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Abstract

The market structure of platform competition is critically important to managers and policy
makers. While network effects in these markets predict concentrated industry structures, com-
petitive effects and differentiation suggest the opposite. Standard theory offers little guidance–
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departures from full rationality allow sharp predictions– there is a unique equilibrium in every
case. When participants single-home and platforms are vertically differentiated, a single dom-
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platform is accessed by all while the other is used as a backup by some agents. Horizontal
differentiation, in contrast, leads to fragmentation. Differentiation, rather than competitive
effects, mainly determines market structure.
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1 Introduction

Theorists have long been fascinated by coordination games. Part of this fascination stems

from the fact that standard theory offers little guidance– it predicts that coordination will

occur but is silent as to which outcome will be cooperated upon. These limitations are of

little practical consequence if one is interested in thought experiments like the famous one

proposed by Schelling about strangers trying to meet in New York City. But coordination

problems loom large in many high-stakes business settings. Managers and researchers alike

stand to benefit from a usable theory that goes beyond the non-predictions of the fully

rational framework.

A coordination setting of particular importance concerns competition among online plat-

forms, such as Google and Microsoft in search, what we call the competing matchmakers

problem. Unlike standard coordination games where players are typically treated symmet-

rically, the competing matchmakers problem introduces additional complexity owing to the

fact that participants may fundamentally differ from one another. For instance, in online

auctions, the value of a platform depends not just on how many buyers it attracts, nor how

many sellers, but rather on the combination of the two. Moreover, agents of a given type,

such as men in an online dating context, care not just about the number of women on the

site, but the number of other men as well, since each represents an additional competitor

for a woman’s heart. These competitive effects multiply the range of equilibrium possibili-

ties. Indeed, in our baseline model, which nests many of the standard models of platform

competition, the main conclusion to be derived from equilibrium under full rationality is

that anything can happen: A single platform may dominate the market though the model

is silent as to which platform or the market may be fragmented though, again, the model is

silent as to who gets what share. For managers or regulators looking to theory as a guide,

the full rationality model offers little in the way of help as to the correct business strategy

to pursue or policy to implement.

However, full rationality represents an idealization at best for what motivates the choices

of market participants. There is a growing body of evidence highlighting situations where

seemingly inexplicable behavior (under full rationality ) can be readily explained by incor-

porating limited cognition. One such situation includes behavior in laboratory studies of

the famous p-beauty contest game. Unlike most coordination games, full rationality offers a

precise prediction for the beauty contest—all subjects will choose the lowest possible action.

Actual behavior in various different settings, however, is wildly at odds with this prediction:

There is significant dispersion among choices, and few subjects, if any, select the equilibrium.

Relaxing full rationality in favor of a model where players differ in their strategic sophis-

tication as suggested by Nagel (1995), what has now come to be known as the cognitive

hierarchies model (Camerer, Ho and Chong, 2004), nicely organizes the apparent jumble
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of data. In these models, non-strategic agents naïvely choose a pre-planned action without

analyzing the payoffs. Strategic or sophisticated agents maximize their expected payoffgiven

their beliefs which depend on their cognitive sophistication levels.

We begin with a simple observation: If cognitive hierarchy models are useful in organizing

data from coordination games in the lab, perhaps these models might be fruitfully used to

offer guidance in more applied coordination settings, such as the competing matchmakers

problem. This analysis is the heart of our study.

An important criticism of bounded rationality models is that they open up a Pandora’s

box of possibilities where “anything goes”and therefore theory loses much of its predictive

power. In our setting, the opposite conclusion obtains– while nearly any market share

outcome is consistent with equilibrium under full rationality, cognitive hierarchy models

produce unique equilibrium predictions. In some instances, these predictions coincide with a

particular equilibrium under full rationality, in which case our models may be thought of as

a kind of behavioral equilibrium refinement. In other settings, the predictions are completely

novel. Thus, in addition to offering more precise predictions, these models are, in principle,

empirically distinguishable from their fully rational counterparts.

Before proceeding to describe our main findings, a sketch of the setting is useful. There are

N men and N women choosing between two online dating platforms. Platforms may differ in

both the fees they charge and the effi cacy of their matching processes. Both platforms share

the common feature that there are benefits from scale– the larger the participant base at a

given platform, the better the expected quality of the resulting matches. This effect pushes

the market in the direction of concentration. There is, however, a countervailing competitive

force. Men may prefer to be on a smaller platform so as to avoid having to compete as

intensely with other men for the attention and affections of the women also located on the

larger platform, likewise for women on the smaller platform. Provided that this competitive

force is strong enough, platforms of wildly different sizes can coexist in equilibrium under

the fully rational model.

When agents must choose a single platform, as would be the case for a seller of a unique

object in an online auction, bounded rationality implies that a dominant platform will

emerge. All strategic individuals will coordinate on the same platform– regardless of the

strength of competitive effects. The particular platform chosen depends on the behavior of

the non-strategic agents. In the case where these agents are totally uninformed about the

details of the two platforms and choose randomly, the unique equilibrium prediction is that

strategic agents will coordinate on the risk dominant platform, an equilibrium refinement

first introduced by Harsanyi and Selten (1988) to select among equilibria in stag hunt type

games. Roughly speaking, risk dominance implies that the safer platform, the one that bet-

ter protects its clients from unexpected choices by others, will prevail. This is true even if
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the safer platform offers a worse experience than its rival when everyone coordinates on a

single platform. The market structure of US online auctions, where eBay is the dominant

(and the safest) platform, is consistent with this prediction.

Allowing agents to multi-home (i.e., choose to be on both platforms) adds to the set of

equilibrium possibilities under full rationality, but still leads to herding under bounded ra-

tionality. Again the exact outcome depends on the choices of the naïve agents. Of particular

interest is the situation where these agents simply avoid choosing at all and instead multi-

home. In that case, strategic agents still coordinate on the single platform, but now select

the Pareto dominant rather than the risk dominant choice. In effect, the caution of the naïve

players insures the sophisticates against unexpected choices by others. As a consequence,

they trade off safety for surplus in coordinating on the more cost-effective platform. Here

again bounded rationality acts as a kind of equilibrium refinement, though importantly the

refinement selected depends on the particulars of the institutional setting.

When naïve agents randomize their behavior, equilibrium takes a different form: Rel-

atively unsophisticated strategic agents multi-home while sophisticates opt for the Pareto

dominant platform exclusively. This equilibrium shares some of the features of credit card

markets. While nearly all US credit card holders have a Visa/MasterCard in their wallet,

some also carry a Discover card in addition. But the situation is rarely reversed– few people

"single home" using Discover. There is no analogous equilibrium under full rationality. Here

the boundedly rational model suggests qualitatively different, and more realistic, behavior.

All of these results suggest that competitive forces alone are not suffi cient to prevent a

dominant platform from emerging. In every case, one of the platforms is accessed by all of

the strategic agents (though some may also access a second platform as a kind of backup).

While this is a sharp prediction, it is clearly at odds with some market structures arising

in real world online markets. For instance, the market for online dating in the US is highly

fragmented.

To better understand this phenomenon, we return to the single homing case but now add

horizontal differentiation to the mix. Clearly, this provides an additional force allowing both

platforms to share the market. Under full rationality, there is an intuitive equilibrium where

each agent chooses his or her (horizontally) preferred platform, and the market is split. But

there are many other equilibrium possibilities including the emergence of a single dominant

platform or a “backwards”equilibrium where every agent chooses her less preferred platform.

Relaxing full rationality cuts through the clutter. If naïve agents are weakly more likely to

choose their horizontally preferred platform, then the unique equilibrium corresponds to

the intuitive case where every agent chooses her (horizontally) preferred platform, and the

market is split. The US online dating market is extremely fragmented and horizontally

differentiated. Leading sites such as JDate (restricted to Jewish singles), ChristianMingle
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(restricted to religious Christian singles), and others are all consistent with this emphasis.

Thus the boundedly rational model can account for the variety of market concentrations

seen in US platform markets: the dominance of eBay in auctions, the strong-weak divi-

sion of Visa/MasterCard versus Discover in credit cards, and the severe fragmentation in

online dating sites. Moreover, these predictions do not demand that large swaths of the

population be naïve. Even arbitrarily small departures from full rationality dramatically

sharpen equilibrium predictions in the competing matchmakers problem. The equilibrium

multiplicity endemic to coordination games vanishes. More importantly, bounded rational-

ity models highlight the key structural components determining market share. In particular,

when platforms are primarily vertically differentiated, it is always the case that one of the

platforms is patronized by all agents (though some of these might also visit the rival un-

der multi-homing). This conclusion remains valid regardless of the strength of competitive

effects. When platforms are primarily horizontally differentiated, markets are fragmented,

even if competitive effects are small or absent altogether.

The model also offers important insights for managers. While the usual business strategy

in these markets is to focus mainly on platform quality, our results suggest the critical

strategic importance of other considerations. In single-homing contexts, reducing the risk

to platform adopters is key: aspects such as 24/7 uptime, backup, and security should be

primary considerations. In multi-homing contexts, pricing is critical. The model predicts

that a higher quality platform will still falter if it does not pass along enough surplus to

its users. Thus, even for successful platforms, monetization at the expense of consumer

experience can still lead to grief.

The remainder of the paper proceeds as follows: We conclude this section by placing

our results in the context of the extant literature. Section 2 sketches the model. Section

3 characterizes equilibrium in the baseline single-homing model under full and bounded

rationality. In section 4, we add multi-homing to the model and explore how this changes

choice behavior and market structure. Section 5 adds horizontal differentiation to the model

and identifies conditions where platforms coexist. Section 6 studies a dynamic version of

the model and shows that our earlier conclusions are not fundamentally altered by this

amendment. Finally, section 7 concludes. Some of the proofs are discussed in the main body

of the paper before the formal propositions are presented; the rest are contained in Appendix

A.

Related Literature
The literature on platform competition has grown in size and importance with the matu-

ration of the Internet. Early studies (see Katz & Shapiro 1994 for a survey) mainly emphasize

the concentrating force of network effects. More recently, Ellison and Fudenberg (2003) as

well as Ellison, Fudenberg, and Mobius (2004) highlight the power of competitive effects–
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competition from agents on the same side of the market– to check network effects and lead

to equilibrium coexistence.1 We relax full rationality and show that the power of competitive

effects become greatly attenuated.

A separate strand of the literature studies endogenous pricing decisions by platforms.2

This literature mostly assumes that competitive effects are absent, platforms are horizon-

tally differentiated and consumers single-home. The main findings characterize how optimal

platform pricing varies with demand elasticities on each side of the market. We contribute

to this literature by offering a model where scale, differentiation, and competitive effects are

all present and where multi-homing is possible. While we mostly abstract away from optimal

pricing decisions, Appendix B studies the case where pricing is endogenous.

The empirical literature of platform competition is less well developed. Inspired by

David’s (1985) influential study, much of this literature examines the QWERTY phenomenon–

the possibility that an interior platform might prevail owing to path dependence. Most stud-

ies find little evidence of this.3 Our paper contributes a theoretical rationale for the dearth

of QWERTY outcomes.

There is also a small experimental literature on platform competition. In a companion pa-

per, Hossain, Minor, and Morgan (2011) perform laboratory experiments in a single-homing

setting using exactly the model outlined below. Unlike the present paper, their main con-

cerns are to use empirical methods to examine the competing predictions of the fully rational

model. Moreover, their setting is dynamic– the same group of subjects repeatedly partici-

pate in the platform competition game. Their main findings are, however, largely consistent

with the predictions under cognitive hierarchies. When platforms are primarily vertically

differentiated, the market converges to a single platform, which is the same across groups.

Despite the presence of multiple equilibria in the fully rational model, there is remarkable

consistency in behavior across subjects. When platforms are primarily horizontally differ-

entiated, the market converse to coexistence where each agent chooses his or her preferred

platform.

Ho, Lim, and Camerer (2006) argue that new insights can be gained about firm strategy

and market performance by incorporating consumer psychology into choice models.4 The

framework we use, cognitive hierarchies, draws heavily on Camerer, Ho, and Chong (2004),

who generalized and expanded upon Nagel’s (1995) specification to settings outside the

1Ambrus and Argenziano (2009) note that consumers must be non-negligible in size for the competitive
effects identified in these to papers to have force.

2See, e.g. Caillaud and Jullien (2001, 2003), Rochet and Tirole (2003), Armstrong (2006), Carrillo and
Tan (2006) and Damiano and Li (2008).

3See, e.g., Liebowitz and Margolis (1990 and 1994), Tellis, Yin, and Niraj (2009), as well as experiments
by Hossain and Morgan (2009).

4For example, Amaldoss, Bettman, and Payne (2008) show, using laboratory experiments, that behavioral
biases by economic agents can, in fact, facilitate coordination.
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beauty contest game.5 This model has proved extremely useful in organizing lab data across

a variety of coordination settings.6 It has also been used successfully in empirical settings

including technology adoption by Internet service providers (Goldfarb and Yang, 2009),

entry in local telephone markets (Goldfarb and Xiao, 2011), and decision-making by movie

distributors (Brown, Camerer, and Lovallo, 2012a) and moviegoers (Brown, Camerer, and

Lovallo, 2012b). Ostling et al. (2011) apply this model to study the Swedish lottery game

LUPI using both field and experimental data. Our paper contributes to this literature

by treating the cognitive hierarchy model as an essential tool in applied modeling in more

complex settings. The paper also, thus, contributes to the emerging field of applying bounded

rationality in industrial organization.7

While the cognitive hierarchies framework might be seen as simply a set of principles

for organizing data, it also appears to capture fundamental aspects of primate cognition.

In fMRI studies, Bhatt and Camerer (2005) find neurological evidence consistent with self-

referential thinking models, including cognitive hierarchies. Dorris and Glimcher (2004) find

striking similarities between human and monkey behavior in work-shirk games– for both

species, shirk rates are consistent with cognitive hierarchies and inconsistent with predictions

under full rationality. More broadly, Camerer (2009) offers a survey indicating the mounting

evidence for neural underpinnings of behavioral choice models, including our framework.

2 The Model

Consider a market where there are two competing platforms labeled A and B, serving two

types of agents. In terms of exposition, we shall think of these platforms as competing

matchmakers and shall refer to the agents as women and men. There are exactly N of each

type of agent. The role of the platform is to match agents of one type with agents of the

other, i.e., to match men with women. To perform this service, each platform i charges an

up-front access fee pi > 0 where i ∈ {A,B}.
All agents simultaneously decide which platform to access. For the moment, we assume

that only one of the two platforms may be chosen (i.e., no multi-homing) though we relax this

assumption later. We also assume that the benefits and fees of the platforms are commonly

known and that all agents prefer to participate rather than opting out entirely.

Payoffs for each agent consist of gross payoffs from the match technology of the platform

less the cost of the access fee. Let ui (ni1, ni2) denote the gross payoff from accessing platform

5Technically, our model slightly generalizes Camerer, Ho, and Chong by allowing the distribution of
cognitive types to be arbitrary rather than Poisson distributed.

6See, e.g. Stahl andWilson (1995), Camerer, Ho, and Chong (2004), as well as Costa-Gomes and Crawford
(2006).

7See Ellison (2006) for an excellent survey.
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i when ni1 agents of the same type and ni2 agents of the opposite type access the platform.

For instance, when ni1 women and ni2 men access platform i, then each woman enjoys a

gross payoff of ui (ni1, ni2) and a net payoff of ui (ni1, ni2) − pi. Similarly, the payoffs to a
man when ni1 men and ni2 women accessed site i would be identical.

We focus on the agents’platform choices rather than the strategy of the platforms them-

selves; thus, we restrict attention to non—discriminatory pricing schemes where the access

fee for men and women is the same. Platforms can also charge non-discriminatory fees for

a successful match, which are accounted for in the gross payoff functions. We assume that

platforms exhibit standard competition and network effects. Formally,

Assumption 1 (market size effect): Gross payoffs are increasing in the number of
agents of the opposite type. For all n1 and n2, ui (n1, n2 + 1) > ui (n1, n2).

Assumption 2 (market impact effect): Gross payoffs are decreasing in the number
of agents of own type. For all n1 and n2 > 0, ui (n1, n2) > ui (n1 + 1, n2).

Assumption 3 (positive network externality): Gross payoffs increase when the
number of agents of both types on the platform increase equally. For all n1 and n2,

ui (n1 + 1, n2 + 1) > ui (n1, n2).8

Assumption 4: For all n ∈ {1, 2, . . . , N} and i ∈ {A,B}, ui (n, 0) = 0.

We maintain these assumptions throughout the paper. Assumptions 1 and 2 guarantee

that women benefit from a greater choice of men on the platform and suffer from more

competing women (and vice-versa for men.) Assumption 3 guarantees that, all else equal,

a larger platform is preferred to a smaller platform. Assumption 4 says that women are

unaffected by competition when there are no men on the platform. We normalize this payoff

to zero for simplicity. These assumptions do not provide a complete ranking of the gross

payoffs for all possible platform choices by the agents. Indeed, the model is flexible enough

to accommodate most models of competing platforms in the extant literature.

Finally, to rule out knife-edge or pathological cases, we restrict attention to generic net

payoffs, so that it is not the case that for all i,j ∈ {A,B} and n1, n2 ∈ {1, 2, . . . , N},
ui (n1, n2) − pi = uj (n1, n2) − pj and assume that access fees are such that agents make

positive net payoffs if all of them coordinate on a single platform, i.e., ui (N,N)− pi > 0.

3 Equilibrium

We now examine equilibria arising in the model under full rationality, restricting attention

to pure strategy Nash equilibria. We then relax this assumption, allowing for differences

in the strategic sophistication of agents, using the cognitive hierarchy framework proposed

8Our results are unchanged if we recast Assumption 3 as multiplicative. Specifically, it may be replaced
by the assumption that, for all (n1, n2) >> 0, ui (kn1, kn2) > ui (n1, n2) for k > 1.
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by Camerer, Ho, and Chong (2004). As mentioned above, this model has proved useful in

organizing data in a wide array of coordination games and is consistent with neurological

evidence regarding choice behavior. Later, we provide a detailed description of how the

cognitive hierarchy model works and what aspects of bounded rationality it is meant to

capture. Our main result is to show that, while a wide array of market share distributions

can arise as equilibria under full rationality, adding even a vanishingly small fraction of

strategically unsophisticated agents yields a unique prediction– a single dominant platform

is selected by all strategic types.

Full Rationality
We first characterize equilibria in the model under the usual assumption of full rationality.

Recall that the gender ratio of the market as a whole is 1 to 1.9 The following lemma shows

that in any Nash equilibrium, the gender ratio of agents at each platform is the same as that

of the market as a whole. Formally,

Lemma 1 In any Nash equilibrium, the same number of agents of each type select a given
platform.

While the result is intuitive for the case where both platforms are identical, Lemma 1

shows that, despite asymmetries across platforms, all equilibria remain symmetric in the

sense that the gender ratio is the same across platforms. To see this, suppose more women

than men join platform A in equilibrium. This implies that the fee difference pB − pA is

large enough to offset any gain in payoff a woman located at platform A would enjoy from

switching to the platform B, which has relatively more men. This, however, implies that a

man on platform B would benefit from switching for the same reasons.

The scale effect contained in Assumption 3 implies that these markets are, in a sense,

natural monopolies. All else equal, agents benefit from coordination on a single platform.

Formally, we say that the market has tipped when only one platform is active, i.e., all agents

opt for a single platform. When both platforms are active, we say that they coexist.

The next proposition shows that tipping is always an equilibrium although it is silent

as to which platform will be the “winning”one. To see this, suppose that, in equilibrium,

all agents locate on platform i and earn payoffs ui (N,N) − pi > 0, where the inequality

follows by assumption. Now, if an agent deviates to platform j, she earns uj (1, 0)− pj < 0

since uj (1, 0) = 0 and pj > 0; therefore such a deviation is not profitable. It then follows

immediately that

9Assuming equal numbers of agents facilitates Lemma 1 below, which considerably simplifies the equilib-
rium characterization. The qualitative features of equilibrium under full rationality– multiplicity and the
possibility of both tipping and coexistence– hold more generally. Detailed analysis of the case where the
gender ratio is not equal to one is available upon request from the authors.

8



Proposition 1 Tipping to either platform is an equilibrium. Formally, it is a Nash equilib-

rium for all agents to select a single platform i ∈ {A,B}.

One might think that something like Assumption 3 is necessary for tipping to comprise

a Nash equilibrium. This is not the case. Even if platforms exhibited diseconomies of scale,

Proposition 1 would still hold owing to Assumption 4 and the fact that coordinating on

a single platform yields non-negative surplus. The reason is that, unlike most standard

coordination games, deviations by both types of agents are needed to unlock surplus from

the inactive platform.

While Assumption 3 is not necessary for tipping, Assumption 2 is required for coexistence

(in a pure strategy equilibrium). To see this, define the magnitude of the market impact

effect in market i with n agents of each type to be

δi,n = ui (n, n)− ui (n+ 1, n) .

Consider an equilibrium where n agents of each type go to platform A with the remainder

going to platform B. The difference in equilibrium utility for agents going to platform A

versus those going to platform B is

∆Un = uA (n, n)− uB (N − n,N − n)− (pA − pB) .

Suppose that ∆Un ≥ 0. Clearly, agents located on A cannot profitably deviate to B since

their payoffs are less than uB (N − n,N − n)−pB (owing to positive market impact effects).
Thus, we only need to show that agents located on B have no wish to deviate. Incentive

compatibility requires that

uB (N − n,N − n)− pB ≥ uA (n+ 1, n)− pA.

Subtracting uA (n, n)− pA from both sides of the inequality, we obtain

−∆Un ≥ −δA,n

or, equivalently, that market impact effects for platform A must be suffi ciently large, i.e.,

δA,n ≥ ∆Un.

The case where ∆Un < 0 yields the analogous condition that the market impact effects

for platform B must be suffi ciently large, i.e., δB,N−n ≥ −∆Un. To summarize, we have

shown

Proposition 2 Any market share split is consistent with equilibrium provided market impact
effects are suffi ciently large.

Formally, n agents of each type locating on platform A with the remainder choosing

platform B comprise a coexisting equilibrium provided that: (1) δA,n ≥ ∆Un when ∆Un ≥ 0

and (2) δB,N−n≥ −∆Un when ∆Un < 0.
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A different way to see that market impact effects are necessary for coexisting equilibria

to arise is to consider the case where the two platforms are identical. Suppose that platform

A enjoys a smaller market share than platform B. In that case, the net payoff to men and

women located on A is smaller than that enjoyed by their counterparts on B.What prevents

a man on A from profitably deviating is that, were he to switch, the additional competition

among men on B would lower the payoffs of men on that platform through the market

impact effect. If this effect is large enough to overwhelm the gains from scale offered by B,

then such a deviation is not profitable. Essentially, this is the force leading to equilibrium

coexistence in the model of Ellison and Fudenberg (2003).

One might worry that coexisting equilibria arising in this model are “knife-edge”in the

sense that any small perturbation in agent strategies leads to tipping. This is not the case.

Generically, the coexisting equilibria we identify above are strict Nash equilibria and hence

are robust to small perturbations. The following example illustrates how the model works.

Example 1 Suppose the matching technology is such that when a man joins a platform that
has at least as many female participants as male participants (including himself), the market

impact effect is relatively small. However, when there are fewer females than males on the

platform, competition between men becomes more acute leading to a larger market impact

effect. A simple gross payoff function based on this matching technology can be described by:

uA (n1, n2) = uB (n1, n2) =

{
100×max

{
n2
N
− γ1 n1−1N−1 , 0

}
if n1 ≤ n2

100×max
{
n2
N
− γ2 n1−1N−1 , 0

}
if n1 > n2

where 0 < γ1 < γ2 <
N−1
N

and n1 ≥ 1. Here, γ1 and γ2 represent the magnitudes of the

market impact effects. This market satisfies all of the assumptions above. Women gain with

an increase in the fraction of men located on a given platform. They lose in proportion to

the fraction of women on the same platform, and the effect is more pronounced when women

on the platform outnumber men. When N = 10, γ1 = 0.05, γ2 = 0.6, pA = 2 and pB = 0.01,

there are five coexisting equilibria of this market consisting of equal market shares, a 60-40

split in favor of either platform, and a 70-30 split in favor of either platform. The remaining

equilibria consist of tipping to either platform.

Another worry is that coexistence is an artifact of the assumption of exogenous access fees.

One might reason that a platform with higher match quality could simply compete Bertrand

style in access fees and thereby capture the entire market. The flaw in this intuition is that a

platform is only valuable to the extent that it can induce multilateral deviations. Regardless

of price, it does not pay to switch to a higher quality platform where few other agents are

present. In the Appendix, we formalize this intuition and show that coexistence is consistent

with equilibrium even when fees are endogenous.
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Cognitive Hierarchy
The previous analysis relied on the full rationality of market participants. In particular,

the choices made by each agent depend on expectations about the choices made by all other

agents, which in turn depend on expectations of expectations, and so on. Clearly, this level

of sophistication is an idealization at best– some participants are likely to be more naïve and

make choices without fully reflecting on the selections of other agents. To capture this idea,

we use a model of cognitive hierarchies. Cognitive hierarchy models are meant to capture

heterogeneities in the strategic sophistication of participants in the market. Specifically,

some fraction of agents are non-strategic. Their choices are determined by rules or heuristics

and made irrespective of beliefs about the choices of others. Other agents have limited

strategic reasoning. Their expectations are formed based on (flawed) models of the choice

behavior of all other agents.

Formally, each agent has a cognitive sophistication level of l ∈
{

0, . . . , L
}
. For simplicity,

we assume that the true distribution of the levels of cognitive sophistication is the same for

women and men. An agent is of cognitive sophistication level l with probability f (l) > 0

where
∑L

l=0 f (l) = 1. Note that we impose no additional structure on f . As such, our results

hold for a broad class of distributions including the normalized Poisson (with any finite value

of its parameter τ), which has frequently been used to analyze experimental data.

Level-0 agents are non-strategic. They make no inference about the behavior of others

around them to determine the correct choice and instead rely on rules or heuristics to guide

their choices. Rather than imposing a specific heuristic for these types, we remain agnostic

about their strategy and assume that these agents choose platform A with probability λA ∈
[0, 1] and platform B with probability λB = 1 − λA. Agents of level k ≥ 1 believe that all

others have sophistication levels strictly below k and best respond accordingly. Formally, a

level-k woman assumes that all N men and the remaining N − 1 women are of level k− 1 or

below. Moreover, she perceives that the population fraction of level l is f (l) /
∑k−1

t=0 f (t) for

l ≤ k− 1 and is 0 for l ≥ k. A level-k man has analogous beliefs about others. Even though

these agents are strategic, their beliefs about the strategic sophistication of the population

are incorrect, instead reflecting a form of overconfidence. Each agent perceives that he or

she is more strategically sophisticated than others making choices.

To analyze the game, the following notation proves helpful: Let Ui (λ) denote the expected

gross payoff to an agent from choosing platform i when all other agents independently select

this platform with probability λ. That is,

Ui (λ) =

N∑
s=1

N∑
t=0

(
N − 1

s− 1

)(
N

t

)
λs−1+t (1− λ)2N−s−t ui (s, t) . (1)

Clearly, Ui (λ) is continuously differentiable, Ui (λ) > Ui (0) for all λ ∈ (0, 1], and U
′
i (0) > 0.

To make cross-platform comparisons with respect to λ requires some additional structure on
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payoffs. To ensure that payoffs satisfy the familiar single-crossing condition with respect to

λ, it suffi ces to ensure that the payoffs for each platform are single-peaked in λ. Formally,

Assumption 5: If U ′i
(
λ̂
)

= 0 then U
′
i (λ) < 0 for all λ > λ̂.

Assumption 5 guarantees that there is a unique λ∗ solving

Ui (λ
∗)− pi = Uj (1− λ∗)− pj.

Moreover, for all λ′ > λ∗,

Ui (λ
′)− pi > Uj (1− λ′)− pj

for i ∈ {A,B}, which are the usual single-crossing conditions.
With this notation in hand, let us consider the best responses for each agent. From the

perspective of a level-1 agent, all other agents are selecting platforms at random, thus, her

expected payoff from choosing platform i is simply Ui (λi) − pi.10 Naturally, such an agent
chooses platform i over j if and only if

Ui (λi)− pi > Uj (1− λi)− pj (2)

Level-1 agents choose platform i provided there is a suffi ciently high chance of encountering

level-0 agents there. A level-2 agent believes that all other agents go to platform i with

probability λif(0)+f(1)
f(0)+f(1)

> λi as she believes all other agents are of level 0 or 1. That is, she

believes a larger fraction of agents are choosing platform i than does a level-1 agent. The

single-crossing property implies that she too prefers platform i to j. (Notice that absent

Assumption 5, one might encounter the rather implausible situation where an agent who is

convinced that platform i enjoys a higher market share is less likely to choose it compared

to an agent who believes that i enjoys a smaller market share.) The same logic obtains for

agents with ever higher levels of sophistication. As a consequence, the market will tip to the

platform satisfying equation (2). Formally,

Proposition 3 Under cognitive hierarchy, all agents with sophistication level l > 1 choose

the same platform as level-1 agents. Level-1 agents choose the platform i satisfying equation

(2) .

Like many models with behavioral types, the choices of level-0 types profoundly influence

the decisions of more sophisticated agents, even when level-0 agents are relatively scarce in

the population as a whole. Of particular interest is the situation where level-0 agents choose

either platform with equal probability, i.e. λi = 1
2
. In that case, there is a useful link

between cognitive hierarchy and the risk dominance notion of equilibrium selection first

10We ignore the non-generic case where λi happens to leave level-1 types indifferent between the two
platforms.

12



introduced by Harsanyi and Selten (1988). Harsanyi and Selten were motivated by the game

stag hunt. It is well-known that there are two pure strategy equilibria in stag hunt, one

corresponding to the “safe” strategy of hunting hare and the other corresponding to the

“risky”strategy of hunting stag. Of course, in equilibrium, neither strategy is truly risky in

that the behavior of the others is perfectly anticipated. Yet, in a real sense, hunting stag

is riskier– an agent’s payoff could be lower if the other player chose an unexpected action.

Harsanyi and Selten sought to capture this notion through the risk dominance equilibrium

refinement. Specifically, given two pure equilibria, E and E ′ of a bi-matrix game, equilibrium

E is said to be risk dominant if the expected payoff to each agent is higher under E than

under E ′ given random (equiprobable) play on the part of others. So long as the downside of

hunting stag is suffi ciently large, hunting hare is the risk dominant equilibrium in the game.

The same holds true in our setting and hence:

Remark 1 Suppose that λi = 1
2
and f (0)→ 0, then the unique equilibrium under cognitive

hierarchy converges to the risk dominant equilibrium.

While the cognitive hierarchy outcome corresponds to risk dominance under the specific

assumption of equiprobable choice behavior by level-0 agents, the model predicts herding–

all more sophisticated agents will mimic the choices of level-1 agents– regardless of the

particular specification of level-0 behavior. Indeed, this herding phenomenon is quite robust.

While we derived the herding effect using the Camerer-Ho-Chong specification of beliefs in

the cognitive hierarchy model, this property is shared by all other specifications used in this

literature. For instance, in the Nagel-Stahl-Wilson specification, a level-k agent believes

that all other agents have cognitive sophistication level of k − 1. Obviously, the behavior of

level 1 agents is unchanged under this specification. Naturally, all other cognitive types will

choose the same platform as level-1 agents. Indeed, Assumption 5 is no longer needed for

this specification of beliefs.

Notice also that the results are independent of the distribution of strategic types. Even

if level-0 types are rare, strategic agents (who in past laboratory studies accounted for most

of the population) choose the risk dominant platform. The herding result is also robust

to relaxing the assumption that the gross payoffs treat men and women symmetrically. So

long as the expected payoff maximizing platform is the same for both types of agents, the

cognitive hierarchy model will again predict a unique equilibrium where all agents will herd

on the choice of the level-1 agents. Likewise, the result straightforwardly extends to the case

where there are more than two competing platforms.

From a managerial perspective, this suggests that an emphasis on safety is called for as

agents are likely to choose the safer platform over a high-return but high-variance platform.

This is illustrated in activities of several major platforms. For instance, eBay implemented
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a number of policies to protect sellers and buyers against non-performance by the counter-

party. Microsoft emphasizes the security of its operating systems (albeit with mixed results).

Facebook likewise emphasizes data security, privacy, and 24/7 uptime.

4 Multi-Homing

The previous section follows much of the literature on platform competition by restricting

agents to choose a single platform. In practice, however, there are many circumstances where

such an assumption is patently unrealistic. For instance, if one were interested in applying

the model to study credit card markets, assuming that merchants only accept a single type

of card or that consumers only have one card in their wallets is clearly at odds with reality.

One reason for restricting attention to the single-homing case is tractability. As we saw,

equilibrium multiplicity was a serious problem in the fully rational model even under single-

homing. The analysis only grows more complex with the addition of multi-homing. A second

reason for such a restriction is that the single-homing assumption might be innocuous– the

analysis may be fundamentally unchanged despite the added complexity.

In this section, we amend the model to allow for multi-homing. Formally, each agent’s

choice set now consists of {A,B,AB} where AB denotes subscribing to both platforms. We

show that, in the fully rational case, this additional option is not innocuous– the set of co-

existing equilibria change when multi-homing is permitted. However, this added complexity

does not change the simplicity of the cognitive hierarchy approach. There remains a unique

equilibrium, but the character of the equilibrium does change. In particular, even when

level-0 agents choose each available option with equal probability, it is no longer the case

that the risk dominant platform prevails in the market. Indeed, the addition of multi-homing

tends to favor the “better”platform in the sense of Pareto dominance. Thus, the assumption

of single-homing is a meaningful restriction, regardless of the assumed level of rationality.

Assumptions 1-4 imply that one of the platforms will be Pareto dominant– payoffs for all

participants are maximized when everyone chooses this platform exclusively. Let platform

i denote the Pareto dominant platform, and note that this implies that ui (N,N) − pi >

uj (N,N)− pj.
Amending the model to allow for multi-homing requires more than merely adding this

option to the choice sets of each agent. It also requires some specification of how the matching

process works (and hence payoffs are generated) when agents choose to multi-home. We

assume that agents follow a lexicographic rule: First, they go to the better (Pareto dominant)

platform and enjoy payoffs from whoever else is at that platform. That is, an agent enjoys

payoffs ui (ni1, ni2) − pi. Next, they go to the worse platform and enjoy payoffs from any

new individuals of the opposite type they encounter. Of course, they still suffer costs from
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competition associated with all individuals of the same type visiting the worse platform.

That is, an agent who multi-homes enjoys incremental payoffs of uj
(
nj1, n

E
j2

)
− pj where

nEj2 = N − ni2.11 Thus, the net payoff for a multi-homing agent is

ui (ni1, ni2) + uj
(
nj1, n

E
j2

)
− pA − pB

This type of rule is intuitive in a dating market context. It makes sense that a woman

will first search for matches on the better dating platform, collecting contact information for

the attractive men located there. Having obtained this information, she then visits the less

attractive dating platform. Obviously, the only additional value such a visit provides is the

contact information for new attractive men not already encountered on the better platform.

Of course, she faces competition from all of the women located at each platform regardless

of duplication.12

Full Rationality
Tipping to either platform remains an equilibrium even when we add the option of multi-

homing. To see, this, suppose women all choose platform i ∈ {A,B} exclusively, then men
have no incentive to join platform j or to multi-home since there is no benefit to visiting a

platform which is devoid of women. The same is true of women when men join platform i

exclusively.

Likewise, under some parameter values, it remains an equilibrium for n agents of each

type join platform A and the remaining N − n agents of each type join platform B, the

analog to coexisting equilibria under single homing. Proposition 4 formalizes this.

Proposition 4 When agents can multi-home, tipping to either platform is an equilibrium.

Furthermore, any market share split is consistent with equilibrium provided market impact

effects are suffi ciently large.

Formally, there exists an equilibrium where all agents choose platform i ∈ {A,B} . There
exists an equilibrium where n agents of each type choose platform i ∈ {A,B} with the re-
mainder choosing platform j provided that:

δA,n ≥ uA (n, n)− pA ≥ 0 and δB,N−n ≥ uB (N − n,N − n)− pB ≥ 0 (3)

Since the multi-homing option is not exercised for the coexisting equilibria characterized

in Proposition 4, we can examine how multi-homing affects the chance that platforms coexist.

Define δ̄MH
A,n ≡ uA (n, n)−pA to be the critical threshold for market impact effects on platform

11The superscript E is a mnemonic for the extra agents of the other type encountered at platform j.
12While this rule seems intuitive, it is not required for our main result (Proposition 6)– that under cognitive

hierarchy the better platform prevails. The result would still hold if we instead assumed that all agents visited
the worse platform first.
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A to sustain coexistence in an equilibrium where n agents choose platform A under multi-

homing. That is, the market impact effect, δA,n must be δ̄
MH
A,n or more for this configuration

to be an equilibrium. Under single-homing, the relevant critical threshold is δ̄SHA,n ≡ ∆Un.

The critical thresholds for the market impact effects on platform B are analogous. Now,

since uB (N − n,N − n) − pB ≥ 0, it follows immediately that δ̄MH
A,n ≥ δ̄

SH
A,n and similarly

δ̄
MH
B,n ≥ δ̄

SH
B,n–market impact effects must be larger to sustain coexistence under multi-

homing than under single-homing. The option to multi-home undermines the prospects

of equilibrium coexistence (for the class of equilibria where the multi-homing option is not

exercised). This is intuitive in that multi-homing offers an additional possibility for deviation

from equilibrium, namely collocating on both platforms. The required conditions to rule such

deviations out are, accordingly, more stringent.

Of course, Proposition 4 only considers the set of equilibria in which the option to multi-

home is not exercised. Equilibrium coexistence might also arise when it is an equilibrium

for one or both types of agents to multi-home. One can easily rule out the possibility that

all agents multi-home. To see this, notice that, since all women are on both platforms, there

is no incremental benefit to men from visiting the worse platform. Moreover, such visits

are costly. Hence, men can profitably deviate by single-homing at the better platform and

likewise for women. Similarly, it can never be an equilibrium for all men to choose platform

i and some men to multi-home. Under this circumstance, all women would choose to visit

platform i exclusively and hence the multi-homing men derive no benefit from also accessing

platform j. (An identical argument rules out the case where all women visit platform i and

some multi-home.)

There are, however, coexisting equilibria where some agents of each type exclusively

use each of the platforms while others multi-home. For instance, some men exclusively use

platform A, others exclusively use platform B, while the remainder multi-home and symmet-

rically for the women. Since some men find it optimal to multi-home, one may wonder why

it is not profitable for a man currently using a single platform to deviate by multi-homing.

What prevents this is the market impact effect– by adding a second platform, competi-

tion among men on this platform is increased– which deters such deviations. Proposition

5 formalizes the exact conditions where the market impact effects can sustain this type of

coexistence.
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Proposition 5 Provided market impact effects are suffi ciently large, coexistence where some
agents multi-home is an equilibrium.

Formally, suppose that A is the Pareto dominant platform and that

δA,nA + δB,nB ≥ pA − pB + uB (nB, nB)− uA (nA + 1, nA) ≥ 0

δB,nB ≥ pB − uB (nB + 1, N − nA) ≥ 0

δA,nA ≥ pA − uA (nA + 1, nA) + uB (nB, nB)− uB (nB, N − nA) ≥ 0

where δB,nB ≡ uB (nB, N − nA) − uB (nB + 1, N − nA) . Then it is a Nash equilibrium for

N − nB agents of each type locate only on platform A, N − nA agents of each type locate
only on platform B, and nA + nB −N agents of each type multi-home.

Proposition 5 reveals that the multi-homing behavior seen in practice in credit card

markets is consistent with a coexisting equilibrium under full rationality. Moreover, it is

essential that not all individuals on the same side of the market make the same choice.

Some consumers will use Visa/MasterCard exclusively while others will also carry Discover

card. Likewise, not all merchants will accept both cards. One counterfactual aspect of the

equilibrium is that it requires that some merchants and some consumers use/accept Discover

card exclusively. While the exclusive acceptance of Discover was, at one time, the policy

of both Sears and Sam’s Club, this is no longer the case. Thus, a coexisting equilibrium is

capable of rationalizing some but not all behavior with respect to multi-homing. Perhaps

more importantly, such equilibria are ruled out (by assumption) by limiting attention to the

single-homing case.

Taken together, Propositions 4 and 5 point out that equilibrium still offers little guidance

as to what market structures emerge with platform competition under full rationality and

multi-homing. Indeed, if anything, the picture is even more muddled than under single

homing. For instance, one can easily choose parameter values such that the addition of

multi-homing merely expands the (already considerable) set of equilibria that previously

arose under single homing.

Cognitive Hierarchy
We saw that relaxing the assumption of full rationality in favor of the arguably more re-

alistic cognitive hierarchy formulation substantially clarified predictions about market struc-

ture under single-homing regardless of the assumptions made about the behavior of level-0

agents. Multi-homing introduces additional possibilities for modeling the choices made by

these individuals. Now the probabilistic mix is multi-dimensional rather than single dimen-

sional. Assuming single peakedness (Assumption 5) guaranteed that the problem of best

responses for level 1 and higher agents was well-behaved thus facilitating full characteriza-

tion under single-homing. The situation is more nuanced in the multi-homing case. Thus,
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rather than characterizing equilibria under arbitrary choices of level-0 agents, we temporar-

ily restrict attention to circumstances where these choices are in pure strategies. Later, we

relax this assumption to allow for symmetric randomization behavior by these agents; that

is, level-0 agents (stochastically) choose either of the platforms with equal probability and

otherwise multi-home.

Pure Strategy Choices by Level-0 Agents
Consider the case where level-0 agents avoid choosing between competing platforms; they

simply multi-home. We claim that all strategically sophisticated agents choose the better

platform. When level-0 agents multi-home, level-1 agents, who view all agents as being

level-0, believe that everyone will be present on both platforms. There is, effectively, no

risk associated with choosing either platform and, as a consequence, level-1 agents select the

better (i.e. Pareto dominant) platform. A level-2 agent believes that all agents are level-1 or

level-0 and hence believes that all agents will be present on the Pareto dominant platform.

As a consequence, such agents are best served by mimicking the choices of the level-1 agents.

The same holds of all agents with higher levels of strategic sophistication. Formally, we may

conclude:

Proposition 6 Suppose that all level-0 agents multi-home. Under cognitive hierarchy, all
agents with sophistication level l ≥ 1 choose the Pareto dominant platform.

Proposition 6 reinforces the notion that, by allowing for some degree of bounded ra-

tionality, market impact effects are not enough to sustain equilibrium coexistence– one of

the platforms will enjoy 100% market share of sophisticated agents while the rival platform

gets 0% market share. Moreover, it sharpens the prediction as to the identity of the win-

ning platform. In particular, it suggests that the QWERTY phenomenon– the possibility

of agents getting locked in to the inferior platform– does not arise. Put differently, lock-in

at the inferior platform does not arise despite the hyper-sophistication assumed in the fully

rational model, but rather relies upon this sophistication in an essential way. It is perhaps

for this reason that examples of this type of lock-in are rare.

Next, consider the case where all level-0 agents choose platform i exclusively. Clearly

level-1 agents will follow suit. There is no gain to accessing platform j either exclusively or

through multi-homing since no agents are believed to be present on the platform. The same

logic applies to all agents with higher levels of sophistication. Thus, we have shown that

Proposition 7 Suppose that all level-0 agents choose platform i. Then, under cognitive

hierarchy, the market tips to platform i– all agents utilize this platform exclusively.

Propositions 6 and 7 highlight several key properties of bounded rationality and platform

competition. First, the “herding” effect where all agents of higher levels of sophistication
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mimic the choices of level-1 agents is a robust feature of the model. Second, despite the option

to multi-home, all agents of higher levels of sophistication opt for a single platform. Third,

and most importantly, even in the presence of multi-homing, a single dominant platform

emerges as the equilibrium market structure.

Stochastic Level-0 Agent Choices
One may worry, however, that the tendency toward tipping is purely an artifact of our

restriction to pure strategy behavior on the part of level-0 agents. We now partially relax this

assumption to allow for non-deterministic behavior on their part. Specifically, we assume

that level-0 agents choose to access platform i exclusively with the same probability as

platform j. With remaining probability, level-0 agents multi-home.

Before proceeding with the analysis, we need to introduce some additional notation to

account for stochastic choices on the part of other agents. As usual, let i be the Pareto

dominant platform. Suppose that an agent of a given level of rationality believes that

all other agents select platform i (exclusively) with probability λi, select platform j with

probability λj, and multi-home with the remaining probability 1− λi− λj. In that case, her
payoff from multi-homing when exactly s−1 agents of the same type choose i, r multi-home,

and t of the opposite type choose platform i (either exclusively or through multi-homing) is

simply (ui (s+ r, t) + uj (N − s+ 1, N − t)) . The probability of this event happening is

Pr[s, r, t] =

(
N − 1

s− 1

)(
N − s
r

)(
N

t

)
λs−1i (1− λi − λj)r λN−s−rj (1− λj)t λN−tj .

Summing over all possible events yields the expected utility from multi-homing,

Umh (λi, λj) =
N∑
s=1

N−s∑
r=0

N∑
t=0

Pr[s, r, t] (ui (s+ r, t) + uj (N − s+ 1, N − t)) .

When an agent chooses platform i exclusively, on the other hand, she gets payoff from all

other agents who join platform i, exclusively or not. That is, she believes that an agent will

locate on platform i with probability 1 − λj. Therefore, her expected payoff from joining

platform i exclusively is

Ush,i (λi, λj) =
N∑
s=1

N∑
t=0

(
N − 1

s− 1

)(
N

t

)
(1− λj)s−1 λN−sj (1− λj)t λN−tj ui (s, t)

=

N∑
s=1

N∑
t=0

(
N − 1

s− 1

)(
N

t

)
(1− λj)s+t−1 λ2N−s−tj ui (s, t)

While the delineation of λi and λj is needed in determining the payoffs under multi-homing,

it is not strictly necessary under single homing. Indeed, Ush,i (λi, λj) = Ui (1− λj) as defined
in equation (1). Similarly, when an agent chooses platform j exclusively, she earns

Ush,j (λi, λj) =

N∑
s=1

N∑
t=0

(
N − 1

s− 1

)(
N

t

)
(1− λi)s+t−1 λ2N−s−ti uj (s, t) = Uj (1− λi) .
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Each of these functions is well-defined and continuously differentiable in λi and λj. The

case where λi = λj = 0 corresponds to the situation where all other agents are perceived to

multi-home. As we saw in the proof of Proposition 6, an agent’s best response was to select

the better platform exclusively given these beliefs. That is,

Ush,i (0, 0)− pi > Umh (0, 0)− pA − pB (4)

For multi-homing to be a viable best response to symmetric choices by level-0 agents, we

assume that

Umh

(
1

2
,
1

2

)
− pA − pB > max

[
Ush,i

(
1

2
,
1

2

)
− pi, Ush,j

(
1

2
,
1

2

)
− pj

]
(5)

This assumption merely guarantees that, if all other agents single home with equal probability

for each platform, then the benefits of encountering all of the agents of the opposite type

exceed the costs of multi-homing.

Finally, the analysis is greatly simplified if we extend the notion of Pareto dominance

to situations where platforms enjoy less than 100% market share. Specifically, we say that

platform i is super dominant if, for a given market share, payoffs are higher on platform i

than on platform j. For instance, were j to enjoy 60% market share, then payoffs to those

on platform j would be lower than to agents on platform i when i enjoys this same market

share. Formally, we assume that, for all λ, λ′

Ush,i (λ, λ
′)− pi > Ush,j (λ′, λ)− pj.

Obviously, super dominance implies Pareto dominance.

As for the single-homing case, we require some additional structure to ensure that the

expected payoff functions are well-behaved. Analogous to Assumption 5, we assume that

Umh (λ, λ) is single-peaked in λ. Moreover, we assume that relative attractiveness of multi-

homing over single-homing at platform i is decreasing in the probability of an agent choosing

platform i and is increasing in the probability of an agent choosing platform j. Note that

Assumption 5 already implies that Ush,i (λi, λj) is single-peaked in λj. Formally,

Assumption 6: If U ′mh
(
λ̂, λ̂
)

= 0 then U ′mh (λ, λ) < 0 for all λ > λ̂. Moreover,

Umh (λi, λj)− Ush,i (λi, λj) is decreasing in λi and increasing in λj.
With these assumptions, we can now analyze the behavior of level-1 agents. Let λi =

λj = λ̃ denote the choice probabilities of level-0 agents. Clearly, if λ̃ is small, then the

best response for a level-1 agent is to single-home, exclusively choosing the super dominant

platform. This follows from continuity and the inequality in equation (4). Similarly, if λ̃ is

close to 50%, then the best response for a level-1 agents is to multi-home, which follows from

continuity and the inequality in equation (5). Thus, there exists for intermediate probability,
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λ̃ = λ∗, where level-1 agents are exactly indifferent between single and multi-homing. Clearly,

level-1 agents multi-home if and only if λ̃ ≥ λ∗.13

When λ̃ < λ∗, level-1 agents choose the super dominant platform. Naturally, this makes

this platform more attractive for higher level agents, and we obtain the familiar herding

result– more sophisticated agents mimic the behavior of level-1 agents and choose the super

dominant platform exclusively.

Of greater interest is the case where λ̃ ≥ λ∗. Here, level-1 agents choose to multi-home

and thus, from the perspective of a level-2 agent, the fraction of other agents choosing to be

exclusively on platform i or j falls to λ′ < λ∗. As a consequence, multi-homing is now less

attractive. Eventually, there exists a level-k agent for whom λ′ has fallen suffi ciently that it

is now below the critical threshold, λ∗. This agent then chooses to visit the super-dominant

platform exclusively and, as usual, all more sophisticated agents follow suit.

While the above sketches the essence of the proof, it omits a number of technical details

needed to ensure that the intuitive behavior described above is, indeed, optimal. Proposition

8 presents a formal statement of the result. The detailed proof is contained in Appendix A.

Proposition 8 Suppose Assumptions 1-6 hold. Then, under cognitive hierarchy:
If level-0 agents single-home on each platform with probability λ̃ < λ∗, all strategically

sophisticated agents choose the super-dominant platform.

If level-0 agents single-home on each platform with probability λ̃ ≥ λ∗, then there exists

∞ > k > 1 such that all agents of sophistication levels {1, 2, ..., k − 1} multi-home while
more sophisticated agents choose the super-dominant platform.

Proposition 8 highlights that the addition of multi-homing offers the possibility of a much

richer set of choice behavior in equilibrium under cognitive hierarchy. While it remains the

case that bounded rationality leads to unique predictions that entail herding behavior where

more sophisticated agents mimic the choices of less sophisticated agents, it is no longer

the case that there is a single, dominant platform selected by sophisticated agents. When

the fraction of level-0 agents who single-home is high enough, relatively less sophisticated

strategic agents respond by multi-homing while sophisticates choose the better platform

exclusively. This behavior is qualitatively consistent with what one sees in the credit card

market– some people carry Visa/MasterCard and Discover in their wallet while others use

Visa/MasterCard exclusively. Likewise for merchants– Discover cards are not universally

accepted while Visa/MasterCards are. It is also unlike any equilibrium under full rationality.

Thus, in principle, the distinction between the two models is empirically testable.

13We assume that, when there is a tie between single and multi-homing, level-1 agents choose to multi-
home. The particular tie-breaking rule is inessential to the result.
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More broadly, in multi-homing contexts, value is the key. This has led to a benefits war

in credit card markets where competitors vie to provide consumers with rewards such as

cash back, airline miles, and so on to induce them to use a particular card. Likewise, interest

rate cuts and fee waivers are used to entice customers to switch away from rivals. Similarly,

in search engines Google is ubiquitous; however for some queries, particularly those related

to shopping for a particular product, some individuals will multi-home, using both Google

and Amazon. Even though search engines are free to consumers, there is a constant battle

over quality. For instance, Microsoft’s search engine Bing distinguished itself with faster

incorporation of social data, such as Twitter feeds, into its search results. It also, for a time,

paid consumers to use its engine for queries.

5 Horizontal Differentiation

While models with full rationality offered little in the way of predictions about market struc-

ture, bounded rationality models offered more precise predictions. Specifically, regardless

of the size of market impact effects, vertical differentiation, or single versus multi-homing,

a ubiquitous platform always arose in equilibrium. Under single-homing, this implied that

there was a single, dominant platform selected by all strategic agents. Under multi-homing,

both platforms might coexist, but one of the platforms would be “universal” in the sense

that all sophisticated agents chose it either exclusively or through multi-homing. While this

matches many platform competition situations where there is a single big agent, in other

situations the market is more fragmented. In this section, we enrich the model to account

for differences in individual preferences across platforms, i.e. to permit horizontal as well as

vertical differentiation across platforms.

Up until now, we have assumed that the payoffs for all individuals of a given type choosing

a given platform were the same. Thus, while players might view the platforms Match.com and

eHarmony as different, all men and women feel the same way about each platform. Clearly,

this is an unrealistic assumption. One key dimension along which Match and eHarmony differ

is whether the user browses to find the right match versus whether the site provides the user

with a short list of suitable matches. A user visiting Match.com can browse the profiles of all

others signed up to the site and decide who to contact. Browsing, however, is not permitted

on eHarmony. Instead, the user receives a list of a small set of potential matches based on

compatibility algorithms at the website. Some users prefer the do it yourself approach of

Match while others prefer the top-down approach of eHarmony.

To model this, we suppose that each agent has a horizontally preferred platform. By

choosing the preferred platform, the agent receives a discount of θ > 0 off of the access

fee. Suppose platform i is a given man’s preferred platform where n1 − 1 other men and
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n2 women has joined and the remaining men and women have joined his non-preferred

platform j. Then his payoff from joining platforms i and j will be ui (n1, n2) − pi + θ and

uj (N − n1 + 1, N − n2)− pj, respectively. The model is uninteresting when the discount is
so large as to induce the agent to go to his preferred platform even when he or she is alone

on the platform. Thus, we assume that if platform i is the preferred platform then

θ < uj (N,N)− pj + pi (6)

Suppose ñA men and ñA women have a preference for platform A and ñB = N − ñA agents
of each type have a preference for platform B. To examine the pure effect of horizontal

differentiation, we revert to the case where only single-homing is allowed.

Full Rationality
We do not characterize all equilibria for this model. However, we show that both tip-

ping and coexistence occur in equilibrium. Importantly, adding horizontal differentiation

admits a new possibility– for generic parameter values, it may be that neither platform is

Pareto dominant. Pareto dominance requires that horizontal differentiation be relatively

unimportant. Formally, a Pareto dominant platform exists if and only if

θ ≤ ui (N,N)− uj (N,N)− pi + pj (7)

for some i. It may be readily verified that the inequality given in equation (7) is more

stringent than that given in equation (6). Thus, the model covers parameter values where

horizontal differentiation is small, so a Pareto dominant platform exists, or large, so it does

not. Regardless of whether the inequality in equation (7) holds, tipping to either platform

remains an equilibrium. If all agents are located on platform i, even an agent whose preferred

platform is j cannot benefit from unilaterally switching to platform j given the upper bound

on θ as specified in equation (6). Thus, we have shown

Proposition 9 Under horizontal differentiation, tipping to either platform is a Nash equi-

librium.

Under horizontal differentiation, coexisting equilibria continue to exist. The most intu-

itive of these is one where each agent goes to her (horizontally) preferred platform; however,

there are many other classes of equilibria where platforms coexist. For instance, for some

parameter values (shown formally below) it is an equilibrium for everyone to choose their

non-preferred platform. A mixture, where some agents choose their preferred platform and

others their non-preferred, is also possible. As usual, the key to equilibrium coexistence is

the size of market impact effects. For the intuitive equilibrium, the magnitude of the required

effect is reduced by the discount θ. It is raised by this same amount for the “backwards”

equilibrium. The following proposition derives formal conditions on market impact effects
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for equilibrium coexistence to arise. The broader point is that adding horizontal differen-

tiation merely exacerbates the equilibrium multiplicity already present under the baseline

model where horizontal differentiation is absent. Formally,

Proposition 10 Platform coexistence is consistent with equilibrium under horizontal differ-
entiation provided that market impact effects are large enough. Specifically,

I. All agents joining their preferred platforms is a coexisting equilibrium if (1) δA,ñA ≥
∆UñA − θ when ∆UñA ≥ 0 and (2) δB,ñB ≥ −∆UñA − θ when ∆UñA < 0.

II. All agents joining their non-preferred platform is a coexisting equilibrium if δB,ñA ≥
−∆UñB + θand δA,ñB ≥ ∆UñB + θ.

III. Moreover, ñA −m pairs of men and women choosing their preferred platform A, m

pairs of men and women choosing their non-preferred platform B and ñB pairs of men and

women agents choosing their preferred platform B for some m ∈ {1, 2, . . . , ñA − 1} is an
equilibrium if δA,ñA−m ≥ ∆UñA−m + θ and δB,ñB+m≥ −∆UñA−m − θ.

We can illustrate multiple coexisting equilibria under horizontal differentiation using Ex-

ample 1 with the additional assumptions that ñA = ñB = 5 and θ = 10. Equal market shares

for both platforms as well as 60-40 and 70-30 splits in favor of either platform constitute

coexisting equilibria. Within these market share splits, any combination of agents choosing

their preferred or non-preferred platforms constitute an equilibrium. Moreover, an 80-20

split in favor of either platform where two pairs of men and women choose their preferred

platform and all other agents choose the other platform (which is the preferred platform

for five men and five women located there) is an equilibrium. In this example, the possible

set of coexisting equilibria under horizontal differentiation is strictly larger than that of the

baseline model.14

To summarize, adding horizontal differentiation to the single-homing model under full ra-

tionality does little to clarify predictions about market structures or offer insights about busi-

ness strategies. Depending on the type of equilibrium, market impact effects and horizontal

differentiation can interact in peculiar ways. In a coexisting equilibrium where agents choose

their preferred platform, horizontal differentiation aids in sustaining coexistence whereas in

an equilibrium where agents choose non-preferred platform, market impact effects must be

especially strong to overcome horizontal differentiation. Regardless, equilibrium coexistence

is by no means assured– tipping remains an equilibrium.

Cognitive Hierarchy
Once again we relax the full rationality assumption. Our main result in this section is

to show that the cognitive hierarchy model predicts a unique outcome– provided horizontal

14The set of equilibria depends on the size of θ. If the discount is large, i.e., θ = 100, all agents choosing
their preferred platforms is the only coexisting equilibrium.
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differentiation is suffi ciently important, each strategic agent chooses her preferred platform

and hence both platforms coexist in equilibrium.

While we were agnostic about the behavior of level-0 agents when horizontal differentia-

tion was absent, here we place some (mild) additional structure on their choices: We assume

that level-0 agents are weakly more likely to choose their preferred platform than their non—

preferred platform. This rules out bizarre cases where being horizontally preferred reduces

the chance that a platform is selected by a non-strategic agent.

The interesting case arises when the degree of horizontal differentiation (θ) is relatively

large. Our baseline model is, in effect a special case of the horizontal differentiation model

where θ = 0. As we showed, in that case a single, dominant platform is chosen by all strategic

agents. By continuity, if θ is small, this continues to be the case. The interesting situation

arises when:

Assumption 7: θ > Uj
(
1−min

{
1
2
, ñi
N

})
− Ui

(
min

{
1
2
, ñi
N

})
− (pi − pj) for i ∈ {A,B}.

Assumption 7 is fairly weak. Among other things, it merely ensures that when the choices

of all other agents are random, it is better for an agent to choose her preferred platform over

the non-preferred platform. With this assumption, we are now in a position to state our

main result of this section:

Proposition 11 When horizontal differentiation is suffi ciently large, platforms coexist un-
der cognitive hierarchy.

Formally, suppose level-0 agents weakly choose their preferred platform and Assumptions

1-5, and 7 hold. Then strategically sophisticated agents choose their preferred platform in

the unique equilibrium.

We sketch the proof below, but leave the formal analysis to Appendix A. When level-1

agents are determining which platform to select, they anticipate that level-0 agents are weakly

more likely to choose their preferred platform. Notice that, even when level-0 agents are

selecting randomly, Assumption 7 implies that level-1 agents optimally select their preferred

platform. Likewise, when level-0 agents are always selecting their preferred platform, level-1

agents find it optimal to do so as well (since this is a Nash equilibrium under full rationality).

Assumption 5 guarantees that, for any convex combination of these two extremes, it remains

optimal for level-1 agents to choose their preferred platform. Level-2 agents likewise face a

convex combination of random choice and selection based on preferred platforms and respond

identically to level-1 agents. And so on for more sophisticated agents.

Comparing Propositions 3 and 11 reveals striking differences in market structure un-

der bounded rationality. When horizontal differentiation is only a secondary consideration,

there is a strong tendency toward industry concentration– all strategic agents choose the

same platform regardless of market impact effects. Once horizontal differentiation becomes
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an important consideration, the industry tends to remain fragmented regardless of the mag-

nitude of positive network externalities. Thus, the cognitive hierarchy model is capable of

rationalizing the vast difference in the market structure of online auctions (extremely con-

centrated) and online dating markets (extremely fragmented). While the technology used by

platforms in both of these markets is similar, idiosyncratic match characteristics (horizontal

differentiation) are much more important in selecting a date or a life partner than they are

in selecting a Beanie Baby or a new golf club. Differences in the market structure for video

game consoles (fragmented) versus offi ce software and high definition optical disc format

(concentrated) can also be explained along the same lines. From a managerial perspective,

this suggests that emphasizing the unique identity of culture of users of a given platform

can be a more successful marketing strategy than one that emphasizes the quality of the

matchmaking process or the value of the site.

The results of laboratory studies offer formal evidence supporting the predictions of

the cognitive hierarchy model. Hossain, Minor, and Morgan (2011) examine the dynamics

of platform competition under single homing, varying the degree of horizontal and vertical

differentiation, as well as the strength of competitive effects. When horizontal differentiation

is small or absent altogether, they find strong evidence in favor of market tipping toward the

risk dominant platform (regardless of competitive effects).15 When horizontal differentiation

is strong, platform coexistence emerges with agents choosing their preferred platform.

6 Market Dynamics

Our model follows much of the extant literature in treating platform competition as a si-

multaneous game. Yet, for many online markets, perhaps the most significant feature of the

business landscape has been the phenomenal growth in the number of users. In this section,

we extend the baseline model to allow for rudimentary market dynamics. Specifically, we

divide the platform competition game into two stages– an initial stage marked by a small

number of users, followed by a maturation stage with a larger influx of new users. Payoffs

for all users are realized following the maturation stage.

A standard intuition is that markets with network effects, such as those that we study,

exhibit strong path dependence– platform choices at the initial stage dictate the winning

and losing platform as the market matures. In a sense, the herding by sophisticated types

under cognitive hierarchies has some of the flavor of this agglomeration dynamic. As we

will show, however, such forces carry no particular weight under full rationality. Indeed, our

15Some care is needed here. In most treatments, the risk dominant platform was also Pareto dominant. In
treatments where it was not, markets were more likely to tip to the risk dominant platform when subjects
were inexperienced, but the Pareto dominant platform thereafter.
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main result in this section is that the “anything goes”feature of the baseline model under

full rationality carries through almost entirely in a dynamic setting, even when all agents

coordinate on a single platform in the initial stage.

The formal model is as follows: During the initial stage d ∈
{

1, 2, ..., N
2

}
agents of each

type simultaneously select a platform.16 At the maturation stage, their choices are revealed

to all the remaining agents. These N − d pairs of agents then simultaneously make platform
choices. The timing of moves is exogenously specified; thus, an agent cannot choose to wait

or go early. At the conclusion of the game, payoffs for all agents are determined based on the

total number of agents of each type attracted to each platform exactly as specified previously.

Throughout both periods, prices, match effi ciency, and access fees for each platform

remain fixed; thus, the model rules out penetration pricing or other time varying strategies

by platforms. This is done to allow a direct comparison to the simultaneous game, but is,

admittedly, not a realistic feature. The situation we have in mind is where d is small relative

to N although the analysis requires no such restriction in that regard.

Full Rationality
As usual, we restrict attention to pure strategy equilibrium though subgame perfection

obliges us to admit mixed strategies off the equilibrium path. We begin by establishing the

analog of Lemma 1 for the sequential version of the model.

Lemma 2 In any subgame perfect equilibrium of the sequential game, the same number of

agents of each type select a given platform.

Lemma 2 considerably simplifies the equilibrium characterization. We are now in a

position to report the main result of this section.

Proposition 12 Fix a gross payoff function and suppose that n (resp. N − n) agents of

each type subscribe to platform A (resp. B):

(1)Then there exists a pair of access fees (pA, pB) such that these market shares comprise

an equilibrium of both the sequential and simultaneous games.

(2) Furthermore, for any pair of access fees, if these market shares comprise a subgame

perfect equilibrium of the sequential game, they also form a Nash equilibrium of the simulta-

neous game.

Proposition 12 highlights that equilibrium multiplicity under full rationality is as prob-

lematic in the sequential game as in the simultaneous game. The proof of part 1 of the

proposition is by construction. The idea is as follows: choose access fees such that the

market impact effect is large enough to sustain a market where n pairs of agents choose

16Here we assume N to be even. For odd N , we can assume that d ≤ N−1
2 .
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platform A with the remainder choosing B. This ensures that these market shares arise in

a Nash equilibrium of the simultaneous game. To ensure subgame perfection requires the

additional condition that the market share of the platform producing higher equilibrium

payoffs contains at least d pairs of players. To complete the construction, suppose that all

players choose the higher payoff platform during the initial stage while the remainder fill

out each platform up to its equilibrium share in the maturation stage. Clearly, maturation

stage players cannot profitably deviate for reasons identical to the simultaneous game. If

anyone deviates in the initial stage, his or her “slot”will simply be filled by a maturation

stage agent of the same type, so this too is unprofitable.

For the special case where d = 1, we can use this same construction to make a sharper

statement:

Remark 2 When d = 1, an outcome is a subgame perfect equilibrium of the sequential game

if and only if it is a Nash equilibrium of the simultaneous game.

This case is primarily of interest as a robustness check. It shows that if we slightly perturb

the simultaneous game by allowing one pair of players to move ahead of the others, the set

of equilibria is completely unaffected. In a way, this is surprising. One might think that the

first move confers some commitment power as in the other strategic settings. The key here

is the twosidedness of platform markets. While deviations by pairs of agents can alter the

strategic situation, unilateral deviations cannot since any such deviation in the initial stage

can be undone in the maturation stage.

When d > 1, the sets of equilibria in the two games do not perfectly coincide. The

following example demonstrates a situation where an equilibrium of the simultaneous game

does not survive in the sequential model.

Example 2 Suppose that N = 4, d = 2, and we use the matching technology from Ex-

ample 1. Then 3 pairs of men and women joining platform A with the remaining pair

joining platform B occurs in an equilibrium of both the simultaneous and sequential games

if (pA, pB) = (45, 5) and only the simultaneous game if (pA, pB) = (70, 5).

The key to the example is variation in the access fees on each platform. Depending

on these fees, the set of subgame perfect equilibria in the sequential game can be a strict

subset of the set of Nash equilibria in the simultaneous game. To sum up, even when all

agents coordinate on a single platform during the initial period of the life of the market, this

is no guarantee that the “anointed” platform will dominate in the maturation phase. As

with the baseline model, coexistence or tipping to either platform are all consistent with an

equilibrium under full rationality.
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Cognitive Hierarchy
Next, we study outcomes under the cognitive hierarchy model. Recall that expectations

about the play of level-0 agents were key in determining behavior of more sophisticated

types. These expectations still play a role in the sequential game, but the analysis is now

complicated by the fact that agents in the maturation stage get to observe earlier choices,

including those of the level-0 agents choosing during the initial stage. Thus the realizations

of random play by level-0 agents also affect play.

To reduce this complication and isolate the pure effect of timing on choice behavior,

consider a situation where the probability of a level-0 type, f (0), goes to zero in the limit.

Specifically, let fz (k) be a sequence of probabilities over the levels of strategic sophistication

where:

lim
z→∞

fz (0)

fz (1)
= 0 (8)

The idea here is that level-0 agents comprise a small fraction of the population. A special case

of this assumption occurs when one considers a small perturbation from full rationality where

higher cognitive types are strictly and exceedingly more likely than lower cognitive types. To

maintain expositional simplicity of our analysis, we restrict attention to the case where all

level-0 agents choose each platform with equal probability; that is, λi = 1
2
. We shall refer to

the combination of equiprobable platform choice and probabilities satisfying equation (8) as

the “limit cognitive hierarchy”model. We are now in a position to characterize equilibrium

in this setting.

Proposition 13 In the limit cognitive hierarchy model, all strategic types choose the risk
dominant platform in the unique equilibrium at the limit.

Proposition 13 shows that the behavior of the cognitive hierarchy model is unchanged with

the addition of dynamic entry. Restricting attention to the limit case, where realizations from

random behavior by level-0 agents at the initial stage do not affect subsequently outcomes

enables a precise statement, but qualitative behavior is easily characterized outside this

case. Specifically, if the risk dominant platform enjoys suffi cient market share in the first

period, then all strategic types in the second period will again coordinate on this platform.

When the risk inferior platform enjoys high market share during the initial stage, strategic

types will switch and coordinate on this platform instead. This latter situation can arise

if a large fraction of agents are level-0, and the realizations of their random choices favor

the risk inferior platform. Behavior of strategic types during the initial stage is simpler–

strategic types will opt for the risk dominant platform for the usual reasons. The diffi culty

lies in determining the exact market share realizations that tip the balance between the two

platforms at the maturation stage. These thresholds depend on the distribution of cognitive

levels, the size of the initial and maturation phases, as well as the particular payoffs under
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each platform. Since this adds little to understanding of the qualitative features of the

cognitive hierarchy model, we eschew a detailed analysis.

7 Conclusion

While models of bounded rationality have been strongly embraced in interpreting data from

laboratory experiments, their acceptance in applied settings has been much more limited.

A compelling objection against their use is that the very flexibility that makes these mod-

els attractive for organizing lab data undermines their ability to make sharp predictions.

For instance, quantal response equilibrium is a commonly used solution concept for analyz-

ing experimental data, but, as shown by Haile, Hortacsu, and Kosenok (2008), its use is

clearly problematic in applied settings as it can, under mild conditions, rationalize any set

of observed choices.

Under platform competition, we showed that the situation is exactly reversed. The

standard, fully rational model can justify a wide range of market structures owing to the

combination of network and competitive effects. In contrast, the boundedly rational cog-

nitive hierarchy model yields unique predictions. Moreover, by varying key features of the

platform competition setting, such as the ability to multi-home or the degree to which the

platforms are horizontally differentiated, we can identify which structural features lead to

industry concentration versus those that lead to fragmentation. In particular, competition

among agents of the same type, such as sellers on an online auction platform, does little to

prevent the emergence of a dominant platform. Horizontal differentiation, however, leads to

fragmentation even if the degree of differentiation is relatively modest.

From a managerial perspective, the model offers key insights about successful platform

strategy. Competing in single-homing markets where differentiation is diffi cult, managers

should focus on reducing the risks to platform users. Quality of service, security and privacy

of data, as well as refunds in the event that performance falls short all play a critical role

in determining the risk ranking of a platform relative to its rivals. The model points out

that this risk ranking is key to market share. This is broadly consistent with the business

strategies pursued by eBay. EBay implemented a scheme through its PayPal subsidiary

ensuring both buyers and sellers against non-performance by the counter-party thus reducing

the risk associated with eBay auctions. EBay also changed their reporting on bid histories

to better protect the privacy of users. Finally, eBay emphasizes 24/7 uptime for its site.

Under multi-homing, quality and user value should be emphasized. For instance, in the

credit card market, there has been a proliferation of cash-back benefits and low interest

rates to capture market share. In online markets, short-run monetization strategies that

come at the expense of the consumer experience offer a Faustian bargain: While profits
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may initially increase, such strategies open the door to a higher value platform to gain

dominance in the long-run. Where horizontal differentiation has the potential to outpace

vertical differentiation, the former should be emphasized. This strategy may be seen by the

recent advertising campaigns of eHarmony and ChristianMingle, two online dating sites. The

former differentiates itself from other sites by its concern with long-run compatibility rather

than short-run opportunities for sexual access. ChristianMingle emphasizes the shared values

of its user base– committed heterosexual Christians looking for a match literally made in

heaven.

It is, however, worth noting that our cognitive hierarchy model shares a defect common

to many models of bounded rationality– the choice behavior of non-strategic players is a free

variable and, even when these types are a vanishingly small fraction of the population, their

choices play a critical role in the resulting decisions of strategic players. The situation is

analogous to that of behavioral types in the reputation literature (see, e.g. Kreps et al., 1982).

Despite this, several key qualitative features of industry structure, notably the emergence

of a single platform accessed by all strategic types absent horizontal differentiation, occur

regardless of the assumed behavior of naïve types.

Saying more requires judgment about the motives of non-strategic types. One interpre-

tation is that these types are completely uninformed about the particulars of each platform

and hence choose at random. In the single homing model, we showed that this connected

the cognitive hierarchy model to a much older equilibrium refinements literature– choice

behavior of strategic types corresponds to a risk dominant equilibrium. Thus, one (modest)

contribution of the paper is to provide a behavioral micro-foundation for this refinement.

But the predictions under bounded rationality do not always coincide with risk dominance.

Allowing for multi-homing does not change the identity of the risk dominant platform but

substantially changes the behavior of strategic types. They now respond with a combination

of multi-homing and exclusively choosing the Pareto dominant platform.

Compared to theory offerings, the empirical literature on platform competition is rela-

tively sparse. Certainly, the complexity of these models combined with the resulting equilib-

rium multiplicity is not helpful in this regard. Perhaps our most important contribution is to

show how allowing for bounded rationality gives rise to clear, testable predictions about how

the structural features of platform competition translate into resulting market share perfor-

mance. While our results are consistent with data from laboratory experiments and with

key features of real-world platform markets, an important next step is to carefully examine

these predictions empirically. This remains for future research.
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A Proofs

Proof of Lemma 1

Proof. Suppose to the contrary that, in an equilibrium, s women and t men enter platform
i. Without loss of generality, we assume that s > t. Since women in platform i have no

incentive to move to platform j,

ui (s, t)− pi ≥ uj (N − s+ 1, N − t)− pj
⇒ pj − pi ≥ uj (N − s+ 1, N − t)− ui (s, t) .

The assumption of s > t implies

ui (s, t) ≤ ui (t+ 1, t) < ui (t+ 1, s)

and

uj (N − (s− 1) , N − t) ≥ uj (N − t, N − t) > uj (N − t, N − s) .

Therefore,

uj (N − s+ 1, N − t)− ui (s, t) > uj (N − t, N − s)− ui (t+ 1, s)

=⇒ pj − pi > uj (N − t, N − s)− ui (t+ 1, s)

=⇒ ui (t+ 1, s)− pi > uj (N − t, N − s)− pj.

However, this implies that men in platform j will have incentives to move to platform i.

Therefore, if s women and t men entering platform i is an equilibrium, then s = t.

Proof of Proposition 3

Proof. Suppose we draw UA (λ)− pA and UB (1− λ)− pB on the same graph for λ ∈ [0, 1].

Given the market size and positive network externalities effects,

Ui (1)− pi = ui (N,N)− pi > Uj (0)− pj = uj (1, 0)− pj

for i, j ∈ {A,B}. If both UA and UB are increasing functions of the probability of an agent
choosing that platform, then that immediately implies single-crossing of the two curves.

Otherwise, UB (λ)−pB and UA (1− λ)−pA will intersect at most twice given Assumption 5.
However, if they intersect twice then Ui (1)− pi must be smaller than Uj (0)− pj with i 6= j

for at least one i. Given the upper bound on pi and Assumption 4, this is impossible. This

implies that UA (λ)− pA and UB (1− λ)− pB intersect exactly once and there is a unique λ∗

such that UA (λ∗)− pB = UB (1− λ∗)− pB. Moreover, UA (λ)− pA < UB (1− λ)− pB for all
λ < λ∗ and UA (λ)− pA > UB (1− λ)− pB for all λ > λ∗.
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Now we analyze the equilibria under the cognitive hierarchy model. A level-0 agent

chooses to join platform i with probability λi. As a level-1 agent assumes that all other

agents are of level-0, her expected payoff from joining platforms A and B are UA (λA)− pA
and UB (1− λA) − pB, respectively. First suppose λA < λ∗. Then, all level-1 agents will

choose to go to platform B. A level-2 agent believes that any of the other agents is of

level-0 with probability f(0)
f(0)+f(1)

and of level-1 with probability f(1)
f(0)+f(1)

. Moreover, the

agent believes that a level-0 agent chooses platform B with probability 1− λA and a level-1
agent chooses platform B with probability 1. The expected payoff of a level-2 agent from

platform A and B are UA
(

λAf(0)
f(0)+f(1)

)
− pA and UB

(
(1−λA)f(0)+f(1)

f(0)+f(1)

)
− pB, respectively. As

λAf(0)
f(0)+f(1)

< λA < λ∗, a level-2 agent will choose platform B. It can easily be shown that, a

level-l agent believes that another agent chooses platform B with probability 1 − λAf(0)∑l−1
k=0 f(k)

for all l ≥ 1. As a result, her best response is to join platform B. Similar logic shows that

if λA > λ∗, then all level-l agents will choose platform A for l ≥ 1.

Proof of Proposition 4

Proof. The proof that tipping is an equilibrium is analogous to the argument in Proposition
1. To establish conditions where coexisting equilibria exist, consider (pA, pB) such that

uA (n, n) ≥ pA ≥ uA (n+ 1, n) (9)

uB (N − n,N − n) ≥ pB ≥ uB (N − n+ 1, N − n) (10)

for some n ∈ {1, 2, . . . , N − 1}. Note that, for each equation, at least one of the inequalities
will be strict because of the market impact effects. Then n players of each type choosing

platform A and N − n players of each type choosing platform B is an equilibrium. Under

these platform choices, all agents make non-negative payoff. If a female agent on platform

B also joins platform A, she will have access to n new male agents while competing with

n other female agents and paying an access fee of pA. However, as uA (n+ 1, n) ≤ pA, she

will have no incentive to multi-home. She will also have no incentive to choose platform A

exclusively. Similarly, as uB (n+ 1, n) ≤ pB, an agent on platform A will have no incentive to

switch to platform B or multi-home. Subtracting uA (n, n) from the inequalities in equation

(9) and uB (N − n,N − n) from the inequalities in equation (10) yields the inequalities in

equation (3).

Proof of Proposition 5

Proof. Without loss of generality, assume that platform A is Pareto dominant. To ensure

that the proposed equilibrium exists, the following conditions need to be satisfied. An agent

who is single-homing on platform A will not deviate to single-home on platform B if

uA (nA, nA)− pA ≥ uB (nB + 1, nB)− pB (11)
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and will not multi-home if

pB ≥ uB (nB + 1, N − nA) . (12)

On the other hand, an agent single-homing on platform B will not single-home on platform

A and will not choose to multi-home if

uB (nB, nB)− pB ≥ uA (nA + 1, nA)− pA (13)

and

uB (nB, nB)− pB ≥ uA (nA + 1, nA)− pA + uB (nB, N − nA)− pB, (14)

respectively. Finally, an agent who chooses to multi-home in this equilibrium will not deviate

by choosing just one of the platforms if

uA (nA, nA) + uB (nB, N − nA)− pA − pB ≥ uz (nz, nz)− pz (15)

for z ∈ {A,B}.
We next rearrange and simplify these equilibrium conditions. Equations (11) and (13)

together imply

uA (nA, nA)− uB (nB + 1, nB) ≥ pA − pB ≥ uA (nA + 1, nA)− uB (nB, nB) .

Equations (12) and (15), for z = A, lead to

uB (nB, N − nA) ≥ pB ≥ uB (nB + 1, N − nA) .

Equations (13) and (15), for z = B, suggest that

uA (nA, nA)+uB (nB, N − nA)−uB (nB, nB) ≥ pA ≥ uA (nA + 1, nA)−uB (nB, nB)+uB (nB, N − nA) .

Writing these expressions in terms of the market impact effects yields the set of inequalities

in the statement of the proposition.

Proof of Proposition 6

Proof. Suppose UA (N,N)−pA > UB (N,N)−pB and all level-0 agents join both platforms
A and B. A level-1 agent assumes that all other agents are of level 0. Hence, she believes

that all other agents join both platforms. Given that belief, if she joins only platform B,

her net payoff is UB (N,N) − pB and her expected payoff if she joins only platform A is

UA (N,N)− pA. If she joins both platforms then she does not gain any benefit from joining

platform B as she meets all the agents of the opposite type already at the Pareto dominant

platform A. Her net payoff from multi-homing, thus, is UA (N,N) − pA − pB. Hence, all

level-1 agents will choose to go to platform A. A level-2 agent believes that any of the
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other agents is of level 0 with probability f(0)
f(0)+f(1)

and of level 1 with probability f(1)
f(0)+f(1)

.

Moreover, she believes that all other agents join platform A and level-0 agents join platform

B in addition to joining platform A. Hence, her optimal action is to join only platform A.

Similar arguments show that all agents with a higher level of cognitive ability will choose to

join only platform A. In the unique equilibrium, a level-0 agent joins both platform and a

level-l agent joins only the Pareto dominant platform A for all l ≥ 1.

Proof of Proposition 8

Proof. Suppose A is the super-dominant platform. Then, any agent with sophistication level
of 1 or higher will never choose single-homing on platform B over single-homing on platform

A. Moreover, given Assumptions 5 and 6, both Umh and Ush,A (λ, λ) are single-peaked in λ.

Note that Umh (0, 0)−pA−pB < Ush,A (0, 0)−pA and Umh
(
1
2
, 1
2

)
−pA−pB > Ush,A

(
1
2
, 1
2

)
−pA.

Using similar logic to those in the proof of Proposition 3, one can show that there is exactly

one λ∗ such that Umh (λ∗, λ∗)− pA − pB = Ush,A (λ∗, λ∗)− pA and Umh (λ∗, λ∗)− pA − pB <
Ush,A (λ∗, λ∗)− pA for λ < λ∗ and Umh (λ∗, λ∗)− pA − pB > Ush,A (λ∗, λ∗)− pA for λ > λ∗.

Now we analyze the best responses of sophisticated agents given level-0 agents’behavior.

First, consider the case that λ̃ < λ∗; that is, relatively few level-0 agents choose a platform

exclusively. Then it is optimal for a level-1 agent to choose only platform A as Umh
(
λ̃, λ̃
)
−

pA−pB < Ush,A

(
λ̃, λ̃
)
−pA. A level-2 agent then believes that other agents choose platforms

A and B exclusively with probabilities λ̃f(0)+f(1)
f(0)+f(1)

and λ̃f(0)
f(0)+f(1)

, respectively and chooses to

multi-home with probability (1−2λ̃)f(0)
f(0)+f(1)

. That is, according to her beliefs, more agents join

platform A exclusively and fewer agents join platform B exclusively compared to the beliefs

of level-1 agents. Given Assumption 6, she gets strictly higher payoff by single-homing on

platform A than multi-homing and will choose platform A exclusively in any equilibrium.

Similarly, one can show that all level-l agents for l ≥ 1 will choose platform A when λ̃ < λ∗.

Next suppose λ̃ ≥ λ∗. Then, it is optimal for level-1 agents to multi-home. A level-2

agent believes that all other agents are of level 0 or 1 and will choose platforms A or B ex-

clusively with probability λ̃f(0)
f(0)+f(1)

each and will multi-home with probability (1−2λ̃)f(0)+f(1)
f(0)+f(1)

.

If λ̃f(0)
f(0)+f(1)

> λ∗ then the level-2 agent will multi-home. Otherwise, she will choose platform

A exclusively. In general, suppose k> 1 is such that λ̃f(0)∑k−2
k=0 f(k)

≥ λ∗ > λ̃f(0)∑k−1
k=0 f(k)

. Then agents

of level l will multi-home for l <k and will choose platform A exclusively for l ≥k in the
unique equilibrium.
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Proof of Proposition 10

Proof. Suppose all agents choose to join their preferred platform. That is, ñA pairs of males
and females join platform A and ñB pairs of males and females join platform B. If

∆UñA = uA (ñA, ñA)− pA − uB (ñB, ñB) + pB ≥ 0

then, given the benefit from choosing one’s own preferred platform (θ) and the market impact

effects, an agent located on platform A will have no incentive to join platform B instead.

Now, if δA,ñA + θ ≥ ∆UñA then

uA (ñA, ñA)− uA (ñA + 1, ñA) + θ ≥ uA (ñA, ñA)− pA − uB (ñB, ñB) + pB

=⇒ uB (ñB, ñB)− pB + θ ≥ uA (ñA + 1, ñA)− pA.

In that case, an agent locating on platform B will have no incentive to join platform A

instead. Similarly, if ∆UñA < 0 then δB,ñB +θ ≥ −∆UñA ensures that none of the agents

will have an incentive to deviate from the strategy of choosing her preferred platform.

Now suppose all agents join their non-preferred platforms. That is, ñB pairs of males

and females join platform A and ñA pairs of males and females join platform B. An agent

on platform A receives a net payoff of uA (ñB, ñB)− pA. If she decided to join her preferred
platform B instead, she can earn a net payoffof uB (ñA + 1, ñA)−pB+θ. Suppose δB,ñA−θ ≥
−∆UñB . In that case,

uB (ñA, ñA)− uB (ñA + 1, ñA)− θ ≥ −uA (ñB, ñB) + pA + uB (ñA, ñA)− pB
⇒ uA (ñB, ñB)− pA ≥ uB (ñA + 1, ñA)− pB + θ.

Therefore, an agent located on platform A will have no incentive to locate on her preferred

platform B instead. Similarly, agents locating on platform B will have no incentive to locate

on platform A if δA,ñB − θ ≥ ∆UñB .

Finally, suppose ñA −m pairs of male and female agents choose their preferred platform

A, m pairs of male and female agents choose their non-preferred platform B and ñB pairs of

male and female agents choose their preferred platform B for some m ∈ {1, 2, . . . , ñA − 1}.
Now, if δA,ñA−m − θ ≥ ∆UñA−m then

−uA (ñA −m+ 1, ñA −m)− θ ≥ −uB (ñB +m, ñB +m)− pA + pB

⇒ uB (ñB +m, ñB +m)− pB ≥ uA (ñA −m+ 1, ñA −m)− pA + θ.

In that case, an agent who is located on her platformB will have no incentive to join platform

A instead no matter whether her preferred platform is A or B. If δB,ñB+m +θ ≥ −∆UñA−m

then

−uB (ñB +m+ 1, ñB +m) + θ ≥ −uA (ñA −m, ñA −m) + pA − pB
=⇒ uA (ñA −m, ñA −m)− pA + θ ≥ uB (ñB +m+ 1, ñB +m)− pB.
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Therefore, an agent locating on her preferred platform A will have no incentive to switch to

platform B. Note that this condition is trivially satisfied when ∆UñA−m ≥ 0.

Proof of Proposition 11

Proof. Suppose each level-0 agent chooses her preferred platform with probability λ̃ ≥ 1
2
.

Given the bound on θ stipulated by equation (6), Ui (0)−pi + θ < Uj (1)−pj for i ∈ {A,B}.
Moreover, Ui (1)−pi+θ > Uj (0)−pj. Assumption 5 implies single-crossing of Ui (λ)−pi+θ

and Uj (1− λ)− pj for λ ∈ [0, 1] , i ∈ {A,B} and j 6= i. Assumption 7 then implies that for

all λ > min
{
1
2
, ñi
N

}
, Ui (λ) − pi + θ > Uj (1− λ) − pj. Consider a level-1 agent who prefers

platform i. She believes that all agents are of level 0 and each of them chooses platform i with

probability λ̃ ñi
N

+
(

1− λ̃
)
ñj
N
. If ñi ≥ ñj then ñi

N
≥ λ̃ ñi

N
+
(

1− λ̃
)
ñj
N
≥ 1

2
and if ñi < ñj then

1
2
≥ λ̃ ñi

N
+
(

1− λ̃
)
ñj
N
≥ ñi

N
. Therefore, a level-1 agent whose preferred platform is i will choose

platform i. A level-2 agents believe that level-0 agents choose platform i with probability

λ̃ ñi
N

+
(

1− λ̃
)
ñj
N
and level-1 agents choose their preferred platforms. That is, she believes that

an agent is likely to choose platform i with probability

(
λ̃
ñi
N
+(1−λ̃)

ñj
N

)
f(0)+

ñi
N
f(1)

f(0)+f(1)
. Of course,

if ñi ≥ ñj then ñi
N
≥

(
λ̃
ñi
N
+(1−λ̃)

ñj
N

)
f(0)+

ñi
N
f(1)

f(0)+f(1)
≥ 1

2
and 1

2
≥

(
λ̃
ñi
N
+(1−λ̃)

ñj
N

)
f(0)+

ñi
N
f(1)

f(0)+f(1)
≥ ñi

N

otherwise. Therefore, a level-2 agent whose preferred platform is platform i will choose

platform i. In general, an agent of sophistication level l for l > 0, whose preferred platform

is platform i, believes that her expected net payoffs from joining platforms i and j are

Ui (λ) − pi + θ and Uj (1− λ) − pj, respectively for some λ ∈
[
1
2
, ñi
N

]
if ñi ≥ ñj and for

some λ ∈
[
ñi
N
, 1
2

]
otherwise. Thus, all agents with sophistication level l > 0 will choose their

preferred platform in the unique equilibrium.

Proof of Lemma 2

Proof. In period 2, agents will choose platforms that are best responses given the location
choices of agents in period 1 and strategies of other players choosing in period 2. Suppose

there is a subgame perfect equilibrium where s women and t men join platform i. Without

loss of any generality, we assume that s > t. That is, platform i has more women than

men and platform j has more men than women. First assume that at least one man joins

platform j and at least one woman joins platform i in period 2. Using the logic in lemma 1,

we can show that this cannot constitute an equilibrium as at least one of these players can

profitably deviate. Now suppose all men moving on period 2 join platform i and all women

moving on period 2 join platform j. Then, if a man who is supposed to join platform j in

period 1 deviate by joining platform i instead, he would compete with at most t other men
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and have at least s women to choose from on platform i. Since this deviation should not be

profitable in equilibrium, we can surmise that

uj (N − t, N − s)− pj ≥ ui (t+ 1, s)− pi.

Similarly, if a woman who joins platform i in period 1 deviates by joining platform j instead,

she would compete with at most N − s other women and have at least N − t men to choose
from on platform j. This implies that

ui (s, t)− pi ≥ uj (N − s+ 1, N − t)− pj.

Given that s > t,

uj (N − t, N − s)− pj ≥ ui (t+ 1, s)− pi ≥ ui (s, s)− pi > ui (s, t)− pi
≥ uj (N − s+ 1, N − t)− pj > uj (N − t, N − s)− pj.

That is impossible implying that one of these deviations will actually be profitable.

Next, suppose that all men moving on period 2 join platform i but at least one woman

moving on period 2 joins platform i. Consider the deviation that one man who is supposed

to join platform j in period 1 chooses platform i instead. Note that the number of men

in platform i can be at most t + 1 (including himself). As any reduction in the number of

men choosing platform i in period 2 makes this deviation profitable, we assume that men do

not change their response. First, suppose that the number of women choosing platform i in

period 2 does not decrease as a result of this deviation. However, then we can again use the

same logic as above to show that either such a deviation or deviation by one of the women

joining platform i in period 2 will be profitable. If the suggested deviation decreases the

number of women choosing platform i in period 2, then that implies that one or more of the

women will choose platform j instead of platform i in period 2 in response to this deviation.

Nevertheless, for such an agent, platform i is more attractive than before as it will have one

more man and (weakly) fewer women. Thus, she will not make such a deviation. Similarly,

we can show that all women and at least one man joining platform j on period 2 cannot

happen in equilibrium either. Hence, under all 4 possible cases, different numbers of men

and women cannot choose a platform in an equilibrium of the sequential game. Thus, the

equilibrium market shares can be described as (n,N − n) where n pairs of men and women

join platform A and the remaining N − n pairs of men and women join platform B.
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Proof of Proposition 12

Proof. To prove the first statement, suppose there is an equilibrium of the simultaneous

game where n pairs of players choose platform A and N −n pairs of players choose platform
B. Without loss of any generality, we assume that n ≥ d as at least one of the platforms

will receive at least as many as d pair of players. Given that this is an equilibrium, we

require that

uA (n, n)− pA ≥ uB (N − n+ 1, N − n)− pB

and

uB (N − n,N − n)− pB ≥ uA (n+ 1, n)− pA.

Note that this equilibrium is supported by a large set of access fees. Let us consider the

equilibrium where pB = uB (N − n,N − n) and uA (n, n) > pA > uA (n+ 1, n). This implies

that uA (n, n)−pA > uB (N − n,N − n)−pB. Players who choose platform A are better off

than players who choose platform B. We now construct this equilibrium in the sequential

game. In this equilibrium, all agents moving in period 1 choose platform A. In period

2, n − d pairs of players choose platform A and the rest choose platform B. Consider the

strategy profile where the strategy for players in periods 1 is to join platform A. In period

2, players follow the following strategy: if they observe that n− kM men and n− kF women
have chosen platform A in period 1, then kM men and kF women choose platform A and

N − d− kM men and N − d− kF women choose platform B. Given that n ≥ d, kM and kF
can only take positive values. As the equilibrium constraints are satisfied, this constitutes

best response from all players moving in period 2. If a player unilaterally deviates in period

1 and chooses platform B instead of platform A, the market share of the two platforms will

not change given these strategy profiles. However, she will be strictly worse off because of

the deviation as she will be in platform B. Thus, there will be no profitable deviation under

this strategy profile.

If n = N , let us assume that the access fees are such that tipping to platform A is Pareto

dominant. Then, all players moving in period 1 choose platform A. In period 2, all players

choose platform A if no player chose platform B in period 1. Otherwise, players choose a

(potentially) mixed strategy simultaneous equilibrium given the platform choice of period

1 players. Now, if a period 1 player unilaterally deviates, then the final outcome of the

game will be different from market tipping to platform A. However, given that tipping to

platform A is Pareto dominant, this will not be a profitable deviation for the player. Thus,

the proposed strategy profile will constitute a subgame perfect equilibrium of the sequential

game where the market tips to platform A. Therefore, for any n ∈ {0, 1, . . . , N}, there exists
a set of access fees such that market shares of (n,N − n) occurs in an equilibrium of both

the simultaneous and sequential games.
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Next we prove the second statement. Suppose that, given the access fees, tipping to

platform A occurs in an equilibrium of the sequential game. Thus, the access fees are such

that there is no benefit for a player to unilaterally deviate to platform B in period 2. Then,

tipping to platform A will also be an equilibrium of the simultaneous game. Now consider an

equilibrium of the sequential game with market shares (n,N − n) with n ∈ {1, . . . , N − 1}.
None of these players has an incentive to unilaterally deviate. Without loss of any generality,

consider a player who joins platform A in period 2. The no deviation condition implies that

uA (n, n)− pA ≥ uB (N − n+ 1, N − n)− pB. (16)

If there is a player who chooses platform B in period 2, then

uB (N − n,N − n)− pB ≥ uA (n+ 1, n)− pA. (17)

If there is no such player, then all players (both men and women) moving in period 2 join

platform A and n ≥ N − d. However, if equation (17) does not hold then a player joining

platform B in period 1 will have incentives to unilaterally deviate and join platform A

instead. Thus, both equations (16) and (17) must hold. However, that means that there

must be an equilibrium of the simultaneous game where n pairs of male and female agents

choose platform A and the rest choose platform B.

Proof of Proposition 13

Proof. We first construct the putative equilibrium and then we show that it is unique. To

see that everyone choosing the risk dominant platform is a limit equilibrium, suppose that

the realization in the first period was that everyone chose the risk dominant platform. Then,

clearly, all strategic players (cognitive sophistication level of 1 or higher) will choose this

platform in the second period. Given this, we now turn to first period behavior: Level-1

agents will choose the risk dominant platform since they view all other players as being

level-0 and hence choosing the risk dominant platform is a best response. By equation (8) ,

level-2 agents will anticipate that nearly all other players are level-1; therefore, they too

will choose the risk dominant platform. An analogous argument shows that players with

higher levels of sophistication will also choose this platform. Finally, equation (8) implies

that the probability that all agents moving in period 1 choose the risk dominant platform

goes to one in the limit. Therefore, second period players will also choose this platform. This

establishes that all strategic agents choosing the risk dominant platform is an equilibrium.

Finally, notice that, in any equilibrium, any level-1 player in the first period will choose

the risk dominant platform given that she believes that all other players randomly choose a

platform with equal probability. All higher level agents will do the same given equation (8).
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Subgame perfection requires that period 2 players best respond to the outcome of the first

period, therefore all strategic agents will choose the risk dominant platform in that period as

well. Hence, the equilibrium identified above is the unique equilibrium of the limit cognitive

hierarchy model.

B Endogenizing Access Fees

While the model treats access fees as exogenous, in this section we show that coexistence is

consistent with equilibrium even when platforms choose fees optimally. Specifically, suppose

that platforms simultaneously choose access fees prior to agents deciding on which platform

to locate. As is the case in the rest of the model, platforms charge the same access fee to male

and female agents. The following proposition shows that the key condition for coexistence

is that the magnitude of the market impact effects must be suffi ciently large. Formally,

Proposition 14 Suppose that market impact effects are such that, for some n ∈ {1, ..., N − 1}

δi,n ≥
N − n
n

ui (n+ 1, n)

δj,N−n ≥
n

N − nuj (N − n+ 1, N − n)

Then it is a coexisting equilibrium for n agents of each type to choose platform i with the re-

mainder choosing platform j where i charges pi = ui (n, n) and j charges pj = uj (N − n,N − n).

Proof. Consider the following proposed equilibrium. First, platforms i and j choose access
fees pi = ui (n, n) and pj = uj (N − n,N − n). Then, agents 1 to n of each type, for some

n ∈ {1, 2, . . . , N − 1}, follow the following strategy: choose platform i if

ui (n, n)− pi ≥ uj (N − n+ 1, N − n)− pj and ui (n, n) ≥ pi,

choose platform j otherwise as long as uj (N − n+ 1, N − n) ≥ pj and else choose neither

platform. Similarly, agents n+ 1 to N of each type choose platform j if

uj (N − n,N − n)− pj ≥ ui (n+ 1, n)− pi and uj (N − n,N − n) ≥ pj.

Then, first n pairs of male and female agents join platform i because they get zero net payoff

from platform i and negative net payoff from platform j. The remaining agents join platform

j because they get zero net payoff from that platform and negative net payoff from platform

i. Now, platforms i and j will have no incentive to change their pricing in the first stage if

they cannot raise profit by choosing different access fees. Take platform i: to attract agents

who would choose platform j otherwise (agents 1 to n of each type), it needs to charge an
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access fee of ui (n+ 1, n) or lower. In that case, all agents will choose platform i. This is not

profitable if

nui (n, n) ≥ Nui (n+ 1, n)

=⇒ n (ui (n, n)− ui (n+ 1, n)) ≥ (N − n)ui (n+ 1, n)

=⇒ nδi,n ≥ (N − n)ui (n+ 1, n)

=⇒ δi,n ≥
N − n
n

ui (n+ 1, n) .

Similarly, platform j will not try to attract agents otherwise choosing platform i by

reducing pj if

(N − n)uj (N − n,Nn) ≥ Nuj (N − n+ 1, N − n)

=⇒ δj,n ≥
n

N − nuj (N − n+ 1, N − n) .

Thus, the proposed strategies constitute a subgame perfect coexisting equilibrium where

platforms choose profit maximizing access fees.

While Proposition 14 specifies conditions on market impact effects where coexistence can

occur in equilibrium, one may worry about whether such conditions can ever be satisfied. To

allay this concern, notice that the market in Example 1 supports three coexisting equilibria

when platform choose the access fees. Five pairs of men and women joining each platform

with pA = pB = 47.78 is an equilibrium. Moreover, 4 pairs of men and women joining

platform i and 6 pairs of men and women joining platform j with pi = 38.33 and pj = 57.22

are equilibria for i ∈ {A,B}. Hence, unequal market shares are also consistent with optimal
fee choice by platforms.
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