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Learning by bidding

Tanjim Hossain∗

We analyze a dynamic second-price auction with an informed bidder and an uninformed bidder
who, upon seeing a posted price, learns whether his valuation is above that price. In the essentially
unique equilibrium, an informed bidder bids in the first period if her valuation is below some
cutoff and bids only in the last period otherwise. An uninformed bidder bids in every period to
optimally change the price unless the price is above his valuation or he is the high bidder. This
model also provides a rationale behind the use of a secret reserve price in private-value settings.

1. Introduction

� In most economic models, an agent with complete preferences is assumed to be able to
formulate her preferences perfectly. For example, a rational agent usually knows her valuation
in a private-value setting. In this article, we introduce nonstandard agents who are not aware of
exactly how much they like an object. In many real-life situations, people actually do not need
to know their exact valuations for efficient trades to take place. When a person buys milk in
the supermarket, he does not need to know exactly how much he values a gallon of milk. He
only needs to know whether he values it more than the price. That is, knowing his preferences
around the posted price is enough for decision making in this situation. Using this intuition, we
introduce a stylized model where, when confronted with a price, an agent who does not know
his exact valuation for a good easily learns whether his valuation is above or below the price.
We apply this model of preference elicitation in a dynamic second-price auction such as those
held on eBay. We show that this model explains the prevalence of late and multiple bidding in an
independent private-value (IPV) setting. Moreover, the model provides a rationale behind the use
of secret reserve prices in second-price auctions and is consistent with many other stylized facts
from online auctions.

An eBay auction is essentially a second-price auction with a fixed closing time where a
bidder can submit as many bids as she wants. A bidder’s latest bid has to be higher than all of
her previous bids and this bid is basically considered as her active bid. At any point during the
auction, the current price equals the second-highest bid received so far, but the exact bids are kept
undisclosed. At the pre-announced time when the auction ends, the highest bidder wins and pays
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the bid of the second-highest bidder plus a small bid increment. The winner, hence, does not pay
her own bid. For a more detailed description of eBay auctions, see Roth and Ockenfels (2001). It
is an empirical regularity that online auctions receive a significant number of bids in the last few
minutes of an auction. In this article, we define sniping as bidding in the last three minutes of the
auction and not placing any earlier bid.1 Moreover, many bidders frequently update their bids by
placing a new bid slightly above the current price if they are not the highest bidder. We refer to
this multiple bidding as nibbling.2 Figure 1 presents all the individual bids submitted in an eBay
auction of a golf driver. The bidder “dsgn101” submitted her only bid 17 seconds before the end
of the auction, or sniped. On the other hand, all other bidders placed multiple bids. Each entry
denotes submission of a new bid. When bidder “kalanisurf” entered, she saw that the opening
price was $9.99 and the highest bidder was “fredburt,” but did not know the current highest
bid. She took two bids to become the current highest bidder with a bid of $120. Then bidder
fredburt came back and placed three separate bids to overtake kalanisurf’s bid. Bidders fredburt,
kalanisurf, and later bidders “ogus” and “rbwaugh@aol.com” all nibbled. Bidder fredburt placed
eight separate bids to bid $125. As eBay never raises the price above the bid of the second-highest
bidder, placing a single bid of $125 would lead to the same response by other bidders with private
values, but would eliminate the risk from a possible failure to place a future bid due to some
unforeseen event. The fact that the price in eBay reflects only the second-highest bid makes
nibbling, at best, superfluous in a private-value setting. Many of the late bidders also bid earlier
in the auction, and this suggests that sniping does not only arise from buyers’ desires to know the
auction outcomes soon after they place a bid. Section 2 presents further evidence of prevalence
of sniping and nibbling and some other anomalous empirical regularities in online auctions.

In Section 3, we introduce a second-price auction with a fixed number of periods where
bidders can bid in every period. The current price at the beginning of a period equals the second-
highest bid received in the previous periods. At the end of the auction, the bidder who placed the
highest bid wins and pays the second-highest bid as the price. In an IPV setting where all bidders
know their valuations, or are informed bidders, any strategy profile where bidders ultimately bid
their private valuations is an outcome-invariant equilibrium. Thus, sniping and nibbling can be
consistent with the standard theory. However, all bidders bid their valuations in the first period in
the unique equilibrium in weakly undominated strategies if there is a small opportunity cost of
waiting. Such an opportunity cost may arise if there is always a small probability that a bidder
will not be able to place any bid in the remainder of the auction. In reality, this may correspond to
a bidder being unable to go back to an auction because of unanticipated personal commitments,
computer malfunctions, or forgetfulness.

The main innovation of this article is introducing a model of bidders who do not know
their private valuations for the good exactly but learn more about those during the auction using
a boundedly rational learning process. Specifically, when such a bidder is confronted with a
minimum price that he has to pay if he wins, either as a posted price or as a minimum bid in an
auction, he costlessly learns whether his valuation is above or below that price. As the minimum
bid in our dynamic second-price auction can be changed many times, when a bidder does not
know his valuation, he can experiment strategically by using his bids and learn more about his
preferences. A point to note is that we do not assume that an uninformed bidder, a bidder who
does not know his valuation, has to change the price with his own bids to get more information
about his valuation. He gets more information any time the price changes whether the change
results from his own bid or some other bidder’s bid. New prices give him new information and this
incentive leads him to place multiple bids. On the other hand, in some cases, it may be optimal
for an informed bidder to restrict such learning by bidding by the uninformed bidder. This leads
to late bidding or sniping by her.

1 Traditionally in the literature, all late bids are considered sniping bids.
2 We thank John Morgan for suggesting this term.
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FIGURE 1

BID HISTORY FROM A TYPICAL eBAY AUCTION
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Theorem 1 shows that, when both bidders bid in the first period of the auction with positive
probability, there essentially is a unique equilibrium with the following properties:

(i) Bidder 1 bids above the opening price either only in the first period or only in the last
period. There exists a cutoff value v < 1 such that if v1 ≤ v, then she bids v1 in period 1.
If v1 > v, then she bids v1 in period T .

(ii) Bidder 2 bids in every period unless he is the high bidder or learns that v2 < pt .

This result illustrates that sniping and nibbling are equilibrium phenomena in a private-value
setting. Some bidders will bid only early in an auction, some will bid both early and late, and
some will bid only late. Moreover, both early and late bidding may occur in the same equilibrium.
A significant fraction of bidders who bid toward the end of an auction will not bid earlier in that
auction. A bidder who places multiple bids may raise her bid frequently until she becomes the
high bidder. Occurrence of sniping and nibbling in equilibrium is robust to many modifications of
the original learning model. This model explains many other stylized facts presented in Section 2
quite well. We then show, in Proposition 4, that when an uninformed bidder can also learn by
comparing their valuations to hypothetical prices or prices in other auctions before the auction in
which he participates, sniping and nibbling will still occur.

Sniping and nibbling with uninformed bidders is not an artifact of having exactly one
informed bidder and one uninformed bidder. We concentrate on this case because of the simplicity
of the model. In Section 4, we extend the model to auctions with arbitrary numbers of bidders.
We show that sniping and nibbling occurs in any auction with at least one informed bidder and at
least one uninformed bidder.

Learning by bidding may also explain the extensive use of a secret reserve price in second-
price auctions. If all bidders are informed, secret or public reserve prices lead to the same outcome
in an IPV setting. On the other hand, an uninformed bidder may win the object even when his
valuation is below the reserve price if the reserve is secret but not if it is public. Proposition 7
shows that a secret reserve price auction may generate higher expected revenue than a public
reserve price auction.

The rest of the article is organized as follows: the next section reports some stylized facts
that led to the questions addressed in this article and relates this article to the existing literature.
Section 3 introduces the theoretical model with two bidders where one is informed and the other
is uninformed. Section 4 discusses auctions with more than two bidders. Section 5 analyzes secret
reserve price auctions and Section 6 concludes the article. All proofs are in the Appendix.

2. Some stylized facts and relation to the literature

� We collected a data set of 2,026 completed auctions of “ Titleist 975J” golf drivers conducted
on eBay between February and April of 2003. In these auctions, 9,003 bidders placed 17,057
separate bids, on average placing 1.89 bids each. About 40% of all bidders placed more than
one bid or nibbled. Of all bidders, 9.6% placed a bid in the last three minutes and 67% of these
bidders did not place any bid earlier in the auction. Some bidders bid early in the auction, some
bid late, and others bid both early and late.

Many studies found the same bid pattern in eBay auctions for a wide variety of goods. Roth
and Ockenfels (2001) gathered a sample of over 1,000 auctions of various items. Of the auctions
with two or more bidders, 18% received bids in the last minute and 74% had at least one bidder
submitting multiple bids. In a study of coin auctions on eBay by Bajari and Hortacsu (2003),
32% of the bids were submitted after 97% of the duration of the auction had passed. Hossain and
Morgan (2006) sold brand new popular music CDs and Xbox game cartridges on eBay. There
was little uncertainty about the quality or popularity of these products; still, at least one bidder
placed multiple bids in 76% of the auctions. Bids were placed in the last five minutes in 30% of
the auctions. Ariely et al. (2005) found evidence of extensive sniping and nibbling in laboratory
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experiments of eBay-type auctions. We report some additional empirical regularities or stylized
facts found in the existing literature or in our data set.

(i) Many late bidders on eBay bid only in the last few minutes of an auction. In our data
set, more than two thirds of the bidders who placed a bid in the last three minutes of
an auction did not bid earlier in that auction. A third of the late bidders placed bids
both early and late.

(ii) Many bidders self-nibble; that is, they bid repeatedly below the highest outstanding
bid (the exact outstanding bid is unknown to them) while the highest bidder stays
unchanged. Moreover, many bidders place a new bid every time they are displaced
from the highest bidder position. Almost 80% of all nibblers in our data set placed
consecutive bids while they were not the high bidder. A nibbler placed more than
3.26 bids on average.

(iii) Roth and Ockenfels (2001) find that more experienced bidders are more likely to
snipe than less experienced bidders. One may argue that experienced bidders are
more proficient in thinking counterfactually, asking themselves repeatedly how much
they would be willing to bid, and are thus more likely to be informed bidders. In our
data set, a bidder with a feedback rating of at least 20 was one-third less likely to
place multiple bids than a bidder with a lower feedback rating.

(iv) Now-defunct Amazon.com had a “soft” closing time: the length of the auction would
be increased if there was a bid within the last ten minutes of the pre-announced closing
time. After that, the auction would close when there had not been any activity for ten
minutes. Roth and Ockenfels (2001) find that nibbling was common but sniping was
relatively uncommon in Amazon auctions.

(v) Controlling for auction characteristics, an auction where all bidders placed only one
bid each received almost 17% less revenue than an auction where all bidders placed
multiple bids in our data set. According to our model, informed bidders are likely
to bid only once and are also more likely to snipe. On the other hand, uninformed
bidders are likely to bid multiple times. Thus, multiple bidding can be an indicator
of being uninformed. However, whether a bidder places multiple bids depends on the
opening price leading to an endogeneity problem in the regressions. Combined with
the model’s predictions, the third stylized fact suggests that an experienced bidder is
more likely to be informed of her own private valuation. Therefore, we use bidder
experience, specifically the share of bidders with feedback rating above 20, as an
instrument for the share of informed bidders.3

(vi) In our data set, nibblers started with a lower bid than bidders who placed only one
bid, but finally ended up bidding higher in the auction. The first bids of bidders who
placed multiple bids were lower than those by bidders who place only one bid by $7
and their last bids were higher by $24. We use a dummy for bidders with feedback
rating above 20 as an instrument for informed bidders.

(vii) Bajari and Hortacsu (2003) find that sellers frequently chose to keep the reserve price
secret for objects with relatively high book values. In our data set, more than a quarter
of the auctions were secret reserve price auctions. When all bidders are informed,
keeping the reserve price secret or public leads to the same final outcome, but the
seller has to pay an extra fee for keeping the reserve secret on eBay.

(viii) A secret reserve price auction was about one-third less likely to receive bids in the
last few minutes by bidders who did not place any earlier bid than an auction with
the same opening price but no secret reserve. The first bids of bidders who placed
multiple bids were higher by $5 if there was a secret reserve price.4

3 An underlying assumption here is a bidder’s willingness to pay is uncorrelated with her experience on eBay.
4 The relevant coefficients in regularities (v), (vi), and (viii) are significant at the 1% significance level.
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As sniping is difficult to explain in a standard private-value second-price auction, many have
suggested alternative models. In one of the first papers on online auctions, Roth and Ockenfels
(2001) present a two-stage second-price auction where a continuous time auction is followed
by a discrete last period. The object for sale is private value and a last-period bid does not get
accepted with a positive probability. For some parameter values, there exist multiple equilibria
with an equilibrium in which all bidders bid only in the last period or snipe. In other equilibria,
bidders go to “war”; that is, they bid their valuations before the last period. Although sniping can
be an equilibrium phenomenon, both early and late bids will not arise in the same equilibrium.
Bidders have no incentive to nibble in this model. Hasker et al. (2004) reject the hypothesis that
bidders follow “snipe-or-war” strategies using a data set of color computer monitors and Ariely
et al. (2005) reject this hypothesis using laboratory experiments.

Some have used common-value objects to explain sniping. In another pioneering paper on
eBay auctions, Bajari and Hortacsu (2003) analyze an auction for common-value objects with a
structure similar to that of the Roth and Ockenfels (2001) model. However, bids placed in the
last period are accepted with certainty. When the object is common value, then there is a unique
symmetric Nash equilibrium where all bidders bid only in the last period. Hence, there will be
sniping but there will be no nibbling.

Like in the current model, the model in Rasmusen (2006) has an informed and an uninformed
bidder. The uninformed bidder can learn his private valuation perfectly during the auction by
paying a cost. For certain cost levels, there is an equilibrium where the informed bidder places a
bid below her valuation early in the auction using a mixed strategy to hide her true valuation and
then bids her valuation late in the auction. In that equilibrium, no bidder bids more than twice
and both bidders have incentives to place multiple bids. A sniper always places an earlier bid in
this model, contrary to the first stylized fact. The uninformed bidder will not self-nibble or bid
repeatedly while the identity of the high bidder does not change. Once the uninformed bidder’s
bid is overtaken by some other bidder in that model, he will expend the cost to learn his valuation
and place at most one more bid. This contradicts the second stylized fact.

In Compte and Jehiel (2004), bidders also do not know their own valuations and get imperfect
information during the auction. However, bidders receive information exogenously during the
auction. In our model, the uninformed bidder optimally chooses what kind of information to
get by strategic experimentation (his bid determines at what price he gets his next information).
Moreover, bid activity by some bidders is needed in our model for the uninformed bidder to get
more information about his valuation, as he gets new information only when the price changes.

On eBay, many concurrent auctions of identical or very similar goods go on and new auctions
of similar products start every day. Moreover, the good can usually be purchased in the retail
market. When we account for these outside opportunities, the optimal bid of a bidder can be
below her private valuation. Still, it will be a function of her private valuation and her optimal
strategies will be type dependent. Given many concurrent auctions, a bidder may place more
than one bid in an auction as she gets new information about her outside opportunities as the
auction progresses. Nevertheless, one would not see a bidder placing five or six bids within a
minute on the same auction without placing bids in any other auctions, a pattern common in
eBay auctions. More importantly, as Ely and Hossain (2006) show, concurrent auctions actually
make sniping less profitable than bidding early when all bidders are rational. In Ariely et al.’s
(2005) experiments, sniping and nibbling occurred even though there was no concurrent or future
auctions of identical or similar goods. Thus, a retail market and concurrent and future auctions
do not explain the pervasiveness of sniping in online auctions.

Song (2004) estimates an empirical model of eBay auctions with unknown number of
potential bidders using semi-nonparametric techniques. That model allows for both sniping and
nibbling. In this article, we use simple reduced-form estimations instead of semi-nonparametric
estimation. The main difference between the two models is that the current article provides a
strict motivation behind sniping and nibbling behavior by bidders instead of these merely being
an artifact of one of many outcome-invariant equilibria.
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The learning model proposed in this article can be related to the evidence that people do not
understand how much they like an object before they have to pay for it. If there is a posted price,
then the person knows that he has to pay at least that amount to get the good. It facilitates the need
to know whether his valuation is above or below the price and makes this comparison cognitively
easy. Thus, uninformed bidders can also be viewed as individuals who learn their preferences
by contemplating about their tastes at some cost, as suggested by Ergin (2003). An uninformed
bidder can contemplate the relation between his valuation and the posted price costlessly and a
similar contemplation for any other hypothetical price is infinitely costly.

We can also draw some motivation for learning by comparing valuation with the price from
psychology literature. More than five decades ago, Herbert Simon (1956, 1957) pointed out
that evolutionary pressures guide individuals to local (“better than”) rather than global (“best
possible”) optimization. Asking the self whether the good is better than some price is similar to
Simon’s local optimization. Recently, psychologists have adopted the “two-systems” perspective
on human decision making (Sloman, 2002). According to that theory, judgments are made by the
interaction of two mental systems. The first one, known as system 1, is analogous to intuition.
The other one, known as system 2, is analogous to reason. Comparing a price and the valuation
can be thought of as judgment using system 1 and knowing the exact valuation as judgment using
system 2. Uninformed bidders can be viewed as agents with extremely high cost of using system
2. Informed bidders can use system 2 without any cost to learn their valuations exactly.

3. The main model

� The auction is a dynamic version of conventional sealed-bid second-price auctions and is
similar to eBay auctions for a single object. The seller, indexed by 0, auctions off an indivisible
object to two bidders. There are T periods indexed by t ∈ {1, 2, . . . , T }. Nature independently
draws each bidder’s private valuation from the distribution F which is strictly increasing and
twice differentiable on [0,1] . Bidder i ∈ {1, 2} has a private valuation v i for the object and is
risk neutral. If she wins the object and pays a price p, her payoff is v i − p. If she does not win,
she pays zero and her payoff is zero.

A bidder can place a bid in each period. Bidder i’s action in period t is denoted by bi
t ∈ [0,

1]. Bidder i’s highest bid up to period t is denoted by β i
t = maxτ≤t bi

τ
. The auction starts at an

opening or period 1 price of p1 = m ∈ [0, 1). In period t, the second-highest bid up to period
t − 1 is posted as the current price pt . The high bidder is denoted by w t ∈ {0, 1, 2}. If none of
the bidders places a bid as great as m in periods 1 to t − 1, then w t = 0 and pt = m. Otherwise,
w t = 2 and pt = max {m, β1

t−1} if β1
t−1 < β2

t−1 and w t = 1 and pt = max {m, β2
t−1} if β1

t−1 ≥
β2

t−1. The highest bidder wins and pays the second-highest bid at the end of the auction. If none
of the bidders places a bid as great as m in periods 1 to T , then the object stays unsold. Otherwise,
if β1

T ≥ β2
T then bidder 1 wins and pays {m, β2

T} and if β2
T > β1

T then bidder 2 wins and pays
{m, β1

T}.
A bidder never observes the other bidder’s exact bids. The public history at the beginning of

period t , ht , is the sequence {(pτ , wτ )}t
τ=1. A terminal history is denoted by h T +1 where wT +1 is

the winner and pT +1 is the final price. The set of all possible ht is denoted by H t . A strategy σ is
a sequence {σ t}T

t=1 where σ t : H t × [0, 1] → [0, 1]. We restrict our attention to pure strategies
in this section and Section 5. An equilibrium is defined as a Perfect Bayesian Equilibrium where
none of the bidders plays a weakly dominated strategy.

If all bidders know their private valuations, then any strategy profile where each bidder
ultimately bids her private valuation is an equilibrium. All these equilibria lead to the same
outcome as the equilibrium where all bidders bid their valuations at the beginning of the auction.
However, if there is a small probability that a bidder will not be able to place any bid in the
remainder of the auction, then a bidder bids her valuation in the first period in the unique
equilibrium in weakly undominated strategies.
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In this article, we assume that bidder 1 is a standard agent who knows her valuation v1.
Bidder 2 learns about his valuation only by costlessly comparing it with the current price. More
precisely, he learns whether v2 is above pt in every period t. For clarity, we will use female and
male pronouns for bidders 1 and 2, respectively. We refer to bidders 1 and 2 as the informed
bidder and the uninformed bidder, respectively.

At the beginning of period t ∈ {1, . . . , T }, the uninformed bidder receives a private signal
that tells him whether v2 is as large as pt . The signals are always accurate and are either positive
or negative. A positive signal implies that v2 ≥ pt whereas a negative signal implies the opposite.
Because pt is nondecreasing in t, once the uninformed bidder receives a negative signal, all his
future signals will be negative. Receiving a signal, bidder 2 updates his belief about v2 according
to Bayes’ rule. Then, in any weakly undominated strategy, bidder 1 bids v1 in one of the periods
and never bids above v1 and bidder 2 bids the conditional expected value of v2 in the last period if
v2 is above pT . To provide the intuition behind the main results from this model, we first analyze
a simple example in the next subsection.

� A simple example. Suppose there are two periods and the valuations of the two bidders are
independently drawn from uniform distributions on [0,1]. The opening price m is zero. Because
p2 equals the lower of the two players’ first-period bids, p2 equals zero if one of the players does
not bid in the first period. Informed bidder 1 knows her valuation v1. Uninformed bidder 2 knows
that v2 ∈ [0, 1] and learns whether v2 ≥ p2 at the beginning of the second period.

In weakly undominated strategies, bidder 1 bids v1 in one of the periods and bidder 2 bids
the conditional expected value of v2 in the last period. The key point is that, using her first-period
bid, bidder 1 can control the possible values of the conditional expected value of v2 given p2. If
bidder 1 does not place any bid in the first period, then bidder 2 only knows that v2 ∈ [0, 1] even
in the second period and bids 1

2
in that period. If bidder 1 places a bid in the first period, the price

in the second period is strictly positive if bidder 2 places a first-period bid. If v2 < p2 then the
conditional expected value of v2 is below p2 and bidder 2 does not place any bid in the second
period. In that case, bidder 2’s final bid is lower than what it would be if bidder 1 did not place a
bid in the first period. However, if v2 ≥ p2 then bidder 2’s final bid is higher than what it would
be if bidder 1 did not place a bid in the first period. As a result, for low values of v1, it is optimal
for bidder 1 to bid v1 in the first period in the hope that bidder 2’s valuation is below p2 so that he
does not bid in the second period. For higher values of v1, it is optimal for bidder 1 only to bid in
the last period, winning the object for sure at a price of 1

2
.

On the other hand, a first-period bid helps bidder 2 to get more information about v2 from p2.
However, a large bid increases the probability of him bidding above v2. He chooses his first-period
bid to balance this tradeoff and places a bid smaller than 1

2
, the unconditional expected value of

v2. This pair of strategies of the two bidders essentially characterizes all equilibria of this game.
Now we characterize bidder 2’s first-period bid and a cutoff value such that if v1 is below

that cutoff then bidder 1 bids v1 in the first period and snipes otherwise. We will compare two
strategies of bidder 1 :

Strategy 1: bidding v1 in period 1.
Strategy 2: bidding zero in period 1 and v1 in period 2.
Theorem 1 shows that comparing these two strategies ensures that we find an equilibrium.

Suppose bidder 2 bids x in period 1 and bids 1+p2
2

in period 2 if v2 ≥ p2. If v1 ≤ x then
bidder 1 gets zero payoff from both strategies. If v1 ∈ (x, 1

2
] then p2 equals x if bidder 1 follows

strategy 1. With probability x, bidder 2 gets a negative signal in period 2. A negative signal implies
v2 < x and he does not place any more bids. If bidder 2 gets a positive signal, then he bids 1+x

2
and

bidder 1 loses the auction. Hence, bidder 1 gets an expected payoff of x(v1 − x) from strategy 1.
She gets an expected payoff of zero from strategy 2 as v1 ≤ 1

2
. Therefore, following strategy 1 is

a best response for bidder 1 for any x ≥ 0. If v1 ∈ ( 1
2
, 1+x

2
] then bidder 1 gets an expected payoff

of x(v1 − x) from strategy 1. She gets an expected payoff of v1 − 1
2

from strategy 2. Bidder 1’s
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best response is strategy 1 if v1 ≤ v and strategy 2 if v1 > v where x(v − x) = v − 1
2
; that is,

v = 1
2 −x2

1−x
. If v1 ≥ 1+x

2
then bidder 1 wins if she follows strategy 1 even when bidder 2 gets a

positive signal in period 2. Bidder 1’s expected payoff is v1 − 1
2
− x2

2
. Her expected payoff from

strategy 2 is v1 − 1
2
. Thus, her best response is strategy 2 for all v1 ≥ v. Given player 1’s strategy,

bidder 2’s expected payoff from bidding x in the first period is
∫ 1

x
(
∫ v

0
(z − y) dy) dz. He maximizes

his expected payoff by choosing x = v

2
. Solving for v and x, we get

x = 1

2 + √
2

and v = 2

2 + √
2
.

In this equilibrium, bidder 1 bids either in period 1 or 2. In contrast, bidder 2 may bid in
both periods. Thus, bidder 2 nibbles to learn about v2 and this nibbling leads to sniping by bidder
1. There exists an analogous equilibrium for any arbitrary number of periods T and a general
distribution F from which v1 and v2 are drawn.

� The main result. Now we formally present the above result in a general model. Theorem 1
shows that the winner and final price pair of any equilibrium where both bidders place a bid in
the first period with positive probability is the same as that of a specific equilibrium (σ v, σ x ).
Thus (σ v, σ x ) characterizes all the equilibria and the equilibrium outcome is unique. In this
equilibrium, bidder 1 bids v1 in the first period if v1 is below a cutoff value v and bids v1 in the
last period otherwise. Bidder 2 places bids in every period as long as he is not the high bidder
and v2 is above the current price. Hence, bidder 1 snipes with positive probability and bidder 2
nibbles.

Here σ v is such that

σ v

t (ht , v1) =
{
v1 for all t if v1 ≤ v

0 for t < T and v1 for t = T if v1 > v.

If bidder 2 gets a negative signal in period t, he does not bid anymore as the price is already
higher than v2. In period t < T , if he gets a positive signal and is not the high bidder, he places
a bid that maximizes his expected payoff given history ht . The sequence of these bids is of most
interest to us. Let us define x = {x t}T −1

t=1 to be a sequence of T − 1 scalars where bidder 2’s bid
in period t is max[xt , v(ht )] if v2 ≥ pt and w t 	= 2. Here v(ht ) is bidder 2’s belief of the lowest
possible value of v1 given ht . Strategy σ x is such that

σ x
t (ht , v2) =

⎧⎪⎨⎪⎩
0 if v2 < pt

max [xt , v (ht )] if v2 ≥ pt , t < T , and wt 	= 2

E [y| [pt , 1]] if v2 ≥ pt and (wt = 2 or t = T ).

For notational convenience, we use E[Q|[a, c]] =
∫ c

a Q(y) d F(y)

F(c)−F(a)
for a, c ∈ [0, 1].

If (σ v, σ x ) is an equilibrium strategy profile, then we refer to (v, x) as an equilibrium cutoff-
action pair. Noting x 0 = m and x T =E [y | [x T −1, 1]], we use the following two equations to
characterize the unique equilibrium cutoff-action pair of this game:

xt = E [y| [xt−1, xt+1]] for t ∈ {1, . . . , T − 1} (1)

v =
∫ 1

m
y d F (y) − ∑T −1

t=1 xt (F(xt ) − F(xt−1))

1 − F(xT −1)
. (2)

Theorem 1. There exists a unique equilibrium cutoff-action pair (v, x) where (v, x) satisfies
equations 1 and 2. Any equilibrium where both bidders place a bid in the first period with positive
probability leads to the same outcome as that of the equilibrium (σ v, σ x ).
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In this dynamic auction, bidder 2 gets multiple opportunities to learn about v2 by changing
the price with his bids. When choosing a bid, he faces the tradeoff between winning at a price
higher than v2 by bidding too high and not learning much about v2 by bidding too low. Bidder
2’s equilibrium bids when he is not the high bidder reflect optimal experimentation by him.
Bidder 1’s equilibrium behavior is a strategic response to this learning. Because the current price
stays unchanged if one of the bidders does not bid and the auction ends after a fixed number of
periods, bidder 2 does not get any opportunity to learn about v2 if bidder 1 does not bid until the
last period. Bidder 1’s optimal strategy determines how much learning by bidder 2 she should
allow and bidder 2’s optimal strategy determines exactly how much to learn in each period. In
this game’s essentially unique equilibrium, bidder 1 either lets bidder 2 experiment as much as
possible by bidding in the first period or she does not let bidder 2 experiment at all by bidding
only in the last period.

The equilibrium cutoff-action pair is unique. There is a unique cutoff v < 1 for which there
exists an action sequence x such that (v, x) leads to an equilibrium. Moreover, the optimal x given
this v is unique. Note that we are not restricting bidder 1’s strategy to bidding v1 whenever she
bids above m. However, any equilibrium where both players place a bid in the first period with
positive probability leads to the same outcome as the outcome from (σ v, σ x ). For example, if
bidder 1 follows a strategy where β1

t ≥ x t for all t such that v1 ≥ x t whenever b1
1 > m leads to the

same information structure for bidder 2 if bidder 1 followed the strategy that b1
1 = v1 if and only

if b1
1 > m. Then the public history after all periods will be the same as that if bidder 1 followed

σ v and bidder 2’s best response can be characterized by σ x , as the equilibrium cutoff-action pair
is unique. All these equilibria are essentially the same as (σ v, σ x ). There is no equilibrium where
bidder 1 places a bid in the first period and bidder 2 becomes the high bidder in period t even
though v1 ≥ x t−1 occurs on the equilibrium path. Moreover, there is no equilibrium where bidder
1 bids for the first time in period τ ∈ {2, 3, . . . , T − 1} for some values of v1. As a result, any
equilibrium strategy can be characterized by σ v and σ x , thus leading to a unique equilibrium
outcome.

Theorem 1 restricts attention to strategy profiles where both bidders place bids in the first
period with positive probability. If we remove this restriction, there will be equilibria where
bidder 1 places no bid in the first k periods irrespective of what v1 is and then both players play
an equilibrium using the equilibrium cutoff-action pair of a T − k period auction. Nevertheless,
if there is a small probability that a bidder will not be able to place any bid in the remainder of
the auction, then all these equilibria vanish and we have a unique equilibrium outcome in weakly
undominated pure strategies. Theorem 3 in Hossain (2004) shows this result formally.

An informed bidder has incentives to bid only early or only late and an uninformed bidder
bids both early and late. Thus, the model is consistent with the first stylized fact that some
bidders bid early, some bid late, and some bid both early and late. An uninformed bidder nibbles
repeatedly while he is not the high bidder to get more information about his valuation. This
explains self-nibbling as evidenced in the second stylized fact. If experienced bidders are more
likely to be informed then the model suggests that experienced bidders are more likely to snipe
and less likely to nibble, as found in the third stylized fact. If we incorporate Amazon’s “soft”
closing time in our model, there will not be any benefit from sniping as bidders always get time
to react to any bid. Costless comparison of the posted price and valuation will still give rise to
nibbling, as evidenced in the fourth stylized fact.

Equilibrium characteristics and some variations. We can characterize equilibrium properties of
this auction by the characteristics of (v, x). We provide an example of the equilibrium cutoff-action
pair for uniform F to illustrate (v, x) for an arbitrary T :

v = T + m
√

T

T + √
T

= 1 − 1 − m√
T + 1
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x =
{

t + (T − t)m + m
√

T

T + √
T

}T −1

t=1

⇒ xt − xt−1 = 1 − m

T + √
T

.

As T approaches infinity, x t − x t−1 gets close to zero and v gets close to one. The winner
and the transaction price of this auction is the same as that of a model where both bidders are
informed with probability approaching one. Proposition 1 generalizes this result for all F.

Proposition 1. For all t , x t − x t−1 > 0 with limT →∞ x t − x t−1 = 0 and v < 1 with limT →∞
v = 1. The bidder with higher valuation wins and pays the second-highest valuation with
probability 1 when T approaches infinity.

Because bidder 2 does not learn anything about v2 if the price is unchanged, he makes a
positive bid increment if he gets a positive signal and is not the high bidder. Because higher bids
increase the risk of paying above v2, bid increments approach zero as T approaches infinity. As a
result, bidder 1 can induce almost perfect learning by bidder 2 if she bids in period 1. If bidder 1
could induce perfect learning by bidding in period 1, bidder 1 would bid in period 1 for any v1.
Hence, as T approaches infinity, the probability of sniping approaches zero.

An equilibrium characteristic is that bidder 2, when not the high bidder, bids in every period
unless he gets a negative signal implying that he has bid above v2. If bidder 1 bids in period 1
and wins, she pays a price above v2. As a result, v approaches one only when the expected
overpayment approaches zero, which happens only if T approaches infinity. The necessary and
sufficient conditions for v → 1 are: (i) x t − x t−1 → 0 for all t and (ii) x T −1 → 1. At the limit
when T approaches infinity, with probability 1, the bidder with the higher v i wins and pays a
price of min {v1, v2}.

Bidder 2’s first bid is below the expected value of v2 conditional on v2 ≥ m. He places bids
until he gets a negative signal, which implies his final bid is above v2. If he does not get any
negative signal in the auction, his final bid equals the conditional expected value of v2 given
v2 ≥ pT . Hence, bidder 2’s final bid overshoots v2 on average. On the other hand, bidder 1 places
only one bid equaling v1. Thus, this model is consistent with the sixth stylized fact. The seller
gets a higher expected revenue when bidder 2 is uninformed than the case when both players
are informed, as an uninformed bidder’s last bid overshoots v2 on average. The fifth stylized fact
that auctions with a higher share of bidders who place multiple bids receive higher revenue is
consistent with the overbidding by uninformed bidders predicted by this model.

Proposition 2. The expected revenue with one informed and one uninformed bidder is higher
than that with two informed bidders. This revenue difference goes to zero as T approaches infinity.

Distribution of the final price converges to that of the benchmark model as T goes to infinity
and the revenue difference goes to zero. This result strictly depends on the assumption that the
uninformed bidder costlessly learns whether v2 ≥ pt in every period. We consider two alternative
models where the probability of sniping does not go to zero as T approaches infinity.

First suppose bidder 2 cannot learn the relation between his valuation and the price in every
period. Rather, at the beginning of any period t, he learns whether v2 ≥ pt with probability λ

T −1
and

he gets no new information about v2 with probability 1 − λ

T −1
. The signals are still binary but the

signal arrival process is stochastic following a binomial process. Equilibrium bidding behavior,
discussed earlier in this section, is robust to such uncertain arrival of signals. Theorem 1 holds
even when signals do not arrive in every period—any equilibrium can be characterized by a unique
equilibrium cutoff-action pair. Please see Section 4 in Hossain (2004) for a detailed discussion
of the stochastic signal arrival case. Sniping and nibbling occur in any equilibrium and bidder
2’s final bid, on average, is above v2. When signals arrive stochastically, for any finite λ, the
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equilibrium cutoff stays bounded away from one and the bidder with the lower v i wins with
nonzero probability even when T approaches infinity. Bidder 2 gets finitely many opportunities to
compare his bid to the current price in expectation. Hence, he places large enough bid increments,
compared to the price when he received his last signal, so that his next signal is informative. This
creates friction in learning even when T approaches infinity and bidder 1 snipes with nonzero
probability.

Next, suppose bidder 2 can learn the relationship between v2 and pt in any period, but at
a small positive cost κ . This can be thought of as a cost for introspecting one’s own preferences
around the current price. For any positive κ , there is a finite τ such that even if T > τ , bidder 2
will decide to get a signal at most τ times in any equilibrium. This implies that the probability of
sniping will not approach zero as T approaches infinity, unlike the case when self-introspection
at the price is costless. Interestingly, when κ is positive, there may not be a unique equilibrium
outcome. For example, suppose F is uniform, m = 0, κ = 0.005, and T ≥ 3. Then, there exists an
equilibrium where bidder 2 learns whether v2 is greater than pt at most twice and bidder 1 snipes
if v1 is greater than 2

2+√
2
, which is the equilibrium cutoff when contemplation is costless and T

equals 2. There also is an equilibrium where bidder 2 learns whether v2 ≥ pt at most three times
and bidder 1 snipes if v1 is greater than 3

3+√
3
. However, there is no equilibrium where bidder 2

learns whether v2 ≥ pt more than thrice.
Another potentially interesting variation of the model could be that bidder 1 does not know

whether bidder 2 is informed or uninformed but only knows the probability of bidder 2 being
uninformed. If there is a small possibility that bidder 2 is uninformed then sniping occurs in
equilibrium. Suppose bidder 1 only knows that bidder 2 is uninformed with probability α ∈ (0,
1) and is informed with probability 1 − α. This auction has an equilibrium where bidder 1 bids
his valuation when she places a bid above m. She bids v1 in period 1 if v1 is equal to or below
some cutoff value v and bids v1 in period T otherwise. If bidder 2 is informed, he bids v2 in the
first period. If he is uninformed, then he tries to learn v2 by his bids using strategy σ x as defined
earlier in this section. Suppose (v, x) is the equilibrium cutoff-action pair from Theorem 1. Then
(v, x) leads to an equilibrium for all α ∈ (0, 1].

Proposition 3. The equilibrium cutoff-action pair is the same for any α ∈ (0, 1]. The expected
revenue is increasing in α.

If bidder 2 is informed, bidder 1 gets the same expected utility from sniping or not. For
all α ∈ (0, 1], the optimal cutoff for a given x is the same. Similarly, for a given v, the optimal
x is the same. Hence, the same (v, x) is the equilibrium cutoff-action pair for any α ∈ (0, 1].
Seller’s expected revenue conditional on bidder 2 being uninformed is independent of α. Using
Proposition 2, the expected revenue is increasing in α.

� Learning by contemplation. We now analyze the model when the uninformed bidder can
learn by contemplating about his preferences around other values in addition to the current price
of the auction in which he is participating. Suppose, in addition to comparing his valuation with
the price, the uninformed bidder can write down a hypothetical price b on a piece of paper and
then can learn whether v2 ≥ b if he contemplates hard enough. Of course, if he can contemplate
like this infinitely many times, he will learn v2 perfectly and become informed. Although this
kind of learning makes sniping less effective by reducing bidder 2’s dependence on learning by
bidding, sniping and nibbling will still occur in this game. The uninformed bidder will nibble, as
a new price gives him another benchmark to compare v2 with. Nibbling leads to some friction in
his learning of v2 and he will overbid on average. This, in turn, will lead to sniping by bidder 1 if
v1 is high enough.

This will be clear in a simple two-period auction where bidder 2 can costlessly learn whether
v2 ≥ b for any b before the auction begins. As before, he can also learn whether v2 ≥ pt during
the auction. Proposition 4 shows that sniping and nibbling occur when the uninformed bidder
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can learn by contemplating this way. This result will still go through if he can contemplate
around finitely many hypothetical prices before the auction or the auction length is more than two
periods.

Proposition 4. In the equilibrium, bidder 2 will contemplate whether v2 ≥ b and then bid x l if
v2 < b and x h otherwise in period 1. He will bid the conditional expected value of v2 given his
information in period 2. Bidder 1 will bid v1 in the first period if v1 ≤ v and will snipe otherwise.
Here, x l =E [y | [m, E [y | [x l , b]]]], x h =E [y | [b, v]], b =E [y | [E [y | [x l , b]], x h]], and

v =
∫ 1

m
y d F(y) − xl (F (xl) − F(m)) − ∫ b

xl
y d F(y) − xh (F (xh) − F(b))

1 − F (xh)
.

For an example, consider uniform F with m = 0 and T = 2. In equilibrium, bidder 2 chooses
b = 0.45. If v2 < b then he bids 0.15 in period 1 and if v2 ≥ b then he bids 0.59 in period 1. In
period 2, he bids his conditional expected value. Bidder 1 bids v1 in period 1 if v1 ≤ 0.74 and
snipes otherwise.

4. Arbitrary number of bidders

� This section analyzes auctions with more than two bidders. There are some fundamental
differences between auctions with one uninformed bidder and more than one uninformed bidder.
To illustrate this, we first analyze an auction with two uninformed bidders and no informed
bidder. Next we analyze a game with at least one informed bidder and at least two uninformed
bidders. The dynamics of an auction with many informed bidders and one uninformed bidder is
similar to that of an auction with one informed and one uninformed bidder. We restrict attention
to two-period auctions in this section.5 For simplicity, we assume m = 0. The results can be
extended to any opening price.

Although sniping does not occur in the game with just two uninformed bidders, it has some
interesting equilibrium properties. Both uninformed bidders nibble to learn about their valuations.
The range of experimentation for each bidder depends on the other bidder’s experimentation
strategy. In this game, bidders 1 and 2 are uninformed and they get signals in every period. There
is no equilibrium where either player uses pure strategies in every period. Suppose, for some ht ,
bidder 1 bids x t in period t < T if v1 ≥ pt . Bidder 2’s best response is to bid x t − η2 if v2 ≥
pt where η2 → 0+. But bidder 1’s best response to this is bidding x t − η2 − η1 where η1 → 0+.
Hence, bidders will follow mixed strategies. To allow for mixed strategies, we redefine strategy
σ = {σt}T −1

t=1 where σt : H t × [0, 1] → 	 ([0, 1]) and 	(X ) denotes the set of all probability
measures over X .

Let strategy σ G be such that bidder i chooses his period 1 bid from [b1, b1) according to the
distribution G for some positive b1. He bids E [y | [p2, 1]] in period 2 if v i ≥ p2. If (σ G , σ G) is
an equilibrium then G is called an equilibrium distribution. Equilibrium distribution G is such
that both bidders get the same expected utility from any bid on [b1, b1). In any equilibrium, both
players choose their bids from the same support and we also can show that they would choose
their bids using the same distribution. Thus, all equilibria of this game are symmetric. Theorem 2
and Proposition 5 can be extended to a game with nU uninformed bidders for any nU ≥ 2.

Theorem 2. There exists a distribution G such that (σ G , σ G) is an equilibrium.

An interesting feature is that the auction becomes sort of a coordination game under this
equilibrium. Let distribution G be the distribution G truncated from left at b1 + ψ where
ψ < b1 − b1. Then, both bidders using the distribution G will be another equilibrium of this
auction.

5 Not all results will go through in an auction with T > 2.
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Proposition 5. If G is an equilibrium distribution, then so is G.

If bidder 1 does not bid from the interval [b1, b1 + ψ], then the change in expected payoff for
bidder 2 when he bids y ∈ [b1 + ψ, b1) is independent of y. Thus, we can get a new equilibrium
distribution by truncating an equilibrium distribution from the left. Aggressive bidding by one
bidder thus leads to aggressive bidding by the other. Support of G is open on the right and it can
be truncated only from the left. Hence, any equilibrium distribution has an open support. This
feature goes away if there were an informed bidder in addition to two uninformed bidders because
an informed bidder’s equilibrium bids are more closely tied to her true valuation.

In the presence of both uninformed and informed bidders, there will be both sniping and
nibbling. Suppose there are n I + nU bidders. Bidders 1 to n I are informed and bidders n I + 1
to n I + nU are uninformed with n I ≥ 1 and nU ≥ 2.6 Uninformed bidder u learns whether vu ≥
pt in both periods. There is a symmetric equilibrium where an informed bidder i follows strategy
σ v where she bids v i in period 1 if v i ≤ v and bids nothing in period 1 and v i in period 2 if v i >

v; that is, she snipes if v i > v. Strategy σ G for uninformed bidder j is such that his period 1 bid
is from [b1, b1] according to the distribution G . In period 2, he bids E [y | [p2, 1]] if v j ≥ p2.
The pair (v, G) is an equilibrium cutoff-distribution pair if informed bidders following σ v and
uninformed bidders following σ G is an equilibrium.

Theorem 3. There exists an equilibrium cutoff-distribution pair (v, G) and for any equilibrium
cutoff-distribution pair, v < 1.

Although the price may change even if informed bidder i does not bid in period 1, p2 is likely
to be higher if she bids in the first period. She snipes when her valuation is high enough, so that
giving uninformed bidders less information is optimal. The cutoff value is strictly below 1. The
distribution G makes both uninformed bidders indifferent between any bid in [b1, b1]. Informed
bidders play pure strategy and uninformed bidders play mixed strategies in this equilibrium. There
is no equilibrium where an uninformed bidder follows a pure strategy in period 1.

5. Secret reserve price auctions

� In online auctions, the opening price serves as the public reserve price. In eBay auctions,
the seller can set a secret reserve price in addition to the opening price by paying an extra fee.
The seller announces that there is a secret reserve but keeps that price a secret. At all time during
the auction, she announces whether the secret reserve is met. If the highest bid received in the
auction is below the secret reserve, then the object stays unsold. Otherwise, the highest bidder
pays the higher value of the secret reserve price and the second-highest bid.

In a standard second-price auction in the IPV setting, all bidders with valuation above the
public reserve bid their valuations. A bid below the secret reserve is ignored in determining the
auction outcome. Thus, a secret reserve price auction has the same outcome as that of a public
reserve price auction with the same reserve. Hence, paying a fee for a secret reserve price is
suboptimal for the seller. With uninformed bidders, however, secret reserve auctions may lead to
a different outcome than a public reserve auction.

We model a secret reserve as a bid placed by the seller at the beginning of the auction.
When a bid below the secret reserve, r s , is received, that bid becomes the current price. If
maxi β i

t−1 ≤ r s then pt = maxi β i
t−1 and otherwise pt equals the second highest of β1

t−1 and
β2

t−1. Thus, pt can change even when only one bidder places bids. The object stays unsold if
maxi β i

T < r s . In a public reserve auction, there is only an opening price m and in a secret
reserve auction there is an opening price ms and a secret reserve r s that is unknown to both
bidders. We assume that both bidders believe that rs is drawn according to density f

F(R)
on support

6 When nU = 1, then the uninformed bidder plays a pure strategy in equilibrium and the analysis is similar to the
game with one informed and one uninformed bidder.
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[ms , R] for some R ≤ 1. The seller chooses the opening price and the secret reserve optimally
given this belief. We thus assume that the buyers do not correctly anticipate that the seller chooses
the optimal secret reserve. This assumption seems quite reasonable from the real-world point of
view where bidders usually cannot surmise the secret reserve exactly. Our results do not depend
on the exact distribution that the bidders believe that the secret reserve is drawn from.

As in Section 3, there is one informed and one uninformed bidder and we assume
T = 2 for illustrative purposes. First we show that for a given opening price, the informed
bidder’s probability of sniping will be lower and the uninformed bidder’s first-period bid will be
higher if there is a secret reserve price in addition to the opening price. Suppose the equilibrium
cutoff-action pair of an auction without a secret reserve price, as in Section 3, is (v, x). If there
is an additional secret reserve price, suppose the corresponding equilibrium cutoff-action pair is
(vs , xs). Proposition 6 shows that a secret reserve price reduces the probability of sniping and
raises bidder 2’s bid in period 1.

Proposition 6. The probability of sniping is lower in the secret reserve price auction.

With a secret reserve, the uninformed bidder knows that the price can change even when
the informed bidder snipes and the probability of him becoming the high bidder with any given
first-period bid is also lower. As a result, he bids more aggressively in period 1. This reduces
the benefit from sniping for the informed bidder and the cutoff value for sniping for bidder 1
increases. Thus, a secret reserve price leads to a lower probability of sniping and higher bids by
uninformed bidders, supporting the last stylized fact from Section 2.

We show that, in our model, the optimal revenue from a secret reserve price auction is strictly
higher than the optimal revenue from a public reserve price auction. Specifically, we show that
there is a secret reserve auction that generates higher revenue than the optimal public reserve
auction. The model thus provides a rationale behind the frequent use of secret reserve prices on
eBay, as evidenced in the seventh stylized fact.

Proposition 7. The optimal revenue is higher from a secret reserve price auction.

An uninformed bidder may win the object even when his valuation is below the reserve price
when it is secret. That will not happen if the reserve is public. A secret reserve also leads to a
higher probability of bidding by the uninformed bidder compared to a public reserve. Moreover,
for a given opening price, a secret reserve increases the uninformed bidder’s first-period bid and
reduces the probability of sniping by the informed bidder. As a result, the optimal secret reserve
price may lead to a higher expected revenue net of the fee for keeping the reserve secret. This
also implies that the revenue of auctions depends on both the effective reserve and whether the
reserve is public or secret.

6. Conclusion

� This article suggests that people do not always know their exact private valuation for a
good. Applying the idea of spontaneous learning at a posted price, we suggest a new approach
in explaining how an agent learns her own type. We introduce a dynamic second-price auction
where some bidders know their private valuations and the other bidders can only learn whether
their valuations are above the current price in the auction. In any equilibrium of this auction, there
will be sniping and nibbling as evidenced in eBay auctions. We also show that secret reserve price
auctions experience less sniping and can be more profitable than public reserve price auctions.

The main idea proposed in this article is, in a dynamic mechanism such as an ascending
auction, people get new information about their own preferences in addition to information about
other players’ preferences as they participate in the game. The article suggests a simple model
where players use the current price as a benchmark for learning about their own preferences. This
model can provide a stepping stone for more complicated models of bounded rationality of this
nature. A natural extension of this model will be analyzing various auction mechanisms when
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bidders can contemplate at any hypothetical price for a small cost. This may lead to an interesting
decision theoretic exploration of the cognitive process of learning one’s type. Learning about one’s
private type through the negotiation of price can also be used in bargaining or principal-agent
problems.

Appendix

� This Appendix provides the proofs of all the results in the text.

Proof of Theorem 1. In any weakly undominated strategy, bidder 1 will never bid above v1 and will bid exactly v1 in one
of the periods; that is, β1

T = v1. If v2 ≥ pT , then bidder 2 chooses b2
T to maximize

∫ 1

pT

∫ b2
T

a (v − y) dG(y) d F(v) bids and
hence bids b2

T =E [y | [pT , 1]].7 Henceforth we use e (p) to represent E [y | [p, 1]].
First we show that (σ v , σ x ) is indeed an equilibrium. In this equilibrium, bidder 1 either bids her valuation only in

the first period or only in the last period and does not bid in other periods. Expressing m and 0 by x0 and x −1, respectively,
bidder 1’s expected utility from bidding in period 1 equals

T −1∑
t=0

(v1 − xt ) (F(xt ) − F(xt−1)) 1{v1>xt } + (1 − F(xT −1)) (v1 − e(xT −1)) 1{v1>e(xT −1)}.

Her expected utility from bidding in period T (if v1 > e(m)) equals

(v1 − m) F(m) + (1 − F(m)) (v1 − e(m)) = v1 − m F(m) +
∫ 1

m

y d F(y).

If v1 > e(xT −1), bidder 1’s expected utility from bidding in period 1 is

v1 −
T −1∑
t=0

xt (F(xt ) − F(xt−1)) +
∫ 1

xT −1

y d F(y)

and she will be better off by bidding in period T . If v1 ≤ e (m) then she is clearly better off by bidding her valuation in
the first period. In fact, she is indifferent between bids in periods 1 and T when v1 = v∈ (x T −1, e(xT −1)) where

T −1∑
t=0

(v − xt ) (F(xt ) − F(xt−1)) = v − m F(m) +
∫ 1

m

y d F(y)

=⇒ v =
∫ 1

m y d F(y) − ∑T −1
t=1 xt (F(xt ) − F(xt−1))

1 − F(xT −1)
.

When v1 ∈ (x l , x l+1) for some l < T − 1 and v1 ≥ e(m), the expected payoff from bidding v1 in the first period is∑l
t=0(v1 − xt )(F(xt ) − F(xt−1)). By construction of v, for any v1 < x l+1 < v,

l∑
t=0

(v1 − xt ) (F(xt ) − F(xt−1)) >

T −1∑
t=0

(v1 − xt ) (F(xt ) − F(xt−1))

> v1 − m F(m) +
∫ 1

m

y d F(y).

Therefore, if v1 < v then bidder 1 prefers bidding her valuation in period 1. She strictly prefers sniping if v1 > v. Given
σ x , no other strategy gives bidder 1 a higher payoff. If bidder 1 follows another strategy where if v1 ≤ v, β1

t ≥ min {x t ,
v1} for all t and she snipes if v1 > v, then the history after any period t would be the same as it would have been if b1

1 =
v1. Bidder 2 will place the same bids in both cases and bidder 1 will be equally well off by breaking her bids into many
separate bids or by bidding once, leading to the same outcome in both cases. If β1

t ∈ (x t−1, x t ) where v1 ≥ x t and pt >

pt−1 (that is, bidder 2 placed a bid in period t − 1) then, given σ x , bidder 1 will be strictly better off by choosing b1
1 = v1

if v1 ≤ e (β1
t ) and by sniping if v1 > e (β1

t ). Thus, σ v is a best response to σ x .
Now suppose in period t < T , bidder 1 is the high bidder and v2 ≥ pt = x t−1. Expressing v by x T , bidder 2 will

choose x T to maximize ∑T −1
l=t−1

∫ 1

xl

∫ xl+1

xl
(z − y) d F(y) d F(z)

1 − F(xt−1)
.

7 Suppose β1
T is drawn from the continuous distribution G with support [a, c] where pT ≤ a and c ≤ 1.
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Therefore, the first-order conditions require∫ xt+1

xt−1

(
y − x∗

t

)
d F(y) = 0

=⇒ x∗
t =

∫ xt+1

xt−1
y d F(y)

F(xt+1) − F(xt−1)

∴ x∗
t = E[y|[xt−1, xt+1]].

The second-order condition is satisfied by x∗
t and boundary points are not optimal. Using the Envelope Theorem, we can

see that a second-order condition on a single variable around x∗
t maximizes bidder 2’s expected payoffs. Also, his ex ante

expected utility-maximizing bid choice is dynamically consistent. By construction, σ x is a best response to σ v . Any belief
system consistent with the player strategies works for this to be an equilibrium. Therefore, if a pair (v, x) satisfying the
optimality conditions exists, then (σ v , σ x ) is an equilibrium. Moreover, we can see from the first-order conditions that
x t − x t−1 > 0 and v < e (x T −1) < 1.

We can use Brouwer’s fixed point theorem on M : [m, 1]T −→ [m, 1]T to show the existence of an equilibrium
cutoff-action pair. The first T − 1 elements of M are given by E [y | [x t−1, x t+1]]. The last element is the function

max

[∫ 1

m y d F(y) − ∑T −1
t=1 xt (F(xt ) − F(xt−1))

1 − F(xT −1)
, m

]
.

The domain is nonempty, convex, and compact and M is continuous. By Brouwer’s fixed point theorem, there exists a
fixed point of M . By construction, x t ≤ x t+1 and x T −1 ≤ v. Furthermore, v > m at the fixed point. Any fixed point of the
system generates an equilibrium bid schedule for bidder 2 and cutoff value for bidder 1.

This fixed point is unique. There is no v ≤ 1 such that (v, x a) and (v, x b) satisfy the equilibrium criteria. If x a,1 <

x b,1 then that will lead to x a,2 < x b,2 as bidder 2 maximizes his expected payoff with the same cutoff but a higher signal
in period 2. On the other hand, a higher bid in period 2 makes a higher bid in period 1 more profitable and thus bids
in the two periods are strategic complements. Strict single-crossing property defined by Milgrom and Shannon (1994)
is also satisfied. If x a,1 < x b,1 then x a,t < x b,t for all t, then the cutoff corresponding to x a is smaller than the cutoff
corresponding to x b.

Now suppose (va , x a) and (vb, x b) are two equilibrium cutoff-action pairs with va < vb ≤ 1. Hence, x a,t < x b,t for
all t. Bidder 1’s expected payoff from bidding in the first period is the right Riemann approximation of the area under the
decreasing curve v1 − y,

∫ v1

m (v1 − y) d F(y) using x for the intervals. Therefore, if v1 = va , bidder 1’s expected payoff
from bidding in period 1 is higher when bidder 2 follows x a instead of x b. She is indifferent between bidding in period 1
and T when bidder 2 follows x a . She gets the same utility from bidding late whether bidder 2 follows x a or x b. Therefore,
bidder 1 would strictly prefer bidding late if bidder 2 follows x b implying that vb < va . Therefore, a unique equilibrium
cutoff-action pair (v, x) exists.

Now we show that this is essentially the unique equilibrium when both bidders place a bid in the first period with
positive probabilities. Define χ (σ 1, σ 2) to be a T-element vector of bidder 2’s bids in the T periods of the auction along
a history where w t 	= 2 and v2 ≥ pt when the two bidders follow the strategy profile (σ 1, σ 2). Lemma A1 shows that
if (σ 1, σ 2) is an equilibrium, then b1

τ > m implies that β1
t ≥ min{χ t (σ 1, σ 2), v1} for all t ≥ τ . Suppose (σ 1, σ 2) is an

equilibrium. Then the public history and, therefore, the information bidder 2 receives about v2 at any point will be the
same if we change σ1 in a way that if b1

τ > m then b1
τ = v1. Given that bidder 1 bids in period 1 for some valuations,

bidder 2 will place a bid in the first period if v2 ≥ m. Suppose bidder 1 prefers placing her first bid in period τ ∈ {2, . . . ,
T − 1} to bidding in the first period if v1 ∈ [v, v]. This implies that v > χ1(σ1, σ2). Then, if bidder 1 does not place a
bid by period τ − 1, bidder 2 will bid at least min{v, e(m)} in period τ as a best response to σ1. This implies that in any
equilibrium, bidder 1 places her first bid in either the first or the last period. This implies that there is a value ς such that
(σ 1, σ 2) leads to the same outcome as (σ ς , σ 2). Given the construction of the equilibrium at the beginning of a theorem,
σ 2 can be characterized by σχ for some vector χ . As there is a unique cutoff-action pair, any equilibrium (σ 1, σ 2) leads
to the same winner and final price as in equilibrium (σ v , σ x ) and the equilibrium outcome is unique. Q.E.D.

Lemma A1. If (σ 1, σ 2) is an equilibrium then b1
τ > m implies that if pt > pt−1 then β1

t ≥ min{χ t (σ 1, σ 2), v1} for all
t ≥ τ .

Proof. We will show that β1
t ∈ (χ t−1(σ 1, σ 2), χ t (σ 1, σ 2)) while v1 ≥ χ t (σ 1, σ 2) and pt > pt−1 cannot happen in an

equilibrium. If β1
t ∈ (χ t−1(σ 1, σ 2), χ t (σ 1, σ 2)) then w t+1 = 2 if v2 ≥ pt (otherwise this is irrelevant). On the equilibrium

path, after observing w t+1 = 2, bidder 2 correctly anticipates that either v1 = pt+1 implying that bidder 2 will be the
winner of the auction or v1 is greater than or equal to some v so that β1

t ∈ (χ t−1(σ 1, σ 2), χ t (σ 1, σ 2)) is profitable for
bidder 1. Note that by choosing β1

t < χ t (σ 1, σ 2), compared to β1
t ≥ χ t (σ 1, σ 2), bidder 1 reduces pt+1 thus reducing the

probability of bidder 2 stopping bidding (because of learning v2 < pt+1) whereas his payment if bidder 2 gets a negative
signal stays unchanged. Therefore, v > χt (σ1, σ2) if (σ 1, σ 2) is an equilibrium. Therefore, if v2 ≥ pt+1 then bidder 2’s
best response is to bid at least min{v, e (pt+1)}. If pτ = pt+1 for all τ ∈ {t + 2, . . . , T } then bidder 2 will bid e (pt+1) in
at least one of the periods. If bidder 1 bids in any period between period t + 1 and T − 1, bidder 2 will want his bid to
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be at least v as he knows that v1 ≥ v in that case. However, if b2
t+1 ≥ min{v, e(pt+1)} then σ 1 is clearly suboptimal for

bidder 1 when v1 = v. Note that if v > e (pt+1) and bidder 1 does not bid until the last period, she wins for sure. Using
the calculations in Theorem 1, we can easily show that bidder 1 would have been better off by just sniping in that case.
Thus, β1

t ∈ (χ t−1(σ 1, σ 2), χ t (σ 1, σ 2)) whereas v1 ≥ χ t (σ 1, σ 2) cannot happen for any t in an equilibrium and b1
τ > m

implies that, for all t ≥ τ , β1
t ≥ min{χ t (σ 1, σ 2), v1}. Q.E.D.

Proof of Proposition 1. Suppose (v, x) is an equilibrium cutoff-action pair and there exists a t such that x t and x t−1 are
arbitrarily close to each other. Because F is atomless and strictly increasing, F(x t ) − F(x t−1) → 0. By using Theorem 1,
x t =E [y | [x t−1, x t+1]]. Thus, x t − x t−1 → 0 for some t implies x t − x t−1 → 0 for all t < T . Similarly, x t − x t−1

bounded away from zero for some t implies so is true for all t < T . Suppose x t − x t−1 → 0 for all t when T is small.
Then, x T −1 → m and v → e(m), which implies x T −1 → E [y | [m, e (m)]] > m. Hence, x t − x t−1 > 0 for all t in that
case.

This implies that v < 1 because

v =
∫ 1

xT −1
y d F(y) + ∑T −1

t=1

∫ xt

xt−1
(y − xt ) d F(y)

1 − F(xT −1)
<

∫ 1

xT −1
y d F(y)

1 − F(xT −1)
≤ 1.

As T approaches infinity, x t − x t−1 approach zero for all t because x T −1 approaches infinity otherwise. Therefore,
limT →∞x (x t − x t−1) = 0 for all t. Now suppose, limT →∞x T −1 = 1 − η for some η > 0. Because limT →∞ (x t − x t−1) =
0 for all t, x T −1 =E [y | [x T −2, v]] implies v → 1 − η. However, equation 2 implies that v → e (1-η). This is impossible
if η > 0. Therefore, η = 0 when T approaches infinity and limT →∞ v = 1. We also get limT →∞ v = 1 by using l’Hôpital’s
rule with x t − x t−1 → 0 for all t and x T −1 → 1.

The probability of the bidder with the higher v i winning the auction equals

1 −
T∑

t=1

∫ xt

xt−1

(F(y) − F(xt )) d F(y) −
∫ 1

v

(1 − F(y)) d F(y).

This probability approaches 1 and bidder 2’s last bid when bidder 1 wins converges to v2 only as T approaches infinity.
Bidder 1’s last bid equals v1 with probability 1. The final outcome is the same as the standard model’s outcome as
T → ∞. Q.E.D.

Proof of Proposition 2. When bidder 2 is uninformed, β2
T is either above v2 or equals his conditional valuation given

v2 ≥ pT . That is, bidder 2 bids above v2 in expectation. As β1
T = v1, expected revenue with one informed bidder and one

uninformed bidder,

πU = 2m F(m) (1 − F(m)) +
∫ 1

v

∫ 1

m

y d F(y) d F(z)

+
T∑

t=1

∫ xt

xt−1

(
t−1∑
k=1

xk (F (xk) − F (xk−1)) + y (1 − F(xt−1))

)
d F(y),

where x 0 = m and x T = v. With two informed bidders, the seller’s expected revenue,

πI = 2m F(m)(1 − F(m)) +
∫ 1

v

(∫ z

m

y d F(y) + z(1 − F(z))

)
d F(z)

+
∫ v

m

(∫ z

m

y d F(y) + z(1 − F(z))

)
d F(z).

When T is small, (x t − x t−1) > 0 for all t and v < 1. Hence, the seller gets higher expected revenue when bidder 2 is
uninformed. From Proposition 1, limT →∞ (x t − x t−1) = 0 for all t and limT →∞ x T −1 = limT →∞ v = 1. As T approaches
infinity, the seller’s expected revenue with informed bidder 1 and uninformed bidder 2 approaches the expected revenue
with two informed bidders. Q.E.D.

Proof of Proposition 3. When v1 = v, bidder 1’s expected payoff from bidding v1 in period 1 is

F(m)(v − m) + α

(
v (F(xT −1) − F(m)) −

T −1∑
t=1

xt (F(xt ) − F(xt−1))

)

+ (1 − α)
∫ v

m

(v − y) d F(y).

Her expected payoff from sniping is

F(m)(v − m) + α

∫ 1

m

(v − y) d F(y) + (1 − α)
∫ v

m

(v − y) d F(y).
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For all α, bidder 1 is indifferent between bidding in periods 1 and T if v1 = v because

v =
∫ 1

m y d F(y) − ∑T −1
t=1 xt (F(xt ) − F(xt−1))

1 − F(xT −1)
.

Because (v, x) is the unique equilibrium cutoff-action pair for α = 1, x is optimal for bidder 2 when he is uninformed.
Therefore, (v, x) is the equilibrium cutoff-action pair for all α ∈ (0, 1]. Hence, the seller’s expected revenue equals
α π U + (1 − α) π I for all α ∈ (0, 1]. As π U is greater than π I for any given T , the expected revenue is increasing
in α. Q.E.D.

Proof of Proposition 4. Bidder 1’s payoff from bidding late and early are the same if v1 = v. That is,

v − m F(m) −
∫ 1

m

y d F(y) = vF (xh) − m F(m) − xl (F (xl ) − F(m)) −
∫ b

xl

y d F(y) − xh (F (xh) − F(b))

=⇒ v =
∫ 1

m y d F(y) − xl (F (xl ) − F(m)) − ∫ b

xl
y d F(y) − xh (F (xh) − F(b))

1 − F (xh)
.

Bidder 2 chooses b to maximize∫ b

0

∫ xl

0

(z − y) d F(y) d F(z) +
∫ b

xl

∫ E[y|[xl ,b]]

xl

(z − y) d F(y) d F(z)

+
∫ 1

b

∫ xh

0

(z − y) d F(y) d F(z) +
∫ 1

xh

∫ v

xh

(z − y) d F(y) d F(z).

Bidder 2’s payoffs are optimized when

xl = E [y| [m, E [y| [xl , b]]]] , xh = E [y|[b, v]] , and b = E [y| [E [y| [xl , b]] , xh]] .

Following Theorem 1, we can easily show that this is indeed an equilibrium. Q.E.D.

Proof of Theorem 2. Given that bidder 2 follows σ G , bidder 1’s expected utility from bidding y ∈ [b1, b1) in period 1
equals ∫ y

b1

∫ 1

0

F(u)(z − u) d F(z) dG(u) + F(y)
∫ b1

y

∫ 1

y

(z − u) d F(z) dG(u) = K1.

In equilibrium, K 1 is independent of y. Hence, G solves

f (y)
∫ b1

y

(u − y) dG(u) + f (y)

F(y)

∫ 1

y

∫ b1

y

(z − u) dG(u) d F(z) + g(y)
∫ y

0

(z − y) d F(z) = 0, (A1)

with G(b1) = 0 and G(b1) = 1. To show existence, define �(y) = ∫ b1

y G(u) du. Then, G(y) = −�′(y) and g(y) = −�′′(y).
Equation A1 becomes

f (y)

(∫ 1

y

z d F(z) − (1 − 2F(y)) b1 − yF(y)

)
− F(y)

∫ y

0

(z − y) d F(z)�′′(y)

+ f (y)

(∫ 1

y

(z − y) d F(z)�′(y) + (1 − 2F(y))�(y)

)
= 0. (A2)

In addition, �(b1) = 0 and �′(b1) = −1. Equation A2 is a linear second-order differential equation with two initial
conditions. Therefore, there exists a unique solution for G(.) for given b1 and b1. We can find b1 using G(b1) = 0. To find
b1, notice that when y → b1, ∫ b1

b1

∫ 1

0

F(u)(z − u) d F(z) dG(u) = K1. (A3)

From equation A3, we can see that [b1, E[y|[0, 1]]) is an equilibrium support of the first-period bid. There is no equilibrium
with b1 > E[y|[0, 1]]. For a given support, a unique G satisfies the indifference condition given by equation A1. There
cannot be an equilibrium where the two bidders choose their first-period bid from different supports. Thus, this auction
has only symmetric equilibria.

The support of G is closed on the left and open on the right. If it is closed on the right then g(b1)
∫ b1

0 (z − b1) d F(z) =
0. That implies that g(b1) = 0. On the other hand, if it is open on the left then if bidder i bids b1 instead of b1 + η for
η → 0+, his expected payoff goes up as his probability of being the high bidder reduces without reducing the information
he gets. Therefore, the support will be the interval [b1, b1) where b1 > 0. Hence, G is an equilibrium distribution and
(σ G , σ G ) is an equilibrium. Q.E.D.
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Proof of Proposition 5. Suppose G solves equation A1 for y ∈ [b1, b1) and ψ ∈ (0, b1 − b1). Define G to be truncated
distribution G on [b1 + ψ, b1). Then G solves equation A1, implying that G is an equilibrium distribution. Thus, there is
a continuum of equilibria. Q.E.D.

Proof of Theorem 3. First we will show the existence of an equilibrium cutoff-distribution pair when there are one
informed bidder and two uninformed bidders. Then we will argue that this result carries through when there are one
or more informed bidders and two or more uninformed bidders. Suppose bidder 1 is informed and bidders 2 and 3 are
uninformed. Bidder 1 bids v1 in period 1 if v1 ≤ v and bids nothing in period 1 and v1 in period 2 otherwise. Bidder
i ∈ {2, 3} bids y ∈ [b1, b1] using the distribution G in period 1. In period 2, he bids E [y | [p2, 1]] if v i ≥ p2. In
equilibrium, bidder 2 is indifferent between bidding any y ∈ [b1, b1] in period 1. This occurs if

F2(y)
∫ y

0

(z − y) d F(z) g(y)

+ f (y)F(y)

(∫ 1

y

(
z − b1

)
d F(z) + (

b1 − y
)

F(y) + (1 − 2F(y))
∫ b1

y

G(u) du

)

+ f (y)G(y)

⎛⎜⎜⎜⎝
F(y)

(∫ min[e(y),v]

0

(z − y) d F(z) −
∫ 1

y

(z − y) d F(z)

)

+
∫ 1

y

∫ min[e(y),v]

y

(z − z1) d F (z1) d F(z)

⎞⎟⎟⎟⎠ = 0.

(A4)

Distribution G will have no mass at 0 as the left-hand side is strictly positive when y = 0 in that case. Hence, an uninformed
bidder will place a bid in the first period with probability 1. To maximize the expected payoff at the supremum of the
support, we need

F
(
b1

) ∫ v

0

(
z − b1

)
d F(z) +

∫ 1

b1

∫ v

b1

(z − u) d F(u) d F(z) = 0. (A5)

For a given v, there is a unique b1 that satisfies equation A5. Using arguments similar to those in the proof of Theorem 2,
we can show that there is a unique solution to G. Equation A4 implies that there is a unique b1 that solves G(b1) = 0.
That is, the support of G cannot be truncated like in the two-uninformed bidder case. The support will be closed given
equations A4 and A5.

Now, W (1, v1) = 1 and P(1, v1) > P(2, v1) if v1 > e(b1) where P(t , v1) and W (t , v1), respectively, denote expected
payment and probability of winning of bidder 1 when she bids v1 in period t and nothing in the other period. There is a
v < 1 such that bidder 1 is indifferent between bidding in period 1 and 2 if v1 = v. For a given G, there is at most one
equilibrium cutoff v. Then, vW (1, v) − P(1, v) = vW (2, v) − P(2, v) and (v, G) is an equilibrium cutoff-distribution
pair.

For a given v, G and [b1, b1] are known. By equalizing payoffs from bidding early and late, we get an expression
for v that depends on F and G and we label that function M1(v). Define M :[E [y | [0, 1]], 1] → [E [y | [0, 1]], 1] such
that M(v) = max [M 1(v), E [y | [0, 1]]]. Because M is continuous and the domain is nonempty, compact, and convex, we
can use Brouwer’s fixed point theorem. At the fixed point, v >E [y | [0, 1]], as otherwise bidder 1 gets zero profit from
bidding late. Hence, an equilibrium cutoff-distribution pair exists.

Suppose there are n I informed bidders and nU uninformed bidders where n I ≥ 1 and nU ≥ 2. Then, the uninformed
bidders will play mixed strategy in period 1 in any equilibrium. To find the distribution from which uninformed bidders
draw their first-period bids in a symmetric equilibrium and show its existence, we can follow the method used for the two
uninformed bidders, and the two uninformed bidders and one informed bidder case. The differential equation expressing
the distribution is similar to the case with three bidders but is quite cumbersome and hence is not presented here. Informed
bidders with high valuation will be better off by sniping. Notice that, when the second-highest bidder is an uninformed
bidder, conditional on the probability of winning being close to one, an informed bidder’s expected payment is lower
when she snipes because the uninformed second-highest bidder will overbid in expectation. Therefore, even with more
than one informed bidder, P(1, 1) > P(2, 1) and W (1, 1) ≤ W (2, 1). Hence, sniping is better for an informed bidder i
if v1 = 1. This implies that when there are a finite number of bidders there will exist a cutoff v < 1 such that informed
bidders with valuation above v will snipe. Knowing uninformed bidders’ equilibrium distribution, existence of informed
bidders’ equilibrium cutoff can be shown using Brouwer’s fixed point theorem. There is a symmetric equilibrium where
informed bidders use the same cutoff value v and uninformed bidders draw first-period bids from the same distribution
G on interval [b1, b1]. Q.E.D.

Proof of Proposition 6. Suppose given the bidders’ belief on the distribution of r s , the uninformed bidder believes
that the highest and second highest of v1 and r are distributed according to distributions H and S on [m s , 1] and
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[m s , R], respectively. Thus, H first-order stochastically dominates F. Now, the expected payoff for bidder 2 from bidding
xs

1 is ∫ xs
1

ms

∫ 1

ms

∫ xs
1

w

(z − y) d H (y) d F(z) d S(w)

+
∫ R

ms

∫ 1

max[xs
1 ,w]

∫ min[vs ,e(max[xs
1 ,w])]

max[xs
1 ,w]

(z − y) d H (y) d F(z) d S(w).

This leads to the first-order condition,

h
(
xs

1

) ∫ xs
1

ms

(
z − xs

1

)
d F(z) + f

(
xs

1

) ∫ min[vs ,e(xs
1)]

xs
1

(
z − xs

1

)
d H (z) = 0.

The cutoff vs equates bidder 1’s expected payoff from bidding v1 in period 1 and sniping. Recall that, in a public reserve
auction, x1 satisfies

f (x1)
∫ x1

ms

(z − x1) d F(z) + f (x1)
∫ min[v,e(x1)]

x1

(z − x1) d F(z) = 0.

Given the structure of the distribution H , these imply that xs
1 > x 1 and, in turn, vs > v. Q.E.D.

Proof of Proposition 7. The optimal revenue from secret reserve price auctions will be at least as high as that from a
public reserve price auction because the seller can always choose a secret reserve equaling the opening price. Suppose the
optimal reserve in a public reserve auction is m∗ and bidder 2’s corresponding first-period bid and bidder 1’s cutoff value
are x∗

1 and v∗, respectively. Now suppose the seller chooses secret reserve r s = m∗ and opening price ms = m̃ such that
corresponding bidder 2’s first-period bid xs

1 equals x∗
1. Using Proposition 6, we can easily show that m̃ < m∗. This implies

that the uninformed bidder is more likely to place a first-period bid where the first-period bid will be the same as in the
optimal auction without a secret reserve price. As a result, the corresponding cutoff value vs in the secret reserve price
auction will be greater than v∗. Thus bidder 1 will snipe less frequently and sniping reduces expected revenue. Given
the secret reserve of m∗, the minimum price conditional on a sale is the same and the probability of a sale is higher, as
the uninformed bidder may bid above m∗ even when v2 < m∗ and bidder 2’s average bid is higher. If bidder 1 does not
snipe then expected revenue also rises, as bidder 2 bids at least once with higher probability. Hence, the expected revenue
will be higher from this secret reserve price auction than from the optimal public reserve auction. Therefore, the optimal
secret reserve price auction must generate strictly higher revenue than the optimal public reserve price auction. Q.E.D.
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