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Problem Definition: There are disparities in access to livers based on transplant patients’ height - which

disproportionately affects women across ethnicities, in addition to Hispanics and Asians broadly - because

they can receive transplants from a smaller pool of available deceased donors for medical reasons. Reduced

likelihood of transplantation leads to higher mortality rates and longer waiting times. Remedying this un-

fairness is a top priority for United Network for Organ Sharing (UNOS), the policy-making entity in the US.

Academic/Practical Relevance: We analyze fairness within the current US liver allocation system where

patients on the waiting list receive priority dynamically, based on their Model for End-Stage Liver Disease

(MELD) scores, which reflect the severity of liver disease. We propose a simple adjustment - providing

additional (exception) points based on height and MELD score - that can be easily implemented in practice,

which materially reduces the disparity without sacrificing overall efficiency.

Methodology: We model the liver allocation system as a multiclass fluid model of overloaded queues with

multiple heterogeneous servers, which captures the disease evolution by allowing the patients to switch be-

tween classes over time, e.g., patients waiting for transplantation may get sicker/better, or may die. We

impose explicit equity constraints for all static patient classes, i.e., height. We characterize the optimal

solution to the fluid model under the objective of minimizing pre-transplant mortality using the duality

framework for optimal control problems. The discretized version of the optimal policy is numerically solved

using estimates from clinical data and a detailed simulation study demonstrates its effectiveness.

Results: We show that the optimal policy, called the Equity Adjusted Mortality Risk Policy, is an intuitive

dynamic index policy, where the indices depend on patients’ acceptance probabilities of the organ offers,

mortality risks, and the shadow prices calculated from the dual dynamical system. This optimal policy

advocates ranking patients based on their short-term mortality risk adjusted for equity among static (i.e.,

height) classes. The shadow prices of the equity constraints in the optimal control problem are novel in

the organ transplant context, as is, even more importantly, their interpretation as MELD exception points,

since they can be seamlessly mapped into the system already in practice. Providing these exception points

to shorter patients dynamically increases their chances of receiving a transplant. Our simulations show that

for women, the disparity can be almost completely eliminated. Hispanics and Asians greatly benefit from

receiving these MELD exception points as well. These improved fairness can be achieved without decreasing

the overall efficiency of the current liver allocation system.

1This research is supported by grant CMMI-1334194 from NSF and the Marc Onetto Faculty Fellowship in
Operations.
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Managerial Implications: Our work provides a remedy to reduce the disparities in access to liver trans-

plantation within the MELD-based allocation that is currently unfair to women and Hispanics/Asians.

Keywords: Fairness, Equity, Liver Allocation Policy, Organ Transplantation, MELD Exception Score
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1 Introduction

Liver transplantation is the only viable treatment for End-Stage Liver Disease (ESLD) and acute

liver failure. Causes of ESLD include viral hepatitis, cirrhosis, non-alcoholic fatty liver disease,

and hepatocellular carcinoma (HCC); it is the 12th leading cause of death in the United States

(Cox-North et al. 2013). Patients with ESLD and acute liver failure join the transplant waiting list

managed by the United Network for Organ Sharing System (UNOS) because the number of patients

exceeds the number of organs available for transplantation. As of October 16, 2023, 10,166 patients

were waiting for a liver transplant in the United States; 13,019 patients joined the liver transplant

waiting list, but only 9,701 livers were donated in 2020 (UNOS 2021). Due to the shortage of organ

supply, the median waiting time until receiving a liver transplant is more than three years for an

adult and more than 40,000 patients died while waiting for a liver transplant during 1995-2020

(UNOS 2021).

Given the severity of ESLD and the long waiting times of patients until receiving a liver trans-

plant, fairness of the allocation of a limited supply of organs becomes an important issue to be

addressed by policy makers. In their three general principles of organ allocation, UNOS (2010)

places fairness along with efficiency and respect for patients’ autonomy in making their decisions

of accepting/rejecting organs. Within this context, we observe from the historical data that there

are disparities in access to transplantation based on patients’ blood type, height, and gender. Data

from the University of California San Francisco (UCSF) Liver Center, see Table 1, show that shorter

patients have a lower probability of receiving a liver transplant. Because women have a smaller

stature statistically, the disparity due to height also causes disproportionately long waiting times

for women.

These disparities in organ access are due to the fact that shorter patients can receive liver

transplants from a smaller pool of available organs due to organ size incompatibility. Implantation

of a large liver in a small recipient brings surgical difficulties (Reddy et al. 2013), and the unmatched

metabolic demand of the recipient, as well as the physiologic mismatch, aggravates the damage to

the liver graft, inevitably leading to graft failure (Kyota and Seigo 2016). The pool of adult donor

livers has relatively few small livers nationally because most deceased-donor livers come from men;

therefore, smaller-stature transplant candidates (e.g., women and Hispanic/Asian patients) are

disadvantaged on the transplant waiting lists (Bernards et al. 2022).

In the current system in the US, the aforementioned donor-recipient compatibility factors are

overlooked in ranking patients - but not in allocating livers - in the transplant wait lists because

deceased-donor livers are allocated on the basis of medical urgency. A transplant patient has a

Model for End-Stage Liver Disease (MELD) score that estimates the probability that a patient
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Table 1: Historical Data on Disparities in Access to Liver Transplant. Likelihood of Transplant
(%) column reports the patients’ likelihood of receiving a transplant relative to the patients with
height ≥ 185 cm. Data from UCSF Liver Center.

Height (cm) Likelihood of Transplant (%)

≤ 150 81
151 - 165 89
166 - 185 93

will survive their liver disease during the next three months (Laboratory MELD score vs. 90-day

dropout risk curve can be seen in Figure 1). Higher MELD score indicates that a patient needs a

liver transplant more urgently. The MELD score of a patient is solely based on a patient’s results

from four blood tests2; it is updated more frequently as a patient’s disease progresses (ranges from

once a year to once in three months to once a month to once a week). When a deceased-donor liver

becomes available, UNOS sequentially offers this liver to the compatible patients who are ranked

by their MELD scores after considering their geographical proximity to the donor. The number

of offers is limited due to the cold-ischemia time of a liver (i.e. the time before a liver loses its

functionality); the liver is discarded if a patient (or a surgeon) does not accept the organ in time.

The MELD score is an excellent predictor of survival for more than 70% patients on the trans-

plant waitlists (Godfrey et al. 2019, Rickert et al. 2019b); however, the severity of the disease

of some patients or the risk of complications are not captured by their laboratory MELD scores.

Transplant candidates whose MELD scores under-predict their short-term mortality risk apply for

a MELD score exception to be placed in a higher position on the transplant wait list. These ex-

ception scores are widely used in MELD-based allocation of deceased-donor livers; Hepatocellular

Carcinoma (HCC) is the most common reason for MELD score exceptions along with 17 group of

diagnoses (Asrani and Kamath 2015; Massie et al. 2011).

In this paper, we address the inequity in access to transplantation in the current liver allocation

system where disadvantaged patient groups (shorter candidates) experience a longer time until

transplantation and have a lower probability of receiving a liver transplant. We model the liver

transplant wait list as a multi-class overcrowded queueing system - a class is a patient group

based on height (static) and the MELD score (dymanic) - with heterogeneous servers (deceased

donors with different liver sizes). We study the first-order fluid approximation of this dynamic

stochastic system for tractability. We solve the resulting optimal control problem: the objective

is to minimize the pre-transplant mortality of patients over a finite time horizon with an explicit

2MELDNa = 3.78 × ln[serum bilirubin (mg/dL)] + 11.2 × ln[INR] + 9.57 × ln[serum creatinine (mg/dL)] + 6.43
– Na – [0.25 × MELD×(140-Na)] + 140
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Figure 1: 90-day mortality risk of ESLD patients

Notes. The logistic regression coefficients can be found in Appendix A.

fairness constraint that equalizes the likelihood of receiving a transplant for all patient groups. We

show that the optimal policy, Equity Adjusted Mortality Risk Policy (EAMRP), ranks patients

with respect to their medical urgency, as in the current MELD-based allocation, but adjusts this

ranking in favor of the disadvantaged patient groups so that all patient groups have equal access

to transplantation.

In addition to our theoretical results, we provide a computational method to calculate MELD

score exceptions. The shadow prices of the optimal control problem can be mapped into the MELD

score exceptions for disadvantaged patient groups. Our proposed exception points are closely tied to

the patients’ short-term mortality risk while waiting for a transplant. Using these exception scores,

we move shorter patients to higher positions in the transplant wait list so that their likelihood

of receiving a liver transplant increase. We test the performance of our exception points on a

simulation of the national liver allocation system - Liver Simulated Allocation Model (LSAM)- the

widely accepted benchmark. We compare the performance of EAMRP with the existing policy and

a couple of neighboring static policies (based only on height and not on eveolving MELD scores)

on various fairness metrics (average time until receiving a transplant, likelihood of transplantation)

and efficiency criteria (pre-transplant mortality rate, number of wasted organs, quality-adjusted

life years, QALY) across different patient groups as well as the entire system.

By design, all patient groups’ access to transplantation converges to one other. Our simulations

show that shorter transplant candidates’ (mostly female and Hispanic patients) likelihood of receiv-

ing a liver transplant improves significantly, and as a result, their likelihood of death while waiting

for a liver transplant decreases. Their quality-adjusted life years increase and average waiting

time until transplantation decrease. As desired, shorter patients materially benefit from receiving
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MELD exception points (even the static non-optimal ones) without significantly decreasing the

overall efficiency of the system.

The remainder of the paper is organized as follows. In §2, we review the related literature and

discuss our contributions. §3 presents the fluid model, the resulting optimal control problem, and

the optimal policy for allocating deceased-donor livers. Motivated by our optimal policy, we show

how we provide MELD exception points to disadvantaged patient groups in §5. In §6, we present

the results of our simulation study to discuss how the equity and efficiency metrics are affected by

the introduction of MELD exception points. We conclude the paper and discuss potential research

directions in §7.

2 Related Literature

Our work overlaps with and enhances the literature in three areas.

Two-sided matching queues: Organ allocation system are two-sided markets where hetero-

geneous supply types (donor organs with different blood types, sizes) are matched with a subset

of demand types (patients with different blood types, heights). The queueing papers that studies

such two-sided markets have considered both rational and myopic agents. In the former rational

queueing setup, Afeche et al. (2021) find the optimal design of service compatibility topologies

given the trade-off between customers’ waiting time delays and maximizing match rewards. For a

review of the strategic queueing literature in healthcare, see Akan (2018). Matching queues with-

out incentives are studied by Gurvich and Ward (2015) who focus on finite-horizon cumulative

holding costs of items. Similarly, Nazari and Stolyar (2019) propose an optimal matching policy

that maximizes long-run average matching rewards while keeping queues stable, and Hu and Zhou

(2020) design optimal matching policies that maximize total discounted rewards. In most queueing

literature, patient types are static, whereas in organ transplant setting, patients change classes

while waiting for a transplant (e.g. health deterioration). This led us to use the first-order fluid ap-

proximation. See Alagoz (2008) and Akan et al. (2012) for applications of overloaded fluid models

to liver allocation.

Organ allocation. These have been studied extensively by economists and operations re-

searchers. In their early work, David and Yechiali (1985) consider a patient’s problem of accepting

a kidney offer as a time-dependent stopping problem to maximize their expected reward from trans-

plantation. Righter (1989) models the kidney allocation process as a stochastic assignment problem

with the objective of maximizing the total expected reward. Similarly, Ahn and Hornberger (1996)

and Howard (2002) solve a transplant patient’s problem of accepting/rejecting a kidney offer, and

Alagoz et al. (2004, 2007), Said et al. (2009), and Sandikci et al. (2008) consider a patient’s
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problem for a liver offer. In a series of papers, Su and Zenios (2004, 2005, 2006) study how patient

choice impacts the kidney allocation mechanisms. From a geographical perspective, Kong et al.

(2010) solve the problem of maximizing the efficiency of the liver allocation system, and Ata et

al. (2017) address the region-based inequity in access to kidney transplantation. Bertsimas et al.

(2013) propose a data-driven method for designing national policies for kidney allocation with the

objectives of fairness and efficiency. Dai et al. (2020) analyze the welfare consequences of introduc-

ing donor-priority rule, which grants registered organ donors priority in receiving organs in case

they need transplants in the future.

Within this extensive literature, our paper contributes to the stream that focuses on the optimal

design of organ allocation policies using the first-order fluid approximation of the transplant system.

Zenios et al. (2000) find the best kidney allocation policy with the trade-off between clinical

efficiency (i.e. QALY) and equity in access to transplantation, Akan et al. (2012) design optimal

liver allocation policies where the trade-off is between medical urgency (i.e. total number of patient

deaths) and efficiency, and Hasankhani and Khademi (2021) propose optimal policies of allocating

hearts with the trade-off between efficiency and equity. Given the prevalence of medical urgency in

the current liver allocation system (i.e. MELD-based allocation), we restrict our focus on improving

equity in access to liver transplantation while keeping medical urgency as our objective. In addition

to proposing the optimal policy of allocating deceased-donor livers, differently from this stream of

literature, we show that the shadow prices of the optimal control problem can be used to estimate

transplant patients’ short-term mortality risk; hence, we utilize our fluid model to introduce MELD

exception points that can be used by policy makers to improve equity within the current MELD-

based system.

Exception Points. Medical scientists study the problem of providing novel MELD exception

points to patients with HCC whose mortality risks are under-predicted by their MELD scores. Toso

et al. (2012) use a proportional hazard model, Vitale et al. (2014) run multivariable regressions,

and Marvin et al. (2015) use a Cox regression model to estimate the short-term mortality risk of

patients with HCC to provide MELD exception points. Rickert et al. (2019a) demonstrates that

HCC patients can be rationally stratified according to medical urgency. Although this literature

lacks studies to provide model-based MELD exception points to non-HCC patients (e.g. patients

with cystic fibrosis, hepatopulmonary syndrome, etc.), our computational framework of providing

MELD exception points can be generalized with non-HCC patients who apply for MELD exception

points. Bernards et al. (2022) numerically study static MELD exception points, based only on

height and regardless of their laboratory MELD scores, a simplification based on the optimal

policy developed in this paper. Our model takes the dynamics of the liver transplant waitlist

7



(e.g. patients’ health evolution, patient/donor arrivals, mortality, etc.) into account, endogenously

calculates transplant patients’ short-term mortality risk that can be directly mapped into MELD

score exceptions, and provides different MELD exception points to disadvantaged patients based

on candidates’ evolving laboratory MELD scores.

Ruth et al. (1985) and Pritsker et al. (1995) are among the early papers that analyze the

kidney and liver allocation systems via simulation, respectively. Kreke et al. (2002) and Shechter

et al. (2005) incorporate the patients’ disease evolution, and Kim et al. (2015) develop a machine

learning-based model to incorporate transplant patients’ accept/reject decisions into the simulations

of the liver allocation system. Davis et al. (2013) and Sandikci et al. (2019) develop discrete-

event simulations of the national kidney allocation system to evaluate potential policy changes

in kidney allocation. We assess the performance of our outputs - the exception points - of the

discretized version of our fluid model using the Liver Simulated Allocation Model (LSAM) developed

by Scientific Registry of Transplant Recipients (SRTR) on various equity and efficiency metrics.

LSAM is a well-established tool for modeling changes to liver allocation policy and has been used

as the basis for previous (cf. Heimbach 2015) and proposed (cf. Rickert et al. 2020 and Bernards

et al. 2021) changes to allocation of MELD exception points.

3 A Fluid Model and Analysis

We model the liver transplant waiting list as a multiclass overcrowded queueing system with hetero-

geneous servers. Given the complex dynamics of this problem (patients’ health evolution, mortality,

etc.), we use the first-order fluid approximation of the queueing system to solve for the resulting

optimal control problem in finite horizon. We introduce our fluid model with the objective of min-

imizing patients’ pre-transplant mortality in the system in §3.1, propose our optimal policy and

discuss the interpretation of the shadow prices of the optimal control problem in §3.2. Table 2

summarizes our notation. Proofs of our results can be found in Appendix B.

We construct a stylized fluid model to characterize the liver allocation process and to track

the dynamics of the system. An overview of this section is as follows. We first describe the

ESLD patients and their dynamics while waiting for a liver transplant. Next, we describe the

deceased-donor livers being harvested for the transplant patients, control variables that correspond

to the allocation of donor livers to patients and the state of the system. Finally, we formulate our

objective function as minimizing pre-transplant mortality in finite horizon with fairness constraints

for different patient classes to ensure equity in access to transplantation.

We divide ESLD patients who wait for a liver transplant into different classes along two di-

mensions: static patient characteristics, such as height, and dynamic patient characteristics that
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Table 2: Summary of notation

Symbol Definition

i Index for the static class of the patient
j Index for the health status of the patient, i.e., MELD score
k Index for the type of the donor liver
t Time index
n Number of organ offers to patients
I Set of static classes of patients
J Set of health status of patients, i.e., MELD scores
K Set of liver types
Φ Feasible set of allocations
β Matrix of patients’ health transition rates out of MELD scores
γ Matrix of patients’ health transition rates into MELD scores
ρ Inverse of the average likelihood of transplantation
λij Arrival rate of class ij patients
µk Arrival rate of type k livers
P k Matrix of patients’ probability of accepting liver offers
xij Number of class ij patients in the system
αjj′ Transition rate of a patient’s health status from j to j′

dj Mortality rate of a patient in health status j
uijk The rate of allocating type k livers to class ij patients
INF Set of incompatible patient type - liver type pairs
pijk Probability of a class ij patient accepting an offered liver type of k
πn
ijk Probability of a type k liver is transplanted into a class ij patient

when offered to n patients

represent their health status, i.e., laboratory MELD score. The former dimension is denoted by

i ∈ I := {1, 2, ..., I} where I is the total number of patient groups, and the latter dimension is

denoted by j ∈ J := {1, 2, ..., J} where J is the total number of laboratory MELD scores.3 MELD

score of a patient may change over time, implying that the patients’ dynamic class might change

in our model. See Appendix C for a diagram of the class structure of patients with ESLD.

Patients of class ij arrive at the liver transplant waitlist with rate λij(t) for t ≥ 0, and the

number of class ij patients waiting for transplantation at time t is denoted by xij(t); initially, there

are xij(0) patients in class ij. As we mentioned earlier, patients’ health status (i.e. MELD score)

change while waiting for a transplant. In many cases, the patient’s health condition deteriorates,

leading to an increase in their MELD scores; however, it is also possible for some patients (e.g.

patients with primary biliary cirrhosis) to experience a temporary recovery when they first join the

waitlist leading to a decrease in their MELD scores. To be specific, we denote the rate at which

a patient’s MELD score changes from j to j′ with αjj′ for (j, j
′) ∈ J × J without any structural

3In UNOS policy there are 35 dynamic patient classes, i.e. J = 35, because MELD score takes integer values
between 6 and 40.
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assumptions. The rate at which a patient with MELD score j dies while waiting for a transplant

is denoted by dj . Patients with higher MELD scores are more likely to die, therefore, we assume

that dj > dj′ for j > j′.

A type k deceased-donor liver arrives at the liver transplant system with rate µk(t) for k ∈ K :=

{1, ...,K} and t ≥ 0. The type of a liver is defined by its blood type and size. We denote the rate at

which type k livers are dynamically allocated to class ij patients by uijk(t) for i ∈ I, j ∈ J , k ∈ K

and t ≥ 0. The static type of a patient (i.e. height), denoted by i, must be compatible with the

liver type k (i.e. size) so that a type k deceased-donor liver can be offered to class ij patients for

all j ∈ J . We ensure this with an incompatibility constraint on the control variables, specifically,

uijk(t) = 0 for (i, k) ∈ INF, all j ∈ J and t ≥ 0 where INF contains the incompatible patient type

- donor liver type pairs.

Patients have the option of rejecting offered livers due to the expectation of receiving a better

organ offer in the future. We denote the probability of a class ij patient accepting a type k liver

by pijk. In our model, a deceased-donor liver can be offered to multiple patients in the waitlist. If

a type k liver is offered to n patients of class ij, the probability of the liver being rejected by all

patients, i.e. the organ is wasted, becomes (1− pijk)
n. As a result, the probability of a type k liver

being transplanted when it is offered to n class ij patients, πn
ijk, becomes πn

ijk = 1− (1− pijk)
n.

The state of the system is denoted by x(t) that keeps track of the number of patients in

each patient class at time t, i.e. x(t) = (x11(t), ..., xij(t), ..., xIJ(t))
T for t ≥ 0. Similarly, we

denote the IJ-dimensional vector of control variables for each liver type k by uk(t) where uk(t) =

(u11k(t), ..., uijk(t), ..., uIJk(t))
T for k ∈ K and t ≥ 0. A feasible control u(t) must satisfy three sets

of constraints: (i) the total allocation of type k livers cannot exceed the supply of livers of the

same type, (ii) the allocation of deceased-donor livers for incompatible patient - donor type pairs

must be zero, and (iii) the allocation of livers for the compatible patient - donor type pairs must

be non-negative. Therefore, we define the set of feasible controls, Φ(t), as follows:

u(t) ∈ Φ(t) := {u(t) : e · uk(t) ≤ µk(t); uijk(t) = 0 ∀j ∈ J , (i, k) ∈ INF; uk(t) ≥ 0} (1)

where e is an IJ-dimensional vector of ones.

Given a feasible control u, the state of the system evolves as follows:

ẋ(t) = λ(t)−
K∑
k=1

P kuk(t)− (d+ β − γ)x(t), t ≥ 0, (2)

where P k is an IJ × IJ dimensional diagonal matrix with entries πijk for i ∈ I, j ∈ J and each

10



liver type k ∈ K. λ(t) is the IJ-dimensional vector of arrival rates of patients, λij(t), at time t.

The square matrix of d has shape IJ×IJ and it includes the death rate of patients for each MELD

score, dj , in its diagonal entries. Similarly, the square matrices β and γ, obtained from matrix α,

include the health transition of the patients in each MELD score. The former, β, contains the rate

of health transition of patients from each MELD score to other MELD scores, i.e. it has
∑

j ̸=j′ αjj′

and αjj = 0 in its diagonal entries for each j ∈ J . The latter, γ has a shape IJ × IJ , includes the

health transition rate of patients into each MELD score from other MELD scores, that is, it has

αj′j for each j ∈ J in block diagonal matrices of shape J × J . Finally, we require that the number

of patients in each class must be non-negative, that is,

x(t) ≥ 0 for t ≥ 0. (3)

Our aim is to develop MELD exception points for disadvantaged patient groups to ensure

their equal access to transplantation. For this reason, we focus on equalizing the likelihood of

transplantation measure in all classes of patients with respect to their static characteristics. The

following constraint ensures that the ratio of the total amount of deceased donor livers allocated

to the total arrival rate of each static patient class must be the same:

∫ T

0

K∑
k=1

e · uki (t)dt =
1

ρ
λiT for i ∈ I, (4)

where 1/ρ is the average likelihood of transplantation, λiT is the total arrival rate of patients

of class i, equals to
∫ T
0

∑
j λij(t) over the finite time horizon, and

∫ T
0

∑K
k=1 e · uki (t)dt gives the

total amount of allocated livers to class i patients. In reality, the classes of disadvantaged patients

experience a lower likelihood of transplantation, i.e., the value of 1/ρi for disadvantaged patient

class i is lower than the value of 1/ρi′ for i
′ ∈ I, so we ensure that the likelihood of transplantation

is equal for all patients by enforcing the same value, 1/ρ, independent of static patient classes.

The likelihood of transplant constraint (4) requires the integration of the control variable u(t).

We reformulate this constraint by introducing another state variable w(t) where wk
i (0) = 0 and

wk
i (t) =

∫ t

0
e · uki (τ)dτ , ẇk

i (t) = e · uki (t)dt for k ∈ K, t ≥ 0. (5)

The state variable wi(t) captures the number of livers of all types allocated to static type i patient

across all MELD values j. Requiring wi(T ) to be proportional to the total arrivals λiT , we can
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express the equity constraint (4) equivalently as a terminal condition:

K∑
k=1

wk
i (T ) =

1

ρ
λiT for i ∈ I. (6)

We reflect the current liver allocation policy that prioritizes medical urgency (MELD-based

allocation) with our objective function of minimizing pre-transplant mortality of patients while

waiting for a liver transplant. Since patients with higher MELD scores have a higher mortality

rate, this objective ensures that they are prioritized over patients with lower MELD scores when

receiving liver transplant offers. As a result, the problem of minimizing pre-transplant mortality

with equity constraints becomes one of choosing an organ allocation policy {u (t) : 0 ≤ t ≤ T} to

minimize

∫ T

0
(e · d) · x(t)dt subject to (1) - (3) and (5) - (6), (P)

with the initial state of the system x(0) = x0 and w(0) = 0. We discuss the estimation of model

(P) parameters in Section 6.

4 Dual problem formulation and the proposed policies

In this section, we first present the dual problem formulation (D) of our optimal control problem

(P), and the coextremality results between the two formulations. Next, we describe the implemen-

tation of the optimal policy, named Equity Adjusted Mortality Risk Policy, from a policy maker’s

perspective. Finally, we provide the interpretation of the shadow prices from the dual problem

that lays the foundation for our computational framework of providing MELD exception points to

disadvantaged patient groups.

The dual problem of control associated with the problem (P) of maximizing QALY can be stated

as follows (see Appendix B for its derivation): Choose IJ dimensional processes {y (t) , z (t) : 0 ≤ t ≤ T}

and qi : i ∈ I so as to minimize
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∫ T

0
[y(t)λ(t) + f(t, y(t), z(t))]dt+ x(0) · y(0)− z(T )λT

ρ

subject to

y(t) = y(0) +

∫ t

0
ẏ(s)ds

z(t) =

∫ t

0
ż(s)ds

ż(t) = 0

ẏ(t) ≤ y(t)(d+ β − γ) + d

(D)

where f(t, y(t), z(t)) = inf
∑K

k=1{(y(t) · P k − z(t))uk : u(t) ∈ Φ(t)}.

In the dual formulation, the state vector yij(t) is the shadow price that corresponds to the

ijth system evolution constraint (2) in the primal problem (P), zki (t) is the ikth shadow price

corresponding to the evolution of the control variable u, i.e. ẇk
i (t) = uki (t)dt, and qi is the ith

shadow price corresponding to the likelihood of transplant constraint for patient class i.

The dual problem (D) and the primal problem (P) are closely linked to each other. Above

all, the objective function values of (P) and (D) are equal. Moreover, any optimal primal solution

and any optimal dual solution satisfy a set of coextremality conditions, which are necessary and

sufficient conditions for optimality. The following result summarizes the duality results between

the two formulations that are relevant for our purposes; its proof is given in the Appendix B.

Theorem 1 The primal problem (P) of minimizing pre-transplant mortality and the dual problem

(D) have the same objective value. Furthermore, letting u and (y,z) pair be a feasible organ allocation

policies for (P) and (D), the primal control u and the dual control (y,z) are optimal for (P) and

(D), respectively, if and only if they satisfy the coextremality conditions given below. For i ∈ I,

j ∈ J and t ∈ [0, T ],

ẏij(t) = dij + [y(t)(d+ β − γ)]ij if xij(t) > 0, (7)

ż(t) = 0, z(T ) =
q

ρ
λT, (8)

uk(t) ∈ arg min
v∈Φ(t)

{(P k · y(t)− z(t))vk} for k ∈ K. (9)

Equity Adjusted Mortality Risk Policy. Motivated by Theorem 1, we next propose our

policy to maximize the total quality adjusted life years of all patients with ESLD, the ultimate

goal of the liver allocation system. The policy is named the Equity Adjusted Mortality Risk

Policy, because not only does it minimize overall waitlist deaths but also minimize the gap between
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transplant rates across patient groups. Hence, it truly captures the goal of equity for each possible

allocation decision.

Theorem 1 characterizes the optimal allocation of deceased-donor livers via Equation (8). When

a liver of type k arrives at time t, a policy maker ranks patients in class ij with respect to the

quantity yij(t)π
n
ijk − zi(t) where the number of parallel organ offers is n and class ij patients’

probability of accepting the liver offer is πn
ijk. With the objective function of minimizing pre-

transplant mortality, the dual state variable yij(t) gives the potential increase in the objective

function if we were to increase the number of patients in class ij by one, in other words, it gives

us the mortality risk of an additional patient of class ij at the end of the time horizon. The dual

state variable zi(t) gives the potential decrease in the objective function if we were to increase the

likelihood of transplant of class i patients by 1%, i.e., it gives us the mortality risk of class i patients

that can be avoided by increasing their access to transplantation. Therefore, the Equity Adjusted

Mortality Risk Policy non-decreasingly orders patients in terms of their adjusted mortality risk to

allocate deceased-donor livers to the ESLD patients.

In the current liver allocation system, transplant patients are prioritized with respect to their

medical urgency, i.e. MELD score, and their access to transplantation is not considered as a factor

while allocating deceased-donor livers. This is reflected in the first term of the optimal policy,

yij(t)π
n
ijk, in the absence of fairness constraints for a fixed patient class i. Since patients with

higher MELD scores have a higher mortality risk, i.e. yij(t) < yij′(t) for j < j′ and t ∈ [0, T ], and

have a higher probability of accepting incoming liver offers, i.e. πn
ijk < πn

ij′k for j < j′, a policy

maker offers a transplant organ to patients of class i starting from the patients with the highest

MELD score. Adding the fairness constraints to the primal problem (P) brings a new term, zi(t),

that allows for the case where a disadvantaged patient with a relatively better health status, i.e.

lower laboratory MELD score, might be prioritized to increase their access to transplantation.

5 Providing MELD Exception Points

In this section, we describe a general framework to achieve equity by providing exception points

to disadvantaged groups. First, we establish the connection between the dual state variables of

the optimal control problem and MELD exception points. Then, we provide an easy-to-implement

algorithm to provide exception points by using parameter estimates. Finally, we demonstrate a

numerical example to explain how MELD score exceptions would be provided to disadvantaged

patient groups by the policy makers in practice. Our framework is quite general and can also be

used in other point-based allocation systems (e.g., social housing, child adoption) where equity is

an important concern.
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Figure 2: MELD Exception Point on Laboratory MELD - 90-day Mortality Risk Curve

For ease of discussion, we consider patients in two static classes where i represents the regular

class and i′ represents the disadvantaged patient class with lower likelihood of receiving a liver

transplant. As we have seen in the previous section, the dual state variable that corresponds to the

ijth system evolution constraint (2) in the primal problem (P), yij(t), gives us the mortality risk

of a class ij patient at the end of the time horizon for i ∈ I, j ∈ J and t ∈ [0, T ]. We solve (P)

by replacing 1/ρ with 1/ρi for class i patients and 1/ρi′ for class i
′ patients in constraint (4). This

gives us yij(t) for a patient who belongs to the regular class with MELD score j and yi′j(t) for a

patient who belongs to the disadvantaged class with the same MELD score where yij(t) < yi′j(t)

because the likelihood of receiving a transplant for a class i patient, 1/ρi, is greater than for a class

i′ patient, 1/ρi′ . The closest integer to the inverse of the difference between yij(t) and yi′j(t) on the

MELD score - short-term mortality risk curve becomes the MELD score exception point for the

class i′j patient. Figure 2 visualizes the MELD exception points for the disadvantaged patients in

class i′ at MELD score j.

The primal optimal control problem (P) is linear with respect to the state variable x and the

control variable u, therefore, the discretized version of it turns out to be a linear program that

can be efficiently solved using parameter estimates. The dual state variable y can also be easily

extracted from the primal problem letting us to provide MELD exception points to disadvantaged

patient groups. Given the parameter estimates of the primal problem, Algorithm 1 is easy to use

by a policy maker who aims to increase disadvantaged patient groups’ access to transplantation.

The parameter estimates include the initial state of the system, i.e. the number of patients in each

class x0, the average arrival rate of patients into the transplant waitlist, λ, the average arrival rate

of deceased-donor livers, µ, the transplant acceptance probability of patients in each class, P , the

rate of health transitions of patients in each MELD score, α, the mortality risk of patients, d, the

feasible set of organ allocations, Φ, and the average likelihood of transplantation of each patient
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Algorithm 1 Providing MELD Exception Points

Require: x0, λ, µ, P, α, d,Φ, 1/ρ
discretize the time horizon;
solve the resulting Linear Program (LP);
for Patient class pairs (i,i’) do

for MELD score j do
if yi′j > yij then

j′ ← inverse of dj + yi′j − yij on MELD - 90-day mortality risk curve
Exception Pointi′j ← ⌊j′ − j⌋

end if
end for

end for

class, 1/ρ. We note that the historical data or the forecasts for a pre-specified time horizon (3

months, 1-year) can be used to estimate parameters such as average arrival rates and likelihood of

receiving a liver transplant. After the linear program is solved using the estimated parameters, one

can check the dual values of each patient class corresponding to the system dynamics constraints at

each MELD score, and give the exception points to the disadvantaged patient groups whose dual

values appear to be higher than other patient groups.

For the numerical demonstration, we use the data from UNOS Region 5, which includes the

states of Arizona, California, Nevada, New Mexico and Utah, for the years between 2012 and 2017

to estimate transplant patient and deceased-donor arrival rates. We abstract away the blood type

matching and focus only on the size matching to classify patients into different groups with respect

to their heights. As we mentioned earlier, shorter patients can receive transplantation from a

smaller pool of available donors, i.e., only small size deceased-donor livers, compared to medium-

height and tall patients. As in Lai et al. (2010), we consider patients taller than 180 cm as tall,

between 165-180 cm as medium-height, and shorter than 165 cm as short patients. The primal

optimization problem (P) is solved for a varying set of different time horizons, and the results from

the 1-year horizon are presented for brevity. Figure 3 shows the dual values that are endogenously

calculated from the primal problem, i.e., tall, medium and short patients’ mortality risk at each

MELD score, and the differences between dual values of all patient class pairs.

Figure 3(a) shows us that the mortality risk of all patients for low MELD scores, i.e. <

20, are very close to each other regardless of their height because ESLD patients rarely receive

transplantation when their health condition is relatively well. We do not provide exception points

to short patients in this interval. The patients in the transplant waitlist receive deceased-donor liver

offers for the MELD scores higher than 20; therefore, we observe the discrepancy between the short,

medium-height and tall patients’ mortality risks for higher MELD scores due to the differences in
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Figure 3: Estimated Mortality Risk of Transplant Patients in Region 5
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(b) Mortality risk differences
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their access to transplantation. Using the differences in the mortality risk of patients in Figure

3(b), we provide MELD score exception points to short patients. For MELD scores between 21

and 34, the difference between the mortality risk of tall and short patients grants +1 exception

point to short patients to artificially move them to higher positions in the transplant waitlist.

For MELD scores between 35 and 38, short patients are granted +2 exception points because the

difference between the mortality risks corresponds to a higher MELD score difference on laboratory

MELD score - short-term mortality risk curve. Medium-height patients do not qualify for MELD

score exceptions because the difference between their their mortality risk and tall patients’ is not

high enough for them to be granted. These exception points improve short patients’ access to

transplantation to decrease their mortality risk while waiting for a liver transplant.

6 Simulation Results

In this section, we present the results from the simulations of the national liver allocation system to

study how various efficiency and equity metrics are affected by our proposed MELD score exception

points to disadvantaged patient groups. First, we introduce the simulation model and describe the

system dynamics that are updated over the course of the simulation. Second, we explain how our

computational procedure is incorporated into the simulations to compute MELD exception points.

Then, we present the simulation results on equity with our proposed exception points and compare

the potential improvement over the current policy and static exception points. Improving equity of

a system comes at the cost of losing efficiency in general; therefore, we present the simulation results

on efficiency metrics for each individual patient group as well as the overall system. Finally, we
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discuss how the trade-off between efficiency and equity is affected by our proposed MELD exception

points.

We use the Liver Simulated Allocation Model (LSAM), a computer simulation program devel-

oped by the Scientific Registry of Transplant Recipients (SRTR), to simulate the allocation of livers

to candidates on the Organ Procurement and Transplantation Network (OPTN) waiting list. A

more detailed description of the simulation model and its validation can be found in SRTR (2019).

The current liver allocation system consists of 11 regions and 58 donor service areas (DSA). When

transplant candidates arrive at a particular DSA, they are assigned a laboratory MELD score,

blood type, Status 1 exception (for critically ill patients), and HCC exception. In addition to the

aforementioned exception points that are provided by LSAM, we provide MELD exception points

to patients based on their height and laboratory MELD score. During the simulation, transplant

candidates’ laboratory MELD scores are updated reflecting the changes in their health status, and

they are removed from the waitlist due to death or other reasons (e.g. being medically unsuitable

for transplantation). After a deceased donor arrives, the liver is assigned a blood type with donor’s

height information and it is offered to blood type and size-compatible candidates in accordance with

the current allocation policies. The patient preferences module computes the acceptance probabil-

ity of each transplant candidate when a deceased-donor liver becomes available, and the organ is

discarded if it is rejected by all candidates who receive an offer. Lastly, the transplant statistics

module computes the related performance metrics of the overall system that we discuss later in

this section.

In our simulation study, we purely focus on providing MELD score exception points based on

transplant recipients’ height. Extending the example based on three height groups in §5, we divide

transplant patients into five height tiers (≤ 150 cm, 151-156 cm, 157-165 cm, 166-175 cm, ≥ 176

cm) that align with the medical literature on liver transplantation (Bernards et al. 2022). In

order to capture more granular differences in the most disadvantaged patients, shortest patients

are split into smaller tiers compared to tall patients. The data of transplant candidates and donors

are collected from LSAM input files for the study period of July 1, 2011 to June 30, 2016. We

run LSAM simulations of the current policy and our proposed policy for a 5-year horizon with 3

replications. The average results are presented in this section for brevity.

The interaction between the simulation of the national liver allocation system and our opti-

mization model is visualized in Figure 4. For a 1-year period, our simulation runs with the UNOS’

current policy of allocating livers based on medical urgency to estimate each patient group’s like-

lihood of receiving a liver transplant. Along with the estimated rates of patient and donor liver

arrivals, and waiting list dynamics, these parameters are used in our optimization model to endoge-
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Figure 4: Optimization Model and Simulation: (a) Parameter Estimates are obtained from LSAM
for the Optimization. (b) Exception Points calculated are simulated in LSAM.

nously compute the mortality risk of patients that result in MELD score exception points for short

patients in Algorithm 1. These exception points are then fed into the simulation to evaluate the

changes in the performance metrics. In case there are still discrepancies between different patient

classes in terms of their likelihood of transplantation, we repeat the steps that we have described

so far until each patient group’s likelihood of transplantation converge to each other sufficiently.

We define size-based compatibility in deceased-donor liver transplantation with respect to the

transplant recipients’ and donors’ heights by using the Body Surface Area Index (BSAi) thresholds

in Fukazawa and Nishida (2016). Body Surface Area Index (BSAi) of a patient-donor pair is

the ratio of a donor’s Body Surface Area (BSA)4, correlated to the liver size, to a recipient’s

BSA, correlated to the available abdominal volume. A donor liver is considered ”small-for-size”

where BSAi < 0.78, and ”large-for-size” where BSAi > 1.24. In order to calculate an average

compatibility metric based on available data, we analyze the BSA distribution of deceased donors

and transplant recipients. Given BSARecipient, we first calculate what percent of BSADonor falls

into the compatibility interval, i.e., 0.78*BSARecipient < BSADonor < 1.24*BSARecipient. For each

height tier of recipients, we replace BSARecipient with BSARecipient LB (BSARecipient UB) in the lower

(upper) bound of the interval where BSARecipient LB (BSARecipient UB) is the 5th (95th) percentile

of the BSA of transplant patients. Since using BSARecipient LB and BSARecipient UB gives optimistic

estimates for compatibility, we also calculate what percent of BSARecipient falls into the compatibility

interval given BSADonor, i.e., 0.78/BSADonor < 1/BSARecipient < 1.24/BSADonor. This time, we

replace BSADonor with BSADonor UB (BSADonor LB) in the lower (upper) bound of the interval where

BSADonor UB (BSADonor LB) is the 95th (5th) percentile of the BSA of donors. The minimum of the

compatibility percentage obtained from the first set of intervals and the second set of intervals is

taken as the size-based compatibility metric in the optimization model. The resulting compatibility

percentages as well as the histogram of donor and recipient BSAs can be found in Appendix D.

4BSA = 0.007184 * Height0.725 * Weight0.425
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In order to examine the effect of MELD score exception points to the equity of liver trans-

plantation, we measure the likelihood of receiving a transplant, likelihood of death while waiting

for a transplant, and the ratio of likelihood of transplant to the sum of likelihood of death and

transplant metrics of each patient group. We compare the performance of our policy with three

benchmarks; current UNOS policy without exception points, (1,1,0) policy that grants +1 point

to ≤ 150 cm patients and +1 point to 151-156 cm patients with no exception points to remaining

patients, and (2,1,0) policy that grants +2 points to ≤ 150 cm patients and +1 point to 151-156

cm patients with no exception points to remaining patients. We call (1,1,0) and (2,1,0) policies as

static policies because the exception points are granted to shorter patients based only on height

(that is unchanging) regardless of their laboratory MELD score that can evolve. Recall that as is

the case in the example discussed in §4, our optimal exception points depend on patients’ MELD

score as well.

The results on equity with the current UNOS policy, (1,1,0) and (2,1,0) static policies and

our policy are presented in Table 3. As discussed in §1, ≤ 150 cm and 151-156 cm candidates

have significantly lower likelihood of receiving a deceased-donor liver transplant (35.9% and 37.5%,

respectively) compared to 157-165 cm (39.2%), 166-175 cm (40.1%), and ≥ 176 cm (41.0%) candi-

dates with the current policy. Also, the likelihood of death while waiting for a liver transplant is

higher for ≤ 150 cm and 151-156 candidates (10.7% and 10.6%, respectively) compared to 157-165

cm (9.6%), 166-175 cm (9.2%), and ≥ 176 cm (8.6%) candidates. Consequently, ≤ 150 cm and

151-156 cm candidates have lower transplant over death plus transplant percentage (77.0 % and

77.9%, respectively) compared to 157-165 cm (80.3%), 166-175 cm (81.3%), and ≥ 176 cm (82.7%)

candidates.

(1,1,0) and (2,1,0) static policies improve ≤ 150 cm and 151-156 cm candidates’ access to liver

transplantation; ≤ 150 cm and 151-156 cm candidates’ likelihood of transplant increases to 38.1%

and 39.5% with (1,1,0) policy, and to 39.5% and 39.4% with (2,1,0) policy, respectively. These

two policies results in a decrease in ≤ 150 cm and 151-156 cm candidates’ likelihood of death

while waiting for a transplant; ≤ 150 cm and 151-156 cm candidates’ likelihood of death drops to

10.5% and 10.1% with (1,1,0) policy, and to 10.2% and 10.1% with (2,1,0) policy, respectively. Our

dynamic policy further improves ≤ 150 cm and 151-156 cm candidates’ access to transplantation

compared to (1,1,0) and (2,1,0) policies; Table 3 shows that ≤ 150 cm and 151-156 cm patients’

likelihood of transplant increases to 39.7% and 39.7%, respectively. We also observe a further

decrease in 151-156 cm candidates’ likelihood of death (9.9%) with our policy compared to (1,1,0)

and (2,1,0) policies. Overall, all candidate groups’ likelihood of transplant percentages converge to

each other with our policy ensuring equal access to deceased-donor liver transplantation.
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Table 3: Simulation Results on Equity. Current Policy does not consider height. Our Policy
is dynamic, depending on height and MELD score. The (1,1,0) and (2,1,0) policies are static,
considering only height but not the evolving MELD score.

Height (cm) Current Policy (1,1,0) Policy (2,1,0) Policy Our Policy

Likelihood of Transplant (%)

≤ 150 35.9 38.1 39.3 39.7
151-156 37.5 39.5 39.4 39.7
157-165 39.2 38.9 39.3 39.6
166-175 40.1 39.7 39.7 39.7
≥ 176 41.0 40.4 40.2 40.0

Likelihood of Death (%)

≤ 150 10.7 10.5 10.2 10.2
151-156 10.6 10.1 10.1 9.9
157-165 9.6 9.8 9.8 9.8
166-175 9.2 9.1 9.2 9.2
≥ 176 8.6 8.8 8.8 8.9

Transplant/(Death + Transplant) (%)

≤ 150 77.0 78.4 79.4 79.7
151-156 77.9 79.6 79.6 80.0
157-165 80.3 79.9 80.0 80.2
166-175 81.3 81.4 81.2 81.2
≥ 176 82.7 82.1 82.0 81.8

The MELD score exception points for disadvantaged patient groups improve equity in access

to liver transplantation. Since improving equity of a system comes at the cost of losing efficiency

in general, we use various efficiency metrics to assess the effect of proposed MELD score exception

points on the performance of the liver allocation system. In particular, we use the expected quality-

adjusted life years of each patient group (QALY), number of wasted livers from each donor group

(NWL), number of patients died while waiting for a liver transplant (NPD), and the average waiting

time of each patient group until receiving a transplant (AWT).

The percentage improvements in the efficiency metrics over the current UNOS policy are pre-

sented in Table 4. As expected, ≤ 150 cm and 151-156 cm candidates benefit from receiving MELD

exception points because all performance metrics improve for them. In particular, QALY and

AWT objectives for ≤ 150 cm (16.8% and 11.2%, respectively) and 151-156 cm candidates (7.1%

and 3.4%, respectively) improve substantially. The decrease in these two objectives is low for 157-

165 cm (-1.1% and -0.1%, respectively) and 166-175 cm (-0.7% and -0.3, respectively) candidates

compared to ≥ 176 cm candidates (-1.9% and -3.9%, respectively). Similarly, NPD objective for ≤

150 cm (5.9%) and 151-156 cm (2.1%) candidates improve even though this % improvement is not
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Table 4: Simulation Results on Efficiency

% Difference of Dynamic Policy over the Current Policy
Height (cm) QALY NPD AWT NWL

≤ 150 16.8 5.9 11.2 4.1
151-156 7.1 2.1 3.4 1.2
157-165 -1.1 -1.0 -0.1 0.2
166-175 -0.7 -2.2 -0.3 -0.4
≥ 176 -1.9 -3.1 -3.9 -1.1

Total 0.2 -0.1 0.9 -0.6

Notes. QALY: quality-adjusted life years, NPD: number of patients died while waiting for a transplant,

AWT: average waiting time until transplant, NWL: number of wasted livers. Note that % difference is

considered an improvement when the QALY objective increases; for NPD, AWT, and NWL objectives, we

need a decrease to consider it as an improvement. Thus, Dynamic Policy improves every metric for ≤ 150

cm and 151-156 cm candidates as well as the overall QALY and AWT metrics while overall NPD and NWL

metrics worsen slightly.

as high as QALY and AWT objectives. This objective becomes worse for 157-165 cm (-1.0%), 166-

175 cm (-2.2%), and ≥ 176 cm (-3.1%) candidates. On the supply side, NWL objective improves

for ≤ 150 cm (4.1%), 151-156 cm (1.2%), and 157-165 cm (0.2%) donors with a decrease in 166-175

cm (-0.4%) and ≥ 176 cm (-1.1%) donors. Overall, our simulations show that the performance of

the liver allocation system improves for QALY, and AWT objectives (0.2% and 0.9%, respectively)

whereas NPD and NWL objective worsen slightly (-0.1% and -0.6%, respectively) with our pol-

icy. These results suggest that we can improve equity by introducing MELD exception points to

disadvantaged candidates without sacrificing the efficiency of the liver transplant system.

Finally, Table 5 presents the change in various equity and efficiency metrics with respect to the

patients’ gender and race. The shortest stature candidates (≤ 150 cm and 151-156 cm) who receive

MELD exception points in our policy represents a disproportionately female and Hispanic propor-

tion of the liver transplant candidate population. Female candidates have a lower probability of

receiving a liver transplant, and a higher likelihood of death while waiting for a transplant (38.9%

and 9.6%, respectively) compared to male candidates (40.3% and 8.8%, respectively) with the cur-

rent policy. Hispanic candidates also have lower rates of liver transplant (38.3%), longer waiting

times until receiving a transplant (296 days), and higher rates of death (10.9%) in comparison to

non-Hispanic candidates (e.g., Caucasian candidates have a transplant rate of 39.4%, an average

waiting time of 271 days, and a dropout rate of 9.1%). Our policy almost equalizes female and

male candidates’ likelihood of liver transplantation (39.8% and 39.9%, respectively) while lowering

female candidates’ average waiting time until transplantation (from 257 to 256 days), and likelihood
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Table 5: Simulation Results on Recipients’ Gender and Race. Our Policy narrows the difference
between Women and Men, as well as the disparity between races.

Current Policy Our Policy
Gender LT (%) AWT Death (%) LT (%) AWT Death (%)

Women 38.9 257 9.6 39.8 256 9.4
Men 40.3 277 8.8 39.9 274 8.9

Race/Ethnicity

Caucasian 39.4 271 9.1 39.2 275 9.2
Hispanic 38.3 296 10.9 38.7 289 10.6
African American 46.4 216 7.6 46.3 218 7.5
Asian 40.1 288 5.7 40.6 269 5.9

of death (from 9.6% to 9.4%). Hispanic (38.7%) and Asian candidates’ (40.6%) transplant rate in-

creases, average waiting time until transplantation decreases (289 and 269 days, respectively), and

Hispanic candidates’ likelihood of death (10.6%) decreases with our MELD exception points. Alto-

gether, our simulations demonstrate that disadvantaged candidates (female and Hispanic) greatly

benefit from our policy, and more equal rates of liver transplantation and death across the entire

transplant candidate population are obtained with MELD exception points.

7 Conclusion

We study the problem of achieving a fairer liver allocation system where there are disparities in

access to transplantation based on patients’ height. Shorter patients (who are disproportionately

women) have higher average waiting times and mortality rates compared to other patient groups

because they can receive liver transplants from a smaller pool of available deceased donors. To

address this inequity, (i) we develop a fluid model of the liver transplant system with fairness

constraints, (ii) derive the optimal policy of allocating deceased-donor livers to transplant patients,

(iii) provide a computational approach to calculate MELD score exception points to disadvantaged

patient groups to increase their access to transplantation, and (iv) run simulations of the national

liver allocation system (LSAM) to assess the performance of our proposed MELD exception points

on the efficiency and equity of the current policy of allocating livers which is based on transplant

patients’ medical urgency.

Our analysis shows that the Equity Adjusted Mortality Risk Policy, which ranks transplant pa-

tients in terms of their medical urgency, but adjusts this ranking to ensure that all patient groups

have equal access to transplantation, is optimal in allocating deceased-donor livers. Without the

fairness constraints, we show that the optimal policy coincides with the UNOS’ current policy of
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allocating donor livers based on ESLD patients’ medical urgency, i.e., ranking patients with respect

to their laboratory MELD scores. With fairness constraints, the dual state variables are endoge-

nously calculated while solving the primal optimal control problem of minimizing pre-transplant

mortality. We show that these dual variables are a proxy for transplant patients’ short-term mortal-

ity risk which can be mapped into laboratory MELD scores. With an easy-to-implement algorithm,

we utilize real data and provide MELD exception points to disadvantaged patient groups because

their short-term mortality risks are higher than those of other patient groups. These exception

points move disadvantaged patients to higher positions on the transplant waiting list to improve

their access to transplantation.

We run simulations of the national liver allocation system to test the effect of introducing MELD

exception points on various efficiency and equity objectives. Our simulations show that disadvan-

taged patients can greatly benefit from receiving MELD score exceptions without decreasing the

efficiency of the overall liver transplant system. Unlike other proposals that require more drastic

policy changes, our approach provides a remedy within the current liver allocation system where

the transplant patients are prioritized based on medical urgency and the use of exception points

is also in use for other situations. In addition to the static patient characteristics that we have

discussed in our work (height, gender, race), our methodology can be generalized with any factor

that creates discrepancies in organ access. In addition, our shadow price approach can be used to

compare medical urgency across organs for patients who need dual organ transplants (a new liver

and another new organ during the same surgical procedure), since these patients are listed on both

organ waiting lists.

We close by listing other potential considerations that are beyond the scope of this paper. First,

we have solely focused on the allocation of deceased-donor livers, therefore, we do not consider living

donor liver transplantation in our theoretical and computational analysis. The reasons for this are:

(i) living donor liver transplants constitute a small portion (5.5% in 2020) of liver transplants in

the US, and (ii) most living donors donate a portion of their healthy livers to their family members

or friends without participating in the national liver allocation system. Second, our model and

analysis do not incorporate split liver transplants (SLT) which can potentially reduce disparities in

organ access due to size mismatch between the donor and the recipient. The practice of splitting

deceased-donor livers provides liver transplants for two recipients (in general, one adult and one

pediatric patient); however, only 3.8% of all deceased-donor livers are used for SLTs from 2010 to

2015 (Tang et al. 2021). Given their increasing trends in recent years, how to incorporate living

donor liver transplants and SLTs into the MELD-based liver allocation system is an interesting

research question to study in the future.
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Appendix A. Estimation of ESLD patients’ 90-day mortality risk

The logistic regression coefficients used for predicting 90-day mortality risk of ESLD patients can

be seen in Table 6.

Table 6: Logistic regression coefficients for predicting 90-day mortality risk

Appendix B. Proofs

Derivation of the dual problem (D).

We follow the road map provided by Rockafellar (1970) to derive the dual problem of control asso-

ciated with (P). In particular, we first append the penalty expressions corresponding to the organ

availability restrictions on allocations in the objective function by defining the convex, extended

real valued integrand L and the convex functional l. Next, we compute the conjugate convex func-

tions associated with L and l so as to define the dual integrand M and the dual functional m. The

dual problem of control is defined using M and m.

We can write our convex integrand L on [0, T ]×RIJ ×RIJ ×RIJ ×RIJ as follows (for the sake

of notation, t is dropped for time dependent variables):

L(t, x, ẋ, w, ẇ) = (e · d) · x+ χRIJ
+
(x) + χRIJ

+
(w) +

K∑
k=1

χRIJ
+
(uk) +

K∑
k=1

χR−(e · uk − µk(t))

+
∑

(i,k)∈INF

χR−(e · uki − ϵ)

if ẋ(t) = λ(t) −
∑K

k=1 P
kuk(t) − (d + β − γ)x(t) and ẇ(t) = u(t), otherwise L(t, x, ẋ, w, ẇ) = ∞.

This way, we append the hard constraints of (P) as penalty expressions to the objective function.

The expressions χRIJ
+
(x) and χRIJ

+
(w) ensure the non-negativity of the state variables x and w, and

the expression
∑K

k=1 χRIJ
+
(uk) ensures the non-negativity of the control variable u. The constraint

related to the allocation of organs not exceeding the supply is expressed by the penalty term∑K
k=1 χR−(e · uk − µk(t)) and the infeasible allocations is expressed by

∑
(i,k)∈INF χR−(e · uki − ϵ).

We note that the infeasible allocations are restricted within ϵ. The system dynamics equations are

incorporated in L by requiring ẋ(t) to be equal to λ(t)−
∑K

k=1 P
kuk(t)− (d+ β − γ)x(t) and ẇ(t)
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to be equal to u(t).

Next, we define the functional l on RIJ × RIJ × RIJ taking values on R ∪ {∞} for the initial

state of the problem and terminal conditions. Initially, there are xij(0) patients in class ij and

w(0) is equal to 0 because we have not allocated any organs yet. As the terminal condition, x(T ) is

not restricted because we minimize pre-transplant mortality on [0, T ] and we have e ·w(T ) = λT/ρ

to ensure that all patient classes have an equal likelihood of receiving an organ transplant. The

functional l is defined as l(x0, w0, wT ) = l0(x0, w0)+lT (wT ) where l0(x0, w0) = χ{(x(0),0)}(x0, w0) and

lT (wT ) = χ{λT/ρ}(wT ). The functional l0 and lT dictate the initial and terminal state conditions,

respectively. As a result, the primal problem (P) becomes a problem of minimizing

∫ T

0
L(t, x(t), ẋ(t), w(t), ẇ(t))dt+ l(x0, w0, wT ).

In our next step, we compute the conjugates to the functions L and l. Let L∗ denote the

conjugate to L. To be specific,

L∗(t, s, p, r, q) = sup
z∈RIJ ,y∈RIJ ,v∈RIJ ,m∈RIJ

{z · s+ y · p+ v · r +m · q − L(t, z, y, v,m)}

for s, p, r, q ∈ RIJ . We can express L∗ more explicitly as follows. Note that L(t, z, y, v, k) <∞ only

if z ≥ 0, v ≥ 0 and there exists some uk ∈ RIJ
+ such that y = λ(t) −

∑K
k=1 P

kuk − (d + β − γ)z,

mk = uk, e ·uk ≤ µk(t), u
k
i ≤ ϵ for (i, k) ∈ INF and uk ≥ 0 for k ∈ K. For s, p, r, q ∈ RIJ , we write

L∗ as

L∗(t, s, p, r, q) = sup
z∈RIJ

+ ,u(t)∈Φ(t),v∈RIJ

{
z · s+ p ·

(
λ(t)−

K∑
k=1

P kuk − (d+β − γ)z
)
+ v · r

+ q · uk − (e · d) · z

}

by replacing y with λ(t)−
∑K

k=1 P
kuk − (d+ β − γ)z, mk with uk for feasible uk and noting that

L(t, z, y, v, k) = (e · d) · z. We rearrange the terms as follows

L∗(t, s, p, r, q) = sup
z∈RIJ

+

{z · (s− p(d+ β − γ)− e · d)}+ p · λ(t) + sup
v∈RIJ

{v · r}

+ sup
u(t)∈Φ(t)

K∑
k=1

{−p · P kuk + q · uk}

because we can take the supremum for z, v and uk separately for each k. We have supz∈RIJ
+
{z · (s−
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p(d+β−γ)−e·d)} = χRIJ
−
{s−p(d+β−γ)−e·d} since supz∈RIJ

+
{z ·(s−p(d+β−γ)−e·d)} becomes

∞ if (s − p(d + β − γ) − e · d)ij > 0 for i ∈ I and j ∈ J . Also, we obtain supu(t)∈Φ(t)

∑K
k=1{−p ·

P kuk + q · uk} = infu(t)∈Φ(t)

∑K
k=1{(p · P k − q)uk}. Therefore, L∗ can be written as follows

L∗(t, s, p, r, q) = χRIJ
−
{s− p(d+ β − γ)− e · d}+ p · λ(t) + sup

v∈RIJ

{v · r}+ inf
u(t)∈Φ(t)

K∑
k=1

{(p · P k − q)uk}.

Using the conjugate L∗ of the primal integrand L, we calculate the dual integrand M . For t ∈ [0, T ]

and s, p, r, q ∈ RIJ , the dual integrand M is given by M(t, p, s, q, r) = L∗(t, s, p, r, q). That is, for

t ∈ [0, T ], we have

M(t, y(t), ẏ(t), z(t), ż(t)) = L∗(t, ẏ(t), y(t), ż(t), z(t))

= χRIJ
−
{ẏ(t)− y(t)(d+ β − γ)− e · d}+ y(t) · λ(t) + sup

v∈RIJ

{v · ż(t)}

+ inf
u(t)∈Φ(t)

K∑
k=1

{(y(t) · P k − z(t))uk},

where χRIJ
−
{ẏ(t) − y(t)(d + β − γ) − e · d} ensures that ẏ(t) ≤ y(t)(d + β − γ) + d for t ∈ [0, T ].

Finally, we need to derive the terminal conditions associated with the dual problem. For this, we

define the functional m on RIJ × RIJ × RIJ as follows:

m(y0, z0, zT ) = l∗0(y0, z0) + l∗T (−zT )

where l∗0 and l∗T are the conjugates of l0 and lT . We calculate l∗0 as follows: l∗0(y0, z0) = supx,w{y ·

x + z · w − l0(x,w)} = supx∈{x(0)},w=0{y · x} = x(0) · y. Similarly, l∗T (−zT ) = supw{w · z} =

supw=λT/ρ{−w · z} = −zλT/ρ. The dual problem of control is to minimize

∫ T

0
M(t, y(t), ẏ(t), z(t), ż(t))dt+m(y0, z0, zT )
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that is equivalent to minimizing

∫ T

0
[y(t)λ(t) + f(t, y(t), z(t))]dt+ x(0) · y(0)− z(T )λT

ρ

subject to

y(t) = y(0) +

∫ t

0
ẏ(s)ds

z(t) =

∫ t

0
ż(s)ds

ż(t) = 0

ẏ(t) ≤ y(t)(d+ β − γ) + d

(D)

where f(t, y(t), z(t)) = inf
∑K

k=1{(y(t) · P k − z(t))uk : u(t) ∈ Φ(t)}. ■

Proof of Theorem 1. To show that the objective function values of the primal problem (P)

and the dual problem (D) are equal to each other by using Theorem 4 of Rockafellar (1970), we need

to show that the primal problem (P) is feasible and bounded. It is bounded because e·uk(t) ≤ µk(t)

for k ∈ K and t ≥ 0. Given that the primal problem is bounded, ż(t) = 0 to ensure that the dual

problem is bounded as well. To show that there is a feasible u satisfying the constraints of P, we

need an additional assumption on the likelihood of transplant constraint. The average likelihood

of transplantation, 1/ρ, must be small enough so that there exists u such that e · uk(t) ≤ µk(t),

w(t) =
∫ t
0 u(τ)dτ and w(T ) = λT/ρ. With this additional assumption, we conclude that the primal

problem (P) is also feasible ensuring that the objective function values of (P) and (D) are equal to

each other.

We need to derive the coextremality conditions for the primal - dual problem pair to complete

the proof. By Theorem 5 of Rockafellar (1970), let u be a feasible organ allocation for (P) with

the corresponding state trajectories x and w, and let y and z be a feasible control for (D), the

control u is optimal for (P) and y and z are optimal for (D), if and only if they satisfy the following

coextremality conditions:

(y(0), z(0),−z(T )) ∈ ∂l(x(0), w(0), w(T )) and

(ẏ(t), y(t), ż(t), z(t) ∈ ∂L(t, x(t), ẋ(t), w(t), ẇ(t)) for almost every t ∈ (0, T )

where ∂L and ∂l are the subgradients of the convex integrand L and the functional l, defined above.

First, we calculate the subgradient of L from its epigraphical normals. For h : Rn → [−∞,+∞]

and any point x̄ at which h is finite, we have ∂h(x̄) = {v : (v,−1) ∈ Nepi h(x̄, h(x̄))} where epi h
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denotes the epigraph of h defined as epi h := {(x, γ) ∈ Rn × R : γ ≥ h(x)}, and Nepi h(x̄, h(x̄)) is

the set of vectors to the set epi h at (x̄, h(x̄) in the general sense as in Definition 6.3 of Rockafellar

& Wets (1997). For t ∈ [0, T ], the epigraph of the integrand L is defined as follows: epi L(t) consists

of points (x, ẋ, w, ẇ, γ) ∈ R4IJ+1 such that

ẋ = λ(t)−
K∑
k=1

P kuk − (d+ β − γ)x, ẇk = uk, x ≥ 0, w ≥ 0, γ ≥ (e · d) · x,

e · uk(t), uk ≥ 0 for k ∈ K, uki (t) ≤ ϵ for (i, k) ∈ INF,

since the points (x, ẋ, w, ẇ) ∈ R4IJ where L(t, x, ẋ, w, ẇ) = ∞ are such that the vertical line

(x, ẋ, w, ẇ)× R misses epi L(t). Then, we can write

∂L(t, x̄, ¯̇x, w̄, ¯̇w) =
{
(v1, v2, v3, v4) ∈ R4IJ : (v1, v2, v3, v4,−1) ∈ Nepi L(t)

(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)}
.

First, note that for t ∈ [0, T ], epi L(t) is a convex set and the point
(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)
is

an element of epi L(t) for (x̄, ¯̇x, w̄, ¯̇w) ∈ R4IJ . Let v denote an arbitrary element of R4IJ+1 where

the first IJ components of v is denoted as v1, the subsequent IJ components by v2, v3 and v4,

and the last component by vγ . That is, v = [v1, v2, v3, v4]T where v1, v2, v3, v4 ∈ RIJ and vγ ∈ R.

Then, we use Theorem 6.9 of Rockafellar & Wets (1997) which gives

Nepi L(t)

(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)
=

{
v ∈ R4IJ+1 :

[(
x, ẋ, w, ẇ, γ

)
−
(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)]
· v ≤ 0,∀(x, ẋ, w, ẇ, γ) ∈ epi L(t)

}
.

(10)

We next establish the following properties of Nepi L(t)

(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)
for t ∈ [0, T ] which

will asist us in finding the subgradients of L.

Property 1. For t ∈ [0, T ], if v = (v1, v2, v3, v4, vγ)T ∈ Nepi L(t)

(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)
, then

v1 ≤ v2(d+ β − γ)− vγd. Moreover, v1ij = −vγdij + [v2(d+ β − γ)]ij when x̄ij > 0.

To verify Property 1, we first show that any v = (v1, v2, v3, v4, vγ)T such that v1ij > −vγdij +

[v2(d+β−γ)]ij for some ij cannot be in Nepi L(t)

(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)
. Suppose not. Then, we

could find an element (x̃, ˜̇x, w̃, ˜̇w, γ̃) of epi L(t) such that it is equal to
(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w) +

dij(x̃ij − x̄ij)
)
except for x̃ij > x̄ij and ˜̇x = λ(t) −

∑K
k=1 P

kuk − (d + β − γ)x̃. However, in that
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case, we obtain

[(
x̃, ˜̇x, w̃, ˜̇w, γ̃

)
−
(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)]
· v = v1ij(x̃ij − x̄ij) + v2 · (˜̇x− ¯̇x) + vγdij(x̃ij − x̄ij)

= (x̃ij − x̄ij)(v
1
ij + vγdij) + v2(d+ β − γ)(¯̇x− x̃)

=
(
v1ij + vγdij − [v2(d+ β − γ)]ij

)
(x̃ij − x̄ij)

> 0,

contradicting that (v1, v2, v3, v4, vγ)T ∈ Nepi L(t)

(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)
. Similarly, we can show

that if x̄ij > 0, then any v = (v1, v2, v3, v4, vγ)T such that v1ij ̸= −vγdij + [v2(d+ β− γ)]ij for some

ij cannot be in Nepi L(t)

(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w). Therefore, Property 1 proves the coextremality

condition that for t ∈ [0, T ], ẏ(t) ≤ d + y(t)(d + β − γ) and whenever xij(t) > 0, it must be that

ẏij(t) = dij + [y(t)(d+ β − γ)]ij .

Property 2. For t ∈ [0, T ], if v = (v1, v2, v3, v4, vγ)T ∈ Nepi L(t)

(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)
, then

v3 ≤ 0. Similar to Property 1, we show that any v = (v1, v2, v3, v4, vγ)T such that v3ij > 0 for some

ij cannot be in Nepi L(t)

(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)
. Suppose not. Then, we could find an element

(x̃, ˜̇x, w̃, ˜̇w, γ̃) of epi L(t) such that it is equal to
(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)
except for w̃ij > w̄ij .

In that case, we obtain

[(
x̃, ˜̇x, w̃, ˜̇w, γ̃

)
−

(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)]
· v = v3ij(w̃ij − w̄ij)

> 0,

contradicting that (v1, v2, v3, v4, vγ)T ∈ Nepi L(t)

(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)
. Therefore, Property 2

along with the fact that the primal problem is bounded proves the coextremality condition that for

t ∈ [0, T ], ż(t) = 0.

Property 3. For t ∈ [0, T ] and k ∈ K, if ¯̇x = λ(t) −
∑K

k=1 P
kūk − (d + β − γ)x̄ and ¯̇w = ū

for ūk such that ūk ≥ 0, e · ūk ≤ µk(t), ū
k
i ≤ ϵ for (i, k) ∈ INF and v = (v1, v2, v3, v4, vγ) ∈

Nepi L(t)

(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w), then, ūk ∈ argminz∈Φ(t)

{
(P k · v2 − v4) · zk

}
.

To establish Property 3, we first recall that for any (x, ẋ, w, ẇ, γ) ∈ epi L(t), there exists some

uk ∈ RIJ for k ∈ K such that

ẋ = λ(t)−
K∑
k=1

P kuk − (d+ β − γ)x, ẇk = uk, x ≥ 0, w ≥ 0, uk(t) ∈ Φ(t), and γ ≥ (e · d) · x

For an arbitrary k′ ∈ K, consider now an element
(
x̄, ẋ, w̄, ẇ, (e · d) · x

)
∈ epi L(t) where ẋ =

λ(t)− (d+ β − γ)x̄−
∑K

k ̸=k′ P
kūk − P k′uk

′
, ẇk = ūk for k ̸= k′ and ẇk′ = uk

′
. Then, the following

35



holds for v = (v1, v2, v3, v4, vγ) ∈ Nepi L(t)

(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)
:

[(
x̄, ẋ, w̄, ẇ, (e · d) · x

)
−
(
x̄, ¯̇x, w̄, ¯̇w,L

(
x̄, ¯̇x, w̄, ¯̇w

))]
· v

= v1 · (x̄− x̄) + v2 · (ẋ− ¯̇x) + v3 · (w̄ − w̄) + v4 · (ẇ − ¯̇w) + vγ(−(e · d) · x̄+ (e · d) · x̄)

= v2 · (−P k′uk
′
+ P k′ ūk

′
) + v4 · (uk′ − ūk

′
)

= (P k′ · v2 − v4)(ūk
′ − uk

′
).

Then, we have (P k′ · v2 − v4)(ūk
′ − uk

′
) ≤ 0, only if (P k′ · v2 − v4)uk

′ ≥ (P k′ · v2 − v4)ūk
′
. From

(6), since
(
x̄, ẋ, w̄, ẇ, (e · d) · x

)
is an element of epi L(t), this proves Property 3. Recall that the

subgradient of L is related to the normal cone of its epigraph as ∂L(t, x̄, ¯̇x, w̄, ¯̇w) =
{
(v1, v2, v3, v4) ∈

R4IJ : (v1, v2, v3, v4,−1) ∈ Nepi L(t)

(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)}
. The coextremality conditions state

that for all t ∈ [0, T ], (ẏ(t), y(t), ż(t), z(t) ∈ ∂L(t, x(t), ẋ(t), w(t), ẇ(t)). That is, for t ∈ [0, T ],

(ẏ(t), y(t), ż(t), z(t),−1) ∈ Nepi L(t)

(
x(t), ẋ(t), w(t), ẇ(t), L(t, x(t), ẋ(t), w(t), ẇ(t))

)
. This implies

that uk(t) ∈ argminv∈Φ(t)

{
(y(t) ·P k−z(t))v

}
, which establishes the coextremality condition. This

concludes the proof of Theorem 1. ■

Appendix C. Dynamics of the Liver Allocation System

The diagram of the liver allocation system is presented in Figure 5. Figure 6 shows the dynamic

changes in class ij patients’ health condition that is captured by their laboratory MELD score.
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Figure 5: Diagram of the Liver Allocation System

Notes. Static patient classes are denoted by i ∈ {1, 2, ..., I} and dynamic patient classes are denoted by

j ∈ {6, ..., 40} corresponding to transplant candidates’ laboratory MELD scores. The classes of deceased

donor livers are denoted by k ∈ {1, 2, ...,K}. The solid lines represent the identical donor-recipient matches

and the dashed lines represent the other compatible matches.
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Figure 6: Dynamics of class ij patients

Notes. λij(t) denotes the arrival rate of class ij patients. dj denotes the mortality rate of patients with

MELD score j. αj′j denotes patients’ health transition rate from MELD score j′ to j, and αjj′ denotes

patients’ health transition rate from MELD score j to j′.

Appendix D. Size-Based Compatibility Analysis

As we discussed in §5, we created a compatibility matrix for each donor-recipient height class pair

using the BSA analysis. The compatibility percentages can be seen in Table 7.

Table 7: Size-Based Compatibility Matrix (%)

Recipient Height (cm)

≤ 150 cm 151-156 cm 157-165 cm 166-175 cm ≥ 176 cm

D
o
n
or

H
ei
g
h
t
(c
m
)

≤ 150 cm 97.8 97.4 97.4 93.2 67.2

151-156 cm 98.2 99.2 98.4 98.4 83.4

157-165 cm 93.6 1 1 1 97.8

166-175 cm 85.9 99.3 1 1 1

≥ 176 cm 40.5 90.7 97.3 1 1

Table 7 shows that same height tier donor-recipient pairs are the most compatible as expected,

i.e., the diagonal entries of the matrix are either or very close to one. The least compatible donor-

recipient pairs are donors (recipients) with ≤ 150 cm and recipients (donors) with ≥ 176 cm. The

remaining donor-recipient pairs show a high percentage of size-based compatibility (≥ 80%).
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BSA histograms and quantiles of each donor and recipient height tier can be found in figures

below.

Figure 7: BSA Histogram of ≤ 150 cm Donors

Figure 8: BSA Histogram of 151-156 cm Donors
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Figure 9: BSA Histogram of 157-165 cm Donors

Figure 10: BSA Histogram of 166-175 cm Donors
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Figure 11: BSA Histogram of ≥ 176 cm Donors

Figure 12: BSA Histogram of ≤ 150 cm Patients
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Figure 13: BSA Histogram of 151-156 cm Patients

Figure 14: BSA Histogram of 157-165 cm Patients
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Figure 15: BSA Histogram of 166-175 cm Patients

Figure 16: BSA Histogram of ≥ 176 cm Patients
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