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Abstract. Newborn screening (NBS) is a state-level initiative that detects life-threatening
genetic disorders for which early treatment can substantially improve health outcomes.
Cystic fibrosis (CF) is among the most prevalent disorders in NBS. CF can be caused by a
large number of mutation variants to the CFTR gene. Most states use a multitest CF screen-
ing process that includes a genetic test (DNA). However, due to cost concerns,DNA is used
only on a small subset of newborns (based on a low-cost biomarker test with low classifica-
tion accuracy), and only for a small subset of CF-causing variants. To overcome the cost
barriers of expanded genetic testing, we explore a novel approach, of multipanel pooled
DNA testing. This approach leads not only to a novel optimization problem (variant selec-
tion for screening, variant partition into multipanels, and pool size determination for each
panel), but also to novel CF NBS processes. We establish key structural properties of opti-
mal multipanel pooled DNA designs; develop a methodology that generates a family of
optimal designs at different costs; and characterize the conditions under which a 1-panel
versus a multipanel design is optimal. Thismethodology can assist decision-makers to design
a screening process, considering the cost versus accuracy trade-off. Our case study, based on
published CF NBS data from the state of New York, indicates that the multipanel and pooling
aspects of genetic testingwork synergistically, and the proposedNBS processes have the poten-
tial to substantially improve both the efficiency and accuracy of current practices.

History: This paper was accepted by Stefan Scholtes, healthcare management.
Funding: This work was supported by National Science Foundation [Grant 1761842]. Any opinion, find-
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2021.4289.
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1. Introduction and Motivation
Newborn screening (NBS) is a state-level initiative
that routinely screens newborns for life-threatening
genetic disorders for which early treatment can sub-
stantially improve health outcomes. NBS has saved
thousands of newborns from disability and death in
the United States (Grosse 2015). Although the Advi-
sory Committee on Heritable Disorders in Newborns
and Children recommends 35 genetic disorders for
NBS (ACHDNC 2018), the number of disorders
included in a state’s NBS program can be less (Baby’s
First Test 2019), as cost is a major barrier to the inclu-
sion of disorders (e.g., van den Akker-van et al. 2006,
Mehta 2007, Nshimyumukiza et al. 2014, Grosse 2015,
van der Ploeg et al. 2015, California Department of
Public Health (CDPH) 2019, Schmidt et al. 2020).

Thus, screening must be both accurate and efficient.
NBS is performed via laboratory tests on dried blood
spots routinely collected from newborns for this
purpose.

One of the most prevalent NBS disorders is cystic
fibrosis (CF), which is caused by harmful mutations to
the CFTR gene (Kerem et al. 1989, Boyle and Boeck
2013). Currently, there are 352 well-characterized
CF-causing variants (specific types of mutations), most
of them very rare (Sosnay et al. 2013, CFTR2 2020).
Like most NBS disorders, CF is a recessive disorder;
everyone has two copies of the CFTR gene, one inher-
ited from each parent, and to have CF a newborn
must inherit a mutation, of any CF-causing variant,
from each parent. That is, a CF-positive newborn has
two CF-causing mutations, one on each CFTR gene.
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Newborns who inherit only one CF-causing mutation
are asymptomatic CF-carriers (the type of variant
does not alter the newborn’s CF-positivity nor carrier
status). CF manifests primarily with respiratory and
digestive symptoms, and is potentially life-threatening
(Ehre et al. 2014), but starting treatment before symp-
toms appear can reduce hospitalization and complica-
tions (Grosse et al. 2004, Accurso et al. 2005, Campbell
and White 2005, Farrell et al. 2005, Borowitz et al. 2009).
In 2004, the Centers for Disease Control and Prevention
recommended CF for NBS (Grosse et al. 2004), and
since 2009 every state’s NBS program has included CF
screening (Cystic Fibrosis Foundation 2009).

NBS for CF is accomplished via a screening process,
that is, a sequence of tests and decision rules, that clas-
sifies newborns as screen-negative or screen-positive as
accurately as possible, under limited resources. The
two most commonly used screening tests, both of
which are performed on the dried blood spots rou-
tinely collected from the newborn and sent to the NBS
laboratory, include the following:

Immunoreactive trypsinogen (IRT) test is a biomarker
test that measures IRT levels, which are generally ele-
vated in CF-positive newborns (Cunningham and
Taussig 2013). However, the range of IRT levels for
CF-positive and CF-negative (mutation-free or CF-carrier)
groups overlap (Kloosterboer et al. 2009, Sadeghzadeh
et al. 2020), resulting in relatively low classification
accuracy, for example, depending on the decision rule
(threshold), sensitivity and specificity vary between
85−97%and 95−99%, respectively (LeGrys 2002, Grosse
et al. 2004, Cutting 2013, Kay et al. 2015, Kharrazi et al.
2015).

Deoxyribonucleic acid (DNA) test is a genetic test
that typically uses variant-specific molecular probes,
which bind to the variant, amplify it via polymerase
chain reaction (PCR), and provide a signal if binding
occurs (implying the presence of the specific variant)
(Turgeon 2015).1 Probe-based DNA has a technologi-
cal limit on the number of variants included in the
panel (i.e., set of variants searched for), for example, a
panel limit of around 90 variants is common (Lim et al.
2016). DNA has almost perfect analytical sensitivity,
that is, it detects the variants in its panel with almost
perfect reliability (Kammesheidt et al. 2006, Johnson
et al. 2007, Kosheleva et al. 2017, Johns Hopkins

Medicine 2019). However, its clinical sensitivity, that is,
the likelihood that it will detect a CF-positive subject,
is dependent on the variants included in its panel.
Because there is a large number of variants, adding
more variants to the panel improves the test’s clinical
sensitivity, but comes at the expense of a higher test-
ing cost, and is restricted by the technological limit on
panel size. Consequently, for the practical case when
the DNA panel does not contain all CF-causing var-
iants, its clinical sensitivity will be less than perfect.
Thus, it is the test’s clinical sensitivity that impacts the
likelihood of a missed CF case, and we explicitly
model this accuracy versus cost trade-off.

Although each state designs its own CF screening
process, all states use IRT as the first test. The most
commonly used process is the IRT/DNA process (Fig-
ure 1), in which the IRT test is followed by a DNA test
for newborns with IRT levels exceeding a given
threshold. Figure 1 depicts the commonly used 5%
daily IRT threshold (Section 4.2.2): newborns with IRT
levels in the top 5%, of all IRT levels for each testing
day, undergo DNA testing (Kay et al. 2015). For DNA,
newborns with at least one mutation detected (of any
CF-causing variant) are typically classified as screen-
positive, and all other newborns are classified as
screen-negative (e.g., Kay et al. 2015, North Carolina
State Laboratory of Public Health (NCLPH) 2016, Wis-
consin State Laboratory of Hygiene (WSLH) 2018). A
false-negative occurs when a CF-positive newborn is
classified as screen-negative, and a false-positive occurs
when a CF-negative newborn is classified as screen-
positive. For example, for the IRT/DNA process, a
false-negative occurs when either the CF-positive
newborn’s IRT level is below the IRT threshold, or the
DNA panel does not include any of their specific
mutation variants (i.e., it has less-than-perfect clinical
sensitivity). On the other hand, a false-positive occurs
when the newborn is a CF-carrier, whose single muta-
tion variant is included in the DNA panel (hence
detected due to the test’s perfect analytical sensitiv-
ity), and whose IRT level is higher than or equal to the
IRT threshold.

By the FDA guidelines, “genetic testing is not
intended for stand-alone diagnostic” (Food and Drug
Administration 2005). Consequently, all current pro-
cesses end with the referral of the screen-positive

Figure 1. The Commonly Used IRT/DNA Process for CF NBS
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newborns for diagnostic testing, conducted via the
gold standard Sweat Chloride (SC) test in all US states
(e.g., Eng et al. 2005, Mattar et al. 2014, Cystic Fibrosis
Foundation 2017). SC has perfect sensitivity and spe-
cificity, and thus, correctly classifies the newborns, fix-
ing any false-positives from NBS. However, an SC
referral of a false-positive comes at the expense of
unnecessary testing (Willis 2012), which requires the
newborn to be taken to a specialized testing facility,
potentially causing parental anxiety and out-of-pocket
costs (e.g., travel, missed work) (Tluczek et al. 2005,
Wells et al. 2012, Cystic Fibrosis Foundation 2017). On
the other hand, any CF-positive newborn missed in
the screening process (i.e., a false-negative) is not
referred to SC, leading to late diagnosis, which often
results in poor health outcomes. Consequently, maxi-
mizing the accuracy of CF NBS becomes equivalent to
minimizing the false-negatives; and the testing pro-
cess is naturally constrained by testing cost considera-
tions, and the unnecessary testing (DNA and/or SC)
of false-positives contribute to the testing cost.

The common IRT/DNA process suffers from two
major drawbacks: (1) IRT test leads to some false-
negatives (missed CF cases); for example, between
2007–2012, all false-negatives reported for New York’s
CF NBS program, and half of all false-negatives
reported for California’s CF NBS program, stemmed
from the IRT test (Kay et al. 2015, Kharrazi et al. 2015);
and (2) DNA testing is expensive, and has a technolog-
ical limit on panel size; as a result, variant selection
for DNA revolves around the trade-off between clini-
cal sensitivity and cost, for example, see El Hajj et al.
(2021a), further the cost of DNA limits the number of
newborns that can be genetically tested.

With the goal of improving current CF NBS practi-
ces, we explore a novel approach of pooled DNA, which
we refer to as P-DNA. Under P-DNA, we use Dorfman
pooling (Dorfman 1943), where samples from multi-
ple subjects (extracted from their dried blood spots)
are combined into a single testing pool and tested
with one DNA test. If the pool tests positive (i.e., at
least one variant in the panel is detected), then each
subject is individually tested (with an additional DNA
test per subject, using a new sample, extracted from
the same dried blood spot) to identify subject(s) with

CF-causing variants; and if the pool tests negative,
then all subjects in the pool are classified as screen-
negative. Pooling can substantially reduce the number
of DNA tests required for NBS over the current indi-
vidual DNA testing paradigm. Although Dorfman
pooling is used in various health screening contexts
(e.g., McMahan et al. 2012, Aprahamian et al. 2019,
and the references therein), NBS introduces a new
application area and a new pooling design problem. First,
panel composition (i.e., variant set) and pool size (i.e.,
the number of subjects tested in each pool) must be
determined jointly, because panel composition
impacts the optimal pool size: adding more variants
to the panel increases the clinical sensitivity of DNA
testing, which is a driver of the optimal pool size
(Aprahamian et al. 2020). We also explore another
novel idea, of using multiple panels, where each panel
has its own pool size, and requires its own DNA test,
leading to the decision of how to optimally partition
the selected variant set into multiple panels. Specifi-
cally, in the case of a multipanel P-DNA, each panel
has its own testing pool, and each newborn’s dried
blood spot (through samples extracted) is tested, in
parallel, in every panel’s pool, followed by the indi-
vidual testing of those newborns (through additional
samples) in any positive-testing pool according to
Dorfman pooling. Then, a newborn is classified as
screen-negative only if no mutations are detected in
any of the panels, and is classified as screen-positive
otherwise, see Figure 2. The multipanel approach
allows the testing of more variants, in numbers com-
parable to some next-generation sequencing tests
(thus increasing the clinical sensitivity of DNA), but
importantly, as we show in this paper, it can increase
efficiency substantially when used in conjunction with
pooling, beyond the efficiency gains of pooling alone.
Therefore, the P-DNA design problem incorporates
this variant partition decision into variant selection
(using only one panel is thus a special case).

This research falls under the general umbrella of
public health screening and its intersection with oper-
ations research (OR); for example, see Garcia et al.
(2020) and Brandeau et al. (2004) for references on the
application of OR and statistics models to disease
screening. In the following, we provide an overview

Figure 2. Representative P-DNA Process for CF NBS
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of the related literature. Given the vast literature, our
discussion is not exhaustive, but rather indicative of
how this paper complements, and contributes to the
literature. Literature that is the most closely related to
this work is also cited throughout the paper. Because
genetic testing is performed in vitro, that is, on speci-
mens (in our setting, dried blood spots from new-
borns), pooled testing is viable, and this aspect
differentiates this research from studies that focus on
in vivo testing, that is, directly on the subject. From
this perspective, this work is closer to donated blood
screening (El Amine et al. 2018), infectious disease
screening (Hwang 1975, McMahan et al. 2012, Apra-
hamian et al. 2018, El Hajj et al. 2022), in vitro cancer
screening (Lutz et al. 2008, Kuipers et al. 2013, Steimle
and Denton 2017, Hilsden et al. 2018), among others.
However, the unique characteristics of CF and genetic
testing give rise to a novel decision problem in our
setting, that is, the integrated variant selection, variant
partition, and pool size determination problem dis-
cussed above.

Regarding the CF NBS literature that examines screen-
ing processes, a majority of these studies are in the
domain of medical/health systems literature; see El Hajj
et al. (2021a, b) for a more detailed overview, and Section
4.2.1 for additional literature about current CF NBS prac-
tices. Many of these papers use descriptive analyses
based on historical data (Hughes et al. 2015, Kharrazi
et al. 2015, Currier et al. 2017), with only a few studies
that utilize predictive analyses to compare a small num-
ber of given CF NBS processes (Wells et al. 2012, Nshi-
myumukiza et al. 2014). To our knowledge, there are
only two papers that use prescriptive analyses to opti-
mize different parts of CF NBS; El Hajj et al. (2021a, b)
both design a single-panel DNA for individual testing
(i.e., without pooling), that is, following the current CF
testing paradigm, given a testing budget, and focusing,
respectively, on the robustness and equity aspects of
screening. The partitioning of variants into multiple pan-
els, and pooling aspects of this work are unique ele-
ments that differentiate it from this previous research.

Much of the pooled testing literature studies Dorf-
man pooling and its variations, mostly under a deter-
ministic and known prevalence rate; only a few
papers consider a stochastic rate with a given distribu-
tion, see the references in Aprahamian et al. (2020).
Other pooling methods, such as array pooling, are
also explored (Phatarfod and Sudbury 1994, Kim et al.
2007). Pooled testing is one component of our decision
problem, which has unique characteristics in our set-
ting, including a pool prevalence that depends on var-
iant selection and partition components, and a limited
testing budget. We consider Dorfman pooling because
it is relatively easy to implement, yet highly efficient,
and hence is adopted in many screening applications,
including screening of donated blood, sexually

transmitted diseases and other infectious diseases,
and many others (Dodd et al. 2002, Rios et al. 2007,
Lewis et al. 2012, Abdalhamid et al. 2020, Kim et al.
2020, Pilcher et al. 2020, American Red Cross 2021).
Thus, Dorfman pooling is a viable first step for CF
NBS, where pooling is currently not utilized. We also
briefly discuss P-DNA under array pooling, but the
research question, of which pooling method to use in
different settings, is beyond the scope of this paper.

The contributions of this paper are multifold. From
a modeling perspective, we introduce a novel decision
problem that arises not only in NBS, but in genetic
testing in general. From a theoretical perspective, we
establish key structural properties of optimal P-DNA
designs (variant selection, variant partition into multi-
ple panels, pool size determination). The unique pool-
ing and multipanel dimensions of this work give rise
to a new decision problem in genetic testing, contrib-
uting to the small number of mathematical models on
genetic testing, including El Hajj et al. (2021a, b), both
of which design a single-panel DNA under individual
testing and for a given testing budget, as discussed.
The structural properties of optimal designs lead to an
efficient methodology for generating a family of opti-
mal P-DNA designs, along with their corresponding
budgets (i.e., budget breakpoints, which are complex
functions of the overall process design and parame-
ters). We also characterize the conditions under which
a 1-panel versus a multipanel P-DNA design is opti-
mal. From a practical perspective, the family of designs
generated by our methodology allows the decision-
maker to design an optimal P-DNA, considering the
trade-off between clinical sensitivity and cost. Further,
the increased efficiency in the genetic testing compo-
nent, made possible by the reduced cost per newborn
of P-DNA, allows for improved CF NBS processes.
The case study, which uses published CF NBS data
from the state of New York (Kay et al. 2015), indicates
that the multipanel and pooling aspects of genetic
testing work synergistically, and the proposed NBS
processes have the potential to substantially improve
both the efficiency and accuracy of current practices.
These findings have important implications on NBS
practices, for instance, our modeling framework
and methodology can be used by state laboratories
to make decisions on new screening processes, for
example, testing platforms, testing kits, and/or sub-
contracting decisions, and by test manufacturers to
develop new, innovative testing kits.

The remainder of this paper is organized as follows.
Section 2 presents the notation, assumptions, decision
problem, and some preliminaries. Section 3 derives key
structural properties of optimal P-DNA designs, which
lead to an efficient, optimization-based methodology
for generating a family of optimal P-DNA designs
and their corresponding budgets. Section 4 performs
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a case study and applies the new methodology for
P-DNA design to published CF NBS data from the
state of New York. Finally, Section 5 provides a sum-
mary of the main takeaways from this work, along
with the limitations of the study, which motivate
future research directions. To facilitate the presenta-
tion, Appendix A provides a summary of the acro-
nyms and the mathematical notation, Appendix B
includes many of the derivations, and Appendices
C–E include supplementary results and the mathe-
matical proofs.

2. The Decision Problem and
Preliminaries

We first provide the notation, assumptions, and the
decision problem (Section 2.1), followed by some pre-
liminaries that will be used in the subsequent analysis
(Section 2.2).

2.1. Notation, and Assumptions, and
Decision Problem

Let Ω denote the set of CF-causing variants, with car-
dinality m (currently m � 352) and variant frequency
vector q � (qi)i∈Ω, with qi, i ∈Ω, denoting the condi-
tional probability that a CFTR gene has a mutation of
variant i, given that the gene has a mutation, thus∑

i∈Ωqi � 1. Because each subject has two CFTR genes,
the probability that a CF-positive subject (i.e., with
one mutation in each CFTR gene) has two mutations
of variant i ∈Ω is q2i , and one mutation of variant i
and one mutation of variant j, i, j ∈Ω, i≠ j, is 2qiqj. We
define random variable N as the number of mutations
(of any variant in set Ω) a random newborn has, with
sample space S(N) � {0, 1, 2}, respectively denoting
the newborn’s status as mutation-free, CF-carrier, and
CF-positive, and with probability mass function
(pmf), PN(n) � Pr(N � n),n ∈ S(N). Without loss of
generality, we arrange the variants in set Ω such that
qi ≥ qj, ∀i, j ∈Ω, i < j. In the remainder of the paper,
we refer to an individual DNA test simply as DNA, to
pooled-DNA as P-DNA, and use the term genetic
testing to refer to both.

We denote vectors in boldface. Let 0 denote the m-
dimensional 0 vector, and 1l, l ∈ Z+, l ≤m, denote the
m-dimensional binary vector having a value of 1 for
the first l elements, and a value of 0 for the remaining
m-l elements. We use the subscript i to refer to the var-
iants in setΩ, the superscript k to refer to each P-DNA
panel (Figure 2), and omit the indices when it is clear
from context, or when a result or an expression
applies independently of the related index.

The goal of the P-DNA design problem is to minimize
the probability of a false-negative classification (FN) by

making three interdependent decisions: (i) selecting
the set of variants for screening; (ii) partitioning the
selected variants into panels; and (iii) selecting the
pool size for each panel. This design problem has tech-
nological limitations on panel size, z, pool size, t, and
number of panels used, η. Then, the decision variables
include, for each panel k � 1, ⋯ ,η, the binary vector
xk � (xki )i∈Ω, where xki � 1 if variant i is included in
panel k, and xki � 0 otherwise (equivalently repre-
sented by set S(xk) ≡ {i ∈Ω : xki � 1}); and pool size
tk ∈ Z+. Observe that panel k, k � 1, ⋯ ,η, is empty (i.e.,
not used) if xk � 0. Further, there is a budget restric-
tion, B, on the total cost of genetic and diagnostic (SC)
testing per newborn. We use the budget, B, as a
modeling convenience; in reality, this is also a deci-
sion (Section 1); therefore, we develop an efficient
methodology for generating a family of optimal
P-DNA designs for a range of budget values, to allow
the decision-maker to make trade-offs between bud-
get and accuracy, that is, the costs of testing and false-
negatives.

Define the binary vector x12⋯η ≡ ∑η
k�1x

k, and set
S(x12⋯η) ≡ {i ∈Ω : x12⋯η

i � 1} �⋃η
k�1 S(xk), that is, respec-

tively the combined variant vector and set covered by
P-DNA. As will become clear in the sequel, it is infor-
mative to consider the three components of the
P-DNA design problem: the variant selection compo-
nent determines set S(x12⋯η), and the variant partition
component splits the selected variant set into vectors
(xk)k�1,⋯,η (equivalently, sets S(xk),k � 1, ⋯ ,η), which,
in turn, impact pool sizes (tk)k�1,⋯,η . For a given panel
vector x, we denote the panel size by z(x) ≡ ∑

i∈Ωxi and
panel coverage by y(x) ≡ ∑

i∈Ωxiqi (with superscript k �
1, ⋯ ,η added for panel index as needed); and for a
given variant partition, we let η((xk)k�1,⋯,η) ≡ ∑η

k�1
I{xk>0} denote the number of panels used, where the indi-
cator variable I{xk>0} � 1 if xk > 0, and I{xk>0} � 0 other-
wise, k � 1, ⋯ ,η. To simplify the notation, in places
we drop the arguments in parentheses when clear
from context. Finally, without loss of generality, we
relabel the panels in any variant partition such that
panels 1, ⋯ ,η are nonempty, and panels η+ 1, ⋯ ,η
are empty. We refer to a variant partition that uses
exactly η panels as an η-panel design or an η-partition.

At the conclusion of genetic testing, newborns who
do not have any variants in set S(x12⋯η) are classified as
screen-negative, while newborns with at least one vari-
ant in set S(x12⋯η) are referred for the diagnostic SC
test, and diagnosed with CF or not according to the
outcome (Figure 2). Specifically, SC distinguishes
between CF-positives, who have two mutations, and
CF-carriers, who have a single mutation (independent
of which variant(s)). On the other hand, if a CF-positive
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newborn’s specific variants are not included in set
S(x12⋯η), a false-negative occurs, and these missed CF
cases are a primary concern in NBS.

We make the following assumptions, which we
briefly discuss here; Section 5 provides a more thor-
ough discussion.

Assumption 1. All CF-causing variants are known and
included in setΩ.

Assumption 2. Both the genetic test, DNA, and the
diagnostic test, SC, are perfectly reliable, that is, the
DNA analytical sensitivity (the probability of detecting a
variant in the panel) and specificity (the true negative
probability) are 1 for each variant included in its panel(s),
and SC can identify all CF-positive and CF-negative
subjects accurately.

Assumption 3. Pooling does not alter the analytical sensi-
tivity of P-DNA.

Assumption 1 is a practical assumption; there are
additional variants that are suspected of being
CF-causing, and undoubtedly, more unknown var-
iants, but the set of 352 variants (CFTR2 2020) is well-
characterized, that is, there is high confidence that
these variants are CF-causing. We expect this set to
expand as more variants are discovered and charac-
terized, but any variant that has not yet been identi-
fied in CF-positive individuals is likely to be very
rare. Assumption 2 is supported by various clinical
studies on CF genetic testing, which indicate that the
analytical sensitivity and specificity of the DNA test is
almost perfect for variants included in its panel (e.g.,
Kammesheidt et al. 2006, Johnson et al. 2007, Koshe-
leva et al. 2017, Johns Hopkins Medicine 2019); and
the SC is considered the gold standard for CF diagno-
sis (Cystic Fibrosis Foundation 2017). However, the
clinical sensitivity of the DNA test is naturally less
than 1 when its panel does not include all CF-causing
variants, that is, the clinical sensitivity is a function of
the variant selection decision, and a less-than-perfect
clinical sensitivity is the main driver of a missed CF
case for the DNA test. For Assumption 3, pooling
might lower the analytical sensitivity for large pool
sizes, due to dilution of positive samples with nega-
tive samples in the pool (Rours et al. 2005, Edouard
et al. 2015, Nguyen et al. 2019). Thus, although
Assumption 3 is supported up to certain pool sizes
(which we model via the pool size limit, t) in other
contexts (Krook et al. 1992), this assumption would
need to be validated for CF NBS, as we discuss in
Section 5. Pooling does not affect the test’s specificity.

On the cost side, each SC test incurs a cost of cSC,
and each genetic test incurs a fixed cost (e.g., consum-
ables, labor) of cf, plus a variable cost (e.g., dNTPs,
enzymes, variant-specific reagents) of cv

(
z(x)), which

is nondecreasing in panel size, z(x); we make no other

assumptions on the functional form of cv(:). Thus, cv(:)
depends only on panel size z(x), and not on the spe-
cific variants in the panel. This is a good assumption
for probe-based genetic testing technologies (see Sec-
tion 1), where each variant has a unique probe (i.e., a
unique sequence of DNA), but all probes are similar in
structure, that is, a segment of DNA and a signaling
molecule. Besides the probes, which contribute to a
linear form, the test has other reagents (e.g., dNTPs,
enzymes), and the amount of these reagents (hence
cost) may increase in a concave manner. As a result, in
practice we expect cv(:) to be either (approximately)
linear or concave increasing in the number of variants.

2.2. Preliminaries
We provide expressions on the expected testing cost
and false-negative probability as a function of panel
composition x, and pool size t (these expressions
expand their counterparts in Aprahamian et al. (2020)
and El Hajj et al. (2021a) to the P-DNA scheme); see
Appendix B for all derivations in this section.

To this end, let p(x) denote the probability that a
random newborn has at least one mutation, of any
variant covered by the panel, and D(x, t)and C(x, t)
respectively denote the per newborn expected number
of tests and per newborn expected cost for P-DNA. We
can write:

p(x) � PN(1)y(x) +PN(2) (2y(x) − (
y(x))2), ∀x ≥ 0 (1)

D(x, t) � 1
t
+ 1− (1− p(x))t, ∀x > 0, ∀t ≥ 2 (2)

C(x, t) �D(x, t) × (
cf + cv

(
z(x))) ∀x > 0, ∀t ≥ 2: (3)

Observe that Equation (2) follows because one test
for t subjects suffices if the pooled test’s outcome is
negative (i.e., no subject in the pool has any variant
covered by the panel), and t additional individual
tests (one per each subject in the pool) are needed if
the pooled test’s outcome is positive (i.e., at least one
subject in the pool has a variant covered by the panel),
see Assumptions 1–2. (Note that for the individual
DNA, D(x) � 1, and pool size is irrelevant.) Then, the
expected total testing cost per newborn, denoted by
TC(:), is the SC cost multiplied by the probability that
a newborn is referred for SC, plus the cost of P-DNA:

TC((xk ,tk)k�1,⋯,η )�cSC×p(x12⋯η)+∑η
k�1

I{xk>0} ×C(xk,tk),

(4)

As discussed, the primary concern for NBS is to min-
imize the probability of a false-negative (FN). An FN
occurs if the newborn is CF-positive (i.e., has two muta-
tions) and no mutations are detected by genetic testing
(i.e., when the specific variants of the CF-positive new-
born are not covered by any panel, or equivalently by
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set S(x12⋯η), see Assumptions 1–3). This follows because
if at least one mutation is found in any panel, then the
newborn will undergo SC testing, which eliminates an
FN (Figure 1), leading to the following expression:

Pr
(
FN(x12⋯η)

)
�
(
1−∑

i∈Ω
x12⋯η
i qi

)2
PN(2): (5)

3. Optimal Genetic Testing Design: Model
and Properties

The P-DNA Genetic Testing Design Problem (GP) mini-
mizes the probability of a false-negative (Pr(FN)) by
making variant selection, variant partition, and pool
size decisions, under a testing budget (B), and limits
on panel size (z), number of panels (η), and panel
pool size (t):
GPModel:

minimize
(xk,tk)k�1,⋯,η

Pr
(
FN(x12⋯η)

)
�
(
1 −∑

i∈Ω
qi
∑η
k�1

xki

)2
PN(2)

(6)

subject to TC((xk ,tk)k�1,⋯,η) � cSC × p
(∑η
k�1

xk
)

+∑η
k�1

(
max
i∈Ω

xki
{ }) × 1

tk
+ 1 − (1 − p(xk))tk

( )

× cf + cv
(
z(xk)

)( )
≤ B

(7)

∑
i∈Ω

xki ≤ z, k � 1, ⋯ , η (8)

∑η
k�1

xki ≤ 1, i ∈ Ω (9)

∑η
k�1

(
max
i∈Ω

{xki }
)
≤ η (10)

tk ≤ t, k � 1, ⋯ , η (11)

xki binary; i ∈ Ω, k � 1, ⋯ , η (12)

tk ≥ 0, integer, k � 1, ⋯ , η: (13)

We let xk∗, tk∗, k � 1, ⋯ ,η, and η∗((xk∗)k�1,⋯,η) �∑η
k�1I{xk∗>0} respectively denote the panel vector, pool

size, and number of panels used in an optimal solu-
tion to GP, where the indicator variable I{xk>0} �
maxi∈Ω{xki }, equivalently, it equals 1 if xk > 0, and 0
otherwise, for k � 1, ⋯ ,η, as defined in Section 2.1.

GP is a difficult optimization problem: the variant
selection component, on its own, is NP-hard even for a
special case of individual DNA (i.e., D(x) � 1) (El Hajj
et al. 2021a). That is, even without the variant partition
and pool size components, which further increase the
difficulty of the problem. Therefore, in the following,
we establish key structural properties of optimal solutions

to GP. These properties allow us to not only generate a
family of optimal solutions and their corresponding
budgets in an efficient manner, but also construct an
effective approximation procedure that generates a solu-
tion for any specific budget and bound its deviation from
an optimal solution.

Observe that the GP objective function (minimiza-
tion of the FN probability) depends only on the var-
iants selected, and is independent of both the variant
partition and panel pool size decisions, where the lat-
ter decisions impact only the feasible region (Equa-
tions (7)–(11)), as formally stated.

Remark 1.
1. Given any variant set S(x12⋯η), the false-negative

probability Pr
(
FN(x12⋯η)) is independent of both the

variant partition and panel pool sizes, (xk ,tk)k�1,⋯,η .
2. Given any panel x, there exists an optimal pool

size such that:
t∗(x) � argmin

{t∈Z+, t≤t}
{C(x, t)} � argmin

{t∈Z+, t≤t}
{D(x, t)}:

Thus, the panel’s optimal pool size is a function only
of the panel’s own variant composition, x, and is
independent of other panel compositions, hence,
tk∗ � t∗(xk), k � 1, ⋯ ,η.

3. Given any variant set S(x12⋯η), there exists an opti-
mal variant partition such that:

(xk∗)k�1,⋯,η � argmin{
(xk)k�1,⋯,η :

∑η

k�1x
k�x12⋯η

}{TC((xk ,t∗(xk))k�1,⋯,η)}:

Without loss of optimality, in the remainder of the
paper we focus on the optimal pool size vector and
optimal variant partition characterized in Remark 1. In
particular, we expand the characterization of an opti-
mal Dorfman pool size, established in Aprahamian et al.
(2020), to consider panel composition (Appendix C).
We then study the variant partition (Section 3.1) and
variant selection (Section 3.2) components. All mathe-
matical proofs can be found in Appendix E.

3.1. Variant Partition
In this section we establish structural properties of an
optimal variant partition. Without loss of generality, for
any η-panel design (η-partition), we relabel the non-
empty panels as k � 1, ⋯ ,η, and for any variant set
S(x12⋯η), with size z(x12⋯η) � l, we relabel the variants
as {1, ⋯ , l}, following a nonincreasing order of their
frequency, that is, q1 ≥ q2 ≥⋯≥ ql. In the following, we
focus on the optimal variant partition characterized in
Remark 1, that is, a minimizer of the expected total cost.

Definition 1. A partition of a given variant set
S(x12⋯η) � {1, ⋯ , l} is said to be an ordered partition if
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S(x1) � {1, ⋯ ,z(x1)}, S(x2) � {z(x1) + 1, ⋯ , z(x1) + z(x2)},
⋯ ,S(xη) � {∑η−1

k�1z(xk) + 1, ⋯ , l}, for any panel size
vector z(xk)k�1, ⋯ ,ηand η � 1, ⋯ ,η.

Thus, an ordered partition for given a variant set can
be constructed in a greedy manner, with a number of
the highest frequency variants assigned to one panel, a
number of the next highest frequency variants assigned
to another panel, and so on, and there exist multiple
ordered partitions having the same panel size vector
even when symmetric partitions are excluded. The con-
cept of an ordered partition will play an important role
in the search for an optimal variant partition, as indi-
cated by the following set of results.

Lemma 1. Among all variant partitions of set S(x12⋯η),
there exists an ordered partition that minimizes the
expected total cost, TC((xk ,t∗(xk))k�1,⋯,η).

In light of Lemma 1, we are able to formulate the
variant partition problem for any given variant set as a
shortest path problem, for which there exist known
polynomial-time algorithms.

Corollary 1. The variant partition problem for variant set
S(x12⋯η) � {1, ⋯ , l} (i.e., with variants relabeled following
a nonincreasing order of variant frequency) can be formu-
lated as a shortest path problem (denoted SP(S(x12⋯η))),
defined on an acyclic directed graph, with vertex set V(l) �
{1, : : : , l, l+ 1} (i.e., a vertex for each variant, plus a dummy
vertex l+1); and edge set E(l) � {(i, j) : i < j, i, j ∈ V(l)},
where each edge (i, j) corresponds to a panel comprised of
variants {i, i+ 1, : : : , j− 1}, that is, x(i, j) : (xr � 1)r�i,i+1,⋯,j−1,
(xr � 0)r�1,⋯,i−1,j,⋯,η , and edge cost d(i, j) represents the
panel’s expected cost, that is, d(i, j) � C(x(i, j), t∗(x(i, j)))
(Equation (3)) if j− i ≤ z, and d(i, j) � ∞ otherwise;
where t∗(x(i, j)) is computed via Property C.1 using
p(x(i, j)) � PN(1)y(x(i, j)) +PN(2) (2y(x(i, j)) − (

y(x(i,j)))2)
(Equation (1)), where y(x(i, j)) � ∑j−1

r�i qr. The complexity of
SP(S(x12⋯η)) is O(ηl2) for η <m (e.g., Bellman-Ford
Algorithm, Ford 1956, Bellman 1958, Chakravarty et al.
1982); and O(l2) for η ≥m (e.g., topological sorting algo-
rithm, Dijkstra’s Algorithm, Dijkstra 1959,Chakravarty et al.
1982, Cormen et al. 2009).

By construction of the graph in Corollary 1, each
path from vertex 1 to vertex l+ 1 corresponds to an
ordered partition of set S(x12⋯η). For example, path
1→ i→ j→ l+ 1 corresponds to an ordered three-
partition, consisting of sets S(x1) � {1, ⋯ , i− 1},S(x2)
� {i, ⋯ , j− 1},S(x3) � {j, ⋯ , l}. Thus, the set of paths
from vertices 1 to l+ 1 includes all ordered partitions
of the given variant set, and the shortest path corre-
sponds to the ordered partition with the lowest
expected total cost, which, by Lemma 1, is an optimal
partition. Lemma 1 and the shortest path problem for-
mulation in Corollary 1 follow based on the concavity

of the D(x, t∗(x)) function in y(x), along with various
properties established in Chakravarty et al. (1982) and
Cormen et al. (2009) (Appendix E). For a special case of
the variant partition problem with η � 2 (i.e., at most
two panels are allowed), we also develop an algorithm
that solves the variant partition problem with
improved complexity compared with Corollary 1.

Lemma 2. For the special case of the variant partition
problem with η � 2, there exists an algorithm that solves
the variant partition problem with complexity O(l) for a
variant set with l variants, l � 2, ⋯ ,min{2z,m}.
3.2. Variant Selection
In this section we study properties of an optimal vari-
ant set.

Definition 2. For any l � 1, ⋯ ,m, the set S(l) ≡ {1, 2,
⋯ , l}, which comprises the l highest frequency var-
iants in set Ω (i.e., without the relabeling of the var-
iants), is said to be an ordered variant set.

By this definition, ordered variant set S(l), l � 1, ⋯
,m, corresponds to variant selection vector x12⋯η � 1l,
and we denote its optimal variant partition by
xk∗(l), k � 1, ⋯ ,η :

∑η
k�1x

k∗(l) � 1l, that is, the ordered
partition that minimizes the expected total cost among
all partitions of set S(l), which is characterized in
Lemma 1. Then, η∗(l) � ∑η

k�1I{xk∗(l)>0}.

Definition 3. For any variant set S(l), l � 1, ⋯ ,m, the
per newborn expected total cost corresponding to its
optimal partition and optimal pool sizes is said to be a
budget breakpoint (Bl):

Bl ≡ TC((xk∗(l),t∗(xk∗(l)))k�1,⋯,η), (14)

and the solution, (xk∗(l), t∗(xk∗(l))k�1,⋯,η), is said to be an
optimal breakpoint design.

Theorem 1.
1. When B � Bl, l � 1, ⋯ ,m, the optimal variant set is

given by x12⋯η∗ � 1l. Equivalently, S(x12⋯η∗) � S(l) is an
optimal variant set.

2. For any budget B < Bl, l � 1, ⋯ ,m, @ any nonordered
or ordered variant set S ⊆Ω such that Pr(FN(S)) <
Pr(FN(S(l))).

Corollary 2.
1. At budget B � Bl, l � 1, ⋯ ,m, an optimal variant par-

tition corresponds to the optimal ordered partition for set S(l)
that is characterized in Lemma 1, that is, xk∗(l),k � 1, ⋯ ,η;
and Bl is the lowest budget at which Pr(FN(S(l))) can be
attained.

2. If set Ω has variants with distinct frequencies, that is, no
two variants have the same frequency, then xk∗(l), k � 1, ⋯
,η, is the unique optimal solution at budget B � Bl.

3. The optimal solution at B � Bm remains optimal for all
budgets B ≥ Bm.
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Theorem 1 is a key result. It establishes that when
the testing budget corresponds to any budget break-
point Bl, l � 1, ⋯ ,m, the optimal variant set consists of
the l highest frequency variants, that is, set S(l), and
hence, can be determined in a greedy manner. The
theorem also states that each budget breakpoint is the
lowest budget at which the corresponding FN proba-
bility can be attained; this is also significant, because it
applies to all (i.e., nonordered and ordered) variant
sets. Thus, if the goal is to generate the entire family
of optimal breakpoint designs and budget break-
points, then it is sufficient to consider only the m
ordered variant sets, S(1), ⋯ ,S(m), instead of the total
2m variant sets. Thus, Theorem 1 not only leads to an
efficient methodology for generating the entire family
of optimal breakpoint designs and budgets in
polynomial-time, but also motivates the development
of an effective approximation procedure at any budget
level (i.e., not necessarily one of the breakpoints), the
optimality gap of which is analytically characterized.

In the presence of multiple optimal designs at a
budget breakpoint, Corollary 3 generates those with
variant set, variant partition, and pool sizes respec-
tively characterized in Theorem 1, Lemma 1, and
Property C.1. In particular, Corollary 3 follows be-
cause, in the process of computing the shortest path
from vertex 1 to the dummy (terminal) vertex,
Bellman-Ford Algorithm, Dijkstra’s Algorithm, and
the topological sorting algorithm all compute the
shortest path from vertex 1 to every other vertex in
the vertex set (Dijkstra 1959, Bang-Jensen and Gutin
2008, Cormen et al. 2009).

Corollary 3. To generate the entire family of optimal break-
point designs and budget breakpoints, it is sufficient to solve
the shortest path problem defined in Corollary 1 only once,
for variant set S(m). Then, for each l � 1, ⋯ ,m, the optimal
variant set corresponds to S(l); the optimal variant partition
(xk∗(l))k�1,⋯,η , can be retrieved from the shortest path from
vertex 1 to vertex l+1; and the optimal pool sizes,
(t∗(xk∗(l)))k�1,⋯,η (computed a priori, via Property C.1, for
construction of the graph in Corollary 1) and budget break-
point Bl can be retrieved from the graph, based on the edges
on the shortest path from vertex 1 to vertex l+1. The com-
plexity is O(ηm2) for η <m, andO(m2) for η ≥m.

In general, however, the problem of finding an opti-
mal solution to GP at an arbitrary (nonbreakpoint)
budget B remains difficult, as discussed at the begin-
ning of Section 3. Nevertheless, the family of break-
point designs and budget breakpoints, generated by
Corollary 3, enable the decision-maker to design the
P-DNA process considering the trade-off between the
testing cost and the false-negative probability. Fur-
ther, the family of breakpoint designs can be used to
select an approximate solution at an arbitrary budget B.
For example, a “good” approximate solution is given

by the highest breakpoint design feasible at budget B,
whose optimality gap, ε(B), is bounded in the follow-
ing theorem.

Theorem 2. Consider any budget B such that Bl < B < Bl+1,
for some l � 1, ⋯ ,m− 1. The optimality gap of the approxi-
mate solution at budget B, given by (xk∗(l), t∗(xk∗(l))k�1,⋯,η ,
can be bounded from above as follows:

ε(B) < Pr (FN(x12⋯η � 1l)) −Pr (FN(x12⋯η � 1l+1))

�
[(
1−∑l

i�0
qi

)2
−
(
1−∑l+1

i�0
qi

)2]
PN(2) ≡ εUB(B):

Remark 2. By Theorem 1, @B : Bl < B < Bl+1, l � 1, : : : ,
m− 1, for which the upper bound on the optimality
gap, εUB(B), provided in Theorem 2, is tight.

The following lemma leads to insight on how the
upper bound on the optimality gap behaves in the
budget.

Lemma 3. The upper bound on the optimality gap, εUB(B),
is nonincreasing in budget B.

Thus, at higher nonbreakpoint budgets, the approx-
imate solution (i.e., the highest breakpoint design that
is feasible) is likely to yield a false-negative probabil-
ity that is closer to the optimal solution.

3.3. Design Insights
In this section our goal is to provide design insights
on when the decision-maker should use a one-panel
(i.e., η � 1) or a multipanel (i.e., η ≥ 2) design, and in
the latter case, the number of panels, η. We do this by
analytically characterizing the conditions under which
each design type dominates. Recall that an η-panel
design, η � 1, ⋯ ,η, refers to a design that uses exactly
η panels. To establish the structural properties in this
section, we use the term optimal η-panel design to refer
to an optimal design among the class of η-panel
designs, that is, an optimal solution to GP when the
number of nonempty panels is constrained to equal
η, η � 1, ⋯ ,η (through the modification of Constraint
(10)). The following definition will be used in our
analysis.

Definition 4. A function f is said to be subadditive if
f (x+ y) ≤ f (x) + f (y), and superadditive if f (x+ y) ≥
f (x) + f (y), ∀x,y ∈ R (Gilányi 2009).

In the following, we first fix the variant set for both
one-panel and multipanel designs, hence their false-
negative probability remains equal (Remark 1). We
say a design type “cost-dominates” its counterpart if
it yields the same false-negative probability as its
counterpart, but at a lower or equal expected total
cost, for a given variant set. Theorem 3 derives the
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conditions under which each design type cost-
dominates.

Theorem 3. Consider any variant set S(x12⋯η) with size
z(x12⋯η) ≥ 2. The following properties hold ∀η � 2, ⋯ ,
min{η,z(x12⋯η)}:

1. If ∃ cf ≥ 0 such that the optimal η-panel (one-panel)
design cost-dominates the optimal one-panel (η-panel)
design, then the η-panel (one-panel) design will continue to
cost-dominate for all lower (higher) values of cf.

2. Let cv(z(x)) � ε × c′v(z(x)), where c′v(z(x)) is nonde-
creasing in z(x), and ε > 0. Then, ∃ε(S(x12⋯η),η) > 0 such
that the optimal one-panel design cost-dominates for all
ε ≤ ε(S(x12⋯η),η), and the optimal η-panel design cost-
dominates otherwise.

Thus, if the fixed cost cf is sufficiently low, or the
variable cost cv(:) (equivalently, ε) is sufficiently high,
a multipanel design cost-dominates for a given vari-
ant set, but a sufficiently low cf value may not exist for
some variant sets, that is, if the optimal one-panel
design cost-dominates the optimal η-panel design at cf
� 0, then the one-panel design will cost-dominate,
∀cf ≥ 0. On the other hand, the threshold on the vari-
able cost function, ε(:), is always strictly positive.

Next, we discuss the optimality, that is, in terms of
minimizing the false negative probability, of each
design type. To this end, we say a design type “FN-
dominates” its counterpart if it leads to a lower or
equal FN probability at a given budget.

Theorem 4. For any budget B:
1. If cf + cv

(
z(x)) is superadditive in z(x), then ∃ k(B,η)

such that the optimal η+ k-panel design FN-dominates the
optimal η-panel design for any η � 1, : : : ,η, k � 0, ⋯
, k(B,η).

2. If cv(z(x)) � c, ∀z(x) ∈ Z+, for some c ≥ 0, then the
optimal η-panel design FN-dominates the optimal
η+ k-panel design for any η � 1, : : : ,η − 1, k � 1, ⋯ ,η − η.

Because the expected total cost, TC(:), is a function
of both the fixed and variable costs, cf and cv(:), of the
genetic test, and covers both the pool testing and indi-
vidual retesting components, the cost thresholds in
Theorem 3 clearly depend on all problem parameters.
Theorem 4 makes the dependence on the genetic test
cost parameters explicit. In particular, when the cost

per genetic test is superadditive in panel size (Defini-
tion 4), a one-panel design incurs a higher cost per
genetic test than the combined cost of all panels of a
multipanel design. This, combined with the property
that the expected number of tests per panel, D(:), is
monotone increasing in panel coverage, y(x) (Lemma
E.1), implies that the expected cost, TC(:), is higher for
a one-panel design compared with a multipanel
design, for any variant set. Secondly, when the vari-
able cost is a constant, that is, independent of panel
size, TC(:) depends only on the expected number of
tests, D(:), which is concave in panel coverage, y(x)
(Lemma E.1), and hence the cost is lower when the
variants are combined into a single panel, compared
with a multipanel design.

In general, although higher values of cf favor a
lower number of panels (Theorem 3), a convex cv(:)
function would behave in the opposite way, and
restrictions on both cf and cv(:) are needed in Theorem
4 for the FN-dominance of one design type over
another. We provide two illustrative examples. In
both examples, a budget is given, which may not cor-
respond to a budget breakpoint for an optimal η-panel
design (that is, Theorem 1 may not necessarily hold).
Hence, we obtain the optimal variant set for each
η-panel design via enumeration; the optimal pool size
and variant partition for a given variant set are then
obtained by Lemma 1 and Property C.1. Tables 1 and
2 display each optimal η-panel design (variant set,
with variant partition given in {:} – the five-panel
design is not feasible in either example), and the opti-
mal solution to GP(η � 5), that is, without any restric-
tion on number of panels, is bolded.

Common parameters for Examples 1–2: Ω � {1, 2, 3,
4, 5}, with normalized frequency vector q � (0:58,
0:19,0:11,0:08,0:04); cost per SC test, cSC � $500; pmf
ofN: PN(0) � 0:97125,PN(1) � 0:02857,PN(2) � 0:00018.

Example 1. Consider that cf � $1, cv(z(x)) � $(z(x))0:9
(a concave function, thus violating the conditions in
Theorem 4, see Definition 4), and B � $15:00. The opti-
mal one-, three-, and four-panel designs all share the
same nonordered variant set S � {1, 2, 3, 5} (the
ordered variant set S(4) � {1, 2, 3, 4} is not feasible for
these designs at the given budget), and thus have the

Table 1. Optimal η-Panel, η � 1, ⋯ , 4, P-DNA Designs for Example 1

η-Panel design η � 1 η � 2 η � 3 η � 4

Optimal variant set (each partition in {:}), {1,2,3,5} {1}{2,3,4} {1}{2}{3,5} {1}{2}{3}{5}
S(x12⋯η∗(η))
Expected total cost, $14.68 $14.91 $14.44 $14.43
TC((xk∗(η),t∗(xk∗(η)))k�1,⋯,η )
False-negatives per 106 newborns, 1.04 0.26 1.04 1.04
Pr(FN(x12⋯η∗(η))) × 106
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same FN probability. The two-panel design feasibly uses
the ordered variant set S(4), lowering the FN probability
(Table 1). Thus, the two-panel design FN-dominates all
other designs, and the FN-dominance relationship from
Theorem 4 does not hold.

Example 2. Consider that cf � 0, cv(z(x)) � $(z(x))1:1 (a
convex function, thus satisfying the condition in part
1 of Theorem 4, see Definition 4), and B � $13:25. The
one-panel design is FN-dominated by both two- and
three-panel designs, but not by the four-panel design,
where the latter requires a set with at least four var-
iants, and because the ordered set S(4) is not feasible,
it is forced to select a nonordered variant set, and
does not perform well (Table 2). Thus, Theorem 4
holds with k(B, 1) � 3.

Theorem 4 leads to the following corollary.

Corollary 4. For any budget B:
1. If cf + cv

(
z(x)) is superadditive in z(x), then the optimal

solution to GPmust correspond to an η+ k(B,η)-design, for
some η � 1, ⋯ ,η.

2. If cv(z(x)) � c, ∀z(x) ∈ Z+, for some c ≥ 0, then the
one-panel design must be optimal forGP.

In general, we do not expect the genetic test cost
function to be superadditive, which is satisfied, for
example, by a convex nondecreasing cv(:) and cf � 0
(Definition 4), see Section 2.1 for discussion. When the
superadditivity condition is not satisfied, there exists
no clear FN-dominance of the one-panel design over a
multipanel design, as Example 1 demonstrates for a
concave cv(:) function. We discuss the impact of the
form of the variable cost function further in Section 4.3.2.

4. Case Study
We start with an outline of the objectives and scope of
the case study (Section 4.1), followed by data sources
and calibration (Section 4.2), and a discussion of key
findings (Section 4.3–Section 4.4).

4.1. Objectives and Scope
We perform a case study based on the state of New
York (NY), using published or publicly available data
to illustrate the properties and benefits of the P-DNA
test.

To this end, we first discuss the P-DNA test in isola-
tion (Section 4.3), and then when integrated into two
novel CF NBS processes, IRT/P-DNA and P-DNA
(Section 4.4). For comparison, we also consider IRT/
DNA (i.e., with individual single-panel genetic test-
ing), which is representative of most current CF NBS
processes (Figure 1), and is the process described in Kay
et al. (2015) for NY.2 These are not the only processes
that can effectively utilize P-DNA, and it is possible to
improve upon their performance through process-level
optimization and process design, which are interesting
problems beyond the scope of this paper (Section 5).
Because our focus in this work is on the optimization of
the genetic testing component (P-DNA or DNA), we use
decision rules from practice to govern the rest of the pro-
cess (Section 4.2.2).

We generate a family of optimal breakpoint
designs for both P-DNA and DNA, that is, for each
ordered variant set S(l), along with their budget
breakpoint Bl, indexed by l (Definitions 2 and 3). Spe-
cifically, for P-DNA, we generate the optimal break-
point designs characterized in Lemma 1, Theorem 1,
and Property C.1, using Corollaries 1 and 3. For com-
parison purposes, we allow DNA to use multiple
panels. However, DNA does not use pooling, and
therefore, unless the genetic test cost function is
superadditive, the only advantage of a multipanel
design for DNA is a higher coverage, and not the effi-
ciency benefit that a multipanel design brings to
P-DNA. Then, under the linear cv(:) that we consider
(Section 4.2.1), the optimal number of panels used in
DNA always equals the minimum number of panels
possible for a given variant set (i.e., index l), and the
optimal DNA design at index l simply follows from
Theorem 1, as there is no pooling, and the variant
partition among panels is immaterial.

For both P-DNA and DNA, the number of panels
affects only the expected testing cost, and not the
false-negative probability (Remark 1); we report the
latter in terms of the expected false-negatives per
1,485,358 newborns (the number of newborns in the
NY study, see Section 4.2.3), using the notation FN.
Therefore, for an index l, both the P-DNA and DNA
will yield the same FNs given the same testing population.
However, the characteristics of the testing population
that undergoes genetic testing changes depending on

Table 2. Optimal η-Panel, η � 1, ⋯ , 4, P-DNA Designs for Example 2

η-Panel design η � 1 η � 2 η � 3 η � 4

Optimal variant set (each partition in {:}), {1,2,5} {1}{2,4} {1}{2}{3} {1}{3}{4}{5}
S(x12⋯η∗(η))
Expected total cost, $12.61 $12.79 $13.23 $12.15
TC((xk∗(η),t∗(xk∗(η)))k�1,⋯,η )
False-negatives per 106 newborns, 6.47 4.14 2.33 6.47
Pr (FN(x12⋯η∗(η))) × 106
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the process used (i.e., depending on whether IRT is
used, Section 4.2.4). To simplify the presentation, we
refer to a budget breakpoint (i.e., expected cost per
newborn) simply as budget in this section. All cost and
budget terms are in US dollars ($).

4.2. Data Sources and Model Calibration
We next provide the case study data, and the decision
rules for the three CF NBS processes.

4.2.1. Genetic Testing Data. In practice, states negoti-
ate prices for testing kits and related material, and
infrequently, some states subcontract some portion of
the testing process. Further, there are numerous test-
ing platforms to choose from, hence numerous cost
structures to consider. We use representative cost data
for genetic testing, loosely derived from the literature.
Specifically, for the base case, we consider that the vari-
able and fixed costs per genetic test are, cv(z(x)) �
$z(x) (i.e., linear increasing in panel size) and cf � $10,
respectively, and the costs per IRT and SC tests are,
cIRT � $1:5and cSC � $161:4, respectively (Rosenberg
and Farrell 2005). Because genetic testing is a generic,
and relatively new, technology, with many applica-
tions beyond newborn screening and much current
development, the cost of genetic testing is, in general,
trending downward. Therefore, we also consider sce-
narios with different fixed and variable costs (Sec-
tion 4.4).

Regarding the technological limits, we do not use a
pool size limit t due to a lack of rigorous clinical studies
showing the relationship of pool size and accuracy for
DNA (Section 5). Based on current probe-based technol-
ogies, we use a technological panel size limit of z � 90
variants (Lim et al. 2016). We vary the limit on number
of panels, η, to study optimal designs with different
number of panels (with η �m representing the setting
with no limit on number of panels). If multiple panels
are used, they are tested in parallel; and an η-panel
design, η � 1, ⋯ ,η, can test up to ηz variants.

To provide perspective, consider that the American
College of Medical Genetics (ACMG) recommends test-
ing, using, at a minimum, the 23 most common variants
in the United States (Deignan et al. 2020), but current
CF panels differ among states. For instance, New
York’s process, as described in Kay et al. (2015), used
39 variants (until 2019), and California’s process uses 40
variants (Kharrazi et al. 2015), whereas states like North
Carolina and Wisconsin both use a panel of 139 var-
iants (using a next-generation sequencing technology)
(NCLPH 2016, WSLH 2018). No state currently uses
Dorfman pooling or multiple panels as part of CF NBS.
To our knowledge, all current DNA panels are derived
solely based on descriptive analyses. Typically, a num-
ber of the highest frequency variants are added to the
DNA panel, based on frequencies from historical

screening data and budget considerations (Kharrazi
et al. 2015, Deignan et al. 2020).

4.2.2. Process Decision Rules. For the IRT/DNA and
IRT/P-DNA processes, we follow the 5% daily thresh-
old for IRT, reported in Kay et al. (2015), in which
newborns with IRT levels in the top 5% of all IRT lev-
els each testing day are classified as IRT-positive, and
sent to the next test in the process. This daily percen-
tile threshold is a common decision rule for the IRT
test due to seasonal, biological, and demographic var-
iations in IRT levels (Kloosterboer et al. 2009, Therrell
et al. 2012, Kay et al. 2015, Sadeghzadeh et al. 2020),
with 4% and 5% threshold values commonly used,
dictated mainly by limited testing budgets (Grosse
et al. 2004). In addition, following current practices,
for genetic testing (DNA or P-DNA), we classify any
newborn with at least one mutation detected (of any
variant and in any panel) as screen-positive, and refer
them for SC testing for diagnosis (Figure 1).

4.2.3. Population-level Data. The CFTR-2 data set
(CFTR2 2020) is the most comprehensive data set on
CF-causing variants, and includes 352 well-characterized
CF-causing variants from more than 88,000 CF-positive
subjects. We include all 352 variants in set Ω (hence m �
352), and derive the variant frequency vector, q � (qi)i∈Ω,
based on variant frequencies reported in the data set,
normalized so that

∑
i∈Ωqi � 1. The CFTR-2 data set indi-

cates that variant frequencies can vary significantly; for
example, the most frequent variant, F508Del, has a (nor-
malized) frequency of 0.741741, which is around 27
times the frequency of the second most frequent variant,
G542X, which has a frequency of 0.027031. Some var-
iants are very rare, for example, 248Del2515, the least fre-
quent variant, has a frequency of 1:5 × 10−5.

Only the P-DNA process uses genetic testing on all
newborns (general newborn population), and both IRT/
DNA and IRT/P-DNA processes use genetic testing
only on the subset of newborns that are IRT-positive
(post-IRT population). Importantly, CF and carrier
prevalence likely differ in these two populations.
Therefore, we derive the proportion of mutation-free,
CF-carrier, and CF-positive newborns for both the
general population (i.e., the pmf of random variable
N), and the post- IRT population (which we denote by
the pmf of random variable Npost). For this purpose,
we use the CF NBS data reported in Kay et al. (2015),
for 1,485,358 newborns screened in New York
between 2007–2012. In this study cohort, 260 new-
borns were CF-positive, nine of whom were missed
by the IRT test (these nine FNs at the IRT level consti-
tute all the FNs reported for New York NBS in this
cohort); 79,973 newborns were screened post- IRT
(i.e., with individual one-panel DNA), based on the
5% IRT threshold; and of those 79,973 post-IRT
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newborns, all 251 were correctly identified as
CF-positive via the process (excluding the nine FNs
from IRT), and 3,850 newborns, who were referred for
SC testing with only one mutation detected, were con-
firmed to be CF-carriers by SC. Thus, for the general
population, we compute:

PN(2) � # CF-positive newborns
# screened newborns

� 260
1, 485, 358

� 0:00018:

We do not have data on the number of carriers and
mutation-free newborns in this cohort; therefore, we
use estimates from the literature that suggest that the
proportion of CF-carriers in the general US population
is around 1:35 (Henneman et al. 2003, Cystic Fibrosis
Foundation 2019), that is, PN(1) � 1

35 � 0:02857, yield-
ing PN(0) � 0:97125.

For the post-IRT newborn population, based on the
New York data set, we compute:

PNpost(2) � # CF-positive newborns in the post-IRT population
# post-IRT newborns

� 251
79, 973

� 0:00314,

PNpost(1) � # CF-carriers in the post-IRT population
# post-IRT newborns

� 3, 850
79, 973

� 0:04814,

yielding PNpost(0) � 0:94872.

4.2.4. Process-level Data. When a process uses IRT,
we modify the budget breakpoint (Equation (14)) and
the false-negative probability (Equation (5)) to con-
sider the 5% IRT threshold, and respectively include
the IRT cost per newborn, denoted by cIRT, and the
rate of FNs stemming from IRT; and for the genetic
test (DNA or P-DNA), we use the pmf of the post-IRT

random variable, Npost, as discussed. Note that variant
set S(l), l � 1, ⋯ ,m, corresponds to x12⋯η∗(l) � 1l (for
both DNA and P-DNA).
IRT/DNA(η) process, with DNA panel vector
(xk∗(l)k�1,⋯η ):

We have that, xk∗(l) � 1min{l,kz} − 1min{l,(k−1)z}, k � 1,
⋯ ,η, leading to:

Bl � cIRT + 0:05×
(
k× cf +

∑k
k′�1

cv
(
z(xk′∗(l))

)
+ cSC

× p
(
x12⋯η∗(l)

) )
, l� 1, ⋯ ,m: (15)

IRT/P-DNA(η) process, with P-DNA panel vector
(xk∗(l)k�1,⋯,η ):

Bl � cIRT+0:05×TC((xk∗(l), t∗(xk∗(l)))k�1,⋯,η), l� 1, ⋯ ,m,

(16)

where TC(:) is as defined in Equation (4).
We compute the FN probability for variant set S(l),

equivalently, x12⋯η∗(l) � 1l, as follows (with the sub-
script, post, used to denote the post-IRT genetic test-
ing):

Pr (FN(1l)) � (1− 0:05) × Pr (N � 2 | not top 5%IRT)
+ 0:05 × Pr (FNpost(1l) | top 5%IRT)

� 0:95 × Pr (N � 2 | not top 5%IRT) + 0:05

×
(
1−∑l

i�1
qi

)2
PNpost(2),

where Pr(FNpost(1l) | top 5%IRT) is the conditional
probability of FN from genetic testing, given that the
newborn is IRT-positive, and is calculated via Equa-
tion (5) (with the pmf of random variable N replaced
by the pmf of random variable Npost); and Pr(N � 2 |
not top 5%IRT) is the conditional probability that a
newborn is CF-positive, given that they are not in the
top 5% IRT group (i.e., IRT-negative), and is estimated

Figure 3. (Color online) Optimal Number of Panels Used (η∗(l)) by P-DNA(η �m), and the Genetic Testing Cost for
P-DNA(η � 1, 2, 4,m) andDNA, as a Function of Index l

Notes. (a) Number of panels vs. design index. (b) Genetic testing cost vs. design index.
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based on the data in Kay et al. (2015). In particular,
the cohort of 1, 485,358 contained 9FN s from IRT,
and 79, 973 IRT-positives, hence we derive:

Pr (N � 2 | not top 5%IRT)
� # IRT-negative and CF-positive newborns

# IRT-negative newborns

� 9
(1, 485,358− 79,973) � 6:4 × 10−6:

4.3. Properties of the P-DNA Test
In this section we illustrate key properties of the
P-DNA test using the data for the P-DNA process, that
is, variant frequencies in the general newborn popula-
tion. To this end, we first explore the two novel
aspects of a P-DNA design, pooling and multipanel
testing (Section 4.3.1), and then discuss some opera-
tional issues for P-DNA implementation (Section 4.3.2).

4.3.1. Efficiency and Efficacy of P-DNA. We first con-
sider P-DNA(η �m) (i.e., no limit on number of pan-
els), and study the optimal number of panels (η∗(l))
for all ordered variant sets S(l), l � 1, ⋯ ,m(� 352), see
Figure 3(a). A one-panel design is optimal only for
small variant sets, for example, it is optimal for l �
1, ⋯ , 4 when cf � $10 (base case), for l � 1, 2 when
cf � $5, and for l � 1, ⋯ , 10 when cf � $20. A two-
panel design is optimal for l � 5, ⋯ , 15 in the base
case, after which an optimal partition always utilizes
more than two panels. Thus, even if we consider only
the 23 most common variants, the minimum recom-
mended by the ACMG (Deignan et al. 2020), a design
with more than two panels is optimal. The optimal
number of panels, η∗(l), increases as variant set S(l)
expands, for example, when the variant set contains
all the variants in Ω (l � 352), the optimal number of
panels is 11. In addition, as l increases, η∗(l) remains
unchanged over a larger range of l values (e.g., two-
panel is optimal for l � 5, ⋯ , 15, whereas 10-panel is
optimal for l � 234, ⋯ , 323), because at larger values

of l, adding one more variant has only a small impact
on the overall prevalence of the variant set.

We next study the cost efficiency of a multipanel
P-DNA design. Figure 3(b) displays the genetic testing
cost as a function of index l for P-DNA(η), for
η � 1, 2, 4,m, and for the current one-panel DNA,
indicating that all variations of the P-DNA process
dominate the DNA process. Interestingly, testing all
352 variants in Ω with 11 panels leads to a similar bud-
get ($27:34) as testing 132 variants with two panels
($27:53), or testing only 14 variants with a one-panel
DNA ($28:11), highlighting the benefits stemming from
the pooling and multipanel aspects of P-DNA. Due to
capacity restrictions of genetic testing machines, using
more panels may reduce the throughput; this aspect
should be considered in practical applications. We illus-
trate how a P-DNA achieves these benefits with a simple
example.

Example 3. Consider P-DNA(η � 1), P-DNA(η � 2),
and DNA designs for l � 90 (Table 3):

• P-DNA(η � 2): Panel 1 has 12 variants (the highest
frequency variants), a pool size of seven, and a retest
(i.e., individual testing) probability of 0.164, whereas
Panel 2 has 78 variants, a pool size of 19, and a retest
probability of 0.053, leading to an expected genetic test-
ing cost per newborn of $16:05 (� $9:30+ $6:75).

• P-DNA(η � 1): The single, 90-variant panel has a
pool size of seven and a retest probability of 0.181, leading
to an expected genetic testing cost per newborn of $32:35.

• DNA: The single, 90-variant panel incurs, in the
absence of pooling, an expected genetic testing cost per
newborn of $100.

For this instance, the one- and two-panel P-DNA
designs reduce the genetic testing cost by 67.6% and
83.9%, respectively, over DNA. Going from one to two
panels reduces the P-DNA cost by 50.3% (from
$32:35 to $16:05) due to further efficiencies gained
through multipanel testing. To see this, consider that
the P-DNA testing cost has two components: the ini-
tial pooled testing cost, and the expected (individual)
retesting cost. The two-panel design reduces both

Table 3. Details for P-DNA(η � 1) and P-DNA(η � 2) Designs for l � 90

P-DNA(η � 1) P-DNA(η � 2)
l � 90 Panel 1 Panel 1 Panel 2

Panel size (z(x)) 90 12 78
Pool size (t∗(x)) 7 7 19
Retest probability 1− (

1− p(x))t∗(x)( )
0.181 0.164 0.053

Cost per genetic test (cf + cv(z(x))) $10+ $90 � $100 $10+ $12 � $22 $10+ $78 � $88
Genetic Testing cost per newborn

Pooled test 1
t

(
cf + cv(z(x))) $100=7 � $14:29 $22=7 � $3:14 $88=19 � $4:63

Individual retest 1− (
1− p(x))t∗(x)( )

cf + cv
(
z(x))( )

0:181 × $100 � 18:06 0:164 × $22 � 3:61 0:053 × $88 � 4:67
Total (C(x, t∗(x))) $14:29+ $18:06 � $32:35 $3:14+ $3:61 � $6:75 $4:63+ $4:66 � $9:30
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costs (Table 3). For the pooled test(s), the one- and
two-panel designs respectively incur costs of
$14:29and $3:14+ $4:63 � $7:77: the two-panel design
is able to reduce this cost through the use of a larger
pool size for the more expensive Panel 2 test (Table 3).
On the other hand, for retesting, the one- and two-
panel designs respectively incur expected costs of
$18:06and $3:61+ $4:67 � $8:28: this cost reduction
follows because a two-panel design offers a main
advantage, in that if a panel tests positive (which hap-
pens with probability 1−

(
1− p(x)

)t
for each panel x

with pool size t), then individual retesting is required
only for the positive-testing panel, instead of the
entire variant set, as happens in the one-panel design.
Indeed, the more expensive Panel 2 has a lower retest
probability, leading to significant cost savings.

To gain further insight, for P-DNA(η � 2) we dis-
play the panel sizes (z(xk∗),k � 1, 2) and panel coverage
(y(xk∗), k � 1, 2), as well as pool sizes (tk∗,k � 1, 2) and
individual retest probabilities for the family of opti-
mal designs (Figures 9-10, Appendix D.2). These fig-
ures indicate that the optimal variant partition is such
that one panel typically contains a smaller number of
higher frequency variants (Panel 1 in this case) than
the other panel. Relegating those rare variants to one
panel (Panel 2) allows for a larger pool size (of 19),
and even with a larger panel size (of 78), it still has a
lower retest probability, which in turn reduces the
testing cost for rare variants. Observe, in Figure 3 that
around index 109, the two-panel design starts to lose
efficiency, this corresponds to the point where Panel 2
reaches its technological limit, forcing Panel 1 to grow
at a quicker pace (interestingly, as l increases, the
additional variant goes into Panel 2, and the highest
frequency variant in Panel 2 transfers to Panel 1).

In summary, the P-DNA test utilizes the testing
budget more efficiently (through pooling and multi-
panel testing); further, the use of multipanels allows
the detection of more variants compared with the cur-
rent single-panel, individual testing practice (DNA).

4.3.2. Practical Considerations. Next, we briefly dis-
cuss some practical considerations for the P-DNA test.

• Common pool sizes: We characterize an optimal
common pool size for P-DNA (Appendix C.1). Our
numerical study indicates that while moving from a
one-panel to a two-panel design is highly effective in
reducing costs (as discussed), allowing panel pool sizes
to differ yields much smaller benefits, thus using com-
mon pool sizes preserves most of the efficiency gains of
P-DNA, while reducing process complexity (Appendix
C.2).

• Variable cost function: In addition to the linear
case, we also consider P-DNA designs under convex
and concave variable cost functions, cv(:). A concave
(convex) cv(:) function makes it more (less) favorable to
combine variants in one panel, and not surprisingly,
lowers (raises) the budget breakpoint for each index l,
compared with the linear case (Figure 8, Appendix D.1).
Interestingly, the one-panel P-DNA cost-dominates the
two-panel P-DNA for small variant sets (Theorem 3)
under all cost functions, that is, for l � 1, ⋯ , 4 for linear
cost, for l � 1, ⋯ , 12 for concave cost, and for l � 1, 2 for
convex cost functions (Appendix D.1).

• Equity considerations: Variant frequencies can dif-
fer across demographic groups (El Hajj et al. 2021b),
and larger panels are in general more equitable. For
example, considering the most common variants for
the white, Hispanic, and black groups (Schrijver et al.
2016), we find that the 25 (50) most common variants

Figure 4. (Color online) Budget Breakpoints, Bl, for Various Processes for Optimal Designs for Two Genetic Testing Cost
Structures, as a Function of Index l

(a) (b)

Notes. (a) cf � $10, cv(z(x)) � $z(x). (b) cf � $5, cv(z(x)) � $0:5 × z(x).
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for each of these groups are included in the top 48, 118,
and 162 (61, 216, and 195) most common variants,
respectively, in the CFTR-2 data set. Thus, by simply
expanding the variant set, P-DNA allows for the
screening of some rare variants that may be found
predominantly in minority demographic groups, thus
contributing to a more equitable solution, see Section
5.2 for further discussion.

4.4. Process Comparison
In this section we compare the three testing processes,
IRT/DNA, IRT/P-DNA, and P-DNA: We consider
two variations of the latter two processes, with
η � 2and 4. For each process, we generate the family
of optimal breakpoint designs for l � 1, ⋯ , 2z(� 180)
(above which a two-panel design is no longer feasi-
ble), and compute the corresponding budget break-
point Bl, and expected FNs in a cohort of 1,485,358
newborns (similar to the New York cohort (Kay et al.
2015)). This allows us to study the screening cost ver-
sus accuracy trade-off at a process level. Due to the
declining cost of genetic testing, we also look at a sec-
ond cost structure that is half of the base case costs,
that is, cf � $5and cv(z(x)) � $0:5 × z(x).

For both cost structures, P-DNA(η � 2) is the most
expensive, followed by P-DNA(η � 4), IRT/DNA,
IRT/P-DNA(η � 2), and IRT/P-DNA(η � 4) for each
l (Figure 4). Comparing IRT/DNA and IRT/P-DNA,
we see that for the same index l (where both processes
incur the same FNs), either IRT/P-DNA variation
(η � 2, 4) cost-dominates IRT/DNA, by reducing the
budget at the same FN level. Further, the more panels
are allowed, the lower the budget.

We next compare P-DNA and IRT/P-DNA. Because
P-DNA genetically tests all newborns, as opposed to
only 5% of newborns in IRT/P-DNA, it naturally incurs
a higher budget: This higher P-DNA budget happens
through an increase in not only the genetic tests, but also
SC referrals. At the same time, the elimination of the IRT
test in P-DNA lowers the FNs for each l, compared with
IRT/P-DNA. We illustrate this with an example.

Example 4. Consider IRT/P-DNA(η � 2) and P-DNA
(η � 2) designs at l � 5, for cf � $10and cv(z(x)) � $z(x)
(Table 4):

• IRT/P-DNA(η � 2): The expected FNs is 16.52, and
the budget is $2.07, of which $1.50 is for IRT, $0.23 is
for P-DNA (used only on 5% of newborns), and $0:34 is
for SC testing.

• P-DNA(η � 2): The expected FNs is 8.34, and the
budget is $8:25, of which $4:44 is for P-DNA (used on
all newborns), and $3:81 is for SC testing.

In this example, the diagnostic SC testing contrib-
utes to almost half of the budget of P-DNA, which
refers over ten times as many carriers for SC testing as
the other processes (Table 4). The SC component of
cost grows slower than the genetic testing component
as l rises, because the number of carriers detected
grows at a fairly slow rate, and index l does not affect
the per test cost of SC (Figure 11, Appendix D.2).

Finally, we study the FN versus budget trade-off.
Because the commonly used IRT/DNA is always cost-
dominated by IRT/P-DNA, we compare IRT/P-DNA
and P-DNA. IRT/P-DNA(η � 2) attains its lowest FNs
at l � 180 (i.e., at its technological limit), with 9.05 FNs
and a budget of $3:74 (Figure 5(a) and Table 4). On
the other hand, P-DNA(η � 2) reduces FNs from 9.05

Table 4. Results For Select Optimal Designs (Indexed by l) for the Three Processes, for Two Genetic Testing Cost
Structures, Where η � 2

CF NBS Process Index (l)

Budget Breakpoint (Bl) # of FN (per 1,485,358) # of SC Tests (per 1,485,358)

cf � $5,
cv(z(x)) � $0:5 × z(x)

cf � $10,
cv(z(x)) � $z(x) IRT DNA CF-carrier CF-positive

IRT/ DNA 5 $2:22 $2:59 9 7.52 3,160.35 243.48
IRT/ P-DNA $1:96 $2:07
P-DNA $6:03 $8:25 — 8.34 34,836.79 251.66
IRT/ DNA 20 $2:63 $3:37 9 2.06 3,491.27 248.94
IRT/ P-DNA $2:06 $2:25
P-DNA $7:64 $11:08 — 2.26 38,484.47 257.74
IRT/ DNA 40 $3:14 $4:39 9 0.69 3,646.30 250.41
IRT/ P-DNA $2:17 $2:46
P-DNA $9:30 $14:21 — 0.73 40,193.44 259.27
IRT/ DNA 90 $4:40 $6:90 9 0.17 3,756.94 250.83
IRT/ P-DNA $2:36 $2:81
P-DNA $12:57 $20:61 — 0.15 41,413.04 259.85
IRT/ DNA 180 $6:91 $11:91 9 0.05 3,817.86 250.95
IRT/ P-DNA $2:83 $3:74
P-DNA $22:90 $41:20 — 0.02 42,084.49 259.98

El Hajj et al.: Novel Pooling Strategies for Genetic Testing
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for all variant sets l ≥ 5, for example, at l � 5, it incurs
8.34 FNs at a budget of $8:25. Thus, for budgets less
than $3:74, IRT/P-DNA is the best process, but by
investing more for testing, FNs can be further
reduced. To explore the cost-effectiveness of P-
DNA(η � 2) for l ≥ 5, we compute the cost per each
additional FN reduction possible in this process for
l ≥ 5, over the baseline IRT/P-DNA(η � 2) at l � 180
(i.e., the index at which this process yields its lowest

FNs), that is, Cost per FN� Bl(P−DNA(η�2))−3:74
9:05−FN(S(l),P−DNA(η�2)) : We

repeat the same analysis for the η � 4 case, using IRT/
P-DNA(η � 4) at l � 180 as the baseline, which incurs
9.05 FNs at a budget of $2:78.

We discuss the cost-effectiveness of P-DNA(η � 2)
(the observations for η � 4 are similar). At l � 5, the
cost per FN reduction is high, with a value of 6.35.
This is due to the relatively large gap between the
budgets of IRT/P-DNA at l � 180, and P-DNA at l � 5,
and the small difference in their respective FNs (Fig-
ures 5(a)–5(b)). However, the cost per FN reduces as
more variants are added to P-DNA, that is, FN
decreases at a faster rate than the testing cost
increases, until index l � 21. At this point, the cost per
FN reaches its minimum value of 1.08, before starting
to increase again with each additional variant, which
happens because the variants are arranged in a nonin-
creasing order of their frequency, thus, adding one
more variant brings a diminishing return.

5. Conclusions, Limitations, and
Future Work

In this paper, we introduce and study a novel pooled
DNA (P-DNA) test, which cleverly incorporates pool-
ing and multipanel testing to improve the efficiency
of standard DNA tests, which are used in many

applications, including NBS. Although pooling is a
common strategy for increasing test efficiency, its use
in CF NBS is novel. More importantly, our work
shows that pooling and multipanel testing work in a
synergistic way to improve the efficiency of testing,
and the benefits go beyond what pooling alone can
achieve. Further, multipanel testing also expands the
technological limit on the number of variants the
genetic test can screen for, thus allowing for a higher
clinical sensitivity. Thus, both aspects provide sub-
stantial benefit, especially in the NBS setting where
the goal is to detect genetic disorders, which can be
caused by a large number of harmful, and potentially
rare, genetic variants. We incorporate P-DNA into two
novel CF NBS processes, namely IRT/P-DNA and
P-DNA, which we compare with the most commonly
used IRT/DNA process (Figure 1). We develop a fam-
ily of optimal designs and budget breakpoints for
each process, and derive key design insights. Consid-
ering the implementation of these processes, pooling
is already used in high-volume public health screen-
ing (using genetic testing to detect pathogens),
whereas multipanel testing is essentially just using
multiple tests, and each newborn’s dried blood spot
already undergoes multiple tests for multiple disor-
ders. Hence, the methods discussed in this paper are
viable from an implementation perspective. In gen-
eral, less complex testing protocols are desirable, and
this should be considered when determining the num-
ber of pools, or whether common pool sizes should be
used. The level of implementation difficulty is also a
function of the specific testing platforms used in the
testing laboratory, but this topic is beyond the scope
of this paper.

It is our hope that this work inspires both academi-
cians and practitioners to further explore these novel

Figure 5. (Color online) Expected False-Negatives for the Three Processes under P-DNA(η � 2) and (η � 4) for Budget
Breakpoints, Bl, as a Function of Index l

(a) (b)

Notes. (a) Expected false-negatives vs. budget breakpoint. (b) Cost increase per FN for P-DNA(η) compared with IRT/P-DNA(η) vs. design
index.
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approaches to NBS. For this purpose, we summarize
the main takeaways from this work, followed by
some limitations and future research directions.

5.1. Summary of Insights Gained and
Further Discussion

This study leads to the following insights:
• The IRT/P-DNA process outperforms the current

IRT/DNA process. This follows due to the efficiencies
from pooling and multipanel testing, allowing IRT/
P-DNA to reduce the false-negative rate at the same
budget (through the use of a larger variant set), or attain
the same false-negative rate at a lower budget, for
example, when both processes use the same variant set
comprised of the 90 highest frequency variants, which
offers high coverage (97.58%), the IRT/P-DNA process
cost is around 40.7% of the IRT/DNA process cost. This
savings can be used to provide genetic testing to more
newborns, that is, by lowering the IRT threshold, thus
potentially decreasing the false-negative rate attributed
to IRT, increasing the social benefits of screening.

• The high efficiency of P-DNA allows it to be used as a
single-test process. This has the advantage of reducing
the false-negative rate by eliminating the IRT test.
Indeed, our analysis indicates that at higher testing
budgets, the P-DNA process outperforms the other pro-
cesses in terms of the false-negative rate. Although the
P-DNA process might still be too expensive, we expect
it to become more viable as genetic testing costs go
down. For example, our cost-effectiveness analysis
indicates that if the fixed and variable costs of genetic
testing reduce by 50%, the P-DNA process budget
(cost) reduces between 24% (for a variant set containing
only the most frequent variant) and 45% (for a variant
set containing the 180most frequent variants).

• A practical strategy, of using a common pool size for a
multipanel P-DNA, preserves most of the efficiency
gains. In particular, the use of a common pool size in
P-DNA, with at most two panels allowed, increases the
testing cost by at most 9% compared with the uncon-
strained pool size setting.

• A family of optimal P-DNA designs (i.e., at specific
budgets) can be generated in polynomial time.
Although the general problem, of determining an opti-
mal design at an arbitrary budget, is NP-hard, we
exploit structural properties of optimal designs, which
allow us to generate a family of optimal designs, and
their budgets, in polynomial time. This not only allows
policy-makers to consider the cost versus accuracy trade-off
when designing an NBS process, but also provides a basis for
an approximate solution, at any budget, with a performance
guarantee that improves as the budget increases.

5.2. Limitations and Future Work
Next we discuss some limitations of this work, which
also provide opportunities for future research:

•We assume that all CF-causing variants are in setΩ
(Assumption 1). Practically speaking, set Ω will grow
in size as new CF-causing variants are discovered/
characterized. However, we believe this is a minor limi-
tation. New variants are likely to be very rare, and
most newborns with CF are likely to have at least one
variant in the panel, and would thus be referred for
diagnostic testing. Moreover, although this implies that
our analysis likely underestimates the rate of false-
negatives, this underestimation is similar for each pro-
cess at each design index, thus our overall findings
should remain valid even when this assumption is
relaxed.

• Our assumption, that pooling does not affect ana-
lytical sensitivity (Assumption 3), should be validated
in a laboratory setting, and an appropriate pool size
limit should be determined.

• Variant frequencies can differ across demographic
groups (El Hajj et al. 2021b). Thus, considering equity
issues when selecting variants is important, but not
trivial, given the complexity of the GP Model. Still, the
proposed P-DNA framework, with pooling and multi-
panel testing, not only utilizes the testing budget more
efficiently, but also expands the technological limit on
the number of variants that can be screened for, over
the current single-panel, individual testing paradigm.
This allows the P-DNA to expand the variant set, and
include more rare variants found predominantly in
underrepresented demographic groups. In addition,
this work provides a benchmark for an equity-based
model, which is an important future research direction.

• Optimal breakpoint designs are based on the
ordering of the variants with respect to their frequency.
As a result, an optimal design may be robust to small
estimation errors in variant frequencies, as long as the
ordering is preserved. Consider that in the CFTR-2
data set, the most common variant (variant 1) has a
(normalized) frequency of 74.17%, which exceeds the
combined frequency of all other variants; and the next
10 common variants (2, ⋯ , 11) have a combined fre-
quency of 12.93%, which again exceeds the combined
frequency of all lower frequency variants (12, ⋯ , 352).
This analysis suggests that if the budget permits, these
12 most common variants should always be included
in an optimal variant set. On the other hand, as
expected, many rare variants are clustered together,
but these variants are less likely to be in an optimal var-
iant set unless the budget is quite large. It is an impor-
tant future research direction to explore rigorous
approaches for constructing a robust variant set.

• We study Dorfman pooling due to its simplicity
and efficiency, which make it a commonly used pool-
ing method in public health screening. Other pooling
methods have also received attention in the literature
(Section 1). For example, array pooling (Phatarfod and
Sudbury 1994, Kim et al. 2007), utilizes overlapping
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pools (to form a testing array), as opposed to the nono-
verlapping pools used in Dorfman pooling. Although
our structural results do not necessarily extend when
P-DNA is implemented with array pooling, a prelimi-
nary numerical study indicates that P-DNA with array
pooling can be effective in certain cases (Appendix
C.3). In general, neither array pooling nor Dorfman
pooling always dominates, and identifying the optimal
pooling method for a given setting is an important
research direction.

• For the IRT/DNA and IRT/P-DNA processes, our
model optimizes only the genetic testing component,
and not the overall process. For instance, rather than
expanding the genetic testing panel, it might be prefer-
able in some cases to modify the IRT threshold beyond
the current 5%. This would increase the number of
newborns undergoing genetic testing, hence reducing
the false-negatives from IRT. This is a difficult design
problem, in part because the distribution of IRT levels
for newborns is noisy in general, and for CF-positive
newborns, data sparsity is a problem. The model and
methodology developed in this paper can be used as a
building block to analyze this difficult design problem.

• Alternative processes that utilize P-DNA should be
studied. For instance, it would be interesting to study a
P-DNA/IRT process that uses IRT only for those new-
borns with one mutation detected: in this case, the SC
referral rule could be based on both the newborn’s muta-
tional status and the IRT level, which is potentially more
accurate than declaring newborns CF-negative based
solely on IRT levels. Further, California, and now New
York, follow DNA with a more complete sequencing,
that is, next-generation sequencing test, which is used to
reduce the number of newborns referred for SC testing
(Kharrazi et al. 2015), and a similar concept could be
explored for P-DNA.

• The P-DNA test makes universal genetic testing
more viable for NBS, which could allow other genetic
disorders to be included into this test as well. As long
as the number of CF-causing variants in the panel, or
panels, is below the technological limit, probes for
other disorders can be added, and this “disorder
bundling” can potentially reduce NBS costs, especially
as the prevalence rates of many other NBS disorders
are much lower than that of cystic fibrosis. Further,
with universal genetic testing, reliable carrier detection
becomes more viable, which could be of value. Cur-
rently, NBS programs do not provide this information,
partially for ethical/privacy concerns, and partially
because there is not universal genetic testing, thus only
a limited portion of the newborns would receive this
information. Looking into carrier detection issues is
beyond the scope of this research, but this is an impor-
tant research direction.

• Pricing structures for genetic testing are not readily
available from the manufacturers, and involve contracts

and negotiations. Therefore, further exploration of the
genetic testing cost structure is another important ave-
nue for future research.
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Endnotes
1 The probe-based DNA test differs from next-generation sequenc-
ing, which is another genetic testing technology that determines the
genetic code for larger sections of the CFTR gene, and then known
variants are detected via bioinformatics (Baker et al. 2016). How-
ever, the probe-based DNA tests are less expensive, and require
shorter processing times than next-generation sequencing tests.
More importantly for our purposes, the DNA tests allow for pooled
(group) testing, whereas next-generation sequencing tests, for tech-
nical reasons, do not.
2 With the exception that newborns without any detected mutations
but ultra-high IRT levels were also referred for SC testing during
the study period in NY.
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APPENDIX

A Summary of Acronyms and Mathematical Notation

A.1 Summary of Acronyms

CF : Cystic fibrosis

CFTR : Cystic fibrosis transmembrane conductance regulator

NBS : Newborn screening

IRT : Immunoreactive trypsinogen

SC : Sweat chloride test

DNA : Deoxyribonucleic acid test (genetic test)

P-DNA : Pooled DNA test (pooled genetic test)

A.2 Summary of Mathematical Notation

All vectors are denoted in bold-face.
Parameters:
Ω : Set of all CF-causing variants (with cardinality m), labeled following a non-

increasing order of variant frequency
qi, i ∈ Ω : Conditional probability that a CFTR gene has a mutation of variant i, given

that the gene has a mutation (i.e., the frequency of variant i), where
∑
i∈Ω qi = 1

S(l) = {1, · · · , l}, l = 1, · · · ,m : Ordered variant set, containing the l highest frequency variants in set Ω

cf : Fixed cost (e.g., consumables, labor) per genetic test

cv (z(x)) : Variable cost (e.g., dNTPs, enzymes, variant-specific reagents) per genetic test,
which is a non-decreasing function of panel size, z(x)

cSC : Cost per SC test

cIRT : Cost per IRT test

B : Testing budget per newborn

z : Panel size limit

t : Pool size limit

η : Limit on number of panels
Decision variables:
xk =

(
xki
)
i∈Ω

, k = 1, · · · , η : Binary vector, where xki = 1 if variant i ∈ Ω is included in panel k, and xki = 0
otherwise

tk ∈ Z+, k = 1, · · · , η : Integer pool size for panel k
Functions of decision variables (represented in terms of panel vector x and pool size t):

I{x>0} : Indicator variable, where I{x>0} = 1 if x > 0, and I{x>0} = 0 otherwise

η((xk)k=1,··· ,η) =
∑η
k=1 I{xk>0} : Number of panels used in partition (xk)k=1,··· ,η

z(x) =
∑
i∈Ω xi : Panel size

y(x) =
∑
i∈Ω xiqi : Panel coverage

p(x) : Probability that a random newborn has at least one mutation, of any variant
covered by the panel

D(x, t) : Per newborn expected number of tests for P-DNA

C(x, t) : Per newborn expected cost for P-DNA

TC((xk, tk)k=1,··· ,η) : Per newborn expected total cost, including the cost of P-DNA and the diag-
nostic SC test

S(x) = {i ∈ Ω : xi = 1} : Variants corresponding to panel vector x, with complement S(x) = Ω \ S(x)

x12···η =
∑η
k=1 x

k : Combined variant vector for all panels of P-DNA, corresponding to variant
set S(x12···η)

1



Random event and random variables:
FN(x12···η) : Event that a random newborn is a false-negative, that is, the newborn is CF-positive (i.e.,

with two mutations, one on each CFTR gene) and both mutation variants are excluded from
variant set S(x12···η) (i.e., not screened for)

N : Number of mutations (of any variant in set Ω) a random newborn in the general population
has, with sample space S(N) = {0, 1, 2} (respectively denoting the mutation-free, CF-carrier,
and CF-positive status) and pmf PN (.)

Npost : Number of mutations (of any variant in set Ω) a random newborn in the post-IRT population
has, with sample space S(Npost) = {0, 1, 2} and pmf PNpost(.) (used only in the case study)

Optimal solutions and functions of optimal solutions:

t∗(x) : Optimal integer pool size for panel x

(xk∗(l))k=1,··· ,η, l = 1, · · · ,m : Optimal partition of set S(l)

η∗((xk∗)k=1,··· ,η) =
∑η
k=1 I{xk∗>0} : Number of panels used in optimal partition (xk∗)k=1,··· ,η

Bl = TC((xk∗(l), t∗(xk∗(l)))k=1,··· ,η), l = 1, · · · ,m : Budget breakpoint corresponding to variant set S(l)

B Derivations for §2.2

The following expressions extend those in [35] to the P-DNA scheme,to consider a generic form of the pmf
for random variable N , rather than the specific form in [35] that is derived based on certain assumptions
on the parent population, including “uniform mixing” to produce an offspring. Recall that qi, i ∈ Ω, is the
conditional probability that a CFTR gene has a mutation of variant i, given that the gene has a mutation,
hence q = (qi)i∈Ω:

∑
i∈Ω qi = 1 (Appendix A.2). Then, an FN event happens when a newborn is CF-

positive, that is, with two mutations (one on each CFTR gene), and both mutation variants are excluded
from variant set S(x12···η), that is, they are not screened for. We define random variable Vi, i ∈ Ω, as the
number of mutations of variant i a random newborn has (on their two CFTR genes), with sample space
S(Vi) = {0, 1, 2}, and N =

∑
i∈Ω Vi. Then, Pr(Vi = 1|N = 1) = qi, Pr(Vi = 2|N = 2) = q2

i , and
Pr(Vi = 1, Vj = 1|N = 2) = 2qiqj , i, j ∈ Ω : i < j (domain defined to eliminate symmetries). Then, the FN
probability for any given binary vector x12···η follows:

Pr
(
FN(x12···η)

)
=

 ∑
i,j∈S(x12···η):i<j

Pr(Vi = 1, Vj = 1|N = 2) +
∑

i∈S(x12···η)

Pr(Vi = 2|N = 2)

PN (2)

=

 ∑
i,j∈S(x12···η):i<j

2qiqj +
∑

i∈S(x12···η)

q2
i

PN (2)

=

( ∑
i,j∈Ω:i<j

2
(

1− x12···η
i

)(
1− x12···η

j

)
qiqj +

∑
i∈Ω

(
1− x12···η

i

)
q2
i

)
PN (2)

=

(∑
i,j∈Ω

(
1− x12···η

i

)(
1− x12···η

j

)
qiqj

)
PN (2) =

(
1−

∑
i∈Ω

x12···η
i qi

)2

PN (2) .

Next we derive an expression for p(x), i.e., the probability that a random newborn has at least one
mutation, of any variant covered by panel x, which happens when the panel contains at least one of the
mutation variant(s) of a CF-positive newborn (i.e., for a newborn with two mutations, N = 2), or the single
mutation variant of a CF-carrier (i.e., for a newborn with one mutation, N = 1):

p(x) =

 ∑
i∈S(x)

Pr(Vi = 1|N = 1)

PN (1) +

 ∑
i∈S(x),j∈S(x):i<j

Pr(Vi = 1, Vj = 1|N = 2)

PN (2)

+

 ∑
i∈S(x),j∈S(x):i<j

Pr(Vi = 1, Vj = 1|N = 2)

PN (2)
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+

 ∑
i,j∈S(x):i<j

Pr(Vi = 1, Vj = 1|N = 2) +
∑
i∈S(x)

Pr(Vi = 2|N = 2)

PN (2)

=

 ∑
i∈S(x)

qi

PN (1) +

 ∑
i∈S(x),j∈S(x):i<j

2qiqj +
∑

i∈S(x),j∈S(x):i<j

2qiqj +
∑

i,j∈S(x):i<j

2qiqj +
∑
i∈S(x)

q2
i

PN (2)

=

(∑
i∈Ω

xiqi

)
PN (1) +

(∑
i,j∈Ω

2xi(1− xj)qiqj +
∑

i,j∈Ω:i<j

2xixjqiqj +
∑
i∈Ω

xiq
2
i

)
PN (2)

=

(∑
i∈Ω

xiqi

)
PN (1) +

∑
i,j∈Ω

2xi(1− xj)qiqj +
∑

i,j∈Ω:i6=j

xixjqiqj +
∑
i∈Ω

xiq
2
i

PN (2)

=

(∑
i∈Ω

xiqi

)
PN (1) + 2

(∑
i,j∈Ω

xi (1− xj) qiqj

)
PN (2) +

(∑
i,j∈Ω

xixjqiqj

)
PN (2)

=

(∑
i∈Ω

xiqi

)
PN (1) + PN (2)

(
2

(∑
i∈Ω

xiqi

)
−

(∑
i,j∈Ω

xixjqiqj

))
=PN (1) y(x) + PN (2)

(
2y(x)− (y(x))2) .

Next we extend the pooled testing expressions in [7] to the P-DNA scheme. The DNA test has perfect
analytical sensitivity and specificity (Assumption (A2)). Then, for any panel composition x > 0 and pool
size t ∈ Z+, t ≥ 2, the pooled test outcome will be positive only if at least one of the t subjects in the pool
has at least one variant covered by the panel, i.e., with probability 1 − (1 − p(x))t; and will be negative
otherwise. Hence, D(x, t), the per newborn expected number of tests for P-DNA, is 1

t per subject if the
pooled test’s outcome is negative (i.e., there is only one test for t subjects), and 1

t + 1 per subject if the
pooled test’s outcome is positive (i.e., each subject in the pool is retested via an individual test), leading to:

D(x, t) =
1

t
+ 1− (1− p(x))t,

and the expressions for C(.) and TC(.) (Eqs. (3)-(4)) follow by the testing cost structure and decision rules
(Figs. 1-2).

C Optimal Pool Size: Characterization and Properties

Considering Dorfman pooling, §C.1 characterizes the optimal pool size, and §C.2 studies the impact of a
common pool size constraint. Then §C.3 explores the use of an alternative pooling method, namely array
pooling, in our problem setting.

C.1 Analytical Results on the Optimal Pool Size under Dorfman Pooling

We first extend a result from the literature to our problem setting, to condition on panel composition. To this
end, we utilize the Lambert W function, W (α)eW (α) = α, α ∈ <, and use W0(.) and W−1(.) to respectively
refer to the principle and the secondary branches of the Lambert W function, which are well-characterized
in the literature [20].

Property C.1. (Theorem 1 from [7], expanded to consider panel composition x) For a given panel x > 0,
an optimal continuous pool size, t̃(x), can be obtained as follows:

t̃(x) = argmin
t≥0

{D(x, t)} =
2

ln(1− p(x))
W0

(
−1

2

√
ln

(
1

1− p(x)

))
.
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Then, an optimal integer pool size, t∗(x), constrained by pool size limit, t, follows:

t∗(x) = min

 argmin
t∈{bt̃(x)c,dt̃(x)e,t}

{D(x, t)} , t

 ,

where t∗(x) is non-increasing in p(x). Further, pooled testing (with optimal pool size) reduces the per subject
expected number of tests over individual testing if and only if p(x) < 0.308.

Next we characterize an optimal pool size for P-DNA under a common pool size constraint for all panels,
which, by Remark 1, is the minimizer to the expression,

∑η
k=1 I{xk>0} × C(xk, t).

Lemma C.1. Consider a P-DNA scheme, under the additional constraint that all panels use a common pool
size. For given panels xk > 0, k = 1, · · · , η, the optimal common, integer pool size, tc∗((xk)k=1,··· ,η), i.e.,

the minimizer to
∑η
k=1 I{xk>0} × C(xk, t), over t ∈ {2, · · · , t}, belongs to the set,

tc∗((xk)k=1,··· ,η) ∈

[
min

k=1,··· ,η

{
t∗(xk)

}
,min

{
max

k=1,··· ,η

{⌈
2

ln(1− p(xk))
W−1

(
−1

2

√
ln

(
1

1− p(xk)

))⌉}
, t

}]
∪{t}.

Proof. From [7], we have that, for a given x, D(x, t) is strictly decreasing in t, for t ∈ Z+ : 2 ≤ t ≤
t∗(x). Then, since the term, cf + cv (z(x)), is independent of t, we have that C(x, t) is strictly decreas-

ing in t in this range. Further, since the remaining terms in TC((xk, tk)k=1,··· ,η), namely, C(xk
′
, tk
′
),

k′ = 1, · · · , k − 1, k + 1, · · · , η, and p
(
x12···η)× cSC (Eq. (4)), are independent of tk, k = 1, · · · , η, we have

that TC((xk, tk)k=1,··· ,η) is strictly decreasing in tk, k = 1, · · · , η, for tk ∈ Z+ : 2 ≤ tk ≤ t∗(xk). Thus,
it follows that TC((xk, tc)k=1,··· ,η) is strictly decreasing in tc, for tc ≤ mink=1,··· ,η{t∗(xk)}, and the lower
bound of the range follows.

Regarding the upper bound, first note that 2
ln(1−p(x))W−1

(
− 1

2

√
ln
(

1
1−p(x)

))
is a local maxima of D(x, t),

and D(x, t) is strictly decreasing in t, for t >

⌈
2

ln(1−p(x))W−1

(
− 1

2

√
ln
(

1
1−p(x)

))⌉
[7]. Then, it follows that

TC((xk, tc)k=1,··· ,η) is strictly decreasing in tc, for tc > maxk=1,··· ,η

{⌈
2

ln(1−p(xk))
W−1

(
− 1

2

√
ln
(

1
1−p(xk)

))⌉}
.

There are two possible cases:

Case 1: t ≤ maxk=1,··· ,η

{⌈
2

ln(1−p(xk))
W−1

(
− 1

2

√
ln
(

1
1−p(xk)

))⌉}
.

Because any pool size cannot exceed the pool size limit t, the result trivially follows.

Case 2: t > maxk=1,··· ,η

{⌈
2

ln(1−p(xk))
W−1

(
− 1

2

√
ln
(

1
1−p(xk)

))⌉}
.

Because TC((xk, tc)k=1,··· ,η) is strictly decreasing in tc, for tc > maxk=1,··· ,η

{⌈
2

ln(1−p(xk))
W−1

(
− 1

2

√
ln
(

1
1−p(xk)

))⌉}
,

it is sufficient to consider tc(x1, · · · ,xη) = t, which is the optimal solution in this case, and the result fol-
lows.

Thus, while an optimal common pool size is never smaller than the minimum of the “non-common” pool
sizes for all the panels, it can be larger than their maximum.

Remark C.1. In the general setting without a common pool size constraint, the optimal integer pool size
t∗(x) for each panel x > 0 is a step function of p(x) only, independently of the other panels (Remark 1
and Property C.1). Then, optimal pool sizes for all panels will be equal in the general setting only when all
p(xk), k = 1, · · · , η, are sufficiently close, i.e., within some range dictated by the step function.
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C.2 Impact of a Common Pool Size Constraint

We use the case study data (§4) to determine the optimal pool sizes for P-DNA(η = 2) in (i) the unconstrained
pool size setting, where pool sizes t1∗ and t2∗ are derived from Property C.1, and (ii) the common pool size
setting, where the common tc∗ is derived from Lemma C.1. Fig. 6(a) depicts the budget breakpoints in
both settings, and Fig. 6(b) displays the optimal common pool sizes. In this numerical study, common pool
sizes do not turn out to be optimal for the unconstrained problem, because the most prevalent variant,
which is included in the optimal variant set for each index l = 1, · · · ,m, has a frequency that exceeds the
frequencies of all other variants combined (see Remark C.1). However, the numerical study indicates that
allowing panel pool sizes to differ yields only a small benefit. Further, the common pool size is at most 13
over the family of optimal designs, while in the unconstrained setting the pool size can be as high as 47.
This indicates that a pool size limit, t, of 13 or higher will have only a minor impact on the efficiency of the
P-DNA design. We also observe that an optimal variant partition under a common pool size restriction is
similar to its unconstrained counterpart, in that the panel that contains more variants has lower frequency
variants. Thus, most benefits of P-DNA(η = 2) can be attained through a simplified process with common
pool sizes, which might be a beneficial strategy for a testing laboratory.

Figure 6: Budget breakpoints, Bl, for P-DNA(η = 2) with and without a common pool size
constraint, and optimal common pool sizes, tc∗, for a family of optimal designs, as a function of
index l

(a) Budget breakpoint vs design index (b) Common pool size vs design index

C.3 An Alternative Pooling Method: Array Pooling

GP considers P-DNA integrated with the Dorfman pooling method, which is the most commonly studied and
used pooling method (see §1). In this section, we provide some preliminary analysis on the potential benefits
of another pooling method, namely array pooling, which utilizes non-overlapping pools, as opposed to the
overlapping pools used in Dorfman pooling. In this section, we discuss whether the structural results for
Dorfman pooling (§2-3) extend to array pooling, and compare the performance of array pooling and Dorfman
pooling to derive insight. In particular, we consider the 2-stage square array pooling (e.g., [56, 72]), in which
specimens from t2 subjects are placed in a t × t array, and each row pool and each column pool (each
containing t specimens) are separately tested with one DNA test per pool, resulting in 2t pooled tests. After
pooled test outcomes are obtained, different individual retesting rules can be applied.

In our setting, with a test having perfect analytical sensitivity (hereafter, “sensitivity”) and specificity
(Assumptions (A2)-(A3)), if a row (column) pool tests positive, then at least one column (row) pool must
also test positive. In addition, if there is exactly one positive-testing row (column) and at least one positive-
testing column (row), then the locations of all true-positive specimens are known with certainty, that is,
there is no ambiguity. In other words, ambiguity, hence the need for individual retesting, arises only when
there are at least two positive-testing rows, and at least two positive-testing columns. Deriving an expression
for the expected number of retests is cumbersome because of the need to condition on both the number of
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true-positives, and all possible locations of those true-positives, in the array. Hence, the relevant literature,
e.g., [56], makes a simplifying assumption, that the outcomes of row pools and column pools are conditionally
independent, given the true-positivity status of the subject at their intersection. In particular, [56] considers a
retesting rule which, for a perfect test, reduces to individually retesting all subjects that lie at the intersection
of each positive-testing row and each positive-testing column; and derives the expected number of tests under
the conditional independence assumption. Because this specific retesting rule applies to both ambiguous and
unambiguous subjects, the expression on the expected number of tests in [56], given in Remark C.2, provides
an upper bound on the expected number of tests.

Remark C.2. (Eq. (9) in [56] at perfect sensitivity and specificity, expanded to consider panel composition
x) Assume that the outcomes of row pools and column pools are conditionally independent, given the true-
positivity status of the subject at their intersection, and the test has perfect sensitivity and specificity. Then,
for a given panel x and a t× t array, t ∈ Z+, the per newborn expected number of tests under array pooling
(i.e., pooled tests plus individual retests for all ambiguous subjects), denoted by DA(x, t), is bounded from
above as follows:

DA(x, t) ≤ 2

t
+ 1− 2(1− p(x))t + (1− p(x))2t−1. (17)

To study the P-DNA design problem under array pooling, one can replace the expression in Eq. (2)
with the upper bound in Eq. (17), which serves as an approximation, and the GP formulation continues
to hold, with the expected total cost expression in Eq. (4) updated to incorporate the upper bound in Eq.
(17). However, some key structural properties established under Dorfman pooling (§2-3) do not necessarily
extend to array pooling, as stated in Remark C.3.

Remark C.3. The following results do not necessarily extend to P-DNA under array pooling:

1. Property C.1 (optimal pool size for panel x): [7] establishes this result under Dorfman pooling by

writing ∂2D(x,t)
(∂t)2 in the form of the Lambert W function, W (α)eW (α) = α, α ∈ <, and using well-

established properties of the Lambert function (e.g., [20]). In particular, for p(x) < 1−e−e−1

, ∂
2D(x,t)
(∂t)2

has exactly two real roots, hence ∂D(x,t)
∂t has exactly two stationary points, which respectively corre-

spond to the principle and secondary branches of the Lambert W function, and the global minimizer
of D(x, t), denoted by t̃(x), can be characterized, as done in Property C.1 (see [7]). The Lambert
function equivalence of the second derivative no longer holds for array pooling under the DA(x, t)
approximation in Eq. (17), and hence Property C.1 does not readily extend to array pooling.

2. Lemma 1 (optimality of an ordered partition for a given variant set). For array pooling, the expected
number of tests DA(x, t), hence TC((xk, t∗(xk))k=1,··· ,η), is not necessarily concave in panel coverage,
y(x). The variant partition problem with an arbitrary TC(.) function is NP-hard [19].

Consequently, under array pooling, one needs to resort to enumeration over both all possible pool sizes,
t = 2, · · · , t, and all possible variant partitions for each variant set.

Next we perform a preliminary numerical study to compare the performance of P-DNA(η = 2), integrated
with either Dorfman pooling or array pooling. We use the data in §4, but due to the need for enumeration
under array pooling, we construct two problem instances having only 15 of the variants in set Ω: (i) the
most frequent variants, {1, · · · , 15}, and (ii) medium frequency variants, {61, · · · , 75}.
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Figure 7: Budget breakpoints, Bl, for P-DNA(η = 2) under Dorfman pooling vs array pooling

(a) Problem instance with variants {1, · · · , 15} (b) Problem instance with variants {61, · · · , 75}

Whether Dorfman pooling or array pooling leads to a lower cost (i.e., a lower budget breakpoint for the
same index l) when integrated with P-DNA depends on variant frequencies. While a lower cost is achieved
by array pooling in the high frequency variant setting (Fig. 7 (a)), this is achieved by Dorfman pooling
in the lower frequency variant setting (Fig. 7 (b)). Further analysis indicates that both Dorfman pooling
and array pooling benefit from the use of a 2-panel design. In particular, the 2-panel design cost-dominates
the 1-panel design for all l ≥ 5 under Dorfman pooling, and for all l ≥ 4 under array pooling in the high
frequency variant setting; and for all l ≥ 15 under both Dorfman and array pooling in the low frequency
variant setting.

D Supporting Numerical Analysis

D.1 Sensitivity on the Form of the Variable Cost Function

To study the sensitivity of P-DNA budget breakpoints and design to the form of the variable cost function,
cv(.), we consider P-DNA(η = 2) with a fixed cost of cf = $10, and three variable cost functions, governed
by parameter r: cv(z(x)) = $(z(x))r, for r = 1 (linear), r = 1.25 (convex), and r = 0.75 (concave). All
other data come from the case study (§4). Fig. 8 displays the budget breakpoints for a family of optimal
designs for the P-DNA(η = 2) process for each variable cost function.

Figure 8: Budget breakpoints for the P-DNA(η = 2) process for a family of optimal designs under
linear, convex, and concave functions for cv(.), as a function of index l

Not surprisingly, the concave (convex) cost function lowers (raises) the budget breakpoint for each index
l, over the linear case (Fig. 8). For example, for index l = 90, the budget breakpoint reduces by 35.1%, and
increases by 91.6%, respectively, over the linear case, under the concave and convex functions. Interestingly,
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while the concave (convex) function expands (shrinks) the cost-dominance region for the 1-panel design
compared to the linear case, it does not alter the order of cost-dominance: 1-panel design remains optimal
for small variant sets (i.e., l = 1, · · · , 4 for the linear case, l = 1, · · · , 12 for the concave case, and l = 1, 2 for
the convex case), and 2-panel design remains optimal for larger variant sets.

D.2 Additional Figures

Figure 9: Optimal size, z(x), and coverage, y(x), of each panel of P-DNA(η = 2) for a family of
optimal designs, as a function of index l

(a) Panel size vs design index (b) Panel coverage vs design index

Figure 10: Optimal pool size, t∗(x), and retest probability of each panel, p(x), of P-DNA(η = 2)
for a family of optimal designs, as a function of index l

(a) Panel pool size vs design index (b) Panel’s retest probability vs design index

E Proofs

E.1 Supporting Derivations and Results

Without loss of generality, we assume that qi > 0, ∀i ∈ Ω (by construction, set Ω includes those variants
that have been detected in CF-positive subjects); and PN (n) > 0, for n = 0, 1, 2.
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Figure 11: Budget breakpoint, Bl, and its genetic and SC testing components for P-DNA(η = 2)
process, as a function of index l

We first provide some derivations and key properties that will be used subsequently in the proofs of the
analytical results. We derive:

∂p(x)

∂xi
=qi (PN (1) + 2PN (2))− 2qi

(∑
i∈Ω

xiqi

)
PN (2) = PN (1)qi + 2PN (2)qi

(
1−

∑
i∈Ω

xiqi

)
> 0, i ∈ Ω.

∂p(x)

∂y(x)
=PN (1) + 2PN (2)− 2y(x)PN (2) > 0,

∂2p(x)

(∂y(x))
2 = −2PN (2) < 0.

∂D(x, t)

∂p(x)
=t(1− p(x))t−1 > 0,

∂2D(x, t)

(∂p(x))
2 = −t(t− 1)(1− p(x))t−2 < 0, t ∈ Z+, t ≥ 2.

Lemma E.1. Consider any panel composition x 6= 1m and any pool size t ∈ Z+, t ≥ 2 (with panel indices
k, k′ = 1, · · · , η, added as needed):

1. Each of D(x, t), D(x, t̃(x)), and D(x, t∗(x)) is strictly concave increasing in y(x).

2. (i) C(x, t) is strictly increasing in xi, for all i ∈ Ω.
(ii) TC((xk, tk)k=1,··· ,η) is strictly increasing in xk

′

i , for all i ∈ Ω, k′ = 1, · · · , η.

3. Define the conditional panel coverage as y(x; γ) ≡ y(x : z(x) = γ), that is, with domain consisting of
all x vectors with panel size γ, for an arbitrary γ ∈ Z+, γ ≤ m− 1:
(i) Each of C(x, t) and C(x, t∗(x)) is strictly concave increasing in y(x; γ).
(ii) Each of TC((xk, tk)k=1,··· ,η) and TC((xk, t∗(xk))k=1,··· ,η) is strictly concave increasing in y(xk

′
; γk

′
),

for all k′ = 1, · · · , η.

4. Pr(FN(x)) is strictly convex decreasing in y(x).

Proof. 1. Strict concavity of D(x, t): We use the chain rule and the expressions derived at the beginning
of Appendix E.1 to derive:

∂D(x, t)

∂xi
=
∂D(x, t)

∂p(x)

∂p(x)

∂xi
= t(1− p(x))t−1

(
qi (PN (1) + 2PN (2))− 2qi

(∑
i∈Ω

xiqi

)
PN (2)

)
> 0, i ∈ Ω

∂D(x, t)

∂y(x)
=
∂D(x, t)

∂p(x)

∂p(x)

∂y(x)
= t(1− p(x))t−1 (PN (1) + 2PN (2)− 2y(x)PN (2)) > 0,

∂2D(x, t)

(∂y(x))
2 =

∂2D(x, t)

(∂p(x))
2

(
∂p(x)

∂y(x)

)2

+
∂D(x, t)

∂p(x)

∂2p(x)

(∂y(x))
2

=− t(t− 1)(1− p(x))t−2 (PN (1) + 2PN (2)− 2y(x)PN (2))
2 − 2t(1− p(x))t−1PN (2) < 0,
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and the result follows.

Strict concavity of D(x, t̃(x)): From [7], t̃(x) exists if and only if p(x) ≤ 1−e−e−1

. Then, the following
must hold:

− 0.5 < ln
(

1−
(

1− e−e
−1
))
≤ ln (1− p(x)) ≤ 0

⇔− 1 ≤ −2ln(1− p(x))

(
1 +W0

(
−1

2

√(
ln

1

1− p(x)

)))
− 1 < 0,

where the last inequality follows because −1 ≤W0

(
− 1

2

√(
ln 1

1−p(x)

))
≤ 0.

Then, we must have:

∂D(x, t̃(x))

∂p(x)
=

−1

2(1− p(x))W0

(
− 1

2

√(
ln 1

1−p(x)

)) > 0, and

∂2D(x, t̃(x))

(∂p(x))
2 =

−2W0

(
− 1

2

√(
ln 1

1−p(x)

))
+

−W0

(
− 1

2

√
(ln 1

1−p(x) )
)

(1−p(x))

ln(1−p(x))(1−p(x))
(

1+W0

(
− 1

2

√
(ln 1

1−p(x) )
))

4(1− p(x))2

(
W0

(
− 1

2

√(
ln 1

1−p(x)

)))2

=

−2ln(1− p(x))

(
1 +W0

(
− 1

2

√(
ln 1

1−p(x)

)))
− 1

4(1− p(x))2W0

(
− 1

2

√(
ln 1

1−p(x)

))
ln(1− p(x))

(
1 +W0

(
− 1

2

√(
ln 1

1−p(x)

))) < 0.

Therefore, by the chain rule, and from the expressions at the beginning of Appendix E.1:

∂D(x, t̃(x))

∂y(x)
=
∂D(x, t̃(x))

∂p(x)

∂p(x)

∂y(x)
> 0, and

∂2D(x, t̃(x))

(∂y(x))
2 =

∂2D(x, t̃(x))

(∂p(x))
2

(
∂p(x)

∂y(x)

)2

+
∂D(x, t̃(x))

∂p(x)

∂2p(x)

(∂y(x))
2 < 0.

Strict concavity of D(x, t∗(x): By Remark 1, t∗(x) satisfies, D(x, t∗(x)) = mint∈{2,··· ,t}{D(x, t)}.
Also, from part 1(i) of this lemma, we have that D(x, t) is strictly concave increasing in y(x), t =
2, · · · , t. Then, D(x, t∗(x)) is the point-wise minimum of strictly concave increasing functions, and
hence is also strictly concave increasing in y(x) [13].

2-3. To prove the results for C(x, t) = D(x, t)× (cf + cv (z(x))) =
(

1
t + 1− (1− p(x))t

)
× (cf + cv (z(x))),

we derive:

∂C(x, t)

∂xi
=
∂D(x, t)

∂xi
(cf + cv (z(x))) + (D(x, t))

∂cv (z(x))

∂xi
> 0, i ∈ Ω,

∂C(x, t)

∂y(x; γ)
=
∂D(x, t)

∂y(x; γ)
(cf + cv (γ)) > 0,

∂C(x, t∗(x))

∂y(x; γ)
=
∂D(x, t∗(x))

∂y(x; γ)
(cf + cv (γ)) > 0,

∂2C(x, t)

(∂y(x; γ))2
=
∂2D(x, t)

(∂y(x; γ))2
(cf + cv (γ)) < 0, and

∂2C(x, t∗(x))

(∂y(x; γ))2
=
∂2D(x, t∗(x))

(∂y(x; γ))2
(cf + cv (γ)) < 0,
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and the results follow.

To prove the results for TC((xk, tk)k=1,··· ,η), we derive, for k′ = 1, · · · , η:

∂TC((xk, tk)k=1,··· ,η)

∂xk
′
i

=
∂C(xk, tk)

∂xk
′
i

+
∂p(x12···η)

∂xk
′
i

cSC > 0, i ∈ Ω,

∂TC((xk, tk)k=1,··· ,η)

∂y(xk′ ; γk′)
=
∂C(xk, tk)

∂y(xk′ ; γk′)
+

∂p(x12···η)

∂y(xk′ ; γk′)
cSC > 0,

∂TC((xk, t∗(xk))k=1,··· ,η)

∂y(xk′ ; γk′)
=
∂C(xk

′
, t∗(xk

′
))

∂y(xk′ ; γk′)
+

∂p(x12···η)

∂y(xk′ ; γk′)
cSC > 0,

∂2TC((xk, tk)k=1,··· ,η)

(∂y(xk′ ; γk′))2
=
∂2C(xk

′
, tk
′
)

(∂y(xk′ ; γk′))2
+

∂2p(x12···η)

(∂y(xk′ ; γk′))2
cSC < 0, and

∂2TC((xk, t∗(xk))k=1,··· ,η)

(∂y(xk′ ; γk′))2
=
∂2C(xk

′
, t∗(xk

′
))

(∂y(xk′ ; γk′))2
+

∂2p(x12···η)

(∂y(xk′ ; γk′))2
cSC < 0,

and the results follow.

4. Pr (FN(x)) =
(
1−

∑
i∈Ω xiqi

)2
PN (2) = (1− y(x))

2
PN (2). Then, for any x 6= 1m, we have

that y(x) < 1, and hence, ∂Pr(FN(x))
∂y(x) = −2 (1− y(x))PN (2) < 0, and ∂2Pr(FN(x))

(∂y(x))2
= 2PN (2) > 0,

completing the proof.

E.2 Proofs of the Analytical Results

Proof of Lemma 1. By Lemma E.1, C(x, t∗(x)) is strictly concave increasing in conditional panel coverage
y(x; γ), i.e., considering all x : z(x) = γ. Hence, we have that for any set S(x12···η), there exists an ordered

partition that minimizes
∑η
k=1 I{xk>0}×C(xk, tk) [19]. Further, since cSC×p(x12···η) is a constant for any set

S(x12···η), i.e., independent of the set partition, by Remark 1 it follows that there exists an ordered partition

of set S(x12···η) that minimizes TC((xk, t∗(xk))k=1,··· ,η) = cSC×p(x12···η)+
∑η
k=1 I{xk>0}×C(xk, tk). This

completes the proof.

Proof of Corollary 1. By Lemma 1, TC((xk, t∗(xk))k=1,··· ,η) is minimized by an ordered partition of some
set S(x12···η). Then, the problem of finding the ordered partition that minimizes the TC(.) function for a
given variant set reduces to the shortest path problem described in the corollary [19, 21], and the complexity
result follows from [11, 19, 21, 29, 41].

Proof of Lemma 2. Consider the variant partition problem with η = 2 for some variant set S(x12) that has l
variants, l = 2, · · · ,min{2z,m} (ordered following a non-increasing order of variant frequency). By Lemma
1, the TC(.) function for the given variant set is minimized by either an ordered 2-partition or the 1-partition.
Then, among all 2-partitions with panel sizes z(x1) = γ and z(x2) = l − γ, γ ∈ Z+ :

⌈
l
2

⌉
≤ γ ≤ min{l, z},

the TC(.) function is minimized by one of the following ordered 2-partitions: (1) S(x1) = {1, · · · , γ} and
S(x2) = {γ+1, · · · , l}; or (2) S(x1) = {l−γ+1, · · · , l} and S(x2) = {1, · · · , l−γ}. Then, the result follows
because the 2-Partition Algorithm, given below, considers all feasible ordered 2-partitions to determine
an optimal 2-partition, and compares it with the 1-partition. Observe that considering only those panel sizes,
z(xk), k = 1, 2 : z(x1) ≥ z(x2) (implied by the range on γ above) is symmetry-breaking, and is without loss
of optimality.
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2-Partition Algorithm (for variant set S(x12) = {1, · · · , l})
Initialization: xk∗ = 0, k = 1, 2, TC =∞
for γ ∈ [1,min{l, z}] do (Generation of all optimal 1- and 2-partitions)

Set S(x1) = {1, · · · , γ}, i.e., x1
i = 1, for i = 1, · · · , γ, and x1

i = 0 otherwise.
Set S(x2) = {γ + 1, · · · , l}, i.e., x2

i = 1, for i = γ + 1, · · · , l, and x2
i = 0 otherwise.

Determine optimal pool sizes, t∗(xk), k = 1, 2 (via Property C.1)
Compute the expected total cost, TC((xk, t∗(xk))k=1,2)
if TC((xk, t∗(xk))k=1,2) < TC then

TC = TC((xk, t∗(xk))k=1,2), xk∗ = xk, k = 1, 2
end if

end for
Output: Variant partition, pool sizes, expected testing cost: xk∗, t∗(xk∗), k = 1, 2, TC

Regarding the computational complexity of the algorithm, for any variant set S(x12) having l variants, the
algorithm performs at most one operation for each γ = {1, · · · , l} (some panel sizes may not be feasible
due to the panel size limit, z, hence requiring no operation); and the algorithm considers at most l different
values of γ, leading to a complexity of O (l).

Proof of Theorem 1. In the following, we use the term “expected cost” of a given variant set to refer to
its expected total cost at the optimal variant partition and pool size vector. Without loss of generality,
all variant sets are arranged following a non-increasing order of variant frequency. Also recall that budget
breakpoint Bl, l = 1 · · · ,m, corresponds to the expected cost for ordered variant set S(l) (Definition 3). To
simplify the subsequent notation, we refer to an arbitrary variant set S(x12···η) as set S, with η(S) non-empty
panels in the optimal variant partition.

Consider any budget B < Bl for some l = 1, · · · ,m. The proof is two-fold. Considering all ordered and
non-ordered variant sets, we first show that there does not exist any feasible variant set S ⊂ Ω with size
z(S) < l such that Pr(FN(S)) ≤ Pr(FN(S(l))); then we show that there also does not exist any feasible
variant set S ⊆ Ω with size z(S) ≥ l such that Pr(FN(S)) < Pr(FN(S(l))).

First consider any variant set S ⊂ Ω : z(S) < l, i.e., any ordered or non-ordered set with at most l − 1
variants, for which there is a feasible solution at budget B. Because S(l) is an ordered variant set, we must
have that y(S) < y(S(l)) (Definition 2); and because Pr(FN(S)) is strictly decreasing in y(S) (Lemma E.1),
it follows that Pr(FN(S)) > Pr(FN(S(l))).

We prove the second part by contradiction. Consider any variant set S ⊆ Ω : z(S) ≥ l, for which there is a
feasible solution at budget B with Pr(FN(S)) = Pr(FN(S(l))). In the following, we show that the solution
corresponding to set S must have an expected cost TC(S) ≥ Bl, hence set S cannot be feasible at budget
B < Bl. We do this by studying the optimal ordered variant partitions (Lemma 1) for variant sets S and
S(l), respectively denoted by the collection of subsets, S̃k, k = 1, · · · , η(S), and Sk∗(l), k = 1, · · · , η(S(l)),
the total cost of which are respectively denoted by TC(S) and TC(S(l)); and comparing them with each
other, and with a set of “dummy” solutions that are obtained by perturbing the variant frequency vector.

To this end, denote the variants in set S as {1, · · · , z(S)}, with optimal ordered partition, S̃1 =

{1, · · · , z(S̃1)}, S̃k = {1 +
∑k−1
r=1 z(S̃

r), · · · ,
∑k
r=1 z(S̃

r)}, k = 2, · · · , η(S), and S̃k = ∅, k = η(S) + 1, · · · , η,
i.e., the subsets are arranged such that subset 1 has the highest frequency variants, subset 2 has the sec-
ond most highest frequencies, and so on. Because z(S) ≥ l by definition, there must exist some integer

k′ ≤ η(S) :
∑k′−1
k=1 z(S̃k) < l ≤

∑k′

k=1 z(S̃
k). Next consider ordered variant set S(l), for which we con-

struct a set of dummy partitions in a sequential manner, and use the collection of subsets, Sk(l), k =
1, · · · , η(S), to refer to the “current” (most recent) dummy partition. We start with the first dummy par-

tition, Sk(l), k = 1, · · · , η(S) : y(S1(l)) =
∑z(S̃1)
i=1 qi, y(Sk(l)) =

∑z(∪kr=1S̃
r)

i=z(∪k−1
r=1 S̃

r)+1
qi, for k = 2, · · · , k′ − 1,

y(Sk
′
(l)) =

∑l
i=1 qi−

∑k′−1
r=1 y(Sr(l)), and y(Sk(l)) = 0, k = k′+ 1, · · · , η(S). Observe that by construction,∑η(S(l))

k=1 y(Sk∗(l)) =
∑η(S)
k=1 y(Sk(l)) =

∑η(S)
k=1 y(S̃k), hence the FN probabilities of all three solutions are

equal (Lemma E.1).
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In the remainder of the proof, we compare the expected cost of the optimal partition of set S, i.e., TC(S),
with that of each dummy partition of set S(l). We do this by creating the set of dummy partitions in such a
way that they all incur the same FN probability as Pr(FN(S)) (which equals Pr(FN(S(l))) by construction
of set S), and showing that each dummy partition results in a lower expected cost than TC(S). Specifically,
each new dummy partition is obtained by modifying the coverage of the two specific subsets (panels) in the
current dummy partition by some constant such that the coverage of one subset increases, while the coverage
of the other subset decreases by this constant: These two subsets respectively correspond to the subset with
the lowest index k : y(Sk(l)) < y(Sk∗(l)), and the subset with the highest index among the non-empty
subsets, based on the current dummy partition (starting with the optimal partition of set S). Then we show
that the expected cost of each new dummy partition is lower than that of the previous dummy partition.
Finally, we show that the optimal partition of set S(l) satisfies, TC((Sk∗(l))k=1,··· ,η) ≤ TC((Sk(l))k=1,··· ,η),
that is, it cost-dominates all the dummy partitions.

To show that TC((Sk(l))k=1,··· ,η) ≤ TC(S), recall that by construction, y(Sk(l)) ≥ y(S̃k), k = 1, · · · , k′−
1, and y(Sk(l)) < y(S̃k), k = k′ + 1, · · · , η(S). Let εk ≡ |y(Sk(l)) − y(S̃k)|, k = 1, · · · , η(S). S̃1 ∪ S̃η(S)

denotes the set of all variants in panels 1 and η(S) of set S. By Lemma 1, the optimal partition of set
S(x1(S)+xη(S)(S)) must be ordered. Let (S̃1, S̃η(S)) and (S̃′1, S̃′η(S)) denote two possible ordered partitions
of set S̃1 ∪ S̃η(S). Since (S̃1, S̃η(S)) is the optimal partition for set S, the following must be true:

D(S̃1)
(
cf + cv

(
z(S̃1)

))
+D(S̃η(S))

(
cf + cv

(
z(S̃η(S))

))
≤ D(S̃′1)

(
cf + cv

(
z(S̃′1)

))
+D(S̃′η(S))

(
cf + cv

(
z(S̃′η(S))

))
.

In the following, we write D (y(S)), to show its dependence on y(S) (Property C.1, Eqs. (1)-(2)). By Lemma
E.1, we also have that for any set S, D (S) is concave increasing in y(S). By definition of S̃1, S̃′1, S̃η(S),
and S̃′η(S), we have that y(S̃′η(S)) − y(S̃η(S)) = y(S̃1) − y(S̃′1) ≥ 0. Then, due to the strict concavity of
D(y(S)) in y(S), the following result must hold for any positive ε ≤ min{ε1, εη(S)}, because y(S̃1)−y(S̃′1) =

y(S̃′η(S))− y(S̃η(S)):

D
(
y(S̃1) + ε

)(
cf + cv

(
z(S̃1)

))
−D

(
y(S̃1)

)(
cf + cv

(
z(S̃1)

))
ε

<
D
(
y(S̃1)

)(
cf + cv

(
z(S̃1)

))
−D

(
y(S̃′1)

)(
cf + cv

(
z(S̃′1)

))
y(S̃1)− y(S̃′1)

≤
D
(
y(S̃′η(S))

)(
cf + cv

(
z(S̃′η(S))

))
−D

(
y(S̃η(S))

)(
cf + cv

(
z(S̃η(S))

))
y(S̃′η(S))− y(S̃η(S))

<
D
(
y(S̃η(S))

)(
cf + cv

(
z(S̃η(S))

))
−D

(
y(S̃η(S))− ε

)(
cf + cv

(
z(S̃η(S))

))
ε

.

Then, by setting ε = min{ε1, εη(S)}, we reach a new dummy partition with the same or lower expected cost
than the previous study solution. There are two possible cases:
Case 1: ε = ε1
Then, in the new dummy partition, y′(S̃1) = y(S1(l)), y′(S̃η(S)) = y(S̃η(S)) − ε1, and y′(S̃k) = y(S̃k),
k = 2, · · · , η(S)−1; and the following must hold for any 0 < ε ≤ min{ε2, εη(S)−ε1}, because y(S̃2)−y(S̃′2) =

y(S̃′η(S))− y(S̃η(S)):

D
(
y(S̃2) + ε

)(
cf + cv

(
z(S̃2)

))
−D

(
y(S̃2)

)(
cf + cv

(
z(S̃2)

))
ε

<
D
(
y(S̃2)

)(
cf + cv

(
z(S̃2)

))
−D

(
y(S̃′2)

)(
cf + cv

(
z(S̃′2)

))
y(S̃2)− y(S̃′2)

≤
D
(
y(S̃′η(S))

)(
cf + cv

(
z(S̃′η(S))

))
−D

(
y(S̃η(S))

)(
cf + cv

(
z(S̃η(S))

))
y(S̃′η(S))− y(S̃η(S))
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<
D
(
y(S̃η(S))

)(
cf + cv

(
z(S̃η(S))

))
−D

(
y(Sη(S))− ε1

) (
cf + cv

(
z(S̃η(S))

))
ε1

<
D
(
y(S̃η(S))− ε1

)(
cf + cv

(
z(S̃η(S))

))
−D

(
y(S̃η(S))− ε1 − ε

)(
cf + cv

(
z(S̃η(S))

))
ε

.

Hence, by setting ε = min{ε2, εη(S)− ε1}, we have obtained another dummy partition with the same or lower
expected cost.
Case 2: ε = εη(S)

Then, in the new dummy partition, y′(S̃1) = y(S̃1) + εη(S), y
′(S̃η(S)) = y(S̃η(S)(l)) = 0, and y′(S̃k) = y(S̃k),

k = 2, · · · , η(S) − 1. Similarly, the following must hold for any 0 < ε ≤ min{ε1 − εη(S), εη(S)−1}, because

y(S̃1)− y(S̃′1) = y(S̃′η(S))− y(S̃η(S)):

D
(
y(S̃1) + εη(S) + ε

)(
cf + cv

(
z(S̃1)

))
−D

(
y(S̃1) + εη(S)

)(
cf + cv

(
z(S̃1)

))(
cf + cv

(
z(S̃1)

))
ε

<
D
(
y(S̃1) + εη(S)

)(
cf + cv

(
z(S̃1)

))
−D

(
y(S̃1)

)(
cf + cv

(
z(S̃1)

))
εη(S)

<
D
(
y(S̃1)

)(
cf + cv

(
z(S̃1)

))
−D

(
y(S̃′1)

)(
cf + cv

(
z(S̃′1)

))
y(S̃1)− y(S̃′1)

≤
D
(
y(S̃′η(S)−1)

)(
cf + cv

(
z(S̃′η(S)−1)

))
−D

(
y(S̃η(S)−1)

)(
cf + cv

(
z(S̃η(S)−1)

))
y(S̃′η(S)−1)− y(S̃η(S)−1)

<
D
(
y(S̃η(S)−1)

)(
cf + cv

(
z(S̃η(S)−1)

))
−D

(
y(S̃η(S)−1)− ε

)(
cf + cv

(
z(S̃η(S)−1)

))
ε

.

Thus, by repeating the same argument for each S̃k, k = 1, · · · , η(S), in both cases we obtain the dummy
partition (Sk(l))k=1,··· ,η, which leads to a lower or equal expected cost.
Finally, we show that (Sk(l))k=1,··· ,η has a higher expected cost than (Sk∗(l))k=1,··· ,η. Observe that panels
k′ + 1, · · · , η(S) have zero coverage, hence zero cost. Then:

η(S)∑
k=1

D
(
Sk(l)

) (
cf + cv

(
z(S̃k)

))
≥

k′∑
k=1

D
(
Sk(l)

) (
cf + cv

(
z(S̃k)

))
.

We also have that panel k′ has z(Sk
′
(l)) ≤ z(S̃k′) variants. Then, we have that:

k′∑
k=1

D
(
Sk(l)

) (
cf + cv

(
z(S̃k)

))
≥
k′−1∑
k=1

D
(
Sk(l)

) (
cf + cv

(
z(S̃k)

))
+D

(
Sk
′
(l)
)(

cf + cv

(
z(Sk

′
(l))
))

=

k′∑
k=1

D
(
Sk(l)

) (
cf + cv

(
z(Sk(l))

))
≥

η(l)∑
k=1

D
(
Sk∗(l)

) (
cf + cv

(
z(Sk∗(l))

))
,

where the last inequality follows by optimality of partition (Sk∗(l)k=1,··· ,η) for set S(l). Hence, we must have
that Bl = TC(S(l)) ≤ TC(S), completing the proof.

Proof of Corollary 2.

1-2 The results follow directly from Theorem 1. For part 2, observe that if Pr(FN(S)) < Pr(FN(S(l))
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for some variant set S ⊆ Ω, then we must have that z(S) > l (Lemma E.1) because set Ω has variants
with distinct frequencies, as assumed in this part.

3. The result follows from Theorem 1, because the optimal variant set for Bm remains feasible for all
budgets B ≥ Bm. Then, because Pr(FN(x)) is strictly decreasing in y(x) (Lemma E.1), the optimal
variant set must be S(m) = {1, · · · ,m} = Ω, i.e., the optimal variant set for Bm.

Proof of Corollary 3. Solving the shortest path problem for set S(m), i.e., from vertex 1 to vertex m + 1,
generates the shortest path from vertex 1 to every other vertex l = 2, · · · ,m + 1 [10, 21, 29]. Then, to
generate the entire family of optimal breakpoint designs and budget breakpoints, it is sufficient to solve the
shortest path problem only once, for variant set S(m) = Ω. The computational complexity then follows from
Corollary 1.

Proof of Theorem 2. Let x12···η∗ denote the optimal variant set at budget B, where Bl < B < Bl+1 for some
l = 1, · · · ,m − 1. Hence, by Definitions 2-3, variant set S(l), equivalently variant vector x12···η∗(l) = 1l,
incurs an expected total cost (at the optimal partition and pool size vector) of Bl, and is feasible at budget
B, whereas variant set S(l + 1), equivalently variant vector x12···η∗(l + 1) = 1l+1, with an expected total
cost of Bl+1, is not. Then, by Theorem 1, variant sets S(l) and S(l + 1) respectively provide a lower
bound and an upper bound on the optimal objective function value at budget B, that is, Pr(FN(1l+1)) <
Pr(FN(x12···η∗)) ≤ Pr(FN(1l)), and the result follows.

Proof of Lemma 3. Consider any Bl < B < Bl+1 < B′ < Bl+2, l = 1, · · · ,m − 2. By Definition 2, for
ordered variant set S(l), we have that x12···η∗(l) = 1l,∀l ∈ Z+. We can write:

εUB(B)

ql+1
=
Pr(FN(1l))− Pr(FN(1l+1))

ql+1

>
Pr(FN(1l+1))− Pr(FN(1l+2))

ql+2

≥Pr(FN(1l+1))− Pr(FN(1l+2))

ql+1
=

εUB(B′)

ql+1
,

where the first inequality follows by the strict convexity of Pr(FN(x)) in y(x) (Lemma E.1) and the second
inequality follows because ql+1 ≥ ql+2 by construction of set Ω.
Similarly, for Bl < B < B′ < Bl+1, we have that:

εUB(B)

ql+1
=
Pr(FN(1l))− Pr(FN(1l+1))

ql+1
=
εUB(B′)

ql+1
.

In either case εUB(B) ≥ εUB(B′), and the result follows.

Proof of Theorem 3. Given any variant set S(x12···η) with size z(x12···η) ≥ 2, consider the optimal η-panel
design for some η = 2, · · · ,min{η, z(x12···η)} (i.e., with η non-empty panels) with partition (xk∗)k=1,··· ,η:∑η
k=1 x

k∗ = x12···η, and pool sizes (t∗(xk∗))k=1,··· ,η; and the optimal 1-panel design with x12···η∗ and pool
size t∗(x12···η∗). In the following, we refer to these optimal designs as the η-panel and 1-panel, respectively.

First note that D (x, t∗(x)) ≥ 0, and D (x, t∗(x)) is strictly concave increasing in y(x) (Lemma E.1),
and hence D (x, t∗(x)) is sub-additive in y(x), which implies:

D
(
x12···η∗, t∗(x12···η∗)

)
≤

η∑
k=1

D
(
xk∗, t∗(xk∗)

)
. (18)

1. We prove this result in two steps. First we show that for any variant set S(x12···η), if there exists a
fixed cost cf ≥ 0 at which the η-panel cost-dominates the 1-panel, then the η-panel will continue to
cost-dominate for all lower values of cf ; and similarly, we show that if there exists a cf ≥ 0 at which
the 1-panel cost-dominates the η-panel, then the 1-panel will continue to cost-dominate for all higher
values of cf .
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First assume ∃cf ≥ 0 at which the η-panel cost-dominates the 1-panel, that is:

TC(x12···η∗, t∗(x12···η∗)) ≥TC((xk∗, t∗(xk∗))k=1,··· ,η)

⇔ D
(
x12···η∗, t∗(x12···η∗)

) (
cf + cv(z

(
x12···η∗))) ≥ η∑

k=1

D
(
xk∗, t∗(xk∗)

) (
cf + cv

(
z
(
xk∗
)))

. (19)

Now assume that cf decreases by ε, for any 0 ≤ ε ≤ cf , and let (x′k∗)k=1,··· ,η denote the new optimal
η-panel partition at cf − ε. Because D (x, t∗(x)) is sub-additive in y(x), Eqs. (18) and (19) lead to
the following:

D
(
x12···η∗, t∗(x12···η∗)

) (
cf + cv(z

(
x12···η∗)))−D (x12···η∗, t∗(x12···η∗)

)
ε

≥
η∑
k=1

D
(
xk∗, t∗(xk∗)

) (
cf + cv

(
z
(
xk∗
)))
−

η∑
k=1

D
(
xk∗, t∗(xk∗)

)
ε (20)

⇔ D
(
x12···η∗, t∗(x12···η∗)

) (
cf − ε+ cv(z

(
x12···η∗))) ≥ η∑

k=1

D
(
xk∗, t∗(xk∗)

) (
cf − ε+ cv

(
z
(
xk∗
)))

≥
η∑
k=1

D
(
x′k∗, t∗(x′k∗)

) (
cf − ε+ cv

(
z
(
x′k∗

)))
,

where the last inequality follows by optimality of (x′k∗)k=1,··· ,η for the η-panel design when the fixed
cost is cf − ε.
Next assume ∃cf ≥ 0 at which the 1-panel cost-dominates the η-panel, that is:

TC(x12···η∗, t∗(x12···η∗)) ≤ TC((xk∗, t∗(xk∗))k=1,··· ,η)

⇔ D
(
x12···η∗, t∗(x12···η∗)

) (
cf + cv(z

(
x12···η∗))) ≤ η∑

k=1

D
(
xk∗, t∗(xk∗)

) (
cf + cv

(
z
(
xk∗
)))

. (21)

We prove this result by contradiction. Assume cf increases by ε, and assume that the new optimal
η-panel design, denoted by (x′′k∗)k=1,··· ,η, incurs a lower expected cost than the 1-panel design, that
is:

TC(x12···η∗, t∗(x12···η∗)) > TC((x′′k∗, t∗(x′′k∗))k=1,··· ,η)

⇔ D
(
x12···η∗, t∗

(
x12···η∗)) (cf + ε+ cv(z

(
x12···η∗))) > η∑

k=1

D
(
x′′k∗, t∗

(
x′′k∗

)) (
cf + ε+ cv

(
z
(
x′′k∗

)))
.

Then, by Eq. (20), if cf + ε decreases by ε, then the new optimal η-panel design will continue to
cost-dominate the 1-panel design, that is, we must have that:

D
(
x12···η∗, t∗(x12···η∗)

) (
cf + cv(z

(
x12···η∗))) > η∑

k=1

D
(
xk∗, t∗(xk∗)

) (
cf + cv

(
z
(
xk∗
)))

,

reaching a contradiction with Eq. (21). Hence it must be true that:

TC(x12···η∗, t∗(x12···η∗)) ≤TC((x′′k∗, t∗(x′′k∗))k=1,··· ,η),

and the result follows.

2. We prove this result in two steps. First we show that if there exists a convex non-decreasing variable
cost function c′v(.) ≥ 0 for which the η-panel cost-dominates the 1-panel, then the η-panel will continue
to cost-dominate for all cost functions cv(z(x)) = ε × c′v(z(x)), with ε ≥ 1; and similarly, we show
that if there exists a variable cost function c′v(.) ≥ 0 for which the 1-panel cost-dominates the η-panel,
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then the 1-panel will continue to cost-dominate for all cost functions cv(z(x)) = ε × c′v(z(x)), with
0 < ε ≤ 1, thus establishing the existence of a threshold, ε(S(x12···η), η).

Recall that (xk∗)k=1,··· ,η denotes the optimal η-panel partition for the original variable cost function
c′v(.). Let (x′k∗)k=1,··· ,η, and (x′′k∗)k=1,··· ,η denote the optimal η-panel partition for variable cost
function ε× c′v(z(x)), when ε ≥ 1 and 0 < ε ≤ 1, respectively.

Now assume that the η-panel cost-dominates the 1-panel at variable cost function c′v(.), that is:

TC(x12···η∗, t∗(x12···η∗)) ≥TC((xk∗, t∗(xk∗))k=1,··· ,η)

⇔ D
(
x12···η∗, t∗(x12···η∗)

) (
cf + cv(z

(
x12···η∗))) ≥ η∑

k=1

D
(
xk∗, t∗(xk∗)

) (
cf + cv

(
z
(
xk∗
)))

. (22)

Assume that c′v(.) is replaced by cv(.) = ε × c′v(.), for some ε ≥ 1. Because of the sub-additivity of
D (x, t∗(x)) in y(x), Eqs. (18) and (22) lead to the following:

D
(
x12···η∗, t∗(x12···η∗)

)
(1− ε)cf ≥

η∑
k=1

D
(
xk∗, t∗(xk∗)

)
(1− ε)cf , and

D
(
x12···η∗, t∗(x12···η∗)

)
ε
(
cf + c′v(z

(
x12···η∗))) ≥ η∑

k=1

D
(
xk∗, t∗(xk∗)

)
ε
(
cf + c′v

(
z
(
xk∗
)))

. (23)

Therefore, by Eqs. (18) and (23), we have that:

D
(
x12···η∗, t∗(x12···η∗)

)
ε
(
cf + c′v(z

(
x12···η∗)))+D

(
x12···η∗, t∗(x12···η∗)

)
(1− ε)cf

≥
η∑
k=1

D
(
xk∗, t∗(xk∗)

)
ε
(
cf + c′v

(
z
(
xk∗
)))

+

η∑
k=1

D
(
xk∗, t∗(xk∗)

)
(1− ε)cf

⇔ D
(
x12···η∗, t∗(x12···η∗)

) (
cf + εc′v(z

(
x12···η∗))) ≥ η∑

k=1

D
(
xk∗, t∗(xk∗)

) (
cf + εc′v

(
z
(
xk∗
)))

(24)

≥
η∑
k=1

D
(
x′k∗, t∗(x′k∗)

) (
cf + εc′v

(
z
(
x′k∗

)))
,

where the last inequality follows by the optimality of (x′k∗)k=1,··· ,η for the η-panel design for variable
cost function ε× c′v(.).
Next assume the 1-panel cost-dominates the η-panel at variable cost function c′v(.), that is:

TC(x12···η∗, t∗(x12···η∗)) ≤TC((xk∗, t∗(xk∗))k=1,··· ,η)

⇔ D
(
x12···η∗, t∗(x12···η∗)

) (
cf + c′v(z

(
x12···η∗))) ≤ η∑

k=1

D
(
xk∗, t∗(xk∗)

) (
cf + c′v

(
z
(
xk∗
)))

. (25)

We prove this result by contradiction. Assume that function c′v(.) is replaced by cv(.) = ε × c′v(.),
for some 0 < ε ≤ 1, and assume that the new optimal η-panel design, (x′′k∗)k=1,··· ,η, incurs a lower
expected cost than the 1-panel design, that is:

TC(x12···η∗, t∗(x12···η∗)) >TC((x′′k∗, t∗(x′′k∗))k=1,··· ,η)

⇔ D
(
x12···η∗, t∗(x12···η∗)

) (
cf + εc′v(z

(
x12···η∗))) > η∑

k=1

D
(
x′′k∗, t∗(x′′k∗)

) (
cf + εc′v

(
z
(
x′′k∗

)))
.

Then, by Eq. (24), we have that if ε × c′v(.) (0 < ε ≤ 1) is replaced by c′v(.), then the new optimal
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η-panel design will continue to cost-dominate the 1-panel design, that is, we must have that:

D
(
x12···η∗, t∗(x12···η∗)

) (
cf + c′v(z

(
x12···η∗))) > η∑

k=1

D
(
xk∗, t∗(xk∗)

) (
cf + c′v

(
z
(
xk∗
)))

,

reaching a contradiction with Eq. (25). Hence, it must be true that:

TC(x12···η∗, t∗(x12···η∗)) ≤TC((x′′k∗, t∗(x′′k∗))k=1,··· ,η),

and the result follows.

Proof of Theorem 4. Consider any budget B, and let (xk∗)k=1,··· ,η denote the corresponding optimal η-panel
design, η = 1, · · · , η.

1. The proof follows by induction. First we show that any 2-panel cost-dominates the 1-panel for any
variant set S(x12···η) : z(x12···η) ≥ 2, i.e., with at least 2 variants. We then use this result to show
that if there exists an η + 1-panel design that cost-dominates the optimal η-panel design for a given
variant set, then it must be true that the optimal η+1-panel design FN -dominates the η-panel design
at budget B, and we repeat this argument to compare an η + 2-panel with the optimal η + 1-panel,
and so on, until adding one more panel is no longer feasible at budget B.

For the first part of the proof, consider some variant set S(x12···η) : z(x12···η) ≥ 2, for which the
1-panel design is feasible at budget B, and consider any 2-panel design of this variant set, which we
denote by ((xk)k=1,2). D (x, t∗(x)) is strictly increasing in in y(x) (Lemma E.1). Then, by definition
of a 2-panel design, we have that xk > 0, k = 1, 2, hence it follows that:

D
(
x12···η, t∗(x12···η)

)
> D

(
xk, t∗(xk)

)
, k = 1, 2. (26)

Further, because cf + cv (z(x)) is super-additive in z(x), as assumed in part 1 of the theorem, we have
that:

cf + cv
(
z
(
x12···η)) ≥ cf + cv

(
z
(
x1
))

+ cf + cv
(
z
(
x2
))
. (27)

Therefore, from Eqs. (26) and (27), we have that:

D
(
x12···η, t∗(x12···η)

) (
cf + cv

(
z
(
x12···η))) ≥D (x12···η, t∗(x12···η)

) (
cf + cv

(
z
(
x1
))

+ cf + cv
(
z
(
x2
)))

>D
(
x1, t∗(x1)

) (
cf + cv

(
z
(
x1
)))

+D
(
x2, t∗(x2)

) (
cf + cv

(
z
(
x2
)))

,

that is, any 2-panel design reduces the expected cost over the 1-panel design, that is, it cost-dominates,
at any given variant set.

For the second part of the proof, consider any η = 3, · · · , η, and let S(x12···η∗(η)) denote the optimal
variant set for the η-panel design, with optimal partition (xk∗(η)k=1,··· ,η). Assume, without loss of

generality, that z(x12···η∗(η)) ≥ η + 1 (otherwise the result trivially follows with k(B, η) = η). Then,
there must exist at least one panel with at least 2 variants in the optimal η-panel design, and we
partition any such panel (i.e., with at least 2 variants) into 2 panels, converting the given solution
into an η + 1-panel design for variant set S(x12···η∗(η)). Because any 2-panel design reduces the
expected cost over the 1-panel design for any variant set (shown in the first part of the proof), the
new η + 1-panel, which we denote by (xk(η + 1)k=1,··· ,η+1), remains budget feasible. Then, we have
that:

η∑
k=1

I{xk>0} ×D
(
xk∗(η), t∗(xk∗(η))

)(
cf + cv

(
z
(
xk∗(η)

)))
>

η∑
k=1

I{xk>0} ×D
(
xk(η + 1), t∗(xk(η + 1))

)(
cf + cv

(
z
(
xk(η + 1)

)))
.

Thus, an optimal variant set of an η-panel design can be partitioned into η + 1 panels to obtain a
feasible η + 1-panel design, and the result, that the optimal η + 1-panel design FN -dominates the
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optimal η-panel design, follows.
Similarly, we can show that the optimal η + 2-panel design FN -dominates the optimal η + 1-panel
design, which in turn dominates the optimal η-panel design, and so on, that is, the optimal η+k-panel
design FN -dominates the optimal η + k − 1-panel design, as well as all designs with fewer panels.
Therefore, ∃k(B, η) : z(x12···η∗(η)) ≤ k(B, η) ≤ η, such that the η + k-panel design dominates the
η-panel design, ∀k = 0, · · · , k(B, η).

2. The proof follows by induction. We first show that the 1-panel cost-dominates any 2-panel design
for any variant set S(x12···η) : z(x12···η) ≥ 2, i.e., with at least 2 variants. We then use this result
to show that the optimal η-panel design cost dominates any η + 1-panel design for any variant set
S(x12···η) : z(x12···η) ≥ η + 1. Then, it must be true that the optimal η-panel design FN -dominates
the optimal η + 1-panel design at budget B, and we repeat this argument to compare an η + 2-panel
with the optimal η + 1-panel, and so on, until adding one more panel is no longer feasible at budget
B.

For the first part of the proof, consider some variant set S(x12···η) : z(x12···η) ≥ 2, for which there is a
2-panel design that is feasible at budget B, which we denote by ((xk)k=1,2) : x1+x2 = x12···η. Because
D (x, t∗(x)) ≥ 0, and D (x, t∗(x)) is strictly concave increasing in y(x) (Lemma E.1), D (x, t∗(x)) is
sub-additive in y(x). Therefore, we can write:

D
(
x12···η, t∗(x12···η)

)
≤ D

(
x1, t∗(x1)

)
+D

(
x2, t∗(x2)

)
⇔ D

(
x12···η, t∗(x12···η)

)
(cf + c) ≤ D

(
x1, t∗(x1)

)
(cf + c) +D

(
x2, t∗(x2)

)
(cf + c) .

Thus, the 1-panel design results in a lower or equal expected cost over any 2-panel design, that is, it
cost-dominates, for any variant set.

For the second part of the proof, consider any η = 2, · · · , η, and let S(x12···η∗(η+1)) denote the optimal
set of variants, with an optimalη + 1-panel, (xk∗(η + 1)k=1,··· ,η+1). Because the 1-panel reduces the
expected cost over any 2-panel for any variant set (shown in the first part of the proof), combining any
2 panels in the η+ 1-panel, thus creating an η-panel denoted by (xk(η)k=1,··· ,η), reduces the expected
cost over the optimal η + 1-panel, that is:

η∑
k=1

I{xk>0} ×D
(
xk(η), t∗(xk(η))

)(
cf + cv

(
z
(
xk(η)

)))
≤

η∑
k=1

I{xk>0} ×D
(
xk∗(η + 1), t∗(xk∗(η + 1))

)(
cf + cv

(
z
(
xk∗(η + 1)

)))
.

Thus, the optimal variant set of an η + 1-panel design can be transformed into a feasible η-panel
with lower or equal expected cost, and the result, that the optimal η-panel design FN -dominates the
optimal η+1-panel design, follows. Similarly, we can show that the optimal η+1-panel FN -dominates
the optimal η+2-panel, and so on, that is, the optimal η-panel FN -dominates the optimal η+1-panel,
as well as all designs with higher panels, completing the proof.

Proof of Corollary 4. Both results follow directly from Theorem 4.
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