of the farmer with

production cost h from planting is given by πm(h|x, s) =max{(a− bxY ),m}Y + sI −h. Therefore,

her mean-variance utility is given by um(h|x, s) = E[πm(h|x, s)] − λVar[πm(h|x, s)], where λ > 0

denotes the risk aversion coefficient. Similar to before, we consider that each farmer chooses to

plant if her mean-variance utility is positive, and let x∗
m(s) denote the equilibrium planting amount.

In order to shed light on how the presence of price protection affects the optimal design of index-

based yield protection, we consider a fixed floor price m and that the government chooses the yield

protection subsidy amount s to maximize the net benefit, which, same as in §3, is defined as the

expected total farmer surplus minus the expected government expenditure. Specifically, given the

subsidy amount s, the floor price m, and the corresponding equilibrium planting amount x∗
m(s),

the expected total farmer surplus is
∫ x∗m(s)

0
E[max{(a− bx∗

m(s)Y ),m} × Y + sI − xc] dx, and the

expected government expenditure is the sum of two components: x∗
m(s)E[sI] (for yield protection)

and x∗
m(s)E[max{m− (a− bx∗

m(s)Y ),0}×Y (for price protection). Therefore, the net benefit is

vm(s) :=

∫ x∗m(s)

0

E[max{(a− bx∗
m(s)Y ),m}×Y + sI −xc] dx−x∗

m(s)E[sI]
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−x∗
m(s)E[max{m− (a− bx∗

m(s)Y ),0}×Y ]

= aµx∗
m(s)−

(
b(µ2 +σ2)+

1

2
c

)
(x∗

m(s))
2. (6)

Equation (6) has a similar structure as Equation (4). Therefore, xopt defined in §3 remains the

planting amount that maximizes the net benefit. Further, the optimal subsidy amount, which we

now denote as s∗m,
5 must satisfy that the corresponding equilibrium planting amount x∗

m(s
∗
m) is

equal to or as close to xopt as possible. Before proceeding to our analysis, we note that a higher

floor price m may not always benefit farmers because a larger m may lead to more planting and

thus a price drop in high-price scenarios (Chintapalli and Tang 2021). In order to focus on a

reasonable range of the floor price, in the remainder of our analysis, we consider m∈ [0, m̄], where

m̄ denotes the smallest m such that either x∗
m(0)≥ xopt or ∂x∗

m(0)/∂m≤ 0. We remark that this

is reasonable because if x∗
m(0) > xopt or ∂x∗

m(0)/∂m < 0, then it is straightforward to show that

reducing the floor price can increase the net benefit. In addition, to focus on a practical range of

yield protection subsidy s, similar to before, we consider that for a fixed m, farmers’ revenue in the

low-yield scenario plus the subsidy s does not exceed their revenue in the high-yield scenario. We

slightly abuse our notation and continue to let s̄ denote this upper bound for the yield protection

subsidy s.

We first show how the index-based yield protection subsidy s affects the equilibrium planting

amount with the presence of a floor price m.

Proposition 4 (Effect of yield protection subsidy on equilibrium planting amount). Consider a

fixed floor price m. There exist two thresholds 1
2
≤ rm,1 ≤ rm,2 ≤ 1 such that if the index accuracy

is low (r < rm,1), x
∗
m(s) increases in s if and only if s≤ sm,1, where sm,1 := argmax

s∈[0,s̄]

x∗
m(s) ∈ [0, s̄)

and sm,1 increases in both r and m; if the index accuracy is high (r≥ rm,2), x
∗(s) increases in s.

Proposition 4 characterizes the impact of the index-based yield protection subsidy s on the

equilibrium planting amount, examining how the index accuracy r and the floor price m may

influence this effect. First, consistent with Proposition 1, Proposition 4 shows that, in the presence

of a price protection policy, a higher index-based yield protection subsidy can stimulate more

planting up to a threshold sm,1, and the threshold increases in the index accuracy. This underlines

the increased effectiveness of a subsidy in motivating planting with greater index accuracy r.

Second, Proposition 4 reveals that the threshold sm,1 also increases with the floor price m,

indicating that a larger floor price can boost the utility improvement offered by an index-based

yield protection subsidy. The rationale behind this result can be explained as follows: Refer back

5 If there are more than one s that maximizes vm(s), we define s∗m as the smallest one.
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to Proposition 1, which state that when the subsidy amount increases from a small value, more

farmers are incentivized to plant, which results in a lower market-clearing price and potentially a

higher variance of farmer income. As a result, a further increase in subsidy becomes less effective

in increasing farmers’ utility. However, a floor price m ensures farmers a minimum selling price,

mitigating the aforementioned concerns about low market price and enhancing the benefit of a

subsidy increase.

Based on these results, we next study how the floor price m affects the optimal subsidy under

index-based yield protection. Since both price and yield protection can incentivize more farmers

to plant, it might seem intuitive that these two policies would function as strategic substitutes;

that is, the value of yield protection will be smaller in the presence of price protection. Consistent

with this intuition, Alizamir et al. (2019) show that in a context where farmers are subsidized

based on the actual price and yield, safeguarding both price and yield may not offer added value

over price protection alone. However, our following proposition presents a contrasting perspective,

demonstrating that this intuition does not necessarily hold under index-based yield protection.

Theorem 2 (Effect of floor price on optimal subsidy). Let rm,1, rm,2 be the two thresholds defined

in Proposition 4. Then, if the index accuracy is low (r < rm,1), the optimal subsidy amount s∗m

increases in the floor price m; if the index accuracy is high (r≥ rm,2), the optimal subsidy amount

s∗m decreases in the floor price m.

Theorem 2 presents a nuanced perspective on the relationship between price protection and

index-based yield protection. When the index accuracy is high (i.e., r > rm,2), we show that, as

expected, a higher floor price does indeed lead to a lower optimal yield protection subsidy. This

implies that under high index accuracy, price protection and index-based yield protection act as

strategic substitutes.

However, the proposition also shows that this is no longer true when the index accuracy is low

(r ≤ rm,1). In this case, a higher floor price results in a higher optimal yield protection subsidy,

implying that price protection and index-based yield protection function as strategic complements.

The logic behind this counter-intuitive outcome relates back to Theorem 1, which states that when

index accuracy is low and in the absence of price protection, the optimal yield protection subsidy

should be kept low, because an increased subsidy can increase farmers’ income variance due to a

drop in market price and the high possibility of not receiving the subsidy in the low-yield scenario.

However, as Proposition 4 reveals, price protection can mitigate the concern about low market

price, making a higher yield protection subsidy more appealing. Thus, with low index accuracy, the

presence of price protection can justify a higher optimal subsidy for index-based yield protection

compared to scenarios without price protection.
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Theorem 2 offers important insights for the design of an index-based yield protection policy along

with a price protection policy. On the one hand, it establishes that the two policies act as strategic

complements when the index accuracy is low. Practically, this suggests that if a government is

constrained to employ a low-accuracy index for yield protection (possibly due to data limitations),

and if the current floor price is low or non-existent, it may be advantageous to raise both the

floor price and the yield protection subsidy. This approach leverages the complementary nature of

these two policies under conditions of low index accuracy. On the other hand, the proposition also

demonstrates that price protection and index-based yield protection act as strategic substitutes

when index accuracy is high. This finding indicates that if the index is fairly accurate, an increase

in one type of subsidy should be accompanied by a reduction in the other. Overall, we believe these

insights contribute to a more thorough understanding of the interplay between price and index-

based yield protection policies. By recognizing the strategic complementarity and substitution

effects between these two policies, policymakers can better tailor their interventions to fully exploit

the synergy of these policies yet avoid over-subsidizing.

6. Joint Design of Subsidy Amount and Index Accuracy

In this section, we consider a scenario where the government not only chooses the subsidy amount

but also can exert a costly effort to improve the index accuracy. As discussed in §1, a practical

example for this scenario is the design of an area-yield index that uses a sample average estimate

of the area-level yield to determine whether to subsidize farmers in the area. Under such an index,

the government can achieve a higher index accuracy by increasing the sample size of the area or

dividing the area into more sub-areas so that the estimation of yield within each sub-area is more

accurate.

A higher index accuracy can intuitively benefit farmers by lessening the chance that they miss out

on a subsidy despite suffering a low yield. However, enhancing index accuracy often comes with costs

(e.g., enlarging sample sizes or considering smaller sub-areas under an area-yield index could lead

to higher administrative expenses). When operating under budgetary constraints, the government

may find that investing more in improving index accuracy results in reduced funds available for

subsidy payouts. This presents a delicate balancing act between offering higher subsidies to farmers

and pursuing greater index accuracy. We delve into this tension, investigating how the government

can optimally navigate the dual tasks of determining subsidy amounts and index accuracy.

Let r0 ∈ [ 1
2
,1] denote the status quo index accuracy, i.e., the accuracy that is readily achiev-

able before exerting a costly effort. We consider a quadratic accuracy improvement cost ϕ(r) :=

κ(r−r0)2, reflecting the increasing marginal cost of improving the index accuracy. Under any given

government’s decision of subsidy amount s and index accuracy r, let x∗(s, r) denote the equilib-

rium planting amount and ψ(s, r) := x∗(s, r)E[sI] the expected total subsidy payment to farmers.
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Further, let s̄ denote the upper bound on the subsidy amount defined in §3 and let B > 0 denote

the government’s budget level. Then, the government’s problem is to choose r ∈ [r0,1] and s∈ [0, s̄]

that satisfy the budget constraint ψ(s, r)+ϕ(r)≤B to maximize the net benefit (i.e., the expected

total farmer surplus minus the expected government expenditure) defined as follows:

v(s, r) =

∫ x∗(s,r)

0

E[(a− bx∗(s, r)Y )Y + sI −xc] dx−ψ(s, r)−ϕ(r). (7)

Let s∗ and r∗ denote the jointly optimal subsidy amount and index accuracy, respectively.6 We

first study how a key factor in the context of yield protection, the yield variability (i.e., σ), affects

the government’s decisions in the following proposition.

Proposition 5 (Effect of yield variability on jointly optimal subsidy amount and index accuracy).

For any given budget level B > 0, there exist two thresholds σ1 and σ2, where 0≤ σ1 <σ2 ≤ µ, such

that if σ≤ σ1, r
∗ = r0 and s∗ increases in σ; if σ1 ≤ σ < σ2, r

∗ increases in σ.

Proposition 5 suggests that when the yield variability is low (i.e., σ < σ1), it is less important to

invest in index accuracy, and it is sufficient to use the budget to subsidize farmers. It is because

farmers’ income for the low-yield case is not too low when the yield variability is low. In this case,

how much subsidy to receive is more critical than when to receive it for farmers. However, farmers’

income in the low-yield case can be very low when the yield variability is higher. In this case,

farmers can be significantly better off if there is a higher chance of receiving the subsidy when the

actual yield is low. That is, index accuracy becomes more important for farmers. Accordingly, as

shown in Proposition 5, the optimal index accuracy increases in the yield variability when the yield

variability exceeds a certain threshold (i.e., σ≥ σ1).

Our findings in Proposition 5 are particularly relevant in the era of climate change, a phenomenon

leading to increased crop yield fluctuations due to rapid shifts in weather patterns (Khanal et al.

2018). As yield variability increases, Proposition 5 underscores the crucial need to prioritize invest-

ments in index accuracy, even at the expense of the budget allocated for subsidy payments.

Next, we explore how the government’s budget constraint affects decision-making. Often, when

a decision maker grapples with the dilemma of investing to find a better way to serve beneficiaries

(e.g., enhancing index accuracy in our context) and allocating resources to directly serve bene-

ficiaries (e.g., subsidizing farmers based on an existing index), it may seem intuitive that lower

budgets should prompt less investment in the former to ensure sufficient resources are available for

providing services. This logic has been supported in several other contexts, such as patient triage

6 If there are multiple jointly optimal solutions to the optimization problem, r∗ denote the lower joint optimal index
accuracy and s∗ the lowest corresponding jointly optimal subsidy amount.
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and treatment decisions (Sun et al. 2018) and beneficiary advisory and service delivery (Arora

et al. 2022). However, in the following proposition, we show that this intuition may not hold in our

setting. To explicitly capture the dependence of the government’s optimal decisions on the budget

level, we let s∗(B) and r∗(B) denote the optimal subsidy amount and index accuracy under budget

level B.

Theorem 3 (Effect of budget on jointly optimal subsidy and index accuracy). For any given

budget levels B1 and B2 such that 0<B1 <B2, there exists a closed interval Iσ ⊆ [0, µ] such that if

σ ∈ Iσ, then the low budget level B1 leads to a higher optimal index accuracy (i.e., r∗(B1)≥ r∗(B2))

and a lower optimal subsidy (i.e., s∗(B1)≤ s∗(B2)) compared to the high budget level B2.

Theorem 3 uncovers an intriguing characteristic of the optimal balance between subsidy and

index accuracy: Within a medium yield variability range, it is optimal for the government to invest

more in enhancing index accuracy when faced with a tighter budget constraint. The rationale

behind this result is as follows: with sufficient budget and moderate yield variability, the government

must strike a balance between the subsidy amount and index accuracy to incentivize an adequate

number of farmers to plant (so that farmers can earn revenue from selling the crop), while also

avoiding oversupply (so that the market price is not too low). In this case, although both increasing

the subsidy and improving the index accuracy can incentivize farmers to plant, the preferred

approach is to increase the subsidy. This stems from the fact that subsidy payment is an internal

transfer between the government and farmers, while improving index accuracy incurs additional

costs. Conversely, when the budget is tight, oversupply is less of a concern, and thus it is essential

for the government to identify the most effective approach to incentivize more farmers to plant.

In this case, improving the index accuracy is crucial as it ensures that farmers receive the subsidy

when most needed, thereby enhancing the subsidy’s effectiveness in increasing farmers’ utility.

These results underscore a key insight: a reduced budget does not automatically imply diminished

investment in index accuracy. From a practical perspective, this insight holds particular relevance

given the increasing budgetary constraints many governments face for crop subsidies as they also

strive to address other urgent needs (Ye et al. 2021). While it may seem intuitive for governments to

reduce spending on index accuracy in times of budget cuts, our findings suggest that the opposite

can be true. That is, it could be optimal for governments to increase investment in index accuracy,

enabling the limited subsidy budget to be deployed more effectively for farmer support.

7. Calibrated Numerical Study

In this section, we present a calibrated numerical study using real data on corn production to

demonstrate that the main insights obtained from our base model remain intact under alternative

contexts. In doing so, we also provide a concrete yield index example.
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7.1. Data and Experiment Setup

In this section, we introduce our experiment setup and describe how we parameterize our model

based on available data for corn production in Indonesia. For the purpose of illustration, we simulate

n= 10,000 farmers and consider that each farmer has a land size of one hectare (Nazmi et al. 2021).

First, we estimate the farmers’ household yields. Instead of assuming all farmers’ yields are binary

and perfectly correlated as in our base model, we use a more realistic continuous distribution,

namely, a normal distribution, to model crop yield (Alizamir et al. 2019). Moreover, we allow

farmers’ yields to be only partially correlated (Ramirez et al. 2003). Specifically, let yi denote the

yield of farmer i, where yi ∼N (µ,σ2), i= 1, ..., n, and let ρ ∈ [0,1] denote the correlation among

farmers’ yields, i.e., ρ= corr(yi, yj) for i ̸= j. Based on the annual yield data from 2011 to 2021 for

corn production in Indonesia (USDA 2021), we estimate that µ= 3.029 tons per hectare, σ= 0.418

tons per hectare, and ρ= 0.6 (see Appendix B for details).

Next, we estimate the market-clearing price parameters a and b and the production cost param-

eter c. To estimate a and b, we fit a linear regression model between the annual total corn supply

and the inflation-adjusted corn prices in Indonesia, which are both available in USDA’s Grain

and Feed Annual Reports (USDA 2021), and we obtain a=$467.32 per ton and b=$0.00189 per

ton-squared (see more details about the data in Appendix B). For production costs, we keep the

assumption of uniform distribution and consider that farmer i has a production cost i
n
c. Based on

available data from the USDA’s website (USDA 2023), we estimate the average corn production

cost to be $875.1 per hectare. By equating c
2
= to 875.1, we obtain c= $1750.2 per hectare.

Finally, to showcase the relevance of our results in practical settings, we construct an area-yield

index defined as the sample average estimate of the area-level yield. As discussed earlier, such

an index has been implemented by several governments, including the Indonesian government.

Suppose d samples are used to construct the index, and let k1, ..., kd denote d farmers that are

randomly selected. Then, the sample average Ŷ (d) = 1
d

∑d

i=1 yki is used to determine whether to

trigger a payment. Specifically, we consider that a subsidy s will be paid to all farmers who plant

if the value of Ŷ (d) is lower than a threshold. For the purpose of illustration, we use µ as the

threshold. Let I = 1{Ŷ (d) < µ} be an indicator function taking 1 if the sample average Ŷ (d) is

lower than µ and 0 otherwise. Suppose k farmers plant. Then, the utility of farmer k is

E

[
(a− b

k∑
i=1

yi)yk −
k

n
c+ sI

]
−λVar

[
(a− b

k∑
i=1

yi)yk −
k

n
c+ sI

]
.

Farmer k will choose to plant corn if their utility is non-negative. The risk aversion coefficient is

set to be λ= 0.01, which satisfies the assumptions stated in §3 to ensure that without subsidy, a

positive number of but not all farmers choose to plant (see Appendix B for details).
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7.2. Numerical Experiments and Results

Using the above setup, we conduct three groups of numerical experiments to demonstrate the

robustness of our key insights stated in Propositions 3, 5, and 7, respectively. First, we explore how

the optimal subsidy amount varies with index accuracy, i.e., the probability of receiving a payment

conditioned on that the actual yield of a farmer is below µ. For the area-yield index described in

§7.1, the index accuracy is determined by the sample size d. Consequently, in the experiments, we

use different sample sizes to generate the area-yield index. Then, under each sample size, which

corresponds to a unique index accuracy, we numerically search for the optimal subsidy amount.

Figure 2(a) presents the optimal subsidy under varying index accuracy, showing that the optimal

subsidy amount initially grows and then drops with the index accuracy, corroborating our findings

in Theorem 1. In addition, a comparison of the three plots in Figure 2(a) also demonstrates the

insight in Proposition 3, which states that the optimal subsidy increases in yield variability.

Figure 2 Optimal Subsidy Amount under Different Index Accuracies and Floor Prices

(a) Effect of Index Accuracy (b) Effect of Floor Price

Our second group of experiments explores the interplay between price protection and index-

based yield protection. Here, in addition to the area-yield index policy, we also consider an MSP

policy with a floor price m. That is, we replace the price a − b
∑k

i=1 yi in Equation (7.1) by

max
{(
a− b

∑k

i=1 yi

)
,m
}
. We consider two different values of index accuracy (i.e., sample size)

r. For each fixed r, we search for the optimal subsidy amount under different floor prices m. As

shown in Figure 2(b), when the index accuracy is low, the optimal subsidy under index-based

yield protection increases as the floor price increases. Conversely, when the index accuracy is high,

the optimal subsidy decreases in the floor price. The results resonate with the key insights from

Theorem 2.

Our final set of experiments demonstrates the effect of budget when the government can exert

a costly effort to improve the index accuracy. Instead of assuming a quadratic cost for improving
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index accuracy as in our analytical model, we now consider that the government incurs $10 for each

increase in sample size. Due to the diminishing return from a larger sample size, this corresponds

to a convex cost in improving index accuracy. Under each given budget, we search for the jointly

optimal subsidy and index accuracy (i.e., sample size). By comparing the optimal index accuracy

under two different budget levels as shown in Figure 3, we observe that in an intermediate range of

yield variability, the optimal index accuracy under the lower budget B = 0.1 (million $) is strictly

higher than that under the higher budget B = 1 (million $), demonstrating the insights shown in

Theorem 3.

Figure 3 Jointly Optimal Index Accuracy under Two Budgets

8. Extensions

In this section, we extend our model in several aspects to showcase the robustness of our insights.

For each extension, we outline the model setup and summarize the main findings below. Detailed

analysis and proofs are presented in Appendix C.

8.1. Conditional Value at Risk (CVaR) for Farmer Risk Aversion

In our base model, we capture farmers’ risk aversion through a mean-variance utility approach.

In this section, we consider an alternative risk measure, the conditional value at risk (CVaR), to

model farmers’ risk aversion and show that our key insights continue to hold. In particular, CVaR

describes the conditional expected payoff in the worst α fraction of cases, where α measures the

risk aversion level: the lower the value of α, the higher the level of risk aversion.

Recall that given the index I and the subsidy amount s, if x farmers plant, the net income of a

farmer with production cost h from planting is π(h|x, s) = (a− bxY )Y + sI − h. Then, the CVaR

at α level is given by

CV aRα(h|x, s) =
1

α

(
E[π(h|x, s)1{π(h|x,s)≤πα}] +πα(α−P(π(h|x, s)≤ πα))

)
,
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where πα = inf{z ∈ R : P(π(h|x, s)≤ z)≥ α} denotes the lower α quantile of π(h|x, s). Similar to

before, we consider that each farmer chooses to plant if and only if CV aRα(h|x, s) is positive.

In practice, smallholder farmers often exhibit a high risk-averse level, and 5% or 10% CVaR has

been commonly used to model farmer risk aversion in the literature (Liu et al. 2006, Pagnoncelli

and Piazza 2012). Thus, to model farmers’ risk aversion and for ease of exposition, we consider

α ∈ (0, 1
4
). Then, if r≤ 1− 2α (which is equivalently to 1−r

2
≥ α), the expression of CV aRα(h|x, s)

can be simplified as CV aRα(h|x, s) = (a−bx(µ−σ)))(µ−σ)−h. If r > 1−2α (which is equivalently

to 1−r
2
<α), we have CV aRα(h|x, s) = (a− bx(µ−σ)))(µ−σ)−h+

(α− 1−r
2 )s

α
.

In the CVaR model, the optimal subsidy amount may not be continuous in the index accuracy

(due to a discrete distribution for crop yield), which complicates the analysis. Nevertheless, we

are able to prove that the optimal subsidy amount remains non-monotonic in index accuracy (see

Appendix C.1 for a formal characterization). This is because if the index accuracy is rather low,

increasing the subsidy amount cannot increase farmers’ lower tail conditional expected payoff. Thus,

the optimal subsidy that maximizes the net benefit is low. When the index accuracy increases, the

policy becomes more effective in increasing farmers’ lower tail payoff, justifying a higher subsidy.

Finally, when the index accuracy is sufficiently high, a high subsidy results in oversupply, and thus

the optimal subsidy amount starts to decrease in index accuracy. With these results, we further

numerically verify that our other insights also remain intact under the CVaR model.

8.2. Consumer Surplus

In addition to improving farmer welfare, agricultural subsidies can also be used to improve consumer

surplus by ensuring a sufficient supply of crops. In this section, we extend our model to consider

an alternative government objective that incorporates consumer surplus and show that our key

insights remain intact. Following the existing literature on agricultural supply chains and subsidies

(Alizamir et al. 2019, Chintapalli and Tang 2021), we define the consumer surplus by integrating the

utility of consumers who purchase the product. Specifically, given the market price a− bx∗(s)Y , all

consumers whose willingness to pay is higher than the market price will purchase the product. Then,

the total utility of these consumers can be obtained by
∫ x∗(s)

0
E[((a− bxY )− (a− bx∗(s)Y ))Y ] dx.

Let vc(s) denote the alternative objective function, comprising the total farmer surplus and the

total consumer surplus, minus the government expenditure. That is,

vc(s) :=

∫ x∗(s)

0

E[(a− bx∗(s)Y )Y + sI −xc]dx+

∫ x∗(s)

0

E[((a− bxY )− (a− bx∗(s)Y )Y ] dx

−x∗(s)E[sI].

By following a similar analysis as in §4-6, we are able to analytically characterize the optimal

design of index-based yield protection policy and show that our key insights continue to hold (see
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Appendix C.2 for details). Moreover, we find that when taking into account consumer surplus,

the government should offer greater subsidies to farmers than in the base model, especially when

the index accuracy is high. The reason is that, when the index accuracy is high, an increase in

the subsidy amount can effectively incentivize more farmers to plant (as shown in Proposition 1),

resulting in more supply and thus benefiting consumers. Therefore, in this case, the optimal subsidy

should increase as compared to the base model. When the index accuracy is lower, however, an

increase in subsidy is less effective in incentivizing farmers to plant, resulting in less benefit for

consumers. Therefore, in this case, the benefit of increasing the subsidy is lower.

8.3. Different Distributions for Yield and Index

In our base model, we consider that the yield level Y and the index I have the same marginal

distribution, which allows us to simplify the exposition and highlight our key insights more clearly.

In this section, we extend our model to consider different distributions for Y and I and demonstrate

that our key insights continue to hold. Specifically, while the probability for the actual yield Y to

be low is 1
2
, we now consider that the government can design an index such that the probability

of I = 1 (i.e., low-yield prediction) can be any number p ∈ (0,1]. That is, p denotes the subsidy

payment probability. In practice, this probability can be adjusted by appropriately choosing the

index. For instance, for a rainfall index that triggers payments if the rainfall level is below a certain

threshold, the government can increase the payment probability by setting a higher threshold.

Given the payment probability p, we consider a joint distribution of Y and I as shown in Table

2. In line with our base model, the parameter r represents the probability that the actual yield

is low conditioned on I = 1. When p= 1
2
, the joint distribution becomes the same as in our base

model. To ensure that all probabilities are nonnegative, we assume that rp≤ 1
2
.

Table 2 New Joint Probability Table for Index-based Yield Protection

I = 0 I = 1

Y = µ+σ 1
2
− (1− r)p (1− r)p

Y = µ−σ 1
2
− rp rp

With this more general joint distribution of Y and I, our model remains analytically tractable,

and we show that our key insights hold true for any value of p (see Appendix C.3). Moreover, we

compare the optimal subsidy amount under different payment probability p. In particular, as the

probability of yield being low is 1
2
, we focus on the higher range of payment probability p ∈ [ 1

2
,1].

Through extensive numerical experiments, we discover an additional insight: When both the index

accuracy r and the payment probability p are low, an increase in the the payment probability leads

to a greater optimal subsidy amount; when either the index accuracy or the payment probability

is high, a greater payment probability results in a lower optimal subsidy amount.
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This result provides a managerial takeaway. When the government faces a low index accuracy

(i.e., low r) as well as a low payment probability (i.e., low p), the chance for the farmers to

receive the subsidy at low yield is low and thus the subsidy is not very effective in benefiting

the farmers. Therefore, in this case, the government should consider moderately increasing the

payment probability to boost the value of the subsidy payment. However, if the index accuracy

or the payment probability is high, a high subsidy amount in addition to the high probability of

receiving the subsidy would lead to oversupply. Thus, in this case, the government should offer a

lower subsidy amount.

8.4. Effect of Premium

In our base model, we consider scenarios where farmers can access yield protection subsidies from

the government at no cost. Examples of such scenarios include several weather and satellite index

policies in Kenya and Sri Lanka and an area-yield index policy in Peru, which are fully funded

by the government (Hazell et al. 2017, Aheeyar et al. 2021). On the other hand, there are also

yield-protection policies where farmers must pay a premium to access the benefits. For instance, to

enroll in an area-yield index policy in Indonesia, farmers must pay a premium to cover about 20%

of the policy expenses, while the government covers the remaining 80% (JICA 2022). To capture

such scenarios, we extend our model to consider that, to enroll in the index-based yield protection

policy, farmers are required to pay a premium. This premium is set such that the total premium

paid by the farmers equals a fraction ξ ∈ [0,1] of the expected total payment they receive. This

is equivalent to each farmer paying a premium of ξE[sI], where we continue to let s denote the

payment a farmer receives when the index predicts a low-yield situation (i.e., when I = 1). Then,

the mean-variance utility of a farmer with the production cost h is given by

E[(a− bxY )Y + sI −h− ξE[sI]]−λVar[(a− bxY )Y + sI −h− ξE[sI]].

Under this setup, our model remains analytically tractable, and we show that our key insights

continue to hold for any value of ξ (see Appendix C.4). Moreover, through extensive numerical

analysis, we find that when the index accuracy is low, a higher value of ξ (i.e., farmers paying

a higher fraction of the expenses) leads to a lower optimal payment s; however, when the index

accuracy is high, a higher value of ξ leads to a higher optimal payment. The intuition for this

result can be explained as follows: Recall that if the index accuracy is low, an increase in the

payment s can increase farmers’ income variance. When ξ increases, this concern becomes even

more prominent because farmers’ lowest possible income will be even lower (due to the premium

payment). As a result, the policy becomes even less effective, leading to a lower optimal payment.

Conversely, if the index accuracy is high, a high payment s can potentially lead to oversupply,

while an increase in ξ helps mitigate such concerns, making a higher payment optimal.
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9. Conclusion

Farmers, particularly those in emerging economies, are vulnerable to risks associated with variable

weather conditions and uncertain crop yields. However, protecting smallholder farmers from low

crop yields is generally challenging due to the high cost of yield assessment. In this paper, we

study a recently emerged index-based approach for yield protection, under which the government

subsidizes farmers when a pre-determined index indicates that the crop yield is low.

In order to shed light on the optimal design of an index-based yield protection policy, we build

an analytical model that captures three salient features of our problem: (1) uncertain crop yield;

(2) planting decisions of heterogeneous and risk-averse farmers; and (3) an index that is imper-

fectly correlated to the crop yield. Our model, while incorporating these essential features, retains

tractability, enabling us to analytically study the government’s optimal subsidy design.

Our analysis reveals several insights with practical implications. First, by characterizing how the

subsidy payment affects individual farmers’ income variance and their incentives to plant under

different index accuracies, we uncover a non-monotonic relationship between the optimal subsidy

and the index accuracy. This result provides guidance for governments to appropriately choose the

subsidy amounts under different index accuracies; it also implies that the prevalent approach for

determining payment to farmers, which often ignores the index accuracy, is suboptimal.

Second, we identify the critical role of index accuracy in the interplay between price protection

and index-based yield protection policies. Specifically, since both price and yield protection can

incentivize more farmers to plant, it might seem intuitive that these two policies would function as

strategic substitutes. However, we show that this is only true if the index accuracy is sufficiently

high. Otherwise, when index accuracy is low, these two policies work as strategic complements.

This finding suggests that if a government is constrained to employ a low-accuracy index, the

existence of price protection can make index-based yield protection more valuable.

Lastly, we examine a scenario where index accuracy can be enhanced through a costly effort, and

the government allocates a limited budget between increasing the index accuracy and subsidizing

farmers. We underscore the importance of index accuracy under high yield variability and when

the government faces a stringent budget constraint on total expenditure. Notably, we demonstrate

that under a more constrained budget, it can be optimal for the government to spend more in

improving the index accuracy, even if it necessitates a reduction in subsidies to farmers.

Collectively, we believe these insights contribute to a more nuanced understanding of index-based

yield protection policies and provide practical guidance for governments in designing agricultural

subsidies. Moreover, through a combination of analytical and numerical studies, we further validate

the robustness of our insights under various practical settings, including a more realistic continuous

distribution for yield and partially correlated yield among farmers, consideration of consumer
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surplus in the government’s objective, an alternative model for farmer risk aversion, different

marginal distributions of the crop yield and the index, and premiums paid by farmers.

As an early work that studies the optimal design of index-based yield protection policies, we

conclude by discussing a few directions for future research. While this paper primarily focuses

on characterizing the role of index accuracy in determining the optimal subsidy design and the

allocation of budget between index accuracy and subsidy payment, it would be interesting to study

how to optimally construct an index from existing data and then map the index to the subsidy

payment. Furthermore, in addition to government-launched yield protection policies, insurance

companies have started to provide commercial index-based yield insurance products to farmers,

but with low take-up rates (Annan and Datta 2022). Therefore, it would also be interesting to

study how to design such commercial products to increase the take-up rates while maintaining

the profitability of insurance companies, and how agri-business firms, such as food processing

companies, can leverage such products to protect their suppliers and manage their own risks.
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Appendix A Proofs of Analytical Results

Appendix A.1 Proofs of Analytical Results in §4

Proof of Lemma 1: According to the formulation of farmers’ utility u(h|x) defined in Equation

(1), for any given planting amount x, the production cost h is the only parameter that differenti-

ates the utility of the farmers who plant, where a higher h leads to a lower utility. Therefore, in

equilibrium, it must be farmers with lower h who choose to plant, and those with higher h who

choose to not plant. Then, if x= 0 is an equilibrium planting amount, we must have u(0|0)≤ 0 (i.e.,

the utility of the lowest cost farmer is non-positive when no one plants); if x= 1 is an equilibrium

planting amount, we must have u(c|1)≥ 0 (i.e., the utility of the highest cost farmer is non-negative

when everyone plants); if x ∈ (0,1) is an equilibrium planting amount, we must have u(xc|x) = 0

(i.e., the farmer whose planting cost is xc is indifferent between planting and not planting). We

derive the equilibrium planting amount and its closed-form expression in the following two steps:

Step 1: We show that there is a unique positive solution to u(xc|x) = 0, which lies in (0,1). To

do so, it is sufficient to prove the following three parts: (i) u(xc|x) strictly decreases in x for x≥ 0,

(ii) u(0|0)> 0, and (iii) u(c|1)< 0.

First, for part (i), recall that Y takes values µ+ σ and µ− σ with probability 1
2
respectively.

Besides, recall that RH(x) = [a− bx(µ+σ)](µ+σ) (revenue from selling the crop with high yield)

and RL(x) = [a− bx(µ−σ)](µ−σ) (revenue from selling the crop with low yield). Then, we have

E[π(xc|x)] = 1

2
RH(x)+

1

2
RL(x)−xc= aµ− bx(µ2 +σ2)−xc

Var[π(xc|x)] = 1

4
(RH(x)−RL(x))

2 = (aσ− 2bxµσ)2. (A.1)

Plugging these into the expression of u(xc|x) from Equation (1), we have

u(xc|x) =E[π(xc|x)]−λVar[π(xc|x)]

= aµ− bx(µ2 +σ2)−xc−λ(aσ− 2bxµσ)2

=−α0x
2 −β0x− γ0, (A.2)

where α0 = 4λb2µ2σ2, β0 = b(µ2 +σ2)+ c− 4λabµσ2, and γ0 = λa2σ2 − aµ.

Clearly, we have α0 > 0. Thus, from Equation (A.2), u(xc|x) is a quadratic concave function in

x. Moreover, since c > c1 ≥ 4λabσ2µ− b(µ2+σ2) as discussed in §3, we have β0 > 0. Hence, u(xc|x)

strictly decreases in x for x≥ 0.
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Second, for part (ii), since λ< µ+σ
2aσ2 ≤ µ

aσ2 as discussed in §3, we have u(0|0) =−γ0 > 0.

Finally, for part (iii), since c > c1 ≥ aµ− b(µ2 + σ2)−λ(aσ− 2bµσ)2 as discussed in §3, we have

u(c|1)< 0.

Collectively, we conclude that there must exist a unique positive solution to u(xc|x) = 0 in (0,1),

which we denote as x̂0. From Equation (A.2), we have7

x̂0 =
−β0 +

√
β2
0 − 4α0γ0

2α0

∈ (0,1).

Step 2: We prove that there is a unique equilibrium planting amount x∗
0 = x̂0 ∈ (0,1), where

x̂0 is the unique positive solution to u(xc|x) = 0. Since we have shown in Step 1 that u(0|0)> 0

and u(c|1)< 0, based on the discussion at the beginning of this proof, both x= 0 and x= 1 are

not equilibrium planting amount. Moreover, we have shown in Step 1 that x̂0 ∈ (0,1) is the unique

positive solution to u(xc|x) = 0. Therefore, it remains to prove that x̂0 is an equilibrium planting

amount.

When the planting amount is given by x= x̂0, no farmer whose production cost is lower than x̂0c

would deviate from planting because u(x̂0c|x̂0) = 0 and thus they are having positive utility from

planting; no farmer whose production cost is higher than or equal to x̂0c would deviate from not

planting because if they choose to plant instead, then, as we have that u(xc|x) strictly decreases in

x, they would have negative utility. Hence, x̂0 is an equilibrium planting amount, and thus x∗
0 = x̂0

is a unique equilibrium planting amount.

Combining Step 1 and Step 2, we have x∗
0 = x̂0 =

−β0+
√

β2
0−4α0γ0

2α0
∈ (0,1). □

Proof of Lemma 2: Following the same logic as in the proof of Lemma 1, given s ∈ [0, s̄], if

x= 0, x= 1, or x∈ (0,1) is an equilibrium planting amount, we must have u(0|0, s)≤ 0, u(c|1, s)≥

0 or u(xc|x, s) = 0 respectively. We derive the equilibrium planting amount and its closed-form

expression in the following two steps:

Step 1: We show that, given s ∈ [0, s̄], there is a unique positive solution to u(xc|x, s) = 0. To

do so, it is sufficient to prove the following three parts for any given s∈ [0,2aσ] (we prove this step

for any s ∈ [0,2aσ], and at the end of this step, we show s̄≤ 2aσ): (i) u(xc|x, s) strictly decreases

in x for x≥ 0, (ii) u(0|0, s)> 0 and (iii) u(xc|x, s)≤ 0 for some x> 0.

First, for part (i), recall that RH(x) = [a− bx(µ+σ)](µ+σ) (revenue from selling the crop with

high yield) and RL(x) = [a−bx(µ−σ)](µ−σ) (revenue from selling the crop with low yield). Then,

based on the expression of π(h|x, s) in §3, we have

E[π(xc|x, s)] = 1

2
RH(x)+

1

2
RL(x)−xc+

1

2
s= aµ− bx(µ2 +σ2)−xc+

1

2
s

7 The other solution is negative and cannot be x̂0.
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Var[π(h|x, s)] =Var[(a− bxY )Y ] +Var[sI] + 2Cov((a− bxY )Y, sI)

=
1

4
(RH(x)−RL(x))

2 +
1

4
s2 − s

(
r− 1

2

)
(RH(x)−RL(x)) (A.3)

= (aσ− 2bxµσ)2 +
1

4
s2 − s

(
r− 1

2

)
(2aσ− 4bxµσ).

Plugging these into the expression of u(xc|x, s) in §3, we have

u(xc|x, s) =E[π(xc|x, s)]−λVar[π(xc|x, s)]

= aµ− bx(µ2 +σ2)+
1

2
s−xc−λ

[
(aσ− 2bxµσ)2 +

1

4
s2 − s

(
r− 1

2

)
(2aσ− 4bxµσ)

]
=−αx2 −β(s)x− γ(s), (A.4)

where α = 4λb2µ2σ2, β(s) = b(µ2 + σ2) + c− 4λabµσ2 + 4λb(r − 1
2
)µσs, and γ(s) = λa2σ2 − aµ−

2λa(r− 1
2
)σs− 1

2
s+ 1

4
λs2.

Clearly, we have α= α0 > 0. Thus, from Equation (A.4), u(xc|x, s) is a quadratic concave function

in x. Moreover, we have β(s) = β0 + 4λb(r − 1
2
)µσs > 0, where the inequality holds because we

assumed r ≥ 1
2
in §3 and we showed β0 > 0 in the proof of Lemma 1. Therefore, we must have

u(xc|x, s) strictly decreases in x for x≥ 0 for any given s∈ [0,2aσ].

Second, for part (ii), we have u(0|0, s) = −γ(s) from Equation (A.4). Thus, for any given s ∈

[0,2aσ], in order to prove that u(0|0, s)> 0, it is equivalent to prove that γ(s)< 0. Further, since

we have that γ(s) is a quadratic convex function of s and we also have that γ(0) = γ0 < 0 from the

proof of Lemma 1, in order to prove that u(0|0, s)> 0 for any given s∈ [0,2aσ], it remains to prove

that γ(2aσ)< 0. From the expression of γ(s), We have

γ(2aσ) = λa2σ2 − aµ− 2λa(r− 1

2
)σ(2aσ)− 1

2
(2aσ)+

1

4
λ(2aσ)2

≤ 2λa2σ2 − aµ− aσ

< 0,

where the first inequality holds because we have r≥ 1
2
, and the second inequality holds because we

have λ< µ+σ
2aσ2 . Therefore, for any given s∈ [0,2aσ], we have u(0|0, s)> 0.

Finally, for part (iii), from Equation (A.4), we have that u(xc|x, s) is a quadratic concave function.

Thus, there must exist an x> 0 such that u(xc|x, s)≤ 0.

Collectively, we conclude that given s ∈ [0,2aσ], there must exist a unique positive solution to

u(xc|x, s) = 0, which we denote as x̂(s). From Equation (A.4), we have8

x̂(s) =
−β(s)+

√
β2(s)− 4αγ(s)

2α
. (A.5)

8 The other solution is negative and cannot be x̂(s).
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Before we proceed to Step 2, we prove that s̄ ≤ 2aσ. In §3, s̄ is defined as the lowest subsidy

amount that satisfies RL(x
∗(s))+ s≥RH(x

∗(s)). Thus, for any s ∈ [0, s̄], we have RL(x
∗(s))+ s≤

RH(x
∗(s)), hence

s≤RH(x
∗(s))−RL(x

∗(s)) = 2aσ− 4bµσx∗(s)≤ 2aσ,

where the last inequality holds because x∗(s)∈ [0,1]. Hence, we have s̄≤ 2aσ.

Step 2: We show that given s ∈ [0, s̄], there is a unique equilibrium planting amount x∗(s) =

min{x̂(s),1} ∈ (0,1], where x̂(s) is the unique positive solution to u(xc|x, s) = 0. We have shown in

Step 1 that u(0|0, s)> 0 for any given s∈ [0, s̄], so, based on the discussion at the beginning of this

proof, x= 0 cannot be equilibrium planting amount. Then, it remains to check x= 1 and x= x̂(s)

if x̂(s)∈ (0,1).

Consider any s ∈ [0, s̄]. If x̂(s) ≥ 1, then, as we have shown in Step 1 that u(xc|x, s) strictly

decreases in x, we have u(c|1, s)≥ 0. In this case, we have the equilibrium planting amount x∗(s) = 1

because all the farmers would have positive utility from planting and would not deviate. On the

other hand, if x̂(s) ∈ (0,1), then, by the same logic as in Step 2 of the proof of Lemma 1, we

have the equilibrium planting amount x∗(s) = x̂(s). Collectively, for any s∈ [0, s̄], there is a unique

equilibrium planting amount given by x∗(s) =min{x̂(s),1}.
Combining Step 1 and Step 2, for any given s ∈ [0, s̄], we have x∗(s) = min{x̂(s),1} =

min

{
−β(s)+

√
β2(s)−4αγ(s)

2α
,1

}
∈ (0,1].

Finally, we prove that there exists a threshold c2 such that if c≥ c2, then the equilibrium planting

amount under given subsidy amount s ∈ [0, s̄] is x∗(s) = x̂(s) ∈ (0,1). To do so, based on the

discussion in Step 2, it is sufficient to prove that there exists a threshold c2 such that if c≥ c2, then

u(c|1, s)< 1 for any s∈ [0, s̄]. Consider a fixed s∈ [0, s̄]. We have

u(c|1, s) = aµ− b(µ2 +σ2)+
1

2
s− c−λ

[
(aσ− 2bµσ)2 +

1

4
s2 − s

(
r− 1

2

)
(2aσ− 4bµσ)

]
.

From its expression, we have that u(c|1, s) linearly decreases in c and that u(c|1, s) is continuous

in s. Moreover, we have shown in Step 1 that s̄≤ 2aσ. Therefore, there must exist a threshold c2

such that if c≥ c2, then u(c|1, s)< 1 for any s∈ [0, s̄]. □

Before we move on to the proof of Proposition 1, we prove two auxiliary lemmas which serve as

important building blocks for proving the rest of our results. Lemma A.1 introduces a connection

between the first derivative of the equilibrium planting amount x∗(s) and the first derivative of the

farmer’s utility u(xc|x, s) at x= x∗(s), with respect to any parameter in our model. Lemma A.2

characterizes the concavity of the equilibrium planting amount x∗(s) in the subsidy s.

Lemma A.1. Let η be one of the parameters in the model (η can represent s, r, σ, λ etc.). For

any s∈ [0, s̄], if x∗(s) = x̂(s), then ∂
∂η
x∗(s) has the same sign as ∂

∂η
u(xc|x, s)|x=x∗(s).
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Proof of Lemma A.1: Consider a fixed s∈ [0, s̄]. From Lemma 2, we know that when x∗(s) =

x̂(s), x∗(s) satisfies the equation u(x∗(s)c|x∗(s), s) = 0. By taking the derivative of both sides of

this equation with respect to η, we have

∂

∂x
u(xc|x, s)

∣∣∣
x=x∗(s)

× ∂

∂η
x∗(s)+

∂

∂η
u(xc|x, s)

∣∣∣
x=x∗(s)

= 0. (A.6)

From Equation (A.4), we know that u(xc|x, s) is a quadratic concave function in x. Since x∗(s) is

the larger root of the equation u(x∗(s)c|x∗(s), s) = 0 by Lemma 2, we have ∂
∂x
u(xc|x, s)|x=x∗(s) < 0.

By plugging this into Equation (A.6), we conclude that ∂
∂η
u(xc|x, s)|x=x∗(s) has the same sign as

∂
∂η
x∗(s). □

Lemma A.2. For s∈ [0, s̄], if x∗(s) = x̂(s), then ∂2

∂s2
x∗(s)< 0. Moreover, ∂

∂s
x∗(s)|s=0 > 0.

Proof of Lemma A.2: First, we prove that x̂(s) is a strictly concave function in s. By Lemma

2, we have

x̂(s) =
−β(s)+

√
β2(s)− 4αγ(s)

2α
.

Based on the expressions of α, β(s) and γ(s) in Lemma 2, we can get that β(s) is linear in s and

β2(s)− 4αγ(s) is a quadratic concave function in s as we consider r ≥ 1
2
. Since the square root

function (i.e.,
√
·) is a concave and increasing function, x̂(s) is a strictly concave function in s.

Thus, if x∗(s) = x̂(s), then ∂2

∂s2
x∗(s)< 0.

Next, we prove that ∂
∂s
x∗(s)|s=0 > 0. By Lemma 1, we have x∗(0) = x∗

0 = x̂(0). Then, according

to Lemma A.1, ∂
∂s
x∗(s)|s=0 has the same sign as ∂

∂s
u(xc|x, s)|x=x∗0,s=0. We have

∂

∂s
u(xc|x, s)

∣∣∣
x=x∗0,s=0

=
1

2
+λ

(
r− 1

2

)
(RH(x

∗
0)−RL(x

∗
0)).

Since we consider r ≥ 1
2
and RH(x

∗
0)>RL(x

∗
0) (i.e., high-yield revenue is not lower than low-yield

revenue without any subsidy), we have ∂
∂s
u(xc|x, s)|x=x∗0,s=0 > 0. Thus, ∂

∂s
x∗(s)|s=0 > 0. □

Proof of Proposition 1: Given r ∈ [ 1
2
,1], since we consider x∗(s) = x̂(s) for any s ∈ [0, s̄],

according to Lemma A.2, x∗(s) is strictly concave in s, and we define s1 := argmax
s∈[0,s̄]

x∗(s). Then,

by the definition of s1, we have x∗(s) increases in s if and only if s≤ s1. Moreover, we have s1 > 0

because we showed in Lemma A.2 that ∂
∂s
x∗(s)|s=0 > 0.

Next, we prove that there exists a threshold r1 such that if r < r1, then we have s1 < s̄ and s1

increases in r; if r ≥ r1, then we have s1 = s̄ (i.e., x∗(s) increases in s for all s ∈ [0, s̄]). We prove

these results in the following three steps:

Step 1: We prove that for any given r ∈ [ 1
2
,1], if s1 < s̄, then s1 strictly increases in r. According

to Lemma A.2, x∗(s) is strictly concave in s. Thus, given s1 < s̄, we must have ∂
∂s
x∗(s)|s=s1 = 0.

Then, in order to prove that s1 increases in the r, we would like to prove that ∂2

∂s∂r
x∗(s)|s=s1 > 0.
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Since x∗(s1) = x̂(s1), Equation (A.6) holds at s= s1. By taking the derivative with respect to r

of both sides of Equation (A.6) and substituting the subsidy amount s for η, we have(
∂2

∂x2
u(xc|x, s)

∣∣∣
x=x∗(s1),s=s1

∂

∂r
x∗(s)

∣∣∣
s=s1

+
∂2

∂x∂r
u(xc|x, s)

∣∣∣
x=x∗(s1),s=s1

)
∂

∂s
x∗(s)

∣∣∣
s=s1

+
∂

∂x
u(xc|x, s)

∣∣∣
x=x∗(s1),s=s1

∂2

∂s∂r
x∗(s)

∣∣∣
s=s1

+
∂2

∂x∂s
u(xc|x, s)

∣∣∣
x=x∗(s1),s=s1

∂

∂r
x∗(s)

∣∣∣
s=s1

+
∂2

∂s∂r
u(xc|x, s)

∣∣∣
x=x∗(s1),s=s1

= 0.

Because we have ∂
∂s
x∗(s)|s=s1 = 0, the first term vanishes and the equation above can be reduced

to

∂

∂x
u(xc|x, s)

∣∣∣
x=x∗(s1),s=s1

∂2

∂s∂r
x∗(s)

∣∣∣
s=s1

+
∂2

∂x∂s
u(xc|x, s)

∣∣∣
x=x∗(s1),s=s1

∂

∂r
x∗(s)

∣∣∣
s=s1

+
∂2

∂s∂r
u(xc|x, s)

∣∣∣
x=x∗(s1),s=s1

= 0. (A.7)

In addition, because discussed in the proof of Lemma A.1 that ∂
∂x
u(xc|x, s)|x=x∗(s) < 0, in order to

prove that ∂2

∂s∂r
x∗(s)|s=s1 > 0, we only need to prove that ∂2

∂x∂s
u(xc|x, s)|x=x∗(s1),s=s1

∂
∂r
x∗(s)|s=s1 +

∂2

∂s∂r
u(xc|x, s)|x=x∗(s1),s=s1 > 0.

From Equation (A.4), we can get ∂2

∂x∂s
u(xc|x, s) =−4λb(r− 1

2
)σµ and ∂2

∂s∂r
u(xc|x, s) = λ(RH(x)−

RL(x)). From Equation (A.6), we have

∂

∂r
x∗(s) =−∂u(xc|x, s)/∂r

∂u(xc|x, s)/∂x

∣∣∣
x=x∗(s)

=
λs[RH(x

∗(s))−RL(x
∗(s))]

2αx∗(s)+β(s)

=
λs[RH(x

∗(s))−RL(x
∗(s))]√

β2(s)− 4αγ(s)
.

The third equality is achieved by substituting the expression in Equation (A.5) for x∗(s). Then,

we can write

∂2

∂x∂s
u(xc|x, s)

∣∣∣
x=x∗(s1),s=s1

∂

∂r
x∗(s)

∣∣∣
s=s1

+
∂2

∂s∂r
u(xc|x, s)

∣∣∣
x=x∗(s1),s=s1

=λ[RH(x
∗(s1))−RL(x

∗(s1))]

[
1−

4λb(r− 1
2
)σµs1√

β2(s1)− 4αγ(s1)

]
(A.8)

Since we consider s ∈ [0, s̄] and s̄ is the lowest subsidy amount that satisfies RL(x
∗(s)) + s ≥

RH(x
∗(s)), we have RH(x

∗(s))−RL(x
∗(s))≥ s≥ 0 for all s ∈ [0, s̄]. Then, the right hand side of

Equation (A.8) is positive if and if only
√
β2(s1)− 4αγ(s1)> 4λb(r− 1

2
)σµs1.

By the definition of s1, we have

∂

∂s
x∗(s)

∣∣∣
s=s1

=
1

2α

(
−4λb(r− 1

2
)σµ+

∂(β2(s)− 4αγ(s))/∂s√
β2(s)− 4αγ(s)

∣∣∣
s=s1

)
= 0
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and thus

4λb(r− 1

2
)σµ=

∂(β2(s)− 4αγ(s))/∂s√
β2(s)− 4αγ(s)

∣∣∣
s=s1.

Multiplying both sides of the equation above by s1, we can have

4λb(r− 1

2
)σµs1 =

∂(β2(s)− 4αγ(s))/∂s√
β2(s)− 4αγ(s)

∣∣∣
s=s1

× s1. (A.9)

Further, as shown in the proof of Lemma A.2, β2(s)− 4αγ(s) is concave in s and increasing in s

at s= 0, which implies that

[β2(s1)− 4αγ(s1)]− [β2(0)− 4αγ(0)]>
∂

∂s

(
β2(s)− 4αγ(s)

) ∣∣∣
s=s1

× s1.

We have that β2(0)− 4αγ(0) = β2
0 − 4α0γ0 > 0 as implied by Lemma 1. So, we have

√
β2(s1)− 4αγ(s1)>

∂(β2(s)− 4αγ(s))/∂s√
β2(s)− 4αγ(s)

∣∣∣
s=s1

× s1. (A.10)

Hence, by combining (A.9) and (A.10), we have
√
β2(s1)− 4αγ(s1) > 4λb(r − 1

2
)µσs1, and thus

∂2

∂s∂r
x∗(s)|s=s1 > 0, which implies that s1 strictly increases in r.

Step 2: We prove that if s1 = s̄ under some r ∈ [ 1
2
,1], then we have s1 = s̄ under any higher

index accuracy. Specifically, let r1 ∈ [ 1
2
,1] denote the lowest index accuracy under which s1 = s̄ (we

prove the existence of such r1 in Step 3). Then, it is sufficient to prove that we have s1 = s̄ for any

r≥ r1.

Recall that x̂(s) =
−β(s)+

√
β2(s)−4αγ(s)

2α
by Lemma 2. As shown in the proof of Lemma A.2, we

have that β(s) is linearly increasing in s, β2(s)− 4αγ(s) is a quadratic concave function in s, and

x̂(s) is increasing in s when s = 0. Therefore, there must exist a threshold, denoted as ŝ, such

that ∂
∂s
x̂(s)|s=ŝ = 0 and x̂(s) increases in s if and only if s≤ ŝ. Then, by definition of s1, we have

s1 = ŝ < s̄ when r < r1.

Then, to prove the goal of this step, it is sufficient to prove that if r≥ r1, then ŝ≥ s̄. Therefore,

it is sufficient to prove that for any given r such that ŝ= s̄, we have ∂
∂r
ŝ > 0 and ∂

∂r
s̄≤ 0.

Following the analysis in Step 1, we have that, whenever ŝ≤ s̄, ŝ strictly increases in r. Thus,

it remains to study how s̄ changes in r when ŝ = s̄. Since x∗(s) is continuous in s, RH(x
∗(s))−

RL(x
∗(s)) is also continuous in s. Moreover, when s= 0, we assumed RH(x

∗(s))−RL(x
∗(s))> s

(i.e., RH(x
∗(0))−RL(x

∗(0))> 0) and we have shown in the proof of Lemma 2 that when s= 2aσ,

RH(x
∗(s))−RL(x

∗(s)) ≤ s (i.e., RH(x
∗(2aσ))−RL(x

∗(2aσ)) ≤ 2aσ). Recall that s̄ is the lowest

subsidy amount that satisfies RL(x
∗(s))+ s≥RH(x

∗(s)). Thus, we have

s̄=RH(x
∗(s̄))−RL(x

∗(s̄)) = 2aσ− 4bµσx∗(s̄). (A.11)
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Then, we take derivative of both sides of Equation (A.11) with respect to r, and have

∂

∂r
s̄=−4bµσ

(
∂

∂r
x∗(s)

∣∣∣
s=s̄

+
∂

∂s
x∗(s)

∣∣∣
s=s̄

∂

∂r
s̄

)
. (A.12)

Note that when ŝ= s̄, ∂
∂s
x∗(s)|s=s̄ = 0. Thus, in order to prove that ∂

∂r
s̄≤ 0 when ŝ= s̄, it remains

to prove that ∂
∂r
x∗(s)|s=s̄ ≥ 0.

For any s ∈ [0, s̄], since x∗(s) = x̂(s), by Lemma A.1, ∂
∂r
x∗(s) and ∂

∂r
u(xc|x, s)|x=x∗(s) has the

same sign. We have
∂

∂r
u(xc|x, s)

∣∣∣
x=x∗(s)

= λs[RH(x
∗(s))−RL(x

∗(s))].

Since we consider s ∈ [0, s̄] and s̄ is defined in §3 as the lowest subsidy amount that satisfies

RL(x
∗(s)) + s≥RH(x

∗(s)), we have RH(x
∗(s))−RL(x

∗(s))≥ s≥ 0. Thus, ∂
∂r
u(xc|x, s)|x=x∗(s) ≥ 0

and we have, for any s∈ [0, s̄],
∂

∂r
x∗(s)≥ 0. (A.13)

So, ∂
∂r
x∗(s)|s=s̄ ≥ 0 and thus by Equation (A.12), ∂

∂r
s̄≤ 0 when ŝ= s̄.

Step 3: We prove the existence of r1 ∈ [ 1
2
,1], where r1 is defined in Step 2 as the lowest index

accuracy under which s1 = s̄, and we also prove that r1 < 1. We first prove that such r1 ∈ [ 1
2
,1]

exists. To do so, it is sufficient to prove that when r = 1, we have s1 = s̄. We prove this result

by contradiction. Suppose s1 < s̄ for all r ∈ [ 1
2
,1]. Then, based on the definition of s̄, we have

s1 <RH(x
∗(s1))−RL(x

∗(s1)) for all r ∈ [ 1
2
,1]. On the other hand, recall that s1 = argmax

s∈[0,s̄]

x∗(s).

For any given r ∈ [ 1
2
,1], since s1 < s̄, for any s∈ [s1, s̄], we must have ∂

∂s
x∗(s)≤ 0. Then, according

to Lemma A.1, we have ∂
∂s
u(xc|x, s)|x=x∗(s1),s=s1 ≤ 0, which is equivalent to

s1 ≥
1

λ
+2(r− 1

2
)[RH(x

∗(s1))−RL(x
∗(s1))].

Plugging r= 1 into the above inequality, we have s1 ≥ 1
λ
+RH(x

∗(s1))−RL(x
∗(s1))>RH(x

∗(s1))−

RL(x
∗(s1)), which leads to a contradiction. Thus, we have s1 = s̄ when r = 1. This implies the

existence of r1.

Next, we prove that r1 < 1 by contradiction. Suppose r1 = 1. Then, as discussed in Step 2, we

have s1 = ŝ= s̄ when r = r1 = 1. By the definition of ŝ in Step 2, it implies that ∂
∂s
x∗(s)|s=s1 = 0.

Thus, according to Lemma A.1, we have ∂
∂s
u(xc|x, s)|x=x∗(s1),s=s1 = 0, which implies

s1 =
1

λ
+2(r− 1

2
)[RH(x

∗(s1))−RL(x
∗(s1))]. (A.14)

By Equation (A.14), when r= r1 = 1, we have s1 > [RH(x
∗(s1))−RL(x

∗(s1))]. It contradicts with

the earlier conclusion that s1 = s̄ when r= r1 = 1. Hence, we conclude that r1 < 1.
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Collectively, putting together all three steps, we have that, there exists a threshold r1 ∈ [ 1
2
,1)

such that when r < r1, we have s1 < s̄ and s1 increases in r; when r≥ r1, we have s1 = s̄. The proof

of this part of the proposition is completed. □

Proof of Proposition 2: To find how the income variance changes in s, we start off by showing

that the income variance is strictly convex in s. From Equation (A.3), the variance of farmer income

is independent of the production cost h and thus is the same for all the farmers who plant. Thus, we

only need to consider the farmer with production cost x∗(s)c and show that Var[π(x∗(s)c|x∗(s), s)]

is strictly convex in s.

According to Lemma 2, since we consider x∗(s) = x̂(s) ∈ (0,1), we have u(x∗(s)c|x∗(s), s) = 0.

By taking the second derivative of both sides of u(x∗(s)c|x∗(s), s) = 0 with respect to the subsidy

amount s, we have

d2

ds2
E[π(x∗(s)c|x∗(s), s)]−λ

d2

ds2
Var[π(x∗(s)c|x∗(s), s)] = 0,

which implies that d2

ds2
Var[π(x∗(s)c|x∗(s), s)] and d2

ds2
E[π(x∗(s)c|x∗(s), s)] have the same sign. We

also have
d2

ds2
E[π(x∗(s)c|x∗(s), s)] =−[b(µ2 +σ2)+ c]

∂2

∂s2
x∗(s)> 0

where the inequality holds because, as we mentioned in Lemma A.2, x∗(s) = x̂(s) is strictly concave

in s. So, the variance of the farmer income Var[π(h|x∗(s), s)] is strictly convex in s.

Then, building on the convexity of the variance in s, in order to justify the statement in the

proposition, it is sufficient to show that the variance strictly decreases at s= 0 and increases at

some s∈ (0, s̄]. Further, we have, from Equation (A.3),

d

ds
Var[π(h|x∗(s), s)] =

1

2
[RH(x

∗(s))−RL(x
∗(s))]

∂

∂s
[RH(x

∗(s))−RL(x
∗(s))]+

1

2
s

−
(
r− 1

2

)
[RH(x

∗(s))−RL(x
∗(s))]− s

(
r− 1

2

)
∂

∂s
[RH(x

∗(s))−RL(x
∗(s))]

=− 2bµσ[RH(x
∗(s))−RL(x

∗(s))]
∂

∂s
x∗(s)+

1

2
s

−
(
r− 1

2

)
[RH(x

∗(s))−RL(x
∗(s))]+ 4

(
r− 1

2

)
bµσs

∂

∂s
x∗(s). (A.15)

From Equation (A.15), at s= 0, we have

d

ds
Var[π(h|x∗(s), s)]

∣∣∣
s=0

=−2bµσ[RH(x
∗
0)−RL(x

∗
0)]

∂

∂s
x∗(s)

∣∣∣
s=0

−
(
r− 1

2

)
[RH(x

∗
0)−RL(x

∗
0)].

By Lemma A.2, we know ∂
∂s
x∗(s)|s=0 > 0. Besides, we assumed r ∈ [ 1

2
,1] and RH(x

∗
0)>RL(x

∗
0) in

§3. Therefore, the income variance strictly decreases in s at s = 0. It remains to show that the

income variance increases at some s∈ (0, s̄].
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Next, we prove that the income variance increases at some s ∈ (0, s̄]. Based on the result of

Proposition 1, we separate the analysis into two cases: In Case 1, ∂
∂s
x∗(s)≥ 0 for all s∈ [0, s̄] (i.e.,

r≥ r1); and in Case 2, there exists a threshold s1 < s̄ such that ∂
∂s
x∗(s)|s=s1 = 0 (i.e., r < r1).

Case 1: We consider the scenario where ∂
∂s
x∗(s)≥ 0 for all s∈ [0, s̄]. We would like to prove that

the income variance increases in s at s= s̄. By Equation (A.11), we have s̄=RH(x
∗(s̄))−RL(x

∗(s̄)).

Plugging it into Equation (A.15), we have

d

ds
Var[π(h|x∗(s), s)]

∣∣∣
s=s̄

=−2bµσs̄
∂

∂s
x∗(s)

∣∣∣
s=s̄

+
1

2
s̄−
(
r− 1

2

)
s̄+4

(
r− 1

2

)
bµσs̄

∂

∂s
x∗(s)

∣∣∣
s=s̄

=

(
−4bµσ

∂

∂s
x∗(s)

∣∣∣
s=s̄

+1

)
(1− r)s̄ (A.16)

Since r ≤ 1 and s̄ > 0, in order to prove that d
ds
Var[π(h|x∗(s), s)]|s=s̄ ≥ 0, we only need to prove

that −4bµσ ∂
∂s
x∗(s)|s=s̄ +1> 0.

From Equation (A.6), we have

4bµσ
∂

∂s
x∗(s)

∣∣∣
s=s̄

=−4bµσ
∂u(xc|x, s)/∂s
∂u(xc|x, s)/∂x

∣∣∣
s=s̄,x=x∗(s̄)

=
2bµσ− 2λbµσs̄+4λb

(
r− 1

2

)
µσs̄

2αx∗(s̄)+β(s̄)

=
2bµσ− 2λbµσ(2aσ− 4bµσx∗(s̄))+ 4λb

(
r− 1

2

)
µσs̄

2αx∗(s̄)+β(s̄)

=
2bµσ− 4λabµσ2 +8λb2µ2σ2x∗(s̄)+ 4λb

(
r− 1

2

)
µσs̄

2αx∗(s̄)+β(s̄)

=
2αx∗(s̄)+

(
2bµσ− 4λabµσ2 +4λb

(
r− 1

2

)
µσs̄

)
2αx∗(s̄)+β(s̄)

<
2αx∗(s̄)+β(s̄)

2αx∗(s̄)+β(s̄)

= 1,

where the inequality holds because b(µ2+σ2)≥ 2bµσ and c > 0. Therefore,−4bµσ ∂
∂s
x∗(s)|s=s̄+1> 0

and d
ds
Var[π(h|x∗(s), s)]|s=s̄ ≥ 0.

Moreover, from Equation (A.16), we have d
ds
Var[π(h|x∗(s), s)]|s=s̄ = 0 if and only if r= 1, which

indicates that the income variance decreases in s for s∈ [0, s̄] when r= 1.

Case 2:We consider the scenario where there exists a threshold s1 < s̄ such that ∂
∂s
x∗(s)|s=s1 = 0.

We would like to prove that the income variance increases in s at s= s1.

By plugging s= s1 into Equation (A.15), we have

d

ds
Var[π(h|x∗(s), s)]

∣∣∣
s=s1

=
1

2
s1 −

(
r− 1

2

)
[RH(x

∗(s1))−RL(x
∗(s1))].

Since ∂
∂s
x∗(s)|s=s1 = 0, by Equation (A.14), we have s1 =

1
λ
+ 2(r − 1

2
)[RH(x

∗(s1))−RL(x
∗(s1))].

Therefore, d
ds
Var[π(h|x∗(s), s)]|s=s1 =

1
2
s1 − (r− 1

2
)[RH(x

∗(s))−RL(x
∗(s))] = 1

2λ
> 0.
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Note that in this case, we must have r < 1. Otherwise, if r = 1, then s1 =
1
λ
+ [RH(x

∗(s1))−

RL(x
∗(s1))]>RH(x

∗(s1))−RL(x
∗(s1)), which contradicts with the assumption that s1 < s̄.

Combining two cases, we proved that, when r ∈ [ 1
2
,1), Var[π(h|x∗(s), s)] first decreases and then

increases in the subsidy amount s; when r= 1, Var[π(h|x∗(s), s)] only decreases in s.

At the end, we prove that s1 ≥ s2. Since we know that s1, s2 ∈ [0, s̄] and we have shown in

Proposition 1 that s1 = s̄ when r ≥ r1, we only need to prove s1 ≥ s2 when r < r1. In Case 2, we

have that when r < r1, the income variance increases in s at s= s1. Therefore, by the definition of

s2, we have s1 ≥ s2.

Remark that we present how the expected farmer income changes in s in Proposition A.1. □

Proposition A.1. There exists a threshold b1 such that if b≤ b1, then the expected farmer income

E[π(h|x∗(s), s)] increases in s.

Proof of Proposition A.1: First, we show that the expected farmer income is convex in s. In

equilibrium, given a subsidy amount s, the expected income of the farmer with production cost h

is

E[π(h|x∗(s), s)] = aµ− bx∗(s)× (µ2 +σ2)+
1

2
s−h.

By taking the second derivative of E[π(h|x∗(s), s)] with respect to s, we have

∂2

∂s2
E[π(h|x∗(s), s)] =−b(µ2 +σ2)

∂2

∂s2
x∗(s)> 0,

where the inequality holds because we have shown in Lemma A.2 that ∂2

∂s2
x∗(s) < 0. Thus, the

expected farmer income is convex in s.

Then, due to the convexity, in order to study how the expected income changes in s, we focus

on how it changes in s at s= 0. We take the first derivative of E[π(h|x∗(s), s)] with respect to s at

s= 0 and have
∂

∂s
E[π(g|x∗(s), s)]

∣∣∣
s=0

=−b(µ2 +σ2)
∂

∂s
x∗(s)

∣∣∣
s=0

+
1

2
.

We have shown in Lemma A.2 that ∂
∂s
x∗(s)|s=0 > 0. Therefore, there must exist a b1 > 0 such that

for any b≤ b1,
∂
∂s
E[π(g|x∗(s), s)]|s=0 ≥ 0. Since the expected farmer income is convex in s, if b≤ b1,

then the expected farmer income increases in s. □

Proof of Corollary 1: By Equation (A.13), we have shown that x∗(s) increases in r. It remains

to prove that the variance of farmer income Var[π(h|x∗(s), s)] decreases in r.

From Equation (A.3), we have

d

dr
Var[π(h|x∗(s), s)] =

1

2
[RH(x

∗(s))−RL(x
∗(s))]× ∂

∂r
[RH(x

∗(s))−RL(x
∗(s))]
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− s[RH(x
∗(s))−RL(x

∗(s))]− s

(
r− 1

2

)
× ∂

∂r
[RH(x

∗(s))−RL(x
∗(s))]

=
1

2
[RH(x

∗(s))−RL(x
∗(s))]×

(
−4bµσ

∂

∂r
x∗(s)

)
− s[RH(x

∗(s))−RL(x
∗(s))]− s

(
r− 1

2

)
×
(
−4bµσ

∂

∂r
x∗(s)

)
=− 2bµσ

(
∂

∂r
x∗(s)

)(
[RH(x

∗(s))−RL(x
∗(s))]− 2

(
r− 1

2

)
s

)
− s[RH(x

∗(s))−RL(x
∗(s))]

≤0,

where the inequality holds because we consider r ∈ [ 1
2
,1] and we have shown in the proof of Propo-

sition 1 that ∂
∂r
x∗(s) ≥ 0 and RH(x

∗(s)) − RL(x
∗(s)) ≥ s ≥ 0. Thus, we have Var[π(h|x∗(s), s)]

decreases in r.

□

Proof of Theorem 1: Recall the formulation of v(s) in Equation (4):

v(s) =

∫ x∗(s)

0

E[(a− bx∗(s)Y )Y −xc+ sI] dx−x∗(s)E[sI]

= v1 ×x∗(s)− v2 × (x∗(s))2.

where v1 = aµ and v2 = b(µ2+σ2)+ 1
2
c. Since v1 > 0 and v2 > 0, v(s) is a quadratic concave function

in x∗(s). Then, the value of x∗(s) that maximizes v(s) is defined as follows:

xopt =min

{
v1
2v2

,1

}
=min

{
aµ

2b(µ2 +σ2)+ c
,1

}
. (A.17)

As the government’s objective is to find the subsidy amount s to maximize v(s), the optimal s∗

must make x∗(s) as close to xopt as possible. In addition, we assumed x∗
0 ≤ xopt in §3. Therefore,

as we discussed in §3, s∗ must satisfy either (1) x∗(s∗)< xopt and s∗ = inf{argmax
s∈[0,s̄]

x∗(s)}, or (2)

s∗ = inf{s : x∗(s) = xopt}.

We define rc ≥ 1
2
as the smallest index accuracy under which x∗(s) = xopt for some s∈ [0, s̄]. (We

prove the existence of such rc at the end.) Then, we separate the rest of the proof into two cases:

In Case 1, r < rc (this case does not exist if rc =
1
2
); and in Case 2, r≥ rc.

Case 1: We consider the scenario where r < rc. First, we characterize s∗. By definition of rc,

in this case, for any s ∈ [0, s̄], we have x∗(s) < xopt. Thus, as discussed earlier, s∗ must satisfy

x∗(s∗) < xopt and s∗ = inf{argmax
s∈[0,s̄]

x∗(s)}. Moreover, from Lemma A.2, we have that x∗(s) is a

strictly concave function in s. Therefore, x∗(s) has a unique maximizer and s∗ = argmax
s∈[0,s̄]

x∗(s).

Next, we study how s∗ changes in r. Recall that r1 is a threshold defined in Proposition 1 such

that if r < r1, x
∗(s) increases in s if and only if s≤ s1; and if r≥ r1, x

∗(s) increases in s. We further
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separate this case into two sub-cases: (a) r < r1 and (b) r ∈ [r1, rc) (this sub-case does not exist if

r1 ≥ rc).

(a): We consider the scenario where r < r1. Then, we have s
∗ = argmax

s∈[0,s̄]

x∗(s) = s1 by the result of

Proposition 1. Moreover, we have shown in Proposition 1 that s1 increases in r. Thus, s∗ increases

in r.

(b): We consider the scenario where r ∈ [r1, rc). Then, s
∗ = argmax

s∈[0,s̄]

x∗(s) = s̄ by the result of

Proposition 1. Further, by Proposition 1, when r≥ r1, we have
∂
∂s
x∗(s)|s=s̄ ≥ 0, which, by Equation

(A.12), implies ∂
∂r
s̄≤ 0. Thus, we have s∗ decreases in r.

Case 2: We consider the scenario where r ≥ rc. First, we characterize s∗. By definition of rc,

when r = rc, we have x∗(s) = xopt for some s ∈ [0, s̄]. Since we consider x∗(0)≤ xopt and we have

x∗(s) increases in r by Corollary 1, for any r≥ rc, we must also have x∗(s) = xopt for some s∈ [0, s̄].

Therefore, in this case, s∗ = inf{s : x∗(s) = xopt}.

Next, we study how s∗ changes in r. Since we consider x∗(0)≤ xopt and s∗ is the lowest subsidy

amount that satisfies x∗(s∗) = xopt, we must have that x∗(s) increases in s at s = s∗. Moreover,

we showed in Corollary 1 that x∗(s) increases in r. Hence, s∗ must decrease in r to maintain

s∗ = inf{s : x∗(s) = xopt}.

We define r2 :=min{rc, r1}. Then, combining Case 1 and Case 2, we have s∗ increases in r if and

only if r < r2.

As the last step of this proof, we prove the existence of rc by contradiction. Suppose there is no

such rc, which implies that for all r ∈ [ 1
2
,1] and s ∈ [0, s̄], x∗(s)< xopt. However, according to the

proof of Lemma 2, as we plug in r= 1 and s= s̄ into Equation (A.4) and then solve it, we get

x∗(s) =
a(µ+σ)

b(µ+σ)2 + c
>min

{
aµ

2b(µ2 +σ2)+ c
,1

}
= xopt

which contradicts with the assumption. Therefore, rc must exist in [ 1
2
,1]. □

To help prove Proposition 3, we need the following auxiliary lemma to study the relationship

between the first derivative of x∗(s) and the first derivative of xopt, both with respect to the yield

variability σ.

Lemma A.4. Let v1 = aµ and v2 = b(µ2 + σ2) + 1
2
c. If x∗(s) = x̂(s) and x∗(s)≤ v1

2v2
≤ 1, we have

∂
∂σ
x∗(s)< ∂

∂σ
xopt < 0.

Proof of Lemma A.4: From Equation (A.17), we have that, when v1
2v2

≤ 1, xopt = v1
2v2

and

∂
∂σ
xopt < 0. The rest of the proof is to show ∂

∂σ
x∗(s)< ∂

∂σ
xopt.

For ease of exposition, we let x∗(s,λ, b) denote the equilibrium planting amount x∗(s) under

risk aversion λ and price sensitivity b. By observing Equation (A.4) and the formulation of xopt in
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Equation (A.17), we find that xopt = v1
2v2

= x∗(0,0,2b). So, to prove this lemma, we only need to

show for any s∈ [0, s̄], ∂
∂σ
x∗(s,λ, b)< ∂

∂σ
x∗(0,0,2b). We prove that in the following three steps.

Step 1: We show ∂
∂σ
x∗(s,λ, b) < ∂

∂σ
x∗(s,0, b). It is sufficient to prove that ∂2

∂σ∂λ
x∗(s) < 0. By

Lemma 2, as we consider x∗(s) = x̂(s), x∗(s) satisfies u(x∗(s)c|x∗(s), s) = 0. By taking second

derivative of both sides of u(x∗(s)c|x∗(s), s) = 0 with respect to σ and λ, we have,(
∂2

∂x2
u(xc|x, s)

∣∣∣
x=x∗(s)

∂

∂σ
x∗(s)+

∂2

∂x∂σ
u(xc|x, s)

∣∣∣
x=x∗(s)

)
∂

∂λ
x∗(s)+

∂

∂x
u(xc|x, s)

∣∣∣
x=x∗(s)

∂2

∂σ∂λ
x∗(s)

+
∂2

∂x∂λ
u(xc|x, s)

∣∣∣
x=x∗(s)

∂

∂σ
x∗(s)+

∂2

∂σ∂λ
u(xc|x, s)

∣∣∣
x=x∗(s)

= 0.

In order to figure out the sign of ∂2

∂σ∂λ
x∗(s), we next would like to find the signs of all other

terms in the equation. From Equation (A.4), u(xc|x, s) is a concave quadratic function in x, so

∂2

∂x2
u(xc|x, s)|x=x∗(s) < 0. Since we showed in the proof of Lemma 2 that x∗(s) is the larger root of

u(xc|x, s) = 0, ∂
∂x
u(xc|x, s)|x=x∗(s) < 0.

For the sign of ∂
∂σ
x∗(s) and ∂

∂λ
x∗(s), by Lemma A.1, we need to find the sign of ∂

∂σ
u(xc|x, s) and

∂
∂λ
u(xc|x, s) at x= x∗(s). For ∂

∂σ
u(xc|x, s) at x= x∗(s), we have

∂

∂σ
u(xc|x, s)

∣∣∣
x=x∗(s)

=−2bx∗(s)σ−λ(2a− 4bx∗(s)µ)

(
1

2
[RH(x

∗(s))−RL(x
∗(s))]− s

(
r− 1

2

))
.

(A.18)

As we consider s≤ s̄, RH(x
∗(s))−RL(x

∗(s))≥ s≥ 0. Thus 1
2
[RH(x

∗(s))−RL(x
∗(s))]−s(r− 1

2
)> 0.

Besides, 2a − 4bx∗(s)µ = [RH(x
∗(s)) − RL(x

∗(s))]/σ ≥ 0. Therefore, ∂
∂σ
u(xc|x, s)|x=x∗(s) < 0 and

thus ∂
∂σ
x∗(s)< 0. Then, for ∂

∂λ
u(xc|x, s) at x= x∗(s), we have

∂

∂λ
u(xc|x, s)

∣∣∣
x=x∗(s)

=−Var[π(x∗(s)c|x∗(s), s)]< 0. (A.19)

So, ∂
∂λ
x∗(s)< 0.

Moreover, from Equation (A.18) and Equation (A.19), we have

∂2

∂σ∂λ
u(xc|x, s)

∣∣∣
x=x∗(s)

=−(2a− 4bx∗(s)µ)

[
1

2
[RH(x

∗(s))−RL(x
∗(s))]− s

(
r− 1

2

)]
< 0

∂2

∂σ∂x
u(xc|x, s)

∣∣∣
x=x∗(s)

= 4λbσ

[
1

2
[RH(x

∗(s))−RL(x
∗(s))]− s

(
r− 1

2

)]
> 0

∂2

∂λ∂x
u(xc|x, s)

∣∣∣
x=x∗(s)

= 2bµσ

[
1

2
[RH(x

∗(s))−RL(x
∗(s))]− s

(
r− 1

2

)]
> 0.

Plugging these inequalities back, we can get ∂2

∂σ∂λ
x∗(s)< 0. Thus ∂

∂σ
x∗(s,λ, b)< ∂

∂σ
x∗(s,0, b).

Step 2: We have ∂
∂σ
x∗(s,0, b)< ∂

∂σ
x∗(s,0,2b) because

∂

∂σ
x∗(s,0, b) =

∂

∂σ

(
aµ

b(µ2 +σ2)+ c

)
=

−aµ(µ2 +σ2)

[b(µ2 +σ2)+ c]2,
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which increases in b.

Step 3: We have ∂
∂σ
x∗(s,0,2b) = ∂

∂σ
x∗(0,0,2b) because

∂

∂σ
x∗(s,0,2b) =

∂

∂σ

(
aµ+ 1

2
s

2b(µ2 +σ2)+ c

)
=

∂

∂σ

(
aµ

2b(µ2 +σ2)+ c

)
=

∂

∂σ
x∗(0,0,2b).

As we combine the three steps, we have ∂
∂σ
x∗(s,λ, b) < ∂

∂σ
x∗(0,0,2b), which implies ∂

∂σ
x∗(s) <

∂
∂σ
xopt. □

Proof of Proposition 3: (i): Recall that r1 is a threshold defined in Proposition 1 such that

if r < r1, x
∗(s) increases in s if and only if s≤ s1; and if r ≥ r1, x

∗(s) increases in s. Also, recall

that rc is a threshold defined in the proof of Theorem 1 as the lowest index accuracy under which

x∗(s) = xopt for some s∈ [0, s̄]. From the proof of Theorem 1, given r ∈ [ 1
2
,1], s∗ takes its value from

one of the following: (1) s∗ = s1 if r <min{r1, rc}, (2) s∗ = s̄ if r ∈ [r1, rc) (if r1 > rc, this scenario

does not exist), or (3) s∗ = inf{s : x∗(s) = xopt} if r ≥ rc. Hence we analyze these three scenarios

separately: In Case 1, r <min{r1, rc}; in Case 2, r ∈ [r1, rc); and in Case 3, r≥ rc.

Case 1: We consider the scenario where r <min{r1, rc}. In this case, we have s∗ = s1 < s̄ and

x∗(s1) < xopt. Since s1 < s̄, we have ∂
∂s
x∗(s)|s=s1 = 0. Then, Equation (A.14) holds. By taking

derivative of both sides of Equation (A.14) with respect to σ, we have

∂

∂σ
s1 = 2

(
r− 1

2

)[
(2a− 4bµx∗(s1))− 4bµσ

(
∂

∂σ
x∗(s)

∣∣∣
s=s1

+
∂

∂s
x∗(s)

∣∣∣
s=s1

∂

∂σ
s1

)]
= 2

(
r− 1

2

)[
(2a− 4bµx∗(s1))− 4bµσ

∂

∂σ
x∗(s)

∣∣∣
s=s1

]
.

We have 2a− 4bµx∗(s1) = [RH(x
∗(s1))−RL(x

∗(s1))]/σ > 0. Besides, according to Lemma A.4, we

have ∂
∂σ
x∗(s)|s=s1 < 0. Thus, ∂

∂σ
s1 > 0, which implies s∗ increases in σ in this case.

Case 2: We consider the scenario where r ∈ [r1, rc). In this case, s∗ = s̄. By taking derivative of

both sides of the equation s̄= 2aσ− 4bµσx∗(s̄) (from Equation (A.11)) with respect to σ, we have

∂

∂σ
s̄= (2a− 4bµx∗(s̄))− 4bµσ

(
∂

∂σ
x∗(s)

∣∣∣
s=s̄

+
∂

∂s
x∗(s)

∣∣∣
s=s̄

∂

∂σ
s̄

)
,

which can be rewritten as(
1+4bµσ

∂

∂s
x∗(s)

∣∣∣
s=s̄

)
∂

∂σ
s̄= (2a− 4bµx∗(s̄))− 4bµσ

∂

∂σ
x∗(s)

∣∣∣
s=s̄.

From Proposition 1, we have ∂
∂s
x∗(s)|s=s̄ ≥ 0 when r ≥ r1. So 1 + 4bµσ ∂

∂s
x∗(s)|s=s̄ is positive.

Moreover, through the similar analysis as in Case 1, the right-hand side of the equation can be

proven positive. Therefore, ∂
∂σ
s̄ > 0, which implies s∗ increases in σ in this case.

Case 3: We consider the scenario where r ≥ rc. In this case, s∗ = inf{s : x∗(s) = xopt}. We first

know that ∂
∂σ
x∗(s)|s=s∗ <

∂
∂σ
xopt according to Lemma A.4. Moreover, as discussed in the proof of
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Theorem 1, when r ≥ rc, x
∗(s) increases in s at s= s∗. Hence, s∗ must increase in σ to maintain

s∗ = inf{s : x∗(s) = xopt}.

Collectively, in all three cases, we have s∗ increases in σ. Thus, part (i) of the proposition holds.

(ii): As shown in the proof of Lemma A.4, x∗(s) decreases in λ for any s ∈ [0, s̄]. In addition,

xopt is independent of λ. Therefore, if we have x∗(s∗) = xopt under some λ, then we must have

x∗(s∗) = xopt for all smaller values of λ. Let λc denote the largest λ such that x∗(s∗) = xopt (if

we have x∗(s∗) = xopt for all feasible λ that satisfies our model assumptions stated in §3, we set

λc =∞; if we have x∗(s∗)< xopt for all feasible λ that satisfies our model assumptions stated in

§3, we set λc to be any negative number). Then, we have x∗(s∗) = xopt if λ≤ λc and x∗(s∗)< xopt

if λ> λc.

We next separate the proof into two cases: In Case 1, λ< λc; and in Case 2, λ≥ λc.

Case 1: We consider the scenario where λ< λc. In this case, s∗ must increase in λ to maintain

s∗ = inf{s : x∗(s) = xopt} because we have shown x∗(s) decreases in λ and ∂
∂s
x∗(s)|s=s∗ ≥ 0 if x∗(s∗) =

xopt in the proof of Theorem 1.

Case 2: We consider the scenario where λ≥ λc. Recall that x
∗(s) = x̂(s) and from the proof of

Proposition 1 that ŝ is the subsidy amount such that ∂
∂s
x̂(s)|s=ŝ = 0 and x̂(s) increases in s if and

only if s≤ ŝ. Next, we consider the following two cases:

(a): We consider the scenario where ŝ≤ s̄ when λ= λc. Next, we prove that ŝ≤ s̄ for any λ≥ λc.

If this is true, then we must have s∗ = ŝ for any λ ≥ λc, which implies that, to analyze how s∗

changes in λ, it is sufficient to analyze how ŝ changes in λ. Further, to prove ŝ≤ s̄ for any λ≥ λc,

because of the continuity of both ŝ and s̄, it is sufficient to prove that, for any λ > λc, whenever

ŝ= s̄, we have ∂
∂λ
ŝ < 0 and ∂

∂λ
s̄ > 0.

To prove ∂
∂λ
ŝ < 0 when ŝ ≤ s̄, it is sufficient to prove that ∂2

∂s∂λ
x∗(s)|s=ŝ < 0 when ŝ ≤ s̄. Since

x∗(s) = x̂(s), according to Lemma 2, x∗(s) satisfies u(x∗(s)c|x∗(s), s) = 0. Then, by taking second

order derivative of both sides of u(x∗(s)c|x∗(s), s) = 0 with respect to s and λ, we have(
∂2

∂x2
u(xc|x, s)

∣∣∣
x=x∗(ŝ),s=ŝ

∂

∂λ
x∗(s)

∣∣∣
s=ŝ

+
∂2

∂x∂λ
u(xc|x, s)

∣∣∣
x=x∗(ŝ),s=ŝ

)
∂

∂s
x∗(s)

∣∣∣
s=ŝ

+
∂

∂x
u(xc|x, s)

∣∣∣
x=x∗(ŝ),s=ŝ

∂2

∂s∂λ
x∗(s)

∣∣∣
s=ŝ

+
∂2

∂x∂λ
u(xc|x, s)

∣∣∣
x=x∗(ŝ),s=ŝ

∂

∂λ
x∗(s)

∣∣∣
s=ŝ

+
∂2

∂s∂λ
u(xc|x, s)

∣∣∣
x=x∗(ŝ),s=ŝ

= 0.

The first term vanishes because ∂
∂s
x∗(s)|s=ŝ = 0. By the proof of Lemma A.4, we have that

∂
∂x
u(xc|x, s)|x=x∗(ŝ),s=ŝ < 0, ∂2

∂x∂λ
u(xc|x, s)|x=x∗(ŝ),s=ŝ > 0 and ∂

∂λ
x∗(s)|s=ŝ < 0. We also have

∂2

∂s∂λ
u(xc|x, s)

∣∣∣
x=x∗(ŝ),s=ŝ
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=

(
r− 1

2

)
[RH(x

∗(ŝ))−RL(x
∗(ŝ))]− 1

2
ŝ

=

(
r− 1

2

)
[RH(x

∗(ŝ))−RL(x
∗(ŝ))]− 1

2

(
1

λ
+2

(
r− 1

2

)
[RH(x

∗(ŝ))−RL(x
∗(ŝ))]

)
=− 1

2λ
< 0,

where the second equality holds due to Equation (A.14) (by replacing s1 with ŝ). As we plug these

signs of the terms back, we have ∂2

∂s∂λ
x∗(s)|s=ŝ < 0 when ŝ≤ s̄. Thus, ∂

∂λ
ŝ < 0 when ŝ≤ s̄.

To prove ∂
∂λ
s̄ > 0 when ŝ = s̄, by taking derivative of both sides of the equation s̄ = 2aσ −

4bµσx∗(s̄) (from Equation (A.11)) with respect to λ, we have

∂

∂λ
s̄=−4bµσ

(
∂

∂λ
x∗(s)

∣∣∣
s=s̄

+
∂

∂s
x∗(s)

∣∣∣
s=s̄

∂

∂λ
s̄

)
. (A.20)

We already showed ∂
∂λ
x∗(s)|s=s̄ < 0, and ∂

∂s
x∗(s)|s=s̄ = 0 when ŝ= s̄. Thus, ∂

∂λ
s̄ > 0 when ŝ= s̄.

Given that ∂
∂λ
ŝ < 0 and ∂

∂λ
s̄ > 0 whenever ŝ = s̄, we have ŝ ≤ s̄ for any λ ≥ λc. Then, by the

definition of s∗, we have s∗ = ŝ for any λ≥ λc. We have just shown that ŝ decreases in λ. Therefore,

s∗ decreases in λ when λ≥ λc. In this case, we define λ1 := λc.

(b): We consider the scenario where ŝ > s̄ when λ= λc. Let λ2 denote the lowest risk aversion

level no less than λc under which ŝ≤ s̄ (if for all λ≥ λc, we have ŝ > s̄, then we set λ2 =∞).

Then, for λ ∈ [λc, λ2), we have ŝ > s̄ and thus s∗ = s̄. Moreover, we have ∂
∂s
x∗(s)|s=s̄ ≥ 0 when

ŝ≥ s̄ and we already showed ∂
∂λ
x∗(s)|s=s̄ < 0. Thus, by Equation (A.20), we have s∗ increases in

λ when λ ∈ [λc, λ2). On the other hand, for λ≥ λ2, since we already proved in (a) that, whenever

ŝ= s̄, we have ∂
∂λ
ŝ < 0 and ∂

∂λ
s̄ > 0, we must have s∗ = ŝ≤ s̄ and s∗ decreases in λ. In this case, we

define λ1 := λ2.

Putting together Case 1 and Case 2, we conclude that s∗ increases in λ if and only if λ< λ1.

Finally, we show that λ1 increases in the index accuracy r. On the one hand, if λ1 = λc, which

is the largest risk aversion level under which x∗(s∗) = xopt, λ1 must increase in r because x∗(s)

increases in r by Corollary 1 and decreases in λ by the proof of Lemma A.4. On the other hand, if

λ1 = λ2, which is the lowest risk aversion level no less than λc under which ŝ= s̄, then, by continuity

of ŝ and s̄ in λ, we must have ŝ= s̄ when λ= λ1. In this case, λ1 must also increase in r because

we have shown in the Step 2 of the proof of Proposition 1 that whenever ŝ= s̄, we have ∂
∂r
ŝ > 0

and ∂
∂r
s̄≤ 0. □

Appendix A.2 Proofs of Analytical Results in §5

We have the following auxiliary lemma to present the closed-form expression of the equilibrium

planting amount under both price and yield protection.
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Lemma A.5 (Equilibrium planting amount with price and yield protection). Consider any given

floor price m ∈ [0, m̄] and index-based yield protection subsidy s ∈ [0, s̄]. Let x̂m(s) denote the

unique positive solution to um(xc|x, s) = 0. Then, the equilibrium planting amount is x∗
m(s) =

min{x̂m(s),1} ∈ (0,1]. Moreover, there exist two thresholds m1 and m2 (which depend on s but not

m) such that 0<m1 <m2 ≤ m̄ and

(i) if m∈ [0,m1), then x̂m(s) = x̂(s), where x̂(s) is defined in Lemma 2;

(ii) if m∈ [m1,m2], then

x̂m(s) =
−βm(s)+

√
β2
m(s)− 4αmγm(s)

2αm

,

where αm = 1
4
λb2(µ − σ)4, βm(s) =

1
2
b(µ − σ)2 + c + 1

2
λb(µ − σ)2(m(µ + σ) − a(µ − σ)) − λb(r −

1
2
)s(µ− σ)2, γm(s) =

1
4
λ(m(µ+ σ)− a(µ− σ))2 − 1

2
m(µ+ σ)− 1

2
a(µ− σ)− λ(r − 1

2
)s(m(µ+ σ)−

a(µ−σ))− 1
2
s+λ 1

4
s2;

(iii) if m∈ (m2, m̄], then

x̂m(s) =
mµ−λm2σ2 + 1

2
s−λ 1

4
s2 +2λσ(r− 1

2
)sm

c
.

Further, there exists a threshold c3 such that if c≥ c3, then the equilibrium planting amount under

given floor price m∈ [0, m̄] and subsidy amount s∈ [0, s̄] is x∗
m(s) = x̂m(s)∈ (0,1).

Proof of Lemma A.5: Recall that um(h|x, s) = E[πm(h|x, s)] − λVar[πm(h|x, s)] denote the

utility of the farmer whose production cost is h, and πm(h|x, s) = max{(a− bxY ),m}Y + sI − h

denote the farmer’s net income. Following the same logic as in the proof of Lemma 1, given m ∈

[0, m̄] and s ∈ [0, s̄], if x= 0, x= 1, or x ∈ (0,1) is an equilibrium planting amount, then we must

have um(0|0, s)≤ 0, um(c|1, s)≥ 0 or um(xc|x, s) = 0 respectively.

Recall that a is defined as the maximum possible market-clearing price. We first prove the lemma

by focusing on the more practical case with m≤ a in the following four steps (we discuss how our

analysis can be extended to consider the case with m>a at the end of the proof).

Step 1: We show that there is a unique positive solution to um(xc|x, s) = 0. To do so, it is

sufficient to prove the following three parts for any given s ∈ [0,2aσ] (we prove this step for any

s ∈ [0,2aσ], and at the end of Step 2, we show s̄≤ 2aσ): (1) um(xc|x, s) strictly decreases in x for

x≥ 0, (2) um(0|0, s)> 0 and (3) um(xc|x, s)≤ 0 for some x> 0.

First, for (1), let x1 =
a−m

b(µ+σ)
(i.e., a− bx1(µ+σ) =m) and x2 =

a−m
b(µ−σ)

(i.e., a− bx2(µ−σ) =m).

We prove that um(xc|x, s) strictly decreases in x for x≥ 0 separately on three intervals of x: (a)

[0, x1), (b) [x1, x2], and (c) (x2,∞).

(a): For x ∈ [0, x1), by the definition of x1, we have a− bx(µ− σ)> a− bx(µ+ σ)>m. Thus,

from the expression of πm(h|x, s) and um(xc|x, s), we have that um(xc|x, s) = u(xc|x, s), which is
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farmers’ utility with only yield protection defined in §3. We already know from the proof of Lemma

2 that u(xc|x, s) strictly decreases in x for x≥ 0. Therefore, um(xc|x, s) strictly decreases in x for

x∈ [0, x1).

(b): For x ∈ [x1, x2], by the definition of x1 and x2, we have a− bx(µ− σ)≥m≥ a− bx(µ+ σ).

Recall that RL(x) = (a− bx(µ−σ))(µ−σ) defined in §3 denotes the revenue with low yield. Then,

we have

um(xc|x, s) =E[max{(a− bxY ),m}Y + sI −xc]−λVar[max{(a− bxY ),m}Y + sI −xc]

=
1

2
[m(µ+σ)+RL(x)+ s]−xc

−λ

(
1

4
(m(µ+σ)−RL(x))

2 +
1

4
s2 − s

(
r− 1

2

)
(m(µ+σ)−RL(x))

)
. (A.21)

By taking derivative of um(xc|x, s) with respect to x, we have, from Equation (A.21),

∂

∂x
um(xc|x, s) =−1

2
b(µ−σ)2 − c−λb(µ−σ)2

(
1

2
(m(µ+σ)−RL(x))− s

(
r− 1

2

))
.

For the sign of ∂
∂x
um(xc|x, s), since we consider r≤ 1 and s≤ 2aσ, we have

1

2
(m(µ+σ)−RL(x))− s

(
r− 1

2

)
≥ 1

2
(m(µ+σ)−RL(x1))− aσ

=
1

2

(
m(µ+σ)− a(µ−σ)+

(a−m)(µ−σ)2

µ+σ

)
− aσ

= (m− a)
2µσ

µ+σ

≥−a 2µσ

µ+σ.

Moreover, since c > c1 ≥ 2λab(µ−σ)2 µσ
µ+σ

− 1
2
b(µ−σ)2 (as discussed in §3), we have ∂

∂x
um(xc|x, s)<

0 and um(xc|x, s) strictly decreases in x for x∈ [x1, x2].

(c): For x > x2, by the definition of x2, we have m> a− bx(µ− σ)> a− bx(µ+ σ). Then, we

have

um(xc|x, s) =E[mY + sI −h]−λVar[mY + sI −h]

=mµ−λm2σ2 +
1

2
s− 1

4
λs2 +2λσ

(
r− 1

2

)
sm−xc, (A.22)

and thus
∂

∂x
um(xc|x, s) =−c < 0.

So, um(xc|x, s) strictly decreases in x for x > x2. Combining all three cases and considering that

um(xc|x, s) is continuous in x, we conclude that um(xc|x, s) strictly decreases in x for all x≥ 0.

Second, for (2), we prove that um(0|0, s)> 0. When no farmer plants (i.e., x= 0), the market-

clearing price is given by a for both the high- and low-yield cases. As we consider m≤ a, we must
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have um(0|0, s) = u(0|0, s) =−γ(s)> 0, where the last inequality is shown in the proof of Lemma

2.

Finally, for (3), we prove that um(xc|x, s) < 0 for some x. Since we have shown earlier that

um(xc|x, s) strictly decreases in x for x≥ 0 and is linear in x for x> x2, there must exist an x≥ 0

such that um(xc|x, s)< 0.

Collectively, we conclude that there must exist a unique positive solution to um(xc|x, s) = 0,

which we denote as x̂m(s).

Step 2: We show that there is a unique equilibrium planting amount x∗
m(s) = min{x̂m(s),1},

where x̂m(s) is the unique positive solution to um(xc|x, s) = 0. Since we have shown that um(0|0, s)>
0 in Step 1, x= 0 cannot be an equilibrium plating amount. Then, based on the discussion at the

beginning of this proof, it remains to check x= 1 and x= x̂m(s) if x̂m(s)∈ (0,1).

Consider any s ∈ [0, s̄]. If x̂m(s) ∈ (0,1), then, by the same logic as in Step 2 of the proof of

Lemma 1, we have the equilibrium planting amount x∗
m(s) = x̂m(s). If x̂m(s)≥ 1, then, as we just

showed that um(xc|x, s) strictly decreases in x, we must have um(c|1, s)≥ 0. In this case, we have

the equilibrium planting amount x∗
m(s) = 1 because all the farmers would have positive utility from

planting and would not deviate. Hence, there is a unique equilibrium planting amount given by

x∗
m(s) =min{x̂m(s),1}.
Before we proceed to Step 3, we prove that s̄≤ 2aσ. Recall that s̄ is the lowest subsidy amount

that satisfies

max{a− bx∗
m(s)(µ−σ),m}(µ−σ)+ s≥max{a− bx∗

m(s)(µ+σ),m}(µ+σ).

Thus, in order to prove s̄≤ 2aσ, it is sufficient to show that, at s= 2aσ, we have max{a−bx∗
m(s)(µ−

σ),m}(µ−σ)+ s≥max{a− bx∗
m(s)(µ+σ),m}(µ+σ). Consider the following three cases: First, if

a− bx∗(2aσ)(µ−σ)>a− bx∗(2aσ)(µ+σ)>m, then we have

max{a− bx∗
m(2aσ)(µ−σ),m}(µ−σ)+ 2aσ= (a− bx∗

m(2aσ)(µ−σ))(µ−σ)+ 2aσ

= a(µ+σ)− bx∗
m(2aσ)(µ−σ)2

>a(µ+σ)− bx∗
m(2aσ)(µ+σ)2

= (a− bx∗
m(2aσ)(µ+σ))(µ+σ)

=max{a− bx∗
m(2aσ)(µ+σ),m}(µ+σ).

Second, if a− bx∗(2aσ)(µ−σ)≥m≥ a− bx∗(2aσ)(µ+σ), then we have

max{a− bx∗
m(2aσ)(µ−σ),m}(µ−σ)+ 2aσ= (a− bx∗

m(2aσ)(µ−σ))(µ−σ)+ 2aσ

> a(µ+σ)

≥m(µ+σ)

=max{a− bx∗
m(2aσ)(µ+σ),m}(µ+σ).
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Third, if m>a− bx∗(2aσ)(µ−σ)>a− bx∗(2aσ)(µ+σ), then we have

max{a− bx∗
m(2aσ)(µ−σ),m}(µ−σ)+ 2aσ=m(µ−σ)+ 2aσ

≥m(µ−σ)+ 2mσ

=m(µ+σ)

=max{a− bx∗
m(2aσ)(µ+σ),m}(µ+σ).

Combining all three cases, we conclude that, at s= 2aσ, we have max{a− bx∗
m(s)(µ− σ),m}(µ−

σ)+ s≥max{a− bx∗
m(s)(µ+σ),m}(µ+σ), which implies s̄≤ 2aσ.

Step 3: We derive the expression of x̂m(s). Consider the following three cases:

(a): We consider the scenario where x̂m(s)< x1. Then, as shown earlier, we have um(xc|x, s) =
u(xc|x, s) at x = x̂m(s) and thus x̂m(s) = x̂(s) defined in Lemma 2. Therefore, we conclude that

whenever the unique positive solution x̂m(s) satisfies x̂m(s)<x1, we have that x̂m(s) = x̂(s).

(b): We consider the scenario where x̂m(s) ∈ [x1, x2]. Then, based on Equation (A.21), x̂m(s)

must be the solution to the following equation

um(xc|x, s) =
1

2
[m(µ+σ)+RL(x)+ s]−xc

−λ

(
1

4
(m(µ+σ)−RL(x))

2 +
1

4
s2 − s

(
r− 1

2

)
(m(µ+σ)−RL(x))

)
=−αmx

2 −βm(s)x− γm(s)

=0,

where αm = 1
4
λb2(µ − σ)4, βm(s) =

1
2
b(µ − σ)2 + c + 1

2
λb(µ − σ)2(m(µ + σ) − a(µ − σ)) − λb(r −

1
2
)s(µ−σ)2 and γm(s) =

1
4
λ(m(µ+σ)−a(µ−σ))2− 1

2
m(µ+σ)− 1

2
a(µ−σ)−λ(r− 1

2
)s(m(µ+σ)−

a(µ−σ))− 1
2
s+λ 1

4
s2. Then, we have9

x̂m(s) =
−βm(s)+

√
β2
m(s)− 4αmγm(s)

2αm

. (A.23)

Therefore, we conclude that whenever the unique positive solution x̂m(s) satisfies x̂m(s)∈ [x1, x2],

we have that x̂m(s) =
−βm(s)+

√
β2
m(s)−4αmγm(s)

2αm
.

(c): We consider the scenario where x̂m(s)> x2. Then, based on Equation (A.22), x̂m(s) must

be the solution to the following equation

E[mY + sI −h]−λVar[mY + sI −h] = 0.

Then, we have

x̂m(s) =
mµ−λm2σ2 + 1

2
s− 1

4
λs2 +2λσ(r− 1

2
)sm

c
. (A.24)

9 The other solution cannot be x̂m(s) because we have shown that um(xc|x, s) decreases in x.
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Therefore, we conclude that whenever the unique positive solution x̂m(s) satisfies x̂m(s)> x2, we

have that x̂m(s) = (mµ−λm2σ2 + 1
2
s− 1

4
λs2 +2λσ(r− 1

2
)sm)/c.

Step 4: We prove that for any given s ∈ [0,2aσ] (recall from our proof in Step 1 that we must

have s̄≤ 2aσ), there exist two thresholds 0<m1 <m2 ≤ a such that if m<m1, then x̂m(s)<x1; if

m1 ≤m≤m2, then x1 ≤ x̂m(s)≤ x2; and if m2 <m≤ a, then x̂m(s)>x2.

Consider a fixed s ∈ [0,2aσ]. Since x1 < x2, in order to prove the existence such m1 and m2, it

is sufficient to prove that (1) if x̂m(s)< x1 for some floor price m, then x̂m(s)< x1 for any lower

floor price and (2) if x̂m(s)>x2 for some floor price m, then x̂m(s)>x2 for any higher floor price.

For (1), first, we prove that x̂m(s)<x1 if and only if x̂(s)<x1. By Step 3, we have shown that if

x̂m(s)<x1, then x̂m(s) = x̂(s). Thus, if x̂m(s)<x1, then we have x̂(s) = x̂m(s)<x1. On the other

hand, if x̂(s)<x1, then we have

um(x̂(s)c|x̂(s), s) =E[max{(a− bx̂(s)Y ),m}Y + sI − x̂(s)c]

−λVar[max{(a− bx̂(s)Y ),m}Y + sI − x̂(s)c]

=E[(a− bx̂(s)Y )Y + sI − x̂(s)c]−λVar[(a− bx̂(s)Y )Y + sI − x̂(s)c]

=u(x̂(s)c|x̂(s), s)

=0,

where the second equality holds because, by the definition of x1, we have a − bx̂(s)(µ − σ) >

a − bx̂(s)(µ + σ) > m and the third and the fourth equality hold because of the definitions of

u(xc|x, s) and x̂(s) in Lemma 2. Thus, x̂(s) is a solution to the equation um(xc|x, s) = 0. Moreover,

we have shown in Step 1 that x̂m(s) is the unique positive solution to um(xc|x, s) = 0. Hence,

we have x̂m(s) = x̂(s), which implies x̂m(s) < x1. Collectively, we have x̂m(s) < x1 if and only if

x̂(s)<x1.

Then, in order to prove (1), it is sufficient to prove that if x̂(s) < x1 for some floor price m,

then x̂(s)< x1 for any lower floor price. It can be proven since we already know that x1 strictly

decreases in m and that x̂(s) is independent of m.

For (2), let x′
m(s) = (mµ−λm2σ2+ 1

2
s− 1

4
λs2+2λσ(r− 1

2
)sm)/c. First, we prove that x̂m(s)>x2

if and only if x′
m(s)>x2. By Step 3, we have shown that if x̂m(s)>x2, then x̂m(s) = x′

m(s). Thus,

if x̂m(s)>x2, then we have x′
m(s) = x̂m(s)>x2. On the other hand, if x′

m(s)>x2, then we have

um(x
′
m(s)c|x′

m(s), s) =E[max{(a− bx′
m(s)Y ),m}Y + sI −x′

m(s)c]

−λVar[max{(a− bx′
m(s)Y ),m}Y + sI −x′

m(s)c]

=E[mY + sI −x′
m(s)c]−λVar[mY + sI −x′

m(s)c]

=0,
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where the second equality holds because, by the definition of x2, we have m>a− bx′
m(s)(µ−σ)>

a−bx′
m(s)(µ+σ) and the third equality has been shown in (c) of Step 3. Thus, x′

m(s) is a solution to

the equation um(xc|x, s) = 0. Moreover, we have shown in Step 1 that x̂m(s) is the unique positive

solution to um(xc|x, s) = 0. Hence, we have x̂m(s) = x′
m(s), which implies x′

m(s)>x2. Collectively,

we have x′
m(s)>x2 if and only if x̂m(s)>x2.

Then, in order to prove (2), it is sufficient to prove that if x′
m(s)> x2 for some floor price m,

then x′
m(s)> x2 for any higher floor price. That is, it is sufficient to prove that if x′

m(s)− x2 > 0

for some floor price m, then x′
m(s) − x2 > 0 for any higher floor price. Since x2 is linear in m

and x′
m(s) is a quadratic concave function in m, x′

m(s)−x2 must be a quadratic concave function

in m. Recall that we consider m ≤ a. Then, it is sufficient to prove that when m = a, we have

x′
m(s) − x2 = x′

m(s) > 0. Since s ∈ [0,2aσ] and x′
m(s) is a quadratic concave function of s, it is

sufficient to prove when m= a, we have x′
m(0)> 0 and x′

m(2aσ)> 0. When m= a, we have

x′
m(0) =

aµ−λa2σ2

c
>

1

c

(
aµ− µ+σ

2aσ2
a2σ2

)
=

1

c

(
aµ− a

µ+σ

2

)
≥ 0,

where the first inequality holds because we consider λ < µ+σ
2aσ2 and the second inequality holds

because we consider µ≥ σ; we also have

x′
m(2aσ) =

1

c

(
aµ−λa2σ2 + aσ−λa2σ2 +4λσ2

(
r− 1

2

)
a2
)

≥ 1

c

(
a(µ+σ)− 2λa2σ2

)
>

1

c

(
a(µ+σ)− 2

(
µ+σ

2aσ2

)
a2σ2

)
= 0,

where the first inequality holds because r≥ 1
2
. Hence, we have x′

m(s)>x2 whenm= a. We conclude

that if x̂m(s)>x2 for some floor price m, then x̂m(s)>x2 for any higher floor price.

Combining all four steps completes the proof when m≤ a.

We investigate the case where m∈ (a, m̄] (this case does not exist if m̄≤ a). In this case, by the

definition of s̄, we have s̄=max{a−bx∗
m(s)(µ+σ),m}(µ+σ)−max{a−bx∗

m(s)(µ−σ),m}(µ−σ) =

2mσ. Then, for any given s ∈ [0,2mσ] and m ∈ (a, m̄], we derive the equilibrium planting amount

and its closed-form expression in the following two steps:

Step 1: We show that there is a unique positive solution to um(xc|x, s) = 0. To do so, it is

sufficient to prove the following three parts for any given m∈ (a, µ
2λσ2 ] (we prove this step for any

m ∈ (a, µ
2λσ2 ], and at the end of Step 2, we show m̄≤ µ

2λσ2 ): (1) um(xc|x, s) strictly decreases in x

for x≥ 0, (2) um(0|0, s)> 0 and (3) um(xc|x, s)≤ 0 for some x> 0.
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First, for part (1), since m>a and a is the maximum possible market-clearing price, we have

um(xc|x, s) =E[mY + sI −h]−λVar[mY + sI −h]

=mµ−λm2σ2 +
1

2
s− 1

4
λs2 +2λσ

(
r− 1

2

)
sm−xc,

and thus
∂

∂x
um(xc|x, s) =−c < 0.

So, um(xc|x, s) strictly decreases in x.

Second, for part (2), since um(xc|x, s) is a quadratic concave function in s, in order to prove

um(0|0, s)> 0 for any s∈ [0,2mσ], it is sufficient to prove that um(0|0,0)> 0 and um(0|0,2mσ)> 0.

As we consider m∈ (a, µ
2λσ2 ], we have

um(0|0,0) =mµ−λm2σ2 ≥mµ− mµ

2
=
mµ

2
>
aµ

2
> 0

and

um(0|0,2mσ) =mµ−λm2σ2 +mσ−λm2σ2 +4λσ2

(
r− 1

2

)
m2

≥m(µ+σ)− 2λm2σ2

≥m(µ+σ)−mµ

> 0,

where the first inequality holds because r≥ 1
2
.

Finally, for part (3), since we have shown that um(xc|x, s) linearly decreases in x, there must

exist an x> 0 such that um(xc|x, s)≤ 0.

Collectively, we conclude that there must exist a unique positive solution to um(xc|x, s) = 0,

which we denote as x̂m(s). By Equation (A.24), we have

x̂m(s) =
mµ−λm2σ2 + 1

2
s− 1

4
λs2 +2λσ(r− 1

2
)sm

c
. (A.25)

Step 2: Similar to the Step 2 when m≤ a, we have that a unique equilibrium planting amount

x∗
m(s) =min{x̂m(s),1}.

Finally, we prove that m̄≤ µ
2λσ2 . Consider any fixed m ∈ (a, m̄]. Recall that m̄ is defined as the

smallest m such that either x∗
m(0)≥ xopt or ∂

∂m
x∗
m(0)≥ 0. Then, since x∗

m(s) = min{x̂m(s),1}, we

must have ∂
∂m
x̂m(0)≥ 0. By Equation (A.25), we have

∂

∂m
x̂m(0) =

∂

∂m
(mµ−λm2σ2) = µ− 2λmσ2 ≥ 0,

which implies that m≤ µ
2λσ2 . Since it is true for any m∈ [0, m̄], we must have m̄≤ µ

2λσ2 .
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Combining Step 1 and Step 2 completes the proof when m∈ (a, m̄].

Finally, we prove that there exists a threshold c3 such that if c≥ c3, then the equilibrium planting

amount under given floor pricem∈ [0, m̄] and subsidy amount s∈ [0, s̄] is x∗
m(s) = x̂m(s)∈ (0,1). To

do so, it is sufficient to prove that there exists a threshold c3 such that if c≥ c3, then um(c|1, s)< 1

for any m∈ [0, m̄] and s∈ [0, s̄]. Consider a fixed m∈ [0, m̄] and a fixed s∈ [0, s̄]. We have

um(c|1, s) =E[max{(a− bY ),m}Y + sI]− c−λVar[max{(a− bY ),m}Y + sI].

From its expression, we have that um(c|1, s) linearly decreases in c and that um(c|1, s) is continuous

in both m and s. Moreover, when m̄ ≤ a, we have shown that s̄ ≤ 2aσ; when m̄ > a, we have

shown that m̄≤ µ
2λσ2 and s̄= 2mσ≤ 2m̄σ≤ µ

λσ
. Collectively, it implies that m̄≤max{a, µ

2λσ2 } and

s̄≤max{2aσ, µ
λσ
}. Therefore, there must exist a threshold c3 such that if c≥ c3, then um(c|1, s)< 1

for any m∈ [0, m̄] and s∈ [0, s̄]. □

Before we move on to the proof of Proposition 4, we prove an auxiliary lemma to study the

relationship between the equilibrium planting amount x∗
m(s) and the index accuracy r.

Lemma A.6. If x∗
m(s) = x̂m(s), where x̂m(s) is defined in Lemma A.5, then x∗

m(s) increases in

the index accuracy r.

Proof of Lemma A.6: Consider a fixedm∈ [0, m̄] and a fixed s∈ [0, s̄]. Then, given s, according

to Lemma A.5, there exists two thresholds m1 and m2. Accordingly, we separate the analysis into

three cases: In Case 1, m<m1; in Case 2, m∈ [m1,m2]; and in Case 3, m>m2.

Case 1: We study the scenario where m<m1. According to Lemma A.5, in this case, x∗
m(s) =

x∗(s). By Corollary 1, we have already proven that x∗(s) increases in r. Therefore, x∗
m(s) increases

in r.

Case 2: We study the scenario where m ∈ [m1,m2]. Since we consider x∗
m(s) = x̂m(s), in order

to prove x∗
m(s) increases in r, we only need to prove x̂m(s) increases in r.

Following the same logic as in the proof of Lemma A.1, when m ∈ [m1,m2],
∂
∂r
x̂m(s) and

∂
∂r
um(xc|x, s)|x=x∗m(s) have the same sign. Then, from Equation (A.21), we have

∂

∂r
um(xc|x, s)

∣∣∣
x=x∗m(s)

= s[m(µ+σ)−RL(x
∗
m(s))]≥ 0,

where the inequality holds because s̄ is defined as the lowest subsidy amount that satisfies

RL(x
∗
m(s)) + s≥RH(x

∗
m(s)) and thus for any s ∈ [0, s̄], we have RH(x

∗
m(s))−RL(x

∗
m(s)) =m(µ+

σ)−RL(x
∗
m(s))≥ s≥ 0. Therefore, x̂m(s) increases in r, which implies x∗

m(s) increases in r.

Case 3: We study the scenario where m>m2. By Lemma A.5, we have

x̂m(s) =
mµ−λm2σ2 + 1

2
s− 1

4
λs2 +2λσ(r− 1

2
)sm

c
,
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and we have
∂

∂r
x̂m(s) =

2λσsm

c
≥ 0.

Since we consider x∗
m(s) = x̂m(s), x

∗
m(s) increases in r.

Combining all three cases, we conclude that x∗
m(s) increases in r if x∗

m(s) = x̂m(s),. □

Proof of Proposition 4: We prove this proposition in the following four steps:

Step 1: We prove that given m∈ [0, m̄] and r ∈ [ 1
2
,1], there exists a threshold sm,1 > 0 such that

the equilibrium planting amount x∗
m(s) increases in s if and only if s≤ sm,1. First, as a building

block for further analysis, we prove that x∗
m(s) is continuous in s on [0, s̄]. Since we consider

x∗
m(s) = x̂m(s) for any s∈ [0, s̄], where x̂m(s) is the unique positive solution to um(xc|x, s) = 0, it is

sufficient to prove that given x, um(xc|x, s) is continuous in s. As defined in the proof of Lemma

A.5, we have

um(xc|x, s) =E[max{(a− bxY ),m}Y + sI −xc]−λVar[max{(a− bxY ),m}Y + sI −xc]

=E[max{(a− bxY ),m}Y −xc] +
1

2
s−λVar[max{(a− bxY ),m}Y ]− 1

4
λs2

− 2λCov(max{(a− bxY ),m}Y, I)s,

which is continuous in s. Hence, we conclude that x∗
m(s) is continuous in s on [0, s̄].

Then, given m ∈ [0, m̄] and r ∈ [ 1
2
,1], we define sm,1 := sup{s : s= argmax

s∈[0,s̄]

x∗
m(s)}. To prove the

conclusion in Step 1, it is sufficient to separately prove that x∗
m(s) increases in s for s ∈ [0, sm,1]

and x∗
m(s) decreases in s for s∈ (sm,1, s̄] (if sm,1 = s̄, then (sm,1, s̄] is empty).

We first prove that x∗
m(s) increases in s for s ∈ [0, sm,1] by contradiction. Suppose there exists

a subsidy amount s′ ∈ [0, sm,1] such that x∗
m(s) strictly decreases in s at s = s′. Recall that in

the proof of Lemma A.5, we define x1 =
a−m

b(µ+σ)
(i.e., a − bx1(µ + σ) = m) and x2 =

a−m
b(µ−σ)

(i.e.,

a− bx2(µ−σ) =m). If x∗
m(s

′)<x1, then, by the definition of sm,1 and the continuity of x∗
m(s) in s,

there must exist an s′′ ∈ (s′, sm,1) such that x∗
m(s

′′)<x1 and x∗
m(s) strictly increases in s at s= s′′.

However, as implied by the discussion in Step 3 of the proof of Lemma A.5, whenever x∗
m(s)<x1,

we have x∗
m(s) = x∗(s), which is strictly concave in s as proven in Lemma A.2. Therefore, the

existence of such s′ and s′′ contradicts with the concavity of x∗
m(s).

Further, if x∗
m(s

′) ∈ [x1, x2] or x
∗
m(s

′) > x2, through the same logic, in order to show that the

existence of such s′ leads to contradiction, we only need to show that x∗
m(s) is concave whenever

x∗
m(s)∈ [x1, x2] or x

∗
m(s)>x2.

As implied by the discussion in Step 3 of the proof of Lemma A.5, whenever x∗
m(s) ∈ [x1, x2],

we have x∗
m(s) =

−βm(s)+
√

β2
m(s)−4αmγm(s)

2αm
. Moreover, since αm is independent of s, βm(s) is linear

in s and β2
m(s) − 4αmγm(s) can be written as a quadratic concave function in s, we have that
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−βm(s)+
√

β2
m(s)−4αmγm(s)

2αm
is a strictly concave function in s. Therefore, whenever x∗

m(s) ∈ [x1, x2],

x∗
m(s) is concave in s. On the other hand, whenever x∗

m(s)>x2, we have x∗
m(s) = (mµ−λm2σ2 +

1
2
s − 1

4
λs2 + 2λσ(r − 1

2
)sm)/c, which is a quadratic concave function in s. Therefore, whenever

x∗
m(s)> x2, x

∗
m(s) is concave in s. Collectively, we conclude that such s′ does not exist and thus

x∗
m(s) increases in s for s∈ [0, sm,1].

Next, we prove that x∗
m(s) decreases in s for s∈ (sm,1, s̄] by contradiction. Suppose there exists an

s′ ∈ (sm,1, s̄] such that x∗
m(s) strictly increases in s at s= s′. If x∗

m(s
′)<x1, then, by the definition

of sm,1 and the continuity of x∗
m(s) in s, there must exist an s′′ ∈ (sm,1, s

′) such that x∗
m(s

′′)< x1

and x∗
m(s) strictly decreases in s at s = s′′, which contradicts with the fact that x∗

m(s) = x∗(s)

is concave in s. If x∗
m(s

′) ∈ [x1, x2] or x
∗
m(s

′)> x2, through the same logic, we can show that the

existence of such s′ leads to the contradiction with the concavity of
−βm(s)+

√
β2
m(s)−4αmγm(s)

2αm
and

(mµ − λm2σ2 + 1
2
s − 1

4
λs2 + 2λσ(r − 1

2
)sm)/c respectively. Collectively, we conclude that x∗

m(s)

increases in s if and only if s≤ sm,1.

Furthermore, we prove that sm,1 = sup{s : s = argmax
s∈[0,s̄]

x∗
m(s)} = argmax

s∈[0,s̄]

x∗
m(s). First, we have

proven that x∗
m(s) increases in s if and only if s ≤ sm,1. Moreover, based on the strict concavity

proven earlier, we have ∂2

∂s2
x∗
m(s)|s=sm,1

< 0 if x∗
m(sm,1)< x1, x

∗
m(sm,1) ∈ [x1, x2] or x

∗
m(sm,1)> x2.

Thus, x∗
m(s) has a unique maximizer, which implies that sm,1 = argmax

s∈[0,s̄]

x∗
m(s).

Finally, we prove that sm,1 > 0. By the definition of sm,1, it is sufficient to prove that

∂
∂s
x∗
m(s)|s=0 > 0. If x∗

m(0) < x1, then x∗
m(0) = x∗(0) and we have shown in Lemma A.2 that

∂
∂s
x∗(s)|s=0 > 0. Thus, ∂

∂s
x∗
m(s)|s=0 > 0. If x∗

m(0) ∈ [x1, x2], then, following the same logic as in the

proof of Lemma A.1, we have

∂

∂s
x∗
m(s)

∣∣∣
s=0

=
∂

∂s
um(xc|x, s)

∣∣∣
s=0,x=x∗m(0)

=
1

2
+λ

(
r− 1

2

)
(m(µ+σ)−RL(x

∗
m(0)))> 0,

where the second equality is based on Equation (A.21) and the inequality holds because we consider

r ∈ [ 1
2
,1] and we have shown in the proof of Lemma A.6 that (m(µ+ σ)−RL(x

∗
m(0)))≥ s≥ 0. If

x∗
m(0)>x2, then we have, from Equation (A.22),

∂

∂s
x∗
m(s)

∣∣∣
s=0

=
1
2
+2λσ(r− 1

2
)m

c
> 0.

Hence, combining all three cases, we have that ∂
∂s
x∗
m(s)|s=0 > 0 and thus sm,1 > 0.

Step 2: We prove that given m ∈ [0, m̄] and r ∈ [ 1
2
,1], if sm,1 < s̄, then sm,1 increases in both r

and m. Similar to Step 1, we separate the further proof into three cases: In Case 1, x∗
m(sm,1)<x1;

in Case 2, x∗
m(sm,1)∈ [x1, x2]; and in Case 3, x∗

m(sm,1)>x2.

Case 1: We consider the scenario where x∗
m(sm,1)<x1. Then, by the definition of sm,1, we have

x∗
m(s)<x1 and thus x∗

m(s) = x∗(s) for all s∈ [0, s̄]. Thus, when sm,1 < s̄, we have sm,1 = s1 defined
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in Proposition 1. Besides, s1 increases in r shown in Proposition 1. Hence, sm,1 increases in r if

sm,1 < s̄. Further, sm,1 is independent of m in this case.

Case 2: We consider the scenario where x∗
m(sm,1) ∈ [x1, x2]. According to Lemma A.5, we have

x∗
m(sm,1) =

−βm(sm,1)+
√

β2
m(sm,1)−4αmγm(sm,1)

2αm
. We first prove that if sm,1 < s̄, then sm,1 increases in

r. If sm,1 < s̄, then, since we have shown in Step 1 that
−βm(s)+

√
β2
m(s)−4αmγm(s)

2αm
is strictly concave

in s, we have ∂
∂s
x∗
m(s)|s=sm,1

= 0 and, following the same logic as in the proof of Lemma A.1,

∂

∂s
um(xc|x, s)

∣∣∣
x=x∗m(s),s=sm,1

=
∂

∂s
x∗
m(s)

∣∣∣
s=sm,1

= 0.

Then, from Equation (A.21), it implies

sm,1 =
1

λ
+2(r− 1

2
)[m(µ+σ)−RL(x

∗
m(sm,1))]. (A.26)

Taking derivative of sm,1 with respect to r, we have

∂

∂r
sm,1 = 2(r− 1

2
)b(µ−σ)2

(
∂

∂r
x∗
m(s)

∣∣∣
s=sm,1

+
∂

∂s
x∗
m(s)

∣∣∣
s=sm,1

∂

∂r
sm,1

)
+2[m(µ+σ)−RL(x

∗
m(sm,1))]

= 2(r− 1

2
)b(µ−σ)2

∂

∂r
x∗
m(s)

∣∣∣
s=sm,1

+2[m(µ+σ)−RL(x
∗
m(sm,1))],

where the second equality holds because ∂
∂s
x∗
m(s)|s=sm,1

= 0. We have shown in Lemma A.6 that

x∗
m(s) increases in r. Moreover, we have shown in the proof of Lemma A.6 that m(µ + σ) −

RL(x
∗
m(s)) ≥ s ≥ 0 for any s ∈ [0, s̄]. Thus, ∂

∂r
sm,1 ≥ 0. We conclude that sm,1 increases in r if

sm,1 < s̄.

Next, we prove that if sm,1 < s̄, then sm,1 increases in m. To do so, as we already know that

x∗
m(s) increases in s if and only if s≤ sm,1 and that ∂

∂s
x∗
m(s)|s=sm,1

= 0 if sm,1 < s̄, it is sufficient

to prove that if sm,1 < s̄, then ∂2

∂m∂s
x∗
m(s)|s=sm,1

≥ 0. Let ∆m(s) = β2
m(s)− 4αmγm(s). By taking

derivative of x∗
m(s) with respect to m and s, we have

∂2

∂m∂s
x∗
m(s)

∣∣∣
s=sm,1

=
1

2αm

(
∆

− 1
2

m (sm,1)×
∂2

∂m∂s
∆m(s)

∣∣∣
s=sm,1

+
∂

∂m
∆m(s)

∣∣∣
s=sm,1

∂

∂s
∆

− 1
2

m (s)
∣∣∣
s=sm,1

)
=

1

2αm

× ∂

∂m
∆m(s)

∣∣∣
s=sm,1

∂

∂s
∆

− 1
2

m (s)
∣∣∣
s=sm,1,

(A.27)

where the second equality holds because, through algebraic calculation, we have that ∂2

∂m∂s
∆m(s) =

0 for any s. Moreover, we have ∂
∂m

∆m(s)|s=sm,1
= λb(µ− σ)2(µ+ σ)(c+ b(µ− σ)2)≥ 0. Therefore,

to prove that ∂2

∂m∂s
x∗
m(s)|s=sm,1

≥ 0, it remains to show that ∂
∂s
∆

− 1
2

m (s)|s=sm,1
≥ 0.

Since ∂
∂s
x∗
m(s)|s=sm,1

= 0 when sm,1 < s̄, we have

∂

∂s
x∗
m(s)

∣∣∣
s=sm,1

=
∂

∂s

−β(s)+∆
1
2
m(s)

2αm

∣∣∣
s=sm,1

= 0.
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Because we know from their expressions in Lemma A.5 that ∂
∂s
(−β(s))≥ 0 and αm is independent

of s, we must have ∂
∂s
∆

1
2
m(s)|s=sm,1

≤ 0. Therefore, we have ∂
∂s
∆

− 1
2

m (s)|s=sm,1
≥ 0, which implies that

∂2

∂m∂s
x∗
m(s)|s=sm,1

≥ 0. We conclude that sm,1 increases in m if sm,1 < s̄.

Case 3: We consider the scenario where x∗
m(sm,1) > x2. According to Lemma A.5, we have

x∗
m(sm,1) = (mµ−λm2σ2+ 1

2
sm,1− 1

4
λs2m,1+2λσ(r− 1

2
)sm,1m)/c. Since sm,1 < s̄ and (mµ−λm2σ2+

1
2
s− 1

4
λs2 +2λσ(r− 1

2
)sm)/c is a quadratic concave function in s, we have

∂

∂s
x∗
m(s)

∣∣∣
s=sm,1

=
∂

∂s

mµ−λm2σ2 + 1
2
s− 1

4
λs2 +2λσ(r− 1

2
)sm

c

∣∣∣
s=sm,1

= 0.

Thus, we have

sm,1 =
1

λ
+4(r− 1

2
)mσ, (A.28)

which increases in r and m.

Combining all three cases, we conclude that given m∈ [0, m̄] and r ∈ [ 1
2
,1], if sm,1 < s̄, then sm,1

increases in both r and m.

Step 3: We prove that there exists a threshold rm,1 such that sm,1 < s̄ if r < rm,1. In order

to construct the threshold rm,1, we let r′m,1 ∈ [ 1
2
,1] denote the lowest index accuracy such that

sm,1 = s̄, and we next prove the existence of such r′m,1. To do so, it is sufficient to prove that when

r= 1, we have sm,1 = s̄. Similar to Step 2, we separate the further proof into three cases: In Case

1, x∗
m(sm,1)<x1; in Case 2, x∗

m(sm,1)∈ [x1, x2]; and in Case 3, x∗
m(sm,1)>x2.

Case 1: We consider the scenario where x∗
m(sm,1)< x1. Then, as discussed in Step 2, we have

sm,1 = s1. In the proof of Proposition 1, we have shown that s1 = s̄ when r = 1. Thus, we have

sm,1 = s̄ when r= 1.

Case 2: We consider the scenario where x∗
m(sm,1)∈ [x1, x2]. We prove the result by contradiction.

Suppose sm,1 < s̄ when r= 1. Then, by the definition of s̄, we have

sm,1 <max{a− bx∗
m(sm,1)(µ+σ),m}(µ+σ)−max{a− bx∗

m(sm,1)(µ−σ),m}(µ−σ)

=m(µ+σ)−RL(x
∗
m(sm,1)).

The equality holds because we have a − bx∗
m(sm,1)(µ − σ) ≥ m ≥ a − bx∗

m(sm,1)(µ + σ) by the

definition of x1 and x2.

On the other hand, when r= 1 and sm,1 < s̄, by Equation (A.26), we have

sm,1 =
1

λ
+2(r− 1

2
)[m(µ+σ)−RL(x

∗
m(sm,1))]>m(µ+σ)−RL(x

∗
m(sm,1)),

which leads to a contradiction. Hence, in this case, sm,1 = s̄ when r= 1.
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Case 3: We consider the scenario where x∗
m(sm,1)> x2. We prove the result by contradiction.

Suppose sm,1 < s̄ when r= 1. Then, by the definition of s̄, we have

sm,1 <max{a− bx∗
m(sm,1)(µ+σ),m}(µ+σ)−max{a− bx∗

m(sm,1)(µ−σ),m}(µ−σ)

=m(µ+σ)−m(µ−σ)

= 2mσ

The first equality holds because we have m> a− bx∗
m(sm,1)(µ− σ)> a− bx∗

m(sm,1)(µ+ σ) by the

definition of x2.

On the other hand, when r= 1 and sm,1 < s̄, by Equation (A.28), we have

sm,1 =
1

λ
+4(r− 1

2
)mσ > 2mσ,

which leads to a contradiction. Hence, combining all three cases, we conclude that sm,1 = s̄ when

r= 1. This result implies the existence of r′m,1 ∈ [ 1
2
,1], defined as the lowest index accuracy such that

sm,1 = s̄. Therefore, letting rm,1 = r′m,1 is sufficient for the proposition to hold. We next construct

an alternative threshold rm,1 such that we can use the same threshold rm,1 in this proposition and

Theorem 2.

Recall that in §5, xopt is the value of x∗
m(s) that maximizes the net benefit vm(s). Let rc ∈ [ 1

2
,1]

denote the lowest index accuracy under which x∗
m(s

∗
m) = xopt. Such rc is guaranteed to exist because

by following the same arguments as in the proof of Theorem 1, it can be easily shown that x∗(s∗m) =

xopt when r= 1. Define rm,1 :=min{r′m,1, rc}. Then, we have that sm,1 < s̄ if r < rm,1.

Step 4: We prove that there exists a threshold rm,2 such that sm,1 = s̄ if r ≥ rm,2. First, let

r′m,2 ∈ [ 1
2
,1] denote the lowest index accuracy that satisfies sm,1 = s̄ for any r ≥ r′m,2. Such r

′
m,2 is

guaranteed to exist because we have shown in Step 3 that sm,1 = s̄ when r= 1. Therefore, letting

rm,2 = r′m,2 is sufficient for the proposition to hold. We next construct an alternative threshold rm,2

such that we can use the same threshold rm,2 in this proposition and Theorem 2.

Next, we prove that there exists a threshold r′′m,2 < 1 such that for any r ≥ r′′m,2, we have

∂
∂m
x∗
m(s)≥ 0 for all s∈ [0, s̄]. Recall that we considerm such that ∂

∂m
x∗
m(0)≥ 0. Thus, it is sufficient

to prove that there exists a threshold r′′m,2 < 1 such that for any r≥ r′′m,2, we have
∂2

∂s∂m
x∗
m(s)≥ 0 for

any m∈ [0, m̄] and s∈ [0, s̄]. Consider a fixed m∈ [0, m̄] and a fixed s∈ [0, s̄]. By Lemma A.5, given

s, there exist two thresholds m1 and m2. Accordingly, we prove ∂2

∂s∂m
x∗
m(s) ≥ 0 in the following

three cases:

Case 1: If m<m1, then, by Lemma A.5, we have x∗
m(s) = x∗(s) and thus ∂2

∂s∂m
x∗
m(s) = 0.

Case 2: If m∈ [m1,m2], then, by Equation (A.27), we have

∂2

∂s∂m
x∗
m(s) =

1

2αm

× ∂

∂m
∆m(s)

∂

∂s
∆

− 1
2

m (s),
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where ∆m(s) = β2
m(s)− 4αmγm(s) and we have shown in Step 2 that ∂

∂m
∆m(s)≥ 0. Therefore, to

prove that ∂2

∂s∂m
x∗
m(s)≥ 0, it remains to show ∂

∂s
∆

− 1
2

m (s)≥ 0. By rearranging terms of ∆m(s), we

have that ∆m(s) is a concave function in s. Moreover, we have ∂
∂s
∆m(s)|s=0 =−λb(µ− σ)2[c(2r−

1) + b(r− 1)(µ− σ)2]. From this expression, it is clear that we have ∂
∂s
∆m(s)|s=0 < 0 when r = 1.

Therefore, there must exist an r′′m,2 < 1 (independent of s and m) such that for any r ≥ r′′m,2, we

have ∂
∂s
∆m(s)|s=0 ≤ 0 and thus ∂

∂s
∆

− 1
2

m (s)≥ 0 for any s, which implies that ∂2

∂s∂m
x∗
m(s)≥ 0.

Case 3: If m>m2, then, by Lemma A.5, we have

∂2

∂s∂m
x∗
m(s) =

2λσ(r− 1
2
)

c
≥ 0.

Combining all three cases, we conclude that if r≥ r′′m,2, then we have x∗
m(s) increases in m for any

s∈ [0, s̄].

Finally, recall that rc is a threshold defined in Step 3. Define rm,2 :=max{r′m,2, r
′′
m,2, rc}. Then, we

have that sm,1 = s̄ if r≥ rm,2. Moreover, by the definition of r′m,1 and r
′
m,2, we have that r

′
m,1 ≤ r′m,2,

which implies rm,1 ≤ rm,2.

Combining all four steps, we conclude that if r < rm,1, then x
∗
m(s) increases in s if and only if

s≤ sm,1, where sm,1 ∈ (0, s̄) increases in both r and m; if r≥ rm,2, then x
∗(s) increases in s for all

s∈ [0, s̄]. □

Proof of Theorem 2: From Equation (6), given m∈ [0, m̄] and s∈ [0, s̄], we have

vm(s) =

∫ x∗m(s)

0

E [max{(a− bx∗
m(s)Y ),m}×Y + sI −xc] dx−x∗

m(s)E[sI]

−x∗
m(s)E[max{m− (a− bx∗

m(s)Y ),0}×Y ]

=v1 ×x∗
m(s)− v2 × (x∗

m(s))
2.

where v1 = aµ and v2 = b(µ2 + σ2) + 1
2
c. We have xopt = min{ v1

2v2
,1} as the value of x∗

m(s) that

maximizes vm(s). Thus, the optimal s∗m must make x∗
m(s) as close to xopt as possible. In addition,

since we consider m such that x∗
m(0)≤ xopt, s∗m must satisfy one of the following two conditions:

(1) x∗
m(s

∗
m)<x

opt and s∗m = inf{argmax
s∈[0,s̄]

x∗
m(s)}; (2) s∗m = inf{s : x∗

m(s) = xopt}.

We first consider r < rm,1. By the definition of rm,1 in the proof of Proposition 4, we have that

x∗
m(s) < xopt for any s ∈ [0, s̄]. In this case, as discussed earlier, s∗m must satisfy x∗

m(s
∗
m) < xopt

and s∗m = inf{argmax
s∈[0,s̄]

x∗
m(s)}. Moreover, we have x∗

m(s) < xopt ≤ 1 for all s ∈ [0, s̄] and thus the

maximizer of x∗
m(s) must be unique as implied by Step 1 of the proof of Proposition 4. Hence,

we have s∗m = argmax
s∈[0,s̄]

x∗
m(s) = sm,1 defined in Proposition 4. Further, since we have shown in

Proposition 4 that sm,1 increases in m, we have s∗m increases in m.

We then consider r ≥ rm,2. Recall that x
opt is independent of r and we have shown in Lemma

A.6 that x∗
m(s) increases in r. Therefore, if for some index accuracy r, there exists an s∈ [0, s̄] such
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that x∗
m(s) = xopt, then, for any higher index accuracy, there must also exist an s∈ [0, s̄] such that

x∗
m(s) = xopt. In this case, by the definition of rm,2 in the proof of Proposition 4, s∗m must satisfy

x∗
m(s

∗
m) = xopt. Recall that xopt is independent of m and we have shown in Proposition 4 that for

any r ≥ rm,2, x
∗
m(s) increases in m. Moreover, we have ∂

∂s
x∗
m(s)|s=s∗m ≥ 0 by the definition of s∗m.

Hence, s∗m must decrease in m to maintain x∗
m(s

∗
m) = xopt. □

Appendix A.3 Proofs of Analytical Results in §6

Proof of Proposition 5: From Equation (7) in §6, we have

v(s, r) =

∫ x∗(s,r)

0

E[(a− bx∗(s, r)Y )Y + sI −xc] dx−ψ(s, r)−ϕ(r)

=

∫ x∗(s,r)

0

E[(a− bx∗(s, r)Y )Y + sI −xc] dx−x∗(s, r)E[sI]−κ(r− r0)
2

= v1 ×x∗(s, r)− v2 × (x∗(s, r))2 −κ(r− r0)
2, (A.29)

where v1 = aµ and v2 = b(µ2 + σ2) + 1
2
c. Then, we prove this proposition in the following three

steps:

Step 1: We prove that for any given budget level B > 0, there exists a threshold σ1 such that

if σ ≤ σ1, then r∗ = r0 and s∗ increases in σ. Recall that we consider scenarios where x∗
0 ≤ xopt

throughout the paper. Since ∂
∂σ
x∗
0 <

∂
∂σ
xopt < 0 (as implied by Lemma A.4), the condition x∗

0 ≤ xopt

is equivalent to that σ is higher than a certain threshold, which we denote as σ. Therefore, to prove

our conclusion under the condition x∗
0 ≤ xopt, it is sufficient to consider σ≥ σ.

Consider a fixed B > 0. For any given index accuracy r and yield variability σ, we say that

the planting amount xopt is achievable if there exists an s ∈ [0, s̄] that satisfies x∗(s, r) = xopt and

ψ(s, r) + ϕ(r) ≤ B. Let σ1 be the largest yield variability such that the planting amount xopt is

achievable when the index accuracy is r = r0. Such σ1 must exist because it is straightforward to

check that if σ = σ, then we have x∗(0, r0) = x∗
0 = xopt and ψ(0, r0)+ϕ(r0) = 0<B. It can be seen

from Equation (A.29) that if there exists an s that satisfies x∗(s, r0) = xopt and ψ(s, r0)+ϕ(r0)≤B,

then this s must be the optimal subsidy s∗ and we also have r∗ = r0. Therefore, if σ≤ σ1, then we

have r∗ = r0. Moreover, we have shown in Proposition 3 that for any given r, the optimal subsidy

amount increases in σ. Hence, when σ≤ σ1, as we already showed that r∗ = r0, we have s
∗ increases

in σ.

Step 2: We prove that there exists a constant ∆σ > 0 such that r∗ is continuous in σ if σ <

σ1 +∆σ. Since we have shown in Step 1 that r∗ = r0 when σ ≤ σ1, we have that r∗ is continuous

in σ when σ < σ1. Then, to prove the existence of such ∆σ, by the definition of continuity, it is

sufficient to prove that r∗ is continuous in σ at σ= σ1.
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For ease of exposition, under the yield variability σ, let s∗(σ) and r∗(σ) be s∗ and r∗; let v(s, r|σ)

be v(s, r); and let v2(σ) and x
opt(σ) be v2 and xopt. Then, to prove the continuity of r∗ at σ = σ1,

since we already have r∗ = r0 when σ ≤ σ1, it is sufficient to prove that for any ϵ > 0, there exists

a constant δ > 0 such that for any σ ∈ [σ1, σ1 + δ], we have r∗(σ)− r∗(σ1) = r∗(σ)− r0 ≤ ϵ.

Consider a fixed ϵ > 0. Since x∗(s, r) is continuous in σ, by Equation (A.29), v(s, r|σ) is also

continuous in σ. Thus, there must exist a δ > 0 such that for any σ ∈ [σ1, σ1 + δ], we have

v(s∗(σ1), r
∗(σ1)|σ1)− v(s∗(σ1), r

∗(σ1)|σ) = v(s∗(σ1), r0|σ1)− v(s∗(σ1), r0|σ)≤ κϵ2. (A.30)

Then, for any σ ∈ [σ1, σ1+ δ], we claim that r∗(σ)− r∗(σ1) = r∗(σ)− r0 ≤ ϵ. We prove this claim by

contradiction. Suppose there exists a σ′ ∈ [σ1, σ1 + δ] such that r∗(σ′)> r0 + ϵ. Then, by Equation

(A.29), we have

v(s∗(σ1), r
∗(σ1)|σ1)− v(s∗(σ′), r∗(σ′)|σ′) =

[
v1x

opt(σ1)− v2(σ1)
(
xopt(σ1)

)2]− v(s∗(σ′), r∗(σ′)|σ′)

>
[
v1x

opt(σ1)− v2(σ1)
(
xopt(σ1)

)2]
−
[
v1x

opt(σ′)− v2(σ
′)
(
xopt(σ′)

)2]
+κϵ2

≥κϵ2, (A.31)

where the first equality holds because at σ= σ1, we have x
∗(s∗(σ1), r

∗(σ1)) = xopt(σ1) and r
∗(σ1) =

r0; the first inequality holds because xopt(σ′) is defined as the planting amount that maximizes

v1x
∗(s, r)− v2(σ

′)(x∗(s, r))2 and we assumed r∗(σ′)> r0 + ϵ; and the last inequality holds because

xopt(σ) = min{ v1
2v2(σ)

,1} and ∂
∂σ
[v1

v1
2v2(σ)

− v2(σ)(
v1

2v2(σ)
)2] = ∂

∂σ

v21
4v2(σ)

=
−v21bσ

2v22(σ)
< 0, which implies

v1x
opt(σ)− v2(σ)

(
xopt(σ)

)2
decreases in σ.

However, by Equation (A.30), we have that v(s∗(σ1), r
∗(σ1)|σ1)−v(s∗(σ1), r

∗(σ1)|σ′)≤ κϵ2. Com-

paring with Equation (A.31), it implies that

v(s∗(σ1), r
∗(σ1)|σ′)> v(s∗(σ′), r∗(σ′)|σ′),

which leads to a contradiction with the optimality of s∗(σ′) and r∗(σ′). Hence, we conclude that

r∗ is continuous at σ = σ1 and thus there must exist a ∆σ > 0 such that r∗ is continuous in σ if

σ < σ1 +∆σ.

Step 3: We prove that for any given budget level B > 0, there exists a threshold σ2 such that

if σ1 ≤ σ < σ2, r
∗ increases in σ. Recall that r0 is the lowest possible index accuracy, and we have

shown that r∗ = r0 when σ = σ1. Thus, as we have proven in Step 2 that, for σ < σ1 +∆σ, r
∗

is continuous in σ, to reach the conclusion of this step, we only need to prove that there is no

δ ∈ (0,∆σ) such that r∗ = r0 for any σ ∈ (σ1, σ1 + δ). Further, it is equivalent to prove that for any

δ ∈ (0,∆σ), there exists a σ ∈ (σ1, σ1 + δ) under which r∗ > r0.
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Consider a fixed δ ∈ (0,∆σ). We would like to prove that there exists a σ ∈ (σ1, σ1 + δ) such

that r∗ > r0. Note that by the definition of σ1, we have that for any δ′ > 0, there must exist a

σ ∈ (σ1, σ1 + δ′) under which xopt is not achievable when r = r0. That is, when r = r0, for any

s∈ [0, s̄] that satisfies ψ(s, r0)+ϕ(r0)≤B, we have x∗(s, r0)<x
opt. Thus, as we consider a fixed δ,

there must exist a σ′ ∈ (σ1, σ1 + δ) such that xopt is not achievable when σ= σ′.

We next prove that when σ = σ′, we have r∗ > r0. To do so, it is sufficient to prove that when

σ= σ′ and r= r0, for any s∈ (0, s̄] that satisfies ψ(s, r0)+ϕ(r0)≤B,10 we have (1) ∂
∂r
v(s, r)|r=r0 > 0

and (2) ∂
∂σ
[ψ(s, r0)+ϕ(r0)]< 0.

Consider σ = σ′ and a fixed s ∈ (0, s̄] such that ψ(s, r0) + ϕ(r0) ≤ B. For (1), from Equation

(A.29), we have

∂

∂r
v(s, r)

∣∣∣
r=r0

= (v1−2v2x
∗(s, r0))

∂

∂r
x∗(s, r)

∣∣∣
r=r0

− ∂

∂r
ϕ(r)

∣∣∣
r=r0

= (v1−2v2x
∗(s, r0))

∂

∂r
x∗(s, r)

∣∣∣
r=r0,

where the last equality holds because ∂
∂r
ϕ(r)|r=r0 =

∂
∂r
κ(r− r0)

2|r=r0 = 0. As xopt is not achievable

when σ= σ′, we have that x∗(s, r0)<x
opt ≤ v1

2v2
, which implies v1−2v2x

∗(s, r0)> 0. Moreover, since

s > 0, by Equation (A.13), we have ∂
∂r
x∗(s, r)|r=r0 > 0. Hence, we have ∂

∂r
v(s, r)|r=r0 > 0. For (2),

we have
∂

∂σ
[ψ(s, r0)+ϕ(r0)] =

s

2

∂

∂σ
x∗(s, r0)< 0,

where the last inequality holds because we have ∂
∂σ
x∗(s, r)< 0 by Lemma A.4. Hence, when σ= σ′,

we must have r∗ > r0.

Finally, as the previous result holds for any δ ∈ (0,∆σ), we can conclude that there is no δ ∈

(0,∆σ) such that r∗ = r0 for any σ ∈ (σ1, σ1 + δ). Therefore, there must exist a σ2 ∈ (σ1, σ1 +∆σ)

such that r∗ increases in σ when σ ∈ [σ1, σ2). □

Proof of Theorem 3: According to Proposition 5, under a given budget level B, there exist

two thresholds σ1 and σ2 such that if σ≤ σ1, then r
∗(B) = r0; if σ ∈ [σ1, σ2], r

∗ increases in σ. For

ease of exposition, let σ1(B) and σ2(B) denote σ1 and σ2 under a budget B respectively.

Consider any two budget levels B1 and B2 such that 0 < B1 < B2. By the definition of σ1(B)

shown in the proof of Proposition 5, σ1(B) increases in B. Therefore, we have σ1(B1) ≤ σ1(B2).

Let Iσ = [σ1(B1),min{σ1(B2), σ2(B1)}]. We next prove that if σ ∈ Iσ, we have r∗(B1)≥ r∗(B2) and

s∗(B1)≤ s∗(B2).

First, if σ ∈ Iσ, then by definition of Iσ, we have σ ≤ σ1(B2), which implies that r∗(B2) = r0.

Moreover, we have σ ∈ [σ1(B1), σ2(B1)]. Since we already know that r∗(B1) increases in σ if σ ∈

[σ1(B1), σ2(B1)], we have r∗(B1)≥ r0. Hence, we must have r∗(B1)≥ r∗(B2) if σ ∈ Iσ.

10 We consider s > 0 because it is straightforward that s= 0 cannot be jointly optimal.
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Second, since we have shown that r∗(B1)≥ r∗(B2), we must have s∗(B1)≤ s∗(B2). Otherwise, if

s∗(B1)> s
∗(B2), consider the following two cases: Suppose x

∗
(
s∗(B1), r

∗(B1)
)
>x∗

(
s∗(B2), r

∗(B2)
)
.

By the definition of σ1(B2), we have x∗
(
s∗(B2), r

∗(B2)
)
= xopt if σ ∈ Iσ. Then, we have

x∗
(
s∗(B1), r

∗(B1)
)
>xopt. By Equation (A.29), it implies that ψ

(
s∗(B2), r

∗(B2)
)
+ϕ
(
r∗(B2)

)
<B1

and v
(
s∗(B2), r

∗(B2)
)
> v
(
s∗(B1), r

∗(B1)
)
, which leads to a contradiction with the joint optimality

of s∗(B1) and r
∗(B1). Suppose x

∗
(
s∗(B1), r

∗(B1)
)
≤ x∗

(
s∗(B2), r

∗(B2)
)
. Then, we can also conclude

(s∗(B1), r
∗(B1)) must not be the optimal solution, because (s∗(B1), r

∗(B1)) must be dominated

by (s∗(B2), r
∗(B2)), where the latter leads to a planting amount of xopt and results in a lower

expenditure. □

Appendix B Numerical Calibration

In this section, we describe in detail the steps taken to estimate some model parameters used in

numerical experiments either from the real-world data or from reasonable assumptions.

First, we present how we generate the values the parameters of farmer’s yield, µ and σ. In §7.1,

we have each individual farmer’s yields as yi, where yi ∼N (µ, σ2) for i= 1, ..., n. Since the variance

of individual farmer’s yield σ2 is hard to evaluate from data. We separate yi into two parts: Let

yi = ya+ ϵi, where ya ∼N (µ, σ2
a) and ϵ1, ..., ϵn

iid∼N (0, σ2
ϵ ). We also assume ϵi are independent of ya

for all i, which implies σ2 = σ2
a+σ

2
ϵ . Therefore, to find the distribution of individual farmer’s yield,

we need to evaluate the values of µ, σa and σϵ.

For µ and σa, we get their values from USDA’s Grain and Feed Annual Reports11. For each year

from 2011 to 2021, there is a report containing the average corn yield in Indonesia (e.g., USDA

(2021) is the report of 2021). From the mean and variance of those average yield data, we can

estimate that µ= 3.029 tons per hectare and σa = 0.324 tons per hectare.

For σϵ, we can get its value from σa and the correlation ρ. In §7.1, we have ρ= corr(yi, yj) for

i ̸= j, where ρ∈ [0,1] is a constant. Given ρ and σa, we have, for any i ̸= j,

corr(yi, yj) =
cov(yi, yj)

σ2
=

σ2
a

σ2
a +σ2

ϵ

= ρ

Thus, we get σϵ = σa

√
(1− ρ)/ρ and σ =

√
σ2
ϵ +σ2

a = σa
1√
ρ
. We then obtain the value of farmers’

yield correlation ρ from the result of an empirical study. According to Wang et al. (1998), the

correlation between the corn yield of an individual farmer and the average corn yield in a county

11 Go to website https://gain.fas.usda.gov/#/search, then click “Advanced Search”. In the search page, under “Coun-
tries”, select “Indonesia”; under “Categories”, check “Grain and Feed”; and under “Report Name” at “Additional
Key Word Filter”, type in “Grain and Feed Annual”. Finally, click “Search”. In the search results, for each year,
there is a link to the corresponding report.
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in Iowa is approximately 0.8. Define ȳ := 1
n

∑n

i=1 yi. By incorporating this empirical result in our

framework, we have

corr(yi, ȳ) =
cov(yi, ȳ)

σ2

√
ρ+ 1−ρ

n

=
1
n
σ2 + n−1

n
ρσ2

σ2

√
ρ+ 1−ρ

n

≈ ρ
√
ρ
= 0.8

The last approximation holds because the value of n is very large compared to ρ and 1− ρ. The

solution to the last equation above is 0.64 and thus we set ρ= 0.6 for the numerical study, as we

mentioned in §7.1. Collectively, σ= σa
1√
ρ
= 0.324× 1√

0.6
≈ 0.418 tons per hectare.

Next, we present how we estimate the market-clearing price parameters a and b, and the produc-

tion cost parameter c. In the same USDA’s Grain and Feed Annual reports mentioned above, they

also include the market price and the total supply of corn in Indonesia. We adjust the price with

the inflation data available at the World Bank12. Then, by fitting a linear model to the adjusted

price and the total supply of corn, we get a = $467.32 per ton and b =$0.00189 per ton. For c,

we obtain its value from USDA’s Economic Research Service (USDA 2023)13. Though this data is

generated from the surveys in the U.S, we select costs of the farming activities that are common

in both developed and developing countries to approximate the costs in our context.

Finally, we discuss the selection of the value of risk aversion coefficient λ. By the same logic

behind the assumption made in §3, we need λ< µ+σ
2aσ2 = 0.02. Moreover, λ cannot be so small that

all the farmers choose to plant even without any subsidy. Considering these constraints, we let

λ= 0.01 in the numerical experiments such that when the subsidy amount s= 0, only a fraction

of n farmers will choose to plant.

Appendix C Extensions

C.1 Conditional Value at Risk (CVaR) for Farmer Risk Aversion

In §8.1, we use an alternative risk measure, the conditional value at risk (CVaR), to model farmers’

risk aversion. In this section, we show that our results are robust under this framework.

In the CVaR model, due to a discrete distribution for crop yield, the optimal subsidy amount

can be discontinuous in index accuracy. This complicates the analysis, and thus reproducing all the

analytical results derived from our base model is challenging. However, we are able to prove that

the optimal subsidy amount remains non-monotonic in index accuracy, as shown in the following

proposition.

12 Go to https://data.worldbank.org/country/indonesia, then go to the tab “Inflation, consumer prices (annual %)”

13 Go to the URL in the citation. Click “Corn” dataset under “Recent Cost and Returns” and download the excel.
In the excel, we can find the operating cost for 2021 is $354.14 per acre. Changing the unit from acre to hectare and
multiplying it by 2, we have c= $1750.2.
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Proposition C.1. When farmers make planting decisions based on their conditional value at risk

(CVaR), the optimal subsidy amount first increases and then decreases in the index accuracy r.

Proposition C.1 states that our non-monotonicity result presented in Theorem 1 continues to

hold under the CVaR model, which demonstrates that our insights are not driven by the particular

risk-averse model used in the main text (i.e., the mean-variance utility model). Moreover, we

further numerically verify that our other main insights, including how the index accuracy affects

the interaction between price and yield protection and how the budget level affects the jointly

optimal subsidy amount and index accuracy, also remain intact under the CVaR model.

C.2 Consumer Surplus

In §8.2, we investigate an alternative government objective that considers consumer surplus in

addition to farmer surplus when designing an index-based yield protection policy. In this section,

we show that our results are robust under this framework. The following proposition presents the

robustness of our key results in §4-6 as well as an additional insight.

Proposition C.2. When the government includes consumer surplus in its objective function, all

propositions and theorems presented in §4-6 continue to hold. Moreover, the optimal subsidy amount

is higher compared to that in the base model without considering consumer surplus.

As shown in Proposition C.2, all of our key insights in §4-6 remain intact when the government

also considers consumer surplus when designing the index-based yield protection policy. Intuitively

speaking, though the inclusion of the consumer surplus changes the government’s objective, from

the farmers’ perspective, it does not change how a specific policy affects the farmers’ utility and thus

the farmers’ planting decision. Therefore, the main drivers behind our key results on the optimal

subsidy amount, such as high income variance when the index accuracy is low and oversupply

issue when the index accuracy is high, remain effective with the inclusion of consumer surplus. The

detailed proof is included in §C.5.

We also make an additional discovery that the government should offer greater subsidies to

farmers under this framework compared to the base model. The logic behind this result is as follows.

As discussed in §4, an increase in the subsidy amount can incentivize more farmers to plant, which

results in a higher supply and a lower market-clearing price. In particular, when the index accuracy

is high, a higher subsidy can more effectively motivating planting and boosting supply, which can

largely benefit the consumers. Therefore, the government, aiming to optimize the sum of farmer

and consumer surplus, would have incentives to entice more farmers to plant by further increasing

the subsidy amount.
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C.3 Different Distributions for Yield and Index

In §8.3, we consider different distributions for Y and I by introducing a new parameter, payment

probability p∈ (0,1]. The new joint probability of Y and I is presented in Table 2. In this section,

we formally discuss the robustness of our key results under this new framework, and provide an

additional insight.

First, given the joint probabilities in Table 2, we study the range of the index accuracy r.

Consider the conditional probability P(I = 1|Y = µ−σ) = 2rp. By the same logic as in §3 that the

index should be better than a random guess, we have

2rp= P(I = 1|Y = µ−σ)≥ P(I = 1)P(Y = µ−σ)

P(Y = µ−σ)
= p.

Besides, we have P(I = 1|Y = µ− σ) = 2rp ≤ 1, which implies r ≤min{1,1/2p}. Collectively, we

have r ∈ [1/2,min{1,1/2p}], where p∈ (0,1].

Then, with the range of the index accuracy, we can show that all of our key insights generated

from the base model continue to hold with the following proposition.

Proposition C.3. Given a payment probability p∈ (0,1] and the joint probabilities in Table 2, all

propositions and theorems presented in §4-6 continue to hold.

Proposition C.3 states that all of our key results in §4-6 are robust in this extension. The general

intuition behind this proposition is as follows. The conditional probability P(I = 1|Y = µ−σ) = 2rp,

which, when p is given, is linear in the index accuracy r. Moreover, recall that in our base model,

p= 1
2
and P(I = 1|Y = µ−σ) = r. Therefore, such “linear transformation” preserves the dynamics

between the model parameters and the decisions of farmers and the government in the base case,

and all of our analysis and results under our base model structurally hold. The detailed proof is

included in Appendix C.5.

As discussed in §8.3, in practice, the government can control the value of payment probability p by

adjusting the index design. Therefore, we are interested in exploring how the payment probability

affects the optimal subsidy amount given the index accuracy. As solving for how s∗ changes in p

is analytically intractable, we resort to extensive numerical experiments to find their relationship.

We find that, when the index accuracy is low, a higher payment probability p leads to a higher

optimal subsidy payment; when the index accuracy is high, the optimal subsidy amount decreases

in p. Figure C.1 presents a representative set of results.14

The reasoning behind this result is as follows. When the index accuracy is low, a higher payment

probability, as indicated by the conditional probability P(I = 1|Y = µ−σ), leads to a higher chance

14 All the relevant parameters take the same values as in §7, as we did in §C.2.
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for the farmers to receive the subsidy payment when the yield is low. It makes the policy more

effective in improving farmer surplus and motivating planting, as we discussed in §4. Therefore,

when the index accuracy is low, a higher payment probability allows the government to offer a

higher subsidy amount. On the other hand, when the index accuracy is high, the subsidy amount

needs to be low to avoid the oversupply issue. With a higher payment probability, the equilibrium

planting amount increases even faster in the subsidy amount, and so does the negative effect of

the oversupply issue. Hence, when the index accuracy is high, the subsidy amount should be lower

with a higher p.

Figure C.1 Optimal Subsidy Amount under Different Payment Probability

(a) r= 0.6 (b) r= 0.8

C.4 Effect of Premium

In this section, we focus on a scenario described in §8.4 where the farmers must pay a premium to

enroll in the index-based yield protection program. We can analytically show that all of our key

insights generated from the base model carry on in this new framework. The following proposition

demonstrates such robustness.

Proposition C.4. When the farmers need to pay a fraction ξ ∈ [0,1] of the expected subsidy

amount received to enroll in an index-based yield protection program, all propositions and theorems

presented in §4-6 continue to hold.

Proposition C.4 states that all of our key results in §4-6 continue to hold in this alternative model

setup. In the detailed proof in Appendix C.5, we show that while the presence of premium reduces

the farmers’ utility and thus affects their planting decisions, in Appendix C.5, the characteristics of

the equilibrium planting amount, such as the ones described in Proposition 1 and Proposition 4, are

preserved in this new framework. In addition, the government’s objective function, the net benefit,
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remains unchanged for any value of ξ. Therefore, our critical results regarding to the optimal policy

design continue to hold structurally.

Moreover, an additional insight can be generated by comparing the optimal subsidy amount

under different ξ. Through extensive numerical analysis, we find that when the index accuracy is

low, a higher value of ξ leads to a lower optimal payment s; however, when the index accuracy is

high, a higher value of ξ leads to a higher optimal payment. Figure C.2 illustrates a representative

group of results.15

Figure C.2 Optimal Subsidy Amount under Different Premium Fraction

(a) r= 0.6 (b) r= 0.9

C.5 Proofs of Analytical Results in Appendix C

Proof of Proposition C.1: As discussed in §8.1, if r≤ 1−2α (which is equivalently to 1−r
2

≥ α),

we have CV aRα(h|x, s) = (a − bx(µ − σ)))(µ − σ) − h. If r > 1 − 2α (which is equivalently to

1−r
2
< α), we have CV aRα(h|x, s) = (a− bx(µ− σ)))(µ− σ)− h+

(α− 1−r
2 )s

α
. We next characterize

the optimal subsidy amount by considering r≤ 1− 2α and r > 1− 2α, respectively.

First, consider r≤ 1−2α. In this case, because there is a significant probability that farmers suffer

from low crop yield without receiving subsidy, increasing the subsidy amount s cannot increase the

lower tail conditional expected payoff. Therefore, in this range of r, we have s∗ = 0.

Second, consider r > 1− 2α. In this case, following a similar analysis as for the base model, it

can be shown that the equilibrium planting amount x∗(s) must satisfy either x∗(s) = 1 or

(a− bx∗(s)(µ−σ)))(µ−σ)− cx∗(s)+

(
α− 1−r

2

)
s

α
= 0.

15 All the parameters take the same values as in §7, where µ = 3.029, σ0 = 0.418, a = 467.32, b = 18.9, c = 1750.2,
λ= 0.01.
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Then, the equilibrium planting amount is given by

x∗(s) =min

a(µ−σ)+
(α− 1−r

2 )s
α

b(µ−σ)2 + c
,1

 .

From this expression, it is clear that x∗(s) increases in s, and it increases at a faster rate when r is

higher. Further, since x∗(s) strictly increases in s until it hits one, we must have x∗(s)≥ xopt when s

is sufficiently high. Recall that the optimal subsidy amount s∗ must satisfy that the corresponding

equilibrium planting amount x∗(s∗) is equal to or as close to xopt as possible. Therefore, for r >

1− 2α, the optimal subsidy amount s∗ must decrease in r to ensure that x∗(s∗) = xopt.

To summarize, when r increases from a small number, the optimal subsidy amount s∗ initially

remains zero, then jumps to a positive number, and then decreases in r, which demonstrates that

the non-monotonic effect of index accuracy on the optimal subsidy amount continues to hold under

the CVaR model. Further, we remark that the main reason why there is a jump in the optimal

subsidy amount as a function of r is that the crop yield follows a two-point distribution. We

numerically verify that, when the crop yield follows a continuous distribution as in §7, the optimal

subsidy also becomes continuous in r, and it first increases and then decreases in r. Figure C.3

illustrates a representative group of results. □

Figure C.3 Optimal Subsidy Amount under Different Index Accuracies with 5% CVaR

Proof of Proposition C.2: Since including the consumer surplus in the net benefit does

not affect the farmers’ utility, the equilibrium planting amount and all its characteristics remain

unchanged. Therefore, the results before Theorem 1 are the same.
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For Theorem 1, the government has a new objective function including the consumer surplus.

Now, the net benefit is, as shown in §8.2,

vc(s) =

∫ x∗(s)

0

E[(a− bx∗(s)Y )Y + sI −xc] +E[(a− bxY )Y − (a− bx∗(s)Y )Y ] dx

−x∗(s)E[sI]

=aµ×x∗(s)− 1

2
c× (x∗(s))2

Let xopt
c =min{aµ

c
,1} be the planting amount that maximizes vc(s). By replacing v(s) with vc(s)

and xopt with xopt
c in the proof of Theorem 1, as the results in Proposition 1 are preserved, we can

still show that there must exist a threshold r2 such that s∗ increases in r if r < r2 and decreases if

r ≥ r2. Note that in this extension, if x∗(s)< xopt for any r ∈ [ 1
2
,1] and s ∈ [0, s̄], then let r2 = r1;

if x∗(s) = xopt for some r ∈ [ 1
2
,1] and s∈ [0, s̄], we still have r2 =min{rc, r1}, where rc is defined as

the lowest index accuracy under which x∗(s) = xopt for some s∈ [0, s̄].

Moreover, recall that, as discussed in §3, the optimal s∗ must make x∗(s) as close to xopt (xopt
c

in this extension) as possible. Since we have

xopt
c =min

{aµ
c
,1
}
≥min

{
aµ

2b(µ2 +σ2)+ c

}
= xopt,

the optimal subsidy amount increases as we consider the consumer surplus.

Lemma A.4 still holds with xopt
c because we have ∂

∂σ
xopt
c = 0. In addition, all the second derivatives

of x∗(s) remain the same. Thus, through the same analysis as in Appendix A, Proposition 3 still

stands.

Similarly, both Lemma A.5 and Proposition 4 remain unchanged. For Theorem 2, similar to the

earlier discussion on Theorem 1, the insight still stands by replacing v(s) with vc(s).

Finally, for Proposition 5 and Theorem 3, since x∗(s) remains the same in this extension, the

results continue to hold by going through the same analysis as in the proofs of Proposition 5 and

Theorem 3 in Appendix A and replacing xopt with xopt
c . □

Proof of Proposition C.3: Consider a fixed p ∈ [0,1] and a fixed s ∈ [0,2aσ]. With the joint

probabilities in Table 2, we have

u(xc|x, s) =E[(a− bxY )Y + sI]−xc−λVar[(a− bxY )Y + sI]

=−αx2 −βd(s)x− γd(s),

where α= 4λb2σ2µ2, βd(s) = b(µ2 +σ2)+ c− 4λabσ2µ+4λb(2rp− p)σµs and γd(s) = λa2σ2 − aµ−
2λa(2rp− p)σs− ps+λp(1− p)s2. Then, according to the logic introduced in the proof of Lemma

2, we generate a unique equilibrium planting amount x∗
d(s) based on the solution to u(xc|x, s) = 0,

which is

x̂d(s) =
−βd +

√
β2
d − 4αγd

2α
.
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Further, we have s̄ ≤ 2aσ. Thus, given any s ∈ [0, s̄], the unique equilibrium planting amount is

x∗
d(s).

Since Equation (A.6) still holds for u(xc|x, s) and x∗
d(s), Lemma A.1 remains true. Through the

same analysis in the proof of Lemma A.2, we can show β2
d(s)− 4αγd(s) is a quadratic concave

function in s and thus x∗
d(s) is concave in s. Then, through the same analysis in the proof in

Appendix A, the results of Proposition 1 structurally hold for x∗
d(s). In addition, the government’s

objective is still to optimize v(s) defined in Equation (4). Therefore, Theorem 1 can be proven by

the same analysis as in Appendix A.

For Proposition 3, since the inclusion of p does not structurally affect how σ and λ impact the

equilibrium planting amount respectively, all the relevant first and second order derivatives of x∗
d(s)

keep the same sign. Hence, Proposition 3 continues to hold.

For Lemma A.5, the new equilibrium planting amount in (i), (ii) and (iii) in Appendix A can be

achieved by replacing 1
2
s with ps, 1

4
λs2 with λp(1− p)s2, and r− 1

2
with 2rp− p. Then, as we can

prove that how m affects the equilibrium planting amount structurally remains the same as in the

base model, through the same analysis in its proof in Appendix A, the results of Proposition 4 are

preserved. Furthermore, as the government’s objective function is still v(s), Theorem 2 continues

to hold.

For Proposition 5 and Theorem 3, since all the relevant characteristics of x∗
d(s) remain the same

as x∗(s) and the objective function of the government remains the same as in §6, the statements in

both propositions can be verified through the same analysis as in Appendix A with x∗
d(s) instead

of x∗(s). □

Proof of Proposition C.4: Consider a fixed ξ ∈ [0,1] and a s∈ [0,2aσ]. Let u(h|x, s) to denote

the farmer’s utility introduced in §8.4 and we have

u(xc|x, s) =E[(a− bxY )Y + sI −h− ξE[sI]]−λVar[(a− bxY )Y + sI −h− ξE[sI]]

=E[(a− bxY )Y −xc+ sI]− ξE[sI]−λVar[(a− bxY )Y + sI]

=−αx2 −β(s)x− γp(s),

where α = 4λb2σ2µ2, β(s) = b(µ2 + σ2) + c− 4λabσ2µ+ 4λb(r − 1
2
)σµs and γp(s) = λa2σ2 − aµ−

2λa(r− 1
2
)σs+ 1

4
λs2 − 1

2
(1− ξ)s. Then, according to the logic introduced in the proof of Lemma

2, we generate a unique equilibrium planting amount x∗
p(s) based on the solution to u(xc|x, s) = 0,

which is

x̂p(s) =
−β(s)+

√
β(s)2 − 4αγp(s)

2α
,

Further, we have s̄ ≤ 2aσ. Thus, given any s ∈ [0, s̄], the unique equilibrium planting amount is

x∗
p(s).
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Since Equation (A.6) still holds for u(xc|x, s) and x∗
p(s), Lemma A.1 remains true. Through the

same analysis in the proof of Lemma A.2, we can show β(s)2 − 4αγp(s) is a quadratic concave

function in s and thus x∗
p(s) is concave in s. Then, through the same analysis in its proof in

Appendix A, the results of Proposition 1 structurally hold for x∗
p(s). In addition, the government’s

objective is still to optimize v(s) defined in Equation (4). Therefore, Theorem 1 can be proven by

the same analysis as in Appendix A.

For Proposition 3, since the inclusion of ξ does not structurally affect how σ and λ impact the

equilibrium planting amount respectively, all the relevant first and second order derivatives of x∗
p(s)

keep the same sign. Hence, Proposition 3 continues to hold.

With a price protection, the utility of the farmer with production cost h is

um(h|x, s) =E[max{(a−bxY ),m}Y +sI−ξE[sI]−h]−λVar[max{(a−bxY ),m}Y +sI−ξE[sI]−h].

Following the same analysis in the proof of Lemma A.5, we can get the equilibrium planting amount

x∗
mp(s): There exist two thresholds m1 and m2 such that

(i): If m∈ [0,m1), then we have x∗
mp(s) = x∗

p(s)

(ii): If m∈ [m1,m2], then we have

x∗
mp(s) =min

{
−βm(s)+

√
β2
m(s)− 4αmγmp

2αm

,1

}
,

where αm = 1
4
λb2(µ − σ)4, βm(s) =

1
2
b(µ − σ)2 + c + 1

2
λb(µ − σ)2(m(µ + σ) − a(µ − σ)) − λb(r −

1
2
)s(µ− σ)2 and γmp(s) =

1
4
λ(m(µ+ σ)− a(µ− σ))2 − 1

2
m(µ+ σ)− 1

2
a(µ− σ)− λ(r − 1

2
)s(m(µ+

σ)− a(µ−σ))− 1
2
(1− ξ)s+λ 1

4
s2.

(iii): If m∈ (m2, m̄], then we have

x∗
mp(s) =min

{
mµ−λm2σ2 − 1

4
λs2 +2λσ(r− 1

2
)sm

c
,1

}
.

For Proposition 4, as we can prove that how m affects the equilibrium planting amount struc-

turally remains the same as in the base model, through the same analysis in its proof in Appendix

A, the results of Proposition 4 are preserved. Furthermore, as the government’s objective function

is still v(s), Theorem 2 continues to hold.

For Proposition 5 and Theorem 3, since all the relevant characteristics of x∗
p(s) remain the same

as x∗(s) and the objective function of the government remains the same as in §6, the statements in

both propositions can be verified through the same analysis as in Appendix A with x∗
p(s) instead

of x∗(s). □
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