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Abstract

Using a set of incentivized laboratory experiments, we characterize how people form beliefs about

a random variable based on independent and correlated signals. First, we theoretically show that,

while pure correlation neglect always leads to overvaluing of correlated signals, that may not happen

if people also exhibit overprecision—perceiving signals to be more precise than they actually are. Our

experimental results reveal that, while subjects do overvalue moderately or strongly correlated signals,

they undervalue weakly correlated signals, suggesting concurrent presence of correlation neglect and

overprecision. Estimated parameters of our model suggest that subjects show a nearly complete level of

correlation neglect and also suffer from a high level of overprecision. Additionally, we find that subjects

do not fully benefit from wisdom of the crowd—they undervalue aggregated information about others’

actions in favor of their private information. This is consistent with models of overprecision where people

do not properly incorporate the variance reducing power of averages.
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1 Introduction

“In retrospect, a key mistake in the forecast updating that Kremp and I did, was that we ignored the

correlation in the partial information from early-voting tallies,” admitted statistician Andrew Gelman on

his blog regarding his 2016 US presidential election forecasts.1 When even an academic statistician like

Gelman may not take correlation among information sources perfectly into account when aggregating them,

it is unlikely that regular people would do so. Processing information or signals about the realization of

a random variable from correlated and independent sources is a common, yet complex, problem. In their

everyday lives, people frequently navigate through correlated information, which may arise in stock forecasts

(Huang, Krishnan, Shon, & Zhou, 2017; Trueman, 1994), news reporting (Au & Kawai, 2012), social networks

(Eyster & Rabin, 2014; Lee & Iyengar, 2016), and even in criminal trials (Harkins & Petty, 1987). There

is growing evidence that people typically neglect correlation to some extent, which leads to overvaluing of

correlated information (Enke & Zimmermann, 2019; Eyster & Weizsacker, 2016).

In this paper, we argue that investigating how people react to correlation is not a trivial task. The main

challenge comes from the possibility that people incorrectly evaluate variance. By the nature of correlation,

correlation neglect cannot be separately studied from overprecision, as described in Moore and Healy (2007)

and Moore and Healy (2008), where one believes one’s information to be more accurate than it actually is.

Both correlation neglect and overprecision lead to a reduction in perceived variance of people’s posterior

belief and the interaction of these two behavioral biases create counterintuitive predictions. For example,

correlation neglect may generate an apparent over-appreciation of correlation under some cases in the pres-

ence of overprecision, while this will not happen when only correlation neglect is present. Thus, identifying

both correlation neglect and overprecision together requires a relatively rich experimental framework.

Using a comprehensive set of laboratory experiments, we investigate how people value signals regarding

the realization of a random variable of varying levels of precision and (positive) correlation and process

the information she receives to form her beliefs. Specifically, we analyze cases where subjects receive a

combination of independent and correlated signals, where the level of correlation among correlated signals

vary. We also analyze cases where signals are all independent or all correlated, with differing levels of

precision and correlation. To give subjects a context for realization of random variables, we use realized

returns from financial assets in our experiments, as described in Section 2. The underlying theoretical

framework, nonetheless, is versatile enough to provide insights on information processing at a general level

that can be useful for many different applications. Analyzing subjects’ belief formation rules under a large set

of information generation parameters allows us to identify the impact of correlation neglect and overprecision,

something not possible when one only analyzes cases with very high level of correlation, as common in the

1November 8, 2016, http://andrewgelman.com/2016/11/08/election-forecasting-updating-error-ignored-correlations-data-
thus-producing-illusory-precision-inferences/
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existing literature. We find that the subjects overvalue moderately or strongly correlated signals, consistent

with the findings from the received literature. Our new finding is that subjects undervalue signals that are

weakly correlated. This finding can be rationalized by assuming that the level of people’s correlation neglect

depends on the level of correlation. However, using a theoretical model of behavioral bias that incorporates

correlation neglect and overprecision, we show that such reversal in correlation neglect is not necessary to

explain our findings. In fact, the same level of correlation neglect under all experimental settings can explain

undervaluing of weakly correlated signals while overvaluing strongly correlated signals.

In our experiments, we provide subjects with ten signals about a random variable, where the signals are

generated following the information structures in Dewan and Myatt (2008) and Myatt and Wallace (2012).

We then elicit the mean of each subject’s posterior belief using an incentive compatible scoring rule proposed

in Hossain and Okui (2013). Each signal is unbiased and comes from one of two groups. Signals within a

group are either positively correlated with each other or are independent of each other. Unconditional

variance of any signal from a given group is the same, but they are different across groups. Signals from two

different groups are independent of each other. We vary the unconditional variances and correlation between

signals from the same group across the five treatments in our experiment. Under three treatments, signals

from one group are independent while signals from the other are correlated. Depending on the correlation

level of the correlated signals, we label these treatments Strong, Moderate, and Weak. Variance of signals

from the independent group is the same across these treatments. Moreover, unconditional variance of signals

from the correlated group is the same across treatments Strong and Weak, but the correlation levels are

different. Under treatment Zero, both groups provide independent signals. The variance of signals from one

group equals the variance of independent signals from the above-mentioned three treatments. The variance

of signals from the other group equals the unconditional variance of the correlated signals in treatments

Strong and Weak. Finally, in treatment Both, both groups of signals have the same unconditional variance

and are correlated. The correlation level is strong for one group and weak for the other. Within a treatment,

we elicit beliefs about independently drawn random variables across periods. Signal generation processes

are unchanged across periods of a given treatment, but the combination of signals from the two groups vary

across periods.

In each period, we ask subjects to predict the realized value of that period’s random variable based on

the private signals they receive. The subjects are fully informed of the signal generating process. We refer to

the predicted realization as a subject’s initial prediction. The optimal initial prediction based on the signals

is a weighted average of the average of the signals from each group. The optimal weights depend on the

numbers of the signals in each group and the variance and correlation structures of the two groups. Moreover,

any weighted average (even with suboptimal weights) of the two averages is an unbiased prediction. From

the initial predictions that the subjects report, we estimate the weights they put on the averages from two
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groups in calculating their prediction.

While subjects in our experiments choose unbiased predictions, they typically choose weights sub-

optimally. The direction of suboptimality, however, varies based on the level of correlation and the relative

precision of the independent and correlated signals. Across the five treatments, we consistently find that

subjects put sub-optimally high weight on strongly or moderately correlated signals, as found in the literature.

However, a new finding is that they put sub-optimally low weight on weakly correlated signals. This may

suggest that the presence of correlation neglect may depend on the correlation level. We also find that, when

both groups provide independent signals, subjects put sub-optimally high weight on the less precise signals.

This finding suggests that subjects may suffer from overprecision. Our reduced form estimates suggest that

people are not “hyper-rational” and their “boundedly rational” behavior follows a specific pattern.

We propose a model of belief formation with both behavioral biases — correlation neglect and over-

precision. In this model, subjects incorrectly compute the posterior variance of the average of signals from

a given group. Based on this incorrectly calculated variance, they calculate the weights on the two group

averages properly. To illustrate how overprecision and correlation neglect interact, we consider five different

functional forms of the model. Under all of them, one treats the correlated part of variance for a group

average as, to some extent, uncorrelated variance (correlation neglect) and also reduces the total variance

of a group average in some form (overprecision). Under some models, overprecision also implies that they

under-appreciate the variance reducing power of sample size. We numerically show that, even when people

exhibit a high level of correlation neglect, in the presence of overprecision, they may undervalue weakly cor-

related signals and overvalue strongly correlated signals. Using our data, we estimate the overprecision and

correlation neglect parameters for all five models. We find that a formation where overprecision also reduces

the variance reducing power of sample averages fits our data the best. The parameters suggest that subjects

almost completely neglect correlation and, roughly, treat standard deviation as variance in calculating the

variance of their posterior belief.

We also investigate how subjects utilize aggregated information from other subjects using a second

exercise. In each period, after they report their initial prediction based on their private signals, we report

the average of initial predictions of all subjects in that session for that period’s random variable. We refer to

this average as the session average for that period. Note that, each subject receives a completely different

set of private signals, generated using the same signal generation process, about the realization of the same

random variable in a given period. Therefore, the session average is more informative than a subject’s private

signals. Subjects are then asked to submit a revised prediction based on their private signals and the publicly

known session average. If a subject assumes that all other subjects’ predictions are unbiased and have the

same variance as her own prediction’s variance, it is optimal to ignore her own initial prediction and report

the session average (which includes her own initial prediction) as the revised prediction.
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We find that subjects do take their initial prediction into account when calculating their revised pre-

diction. Moreover, the weights they put on their own initial prediction are quite similar across treatments.

Under all treatments, they put between 19%-26% weight on their initial prediction and around 74%-81%

weight on the session average. This result can easily be explained by the behavioral model that fits our data

on initial prediction the best. In that model, overprecision leads people to under-appreciate the variance

reducing power of sample average by not incorporating the sample size properly in calculating variance of a

sample average. Suppose subjects make the same mistake in calculating the variance of the session average.

Using the parameter calculated with the initial prediction data, we can explain the weights used in revised

prediction quite well.2

In the following subsection, we discuss how our work relates to the extant literature. Section 2 explains

the setting of our experiments. Section 3 presents a theoretical framework based on our experimental design.

Moreover, we discuss behavioral models of belief formation in this section. We examine the results of the

experiments in Section 4. Section 5 concludes the paper. Proofs of the mathematical propositions are

included in the Appendix.

Relation to the Literature: Correlation neglect has gained attention from researchers recently. Perhaps

the most closely related paper is Enke and Zimmermann (2019), who demonstrate correlation neglect when

correlation between signals arises due to repetition of some information. They suggest that correlation neglect

may be remedied by making subjects notice the presence of correlation. We create a richer experimental

setting that allows us to explore the extent of correlation neglect more comprehensively. We argue that we

need to incorporate the effect of overprecision in order to study correlation neglect properly. While we find

subjects overvalue strongly or moderately correlated signals, which is consistent with their findings, we also

find that subjects undervalue weakly correlated signals. Considering overprecision in addition to correlation

neglect is needed to explain this apparent reversal of how people treat correlation.

Our theoretical framework and experimental findings suggest that it is difficult to distinguish correla-

tion neglect from overprecision under strong correlation, which is a common setting in the literature. Under

overprecision, subjects under-appreciate the uncertainty attached to their beliefs. That is, they perceive

the variance attached to their beliefs to be smaller than they actually are. Overprecision can lead to over-

confidence regarding the precision level of one’s beliefs. Moore and Schatz (2017) provide a comprehensive

review of the psychology and management literature on this well-documented behavioral bias. More recently,

overprecision has also been discussed in economics literature. For example, see Grubb (2015) and Daniel

and Hirshleifer (2015).

Maines (1996) documents correlation neglect in an experimental setting where, similar to ours, subjects

2Our finding is consistent with that of Nöth and Weber (2003) and others who find that people underweight public information
in favor of their private information and our behavioral model provides a mechanism behind their overconfidence interpretation.
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evaluate forecasts by financial analysts. Luan, Sorkin, and Itzkowitz (2004) study how people process

information using a small scale experiment and find that participants overvalue signals with high accuracy

and high correlation. In psychology, Soll (1999) explains correlation neglect or even a preference for redundant

information using different intuitive theories of information. In the context of financial markets, Eyster

and Weizsacker (2016) provide subjects with multiple assets where the returns from some of them are

independent and the rest are correlated and investigate their portfolio choice. They find evidence that

subjects treat correlated variables as uncorrelated and give equal weights to all assets. We provide more

generalizable insights regarding information processing by directly analyzing belief formation rules. We

discuss the relation to that paper in more detail in Section 4.1.4. Kroll, Levy, and Rapoport (1988) and

Kallir and Sansino (2009) also investigate the role of correlation in asset allocation.

There have been several attempts to characterize choices with misperception of correlation under a

decision theoretic framework. Ellis and Piccione (2017) provide an axiomatic framework to represent asset

choice under such settings. Levy and Razin (2018) consider situations in which correlation structure among

signals is ambiguous. They show that correlation neglect is observed if each signal is precise and otherwise,

people behave as if correlation were high. Their theory is not directly applicable to our experimental setting

as the correlation structure is very clearly described in our experiments. Moreover, that paper’s argument

may be interpreted as that overprecision creates apparent correlation neglect. We argue that combining

correlation neglect and overprecision, rather than considering that one implies the other, is necessary to

explain our experimental findings.

There are papers which consider both correlation neglect and overprecision but they do not consider

them as separate behavioral biases. Levy and Razin (2015) analyze the case when voters ignore correlation

in signals about the state of the world. Ortoleva and Snowberg (2015) show that correlation neglect may give

rise to overprecision, which can be connected to ideological extremeness in politics. These two papers use

correlation neglect as a device to generate overprecision. We argue that we treat them as separate behavioral

biases and it is important to analyze the effects of interactions between two biases.

2 Experimental Design

We ran a set of laboratory experiments to empirically investigate how people incorporate independent and

correlated signals in forming their beliefs about a random variable. Subjects received information about

the earning per share (EPS) from a different fictitious stock in each period of a session. We elicited their

beliefs about the EPS for each stock using the binarized scoring rule (BSR) proposed in Hossain and Okui

(2013), which is incentive compatible independently of a subject’s risk preference. Elicited beliefs allow us

to directly investigate how people process information that differ in precision and correlation structure. An

experimental session consisted of 50 periods. The true EPS was independently drawn in each period from
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a normal distribution with mean 500 and variance 25,000.3 In each period, subjects received 10 forecasts

about the EPS of a stock. For the rest of the paper, we will use forecasts and signals interchangeably. Below

we discuss how each signal is generated.

Suppose a subject receives nl signals from group l ∈ {A,B}, where the total number of signals is N ,

which equals 10 in our experiment. A signal equals the true EPS, T , plus two error terms. Specifically,

signal j ∈ {1, 2, . . . , nl−1, nl} from group l is denoted by X l
j where X l

j = T + εlIj + εlC . Subjects observe

only the signal X l
j and not individual components (T, εlIj , and εlC) within the signal. Here, εlIj is an

independently drawn error term that is different for each signal j from group l and εlC is an error term that

is common to all the signals from group l. Note that errors εlIj and εlC are drawn from normal distributions

with mean 0 and variances of σ2
lI and σ2

lC , respectively. Thus, all signals are unbiased. If σ2
lC > 0, then

all signals from group l, conditional on T , are correlated with each other. On the other hand, if σ2
lC = 0,

then all signals from group l, conditional on T , are independent of each other. By varying the variances

σ2
AI , σ

2
AC , σ2

BI , and σ2
BC , we can vary the precision and correlation levels of the two groups of signals.

We refer to these variances and the number of signals from the two groups as the information generation

parameter set—(σ2
AI , σ

2
AC , σ

2
BI , σ

2
BC , nA, nB).

Subjects were completely aware of this signal generation process, including the precision level and

correlation structure, used in their session. Given the parameters chosen, we had no case where the true

EPS or any of the generated forecasts were negative. All subjects within a session received information

about the same stock in a given period. However, for each subject, we generated a completely different set

of forecasts based on the above process. We clearly informed them that information received in one period

was not informative about the realized values of the random variables in the other periods. For each period,

we showed subjects the 10 signals and the averages of group A, group B, and all signals.

A treatment of our experiment is represented by the set of variance parameters, (σ2
AI , σ

2
AC , σ

2
BI , σ

2
BC).

Table 1 presents the five treatments that we used. We ran two sessions of each treatment. Our main goal is

to analyze how subjects value correlated signals versus independent signals. In four of the treatments, signals

from one group, say group A, conditional on the true EPS, are independently drawn with a variance of 500

(σ2
AI = 500, σ2

AC = 0). Signals from the other group, conditional on the true EPS, are potentially correlated

with each other. We can divide the treatments into two sets of treatments. In the first set of three treatments,

the total variance of a group B signals equal 265. That is, σ2
BI +σ2

BC = 265 < 500 = σ2
AI . However, the level

of correlation varies across the three treatments. In Strong, the correlated component of variance for group

B signals was more than 94% of the total variance (σ2
BI = 15, σ2

BC = 250). Under Weak, σ2
BC equaled 15

and under Zero, σ2
BC equaled 0. That is, even group B signals are independent under the treatment Zero.

Comparing the three treatments, we can investigate how subjects’ belief formation rule changes as the level

3This implies that the true EPS if a stock will fall within 500± 2.58×
√

25000 ≈ (92, 908) with likelihood greater than 99%.
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Table 1: Set of Parameters under the Five Treatments

Treatment σ2
AI σ2

AC σ2
BI σ2

BC Characterization
Strong 500 0 15 250 Group A independent and group B strongly correlated
Weak 500 0 250 15 Group A independent and group B weakly correlated
Zero 500 0 265 0 Both Groups A and B are independent

Moderate 500 0 250 250 Group A independent and group B moderately correlated
Both 250 15 15 250 Group A weakly correlated and group B strongly correlated

of correlation of group B signals changes. In the last two treatments, we choose the variances in a way that

the total variance of a group A signal equaled the total variance of a group B signal, σ2
AI+σ2

AC = σ2
BI+σ2

BC ,

but the composition of the total variance was different across groups. In one of them, group A signals are

independent and group B signals correlated with σ2
AI = 500, σ2

AC = 0, σ2
BI = 250, and σ2

BC = 250. As

the correlation ratio of group B signals (σ2
BC/(σ

2
BI + σ2

BC)) is in between those of the treatments Strong

and Weak, we label this treatment Moderate. Under the remaining treatment, treatment Both, both groups

provide correlated signals, but the levels of correlation are different. Specifically, group A signals are weakly

correlated (σ2
AI = 250, σ2

AC = 15) and group B signals are strongly correlated (σ2
BI = 15, σ2

BC = 250).4

Table 1 summarizes the five treatments. Note that, under all treatments, the error terms of group A signals

are independent of the error terms of group B signals.

In a given period, we asked a subject to report her belief about the realization of the EPS of the stock of

that period. First, we asked her to predict the EPS based on the 10 forecasts she received using the following

incentive scheme based on BSR: Let us denote this initial prediction by P . If the square of the deviation of

this initial prediction from the true EPS, (P − T )2, was below or equal to a random number K, generated

from a uniform distribution on [0, K̄], she earned 100 points.5 If (P − T )2 was above K, she earned zero

points. We informed the subjects that it is optimal for them to report the mean of their posterior belief

about T based on the 10 forecasts. We did not tell them how to optimally construct their posterior belief,

which is given in Proposition 1, as learning how subjects actually form their beliefs is the main objective of

this experiment.

After entering her initial prediction P , each subject was informed of the session average for that period,

i.e., the average of the predictions for that EPS by all subjects (including herself) in that session. Then

we asked them to enter a revised prediction, denoted by P r, for the same EPS. We again incentivized

truthful revelation of belief using the BSR with a different random number Kr, generated from a uniform

4In four of our treatments, at least one group provided only independent signals. To maintain consistency across different
treatments and to present signals from the two groups in a similar manner, we always presented the signals to subjects as the
sum of the true EPS and two error terms. For correlated signals, we mentioned that one error term was common across all the
signals from that group and the other one was independently drawn. For independent signals, we mentioned that both error
terms for a signal were independently drawn ( the sum of the variances of the two error terms equaled σ2

lI).
5We chose the values of K̄ to equalize simulated earnings from hypothetical, yet plausible, suboptimal strategies across

treatments. The values were 40, 30, 40, 40 and 50 for Strong, Weak, Zero, Moderate, and Both treatments, respectively.
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distribution on [0, K̄r].6 The payoff from a revised prediction is 50 or zero points. After the subjects reported

their initial and revised predictions, we reported the true EPS for that period, realizations of the relevant

random numbers (K and Kr) and their income in points to the subjects. The random numbers K and Kr

were redrawn in each period.

We divided a session into five 10-period long blocks. In the first session for each specification, the

number of forecasts from group A analysts increased, with an increment of 2, from 1 to 9 in the five blocks

of 10 periods each. In the second session, the number of forecasts from group A analysts decreased, with a

deduction of 2, from 9 to 1 in these blocks. After the session was completed, we randomly chose one period

from each of these five 10-period blocks, to determine subjects’ incomes from the session.7

The sessions were run between December 2015 and September 2016 at CREED at the University of

Amsterdam and the University of Toronto. The number of subjects in a session varied between 12 and

22. In total, we had 172 subjects.8 The experiments were programmed and conducted with the software

z-Tree developed by Fischbacher (2007). Instructions were provided in English.9 Subjects were sent a pdf

document describing statistical concepts such as mean, variance, and uniform and normal distributions,

that are relevant for the experiment, after they signed up for a session. They were asked to ensure that

they understood those concepts before coming to the session. They were given a copy of the document

during the experiment. Moreover, we provided a brief statistical comprehension quiz and then provided the

answers to the quiz to the subjects. Each subject had access to a calculator throughout her session. A

sample experimental instruction and the document presenting definitions of statistical concepts are provided

in Appendix A.4.

Our experiment is designed to provide insights on how people form their beliefs when they may si-

multaneously misperceive correlation and uncertainty associated with the information they receive. As a

result, we need an informational setting that is rich enough to tease apart both biases. Specifically, our

purpose requires a rich setting that would allow us to simultaneously vary signal mean and variance and

correlation across signals. This may not be achieved with very simple setups. For example, when the random

variable is a binomial event, the mean and variance cannot be separately manipulated. On the other hand,

incorporating varying levels of correlation across signals while keeping variances fixed in a setting similar

to that in Enke and Zimmermann (2019) would actually lead to a relatively complicated signal generating

process. Normal distributions are typically familiar to university students, meets the above criteria, and are

6We chose the values of K̄r to equalize simulated earnings across treatments. The values were 8, 6, 8, 8 and 10 for Strong,
Weak, Zero, Moderate, and Both treatments, respectively.

7We also included 10 additional periods where subjects could choose the combination of the two groups of signals (i.e., they
chose nA) in every period. Given the focus of the current paper, we do not discuss subjects’ choices of nA in this paper.

8Four subjects left during the middle of the session for unexpected reasons. We do not include data from those subjects in
our analysis.

9Most of the subjects at CREED are students of the University of Amsterdam. Both English and Dutch are used as media
of instruction at the University of Amsterdam. In general, their English level is very high.
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considered to be commonly observed in many real-life situations.10

We also note that the normal distribution has been used to model information circumstance people

face in economics literature in both theoretical and empirical settings. The exact informational setup with

correlated signals used in this paper has been successfully utilized in economics in Myatt and Wallace (2012)

and subsequent papers. In empirical models of learning by individuals, signals being normally distributed

around the true value is a common assumption starting from Erdem and Keane (1996). Since then, such

models have been used in many papers including Ackerberg (2003), and Crawford and Shum (2005). Ching,

Erdem, and Keane (2013) provide a nice summary of the literature. In structural estimations of common-

value auction models, bidders are assumed to calculate their optimal bidding strategy where signals follow

quite complicated distributions (e.g. Bajari and Hortaçsu (2003) use eBay auction data where auction

participants are ordinary people). Thus, our experimental setup is no more mathematically complex than

many empirical models.

3 Theoretical Framework

This section discusses the underlying theoretical framework for our experiment. First, we present the optimal

posterior belief formation rule under full rationality for initial prediction. We then discuss boundedly rational

or behavioral models of belief formation where people are Bayesian updaters, but calculate their posterior

distribution incorrectly. We numerically illustrate how posterior beliefs under these models may differ from

beliefs under rationality. Then, we discuss belief formation rules for revised predictions.

Based on the experimental design presented above, Setting 1 below summarizes the signal generation

framework for our experiments.

Setting 1. For a given information generation parameter set (σ2
AI , σ

2
AC , σ

2
BI , σ

2
BC , nA, nB), signals X l

j for

j = 1, . . . , nl and l ∈ {A,B} are generated by X l
j = T +εlIj+εlC , where εlIj ∼ N(0, σ2

lI) and εlC ∼ N(0, σ2
lC)

and εlIj and εlC are mutually independent.

Based on receiving nl signals from group l ∈ {A,B} about the realization of T , X l
j for j ∈ {1, . . . , nl},

the mean of group l signals, X̄l =
∑nl

j=1X
l
j/nl, is distributed normally with mean T and variance Vl =

σ2
lI/nl + σ2

lC . Moreover, the most efficient estimator of T , which corresponds to the posterior mean because

we let subjects minimize the quadratic loss, is a weighted average of X̄A and X̄B .

Proposition 1. Suppose that the prior of T is T ∼ N(µp, σ
2
p). The mean of the limit of the posterior

10Batanero, Tauber, and Sánchez (2004) found that students who were taught the properties of a normal distribution showed
a good understanding of them.
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distribution of T under σ2
p →∞ (i.e., when the prior tends to uninformative one) is

VB
VA + VB

X̄A +
VA

VA + VB
X̄B .

The proof is in the Appendix, and it is a standard Bayesian posterior calculation. The optimal point

estimate for the realized value of T is based on the averages of signals from each group. It is unbiased

in the sense that the expected value given T is T because the weights sum to 1. All signals from a given

group, including those whose realized values happen to be extreme, receive the same weight in the estimate.

Moreover, for a given information generation parameter set, the optimal weights are independent of the

values of the observed signals. Given our incentive compatible scoring rule, a subject should report this

mean as her initial prediction.

We now propose behavioral models of belief formation where subjects incorrectly compute posterior

variance Vl based on the signals they receive and then calculate the weights on X̄l in a Bayesian manner

based on the incorrect variances. First, we consider the possibility that subjects incorrectly incorporate

the covariance between two signals from group l in calculating Vl. Specifically, similar to Ortoleva and

Snowberg (2015), we assume that they incorrectly believe that the covariance between two group l signals

is dσ2
lC for some d ∈ [0, 1) while keeping the total variance unchanged. In other words, subjects wrongly

allocate a certain portion of the common noise to independent noises. Then, subjects will exhibit correlation

neglect with complete correlation neglect if d = 0. Moreover, the variance of X̄l can be expressed by

(σ2
lI + (1− γ)σ2

lC)/nl + γσ2
lC for some γ ∈ [0, 1) . One can easily show that, if signals from one group are

independent and signals from the other are correlated, a subject who neglects correlation (i.e., γ < 1) will

always put higher weight on the correlated signals than what Proposition 1 suggests. However, she will

calculate the variances of X̄l and the weights perfectly if both groups provide independent signals.

Now we consider the possibility that subjects also suffer from misperception of precision; that is, they

do not take variance into account correctly. To illustrate how precision misperception may affect belief

formation, we will focus on the concept of overprecision where subjects perceive the variances to be smaller

than they actually are. Formally, we will assume that subjects take various components of the variance of

X̄l to the power of ρ < 1. As there does not seem to be an established model of overprecision in the presence

of multiple signals, we consider five different functional forms of potentially mistaken beliefs about Vl, which

we denote by Ṽl, that combine correlation neglect and overprecision. We will refer to these formulations as

Models 1 to 5 in the remainder of the paper.

Model 1: Ṽl =

(
σ2
lI

)ρ
+ (1− γ)

(
σ2
lC

)ρ
nl

+ γ
(
σ2
lC

)ρ
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Model 2: Ṽl =
(σ2
lI + (1− γ)σ2

lC)ρ

nl
+ (γσ2

lC)ρ

Model 3: Ṽl =

(
σ2
lI + (1− γ)σ2

lC

nl
+ γσ2

lC

)ρ
Model 4: Ṽl =

(
σ2
lI + (1− γ)σ2

lC

)ρ
(nl)

ρ + (γσ2
lC)ρ

Model 5: Ṽl =

(
σ2
lI

)ρ
+ (1− γ)

(
σ2
lC

)ρ
(nl)

ρ + γ
(
σ2
lC

)ρ
Note that in Models 1 and 2, parts of the (incorrectly calculated) variance for group l signal average

is inversely proportional to the number of group l signals. In Models 3 to 5, on the other hand, we assume

that this part of the variance is inversely proportional to (nl)
ρ instead. In this respect, Models 5 and 4

correspond to Models 1 and 2, respectively. If ρ is smaller than 1, the number of signals will have a smaller

impact in reducing the variance under Models 3 to 5 than under Models 1 and 2.

Different values of parameters correspond to different behavioral types. For fully rational subjects, the

values of the parameters are γ = 1 and ρ = 1. When a subject neglects correlation, she has γ < 1 and when

she suffers from overprecision, she has ρ < 1. If a subject suffers from only correlation neglect (i.e., ρ = 1

but γ < 1), all five models are identical. If a subject suffers only from overprecision (i.e., γ = 1 but ρ < 1),

the first two models are identical and the last two models are identical. We will use our experimental data to

estimate the parameters under each model and find which one fits the data best. Of course, one can consider

other variants of the model. Nonetheless, we will show that all our results can be well explained by some of

the above models in both qualitative and quantitative senses.

Under Models 1 to 5, correlation neglect with correct perception of precision (ρ = 1 and γ < 1)

would lead to overweighting of correlated signals in the treatments where only one group provides correlated

signals. On the other hand, as the group A signals have higher overall variances and typically provide

independent signals, overprecision will lead to underweighting of correlated signals. Thus, the overall impact

of both correlation neglect and overprecision on weights put on the signals from the two groups will depend

on the specific information generation parameter set. Note that, in treatment Zero, both groups provide

independent signals. Then, correlation neglect has no impact on belief formation. Overprecision (ρ < 1) will

lead to overweighting of group A signals, which have higher variance, while ρ > 1 will lead to underweighting

of group A signals.

Figure 1 illustrates the impact of correlation neglect and overprecision on belief formation under varying

degrees of correlation with examples based on Model 5. We set σ2
AI = 500, σ2

AC = 0, σ2
BI + σ2

BC = 265, and

N = 10 as in treatments Zero, Weak, and Strong. The figure plots the relationship between σ2
BC and the

weight on X̄A under various behavioral assumptions. The solid black curves correspond to Bayesian beliefs

(γ = 1, ρ = 1). Weight on X̄A is increasing in σ2
BC . The red dashed lines correspond to complete correlation

11



Figure 1: The weights for independent signals under various behavioral assumptions
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(a) nA = 3
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(b) nA = 5
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(c) nA = 7

neglect without any precision misperception (γ = 0, ρ = 1). It is flat because the degree of correlation does

not affect one’s perception about the usefulness of group B signals. The blue dotted curves correspond

to overprecision and we use (γ = 1, ρ = 0.5). It is increasing in σ2
BC as in the case of Bayesian. When

the correlation is weak, it overweights independent signals with larger variance, but when the correlation is

strong, it underweights them. Lastly, the violet dot-dashed curves correspond to a combination of correlation

neglect and overprecision (γ = 0, ρ = 0.5). Correlated signals are overvalued when the correlation is weak, but

are undervalued in the presence of strong correlation. Thus, even if subjects exhibited complete correlation

neglects, they would behave as if they overvalue correlated signals if they also suffer from overprecision.

The figure also demonstrates the importance of examining settings with various degrees of correlation to

identify the contribution of each of correlation neglect and overprecision. For example, when the correlation

among group B signals is strong, both correlation neglect and overprecision predict a lower weight on X̄A than

that predicted under full rationality. We cannot separately identify whether a lower weight on independent

signals comes from correlation neglect or overprecision. On the other hand, if we look only at cases with

weak correlation, it does not allow us to separate a overprecision story and a story based on overreaction

to correlation.11 Combining results of experiments with varying levels of correlation makes it possible to

separately identify the extent of correlation neglect and overprecision and the magnitudes of the effects of

these two behavioral biases.

Finally, we analyze posterior beliefs regarding T after a subject learns the session average of initial

predictions. Let M ≥ 2 denote the number of subjects in a session. In a given period, each of these M

subjects observe a completely different set of N signals about the same realized value, where the signals

11While we do not discuss overreaction to correlation or possibility of treating independent signals as correlated in detail in
this paper, such a phenomenon is observed in the literature on gambler’s fallacy and the law of small numbers. See, for example,
Rabin (2002).
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are generated using the same information generation parameter set. Optimal estimate of the realization of

T with this public information depends on a subject’s beliefs about the information content of the session

average. Suppose a subject believes that the session average is unbiased and normally distributed with

variance λσ2 where σ2 is the variance of her own initial prediction. The following proposition presents a

subject’s belief formation rule for the revised prediction as a function of λ.

Proposition 2. Suppose that a subject’s initial prediction is unbiased, her beliefs follow a normal distribu-

tion and she believes that the session average is unbiased and follows a normal distribution with variance

λσ2 where σ2 is the variance of her own initial prediction. Then, the mean of her posterior belief equals

M(M−1)
(M−1)2+M2λ−1 p̄ + M2λ−M

(M−1)2+M2λ−1p
∗, where M is the total number of subjects, p̄ is the session average and

p∗ is her own initial prediction.

If a subject is Bayesian and believes that all subjects (including herself) provide unbiased and equally

precise initial prediction, then λ would equal 1/M . In that case, the subject’s revised prediction should

equal the session average. However, she will put a positive weight on her own initial prediction if she believes

that λ > 1/M . Moreover, the weight on her own prediction would be increasing in λ. A large λ may come

from overprecision. In particular, if people misunderstand the variance reducing power of taking an average

as considered in Models 3-5, that will imply that λ will decrease slower than under Bayesian prediction as

M increases. The parameter λ can be estimated using subjects’ revised prediction and can be used to infer

whether models designed to analyze initial predictions can have any extrapolation power.

In the following section, we will analyze our experimental data based on the theoretical framework

provided in this section.

4 Results

The experimental sessions have provided us with a large data set of people’s beliefs about the realized EPS

under a comprehensive set of information generation parameters. Our main goal is to study how people

incorporate independent and correlated signals in forming their beliefs, specifically the posterior mean based

on the signals. Moreover, we also study how they incorporate additional information based on the actions

of others.

The number of group A forecasts in the five 10-period blocks is increasing over time in half of the

sessions and decreasing in the other half of the sessions. We find no effect of this difference in ordering.12

Hence, we pool the results from the increasing and decreasing order sessions in our empirical analysis.

12Results are available from the authors upon request.
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4.1 Initial Prediction with Only Private Information

We analyze data from initial predictions to examine how subjects respond to different signal structures in

forming their beliefs. Specifically, we estimate the weights subjects put on the averages of the two groups

of signals in their initial predictions using a linear regression model. Our main finding is that while initial

predictions are unbiased, subject put sub-optimally high weights on strongly correlated forecasts and sub-

optimally low weights on weakly correlated forecasts. This finding is consistent with subjects exhibiting

substantial degrees of both correlation neglect and overprecision.

4.1.1 Econometric Specification and Some Hypotheses

As we have five different treatments with varying levels of correlation among signals, we analyze them

separately when investigating how subjects process their private signals to form an initial prediction about

the EPS. For each treatment, we elicit posterior means under a single set of variance parameters, but

with five different combinations of the number of signals from each group. In a given period, the signal

combination was the same across all subjects within the session. For each subject, we have 10 independent

observations under the same information generation parameter set (σ2
AI , σ

2
AC , σ

2
BI , σ

2
BC , nA, 10− nA).13 An

initial examination of the data indicates that initial predictions can be modeled to be linear in the means of

group A and group B signals, X̄A and X̄B , respectively. Specifically, neither nonlinear specifications, such

as quadratic terms, nor extreme values, such as maximum or minimum forecasts, systematically determine

initial predictions. We thus focus on specifications that are linear in X̄A and X̄B .

For each information generation parameter set, we estimate the weights on X̄A and X̄B using the

following equation:

(Pit − Tt) = β0 + β1(X̄A,it − Tt) + β2(X̄B,it − Tt) + uit,

where, at period t, Tt is the true value of EPS, and for subject i, Pit is the initial prediction, X̄A,it and X̄B,it

are the means of groups A and B signals, respectively, and uit is the error term. We use deviations from the

EPS to estimate the weights. In our experiment, the EPSs are generated from a very diverse distribution and

most of the variations in predictions and forecasts come from variations in the EPS. Using values which are

not centered around the EPS thus yields a very high coefficient of determination, which might make results

difficult to interpret. Using deviations is a solution to this problem.14 Note that centering the variables

around the EPS would not change the results if predictions are unbiased.15

13We exclude observations where the initial prediction is above the maximum or below the minimum of the 10 forecasts a
subject received as these observations are hardly justified by any economic theory and are likely to be typos or results of simple
mistakes. These exclusions do not affect our results qualitatively.

14An alternative solution may be to include period fixed effects. Although not presented here, the model with uncentered
variables but with period fixed effects generates similar results.

15Indeed, estimating the model with uncentered variables yields similar results except for the coefficients of determination
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We now introduce a number of hypotheses regarding subjects’ belief formation rules. For some null

hypotheses, we present alternative hypotheses based on the five behavioral belief formation rules presented

in Section 3, under reasonable parameter values. The null and alternative hypotheses relate to comparisons

between the values of the coefficients, (β0, β1, β2) and optimal weights on groups A and B averages from

Proposition 1, w0
A and w0

B .

Hypothesis 1 (Unbiased prediction): An initial prediction being unbiased corresponds to H0 : β0 = 0

and β1 + β2 = 1. Unbiasedness is fundamental in investigating the validity of other hypotheses.

Hypothesis 2 (Bayesian prediction): Optimal initial predictions produced by Bayesian correspond to

H0 : β0 = 0, β1 = w0
A and β2 = w0

B .

There might be several ways in which Hypothesis 2 is violated and, assuming the unbiasedness, each

violation has a specific interpretation. In particular, we consider the following alternatives.

H1 (Overprecision without correlation neglect): In treatments Strong, Moderate, Weak, and Zero,

β1 > w0
A and β2 < w0

B . In treatment Both, β1 < w0
A and β2 > w0

B . Note that the prediction for

treatment Zero will hold even in the presence of correlation neglect.

While overprecision can be detected, irrespective of presence or absence of correlation neglect, by

examining treatment Zero, how correlation neglect affects the results depends on the presence of

overprecision.

H1 (Correlation neglect without overprecision): In treatments Strong, Moderate, Weak, and Both,

β1 < w0
A and β2 > w0

B and in treatment Zero, β1 = w0
A and β2 = w0

B .

H1 (Correlation neglect with overprecision): β1 < w0
A and β2 > w0

B in treatment Strong, but

β1 > w0
A and β2 < w0

B in treatment Weak.

Lastly, we examine whether subjects’ elicited posterior means are basically the simple average of the

10 signals they receive. This may result from completely ignoring variances. This hypothesis is related to

the 1/N heuristic discussed in the context of portfolio choice by Benartzi and Thaler (2001) and Eyster and

Weizsacker (2016).

Hypothesis 3 (1/N heuristic): w0
l = nl/10 for l = A,B.
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Table 2: Initial Prediction, Treatment Strong

Dependent variable: Initial Prediction
# of group A analysts 1 3 5 7 9
X̄A 0.284∗∗∗ 0.419∗∗∗ 0.547∗∗∗ 0.662∗∗∗ 0.786∗∗∗

(0.036) (0.046) (0.048) (0.048) (0.056)
X̄B 0.758∗∗∗ 0.502∗∗∗ 0.491∗∗∗ 0.386∗∗∗ 0.163∗∗∗

(0.031) (0.047) (0.030) (0.046) (0.037)
Constant -0.744∗ -0.281 0.562 0.212 0.945∗∗

(0.306) (0.399) (0.367) (0.289) (0.337)
Optimal weight on X̄A 0.355 0.602 0.717 0.781 0.827
Optimal weight on X̄B 0.665 0.398 0.283 0.219 0.173
F -stats:
H0: Unbiased 4.455 3.388 1.248 1.291 3.967
prediction (0.019) (0.046) (0.300) (0.289) (0.029)
H0: Bayesian 4.824 8.557 24.758 6.613 0.459
prediction (0.015) (0.001) (0.000) (0.004) (0.636)
H0: 1/N 13.282 9.332 0.480 2.054 2.486
heuristic (0.000) (0.001) (0.623) (0.144) (0.099)
R̄2 0.787 0.637 0.720 0.669 0.510
# of observations 309 339 332 336 333

Note: Estimated by OLS. Standard errors clustered at subject level are presented below the coefficients (within parentheses) and
p-values are presented below the F statistics (within parentheses).

4.1.2 Detailed Discussion of Results for Treatments Strong, Weak, and Zero

Tables 2 to 4 present the estimates for treatments Strong, Weak, and Zero, respectively.16 Signals across

these three treatments have the same unconditional variances (500 for group A and 265 for group B). We

also present a number of F -tests regarding the weights. Specifically, we test whether initial predictions

can be considered unbiased (Hypothesis 1), whether the weights are optimal in the sense of Proposition 1

(Hypothesis 2), and whether the subjects follow the 1/N heuristic (Hypothesis 3).

The tables provide a comprehensive picture of how the subjects chose predictions using their private

signals, which will be discussed below. First, we highlight one particular result: As seen in the literature,

we find that subjects do not perfectly account for correlation. However, our result is more nuanced than the

common finding that people overvalue correlated signals in their decision process. When signal correlation

is moderate or strong, subjects put greater weight on correlated signals than optimal. On the other hand,

they put sub-optimally low weights on the weakly correlated signals. In other words, subjects seem to over-

compensate for correlation when correlation is weak. When both sets of signals are independent, subjects

and does not alter our conclusions qualitatively. These regression results are available in an online appendix at https://drive.
google.com/open?id=1p3Y1nX95 JE A35O24p2BxfiuyaHn-6p.

16Fixed effects estimation leads to the same results, qualitatively. They are available from the authors upon request. Note
that a fixed effects regression model specifies that the intercept is individual specific. In our context, this means that the bias
in the prediction is individual specific. It is another indication of unbiasedness of the predictions that inclusion of fixed effects
does not alter the results qualitatively.
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Table 3: Initial Prediction, Treatment Weak

Dependent variable: Initial Prediction
# of group A analysts 1 3 5 7 9
X̄A 0.198∗∗∗ 0.339∗∗∗ 0.493∗∗∗ 0.647∗∗∗ 0.891∗∗∗

(0.030) (0.027) (0.025) (0.028) (0.037)
X̄B 0.884∗∗∗ 0.640∗∗∗ 0.476∗∗∗ 0.329∗∗∗ 0.104∗∗∗

(0.036) (0.033) (0.021) (0.028) (0.027)
Constant -0.916∗ -0.309 -0.247 -0.006 -0.525

(0.351) (0.273) (0.300) (0.234) (0.364)
Optimal weight on X̄A 0.079 0.233 0.394 0.579 0.827
Optimal weight on X̄B 0.921 0.767 0.606 0.421 0.173
F -stats:
H0: Unbiased 6.428 0.998 1.121 0.261 1.095
prediction (0.004) (0.380) (0.338) (0.772) (0.346)
H0: Bayesian 11.193 10.007 33.405 6.778 4.281
prediction (0.000) (0.000) (0.000) (0.003) (0.022)
H0: 1/N 8.922 1.811 0.623 1.944 0.033
heuristic (0.001) (0.179) (0.543) (0.159) (0.968)
R̄2 0.634 0.709 0.741 0.699 0.618
# of observations 335 337 339 337 335

Note: Estimated by OLS. Standard errors clustered at subject level are presented below the coefficients (within parentheses) and
p-values are presented below the F statistics (within parentheses).

put sub-optimally lower weights on more precise signals.

Now we discuss the main results regarding initial predictions in detail and also discuss and test a number

of hypotheses. We cannot reject that the initial predictions are unbiased (Hypothesis 1) in most cases.17

That is, initial prediction P can be expressed as P = wX̄A + (1−w)X̄B for some w ∈ [0, 1]. We have tested

regression specifications where extreme values (maximum and/or minimum) of the signals (for both groups or

separately) are added as explanatory variables. We rarely find any of those extreme values to be statistically

significant. If we include them, initial predictions can still be characterized as a weighted average of the

signals.18 This may not seem surprising as we restrict attention to observations where the initial prediction

is within the minimum and maximum of the signals a subject receives. It is, nonetheless, noteworthy because

even simple but systematic mistakes such as over-weighting extreme values or habits such as always rounding

up predictions may lead to biased predictions. Confirming that the initial predictions are unbiased is an

important first step and the rest of the discussions rely on this finding.

While initial predictions are unbiased, they are typically suboptimal and Hypothesis 2 can frequently

be rejected. Nonetheless, we notice a clear pattern in the departure from optimal prediction. For treatment

Strong, subjects chose sub-optimally high weights for group B signals. For example, the estimated weight on

17The null hypothesis is rejected in two out of the 15 cases at the 5% level. However, because there are 15 cases, the testing
procedure should be adjusted. A simple Bonferroni correction indicates that we should reject the null when we find a p-value
less than 0.05/15 = 0.003 but there is no such case.

18Results are available from the authors upon request.
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Table 4: Initial Prediction, Treatment Zero

Dependent variable: Initial Prediction
# of group A analysts 1 3 5 7 9
X̄A 0.141∗∗∗ 0.271∗∗∗ 0.435∗∗∗ 0.503∗∗∗ 0.726∗∗∗

(0.024) (0.023) (0.027) (0.041) (0.044)
X̄B 0.820∗∗∗ 0.692∗∗∗ 0.596∗∗∗ 0.491∗∗∗ 0.187∗∗∗

(0.062) (0.050) (0.040) (0.042) (0.037)
Constant -0.184 0.242 -0.183 -0.423 -0.166

(0.353) (0.334) (0.303) (0.350) (0.258)
Optimal weight on X̄A 0.056 0.185 0.346 0.553 0.827
Optimal weight on X̄B 0.944 0.815 0.654 0.447 0.173
F -stats:
H0: Unbiased 0.365 1.488 0.322 0.850 3.153
prediction (0.697) (0.242) (0.727) (0.437) (0.057)
H0: Bayesian 6.565 7.321 5.353 0.807 3.631
prediction (0.004) (0.002) (0.010) (0.456) (0.038)
H0: 1/N 1.666 1.142 4.060 13.563 7.887
heuristic (0.206) (0.332) (0.027) (0.000) (0.002)
R̄2 0.491 0.648 0.722 0.644 0.553
# of observations 316 318 317 316 317

Note: Estimated by OLS. Standard errors clustered at subject level are presented below the coefficients (within parentheses) and
p-values are presented below the F statistics (within parentheses).

the mean of B signals is 0.502 under treatment Strong with three group A signals while the optimal weight

is 0.398. On the other hand, for treatment Weak and Zero, they chose sub-optimally low weights for group

B signals. For example, the estimated weight on the mean of B signals are 0.640 and 0.692 under treatments

Weak and Zero, respectively, with three group A signals, while the optimal weights are 0.767 and 0.815,

respectively.

These results are connected to the alternative hypotheses we have considered. First, results from

treatment Zero indicate the presence of overprecision, as overweighting of group A signals is consistent with

overprecision and inconsistent with correlation neglect without overprecision. On the other hand, because

the weights are not proportional to the number of signals from a particular group, as observed in the F -tests

(1/N heuristic), subjects did not neglect variance completely. While treatment Zero shows the presence of

overprecision, our finding that group A signals are underweighted in treatment Strong is inconsistent with

overprecision without correlation neglect. This suggests the presence of both overprecision and correlation

neglect. This is further supported by the finding that weakly correlated group B signals underweighted in

treatment Weak. Thus, the three treatments together allow us to test for concurrent presence of overprecision

and correlation neglect. To further support this supposition, we look at the weights on average of group

A and group B signals in Tables 2 to 4. We find that the weights on the average of group B signals

typically increase as we reduce the level of correlation among group B signals, as would be suggested by the

behavioral models presented in Section 3. Table 5 presents pair-wise comparisons of the weights from the
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Table 5: Test of Equivalence of Weights Used in Initial Predictions Across Treatments

# of A Strong vs Weak Strong vs Zero Weak vs Zero
1 4.263 11.957 3.368

(0.014) (0.000) (0.035)
3 4.427 8.385 2.480

(0.012) (0.000) (0.084)
5 0.755 3.933 4.225

(0.470) (0.020) (0.015)
7 1.223 5.508 11.141

(0.295) (0.004) (0.000)
9 2.198 0.519 5.008

(0.112) (0.595) (0.007)

Note: This table presents the results of F tests for the equivalence of coefficients on X̄A and X̄B between treatments in the
regressions presented in Tables 2 to 4. In parentheses below F statistics are p-values.

three treatments considered here. The results demonstrate that subjects indeed changed weights on signals

from the two groups based on the level of correlation. We thus find very strong evidence that subjects

exhibit both overprecision and correlation neglect. Next, we examine the results from the remaining two

treatments — Moderate and Both to gain some qualitative insights on which of the five behavioral models,

that incorporate both correlation neglect and overprecision, match the data best. Finally, we will structurally

estimate the overprecision and correlation neglect parameters based on those models.

4.1.3 Results from Treatments Moderate and Both

We now examine the results from treatments Moderate and Both. For both of these treatments, the marginal

variance is identical for all signals. That is, σ2
AI +σ2

AC = σ2
BI +σ2

BC . Analyzing belief formation rules under

these treatments provide insights not only about overprecision and correlation neglect, but also about the

form of the interaction of these two behavioral biases.

Tables 6 and 7 present estimation results for treatments Moderate and Both, respectively. The results are

in line with those from the other three treatments and the theoretical interpretation we have discussed above.

Subjects put sub-optimally low weights on independent or weakly correlated signals and sub-optimally high

weights on moderate to strongly correlated signals. These findings are consistent with concurrent presence

of correlation neglect and overprecision.

Moreover, these treatments provide us with information about how subjects react to sample averages.

The five behavioral models that we consider provide different predictions about how subjects react to sample

averages of group A and group B signals. These five models can be categorized into two groups: In Models

1 and 2, subjects correctly understand that the variance of the sample average of independent signals is

inversely proportional to the number of signals, while in Models 3 – 5, the variance reducing property of

sample average is discounted because the ρ-th power of 1/nl is used. To illustrate how these treatments are
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Table 6: Initial Prediction, Treatment Moderate

Dependent variable: Initial Prediction
# of group A analysts 1 3 5 7 9
X̄A 0.263∗∗∗ 0.405∗∗∗ 0.569∗∗∗ 0.699∗∗∗ 0.820∗∗∗

(0.027) (0.033) (0.041) (0.035) (0.047)
X̄B 0.752∗∗∗ 0.577∗∗∗ 0.447∗∗∗ 0.304∗∗∗ 0.141∗∗∗

(0.033) (0.030) (0.029) (0.024) (0.018)
Constant 0.148 -0.809∗ 0.282 -0.480 -0.416

(0.437) (0.301) (0.239) (0.291) (0.411)
Optimal weight on X̄A 0.357 0.632 0.75 0.824 0.9
Optimal weight on X̄B 0.643 0.368 0.25 0.176 0.1
F -stats:
H0: Unbiased 0.247 3.819 0.770 1.362 1.155
prediction (0.782) (0.030) (0.469) (0.267) (0.325)
H0: Bayesian 7.353 27.735 23.495 16.801 3.027
prediction (0.002) (0.000) (0.000) (0.000) (0.059)
H0: 1/N 19.244 8.419 1.908 0.012 3.027
heuristic (0.000) (0.001) (0.161) (0.988) (0.059)
R̄2 0.757 0.745 0.747 0.688 0.516
# of observations 431 433 436 436 434

Note: Estimated by OLS. Standard errors clustered at subject level are presented below the coefficients (within parentheses) and
p-values are presented below the F statistics (within parentheses).

useful in distinguishing these two categories of models in a simplified setting, we will assume that subjects

exhibit complete correlation neglect in this subsection; that is, γ = 0. In treatment Both, where σ2
AI = σ2

BC

and σ2
AC = σ2

BI , even if subjects exhibit overprecision, they will put proportional (to the number of signals

from the group) weights on X̄A and X̄B under Models 1 and 2. In other words, subjects’ behavior would

be equivalent to the 1/N heuristics. However, Table 7 shows that, for three out of the five combinations of

signals, we can reject that the weights on X̄l equals nl/10, at the 5% level, while rejecting two at the 1%

level. In particular, it indicates that Models 3 – 5 would better represent the actual behavior of subjects

than Models 1 and 2. Treatment Moderate further strengthens the evidence against Model 2. Under that

treatment, subjects’ behavior would be equivalent to the 1/N heuristics under Model 2 because all signals

have the same marginal variance. Table 6 shows that this hypothesis is rejected in two out of the five cases

at the 5% level (three at the 10% level). Thus, both treatments Moderate and Both strongly suggest that

subjects undervalue the variance reduction ability of sample averages.

Furthermore, comparing these two treatments allow us to further differentiate the behavioral models.

Under complete correlation neglect, Models 3 and 4 are equivalent. In these two models, the marginal variance

determines the weights but how each of the independent noise and correlated noise contributes to the overall

variance does not matter. In contrast, Model 5 indicates that subjects treat the variance from independent

noises differently from that from correlated noises even though they also mistakenly treat correlated noises

as independent. Treatments Moderate and Both share a property that the marginal variances of all signals in
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Table 7: Initial Prediction, Treatment Both

Dependent variable: Initial Prediction
# of group A analysts 1 3 5 7 9
X̄A 0.250∗∗∗ 0.350∗∗∗ 0.530∗∗∗ 0.618∗∗∗ 0.643∗∗∗

(0.034) (0.043) (0.045) (0.047) (0.044)
X̄B 0.709∗∗∗ 0.573∗∗∗ 0.490∗∗∗ 0.408∗∗∗ 0.310∗∗∗

(0.044) (0.063) (0.021) (0.037) (0.041)
Constant 0.627 0.366 0.193 -0.012 -1.271∗∗

(0.425) (0.470) (0.342) (0.317) (0.419)
Optimal weight on X̄A 0.487 0.719 0.796 0.834 0.861
Optimal weight on X̄B 0.513 0.281 0.206 0.166 0.139
F -stats:
H0: Unbiased 1.661 1.808 0.219 0.154 4.861
prediction (0.209) (0.183) (0.805) (0.858) (0.016)
H0: Bayesian 26.132 37.870 95.085 24.201 15.616
prediction (0.000) (0.000) (0.000) (0.000) (0.000)
H0: 1/N 13.686 2.096 0.268 4.527 22.382
heuristic (0.000) (0.142) (0.767) (0.020) (0.000)
R̄2 0.688 0.639 0.780 0.790 0.677
# of observations 251 273 276 277 266

Note: Estimated by OLS. Standard errors clustered at subject level are presented below the coefficients (within parentheses) and
p-values are presented below the F statistics (within parentheses).

a given treatment are the same. Hence, Models 3 and 4 predict that the belief formation rules should be the

same for these two treatments. The F -test statistics for the equivalence of the weights between treatments

Moderate and Both are 0.076 (0.927), 0.605 (0.546), 0.824 (0.439), 5.497 (0.004), and 14.561 (0.000), for

nA = 1, 3, 5, 7, and 9 respectively, where p-values are in parentheses. There is statistical evidence that

the weights between the two treatments are different when the number of moderately or strongly correlated

signals is small. This result favors Model 5 over Model 4.

4.1.4 Estimating the behavioral bias parameters

We now estimate the correlation neglect and overprecision parameters using the estimates of the weights.

We use a minimum distance approach. We find that Model 5 yields the best fit. The estimated parameters

indicate that subjects exhibit near-complete correlation neglect. Moreover, they incorrectly transform vari-

ances to about their square roots. That is, they almost treat standard deviations as variances. Below we

describe how we estimate the model parameters.

Our five behavioral models are parameterized by γ (correlation neglect parameter) and ρ (overprecision

parameter). Given the values of γ and ρ, each model predicts a unique combination of weights on X̄A and

X̄B that sum up to 1 for each treatment and each signal combination. We thus estimate the values of γ

and ρ by minimizing the distance between the estimated weight on X̄A and those predicted by the model.
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Table 8: Estimation results

Model 1 Model 2 Model 3 Model 4 Model 5
fit 0.189 0.179 0.120 0.103 0.080
γ̂ 0.170 0.003 0.176 0.059 0.150

(0.042) (0.016) (0.051) (0.066) (0.083)
ρ̂ 0.549 0.321 0.616 0.591 0.576

(0.005) (0.259) (0.034) (0.136) (0.037)

Note: This table presents the results of the minimum distance estimation. For each model, the parameters are estimated by
minimizing a distance between estimated weights on the average of group A signals and those predicted by the model. “fit” is the
minimized value of the objective function. In parentheses are standard errors.

Let ŵA,nA,D be the estimated weight on X̄A where subjects receive nA group A signals under treatment

D ∈ {Strong ,Weak ,Zero,Moderate,Both}. Let wA,nA,D(γ, ρ) be the weight predicted by the model for a

given (γ, ρ) combination. We then estimate (γ, ρ) by solving

(γ̂, ρ̂) = arg min
γ,ρ

∑
D∈{Strong, Weak, Zero, Moderate, Both}

∑
nA∈{1,3,5,7,9}

(ŵA,nA,D − wA,nA,D(γ, ρ))2.

Table 8 presents the estimation results. The minimized value of the sum of distance squared for a given

model determines the fit of the model. Thus, the smaller the value of the fit, the better the model explains

our experimental data. The table demonstrates that Model 5 yields the best fit. The estimation results

are incompatible with full rationality. For all models, both parameters are statistically different from 1 at

the 5% level. The estimated correlation neglect parameters are quite small (for example, in Model 5, it is

not statistically significantly different from zero at the 5% level), indicating the presence of nearly complete

correlation neglect. Nonetheless, subjects undervaluing weakly correlated signals in favor of independent

signals in treatment Weak shows that the presence of overprecision will not always lead to overvaluing of

correlated signals even when people neglect correlation completely. The overprecision parameter is slightly

above 0.5. A rough interpretation would be that subjects wrongly treat standard deviation as variance.

The fact that Model 5 best fits the data is consistent with the discussion in the previous subsection. This

model exhibits the feature that the variance reduction power of sample averaging is downgraded and that

the contribution of correlated noises to the overall variance is treated differently from that of independent

noises. We quantitatively confirm that these features are important to have a good fit to the data.

The estimated values of the parameters are related to the results of Eyster and Weizsacker (2016). Their

behavioral model has two parameters: one parameter represents the degree of correlation neglect and the

other parameter refers to the degree of undervaluing precision. They also find a nearly complete level of

correlation neglect and also that people’s behavior would be consistent with the situations in which they treat

standard deviations as variances. While their results are similar to ours, there are important differences.

First, we examine belief formation directly while they examine portfolio choice. Second, their interpretation
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of undervaluation of precision is that the degree of reaction to risk depends on the magnitude of risk. Indeed,

it would be difficult to distinguish their interpretation from overprecision bias in their experiment. We avoid

such a problem by directly eliciting beliefs using an incentive compatible scoring rule.

4.1.5 Robustness: Learning and Heterogeneity

Digging deeper into the data, we analyze how subject behavior changes over time under each treatment.

Figures 2 to 6 in Appendix A.3 present time series plots of weights on the mean of group A signals over periods

within a 10-period block for each analyst combination. We run cross-sectional regressions of prediction on

the mean of group A signals and the mean of group B signals for each period (all variables are recentered

around true EPS), and use the OLS estimate of the coefficient on the mean of group A signals as “weights

on A.” The five panels within a figure present the time-series diagram when the number of group A analysts

is 1, 3, 5, 7, and 9, respectively. There is no clear pattern or systematic indication of learning within each

block. There is also no indication that subjects’ behavior converge to the theoretical optimal. Overall, we do

not learn much more about subject behavior by separating behavior in each period over what is presented

in Tables 2 to 4 and 6 to 7.

We also analyze how belief formation rules vary across subjects. Specifically, we ran time series re-

gressions of prediction on the means of groups A and B signals for each 10-period block for each subject

separately. Comparing the weights on group A signals, we find that the weights across subjects are, perhaps

unsurprisingly, quite dispersed and there are some outliers. Nonetheless, we do not find any clear pattern in

the dispersion of weights. These results are available from the authors upon request.

4.2 Revised Prediction with Additional Public Information

We now analyze the revised predictions submitted by subjects after they learn the session average for that

period—the average of initial predictions in that period by all subjects in the session. First, we ensure

that the session averages of initial predictions are indeed better than individual initial predictions. We find

that the session averages yield about three times higher probabilities of receiving the reward than initial

predictions do in all of the sessions.19 While not surprising, this confirms that the average judgment of the

crowd is better than the judgment of the individuals who make up the crowd. We then analyze whether

people actually use this aggregated information appropriately. To that end, we use a linear regression model

to estimate the weights subjects put on their own initial predictions and session averages. We find that

they put non-zero weights on initial predictions, which we interpret as a result of incorrectly incorporating

the variance reducing power of sample averages. Specifically, the results can be explained by subjects

undervaluing the impact of the sample size in reducing the variance of an estimator. This also suggests that

19These results are available upon request.
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even though there is wisdom in the judgment of the crowd overall, people do not fully utilize such wisdom.

Nonetheless, we can extrapolate that, as the sample size becomes really large, the impact of such mistakes

would be small.

4.2.1 Econometric Specification and Some Hypotheses

As each subject gets a completely different set of forecasts for a given stock, the session average indirectly

provides information from many more signals than the subject received before submitting the initial predic-

tion. It is optimal to report the session average as the revised prediction when a subject believes that all

subjects’ initial predictions are equally precise. However, if a subject under-appreciates the variance reducing

power of average, as indicated by our findings from initial predictions in Section 4.1.4, she may rely on her

private signals and her initial prediction in addition to the session average for her revised prediction.

To estimate the process subjects use to generate revised prediction, we relate a subject’s revised predic-

tion with her initial prediction and the session average. We report the results from linear regression models

which are found to be reasonable after initial inspection of the data. Our estimation model is:

(RPit − Tt) = η0 + η1(Pit − Tt) + η2(SAt − Tt) + uit,

where RPit and Pit are the revised and initial predictions, respectively, by subject i at period t, Tt is the true

EPS and SAt is the session average at period t (note that they are common to all the subjects and there is

no subject indicator), and uit is the error term. The theoretical result in Proposition 2 does not depend on

the information generation parameter set. Hence, we can pool all the periods within a specification in these

regressions.20

The value of the coefficients, (η0, η1, η2), relate to various hypotheses.

Hypothesis 4 (Unbiased prediction): A prediction is unbiased when η0 = 0 and η1 + η2 = 1.

Hypothesis 5 (Optimal prediction): An unbiased prediction is optimal when H0 : η1 = 0 and η2 = 1.

When subjects are Bayesian and believes that other subjects’ predictions are as precise as hers, then

λ equals 1/M in Proposition 2. In that case, her optimal revised prediction would be to report the

session average as her revised prediction. However, if a subject believes that λ > 1/M then she would

put positive weight on her own initial prediction Pit. That leads to the following alternative,

H1 (Variance underweighting): η1 > 0 and η2 < 1.

20We exclude observations where the revised prediction is above the maximum or below the minimum of the 10 forecasts she
received and the session average. We also exclude periods in which at least one subject submitted an initial prediction that is
above the maximum or below the minimum of the 10 forecasts she received because in such a period, the session average may
not provide useful information. These exclusions do not affect our results significantly

24



Table 9: Estimation Results: Revised Prediction

Dependent variable: Revised Prediction
All Strong Weak Zero Moderate Both

Initial Prediction 0.229∗∗∗ 0.187∗∗∗ 0.241∗∗∗ 0.264∗∗∗ 0.245∗∗∗ 0.211∗∗∗

(0.014) (0.022) (0.030) (0.030) (0.027) (0.037)
Session Average 0.775∗∗∗ 0.794∗∗∗ 0.739∗∗∗ 0.823∗∗∗ 0.785∗∗∗ 0.763∗∗∗

(0.021) (0.035) (0.051) (0.039) (0.047) (0.053)
Constant 0.013 -0.035 0.060 0.085 -0.121 0.133

(0.046) (0.092) (0.068) (0.105) (0.090) (0.168)
F -stats:
H0: Unbiased 0.064 0.433 0.650 2.809 1.872 0.460
prediction (0.938) (0.652) (0.528) (0.076) (0.166) (0.636)
H0: Optimal 110.260 35.604 26.364 20.786 21.050 19.805
prediction (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
R̄2 0.468 0.509 0.456 0.440 0.466 0.483
# of observations 7779 1351 1714 1626 1989 1099

Note: Estimated by OLS. Standard errors clustered at subject level are presented below the coefficients (within parentheses) and
p-values are presented below the F statistics (within parentheses). Session Average is the average of the initial predictions made by
all subjects.

4.2.2 Detailed Discussions of Results

Table 9 presents the estimation results for the five treatments, one in each column. Subjects typically choose

a revised prediction that is in between their initial prediction and the session average, leading to an unbiased

estimate. The weights on own initial prediction and the session average add up to one and we cannot

reject Hypothesis 4 for any of the treatments at the 5% level. However, unlike what the theoretical optimal

suggests, subjects put positive weight on their own initial prediction under all treatments. Moreover, the

weights are relatively close to each other across treatments, ranging between 18.7% and 26.4%. Hence, we

can reject Hypothesis 5 in support of subjects believing that λ > 1/M (H1 Variance underweighting) for all

treatments.

Comparing these numbers across the five treatments, we find that the weights on own initial predictions

are statistically significantly different at the 5% level only between treatments Strong and Zero, where the

weights on initial prediction are the lowest and the highest, respectively. While subjects’ initial prediction

generation processes vary quite a bit across treatments, the revised prediction generation processes do not

vary as much.

To explain the result that subjects typically put less than 80% weight on the session average to calculate

their revised prediction, we go back to the behavioral models presented in Section 3. Specifically, Models

3 to 5, which fit the the initial prediction data better than the other model, suggest that subjects do not

fully incorporate the sample size in calculating the variance of a sample average. If we assume that subjects

behave as if λ = 1/Mρ to choose their revised prediction, then that would explain our findings well. Taking

25



this idea of incorrect incorporation of sample size seriously, we can even estimate alternative models that use

nνl in the denominators of Models 3 to 5 instead of nρl . The estimated parameters do not change dramatically

in those cases and we find estimates of ν to be around 0.6. Moreover, the associated variation of Model 5

continues to fit the initial prediction data the best.21

Recall that we had 10 sessions in total for the five treatments. The number of subjects in these sessions

varied between 13 and 22. However, the weights on the session average do not vary as wildly across treatments

or sessions. This is also consistent with a model where subjects behave as if λ = 1/Mρ to choose their

revised prediction. For example, when ρ = 0.576, weights on session average would vary between 86% and

89% between sessions with 13 and 22 subjects. Thus, weights on session averages not being very sensitive

to the number of subjects in a session is consistent with our behavioral model. This empirical finding is not

very consistent with models of overconfidence in one’s ability in forming beliefs correctly (Eyster, Rabin, &

Vayanos, 2019) or ambiguity about belief formation rules of other subjects (De Filippis, Guarino, Jehiel, &

Kitagawa, 2017).

4.2.3 Robustness: Learning and Heterogeneity

To analyze how subjects’ estimation process for revised prediction changes over time, Figure 7 in Appendix

A.3 presents a time series plot of weights on session average. We run cross-section regressions of revised

prediction on own initial prediction and session average for each period, and present the OLS estimate of the

coefficient on the session average. Again, there is no clear pattern. Here we pool all the treatments together

as the optimal weights are the same in all of the treatments. We find relatively low weights in periods 3 to 5

in this pooled picture and one might worry that this affects other results, or it indicates learning over time.

However, looking at time series plots for each treatment separately, we did not find any clear pattern nor an

indication of learning. Moreover, the main results regarding revised predictions do not change qualitatively

if we drop the first 10 periods.22

We also analyze how heterogeneous the revised prediction generation processes is across subjects. Specif-

ically, we ran time series regressions of revised prediction on initial prediction and session average for each

subject. The weights across subjects are, as in the case of initial predictions, quite dispersed and there are

some outliers. Nonetheless, we are unable to find any factor beyond gender and knowledge of statistics, that

affects heterogeneity. These result are available from the authors upon request.

21Estimation results are available from the authors upon request.
22Separate time series plots for each treatment and regression results without the first 10-period data are available from the

authors upon request.
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5 Conclusion

We present results from a comprehensive set of experiments to ascertain how people treat correlated and inde-

pendent information and information of different quality levels. We find that while people overvalue strongly

correlated information, they undervalue weakly correlated information; such correlation over-adjustment is

a new finding. This may suggest that whether people neglect correlation depends on the level of correlation.

We theoretically show that the extent of correlation neglect being dependent on the correlation level is not

necessary to explain our findings. Specifically, if people suffer only from correlation neglect, that would al-

ways lead to overvaluing of correlated signal. However, when people mis-perceive variance of their posterior

belief to be lower than it actually is, that may lead to undervaluing of weakly correlated signals. All these

results are consistent with our experimental findings. Thus, our experimental and theoretical results sug-

gest that we need to take both correlation neglect and overprecision into account when predicting people’s

behavior under uncertainty.

We also find that people put sub-optimally high weight on information that they directly receive than

those they indirectly receive through the actions of others even though such information aggregates a lot more

signals. Our behavioral models suggest that people may not properly account for the variance-reducing power

of sample averages. Taking this finding a step further, we show that incorrect incorporation of usefulness

of aggregation of many signals explains this finding. This suggests that even when aggregated information

exhibit wisdom of the crowd, people incorporate this wisdom at a lower rate than theoretically optimal.

Overall, our theoretical and experimental findings suggest that people show some sophistication in

processing information. These results provide insights on the directions of bounded rationality in information

processing. Signals in this experiment are generated through a complicated process, which may be considered

a drawback. However, information in real life also follows complicated processes. It is important to figure

out how people form beliefs in a complex environment; one they may not understand completely. Aided

by our experimental results, the behavioral models presented in the paper provide insights for an “as-if”

description of people’s belief updating behavior.

Our results can be useful for many different applications. In particular, it is important to recognize that

people perceive variance incorrectly in addition to ignoring correlation. As a result, people’s responses to

correlated information depend on the degree of correlation. As pointed out in the literature, people can be

“fooled”by financial experts’ suggestions when the experts have very similar view points by design (shared

information source, common analytic tools, similar incentives) even when they are aware of the similarities.

But this is not the whole story. They may not appropriately appreciate suggestions by financial experts

who try to obtain independent sources of information but can get only weakly correlated sources. Combined

with the findings from experiments on sequential actions by subjects designed to find herding behavior, our

results on revised prediction may suggest that bank runs or excessive purchase of hot stocks (leading to
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creation of a bubble) based on market activity may be tempered if enough people receive contrary private

signals. Our results may also suggest that in e-commerce, one may overestimate the impact of click-through

rates on eventual purchase when aggregating data from similar types of consumers and underestimate it

when aggregating data from dissimilar types of consumers.

Our results also have implications on marketing and public opinion. In the literature on multiple source

effect (Harkins & Petty, 1987), the same message from multiple media are considered more informative. While

we obtain a similar implication under strong correlation and our argument provides a mechanism behind

this effect, our results also imply that an opposite effect may appear under weak correlation: An effort to

provide less correlated information may not be rewarded sufficiently. For example, political polls that are

very weakly correlated may be “trusted”by voters much less than they are supposed to be, making them less

useful to political operatives. They may instead prefer to report results from pollsters whose methodologies

favor their candidate even if these polls are known to be more or less the same. Another example can

be regarding public opinion about climate change. Climate scientists Anderson et al. (2013) provide an

independent measure of global warming instead of using thermometer-based global surface temperature time

series of 130 years which is widely used but provides correlated assessment. We would speculate that the

information provided by these researches may not be appreciated by the public as much as one would expect

because people may undervalue the effort to reduce correlation. More research needs to be conducted to

examine how well such implications of our findings carry over to real applications.

This paper provides a framework for investigating belief formation under a large set of contexts and

settings. One future direction would be to analyze how people form beliefs when information or signals

arrive sequentially. One can also explore how people decide how much information to receive based on their

beliefs. Another extension would be to allow for biased signals. This can be particularly relevant in the

context of politics and media. There is some recent theoretical investigation on how correlation neglect may

affect the way media or news outlets present information.23 Thus, learning how people treat correlation

among biased signals and form their beliefs using experiments will be useful. We can also vary the level of

biases the consumers of news themselves have in their preferences and investigate how that interacts with

potential misperception of correlation. In general, our experimental setup and results can open up a number

of different research avenues.
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A Appendix

A.1 Proof of Proposition 1

Let X = (XA
1 , . . . , X

A
nA
, XB

1 , . . . , X
B
nB

)>. The log likelihood function of X is proportional to

(X − TιN )>Σ−1(X − TιN ),

where

Σ =

σ2
AIInA

+ σ2
ACιnA

ι>nA
0nA×nB

0nB×nA
σ2
BIInB

+ σ2
BCιnB

ι>nB

 ,

ιa is the a× 1 vector of ones, Ia is the a× a identity matrix and 0a×b is the a× b matrix of zeros.

Because the prior is T ∼ N(µp, σ
2
p), the posterior is

T |X ∼ N(µ∗, (σ∗)2),

where

µ∗ =

(
1

σ2
p

+ ι>NΣ−1ιN

)−1(
ι>NΣ−1X +

µp
σ2
p

)
,

(σ∗)2 =

(
1

σ2
p

+ ι>NΣ−1ιN

)−1

.

By the rule (I +AA>)−1 = I −A(I +A>A)−1A> for an identity matrix I and a matrix A, we have

Σ−1 =

 1
σ2
AI
InA
− σ2

AC

σ2
AI

1
σ2
AI+σ2

ACnA
ιnA

ι>nA
0nA×nB

0nB×nA

1
σ2
BI
InB
− σ2

BC

σ2
BI

1
σ2
BI+σ2

BCnB
ιnB

ι>nB

 .

It therefore follows that

ι>NΣ−1ιN =
nA
σ2
AI

− σ2
AC

σ2
AI

n2
A

σ2
AI + σ2

ACnA
+

nB
σ2
BI

− σ2
BC

σ2
BI

n2
B

σ2
BI + σ2

BCnB

=
nA

σ2
AI + σ2

ACnA
+

nB
σ2
BI + σ2

BCnB
,

ι>NΣ−1X =

(
1

σ2
AI

− σ2
AC

σ2
AI

nA
σ2
AI + σ2

ACnA

) nA∑
j=1

XA
j +

(
nB
σ2
BI

− σ2
BC

σ2
BI

n2
B

σ2
BI + σ2

BCnB

) nB∑
j=1

XB
j

=
nA

σ2
AI + σ2

ACnA
X̄A +

nB
σ2
BI + σ2

BCnB
X̄B .
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Noting that VA = σ2
AI/nA + σ2

AC and VB = σ2
BI/nA + σ2

BC , it holds that

ι>NΣ−1ιN = 1/VA + 1/VB and ι>NΣ−1X = X̄A/VA + X̄B/VB .

Therefore, when σp →∞ (uninformative prior), the posterior of T is a normal distribution with mean:

(
1

VA
+

1

VB

)−1(
X̄A

VA
+
X̄B

VB

)
=

VB
VA + VB

X̄A +
VA

VA + VB
X̄B

and variance:

(
1

VA
+

1

VB

)−1

=
VAVB
VA + VB

A.2 Proof of Proposition 2

We note that this problem can be considered a Bayesian problem in which the prior is the subject’s belief

(which is the posterior obtained in the proof of Proposition 1 if the subject is truly Bayesian) and the

observation is the average of predictions of all other subjects. Let p̄− = (Mp̄− p∗)/(M − 1) be the average

of all other subjects’ predictions.

The subject believes that the distribution of the session average is N(T, λσ2). Therefore, p̄− ∼

N(T, (M2λ − 1)σ2/(M − 1)2). After observing the session average p̄, the subject’s posterior distribution

can be described by

N

(
σ2

σ2 + (M2λ− 1)σ2/(M − 1)2
p̄− +

(M2λ− 1)σ2/(M − 1)2

σ2 + (M2λ− 1)σ2/(M − 1)2
p∗,

σ2(M2λ− 1)σ2/(M − 1)2

σ2 + (M2λ− 1)σ2/(M − 1)2

)
.

The posterior mean is

σ2

σ2 + (M2λ− 1)σ2/(M − 1)2
p̄− +

(M2λ− 1)σ2/(M − 1)2

σ2 + (M2λ− 1)σ2/(M − 1)2
p∗

=
M(M − 1)

(M − 1)2 + (M2λ− 1)
p̄+

(M2λ−M)

(M − 1)2 + (M2λ− 1)
p∗.
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A.3 Additional Figures

Figure 2: Initial Prediction, Time Series of Weights on A, Treatment Strong
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Figure 3: Initial Prediction, Time Series of Weights on A, Treatment Weak
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Figure 4: Initial Prediction, Time Series of Weights on A, Treatment Zero
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Figure 5: Initial Prediction, Time Series of Weights on A, Treatment Moderate
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Figure 6: Initial Prediction, Time Series of Weights on A, Treatment Both
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Figure 7: Revised Prediction, Time Series of Weights on Session Average, All Treatments
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Sample Experimental Instructions for the Treatment “Strong” 
 

General Rules 

This session is part of an experiment about how people aggregate multiple forecasts about returns 

from a financial asset to estimate the average return. If you follow the instructions carefully and 

make good decisions, you can earn a considerable amount of money. There are __ people 

(including you) in this room who are also participating as subjects in this session. They have all 

been recruited in the same way as you and are reading the same instructions as you are for the first 

time. It is important that you do not communicate with any other participant or discuss the details 

of the experiment with anyone during and after the session.  

Setting 

In each period of this session, you will receive forecasts from 10 stock analysts regarding the 

earning per share (EPS) for the stocks of a company. In every period, the information will be 

provided for a new company. Thus, the EPS in each period is independent of each other. In each 

period, your goal is to predict the true value of the EPS for that period’s stock based on the 

information you receive.  

For each stock, you will receive 10 forecasts about the EPS. An analyst cannot perfectly forecast 

the true EPS of a stock. Rather, she observes the EPS along with two error terms⎯ Division 1 

error and Division 2 error. Specifically, her observation equals the true EPS plus division 1 error 

and Division 2 error where any error term can be positive or negative. She reports this observation 

as her forecast. 

In each period, some of the 10 forecasts will be from Group A analysts and the rest will be from 

Group B analysts. For all Group A analysts, the errors from both divisions are independent of each 

other. Suppose, in some period, the true EPS for that period’s stock is T. If analyst i is a Group A 

analyst, then she observes forecast Fi where 𝐹𝑖 = 𝑇 + 𝜀1𝑖 + 𝜀2𝑖. In this session, Division 1 errors 

for Group A analysts are drawn from a normal distribution with mean 0 and variance of 250 and 

Division 2 error for Group A analysts are drawn from a normal distribution with mean 0 and 

variance of 250. On the other hand, all Group B analysts have the same Division 1 error term but 

different Division 2 error terms. That is, if analyst j is a Group B analyst, then she observes forecast 

Fj where 𝐹𝑗 = 𝑇 + 𝜀1 + 𝜀2𝑗. The error 𝜀1 is common for all Group B analysts. But, error 𝜀2𝑗 is 

different for each Group B analyst. Hence, forecast errors from Group B analysts are correlated 

but not the same. Note that, in this session, the Division 1 error for Group B analysts are drawn 

from a normal distribution with mean 0 and variance of 250 and Division 2 errors for Group B 

analysts are drawn from a normal distribution with mean 0 and variance of 15. 

Description of a Period 

You will receive 10 forecasts regarding the EPS for the stock. The forecasts will be generated 

according to the system described above. Observing the forecasts, you will be asked to enter your 

prediction for the true EPS (see Figure 1). Let us refer to your entered prediction as P. Once you 

have entered P, we will calculate the squared loss, which is defined as (𝑃 − 𝑇)2 where T is the 

true EPS. We will also independently draw a number K randomly from a Uniform distribution on 
[0,40]. If K is larger than or equal to the squared loss, you will receive 100 points. If K is smaller 

than the squared loss, you will receive no point. Thus, it is optimal for you to report what you think 

the true EPS is, on average, based on the 10 forecasts you receive as your prediction. 

A.4 Sample Experimental Instructions and Statistical Definitions
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In a given period, all other participants in the room also receive 10 forecasts for the same stock as 

you do. However, each of them observe a completely different set of forecasts. All the participants 

will submit a prediction for the true EPS based on the forecasts they receive as explained above. 

Once all of you have reported your predictions. We will report to everyone the average of 

predictions from all the participants in the room (including yours). Then we will ask you to submit 

a revised prediction (see Figure 2). We refer to this revised prediction as Pr. After you have entered 

Pr, we will calculate the squared loss for this entry (𝑃𝑟 − 𝑇)2. Note that, Pr can be same as or 

different from your original prediction P. We will also independently draw a number Kr randomly 

from a Uniform distribution on [0,8]. If Kr is larger than or equal to (𝑃𝑟 − 𝑇)2, you will receive 

50 points. If Kr is smaller than (𝑃𝑟 − 𝑇)2, you will receive no point. Thus, it is optimal for you to 

report what you think the true EPS is, on average, based on the 10 forecasts and the average of all 

participants’ predictions as your revised prediction. 

Differences between Periods 

In each period of this session, we will consider a different company. The EPS for the stock of the 

company in each period will be independently drawn from a distribution with a very large variance. 

Thus, the true EPS across different periods are independent of each other and the EPS of the stock 

for one company does not provide information about the EPS of the stock for another company 

across different periods.  

Recall that, in each period, some of the 10 forecasts will be from Group A analyst and the rest will 

be from Group B analysts. In periods 1 to 10, there will be 1 Group A and 9 Group B analysts. In 

periods 11 to 20, the number of Group A and Group B analysts will be 3 and 7, respectively. In 

periods 21 to 30, these numbers will be 5 and 5, respectively, and in periods 31 to 40, these numbers 

will be 7 and 3, respectively. In periods 41 to 50, the number of Group A and Group B analysts 

will be 9 and 1, respectively. That is, in the first 50 periods, all participants will have the same 

combination of Group A and Group B analysts, but the combination will change (for everyone) 

every 10 periods.  

In all of the periods, first you will enter your prediction for the EPS of the stock in that period. 

Then you will receive the average of every participants’ predictions and will be asked to enter a 

revised prediction for the EPS. After entering the prediction and then the revised prediction, you 

will be informed of the true EPS, the squared loss for both the prediction and revised prediction, 

the relevant random numbers (K and Kr) drawn from uniform distributions and your earnings (in 

points) from the prediction and the revised prediction. 

Ending the Session 

At the end of the session, you will see a screen displaying your point earnings from each period. 

In addition to the participating fee, you will earn an amount based on your point earnings from one 

randomly chosen period from each 10-period block. Points earned in these periods will be 

converted to money at the rate of __. You will be paid this amount in cash at the end of the session. 
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Some Statistical Concepts 
 Mean (Average) is calculated by summing the observed numerical values of a variable in a set of 
data and then dividing the total by the number of observations involved. If we have data set (or sample) 

with n data points and the data points are x1, x2,…, xn then the sample average, �̅�𝑥 = 𝑥𝑥1+𝑥𝑥2+⋯+𝑥𝑥𝑛𝑛
𝑛𝑛

.

 Variance is the average of the squared differences between each of the observations in a set of data 
and the mean. Variance is used to indicate how possible values are spread around the mean. Then the 

sample variance, 𝑠𝑠2 = (𝑥𝑥1−�̅�𝑥)2+(𝑥𝑥2−�̅�𝑥)2+⋯+(𝑥𝑥𝑛𝑛−�̅�𝑥)2

𝑛𝑛
. 

 Example: Suppose our data set has 5 data points  x1 = 1, x 2 = 5, x3 = 7, x4 = 3, x5 = 12 

 Mean: �̅�𝑥 = 𝑥𝑥1+𝑥𝑥2+𝑥𝑥3+𝑥𝑥4+𝑥𝑥5
5

 = (1 + 5 + 7 + 3 + 12)/5 = 5.6 

 Variance: s2 = [(1 – 5.6)2 + (5 – 5.6)2 + (7 – 5.6)2 + (3 – 5.6)2 + (12 – 5.6)2]/5 = 14.24 
  

Distributions 
 If a variable is drawn from a Uniform Distribution on the interval [a, b] that means that all points 
on [a, b] are equally likely to be drawn. 
  
 Normal Distribution is pattern for the distribution of a set of data which follows a bell shaped 
curve. The following example is a normal distribution with mean of 0 and variance of 1. We refer to this 
distribution as the standard normal distribution. A picture appears below. The data points (x) can take values 
from negative to positive infinity and the probability density at point x is given by Φ(𝑥𝑥). 
 
 
 
 
 
        

 
 
 
 
 
 
 
 
The probability distribution of a normal distribution with mean M and variance S2 is as follows. That is, if 
the random number x is drawn from such a distribution then:  
Prob(x ≤ M – 1.28160 S) = 0.1 Prob(x ≤ M – 0.84162 S) = 0.2 Prob(x ≤ M – 0.52440 S) = 0.3 
Prob(x ≤ M – 0.25335 S) = 0.4 Prob(x ≤ M) = 0.5 Prob(x ≤ M + 0.25335 S) = 0.6 
Prob(x ≤ M + 0.52440 S) = 0.7 Prob(x ≤ M + 0.84162 S) = 0.8 Prob(x ≤ M + 1.28160 S) = 0.9 

 
 Independent draws from the same distribution are those draws selected from the same 
distribution which have no effect on one another. That is, no correlation exists between the draws. 
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