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Abstract. Problem definition: Infectious disease screening can be expensive and capacity 
constrained. We develop cost- and capacity-efficient testing designs for multidisease 
screening, considering (1) multiplexing (disease bundling), where one assay detects multiple 
diseases using the same specimen (e.g., nasal swabs, blood), and (2) pooling (specimen bun
dling), where one assay is used on specimens from multiple subjects bundled in a testing 
pool. A testing design specifies an assay portfolio (mix of single-disease/multiplex assays) 
and a testing method (pooling/individual testing per assay). Methodology/results: We 
develop novel models for the nonlinear, combinatorial multidisease testing design prob
lem: a deterministic model and a distribution-free, robust variation, which both generate 
Pareto frontiers for cost- and capacity-efficient designs. We characterize structural proper
ties of optimal designs, formulate the deterministic counterpart of the robust model, and 
conduct a case study of respiratory diseases (including coronavirus disease 2019) with 
overlapping clinical presentation. Managerial implications: Key drivers of optimal designs 
include the assay cost function, the tester’s preference toward cost versus capacity effi
ciency, prevalence/coinfection rates, and for the robust model, prevalence uncertainty. 
When an optimal design uses multiple assays, it does so in conjunction with pooling, and 
it uses individual testing for at most one assay. Although prevalence uncertainty can be a 
design hurdle, especially for emerging or seasonal diseases, the integration of multiplexing 
and pooling, and the ordered partition property of optimal designs (under certain coinfec
tion structures) serve to make the design more structurally robust to uncertainty. The 
robust model further increases robustness, and it is also practical as it needs only an uncer
tainty set around each disease prevalence. Our Pareto designs demonstrate the cost versus 
capacity trade-off and show that multiplexing-only or pooling-only designs need not be on 
the Pareto frontier. Our case study illustrates the benefits of optimally integrated designs 
over current practices and indicates a low price of robustness.

Funding: This work was supported by the National Science Foundation [Grant 1761842]. 
Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.0296. 
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1. Introduction and Motivation
Infectious disease screening improves health outcomes 
by identifying disease-positive subjects and their under
lying pathogen. Pathogen detection is done through 
in vitro laboratory testing on a specimen (e.g., nasal 
swab, blood) collected from the subject, and it is 
especially important for diseases that manifest with 
overlapping symptoms but require different treatment. 
Examples include respiratory diseases, sexually trans
mitted diseases, transfusion-transmittable diseases, gas
trointestinal diseases, blood infections, and sepsis. 
Consider respiratory diseases, a common cause of medi
cal visits and hospitalizations (Templeton 2007, Chan 

et al. 2018). Treatment may differ depending on the virus 
causing the disease (e.g., influenza, respiratory syncytial 
virus, coronavirus disease 2019 (COVID-19)), or there 
may be no treatment at all (e.g., the common cold); how
ever, only testing can distinguish one pathogen from 
another (Centers for Disease Control and Prevention 
2022a). Further, not knowing whether the pathogen is 
bacterial can result in antibiotic overuse (Oved et al. 
2015, Fleming-Dutra et al. 2016), contributing to the 
growing problem of antibiotic resistance (Llor and Bjer
rum 2014). We use the terms disease and pathogen inter
changeably, and we refer to a specific disease/pathogen 
by the most common name.
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A widely used assay is the polymerase chain reaction 
(PCR) assay, a highly sensitive and specific genetic 
assay that detects a pathogen’s DNA (or RNA) (Centers 
for Disease Control and Prevention 2021b, Food and 
Drug Administration 2021). Upon collection, specimens 
are sent to a testing laboratory, where they are pre
pared, and a small sample of each specimen is placed in 
a PCR assay (i.e., a commercial testing kit that consists 
of a small vial with reagents), which in turn, is placed in 
a PCR machine. PCR machines have capacities that 
range from 1 to several hundred assays per run (96 and 
384 are common capacities) (e.g., Johnson 2021). Each 
run typically requires one to four hours (depending on 
the machine) to complete; the run time, along with the 
capacity, determines the machine’s throughput. During 
a run, a unique section of the pathogen’s DNA, if pre
sent, is amplified using reagents, such as polymerase, 
DNA nucleotides, and pathogen-specific primers, and 
pathogen-specific probes emit a signal (e.g., a fluores
cence) if the pathogen is detected in the specimen. Dis
ease screening via PCR is expensive and can be 
capacity restricted. Screening is often performed in 
state public health, hospital, blood donation agency, or 
commercial laboratories, which can test hundreds or 
more specimens per week for multiple diseases. Thus, 
it is essential for screening efforts to be cost and capac
ity efficient. In this light, we study a novel testing 
design problem that utilizes two bundling strategies to 
make screening more cost and capacity efficient.

1.1. Multiplexing (Disease Bundling)
One multiplex assay can detect multiple diseases using 
the same specimen as opposed to single-disease (single
ton) assays. Multiplex assays are available for many 
disease groups, including, for example, respiratory, 
sexually transmitted, transfusion-transmittable, and 
gastrointestinal diseases (e.g., Biomérieux 2022). For 
instance, commercially available multiplex assays for 
respiratory diseases bundle 2–33 pathogens (Mahony 
et al. 2009, Schreckenberger and McAdam 2015, Beck
mann and Hirsch 2016, Chen et al. 2017, Gonsalves et al. 
2019, Kenmoe et al. 2019, Biomérieux 2022); the Ala
bama Department of Public Health uses a 20-plex assay 
to screen for respiratory pathogens, including COVID- 
19 (BCL-APH 2022).

1.2. Pooling (Specimen Bundling)
Under pooling, specimens from multiple subjects are 
bundled (i.e., pooled) and tested with one assay. Dorf
man pooling (Dorfman 1943) is the most common pool
ing method in practice, and it is the method considered 
in this paper; we describe it here for a singleton assay. If 
the pooled test outcome is negative, then all subjects in 
the pool are declared negative for the disease; other
wise, each subject is retested individually via the same 
type of assay and is classified as negative or positive 

based on their individual test outcome. Because only a 
small sample of the specimen is needed for each test, 
each specimen has sufficient material for multiple tests. 
Examples of pooling (mostly for singleton assays) range 
from transfusion-transmittable diseases (e.g., West Nile 
virus, Babesia microti, Zika virus) to respiratory diseases 
(e.g., influenza) to sexually transmitted diseases and 
many others (e.g., May et al. 2010, Taylor et al. 2010, 
van Zyl et al. 2011, Van et al. 2012, Borges et al. 2015, 
Aprahamian et al. 2020, American Red Cross 2022). 
More recently, the Centers for Disease Control and Pre
vention and the Food and Drug Administration (FDA) 
have provided guidance for pooling for COVID-19 
(Food and Drug Administration 2020, Centers for Dis
ease Control and Prevention 2021a).

Multiplex PCR assays are widely available, and pool
ing with PCR is commonly used as PCR is conducive to 
both bundling strategies for the following reasons. (1) 
From a cost perspective, many of the reagents are not dis
ease specific (e.g., the polymerase and the DNA nucleo
tides), and the required amount of these reagents is 
fairly insensitive to the number of diseases in the assay. 
The disease-specific reagents (e.g., the primers and the 
probes) are relatively inexpensive compared with the 
other reagents. Thus, multiplexing reduces the testing 
cost per disease over the corresponding singleton 
assays, leading to a concave cost structure in the num
ber of diseases bundled. (2) From a technology perspec
tive, because of amplification, PCR can detect minute 
quantities of the pathogen’s genetic material, and thus, 
it is not very susceptible to dilution, preserving its high 
sensitivity with pooling (e.g., Nguyen et al. 2019). (3) 
From a testing capacity perspective, multiplexing leads 
to a more efficient use of the limited testing capacity, 
improving both the throughput and turnaround times. 
Pooling also reduces the number of tests required 
(hence, the testing cost and the capacity used) for low- 
prevalence diseases (e.g., Aprahamian et al. 2020).

When multiplexing and pooling are used separately 
for a given set of diseases (the disease selection prob
lem, although of great interest, is beyond the scope of 
this paper), the cost and capacity efficiency objectives 
coincide, and the best nonintegrated design is straight
forward. (i) For multiplexing only, bundle all the diseases 
into one multiplex to take advantage of the concave 
nature of the assay cost in the number of diseases bun
dled, and (ii) for pooling only, pool each singleton assay 
if the disease prevalence is below a threshold. When 
integrating multiplexing and pooling, however, the 
design problem becomes nonlinear and combinatorial 
because of the interdependent decisions of an assay port
folio (the mix and composition of singleton and multi
plex assays) and a testing method (individual testing or 
pooling for each assay). Integrated multiplexing and 
pooling are not commonly used, although practical 
examples exist. We illustrate this integrated testing 
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design through the American Red Cross’s use of a 
three-plex assay for hepatitis B, hepatitis C, and human 
immunodeficiency virus (HIV) in Dorfman pools of 16 
(American Red Cross 2022). A specimen of each blood 
donation is sent to a testing laboratory, where samples 
from 16 specimens (each from a different donor) are 
pooled and tested with one three-plex assay for hepati
tis B, hepatitis C, and HIV. If the pooled test is negative 
for all three diseases, then the 16 donations are declared 
negative for all three diseases. Otherwise (the pool tests 
positive for at least one of the three diseases), then each 
specimen (via another small sample) is individually 
retested using the same three-plex assay. Donations are 
then classified as negative or positive for each disease 
based on their individual test outcome. There are no 
guidelines on when and how these strategies should be 
integrated. This knowledge gap partially explains why 
integrated strategies are uncommon. We narrow the 
knowledge gap with the following methodological con
tributions and managerial insights.

Methodological contributions include the following: 
(1) development of novel multidisease testing design 
models for this nonlinear, partition-type combinatorial 
problem: a deterministic model and a distribution-free, 
robust variation, which both generate Pareto frontiers 
for cost- and capacity-efficient designs; (2) develop
ment of the deterministic counterpart of the robust 
model (Theorem A.1 and Corollary A.1 in Online 
Appendix A); and (3) characterization of structural 
properties of optimal testing designs as a function of 
key problem parameters (Theorems 1–4); and establish
ing the optimality of ordered partitions for certain coin
fection structures (Theorem 5), leading to a polynomial- 
time algorithm (Corollary 1).

Managerial contributions and insights include the 
following. (1) Key drivers of optimal designs include 
the assay cost function, the tester’s preference toward 
cost versus capacity efficiency, prevalence/coinfection 
rates, and for the robust model, prevalence uncertainty. 
Given a disease set, the most capacity-efficient design 
bundles all diseases into one multiplex and uses pool
ing only if the combined disease prevalence is below a 
threshold (Theorem 2), but this is not necessarily the 
most cost-effective design (Theorem 3). Once a combi
nation of cost and capacity efficiency is considered, the 
structure of an optimal design becomes complex (Theo
rems 1 and 4). Now, a portfolio of multiplex and/or sin
gleton assays can be optimal as long as pooling is used; 
in this case, individual testing can be used by at 
most one assay. Further, as coinfection rates rise, multi
plexing becomes more favorable (Lemma 1). These 
properties highlight the interdependence between mul
tiplexing and pooling. (2) Designs that integrate multi
plexing and pooling are more structurally robust to 
variations in prevalence estimates than pooling alone 
because the pooling performance becomes a function of 

the assay prevalence (i.e., combined prevalence of the 
diseases in the assay) rather than the individual disease 
prevalence. Further, when ordered partitions are opti
mal (under certain coinfection structures) (Theorem 5), 
the design becomes more robust. (3) The robustness of 
the design can be further improved through a robust 
model, which is also practical, as it only needs an uncer
tainty set around each disease prevalence. These last 
two insights are especially promising for seasonal 
(e.g., respiratory diseases) or emerging diseases (e.g., 
COVID-19), for which prevalence rates are difficult to 
estimate. (4) The Pareto designs allow the tester to 
choose a design based on their cost and capacity priori
ties. (5) Our case study of 18 respiratory diseases illus
trates that Pareto designs improve upon cost and/or 
capacity efficiency of multiplexing-only or pooling- 
only benchmarks by as much as 40%. This is despite the 
fact that the respiratory disease group is a relatively dif
ficult group for testing design, compared with other 
disease groups, as some respiratory diseases exhibit 
high seasonality, high uncertainty (partially caused by 
COVID-19), and relatively high prevalence. Further, 
the price of robustness is low in our case study.

These findings underscore the value of integrated 
multiplexing and pooling optimization, a unique fea
ture of our model. The use of cost- and capacity- 
efficient testing designs could further allow expanded 
screening, to cover larger populations or more diseases, 
providing a win-win situation for both public health 
practitioners (e.g., state public health laboratories, 
healthcare providers) and patients.

The remainder of the paper is organized as follows. 
Section 2 provides a review of the literature, and Sec
tion 3 provides the notation and formulates the testing 
design problem. Sections 4 and 5 establish properties of 
optimal designs and derive strategy insight. Section 6
illustrates the value of optimal designs through a case 
study based on publicly available data, and Section 7
concludes with research limitations and future research 
suggestions. Mathematical proofs and some case study 
results are relegated to the online appendix.

2. Literature Review
This paper is related to research on pooling and multi
plexing. Although the literature in each area is large, 
the literature that studies their integration from a cost 
and capacity efficiency perspective is limited. Our 
review of each area is not exhaustive, but rather, it is 
representative of the related research so as to position 
our work in the literature.

We focus on PCR assays. Alternative testing technol
ogies for pathogen identification include antigen assays 
and cell cultures (Ogilvie 2001, Leland and Ginocchio 
2007, Gharabaghi et al. 2011, Ginocchio and McAdam 
2011, Al Ghounaim et al. 2017, Das et al. 2018). Antigen 
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assays tend to be less expensive but also less sensitive 
than PCR; further, PCR can identify a larger set of 
pathogens because not all viral pathogens have antigen 
assays. On the other hand, testing via cell cultures is 
highly accurate (like PCR) but more expensive, with 
much longer turnaround times. As a result, PCR (and 
more recently, multiplex PCR) assays are becoming 
increasingly common.

Regarding pooling, Dorfman pooling was first pro
posed in the 1940s for syphilis screening in military 
inductees (Dorfman 1943). Since then, many variations 
of Dorfman pooling, as well as other pooling schemes, 
have been extensively studied, mostly for a singleton 
assay, to minimize the per subject expected number of 
tests. Although minimizing this metric improves both 
the cost and capacity efficiency for a singleton assay, 
these metrics diverge for multiple diseases because of 
different costs of multiplex and singleton assays; this is 
one of the departures of our work from this literature. It 
is well known that pooling reduces the expected num
ber of tests over individual testing when disease preva
lence is sufficiently low, and an optimal pool size has 
been analytically characterized for various pooling 
schemes; see Kim et al. (2007), Aprahamian et al. (2020), 
Bish et al. (2021), and Nguyen et al. (2021) for reviews of 
the pooling literature as well as the references therein.

Considering PCR multiplexing, three main research 
streams are of interest: (1) efficacy studies, many of 
which establish that multiplexing generally preserves 
the high sensitivity and specificity of their counterpart 
singleton PCR assays (e.g., Kenmoe et al. 2019); (2) 
design studies, which focus on compatibility from a 
biochemical perspective (e.g., how to design primers 
for different pathogens that work well together (i.e., 
without interference) when combined in an assay) (e.g., 
Rachlin et al. 2005, Yuan et al. 2021); and (3) cost- 
effectiveness studies, in which large multiplex assays 
typically offer higher operational efficiencies over their 
multiple singleton assay counterparts (see Section 6). 
Thus, much of this literature explores the benefits of 
multiplexing in comparison with current practices or in 
clinical settings, mainly in terms of whether the patho
gen identification improves treatments and reduces 
costs. For example, a major benefit of pathogen identifi
cation is reduction in unnecessary antibiotic use (Oved 
et al. 2015, Fleming-Dutra et al. 2016) along with reduc
tion in inpatient stay (Rogers et al. 2015). Multiplexing 
has been shown to be cost effective for many disease 
groups and populations (e.g., Vallières and Renaud 
2013, Balakrishnan et al. 2016, Pinsky and Hayden 
2019), including respiratory diseases (e.g., Subramony 
et al. 2016); see also the survey paper that compares 
assay performance and clinical (e.g., mortality rate, 
inpatient stay, unnecessary antibiotic use) and eco
nomic (e.g., hospitalization cost) impacts of various 
FDA-approved multiplex assays for different disease 

groups (bloodstream, respiratory, gastrointestinal, cen
tral nervous system) based on previously published 
studies (Ramanan et al. 2018).

In summary, much of the multiplexing literature stud
ies existing commercial assays and does not delve into 
assay design; the biochemical assay design research is 
complementary to the operational design problem that 
we study. We start, as an input, with a set of pathogens 
with reagents compatible for multiplexing, and we con
struct multiplex and/or singleton assays for these patho
gens so as to maximize the operational efficiencies. 
Importantly, we show that, although it is feasible to bun
dle all these diseases in one multiplex, this strategy is not 
necessarily optimal when considering pooling.

The operations/biostatistics literature that studies 
the design of multiplexing and pooling strategies from 
an efficiency perspective is limited. Tebbs et al. (2013) 
considers Dorfman pooling (with pool sizes deter
mined via enumeration) for a two-plex for Chlamydia 
trachomatis and Neisseria gonorrhoeae (both sexually 
transmitted diseases); their numerical study shows that 
this two-plex with pooling reduces the number of tests 
over both its counterpart with individual testing and 
two singletons with pooling. Hou et al. (2017) and Hou 
et al. (2020) extend this work to other pooling schemes 
for the two-disease setting. Thus, all three papers 
(Tebbs et al. 2013, Hou et al. 2017, Hou et al. 2020) con
sider only the two-disease setting, where the two-plex 
is the only multiplex, and they do not delve into assay 
portfolio design. They also consider the expected num
ber of tests; this is equivalent to the testing cost only 
when the two-plex and singleton assays have the same 
cost, which is not necessarily true (see Section 1). These 
papers do not provide analytical methods for optimal 
pool size determination. From a clinical perspective, 
Lindan et al. (2005) shares results from the implementa
tion of a two-plex PCR for C. trachomatis and N. gonor
rhoeae, both with Dorfman pooling (in pools of five) and 
with individual testing, at two clinics, and it shows that 
pooling reduces the number of tests by 50.3% over indi
vidual testing while achieving high efficacy. Van Hulst 
et al. (2009) studies the cost-effectiveness of three Dorf
man pool sizes (6, 24, 48) for the hepatitis B, hepatitis C, 
and HIV three-plex over current blood screening prac
tices in different countries; as a practical example, this 
three-plex is used by the American Red Cross in Dorf
man pools of 16 (American Red Cross 2022). From a 
methodological perspective, our problem is also related 
to the partition problem discussed subsequently.

3. The Notation, Decision Problem, 
and Model

3.1. The Notation and the Decision Problem
We denote all vectors in boldface. Let N � {1, 2, : : : , n}
denote the disease set for testing arranged in nonincreasing 

Bish, Bish, and El Hajj: Efficient Strategies for Multi-disease Testing with Genetic Assays 
4 Manufacturing & Service Operations Management, Articles in Advance, pp. 1–22, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

21
0.

6.
13

7]
 o

n 
04

 N
ov

em
be

r 
20

23
, a

t 2
3:

15
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



order of disease prevalence. Coinfections are possible, 
and unless otherwise stated, we make no assumptions 
on the coinfection structure; that is, each pair of dis
eases in set N can be positively correlated, negatively 
correlated, or independent.

We study both deterministic and robust versions of 
the multidisease testing design problem for genetic 
assays considering multiplexing and Dorfman pooling 
(hereafter, “pooling”) strategies. Although the deter
ministic model is the first step in the study of this novel 
problem, the robust model (i.e., under prevalence 
uncertainty) provides a realistic extension, especially 
for emerging or seasonal diseases, which typically exhi
bits high uncertainty (e.g., El Amine et al. 2017, Apraha
mian et al. 2020, Nguyen et al. 2021). The objective is to 
minimize a convex combination of the two key dimen
sions of testing design: the expected testing cost and 
capacity requirement (i.e., expected number of tests) or 
a robust version of it, with the relative weights dictated 
by parameter λ ∈ [0, 1]. The set of optimal designs 
(∀λ ∈ [0, 1]) provides the Pareto designs, including the 
cost- and test-minimizing special cases (the latter is the 
primary objective studied in the pooling literature) 
(Section 2).

A testing design corresponds to the following. 
i. An assay portfolio represented by a partition of set 

N into mutually exclusive and exhaustive disease sub
sets, such that the diseases in each subset are bundled 
into one assay. Let S � (Sk)k�1, : : : , q, for some q � 1, 2, : : : , n, 
denote a partition of set N: Sk ∩ Sl � ∅, k, l � 1, : : : , q :

k ≠ l, ∪q
k�1 Sk �N, with sk � |Sk | denoting the size of 

assay Sk. Then, sk � 1 corresponds to a singleton and 
sk ≥ 2 corresponds to a multiplex, or an sk -plex, for the 
diseases in Sk.

ii. A testing method for each assay (i.e., pooling or 
individual testing) and if pooling, then the pool size, 
denoted by t ∈ Z+. Let t � (tk)k�1, : : : , q denote the pool 
size vector. Then, if tk � 1, assay Sk is tested individu
ally, and if tk ≥ 2, assay Sk is tested via pooling, with 
pool size tk.

In general, we use the superscript k for assay index 
and the subscript i for disease index, and we drop the 
indices when clear from context (e.g., we use set S when 
referring to an assay and a vector of sets S when refer
ring to a partition of set N; that is, to an assay portfolio).

Each assay produces a binary outcome for each disease 
that it tests (e.g., an s-plex produces an s-dimensional 
binary test outcome vector), with a positive/negative out
come indicating the presence/absence of the correspond
ing disease. We assume that all assays have perfect 
sensitivity and specificity (reasonable for genetic assays). 
In pooling, if the outcome vector for the pooled test is 
negative for all the diseases in the assay, then all subjects 
in the pool are declared negative for those diseases; other
wise (the pool tests positive for at least one disease in the 

assay), each subject is retested individually via the same 
type of assay, and it is classified as negative or positive 
for each disease based on their individual test outcome 
vector. Assay sensitivity may reduce for large pools 
because of dilution. Although dilution is not pronounced 
for genetic assays (because of the amplification of the 
genetic material from the specimens), we follow the com
mon practice and restrict pool sizes to a pool size limit, M 
(e.g., Nguyen et al. 2019, Aprahamian et al. 2020).

Assumption A. The assay cost function for an s-plex, c(s), 
s ∈ Z+, is concave nondecreasing in s, with c(1) � γ (> 0), 
and c(s) ≤ γ × s, s ∈ Z+: that is, bounded from above by a 
linear function.

A concave functional form is realistic for genetic 
assay because many of their reagents are not disease 
specific and the disease-specific primers and probes are 
less expensive and also similar to each other (mainly 
consisting of simple strands of DNA); hence, they have 
similar cost (see Section 1). We define the composite cost 
function c̃(s,λ) ≡ λ c(s) + 1�λ, s ∈ Z+,λ ∈ [0, 1].

We express all performance metrics per testing sub
ject. Let T(S, t) and C(S, t), respectively, denote the per 
subject expected number of tests (“expected tests”) and 
the per subject expected testing cost for assay S and 
pool size t, where

C(S, t) � c(s) × T(S, t): (1) 

Then, the per subject expected total testing cost (“total 
cost”) for assay portfolio S, pool size vector t, and 
λ ∈ [0, 1], denoted by TC(S, t,λ), is a convex combina
tion of the expected testing cost and tests:

TC(S, t,λ) � λ
X

k
C(Sk, tk) + (1�λ)

X

k
T(Sk, tk)

�
X

k
c̃(sk,λ) × T(Sk, tk): (2) 

We use TD(S, t) to denote the per subject expected tests 
under pooling with pool size t ∈ Z+, t ≥ 2.

Because coinfections are possible, each subject is 
either free of all diseases in set N or infected by one or 
more diseases in this set. To represent all infection pos
sibilities of a subject, let N(l), l � 1, 2, : : : , n denote the set 
of all l-tuples of set N (i.e., the set of all (nl ) ordered ele
ments (arranged in increasing disease index) each with 
l diseases). For example, N(1) �N, N(2) � {ij : i, j ∈N, 
i < j}, N(3) � {ijr : i, j, r ∈N, i < j < r}, and so on. Thus, 
indices 0, i, ij, ijr, : : : , 12: : :n, respectively, denote the 
cases of no infection; infection i only; infections i and j 
only; infections i, j, and r only; and so on.

For the deterministic prevalence model (see Section 3.2
for the extension to stochastic prevalence), the determinis
tic joint prevalence vector (“joint vector”), p � [p0, 
(pi)i∈N, (pij)ij∈N(2), (pijr)ijr∈N(3), : : : , p12: : :n], denotes the prob
ability that a random subject is in each of the 2n infection 
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categories: that is, with p0 denoting the no-infection 
probability; pi, i ∈N(1) denoting all monoinfection prob
abilities; and the other elements denoting all possible 
coinfection probabilities, where

p0+
X

i∈N
pi+

X

ij∈N(2)
pij+

X

ijr∈N(3)
pijr+ ⋯ +p12: : :n � 1: (3) 

We define A+i as the event that a random subject is 
infected with disease i ∈N (and may be coinfected with 
some other diseases in set N \ {i}).

Definition 1. For assay S ⊆N, assay prevalence, π(S), 
is the probability that a random subject is infected by 
at least one disease in assay S (and may be coinfected 
with other diseases in set N \ S):

π(S) � Pr(∪i∈SA+i ) �
X

i∈S
pi +

X

ij∈N(2):i∈S or j∈S
pij

+
X

ijr∈N(3):i∈S or j∈S or r∈S
pijr+ ⋯ +p12: : :n: (4) 

The marginal prevalence of each disease, denoted 
πi, i ∈N, and the overall prevalence of the disease set, 
denoted π(N), are given by

πi � Pr(A+i ) � pi +
X

j:ij∈N(2)
pij +

X

j:ji∈N(2)
pji +

X

jr:ijr∈N(3)
pijr

+
X

jr:jir∈N(3)
pjir +

X

jr:jri∈N(3)
pjri+ ⋯ +p12⋯ n, i ∈N,

(5) 
π(N) � Pr(∪i∈NA+i ) �

X

i∈N
pi +

X

ij∈N(2)
pij +

X

ijr∈N(3)
pijr+ ⋯

+ p12: : :n � 1� p0, (6) 

where p � (πi)i∈N is the marginal prevalence vector 
(“marginal vector”).

The following relationship trivially holds because 
of coinfections and the disease indexing:

πn ≤ πn�1 ≤ ⋯ ≤ π1 ≤ π(N) ≤
X

i∈N
πi: (7) 

Regarding the per subject expected tests function, for 
assay S, one test suffices for individual testing (t � 1), 
whereas for pooling with pool size t ≥ 2, one pooled 
test is conducted for all t subjects, which if positive for 
at least one disease in assay S, is followed by an indi
vidual retest for each of the t subjects in the pool. 
Thus, we can write (e.g., Aprahamian et al. 2020)

T(S, t) � TD(S, t) � 1
t
+ 1� (1�π(S))t, if t ≥ 2

1, if t � 1
:

(

(8) 
3.2. Model Formulations
To formulate the multidisease testing design problem, 
we represent a partition (assay portfolio) S by the 
binary decision variable vector x � (xk)k�1, : : : , n, where 

each xk � (xk
i )i∈N, ∀k; that is, xk

i � 1 if disease i is included 
in assay Sk and zero otherwise. Hence π(Sk) � π(xk), ∀k.

The deterministic multidisease testing design prob
lem (TD) is as follows:

minimize
x,t

TC(x,t,λ)�λ
Xn

k�1
C(xk,tk)+(1�λ)

Xn

k�1
T(xk,tk)

�
Xn

k�1
c̃

 
X

i∈N
xk

i ,λ
!

×min 1, 1
tk+1�(1�π(xk))

tk
� �

(9) 

subject to
Xn

k�1
xk

i �1, i∈N (10) 

tk ≤M, k�1,:::,n (11) 
tk ≥ 0, integer, k�1,:::,n, (12) 
xk

i binary, i∈N, k�1,:::,n: (13) 

Objective (9) minimizes a convex combination of the 
expected testing cost and expected tests, with weights 
dictated by parameter λ ∈ [0, 1]; thus, by varying λ, the 
model generates the Pareto designs, including the cost- 
and test-minimizing special cases. (10) ensures that each 
disease is tested by an assay. (11) restricts pool sizes to the 
pool size limit. (12) and (13) are logical constraints on inte
ger decision variables. There is symmetry among solu
tions, and symmetry-breaking constraints can be added.

We now formulate the robust testing design problem 
under stochastic prevalence. To this end, we denote 
random variables in uppercase letters and their realiza
tions in lowercase letters; use Ω(:) to denote an uncer
tainty set, and use “;” for probabilistic conditioning. Let 
P denote the continuous random joint vector, which 
implies, via Equation (5), a continuous random mar
ginal vector, P � (Πi)i∈N, with respective realizations p 
and p (converging to the notation for the deterministic 
problem).

The robust multidisease testing design problem (R- 
TD) is as follows:

minimize
x, t

max
p∈Ω(P)

�

λ
Xn

k�1
C(xk,tk;p)+(1�λ)

Xn

k�1
T(xk,tk;p)

�

subject to (10),(11),(12),(13):
(14) 

It is difficult to accurately estimate the distribution of 
the marginal vector P (at disease prevalence level), 
let alone the distribution of the joint vector P (at mono- 
and coinfection probability level). Therefore, we adopt 
a distribution-free approach and construct an interval- 
type uncertainty set (e.g., Perakis and Roels 2008, El 
Amine et al. 2017, El Hajj et al. 2022a) for each random 
marginal prevalence, Πi, i ∈N, which then implies an 
equivalent uncertainty set on P (Remark A.1 in Online 
Appendix A). The former is relatively easier to con
struct (e.g., the lower and upper limits of a statistical 
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confidence interval (CI) on each disease prevalence can 
be used, as we do in the case study). (Although not 
practical because of the large number of coinfections, 
one can also start with an uncertainty set on P.)

The joint optimization of multiplexing and pooling, 
the cost- and capacity-based objective, and the robust 
model are our main modeling departures from the liter
ature (Sections 1 and 2), leading to a combinatorial prob
lem. TD, with a nonlinear objective and a partition- 
type decision, is NP hard in general (Chakravarty et al. 
1982), and R-TD, with a mini-max objective, is even 
harder.

In particular, our decision problem is related to parti
tioning a set of objects, each with a certain attribute, 
into a variable number of mutually exclusive and 
exhaustive groups to minimize the total cost of the par
tition. Within this large body of this literature, the most 
relevant works include Chakravarty et al. (1982), which 
shows the optimality of an ordered partition for a cost 
function that is concave in the attribute sum, and Anily 
and Federgruen (1991), which extends this result to a 
cost function that depends on the group size and the 
average or the maximum attribute in the group. The 
ordered partition property leads to an equivalent 
shortest path-based formulation that can be solved in 
polynomial time (Chakravarty et al. 1982, Anily and 
Federgruen 1991); see Section 5.2. Anily and Feder
gruen (1991) also provides the necessary conditions for 
the optimality of a monotone partition (i.e., an ordered 
partition for which objects with smaller attributes are 
placed in smaller groups (this property does not hold in 
our setting)). The aforementioned results require the 
concavity of the total cost function in the attribute sum: 
in our setting, concavity in the sum of marginal disease 
prevalences, which does not necessarily hold for our 
problem (see Equations (2), (4), and (8)), except for a 
special case with no coinfections (Section 5.2). Others 
extend the necessary conditions for the optimality of an 
ordered partition to different cost functions that do not 
apply to our setting (e.g., Hwang 1981, Hwang et al. 
1985). A mini-max variation of the partition problem, 
when restricted to ordered partitions, is also studied 
(e.g., Manne and Sorevik 1995, Olstad and Manne 
1995), which in our setting, corresponds to the ordered 
partition that minimizes the highest cost per assay for a 
given prevalence vector. This is in contrast with our 
robust model, which minimizes the highest total cost 
(i.e., for all assays) over all possible prevalence vectors 
in an uncertainty set. In the absence of the ordered par
tition property, the partition problem remains NP hard, 
and the literature develops various heuristics and exact 
algorithms, such as genetic algorithms (Levine 1996); 
linear relaxation-based methods (e.g., dual heuristics, 
volume algorithms) (Fisher and Kedia 1990, Chan and 
Yano 1992, Barahona and Anbil 2002, Boschetti et al. 

2008); implicit enumeration and search trees; simplex, 
hybrid primal, and symmetric subgradient cutting 
plane methods; and column generation (Balas and Pad
berg 1976). We refer the interested reader to the works 
of Balas and Padberg (1976), Fisher and Kedia (1990), 
Barahona and Anbil (2002), and Lewis et al. (2008) for 
detailed overviews.

4. Structural Properties of Optimal 
Testing Designs

Section 4.1 provides preliminaries on testing method 
optimization, and Section 4.2 integrates assay portfolio 
optimization into testing design in a multidisease set
ting, a unique feature of our model.

4.1. Preliminaries: Optimal Testing Method— 
Pooling vs. Individual Testing

Given an assay portfolio S, the testing design problem 
reduces to testing method optimization (pooling versus 
individual testing for each assay), and the single- 
disease results from the literature extend in a straight
forward manner to our multidisease setting. We use t∗D 
to denote the optimal Dorfman pool size (i.e., in the 
domain t ∈ Z+, t ≥ 2, and t∗ to denote the (global) opti
mal pool size; i.e., in the domain t ∈ Z+, t ≥ 1 (including 
the individual testing option, t � 1)). To make the 
dependence of T(:) and t∗(:) on π(S) explicit, in places 
we use π(S) as an argument (e.g., t∗(π(S))).

Property 1 (From Aprahamian et al. 2020). Consider a 
single disease with prevalence π. The optimal integer pool 
size, t∗D(π), that minimizes the expected tests function 
under Dorfman pooling (i.e., minimizet∈Z+, t≥2TD(π, t) is 
the solution to

t∗D(π) �min arg mint∈{⌊tfrac⌋, ⌈tfrac⌉, M}{TD(π, t)}, M
n o

,

where tfrac �
2

ln(1�π)W0 �
1
2 (�ln(1�π))1=2

� �

, 

where W0(·) denotes the principle branch (i.e., the largest 
solution) of the Lambert function W(x), defined by x �
W(x)eW(x), ∀x ∈ R (Corless et al. 1996)).

Property 1 trivially extends to a multiplex, and a 
threshold for when pooling is optimal over individual 
testing can be derived for integer pool sizes, extending 
a similar result for continuous pool sizes (e.g., Apraha
mian et al. 2020).

Property 2. For any assay S ⊆N, the optimal integer pool 
size, t∗D(π(S)), can be derived by Property 1 by letting 
π � π(S). 

1. T(π(S), t∗D(π(S))) ≤ T(π(S), 1) � 1 only if π(S) ≤ p � 1�
ffiffi
1
3

3
q

≈ 0:31, where the pooling threshold p is independent of 
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assay size s: that is,

t∗(π(S)) �

(
t∗D(π(S)), if π(S) ≤ p
1, otherwise

, leading to :

T(π(S), t∗(π(S))) �

(
TD(π(S), t∗D(π(S))), if π(S) ≤ p
1, otherwise

:

2. (From Aprahamian et al. 2020, El Hajj et al. 2022c) 
T(π(S), t∗(π(S))) � TD(π(S), t∗D(π(S))) is strictly concave 
increasing in π(S) ∈ [0, p], and T(π(S), t∗(π(S))) � 1 for 
π(S) ∈ [p, 1].

As Property 2 indicates, for a given assay portfolio S, 
an optimal testing method can be determined indepen
dently for each assay in the portfolio. In the remainder 
of the paper, we consider that all assay portfolios use 
the optimal testing method delineated in Properties 1
and 2.

4.2. Optimal Testing Designs
For the robust formulation R-TD, under an interval- 
type uncertainty set for the marginal vector (Remark 
A.1 in Online Appendix A), we are able to characterize 
the worst-case solution (Theorem A.1 and Corollary 
A.1 in Online Appendix A). These results lead to the 
deterministic counterpart for R-TD, which corresponds 
to a specific instance of TD, as outlined in the following 
remark.

Remark 1.
1. By Theorem A.1 in Online Appendix A, the deter

ministic counterpart of R-TD has the following objec
tive function:

minimize
x, t

Xn

k�1
c̃

 
X

i∈N
xk

i ,λ
!

× min 1, 1
tk + 1�

 

1�min
(

1,
X

i∈N
πixk

i

)!tk8
<

:

9
=

;
:

2. Noting the equivalent objective of TD in (9) (i.e., a 
function of assay prevalences only), the deterministic 
counterpart of R-TD reduces to an instance of TD with 
specific assay prevalences: π(S) �min 1,

P
i∈Sπi

� �
, ∀S 

⊆N. This equivalence indicates that the structural prop
erties for TD (Theorems 1–4) continue to hold for R-TD, 
with π(S) �min 1,

P
i∈Sπi

� �
, ∀S ⊆N.

3. Further, for the special case where 
P

i∈Nπi ≤ 1, 
the deterministic counterpart of R-TD also reduces to 
TD with the specific p provided in Corollary A.1 in 
Online Appendix A.

Importantly, the deterministic counterpart of R-TD 
requires only an upper limit on each disease prevalence, 
πi, i ∈N. From an implementation point, this is highly 
desirable, and such upper limits can be derived, for 
example, from statistical CIs for disease prevalence. In 
general, the higher the uncertainty around a disease 
prevalence, the higher its upper limit will be, increasing 
the conservatism of the robust solution, which will be 
studied in Section 6.

Next, we characterize the optimal testing designs 
for TD and derive insight. (By Remark 1, Corollary A.1 
in Online Appendix A, and Theorem A.1 in Online 
Appendix A, the structural results extend to R-TD.) To 
this end, we provide a series of definitions, which allow 
us to decompose the set of all possible testing designs 
into a number of mutually exclusive and exhaustive design 
classes based on how the disease set is partitioned and 
the testing methods used (see Table 1 for a mapping of 
all possible design classes and strategies).

Definition 2. A partition S � (Sk)k�1, : : : , q is a q-partition, 
q � 1, 2, : : : , n, if it consists of exactly q assays, and it is 
an ordered q-partition if S1 � {1, : : : , s1}, S2 � {s1 + 1, 
: : : , s1 + s2}, : : : , Sq �

Pq�1
k�1 sk + 1, : : : , n

n o
, for some car

dinality vector s � (sk)k�1, : : : , q :
Pq

k�1 sk � n; that is, the 
disease set is partitioned into q assays following a 
nonincreasing order of disease prevalences, πi, i ∈N.

Definition 3. Consider a q-partitioned testing design 
(S, t) for any q � 1, 2, : : : , n. 

1. If all q assays utilize pooling (t ≥ 2), it is a Dorf
man design. If all q assays utilize individual testing 
(t � 1), it is an individual-testing design. If some assays 
utilize pooling, whereas others utilize individual test
ing (t : ∃k, l � 1, : : : , q : tk � 1, tl ≥ 2), it is a mixed- 
testing design.

2. If at least one multiplex is used (q � 1, : : : , n� 1), it 
is an mx design; otherwise (q�n), it is an all-singleton 
design.

We use the notation D(q), I(q), q � 1, : : : , n and M(q), 
q � 2, : : : , n to denote the optimal testing design when 
constrained to be within the q-partitioned Dorfman, 
individual-testing and mixed-testing design classes, 

Table 1. The Mapping Between All Design Classes and Strategies

Strategy Design class

Only multiplexing (no pooling) I(q), q � 1, : : : , n� 1
Only pooling (no multiplexing) D(n) and M(n)
Both multiplexing and pooling D(q), q � 1, : : : , n� 1 and M(q), q � 2, : : : , n� 1
No multiplexing and no pooling I(n)
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respectively. (The M(1) design (i.e., one assay with a 
mix of pooling and individual testing) is not possible.)

Definition 4. Design class A dominates design class B, 
denoted A≼B, if the total cost of an optimal TD solu
tion within design class A is less than or equal to that 
for design class B.

We are ready to provide structural properties of 
optimal designs; in case of multiple optimal designs, 
the results characterize one of the optimal designs. To 
put our results into perspective, we first provide the 
optimal design when multiplexing and pooling strate
gies are optimized separately (which will serve as 
benchmarks in the case study of Section 6), represent
ing the current modeling of these strategies in the lit
erature (Section 2); in this case, the cost and capacity 
efficiency objectives coincide.

Remark 2.
1. Multiplexing only (t � 1). For an individual-testing 

design, the optimal assay portfolio is to bundle all dis
eases into one multiplex (see Assumption A): that is, an 
I(1) design.

2. Pooling only (S � ({i})i∈N). For an all-singleton 
design, the optimal testing method for each assay fol
lows the pooling threshold policy (Properties 1 and 2); 
that is, each singleton is pooled only if the prevalence 
of its disease is sufficiently low (i.e., I(n), D(n), or M(n)
design).

When multiplexing and pooling are optimized jointly 
(i.e., TD), a main departure from the literature, the inter
play between multiplexing and pooling impacts the 
design, and the optimal designs in Remark 2 are no lon
ger necessarily optimal.

Theorem 1. Consider TD. We have that I(1)≼ I(q), ∀q �
2, : : : , n; an optimal M(q), q � 2, : : : , n� 1, design is such 
that only one assay is individually tested and q � 1 assays 
are pooled, ∀λ ∈ [0, 1]. Further, an optimal design class 
can be characterized as follows for any λ ∈ [0, 1]. 

1. If π(N) ≤ p, then D(q) (i.e., Dorfman) for some q � 1, 
: : : , n.

2. If π1 ≤ p < π(N), then either I(1) or D(q) for some q �
2, : : : , n or M(q) for some q � 2, : : : , n� 1.

3. If πn ≥ p, then I(1) (i.e., n-plex individual testing).
4. Otherwise (if ∃i ∈ {1, : : : , n� 1} : πi+1 < p < πi), then 

either I(1) or M(q) for some q � 2, : : : , n� i+ 1.

Thus, the joint optimization of multiplexing and 
pooling implies testing designs that span the entire 
spectrum of design classes (see Table 1), demonstrating 
the richness of this decision problem. Now, the optimal 
design is driven by the tension between reducing the 
expected number of tests versus the expected testing 
cost, hence the capacity versus cost trade-off. In particu
lar, the expected tests function under pooling (at optimal 
pool sizes) is concave increasing in assay prevalence 

(Property 2), favoring multiplexing. On the other hand, 
the expected testing cost is the product of the assay cost 
function and the expected tests function (Equation (1)), 
both of which are concave increasing as more diseases 
are bundled (as this also increases the assay prevalence), 
but the expected testing cost is not necessarily concave 
in the number of bundled diseases. To see the intuition, 
observe that the bundling of more diseases raises the 
assay prevalence, thus increasing the (individual) retest 
probability (Equation (8)), but all individual retests use 
the same type of assay as the original assay, the cost of 
which is increasing in the number of bundled diseases. 
Further, if disease bundling raises an assay’s prevalence 
too much, then the efficiency provided by pooling is 
lost. As a result of these tensions, an assay portfolio of 
multiplex and/or singleton assays can now be optimal 
as long as at least one assay is pooled (i.e., M(q) or D(q)). Fur
ther, a portfolio of multiple assays and a combination of 
testing methods can be optimal (i.e., M(q)) as long as only 
one assay uses individual testing (all other assays must be 
pooled). We also note that the integration of multiplex
ing and pooling makes the designs structurally robust to 
prevalence uncertainty because it is the assay’s preva
lence (i.e., the combined prevalences of the diseases in 
the assay) that drives the pool size and not the disaggre
gate disease prevalences; we quantitatively study this 
aspect in the case study.

Theorem 1 highlights the dependencies between multi
plexing and pooling, hence the need for joint optimiza
tion. The next section discusses these dependencies in a 
more precise manner through the main drivers of optimal 
designs.

5. Design Insight: Main Drivers of an 
Optimal Testing Design

We now analyze the two main drivers of optimal 
designs: the cost structure (Section 5.1) and the disease 
prevalence/coinfection structure (Section 5.2).

5.1. Impact of the Cost Structure
We first study how the optimal testing design changes 
as the assay cost function (c(:)) or the tester’s preference 
toward cost versus test minimization (parameter λ) 
changes. Let C̃ denote the infinitely many composite 
cost functions, c̃(s,λ) � λ c(s) + 1�λ, ∀λ ∈ [0, 1], for 
which the assay cost function c(:) satisfies Assumption 
A. The marginal differences of any composite cost 
function in this set are nonnegative and bounded by γ 
(i.e., 0 ≤ c̃(s+ 1,λ)� c̃(s,λ) ≤ γ, ∀s ∈ Z+, ∀c̃(:) ∈ C̃), and 
they satisfy concavity. The following definition allows 
us to compare cost functions in terms of their marginal 
differences.

Definition 5. We say that function g(:) has higher dif
ferences relative to function g′(:), written g(:)≥ diff g′(:), 
if g(s+ 1)� g(s) ≥ g′(s+ 1)� g′(s), ∀s ∈ Z+.
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Property 3. Any composite cost function c̃(s,λ) ∈ C̃ attains 
lower differences as (1) the assay cost function c(s) attains 
lower differences or (2) λ decreases.

Remark 3. Among the infinitely many composite cost 
functions c̃(:) ∈ C̃, 

1. the smallest-difference function in set C̃ is attained 
when λ � 0 or c(s) � γ, ∀s ∈ Z+ (i.e., constant assay cost). 
Under this function, TD objective reduces to test 
minimization.

2. the highest-difference function in set C̃ is attained 
when λ � 1 and c(s) � γ × s, ∀s ∈ Z+. Under this func
tion, TD objective reduces to cost minimization with a 
linear assay cost.

In what follows, we first characterize the optimal 
design for the smallest- and highest-difference com
posite cost functions described in Remark 3, which 
respectively, reduce to test minimization and cost 
minimization (with linear assay cost), allowing us to 
gain insight into the tension between these objectives. 
The test minimization special case is also important 
for positioning our work within the pooling literature, 
which extensively studies this objective (Section 2).

Theorem 2. Consider the smallest-difference composite 
cost function in set C̃: that is, with λ � 0 or c(s) � γ, 
∀s ∈ Z+. We have that I(1)≼M(q), ∀q � 2, : : : , n. Further, 
if π(N) ≤ p, then D(1)≼D(2)≼ ⋯ ≼D(n). The optimal 
design class can be characterized as follows. 

1. If π(N) ≤ p, then D(1) (i.e., n-plex Dorfman).
2. Otherwise (if π(N) > p), then I(1) (i.e., n-plex individ

ual testing).

Theorem 3. Consider the highest-difference composite cost 
function in set C̃: that is, with λ � 1 and c(s) � γ × s, 
∀s ∈ Z+. We have the following. If π(N) ≤ p, then D(n)≼ 

D(n�1)≼ ⋯ ≼D(1). If π1 ≤ p < π(N), then D(n)≼D(q), ∀ 
q � 1, : : : , n� 1. The optimal design class can be character
ized as follows: 

1. if π1 ≤ p, then D(n) (i.e., all-singleton Dorfman);
2. if πn ≥ p, then any individual testing design, I(q), for 

any q � 1, : : : , n;
3. otherwise (if ∃i ∈ {1, : : : , n� 1} : πi+1 < p < πi), then 

any M(q), for q � n� i+ 1, : : : , n, which uses any individual 
testing design for diseases in set {1, 2, : : : , i} and pooled test
ing and singleton assays for each disease in set {i+ 1: : : , n}.

Table 2 summarizes the properties of optimal designs 
for the general cases as well as the extreme cases (the 
smallest- and highest-difference composite cost func
tions), established in Theorems 1–3. We note that all 
prevalence regions in the table are relevant in practice, 
as it is possible for the overall prevalence to be below or 
above the 31% threshold, as our case study indicates 
(Section 6). In the extreme cases, multiplexing is in the 
form of “all or none.” That is, either all diseases are bun
dled into one n-plex (1-mx design), or each disease is 
tested separately via its own singleton assay (all-single
ton design). Such all-or-none-type assay portfolios also 
represent the designs when multiplexing and pooling 
are considered separately (Remark 2). As Theorems 2
and 3 show, this all-or-none form is driven by the ten
sion between reducing the expected tests versus the 
expected testing cost. In particular, when pooling is 
optimal (i.e., π(N) ≤ p), for the smallest-difference com
posite cost function (i.e., test minimization objective), 
one additional assay in a Dorfman design increases 
the expected tests (i.e., D(1)≼D(2)≼ ⋯ ≼D(n)); for the 
highest-difference composite cost function (testing 
cost minimization objective), one fewer assay in a Dorf
man design increases the expected testing cost (i.e., 
D(n)≼D(n�1)≼ ⋯ ≼D(1)). Table 2 also provides insight 

Table 2. Optimal Design Class Based on the Composite Cost Function c̃(:)

Composite cost function

Prevalence range

π(N) ≤ p

π(N) > p

π1 ≤ p
πi+1 < p < πi, for some 

i ∈ {1, : : : , n� 1} πn ≥ p

General c̃(:) (Theorem 1) D(q) (some q � 1, : : : , n) 
pooling (mx possible)

I(1) or D(q) (some q � 2, : : : , n) 
or M(q) (some q � 2, : : : , n� 1) 
mx and pooling both 
possible

I(1) or M(q) (some 
q � 2, : : : , n� i+ 1) mx 
(pooling possible)

I(1) mx only

Special cases
The smallest difference 
c̃(:) (λ � 0 or 
c(s) � γ, ∀s ∈ Z+) 
(Theorem 2)

D(1) both mx and 
pooling

I(1) mx only

The highest difference 
c̃(:) (λ � 1 and 
c(s) � γ × s, ∀s ∈ Z+) 
(Theorem 3)

D(n) pooling only D(n) pooling only Any M(q), 
q � n� i+ 1, : : : , n 
pooling (mx possible)

Any I(q), 
q � 1, : : : , n no pooling 
(mx possible)

Note. mx, multiplex.
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into the behavior of robust designs as prevalence uncer
tainty rises; as the upper limit of the uncertainty set for a 
disease prevalence, used in the deterministic counter
part of R-TD (Remark 1), increases, the robust design 
moves from left to right through the columns of Table 2, 
and in the most conservative case, it defaults to the 
multiplexing-only (I(1)) benchmark.

The tension between test versus cost minimization con
tinues to drive an optimal design in general when the 
composite cost function is in between the two extremes. 
To demonstrate this tension clearly, we now focus on the 
case where the overall disease prevalence does not exceed 
the pooling threshold (π(N) ≤ p ≈ 0:31) when pooling is 
always optimal. In this case, the optimal design is D(1) for 
the smallest-difference composite cost function and D(n)
for the highest-difference composite cost function (Table 
2 and Theorems 2 and 3). Then, the next question is 
whether there exists a (unique) cost threshold function 
c̃q(:), such that D(q�1)≼D(q) (D(q)≼D(q�1)) for all compos
ite cost functions with smaller (higher) differences than 
c̃q(:). As Example 1 shows, such a threshold cost function 
does not exist.

Example 1. Consider disease set N � {1, 2, 3, 4}, with 
equal marginal prevalences and no coinfections: 
πi � 0:06, i ∈N, and π(N) �Pi∈Nπi � 0:24 ≤ p; and assay 
cost functions c(:) and c′(:) (with corresponding com
posite cost functions c̃(:) and c̃′(:)) : c(1) � 1, c(2) �
1:43, c(3) � 1:75, c(4) � 2:05, and c′(1) � c(1), c′(s) � c(s)
�0:10, s � 2, 3, 4. By Definition 5, c′(:)≤ diffc(:), hence by 
Property 3, c̃′(λ)≤ diffc̃(λ), ∀λ ∈ [0, 1]. However, at λ �
1, D(1) is optimal for c̃(λ � 1), whereas D(2) is optimal 
for the smaller-difference function, c̃′(λ � 1).

As the following result indicates, such thresholds 
do exist on λ.

Theorem 4. Consider that π(N) ≤ p. Then, ∃λ(q) ≤
1, q � 1, : : : , n� 1, such that the optimal design has the fol
lowing structure: 
optimal design class: 

D(1), if λ ∈ [0,λ(1)]

D(r), for some r � 2, : : : , q, if λ ∈ (max{λ(1),λ(q�1)
}, λ(q)],

q � 2, : : : , n� 1

D(n), if λ ∈ (max{λ(1),λ(n�1)
}, 1]:

8
>>>>><

>>>>>:

Remark 4.
1. Among the optimality regions delineated in Theo

rem 4, only the D(1)-optimal region, [0,λ(1)], is guaran
teed to be nonempty (see the λ � 0 case in Theorem 2). 
That is, it is possible that there is no λ ∈ [0, 1] for which 
design D(q), q � 2, : : : , n, is optimal. Further, the D(n)-optimal 
region is guaranteed to be nonempty only for the lin
ear assay cost function (see Remark 3 and Theorem 3); 
otherwise, it is possible for λ(n�1)

� 1 and hence, (λ(n�1), 1]
to be empty.

2. When π(N) ≤ p, the optimal design is completely 
characterized for n ≤ 3, and the number of assays is 
nondecreasing in λ. 

For n � 2, D(1), ∀λ ∈ [0,λ(1)] and D(2), ∀λ ∈
(λ
(1), 1].

For n � 3, D(1), ∀λ ∈ [0,λ(1)]; D(2), ∀λ ∈ (λ(1), 
λ
(2)
]; and D(3), ∀λ ∈ (max{λ(1),λ(2)}, 1].

In general, however, the number of assays in an 
optimal Dorfman design need not be monotone in 
λ. For example, for n � 4, the optimal design is D(2)

or D(3), ∀λ ∈ (max{λ(1),λ(2)}, λ(3)]; that is, it can 
potentially alternate between D(2) and D(3) in this 
region, although such a numerical example is 
lacking.

5.2. Impact of the Disease Prevalence and 
Coinfection Structure

In this section, we discuss how the disease prevalence/ 
coinfection structure, relatedly the correlations among 
disease prevalences, impacts the optimal assay portfolio, 
and we develop an exact, efficient algorithm for certain 
coinfection structures. We first make the link between 
the coinfection and correlation structure explicit and 
introduce two special cases that will guide our analysis.

Remark 5. Let j � (ξi)i∈N denote a multivariate binary 
vector, which assumes a value of one if a random sub
ject is infected with disease i ∈N (i.e., event A+i occurs) 
and zero otherwise in accordance with the joint vector 
p. The marginal distributions, ξi ~ Bernoulli(πi), i ∈N 
(Dai et al. 2013). 

1. The pairwise correlation coefficient, ρ(ξi,ξj) �
pij�πiπjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πi(1�πi)πj(1�πj)
√ , ∀ij ∈N(2), is increasing in coinfection 

probability (pij) as long as the marginal prevalences 
(πi,πj) remain unchanged. (ρ(ξi,ξj) may have a nar
rower range than [�1, 1] unless πi � πj (e.g., Emrich 
and Piedmonte 1991).)

2. Consider two special coinfection structures. 
a. No coinfections. Events A+i , ∀i ∈N, are mutu

ally exclusive. Then, assay prevalence (Equation 
(4)) reduces to

π(S) �
X

i∈S
πi, ∀S ⊆N, (15) 

and ρ(ξi,ξj) < 0, ∀ij ∈N(2).
b. Independent diseases. Events A+i , ∀i ∈N, are 

mutually independent. Then, assay prevalence 
(Equation (4)) reduces to

π(S) �
X

i∈S
πi�

X

ij∈N(2):i, j∈S
πiπj +

X

ijr∈N(3):i, j, r∈S
πiπjπr+ ⋯

+ (�1)s+1Y

i∈S
πi, ∀S ⊆N, (16) 

and ρ(ξi,ξj) � 0, ∀ij ∈N(2).
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Definition 6. We say that joint vector p′ is more corre
lated than joint vector p if p′i ⋯ j ≥ pi ⋯ j, ∀i ⋯ j ∈N(l), 
l � 2, : : : , n, and their marginal vectors are equal, 
p′ � p; that is, each coinfection probability in p′ is at 
least as large as its counterpart in p, whereas their 
marginal prevalences are equal.

Lemma 1. Consider π(N) ≤ p. The threshold λ(n�1) is 
nondecreasing as p becomes more correlated.

Thus, when pooling is optimal, as the prevalence vec
tor becomes more correlated (i.e., some coinfection 
probabilities rise, whereas disease prevalences remain 
the same) (Definition 6), the λ-region where an all- 
singleton design (D(n)) is optimal shrinks; that is, multi
plexing becomes more favorable.

The optimal design is completely characterized for 
the smallest- and highest-difference composite cost 
functions (Theorems 2 and 3). For the remaining cases, 
however, the optimal design is either some form of 
Dorfman or mixed-testing design, D(q) or M(q), or n-plex 
individual-testing design, I(1) (Table 2). Hence, one 
must consider all possible partitions of the disease set 
N, and this general partition-type problem, with no 
assumed relationship among disease prevalences, is 
NP hard (Chakravarty et al. 1982). The following result 
shows that when disease prevalences are independent 
or when there are no coinfections, there exists an opti
mal design that uses an ordered partition (Definition 2) 
for both Dorfman and mixed-testing designs. This 
result plays a key role in the development of an effi
cient, exact solution procedure for these special cases. 
(Dorfman designs with q � 1 and q � n are excluded 
from the theorem, as their assay portfolio and testing 
method are completely fixed.)

Theorem 5. Suppose all disease prevalences are indepen
dent or that there are no coinfections. 

1. Within each q-partitioned Dorfman design class, D(q), 
q � 2, : : : , n� 1, there exists an optimal design that uses an 
ordered q-partition.

2. Within each q-partitioned mixed-testing design class, 
M(q), q � 2, : : : , n, there exists an optimal design for which 
diseases {1, : : : , nI} (i.e., the nI diseases with the highest pre
valences) are bundled into one multiplex assay, which is indi
vidually tested, and diseases {nI + 1, : : : , n} are tested via 
pooling, following some ordered q � 1-partition, for some 
nI, nD ∈ Z+ : nI + nD � n.

From a practical perspective, the optimality of an 
ordered partition indicates that small forecasting errors 
in disease prevalences may not have a large impact on 
an optimal design as long as disease ordering is mostly 
preserved. Intuitively, the ordered partition result 
holds because for both independent diseases and no 
coinfections cases, an ordered two partition yields the 
highest (lowest) possible assay prevalence for one (the 
other) assay, among all two partitions with fixed assay 

sizes (hence, fixed assay costs), and the expected tests 
function is concave in assay prevalence (Property 2). 
This reasoning extends to any q-partition, because it 
can be split into multiple two partitions. In particular, 
in the no coinfections case, the total cost function 
(TC(:)) becomes concave in the sum of disease preva
lences, and the results by Chakravarty et al. (1982) and 
Anily and Federgruen (1991) apply to our setting. In 
general, however, the total cost function is not necessar
ily concave in the sum of disease prevalences (because 
of coinfections), but the ordered partition result con
tinues to hold for independent diseases (Theorem 5). 
The following remark and example provide some 
insight on when the ordered partition result may or 
may not hold.

Remark 6. Consider that the prevalence vector satis
fies the transitivity property; that is, if πi ≥ πj for 
some i, j ∈N, then π({i, r}) ≥ π({j, r}), ∀r ∈N \ {i, j}. 
The transitivity property is satisfied in both the inde
pendent diseases and the no coinfections cases.

The transitivity property of the prevalence vector is 
necessary but not sufficient for the ordered partition 
result in Theorem 5 to hold, as the following example 
demonstrates.

Example 2. Consider disease set, N � {1, 2, 3}, with 
joint vector, p � (p0 � 0:79, p1 � 0:05, p2 � 0:05, p3 � 0, p12 
� 0:06, p13 � 0:05, p23 � 0, p123 � 0) (i.e., A+3 ⊆ A+1 ) and 
marginal prevalences, π1 � 0:16,π2 � 0:11,π3 � 0:05, 
which satisfy the transitivity property (Remark 6). 
However, for λ � 0:6 and assay cost function c(s) �
s0:8, s � 1, 2, 3, the optimal design is a D(2) design with 
S1 � {1, 3} and S2 � {2}, which is not an ordered 
partition.

Theorem 5 leads to an efficient algorithm.

Corollary 1. Suppose all disease prevalences are indepen
dent or that there are no coinfections. 

1. The problem of finding an optimal partition of set N 
reduces to a shortest path problem on an acyclic directed 
graph G(V(N), E(N)) with 

• vertex set V(N) �N ∪ {n+ 1} (i.e., each disease 
in set N represents a vertex, and vertex n + 1 repre
sents a dummy vertex) and
• edge set E(N) � {(i, j) : i < j, i, j ∈ V(N)}, where 

edge (i, j) represents an assay for diseases i, i+ 1, : : : , j�
1 (equivalently, S � {i, i+ 1, : : : , j� 1}, with size 
s � j� i), with edge weight wi, j � c̃(s,λ) × T(S, t∗(S))
(i.e., the assay’s expected cost at the optimal pool size).

2. Both the construction of graph G(V(N), E(N)) and 
solving the shortest path problem (e.g., via a topological sort
ing algorithm) (Corman et al. 2009) have polynomial com
plexity, O(n2).

Corollary 1 holds because each ordered q-partition of 
set N, q � 1, : : : , n, is represented by a path from vertex 1 
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to vertex n+1 on G(V(N), E(N)). Thus, the set of all 
ordered partitions of set N corresponds to the set of all 
paths from vertex 1 to vertex n + 1, and an optimal par
tition of set N corresponds to the shortest path from ver
tex 1 to vertex n + 1. Thus, when disease prevalences 
are independent or there are no coinfections, an optimal 
testing design can be found in polynomial time. When 
there are coinfections and disease prevalences are not 
independent, the problem remains NP hard, and some 
of the existing algorithms for the partition problem 
(Section 3.2) can be modified to solve our problem, 
which is outside the scope of this paper.

Remark 7. When 
P

i∈Nπi ≤ 1, Theorem 5 and Corol
lary 1 continue to hold for the deterministic counter
part of the robust problem, R-TD, which in this case, 
is based on a deterministic joint vector p with no coin
fections (Corollary A.1 in Online Appendix A). Thus, 
there exists an optimal robust design that is ordered, 
which can be determined in polynomial time.

6. A Case Study of Respiratory Diseases
Large multiplex assays are used for a variety of diseases 
(see Section 1). In this case study, we focus on respira
tory diseases, which are challenging for the testing 
design problem. Some respiratory diseases exhibit sea
sonal prevalence fluctuations, which not only lead to 
high uncertainty but also, alter the disease ordering 
dynamically throughout the year. As a group, respira
tory diseases have higher prevalences than other dis
ease groups, making pooling less beneficial; during our 
study period of 2018–2021, this group not only included 
an emerging disease (COVID-19) but also, diseases that 
responded to COVID-19 mitigation measures, resulting 
in drastic changes in their prevalence during the study 
period. We present the study design in Section 6.1, the 
data and sources in Section 6.2, and a discussion of the 
results in Section 6.3.

6.1. Study Design
We consider 18 respiratory diseases (14 viral and 4 bac
terial) that manifest with overlapping clinical presenta
tion over a four-year period (2018–2021) that spans 
both pre- and post-COVID periods. Weekly prevalence 
data are available during the study period.

6.1.1. Optimal Designs. Assay design is a tactical deci
sion, as design changes require the acquisition of assays 
and modification of procedures. Consequently, we pro
duce a family of base Pareto designs each for 2018 (with
out COVID-19) and 2021 (with COVID-19), which include 
the deterministic (mean-based) and robust designs using 
models TD and R-TD, respectively, based on the yearly 
means and the CI upper limits of disease prevalences for 
λ ∈ [0, 1] in increments of 0.05, illustrating the trade-offs 
between testing cost and capacity.

6.1.2. Performance Evaluation. We evaluate the base 
designs using weekly data from 2018 to 2021, and in 
our discussion, we distinguish between two settings: 
(1) the perfect information setting, where a design is eval
uated using the data from which it is derived (in this 
setting, the design must contend with the weekly preva
lence variations that underscore the mean (or the CI 
upper limit) because of seasonality and/or other natu
ral variations); and (2) the imperfect information setting, 
where a design is evaluated using another year’s data, 
such that the design must also contend with forecast 
error in the yearly mean. We compare the base designs 
with the two benchmarks from Remark 2: multiplexing 
only (I(1)) and pooling only (the best of I(n), D(n), and M(n)).

The total cost (TC(:)) (Equation (2)), which is a convex 
combination of the expected testing cost and number of 
tests, is an abstract construct. To better illustrate the 
trade-offs, we report the testing cost and the number of 
tests (evaluated based on actual data) for all λ ∈ [0, 1]. 
For reference, the λ � 0 and λ � 1 designs minimize the 
expected number of tests and testing cost, respectively. 
We also report ∀λ ∈ [0, 1], the price of robustness ratio 
(Table B.1 in Online Appendix B), and

Value of joint optimization ratio (VoJ)(λ) (%)

�
[TC(I(1), λ)�TCX(λ)]

TC(I(1), λ)
× 100, X ∈ {TD, R-TD}, 

and in comparison with the multiplexing-only bench
mark, this consistently outperforms the pooling-only 
benchmark in the case study (because of high preva
lence rates) and represents current testing practices.

6.2. Data: Sources and Descriptive Statistics
Table 3 reports the mean prevalences for the 18 diseases 
for each year in the study period along with the data 
sources. For the 14 viral diseases, this mean is the aver
age of the weekly prevalences; for the four bacterial 
diseases (Mycoplasma pneumoniae, Bordetella parapertus
sis, Bordetella pertussis, and Chlamydophila pneumoniae), 
these data were not available, and we use the literature 
to estimate weekly prevalences. The diseases are indexed 
following a nonincreasing order of their 2018 mean preva
lences (thus, COVID-19 is #18). This order does not neces
sarily coincide with the weekly orders throughout 2018, 
the mean-based orders for other years, nor the CI-based 
orders for 2018–2021.

Coinfection rates, needed for TD, are not reported in 
the data sources. Hence, we assume that disease preva
lences are independent; that is, coinfection rates are 
proportional to the corresponding disease prevalences. 
Further, for R-TD, based on our data, 

P
i∈Nπi ≤ 1 in 

each year of the study period. Thus, we determine the 
optimal TD and R-TD designs in polynomial time 
using Corollary 1 (i.e., by determining the best-ordered 
partition) (Theorem 5).
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TD designs are based on the yearly mean preva
lences in Table 3. For R-TD, we use the 52 weekly prev
alence data each year to construct a 95% CI for each 
disease prevalence based on the Wald’s method (New
combe 1998), which serves as the uncertainty set for P 
(Online Appendix B). Figure 1 plots the overall preva
lence and select disease prevalences for each week in 
the study period, and it illustrates how disease preva
lences, hence their ordering, fluctuate substantially 
throughout each year, with some diseases being highly 
seasonal. Therefore, even in the perfect information set
ting, an optimal TD design, which is an ordered 

partition based on yearly means, is not necessarily opti
mal for any given week in the year.

6.2.1. Cost Structure. PCR cost data from the literature 
(e.g., Schreckenberger and McAdam 2015) confirm the 
concave nature of the assay cost function in the number 
of diseases bundled. This is expected for genetic assays 
(see Section 1) because each PCR assay uses (1) com
mon reagents and materials that are not pathogen 
specific (e.g., the polymerase enzyme, DNA nucleo
tides, vials), the required amounts of which are fairly 
insensitive to the number of diseases in the assay, and 

Table 3. Disease Index, Name, Yearly Mean Prevalence for 2018–2021, and Data Sources

Index Disease

Yearly mean

Data source2018 2019 2020 2021

1 Influenza A 0.1902 0.2932 0.0930 0.0055 Centers for Disease Control and Prevention Influenza 
Division (2022)

2 Influenza B 0.0978 0.0887 0.0488 0.0001 Centers for Disease Control and Prevention Influenza 
Division (2022)

3 Respiratory syncytial virus 0.0599 0.0596 0.0207 0.0613 Centers for Disease Control and Prevention (2022b)
4 Human metapneumovirus 0.0315 0.0293 0.0149 0.0150 Centers for Disease Control and Prevention (2022b)
5 Respiratory adenovirus 0.0310 0.0368 0.0186 0.0284 Centers for Disease Control and Prevention (2022b)
6 Parainfluenza virus 3 0.0277 0.0273 0.0012 0.0340 Centers for Disease Control and Prevention (2022b)
7 CoVOC43 0.0096 0.0140 0.0023 0.0137 Centers for Disease Control and Prevention (2022b)
8 Parainfluenza virus 2 0.0093 0.0020 0.0005 0.0076 Centers for Disease Control and Prevention (2022b)
9 CoVNL63 0.0070 0.0081 0.0053 0.0069 Centers for Disease Control and Prevention (2022b)
10 CoVHKU1 0.0070 0.0062 0.0072 0.0003 Centers for Disease Control and Prevention (2022b)
11 Parainfluenza virus 4 0.0062 0.0054 0.0022 0.0048 Centers for Disease Control and Prevention (2022b)
12 M. pneumoniae 0.0051 0.0049 0.0050 0.0050 Schreckenberger and McAdam (2015)
13 B. parapertussis 0.0021 0.0021 0.0021 0.0021 Mastrantonio et al. (1998)
14 Parainfluenza virus 1 0.0019 0.0152 0.0016 0.0003 Centers for Disease Control and Prevention (2022b)
15 CoV229E 0.0015 0.0061 0.0007 0.0028 Centers for Disease Control and Prevention (2022b)
16 B. pertussis 0.0004 0.0004 0.0004 0.0004 Schreckenberger and McAdam (2015)
17 C. pneumoniae 0.0003 0.0003 0.0003 0.0004 Schreckenberger and McAdam (2015)
18 COVID-19 N/A N/A 0.0450 0.0613 Centers for Disease Control and Prevention (2021c), Johns 

Hopkins University (2022)
π(N) Overall prevalence 0.4042 0.4838 0.2421 0.2254

Note. CoVOC43, Human coronavirus OC43; CoVNL63, Human coronavirus NL63; CoVHKU1, Human coronavirus HKU1; M., Mycoplasma; B. 
parapertussis, Bordetella parapertussis; CoV229E, Human coronavirus 229E; B. pertussis, Bordetella pertussis; C. pneumoniae, Chlamydia pneumoniae; 
COVID-19, Coronavirus disease; N/A, non-applicable.

Figure 1. (Color online) Overall Prevalence and Select Disease Prevalences per Week over 2018–2021 
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(2) pathogen-specific reagents (e.g., the primers and 
probes) that depend on the number of diseases, but 
their structure (hence, cost) is fairly similar for the dif
ferent diseases. Consequently, we consider a fixed cost 
per assay and a variable cost per disease bundled; this 
function satisfies Assumption A. The cost data for med
ical tests are often difficult to find. Based on the limited 
data in Schreckenberger and McAdam (2015), we fit 
various assay cost functions (Online Appendix B). We 
demonstrate our findings for the c(s) � 25:54+ 4:46 × s 
function, but sensitivity analysis for other cost func
tions indicates similar qualitative findings. Because the 
number of tests (per subject) is one for the I(1) bench
mark and the total cost is a convex combination of the 
testing cost and number of tests, we normalize the assay 
cost function so that c(n) � 1.

We consider a pool size limit, M, of 32, which is com
mon for PCR assays (Yelin et al. 2020, Bish et al. 2021, El 
Hajj et al. 2022b).

6.3. Case Study Findings
Key properties of optimal designs are established ana
lytically (Sections 4 and 5). In Section 6.3.1, we use the 
perfect information setting to show additional proper
ties; in Section 6.3.2, we compare optimal designs with 
benchmarks through the progression of the COVID-19 
pandemic in the realistic, imperfect information setting.

6.3.1. Properties of Mean-Based and Robust Designs 
(Perfect Information Setting). To motivate our discus
sion, Tables 4 and 5 provide the TD and R-TD Pareto 
designs along with the benchmarks designs and their 

results evaluated using 2018 (17 diseases) and 2021 (18 
diseases, including COVID-19) weekly data in terms of 
the actual testing cost and number of tests (mean, mini
mum, and maximum values over the 52 weeks) under 
the perfect information settings (i.e., the 2018/2021 
designs are evaluated using the 2018/2021 weekly data 
(under weekly variations but no forecast error)). Figure 
2 plots the mean values for the testing cost and number 
of tests for each of the TD and R-TD designs to visual
ize the Pareto frontier. Tables 4 and 5 also report the 
value of joint optimization ratios (VoJ; in terms of its 
range over λ; i.e., with respect to the 17-plex (for 2018) 
or 18-plex (for 2021) I(1) benchmarks).

6.3.1.1. Mean-Based vs. Robust Designs. Mean-based 
designs and their robust counterparts are quite similar, 
despite the differences in their inputs, including differ
ent disease orderings (e.g., for 2018, the mean overall 
prevalence for TD is π(N) � 0:4042, whereas for R-TD, 
it is 0.6079; i.e., the sum of the CI upper limits). This 
underscores another benefit of TD; by integrating mul
tiplexing and pooling, the designs become structurally 
robust to variations in mean prevalences. To see this, 
consider that pooling is the cause of weekly variability 
in the metrics; individual testing always uses one test 
for all prevalences. Then, (1) through bundling of dis
eases in an assay, the assay’s performance becomes a 
function of the assay prevalence (i.e., combined preva
lences of the diseases in the assay) rather than the indi
vidual disease prevalence, which serves to increase its 
robustness under both weekly prevalence variations 
and forecast error. (2) The ordering of diseases within 
an assay is immaterial, and it is only when ordering 

Table 4. 2018 TD and R-TD Designs, Metrics, and VoJ Based on 2018 Data Without COVID-19 Testing

Model (n � 17)
Range of λ 

values
Design 

class
Assay 
sizes Pool sizes

Perfect information setting

Testing cost mean 
(min-max)

Number of 
tests mean 
(min-max)

VoJ(λ) (%) 
range

TD 0.00–0.40 I(1) [17] [1] 1.00 (1.00–1.00) 1.00 (1.00–1.00) 0.00–0.00
TD 0.45–0.55 M(2) [15, 2] [1, 32] 0.93 (0.93–0.93) 1.05 (1.05–1.06) 0.11–1.35
TD 0.60–0.80 M(2) [12, 5] [1, 13] 0.85 (0.84–0.89) 1.16 (1.13–1.24) 2.56–8.60
TD 0.85 M(2) [11, 6] [1, 10] 0.84 (0.83–0.87) 1.21 (1.19–1.27) 10.21
TD 0.90 M(3) [8, 7, 2] [1, 6, 32] 0.81 (0.76–0.97) 1.39 (1.29–1.67) 13.40
TD 0.95–1.00 M(3) [6, 6, 5] [1, 5, 13] 0.79 (0.72–0.94) 1.55 (1.40–1.85) 16.70–21.50

Disease order 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
R-TD 0.00–0.40 I(1) [17] [1] 1.00 (1.00–1.00) 1.00 (1.00–1.00) 0.00–0.00
R-TD 0.45–0.60 M(2) [15, 2] [1, 32] 0.93 (0.93–0.93) 1.05 (1.05–1.06) 0.11–1.97
R-TD 0.65–0.80 M(2) [12, 5] [1, 12] 0.85 (0.84–0.89) 1.16 (1.13–1.23) 4.03–8.57
R-TD 0.85–0.90 M(2) [11, 6] [1, 9] 0.84 (0.83–0.87) 1.21 (1.19–1.26) 10.16–11.98
R-TD 0.95 M(3) [10, 5, 2] [1, 8, 32] 0.83 (0.80–0.88) 1.31 (1.25–1.42) 14.75
R-TD 1.00 M(3) [7, 5, 5] [1, 5, 12] 0.80 (0.74–0.96) 1.52 (1.39–1.84) 19.54

Disease order 1, 2, 3, 4, 6, 5, 8, 7, 10, 9, 11, 12, 14, 13, 15, 16, 17
Multiplexing only N/A I(1) [17] [1] 1.00 1.00 N/A
Pooling only N/A D(17) 17 singletons 3–32 1.24 4.20 N/A

Note. N/A, non-applicable.
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errors place the disease in the “wrong” assay do subop
timalities arise. (3) A particular pool size remains opti
mal for a range of prevalences and beneficial for an 
even larger range. The performances of the mean-based 
and robust designs are even closer in 2021 because of a 
lower overall prevalence and lower CI upper limits 
(e.g., influenza had lower prevalences and less pro
nounced seasonality, hence lower uncertainty). The 
price of robustness is also low (Table B.1 in Online 
Appendix B). Robust designs may even lower the actual 
cost (e.g., λ � 0:70 for 2021) (Table 5 and Table B.1 in 
Online Appendix B) because TD uses the expected 
costs based on yearly means, which may deviate from 
the actual costs because of weekly variations.

6.3.1.2. Comparison with Benchmarks. The multiplexing- 
only (I(1)) benchmark is on the Pareto frontier only for 2018 
(not 2021) and only for 0 ≤ λ ≤ 0:4 (Figure 2 and Theo
rem 2). For 2018 (Table 4), both TD and R-TD use multiple 
assays with mixed testing methods (pooling and individ
ual testing) for all λ ≥ 0:45; these designs have positive 
VoJ values and show the trade-off between testing cost 
and number of tests. For 2021 (Table 5), which has a lower 
overall prevalence than 2018, every TD and R-TD design 
is a Dorfman design with multiplexing, and some of these 
Pareto designs improve upon both the testing cost and the 
number of tests compared with the benchmarks. To better 
understand the practical impact of the trade-off between 
the testing cost and the number of tests, remember that 

Table 5. 2021 TD and R-TD Designs, Metrics, And VoJ Based on 2021 Data with COVID-19 Testing

Model (n � 18)
Range of λ 

values Design class Assay sizes Pool sizes

Perfect information setting

Testing cost mean 
(min-max)

Number of 
tests mean 
(min-max)

VoJ(λ) (%) 
range

TD 0.00–0.30 D(1) [18] [3] 0.86 (0.59–1.02) 0.86 (0.59–1.02) 14.43–14.43
TD 0.35–0.70 D(2) [13, 5] [3, 26] 0.71 (0.49–0.84) 0.93 (0.66–1.10) 14.65–22.44
TD 0.75 D(2) [11, 7] [3, 13] 0.68 (0.48–0.82) 1.00 (0.71–1.21) 23.76
TD 0.80 D(3) [7, 6, 5] [3, 7, 26] 0.63 (0.45–0.81) 1.21 (0.87–1.57) 25.77
TD 0.85–1.00 D(3) [6, 7, 5] [3, 6, 26] 0.62 (0.45–0.80) 1.23 (0.89–1.57) 28.62–37.82

Disease order 18, 3, 6, 4, 5, 8, 15, 9, 1, 12, 11, 10, 14, 16, 17, 13, 7, 2
R-TD 0.00–0.30 D(1) [18] [3] 0.86 (0.59–1.02) 0.86 (0.59–1.02) 14.43–14.43
R-TD 0.35–0.65 D(2) [13, 5] [3, 26] 0.71 (0.49–0.84) 0.93 (0.66–1.10) 14.65–21.33
R-TD 0.70–0.75 D(2) [11, 7] [3, 13] 0.68 (0.48–0.82) 1.00 (0.71–1.21) 22.14–23.76
R-TD 0.80–1.00 D(3) [6, 7, 5] [3, 6, 26] 0.62 (0.45–0.80) 1.23 (0.89–1.57) 25.56–37.82

Disease order 18, 3, 6, 5, 4, 7, 8, 9, 1, 12, 11, 15, 13, 16, 17, 10, 14, 2
Multiplexing only N/A I(1) [18] [1] 1.00 1.00 N/A
Pooling only N/A D(18) 18 singletons 5–32 0.92 3.25 N/A

Note. N/A, non-applicable.

Figure 2. (Color online) 2018 and 2021 Perfect Information TD and R-TD Designs and Benchmarks 

Bish, Bish, and El Hajj: Efficient Strategies for Multi-disease Testing with Genetic Assays 
16 Manufacturing & Service Operations Management, Articles in Advance, pp. 1–22, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

21
0.

6.
13

7]
 o

n 
04

 N
ov

em
be

r 
20

23
, a

t 2
3:

15
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



PCR machines can have large capacities (see Section 1); 
hence, there are many settings in which they are run below 
capacity, and increasing the number of tests to reduce the 
testing cost in these settings can be an especially good 
trade-off.

Pooling alone does not provide as much benefit as the 
integrated mean-based or robust designs; the pooling- 
only benchmark is not on the Pareto frontier in either 
year. On the other hand, pooling of the n-plex (D(1)) is not 
useful in 2018; for 2021, it can improve the 18-plex bench
mark by 14.43% (i.e., VoJ(λ � 0)) compared with a VoJ of 
37.82% attained through integrated multiplexing and 
pooling.

6.3.1.3. Design Structures. Noting the mean overall 
prevalence of 0.4042 for 2018 and 0.2254 for 2021 (above 
and below the pooling threshold of 0.31, respectively), 
the optimal designs in Tables 4 and 5 are in agreement 
with Theorems 1 and 2. As λ increases, all designs 
move toward more assays. This is expected for the 2021 
designs in light of Theorem 4 (as π(18) � 0:2254 < 0:31 
for 2021), but in the absence of this condition, we still 
see a similar trend for the 2018 designs. The first assay 
almost always bundles the most diseases (which have 
the highest prevalence); hence, it has the largest assay 
prevalence and the smallest pool size. This keeps the 
first assay’s pool size constant as λ increases, allowing 
the other assays to use larger pools. The robust designs 
tend to have smaller pools than the mean-based designs 
because of the use of the CI upper limits.

6.3.1.4. Effect of Seasonality. One challenge for test
ing design for respiratory diseases is seasonality. We 
explore the benefits of accounting for seasonality through 
the use of a separate TD design for the high versus low 
season constructed and evaluated based on the 2018 data. 
We define the seasons based on the pooling threshold of 
31%, as this implies when pooling is beneficial for the 
17-plex. The low season spans the period for which the 
weekly overall prevalence remains below 31%, which for 
2018, was weeks 20–44, and the remaining weeks repre
sent the high season. The VoJ range over the 17-plex I(1) is 
[VoJ(λ � 0) � 0, VoJ(λ � 1) � 20:5%] (Table 4) for origi
nal 2018 TD designs (without accounting for seasonality) 
and [VoJ(λ � 0) � 5:3%, VoJ(λ � 1) � 25:2%] (Table B.2 
in Online Appendix B) with high- and low-season 
designs. Thus, accounting for seasonality can further 
increase the benefits of optimal designs.

6.3.2. Testing Design During the Pandemic (Imperfect 
Information Designs). The previous perfect informa
tion setting provides a reference point on the potential 
benefits of joint optimization. Next, we study testing 
design in the realistic, imperfect information setting, 
where prevalences are unknown at the time of testing 
design. One can integrate a sophisticated forecasting 

method (available in the literature for influenza and 
COVID-19) into our testing design models. Although 
this is worthy of future investigation, a main finding 
from the study of the imperfect information setting in 
this section is that sophisticated forecasting methods may 
not be necessary to reap most of the benefits. Integrating 
multiplexing and pooling already increases the robust
ness of optimal designs to forecast errors; see Section 
6.3.1. As we shall see, the 2018 designs or simple modifica
tions of them to account for COVID-19 effects on influenza 
rates work very well compared with the benchmarks.

6.3.2.1. 2019–2021 (Without COVID-19 Testing): Per
formance of 2018 Designs. We first explore the per
formance of the 2018 designs for the 17 diseases (from 
Table 4) (i.e., designs constructed using the 2018 data) 
on data from 2019 to 2021. Although the disease order
ing in 2018 does not match that in 2019, 2020, or 2021, 
these TD and R-TD imperfect information designs con
tinue to substantially outperform both benchmarks for 
the 2019–2021 period (Table B.3 in Online Appendix B). 
For example, the VoJ(λ � 1) values for mean-based and 
robust designs are 20.5% and 18.4%, respectively, over 
the I(1) benchmark in this period. These benefits are 
similar in scale to the 2018 designs under perfect infor
mation, continuing to show that both TD and R-TD are 
quite robust to forecast errors.

Next, we show that we can improve upon the perfor
mance of the 2018 designs, evaluated using 2021 data, 
via design modifications based on minimal information 
on the impact of COVID-19.

6.3.2.2. 2021 (Both with and Without COVID-19 Test
ing): Performance of Modified 2018 Designs. Because 
of the pandemic, 2021 was quite an unusual year for 
respiratory diseases. The protective measures taken for 
COVID-19 also reduced the influenza rates, greatly per
turbing the order of diseases from 2018. This was 
apparent in November to December of 2020 (the begin
ning of the 2020/2021 influenza season), during which 
the reported influenza rates were much lower than the 
historic averages, and such unusual influenza patterns 
were anticipated to continue into 2021. Thus, we now 
demonstrate how the testing designs for 2021 can be 
improved with simple forecasting. To this end, we sim
ply set influenza A and B prevalences to their averages 
from November and December of 2020; for all other dis
eases, we continue to use the 2018 data. Using this modi
fied 2018 data, we produce modified 2018 designs using 
TD and R-TD. First, we produce testing designs for 
the 17 diseases (without COVID-19); then, turn our 
attention to COVID-19. Forecasting an emerging and 
evolving disease is very difficult, and many COVID-19 
forecasting methods in the literature turned out to be 
highly inaccurate. In the absence of a reliable COVID- 
19 forecast in 2021, we explore a simple strategy of 
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adding COVID-19 into the first assay in the modified 
2018 designs for TD and R-TD, thus bundling it with 
the most prevalent diseases in each design. Retrospec
tively, this can be accomplished using the modified 
2018 data and a mean COVID-19 prevalence of 10%. 
With an actual 2021 COVID-19 mean of 6.1% (unknown 
at the time of testing design), it is suboptimal and repre
sents an overestimation.

Table B.4 in Online Appendix B reports the results for 
the modified 2018 designs and for comparison purposes, 
the 2021 perfect information designs both with and with
out COVID-19 testing, all evaluated using 2021 data. For 
each design with COVID-19 testing, Figure 3 also depicts 
the weekly performance using 2021 data in terms of the 
actual testing cost, the number of tests, and its mean per
formance over the year (in solid lines). The pooling-only 
benchmark is not depicted in Figure 3, as it continues to 
be substantially dominated by all other designs. Finally, 
Table 6 reports the VoJ for the modified 2018 and perfect 
information 2021 designs with respect to the I(1) bench
mark based on the 2021 data.

6.3.2.3. Perfect Information vs. Imperfect Informa
tion Designs. The family of modified 2018 TD designs 
performs very well in 2021 both with and without 
COVID-19 testing (Figure 3 and Table B.4 in Online 
Appendix B), and their VoJ values are high and close to 
the 2021 perfect information design values, which rep
resent the maximum possible benefits under perfect 
information (Table 6). These findings continue to illus
trate the structurally robust nature of TD designs under 
prevalence uncertainty.

6.3.2.4. Mean-Based vs. Robust Designs. Based on 
the 2021 data, the price of robustness is very low for the 
modified 2018 and 2021 perfect information designs, 
with the exception of the modified 2018 R-TD designs 
with COVID-19 testing (Table 6). This is mainly because 
the overestimation of the COVID-19 mean, combined 
with higher prevalence upper limits for the other dis
eases (based on the modified 2018 data), leads to an 
overall prevalence for the robust model that exceeds 
the pooling threshold, making it more conservative 
than all other designs, which is expected based on Table 
2. In particular, comparing modified 2018 TD and 
R-TD designs with COVID-19 testing (based on Table 
B.4 in Online Appendix B), for λ ∈ [0, 0:35], the robust 
design is the 18-plex I(1) benchmark, whereas the mean- 
based design uses a pool of three; for λ ∈ [0:40,0:55], 
the robust design has a negative VoJ, unlike the mean- 
based design with a positive VoJ (in this case, the robust 
design reduces the testing cost but not enough to com
pensate for the increase in the number of tests). The 
robust design starts improving on the I(1) benchmark 
only at λ � 0:6, and at λ � 0:95, it performs nearly as 
well as the mean-based design with respect to VoJ. This 
is because as λ increases, the robust design moves away 
from the I(1) benchmark and starts using multiple 
pooled assays, the cost benefit of which outweighs the 
increase in the number of tests.

6.3.2.5. Comparison with Benchmarks. Modified 2018 
TD designs outperform the I(1) benchmark on 2021 
data; for the robust model, this happens mainly for the 
no COVID-19 testing case, as explained.

Figure 3. (Color online) Modified 2018 vs. 2021 TD Designs and I(1) Benchmark Based on 2021 Data 
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7. Conclusions, with Limitations and 
Future Research Directions

We develop tools and insights for multidisease testing 
design for public health screening practitioners. In the 
absence of practical guidelines on how multiplexing 
and pooling should be integrated, our study sheds 
important light on efficient testing practices, which can 
also benefit other stakeholders. For example, efficient 
testing enables timely and accurate diagnosis, leading 
to improved public health outcomes. Because the use of 
multiplexing and pooling does not require obtaining 
extra specimens from the patient, the patient does not 
notice any difference, but expanded testing improves 
patient outcomes and satisfaction (Schreckenberger 
and McAdam 2015); assay manufacturers can also ben
efit from expanded testing and hence, an expanded 
market. Quantifying such benefits for other stake
holders is an important research direction.

7.1. Limitations and Future Research Directions
To our knowledge, our model is the first mathematical 
model to combine multiplexing and pooling optimiza
tion in testing design for public health screening, and 
it is our hope that this work will spur new academic 
research as well as empirical explorations to further 
investigate the benefits of optimal testing designs. 
Although our model considers many realistic aspects of 
the testing problem, any analytical model must rely on 
certain assumptions. Some of these assumptions, dis
cussed here, can be considered as limitations of this 
research, but they also present opportunities for future 
research.

To increase model realism, several assumptions can be 
relaxed. For example, although PCR assays are highly 
sensitive in general, they may miss a disease during the 

window period when the pathogen has extremely low 
concentration in the specimen. Incorporating the patho
gen dynamics into testing design is an important exten
sion. We consider that the set of diseases for screening is 
given; adding a disease selection component to testing 
design (thus, selecting from a set of potential diseases) 
would increase the practical impact of this research 
effort. Further, studying a stochastic formulation of the 
testing design problem and considering correlated dis
ease prevalences over time (e.g., because of seasonality) 
are worthwhile extensions. Relatedly, although the price 
of robustness was low in our case study, in general a 
mini-max-type objective can be overly conservative, and 
it might be promising to explore other objectives, such as 
regret-based objectives (e.g., El Amine et al. 2017).

Testing design for respiratory diseases, considered in 
our case study, can be challenging; a primary reason for 
this challenge is seasonality. Our simple way of account
ing for seasonality in testing design shows promise and 
should be explored further. Our case study also suggests 
that optimizing the testing design infrequently and using 
simple forecasting methods to deal with a rare event, 
such as the emergence of COVID-19, work well for test
ing design in the post-COVID-19 period. This is one par
ticular strength of multiplex assays; by bundling diseases 
in an assay, their combined prevalence becomes more 
reliable. Further, small forecasting errors may not impact 
an optimal design as long as disease ordering is not 
altered much. Nevertheless, it is valuable to explore the 
benefits of more accurate forecasting methods for testing 
design or more frequent optimization of pool sizes than 
that for the assay portfolio because pool sizes may be eas
ier to change on a more frequent basis. It is also important 
to conduct case studies of other disease groups so as to 
quantify the benefits of optimal testing designs in other 
contexts.

Table 6. VoJ for Modified 2018 and 2021 TD and R-TD Designs Based on 2021 Data with and Without COVID-19 Testing

Without COVID-19

Modified 2018 TD λ range 0.00–0.40 0.45–0.60 0.65–0.85 0.90–0.95 1.00
VoJ(λ) (%) 24.40–24.40 19.35–22.69 26.26–32.63 34.71–37.52 39.68

Modified 2018 R-TD λ range 0.00–0.35 0.40–0.55 0.60–0.80 0.85 0.90 0.95 1.00
VoJ(λ) (%) 24.40–24.40 18.50–21.82 24.77–31.12 32.56 34.88 37.27 39.48

2021 TD λ range 0.00–0.35 0.40–0.75 0.80 0.85–0.90 0.95–1.00
VoJ(λ) (%) 24.40–24.40 25.15–32.40 33.60 35.72–38.39 41.00–43.81

2021 R-TD λ range 0.00–0.30 0.35–0.70 0.75 0.80 0.85 0.90–1.00
VoJ(λ) (%) 24.40–24.40 24.12–31.36 32.11 33.31 35.72 38.18–43.81

With COVID-19
Modified 2018 TD λ range 0.00–0.35 0.40–0.55 0.60–0.80 0.85 0.90 0.95 1.00

VoJ(λ) (%) 14.43–14.43 8.66–12.22 15.92–22.79 24.97 26.60 31.47 34.29
Modified 2018 R-TD λ range 0.00–0.35 0.40–0.55 0.60–0.85 0.90 0.95 1.00

VoJ(λ) (%) 0.00–0.00 (�5.23)–(–1.31) 2.91–12.67 13.71 31.54 34.09
2021 TD λ range 0.00–0.30 0.35–0.70 0.75 0.80 0.85–1.00

VoJ(λ) (%) 14.43–14.43 14.65–22.44 23.76 25.77 28.62–37.82
2021 R-TD λ range 0.00–0.30 0.35–0.65 0.70–0.75 0.80–1.00

VoJ(λ) (%) 14.43–14.43 14.65–21.33 22.14–23.76 25.56–37.82
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We study the tactical testing design decision. Com
plementary future research directions include opera
tional decisions: for instance, the online optimization 
problem (Golrezaei et al. 2014, Elmachtoub and Levi 
2016, Keyvanshokooh et al. 2021) that arises in our 
setting when batches of specimens arrive at the labora
tory in a stochastic manner. Thus, given PCR testing 
machine(s) and capacity, the tester needs to decide 
when to run the machine (i.e., below capacity or wait 
for more specimens?).
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