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Abstract
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justing the loss function according to the belief elicitation objective, the scoring
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1 Introduction

We introduce a parsimonious but general way of constructing a scoring rule to elicit

an agent’s beliefs about a random variable that is incentive compatible irrespective of

her utility function. The main characteristic of this incentive scheme is that it creates a

binary function that determines whether the agent will receive a fixed reward based on her

performance using an independently drawn random number. Specifically, after observing

information about a random variable, the agent reports her prediction of some feature

of that variable incorporating her beliefs. She receives the reward if her prediction error,

defined by a loss function, is smaller than an independently drawn random number from

a uniform distribution and earns a smaller prize or a penalty otherwise. In other words,

she receives the reward with a probability which is determined by the realized value of

the loss function. Her objective, thus, becomes maximizing the probability of winning

the reward. This probability is proportional to the expected loss. Under relatively weak

assumptions, she can maximize her expected (or non-expected) utility by taking the

action that minimizes the expected value of the loss function. We term this incentive

scheme the Binarized Scoring Rule or BSR.

Eliciting an economic agent’s beliefs concerning a probabilistic event (which may or

may not be objectively specified) is an important problem. Many have suggested scoring

rules to incentivize truthful communication of agent’s beliefs. Many of these mechanisms,

such as the proper scoring rules suggested by Savage (1971) or the methods of promissory

notes by De Finetti (1974), however, lead to agents reporting their true belief only under

risk-neutrality. For example, we may want to know an agent’s belief about the probability

of the occurrence of a particular event. A well-known method is the quadratic scoring

rule (QSR) of Brier (1950). Consider a random scalar variable X about which the agent

holds some belief. Suppose we want to elicit the probability of the event that x, which is

the realized value of X, exceeds some number n using the QSR. First, the agent reports p

as the probability of the event occurring. Then, after X is realized, she is paid 1−(1−p)2

if x > n and 1−p2 otherwise. It is easy to see that reporting her true belief maximizes her

expected utility if she is risk-neutral. However, if she is risk-averse, reporting a number

between 0.5 and her true belief may yield a higher expected utility. Generally speaking,

under risk-aversion, the marginal utility of the monetary payment to the agent confounds

the effect of her beliefs making belief elicitation diffi cult.

Our method modifies a proper scoring rule, which is valid under risk-neutrality, by

binarizing it in a way that the agent gets a fixed reward if the realized score, calculated
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using the relevant loss function, is lower than a number drawn from a uniform distribution.

The realized score determines the probability of the reward, but not the size of the reward.

For example, to elicit the probability of the realized value of X being greater than n, we

binarize the QSR by using the loss function that equals (1− p)2 if x > n and p2 if x ≤ n.

That is, the agent receives a fixed reward when the realization of a random number

independently drawn from the uniform distribution on [0, 1] is above (1 − p)2 if x > n

and above p2 if x ≤ n. In other words, the agent receives the reward with probability

1− (1−p)2 if x > n and with probability 1−p2 otherwise. Since she prefers receiving the

reward over not receiving it, she will maximize the probability of receiving the reward

under this scoring rule. Interestingly, the agent’s optimization problem, independent of

her risk-preference, is the same as that under the QSR for risk-neutral agents. Thus, this

scheme is incentive compatible no matter whether the agent is risk-neutral, risk-averse,

or risk-seeking. By turning the incentive scheme into a lottery where the sizes of the

rewards do not depend on p, this scoring rule induces risk-neutral behavior.

We can adjust the loss function according to our goal for eliciting the agent’s beliefs.

We do not just provide a scoring rule, rather we suggest a method to devise appropriate

scoring rules according to the belief elicitation objective. Instead of the probability of

the realized value of X being greater than n, suppose we want to elicit the probability

distribution of X (let us assume that X can take one of N possible values). Then,

we can employ the loss function
∑N

i=1 (1i − pi)2 where 1i is an indicator function that

equals 1 if X takes the i-th value and 0 otherwise and pi is the reported probability of

X taking the i-th value. If we are interested in eliciting the expected mean of X, we can

use the loss function of (x−m)2 where m is the reported expected value of X. To elicit

the expected median, we can use the loss function |x−md| where md is the reported
expected median of X. We can elicit the α% quantile by choosing the loss function to be

|x − q|
(
α1{x>q} + (100− α)1{x≤q}

)
where q is the reported α% quantile. Gneiting and

Raftery (2007) provide many other examples of scoring rules that can be used as loss

functions.

The binarized scoring rule may even be used when the agent’s decision mechanism

is described not by the expected utility theory. Recall that as the agent gets a higher

utility from the larger reward, an expected utility maximizing agent chooses her action to

maximize the probability of winning the larger reward. Now suppose her preferences do

not satisfy expected utility theory but, still, is such that she prefers a binary lottery that

puts a higher probability on the larger reward to one with a lower probability. In that case,
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she still prefers maximizing the probability of winning the larger reward. As a result, the

binarized scoring rule is incentive compatible as long as the agent’s preferences satisfy

monotonicity with respect to first order stochastic dominance restricted to the edges of

the simplex.1

To illustrate how the binarized scoring rule can be used in practice, we also present

results from two sets of experiments. As a benchmark, we compare its performance with

that of the quadratic scoring rule. One experiment is designed to elicit the probability of

the occurrence of a specific event and the other to elicit the expected value of a random

variable. In both experiments, the distribution of the relevant random variable is specified

so that beliefs can be specified objectively. We investigate how closely subjects report

the “correct” probability or mean under the BSR in comparison to the QSR. In the

experiment where we elicit the probability of an event, the BSR performs better than the

QSR in this experiment. The superior performance of the BSR can be solely attributed

to risk-averse subjects. On the other hand, the BSR and the QSR perform equally well in

the experiment in which we elicit the mean. These results are consistent with theoretical

predictions.

The rest of the paper is structured as follows. The following subsection relates our

paper to the existing theoretical and experimental literature on belief elicitation. Section

2 presents the binarized scoring rule and the theorems that characterize this scoring

rule. Section 3 describes the laboratory experiments and discusses the results from these

experiment. Section 4 concludes. All proofs are in the appendix.

1.1 Relation to the literature

Theoretically, our method formalizes and generalizes the intuition in Smith (1961) and

Roth and Malouf (1979) who basically suggest paying agents with “probability currency”

for a binary lottery instead of direct monetary payments to induce risk-neutral behavior.2

We show that this idea can be utilized in a host of belief elicitation problems as long as

there exists a proper scoring rule that is incentive compatible under risk-neutrality.3 We

1We thank an anonymous referee for pointing this out.
2Berg, Daley, Dickhaut and O’Brein (1986) explore this idea more formally. This intuition has also

been used in many other experimental settings ranging from auctions to battle of sexes games. See,
Selten, Sadrieh, and Abbink (1999) for a survey. An interesting application is by Laury, McInnes, and
Swarthout (2012) who develop a method to elicit discount rates without assuming the form of the utility
function.

3A limitation of our mechanism is that it does not work when the agent has a personal stake on the
event. That is, she receives a reward that is different from the monetary reward given by the elicitor,
that depends on the realization of the random variable and is not observable to us (see Kadane and
Winkler (1988)). In fact, Karni and Safra (1995) demonstrate that, without knowing the utility function
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also extend the results to a setting under the non-expected utility paradigm.

For specific problems, several previous studies developed scoring rules that do not

require assumptions on utility function. Bhattacharya and Pfleiderer (1985) show that

the quadratic scoring rule can elicit the mean of a random variable under the belief if

the distribution is symmetric and the agent is a (weakly) risk-averse expected utility

maximizer. For eliciting the probability of a certain event, Allen (1987) proposed a

randomized scoring rule where the agent receives a fixed reward if the reported probability

is below a randomly drawn number. However, this random number is drawn after the

event is realized and the distribution from which the number is drawn depends on whether

the event occurred or not. When there are only two possible outcomes, this method is

equivalent to the BSR based on a quadratic loss function. However, when there are three

or more outcomes, this method involves an additional layer of randomization.

Recently, Karni (2009) proposed a more complicated mechanism that involves two

layers of randomization.4 First the agent reports her prediction of the probability of the

event occurring. If this probability is below a randomly drawn number then the agent

receives a binary lottery that gives the preferred reward with the probability equaling the

random number. Otherwise, she receives a binary lottery that gives the preferred reward

if the event in question occurs. There are several differences between the BSR and the

Karni mechanism. First, under the BSR, we offer the subject a lottery whose winning

probability is determined through the experimental procedure but does not directly de-

pend on the probability of the event we are interested in. Second, the BSR method has

only one layer of randomization. We think that this feature is important in applications

because it makes the procedure simple. Lastly, the BSR can be applied in many different

situations in which we are interested in properties of random variables different from

probabilities. On the other hand, it is not clear how to extend the Karni mechanism

to elicit other features than probabilities such as the expected value of a variable. Qu

(2012) cleverly extends the Karni mechanism to elicit the entire probability distribution

of random variables that may not be binary. Note that Qu (2012) introduces another

layer of randomization and his method is further complicated than the Karni mechanism.

Independently of our work, Schlag and van der Weele (2009) developed a probabilis-

completely, there is no scoring rule that elicits the probability of an event if the agent has a stake on the
event. Thus, this problem is not only for our scoring rule, but also for any scoring rule. This may not
be critical in a laboratory experiment because it is unlikely that a subject has a personal stake related
to a random variable generated in a laboratory.

4Grether (1981) and Holt (2007, Chapter 30 Appendix and Question 6) independently suggested the
same mechanism in more heuristic manners.
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tic version of the quadratic scoring rule for eliciting probability using a method which

is essentially the same as ours but restricted to the case where the support of the loss

function is finite. The BSR, on the other hand, can be used even when the loss func-

tion is unbounded and under more general settings. We also ran laboratory experiments

to measure the performances of the BSR. Alternative approaches to elicit beliefs under

risk-aversion also include those by Andersen, Fountain, Harrison, and Rutström (2010)

who jointly estimate agent’s risk attitude and subjective probability and Offerman, Son-

nemans, van de Kuilen, and Wakker (2009) who provide a way to correct the reported

probability to recover subjective probability.5 These methods are usually devised for a

specific belief elicitation problem and it is not straight-forward to extend them to other

problems.

Selten, Sadrieh, and Abbink (1999) contend that rewards determined by a lottery do

not induce risk-neutral behavior in subjects in their laboratory experiment and that those

schemes perform much worse than do money prizes.6 Our experimental results alleviates

such concerns by finding that the BSR outperforms the QSR. There has been a number

of experimental investigations to elicit belief of agents in the laboratory– some using

deterministic and other using probabilistic scoring rules.7 There are fewer studies that

experimentally compare the performances of various scoring rules. Among them, most

closely related to our paper are Andersen, Fountain, Harrison, and Rutström (2010) who

compare the QSR and a linear scoring rule, Hao and Houser (2012) who compare two

variations of the mechanism by Karni (2009), Hollard, Massoni, and Vergnaud (2010) who

found methods similar to the one proposed by Karni (2009) and simply asking subjects

about beliefs outperform the QSR, and Trautmann and van de Kuilen (2011) who run a

horse race of different elicitation methods and find that their performances do not vary

much.8 Evaluating performance of the BSR relative to that of the QSR is, thus, another

contribution of our paper to the literature.

5Andersen, Fountain, Harrison, Hole, and Rutström (2012) extend the joint estimation approach to
consider cases in which subjective probabilities themselves are random.

6Contrary to their findings Harrison, Martínez-Correa, and Swarthout (2012) find that binary lotteries
move actions of risk-averse subjects closer to risk-neutrality.

7See McKelvey and Page (1990), Möbius, Niederle, Niehaus, and Rosenblat (2007), Holt and Smith
(2009) for studies that use probabilistic scoring rules. The introduction of Offerman, Sonnemans, van
de Kuilen, and Wakker (2009) provides a nice survey of papers that use scoring rules in various different
fields.

8A different stream of research asks whether a scoring rule can correctly recover the induced belief.
See, for example, Hurley and Shogren (2005) and Blanco, Eugelmann, Koch, and Normann (2010). Alter-
natively, Hurley, Peterson, and Shogren (2007) study whether scoring rules work better than prediction
based elicitation of Grether (1980, 1992).
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2 The Binarized Scoring Rule

Now we formally present the binarized scoring rule in quite a general setting. Let X

be a random variable which can be a scalar, a vector, or even an infinite-dimensional

stochastic process. Suppose we want to elicit the agent’s belief about some characteristic

of X. Accordingly, the agent reports θ ∈ Θ as the predicted value of this characteristic.

Here θ can be a scalar, a vector, or a function. Let the loss function l(X, θ) be a scalar

valued function of the realized value ofX and θ. We denote the expectation operator with

respect to the distribution of some variable Z by EZ and make the following assumption

on l.9

Assumption 1. i) The realized value of the loss function is non-negative, l(X, θ) ≥ 0

for all X, θ.

ii) The expression arg minθ∈ΘEX [l(X, θ)] is well-defined.

Our goal is to devise an incentive structure or scoring rule under which the agent

will report a value of θ that minimizes EX [l(X, θ)], irrespective of the exact form of her

preference. The time-line of our proposed mechanism is as follows:

1. The agent reports θ to the principal.

2. X is realized.

3. The principal draws K from U [0, K] (uniform distribution whose support is [0, K]

for a positive number K) independently of the realization of X or the reported θ.

4. The agent receives reward A if l(X, θ) < K and reward B otherwise where she

prefers A to B.

We call this mechanism the binarized scoring rule (BSR) because it creates a binary

lottery whose outcome depends on the realizations of the loss function and the random

variable K. Here, the agent receives preferred reward A with the probability that the loss

is less than K. Let P (θ) denote this probability so that P (θ) = EKEX [1{l(X,θ)<K}]. Here

1{l(X,θ)<K} is the indicator function that equals 1 if l (X, θ) < K and 0 otherwise. The

9We can describe the setting with a more general and mathematically rigorous representation. Let Ω
be some set and F be a σ-field of subsets of Ω and P be a probability measure such that (Ω,F ,P) is a
probability space. Let the loss function l : Ω×Θ→ R be a measurable function for any θ where Θ is a
parameter space. The principal then tries to let an agent report a value of θ that minimizes the expected
loss:

∫
Ω
l(ω, θ)dP(ω). Both the principal and the agent observe l(ω, θ̃), where θ̃ is the reported value of

θ, after the agent reports θ̃. The results of this paper hold under this general setting.
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rewards A and B are chosen such that the agent prefers A to B. When we use monetary

rewards, setting A > B would suffi ce as long as the agent likes money, which, we believe,

is hardly a controversial assumption. On the other hand, some non-monetary rewards

can be used too as long as we know that A is preferred to B.

To understand the motivation of the mechanism and how it works, let us consider

the case in which the agent is an expected utility maximizer with utility function u.

When the agent is risk neutral so that u(x) = x, then paying her the amount −l(X, θ)
after X realized provides suffi cient incentives for her to report the value of θ that min-

imizes EX [l(X, θ)]. However, for other risk preferences, the value of θ that maximizes

the expected utility EX [u(−l(X, θ))] is usually different from the value of θ that min-

imizes EX [l(X, θ)]. This problem provides the motivation for developing an incentive

scheme that is incentive compatible irrespective of the form of u. The expected util-

ity under the BSR is EKEX [u(A1{l(X,θ)<K} + B1{l(X,θ)≥K})] = EKEX [1{l(X,θ)<K}]u(A) +

EKEX [1{l(X,θ)≥K}]u(B) = P (θ)u(A) + (1− P (θ))u(B). When u(A) > u(B), maximizing

the expected utility becomes equivalent to maximizing P (θ). If l(X, θ) ≤ K holds for

any X and θ, then this probability equals 1−EX [l(X, θ)]/K. Therefore, the agent would

report θ that minimizes EX [l(X, θ)]. The keys here are that the BSR creates a binary

lottery and that the utility is increasing in the probability of receiving the reward A.

The BSR reduces the incentive scheme to an environment where two alternatives

are awarded with differing probabilities. Thus, the objective becomes maximizing the

probability of receiving the more attractive reward A. As a result, the scheme is in-

centive compatible even when the agent’s decision is not represented by expected utility

maximization. We only assume that between two binary lotteries with rewards A and

B , she prefers the one with the higher probability of winning A. To state this result

formally, we start with describing our setting on the preference of the agent. Let L(p)

denote a binary lottery that gives A with probability p and B with probability 1 − p

so that L(p) = [A, p;B, 1 − p]. Let V be the real-valued preference functional on the

set of lotteries that can be written as L(p) for some p. The essential assumption here

is that V (L(p)) > V (L(p∗)) if and only if p > p∗. This is a weak version of so-called

monotonicity with respect to stochastic dominance by Machina and Schmeidler (1992,

p754).10 Many non-expected utility theories, such as the theory of Machina (1982) and

the rank-dependent expected utility theory of Quiggin (1981), satisfy this property. Note

10In Machina and Schmeidler (1992), monotonicity with respect to stochastic dominance is a part of
the definition of probabilistically sophisticated non-expected utility maximizer. They also provide an
axiomatic foundation of probabilistic sophistication.
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that, we basically assume that the principal chooses A and B in a way that this property

is satisfied for binary lotteries involving A and B. We do not assume anything for prefer-

ences not concerning prospects A and B. We also do not need to make any assumption

on the initial wealth level of the agent.

The following theorem shows that the value of θ that maximizes the expected utility

under our scoring rule is the same as the minimizer of EX [l(X, θ)] which we would like

to elicit. We make an additional assumption that the loss function is bounded, which we

discuss later.

Theorem 1. Suppose that Assumption 1 holds. Assume that V is monotone with respect

to stochastic dominance in the sense that V (L(p))) ≥ V (L(p∗))) for p ≥ p∗ and the

inequality is strict if p > p∗. Assume that l(X, θ) ≤ K for any θ and X. Then,

arg max
θ∈Θ

V (L(P (θ))) = arg min
θ∈Θ

EX [l(X, θ)] .

The decision made by an agent under the BSR is equivalent to choosing a lottery

from the set of lotteries which is indexed by θ. Because K is uniform and l is always

in the support of K, the probability P (θ) is negatively affi ne to the expected value of

l. Therefore, maximizing the preference is equivalent to minimizing the expected loss.

When there are multiple maximizers of the preference functional, the theorem implies

that all of them are minimizers of the expected loss.

The conditions on the preference for the preceding theorem are weak and can be satis-

fied by many theories of decision under uncertainty. Nonetheless, they implicitly impose

several restrictions. We assume that the agent is “probabilistic sophisticated.”11 Thus, it

is not clear how the BSR works when probabilistic sophistication is violated. The theo-

rem also relies on the reduction of compound lotteries axiom. Harrison, Martínez-Correa

and Swarthout (2012) provide an excellent review of the literature and an experimental

investigation of this axiom.12

The limitation of the theorem that may be important in practice is the assumption

that l(X, θ) is bounded byK. Nevertheless, under many circumstances, this boundedness

assumption can be relaxed. Additional assumptions required to relax the boundedness

assumption are specific to the loss function. In some experiments in this paper, we

11See Machina and Schmeidler (1992), Grant (1995), and Chew and Sagi (2006) for axiomatic founda-
tions of probabilistic sophistication.
12This axiom is possibly violated in the face of dynamic inconsistency. See Machina (1989) for a review.

This axiom is also problematic in the axiomatic foundation of social welfare function as originally illus-
trated by Diamond (1967). It is therefore important to examine the validity of our proposed mechanism
using experimental or real data.

8



consider the case in which we want to minimize the mean squared error concerning the

realized value of the scalar random variable X. Hence, the relevant loss function is

quadratic, l(X, θ) = (X − θ)2. We show that if the distribution of X has a light tail, the

value of θ that maximizes the preference approximates the mean when the loss function is

quadratic. Moreover, if the distribution is symmetric, then reporting the mean maximizes

the preference. These results are summarized in the following theorem.

Theorem 2. Suppose that Assumption 1 holds with l(X, θ) = (X−θ)2 where X is a scalar

that is described by the density function f(a) and has finite second moments. Moreover,

|a|2+δf(a)→ 0 for some δ > 0 as a→∞ and as a→ −∞. As K →∞,

arg max
θ∈Θ

V (L(P (θ)))→ EX [X] ,

where P (θ) = EKEX [1{(X−θ)2<K}]. Furthermore, when f(a) is symmetric around the

mean, there exists a finite K̃ such that for any K > K̃,

arg max
θ∈Θ

V (L(P (θ))) = EX [X] .

Proposition 2 in Bhattacharya and Pfleiderer (1985) states that the QSR can be used

to elicit the mean if the agent is a weakly risk averse expected utility maximizer and

the distribution of X is symmetric. We find that the BSR is more widely applicable

than the QSR as it is incentive compatible even for risk-loving agents or non-expected

utility maximizers and it is so at the limit as K approaches infinity even if the underlying

distribution is not symmetric. An important practical question is how to chooseK. If the

underlying distribution is symmetric, K only needs to satisfy the second order condition

of the minimization problem. This requirement is easily satisfied. For example, if f is the

standard normal density function, then K > 0.3 is suffi cient. When the distribution is

not symmetric, then the value of K determines the distance between what exactly we can

elicit and the true mean. For example, when f is the χ2
1 density function and K = 50,

the minimizer is around 0.962 so the distance from the true mean, 1, is around 0.038.

3 Experimental Illustration of the BSR

We applied our scoring rule in an experimental framework to analyze belief elicitation

about the realized value of a random variable. Using the incentive schemes suggested in

Theorems 1 and 2, we ran two sets of experiments in which we elicit subjects’beliefs about

certain aspects of a random variable. In the first set, which we call the P-experiment,

we elicit subjects’ predictions of the probability that a ball drawn from an urn is of
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some specified color using both the binarized and the quadratic scoring rules. In the

second set, called the M-experiment, a subject gets a number of signals about the realized

value of a random variable and then reports her estimate of the realized value. We use

relatively simple but non-trivial exercises in these two experiments so that the impact of

the incentive schemes is not too confounded by the complexity of the exercise.

The P-experiment was run in Hokkaido University, Japan in July 2010 and the M-

experiment was run in Hong Kong University of Science and Technology in June 2009.

The experiments were programmed and conducted using the software z-Tree developed

by Fischbacher (2007). All subjects were undergraduate students of the respective insti-

tutions and were recruited using databases of students willing to participate in economic

experiments.

3.1 P-Experiment

In the P-experiment, 153 subjects participated in 12 sessions. The subjects were asked to

report their prediction concerning the event that a ball randomly drawn from an urn with

100 balls of three different colors– red, black and blue– was of a certain color or was not

of a certain color. To ensure that the subjects were aware of the concept of probability,

we first reviewed the probability rules in this simple setting. Then, they participated

in 10 unpaid practice periods where they reported their prediction under both scoring

rules. We informed them of the outcome of the draw and how much they would have

earned for their predictions after every practice period. Next, they participated in 2 paid

periods. They were paid using the BSR in one period and using the QSR in the other.

Which incentive scheme would be used in the first period and, for each period, the color

composition of the urn, and the event which the subject had to predict were randomly

decided. The subjects were clearly informed of the color composition and the relevant

event at the beginning of each period. Thus, they knew the true objective probability

of the event in each period. To alleviate the concern that a subject’s income in the first

paid period may affect her choices in the second, they were informed of the outcomes of

the draw and their earnings from both periods only after the second paid period.

In the paid period under the BSR, a subject’s optimal choice is to report the ob-

jective probability of the event happening irrespective of her risk-preference. However,

her optimal prediction under the QSR depends on her risk-preference. Before participat-

ing in the practice and paid periods, subjects also participated in a 5-period round in

each period of which they reported their certainty equivalent for a lottery. The lottery

10



involved receiving JPY 10 as the low prize and JPY 50 or JPY 100 as the high prize.

The probability of winning the larger prize varied between 0.20 and 0.90. The certainty

equivalent was elicited using the BDM mechanism proposed by Becker, DeGroot, and

Marschak (1964).13 At the end of a session, subjects were paid in cash for the 2 paid

periods and a randomly chosen period from the risk-preference elicitation round. The

sessions were conducted in Japanese and the experimental rules were described using

PowerPoint presentations. Subjects were provided with handouts illustrating the rela-

tionship between their prediction and the payment.14 In total, subjects spent around an

hour in the laboratory on average and the average payment to a subject was around JPY

1745 (USD 21).

Each subject started her session with an initial endowment of JPY 1000. Suppose a

subject was asked to report her prediction that the color of the drawn ball (from an urn

with 100 balls) was red and she entered an integer P between 0 and 100 (inclusive) as her

prediction. Thus, the reported probability of the event happening is P/100. Let us define

the subject’s squared error to be (1− P/100)2 and (P/100)2 if the drawn ball turned out

to be red and not red, respectively. Under the BSR incentive scheme in the paid round,

JPY 500 was added to the subject’s endowment if her squared error was below a random

number K generated from a uniform distribution on [0, 1]. If the squared error was below

K, then JPY 300 would be taken away from her endowment. Under the QSR incentive

scheme, the subject received JPY 500 − 800sqe where sqe stands for the squared error.

If a subject reported the true objective probability as her prediction (the optimal choice

under risk-neutrality), her expected earning would be the same under both incentive

schemes.

3.1.1 Results

To compare subjects’performances under the two scoring rules, we compute the measure

NSD– the negative of the square of the difference between the reported number and

the true probability.15 Under the BSR, reporting the objective or true probability of

13The BDM mechanism is not valid if the agent is not an expected utility maximizer (Holt, 1986).
Assuming that compound lotteries can be reduced to simple lotteries, Karni and Safra (1987) show that
the BDM method is valid if and only if the expected utility hypothesis holds. To our knowledge, there
is no mechanism that elicits the certainty equivalence of a lottery without relying on the expect utility
assumption. Nonetheless, we believe that the BDM method provides us with some information about an
agent’s risk preference.
14These and other instructions can be supplied by the authors upon request.
15We express NSD in percentage terms in order to make the results easier to present in a table

format. Suppose the true and the reported probabilities are π/100 and P/100, respectively. Then, the
NSD equals − (π − P )

2.

11



the specified event happening maximizes a subject’s expected utility, independent of her

risk preference. Under the QSR, however, it maximizes a subject’s utility only if she is

risk-neutral. Of course, we do not expect the QSR to induce risk-neutrality. Rather,

as risk-averse subjects are likely to make predictions relatively further from the true

probability under the QSR, we use it as a benchmark to evaluate BSR’s performance in

eliciting the true probability.

For our analysis, we exclude the outlier data points. Specifically, we exclude observa-

tions that did not satisfy a criterion we call “betweenness,”allowing for some randomness

in reporting, and those with the lowest 5% NSD. We consider that an observation sat-

isfies betweenness if the reported probability is between the true probability and 0.5

(inclusive). To allow for small deviations from theory in reporting the probability, we

only exclude an observation that does not satisfy betweenness if the distance between the

true and reported probabilities is greater than 0.2. However, the empirical results stay

qualitatively unchanged whether we exclude observations with the distance between the

true and reported probabilities greater than 0, 0.05, 0.1, or 0.15, instead. A typical ex-

cluded observation is to report 0.74 when the true probability is 0.26. Such observations

are likely to have been caused by simple mistakes and it is appropriate to exclude them.

There are 30 excluded observations by 28 subjects (observations from both periods were

excluded for two subjects) – 16 observations under the BSR and 14 under QSR. Thus, we

have a panel with 276 observations from 151 subjects. We assume that the observations

are independent across subjects but are potentially correlated over periods.

The first column of Table 1 presents descriptive statistics ofNSD for the P-experiment.

This suggests that the subjects reported probabilities relatively closer to the objective or

true probability under the BSR. To confirm this result, we regress NSD on BSR, which

is a dummy variable that indicates when the BSR is used, and other variables to examine

the effect of incentive scheme on reported predictions. Table 2 summarizes the results of

these regressions.16 Column (1) present regression result with all 276 observations. The

prediction error falls more by one-third when we switch from the QSR to the BSR. The

result is robust to controlling for personal characteristics such as gender, major, or class

level of the subjects. Next we utilize the risk-preference elicitation round to analyze the

performances of subjects based on their risk attitude. Columns (2) to (4) present similar

regressions as those in column (1), but with only risk-averse, risk-neutral, and risk-loving

16We always present heteroskedasticity and autocorrelation robust standard errors, which allows arbi-
trary heteroskedasticity and correlation within an individual but assumes independence across subjects
(Arellano, 1987).
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subjects, respectively.17 We find that the BSR performs better than the QSR for risk-

averse subjects. The benefit of the QSR is not statistically significant for risk-neutral or

risk-loving subjects. Recall that, the QSR is incentive compatible for risk-neutral agents.

For risk-loving subjects, the directionality of the prediction under the QSR is rather com-

plicated and depends critically on the specific utility function. Nevertheless, subjects will

have a tendency to report relatively extreme probabilities.

As risk-averse agents should choose predictions closer to 0.5 under the QSR, the

difference between the two incentive schemes should be more pronounced as the true

probability gets further from 0.5. However, when the true probability equals 0 and 1,

both BSR and QSR predict that risk-averse subjects will choose the true probability as

their reported probability. Thus, the difference between the BSR and the QSR will be

small for probabilities near 0.5 and larger for more extreme probabilities, but getting

smaller again as the true probability gets to 0 or 1. Exactly for which probabilities the

QSR starts reporting predictions close to true probability will depend on the level of risk-

aversion of a subject. On the other hand, for risk-neutral agents the two schemes should

lead to truthful reporting independent of the true probability. Finally, the difference

between the schemes is likely to be largest for true probability close to 0.5 and miniscule

for true probabilities close to 0 or 1 when the agent is risk-loving. In Table 3, we control for

the distance of the true probability from 0.5. In column (1), which includes all subjects,

coeffi cient of the dummy BSR is statistically insignificant. This suggests that there is

no significant difference between the performances of the two schemes when the objective

probability is around 0.5. Coeffi cient of the interaction term of BSR and the distance

of the true probability from 0.5 is positive and significant at the 10% level. Thus, the

further the true probability is from 0.5, the better the BSR performs than the QSR. This

also holds true when we include only risk-averse subjects in column (2). We can use these

coeffi cients to estimate the net impact of the BSR over the QSR for different levels of

the objective probability. While the difference between the two schemes is not significant

for probabilities relatively close to 0.5, the results suggest that the BSR outperforms the

QSR at 5% significance level for more extreme probabilities. For example, we present the

estimated effects of the BSR for when the true probability is 0.15 or 0.85 and 0.1 or 0.9.

17We classify subjects as risk-averse, risk-neutral, or risk-loving by constructing their average risk
aversion coeffi cient, under a constant relative risk aversion (CRRA) model, using their choices of cer-
tainty equivalents of lotteries in the risk-preference elicitation round. Four subjects reported certainty
equivalents that cannot be explained by expected utility theory. We have 269 observations from these
147 subjects. Among them, 108, 11, and 28 are risk-averse, risk-neutral, and risk-loving subjects, respec-
tively. Our empirical results do not change qualitatively if we classify subjects without assuming any
specific preference structure.
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In these cases, BSR outperforms QSR for both the entire sample and only the risk-averse

subjects. On the other hand, we find no difference between the two schemes for risk-

neutral subjects for any level of true probability. Column (4) shows that, the coeffi cient

of BSR is positive but significant only at 15% level for risk-loving subjects. Moreover,

consistent with the theoretical prediction, there is no difference in the performance of the

two incentive schemes for extreme probabilities.

While there is not much difference in the performances of the BSR and the QSR for

risk-neutral subjects, the BSR performs better for risk-averse subjects. Moreover, this

benefit of the BSR is more pronounced when true probabilities are relatively extreme.

These results are in line with the theoretical predictions. Nevertheless, there is some

randomness associated with the reported probabilities that results into subjects choosing

probabilities that are different from the true probabilities under the BSR even though

the BSR elicits probabilities closer to the true one compared to the QSR. The subjects

report the true probability as the prediction only in handful of cases. Results not reported

in the tables show that the shares of reported probabilities that coincide with the true

probability are virtually the same under the BSR and the QSR at 14.4% and 13.7%,

respectively. If we compare the NSD under the two schemes for observations where the

reported probability was different from the true probability, we find that the BSR reduces

NSD by 67.3 units.18 Next, in Table 4, we analyze how the subjects choose the reported

probability under the two schemes. We regress the reported probability on dummies for

the two schemes (denoted by BSR and QSR) and the true probability interacted with

BSR and QSR. The four columns use all subjects and only risk-neutral, risk averse, and

risk-loving subjects, respectively. Column (1) shows that the reported probability puts

higher weight on the true probability under the BSR than under the QSR. The other

columns show that this difference come basically from the risk-averse subjects. As a

result, the BSR clearly outperforms the QSR when subjects are risk-averse.

3.2 M-Experiment

In the M-experiment, subjects predicted the realized earning per share (EPS) of a stock.

A total of 61 subjects participated in two sessions, each consisting of 40 periods. A subject

was endowed with a stock of a new (fictitious) company at the beginning of each period.

Then they learned 10 independent forecasts of the EPS and the average of these forecasts.

The true EPS was drawn from a normal distribution with mean and variance of 60 and
18The effect is statistically significant at the 5% level.
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400, respectively. Each forecast equaled the true EPS plus an error term independently

drawn from a normal distribution with mean 0 and variance 8. In each period, a new

stock (with a different, independently drawn, EPS) was presented.

Suppose, in a given period, a subject predicts the EPS to be M while the realized

value is T . Then the squared error from the prediction equals (T −M)2. Under the BSR,

if the squared error was below some number K then the subject won a fixed prize of 80

points and won nothing otherwise. In each period, a new error bound K was generated

from a uniform distribution on [0, 6].19 The subject was informed of the realized values

of K and the EPS (T ) for a given period at the end of that period. As the underlying

distributions are symmetric, Theorem 2 implies that any subject’s optimal strategy under

the BSR is to choose the value M that minimizes the expected mean squared error,

ET
[
(T −M)2], given the signals irrespective of her risk attitude. Given that the true

EPS is drawn from N(60, 400), the optimal prediction is 500X̄/501 + 60/501 where X̄

is the average of the 10 forecasts. Therefore, one can easily approximate the optimal

action by X̄. We use this as the optimal action in the M-experiment for simplicity.

Under the QSR, the subject received a payment of 90 − 25 (T −M)2. In the periods

when this value was negative for a subject, she received negative points for that period.

Note that reporting the average forecast is (nearly) optimal also for weakly risk-averse

expected utility maximizers according to Bhattacharya and Pfleiderer (1985). We chose

the parameters for the QSR (i.e., 90 and 25) such that the mean and variance of earnings

when subjects followed the optimal action are the same for both scoring rules.

We used the BSR in the first 20 periods and the QSR in the remaining 20 periods

in session 1 and the order of the incentive schemes was switched in session 2. We used

the same set of 40 stocks and corresponding forecasts in the two sessions. Our data set

includes 2436 observations from 61 subjects as some observations were missing because of

some unknown but likely technical reason. Subjects were paid for the total points earned

in the 40 periods at the rate of 16 points = HKD 1. The average payment to a subject

was above HKD 164 (USD 21). The sessions were conducted in English.

3.2.1 Results

We define NSD as the negative squared difference between the predicted value of EPS

and the average of the forecasts. The last column of Table 1 show that the average NSD

19By calculating the distribution of the posterior mean, we estimate that the theoretical probability
of the error being above 6 was about 0.6% when a subject reported a prediction that maximized her
expected utility. Only 60 among the 2436 observations had squared errors larger than 6.

15



is very small and not significantly different under the two incentive schemes. Table 5

presents results from regressing NSD on the binary variable BSR. In column (2), we

also control for the subject’s experience with that particular scheme.20 The differences

between performances under the two scoring rules are not statistically significant, nor

economically important. We do not find any statistically significant effect of experience

on performance either. Here Experience is a variable that equals the period number

in periods 1 to 20 and the period number minus 20 in periods 21 to 40. It denotes

the number of periods the subject has experienced under that incentive scheme. The

predictions are very close to the average of the 10 forecasts under both schemes.21 Note

that the QSR may not be incentive compatible if the subject is not an expected utility

maximizer. Nevertheless, given how closely subjects choose predictions to the optimal

action, this does not seem to be of great concern.

3.3 Summary

To summarize, we investigated subjects’behavior under both binarized and quadratic

scoring rules. For the P-experiment, where risk-aversion theoretically does not lead to

truthful revelation of the objective probability under the QSR but does so under the

BSR, subjects take actions closer to reporting the true probability when we use the

BSR. For the M-experiment, subject behavior is not significantly different under the two

schemes. These results are consistent with the theoretical predictions from this paper

and Bhattacharya and Pfleiderer (1985). Thus, we provide a simple scoring rule that is,

in theory, more general and superior in eliciting beliefs and show that this rule indeed

performs better than the widely-used quadratic scoring rule in standard experiments of

belief elicitation.

Our results are in stark contrast to the results of Selten, Sadrieh, and Abbink (1999)

who found that a lottery payoff rule does not work well compared to deterministic scoring

rules. Nevertheless, we may be able to interpret our results using the background risk

hypothesis that they propose to explain their findings. The background risk hypothesis

can be described in the following way: When an agent faces a high risk in the income,

she may become more risk sensitive. A risk-sensitive agent may be more “capricious”in

the sense that she changes her behavior sometimes toward the direction of risk-aversion

20We also consider specifications that include individual fixed effects or time fixed effects. However,
the results are almost identical to those reported here and are omitted.
21Regressing the reported prediction on the average, maximum, minimum and the standard deviations

of the 10 forecasts, we find that the weight on the average of forecasts is not statistically different from
1 and the weights on other variables are not statistically significant.
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but also sometimes toward the direction of risk-taking. Therefore, when the risk of

the income is high, she may deviate more from the prediction of the expected utility

theory. In their experiments, the variance of income under the lottery payoff scheme is

much higher than that under the monetary payoff scheme. On the other hand, in our

M-experiment, we set the mean and the variance of the payoff such that those are the

same under both schemes if an agent behaves optimally. Therefore, the background risk

hypothesis does not indicate that subjects should behave more erratically under the BSR

in the M-experiment. For the P-experiment, while we choose the parameters so that the

mean of the income under the two schemes are the same, the variances are different. The

variance under the BSR is generally higher than that under the QSR. However, simple

calculations show that the difference is the largest when the true probability is 50%. The

difference becomes small as the true probability approaches 0 or 1. This fact may explain

the finding that while the QSR seems to work well when the true probability is around

0.50, the BSR can elicit the true probability better when the true probability is away

from 0.50 where the background risks of the BSR and the QSR are similar.

4 Conclusions

This paper introduces a general mechanism to create incentive compatible scoring rules

for eliciting an economic agent’s beliefs of without making any strong assumption on her

risk preference. We also show that the resulting scoring rules work even under some

non-expected utility theory frameworks. We observe that simple scoring rules based on

this mechanism perform better than the quadratic scoring rule in laboratory experiments.

Given that our scoring rules are theoretically superior to commonly used scoring rules,

the mechanism can be used to generate appropriate scoring rules for more sophisticated

settings. For example, in a companion paper, Hossain and Okui (2011) investigate how

people analyze independent and correlated signals about a random variable. Specifically,

they test how well people can differentiate relative importance of independent and cor-

related signals. While subjects choose their prediction in an overall unbiased way, they

put sub-optimally high weight on the correlated signals. They also utilize the binarized

scoring rule to measure overconfidence. In general, as maximization of expected payoff

and expected utility are equivalent under the binarized scoring rule, it can be used in

determining payoffs in experimental games to circumvent the issue of agents not being

risk-neutral.
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A Appendix

Proof of Theorem 1

Proof. The agent prefers a lottery with a higher probability of receiving rewardA, denoted

by P (θ) in the context of the BSR. Thus, her optimization problem is equivalent to

maximizing P (θ). It follows that

arg max
θ∈Θ

V (L(P (θ))) = arg max
θ∈Θ

P (θ).

Since

P (θ) = EKEX
[
1{l(θ,X)<K}

]
= EX

[
1− 1

K
l(X, θ)

]
= 1− 1

K
EX [l(X, θ)] ,

it holds that

arg max
θ∈Θ

P (θ) = arg min
θ∈Θ

EX [l(X, θ)] .

Therefore, the θ that minimizes the expected loss also maximizes the agent’s preference

functional.

Proof of Theorem 2

Proof. Maximizing V is equivalent to maximizing the probability of winning A. This

probability is22

EX

[
1{(X−θ)2≤K}

(
1− 1

K
(X − θ)2

)]
=

∫ θ+
√
K

θ−
√
K

(
1− 1

K
(X − θ)2

)
f(X)dX.

The first order condition of this maximization problem is

−
∫ θ+
√
K

θ−
√
K

2

K
(θ −X)f(X)dX = 0,

by the Leibniz rule. The solution to the first order condition is

θ =

∫ θ+
√
K

θ−
√
K

f(X)dX

−1 ∫ θ+
√
K

θ−
√
K

Xf(X)dX.

Since f(X) is a density function, it holds that∫ θ+
√
K

θ−
√
K

f(X)dX

−1

→ 1

22Note that when the loss function is bounded, we take K̄ such that 1{l(X,θ)≤K̄} = 1. The indicator
function therefore does not appear in the proof of Theorem 1.
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as K →∞. Next, we consider the numerator. We observe that

EX [X]−
∫ θ+
√
K

θ−
√
K

Xf(X)dX =

∫ ∞
θ+
√
K

Xf(X)dX +

∫ θ−
√
K

−∞
Xf(X)dX.

Since |a|2+δf(a)→ 0, it holds that |a|2+δf(a) < ε for any ε for a large enough such that

af(a) < εa−1−δ. It therefore follows that∫ ∞
θ+
√
K

Xf(X)dX < ε

∫ ∞
θ+
√
K

X−1−δdX = ε
1

δ
(θ +

√
K)−δ

forK large enough. The term (θ+
√
K)−δ can be made arbitrarily small by takingK large

enough. This shows that
∫∞
θ+
√
K
Xf(X)dX → 0. Similarly, we have

∫ θ−√K

−∞ Xf(X)dX →
0. These imply that∫ θ+

√
K

θ−
√
K

f(X)dX

−1 ∫ θ+
√
K

θ−
√
K

Xf(X)dX → EX [X].

Note that, when f(X) is symmetric around the mean, the solution to the first order

condition,

−
∫ θ+
√
K

θ−
√
K

2

K
(θ −X)f(X)dX = 0,

exactly equals EX [X] even for finite K.

We verify that the solution to the first order condition is indeed the maximizer by

checking the second order condition:

− 2

K
(θ − θ −

√
K)f(θ +

√
K) +

2

K
(θ − θ +

√
K)f(θ −

√
K)

− 2

K

∫ θ+
√
K

θ−
√
K

f(X)dX

=
2

K

√Kf(θ +
√
K) +

√
Kf(θ −

√
K)−

∫ θ+
√
K

θ−
√
K

f(X)dX

 ,

by the Leibniz rule. The term
√
Kf(θ +

√
K) +

√
Kf(θ −

√
K) can be made arbitrarily

small by taking K large enough by the assumption that |a|2+δf(a) → 0 as a → ∞ and

as a→ −∞ . The term
∫ θ+√K

θ−
√
K
f(X)dX can be made arbitrarily close to 1 by taking K

large enough. Therefore, the second order condition is satisfied for large K.

19



References

[1] Allen, Franklin (1987): “Discovering Personal Probabilities When Utility Functions

are Unknown,”Management Science, 33(4), 542-544.

[2] Andersen, Steffen, John Fountain, Glenn W. Harrison and E. Elisabet Rutström

(2010): “Estimating Subjective Probabilities,”Working paper, 2010-06, Center for

the Economic Analysis of Risk, Georgia State University.

[3] Andersen, Steffen, John Fountain, Glenn W. Harrison, Arne Risa Hole and E. Elis-

abet Rutström (2012): “Inferring Beliefs as Subjectively Imprecise Probabilities,”

Theory and Decision, 73(1), 161-184.

[4] Arellano, Manuel (1987), “Computing Robust Standard Errors for Within-groups

Estimators,”Oxford Bulletin of Economics and Statistics, 49(4), 431-435.

[5] Becker, Gordon M., Morris H. Degroot and Jacob Marschak (1964): “Measuring

Utility by a Single-response Sequential Method,”Behavioral Science, 9(3), 226-232.

[6] Berg, Joyce E., Lane A. Daley, John W. Dickhaut, and John R. O’Brien (1986):

“Controlling Preferences for Lotteries on Units of Experimental Exchange,”Quar-

terly Journal of Economics, 101(2), 281-306.

[7] Bhattacharya, Sudipto and Paul Pfleiderer (1985): “Delegated Portfolio Manage-

ment,”Journal of Economic Theory, 36(1), 1-25.

[8] Blanco, Mariana, Dirk Engelmann, Alexander K. Koch and Hans-Theo Normann

(2010): “Belief Elicitation in Experiments: Is There a Hedging Problem?,”Experi-

mental Economics, 13, 412-438.

[9] Brier, Glenn W. (1950): “Verification of Forecasts Expressed in Terms of Probabil-

ity,”Monthly Weather Review, 78(1), 1-3.

[10] Chew, Soo Hong and Jacob S. Sagi (2006): “Event Exchangeability: Probabilistic

Sophistication Without Continuity or Monotonicity,”Econometrica, 74(3), 771-786.

[11] De Finetti, Bruno (1974): Theory of Probability, Vol. 1, New York: Wiley.

[12] Diamond, Peter A. (1967): “Cardinal Welfare, Individualistic Ethics, and Inter-

personal Comparison of Utility: Comment,” Journal of Political Economy, 75(6),

765-766.

20



[13] Fischbacher, Urs (2007): “z-Tree - Zurich Toolbox for Ready-made Economic Ex-

periments,”Experimental Economics, 10(2), 171-178.

[14] Gneiting, Tilmann and Adrian E. Raftery (2007): “Strictly Proper Scoring Rules,

Prediction, and Estimation,” Journal of the American Statistical Association,

102(477), 359-378.

[15] Grant, Simon (1995): “Subjective Probability without Monotonicity: Or how

Machina’s Mom May also Be Probabilistically Sophisticated,”Econometrica, 63(1),

159-191.

[16] Grether, David M. (1980): “Bayes Rule as a Descriptive Model: The Representative

Heuristic,”Quarterly Journal of Economics, November, 537-557.

[17] Grether, David M. (1981): “Financial Incentive Effects and Individual Decision mak-

ing,”Social Science Working Paper 401, California Institute of Technology.

[18] Grether, David M. (1992): “Testing Bayes Rule and the Representative Heuristic:

Experimental Evidence,”Journal of Economic Behavior and Organization, 17, 31-57.

[19] Hao, Li and Daniel Houser (2012): “Belief Elicitation in the Presence of Naïve

Respondents: An Experimental Study,” Journal of Risk and Uncertainty, 44(2),

161-180.

[20] Harrison, Glenn W., Jimmy Martínez-Correa, and J. Todd Swarthout (2012): “In-

ducing Risk Neutral Preferences with Binary Lotteries: A Reconsideration,”Working

Paper, 2012-02, Center for the Economic Analysis of Risk, Georgia State University.

[21] Hollard, Guillaume, Sebastien Massoni, and Jean-Christophe Vergnaud (2010):

“Subjective Beliefs Formation and Elicitation Rules: Experimental Evidence,”Work-

ing Paper, Universite Paris-1.

[22] Holt, Charles A. (1986): “Preference Reversals and the Independence Axiom,”Amer-

ican Economic Review, 76(3), 508-515.

[23] Holt, Charles (2007): Markets, Games & Strategic Behavior, Boston,

Pearson/Addison-Wesley.

[24] Holt, Charles A. and Angela M. Smith (2009): “An Update on Bayesian Updating,”

Journal of Economic Behavior & Organization, 69, 125-134.

21



[25] Hossain, Tanjim and Ryo Okui (2011): “Information Aggregation in a Laboratory

Financial Market,”working paper.

[26] Hurley, Terrance M., Nathanial Peterson, and Jason F. Shogren (2007): “Belief

Elicitation: An Experimental Comparison of Scoring rule and Prediction Methods,”

Working paper, University of Minnesota.

[27] Hurley, Terrance M. and Jason F. Shogren (2005): “An Experimental Comparison

of Induced and Elicited Beliefs,”Journal of Risk and Uncertainty, 30(2), 169-188.

[28] Kadane, Joseph B. and Robert L. Winkler (1988): “Separating Probability Elicita-

tion from Utility,”Journal of the American Statistical Association, 88(402), 357-363.

[29] Karni, Edi (2009): “A Mechanism for Eliciting Probabilities,”Econometrica, 77(2),

603-606.

[30] Karni, Edi, and Zvi Safra (1987): ““Preference Reversal”and the Observability of

Preferences by Experimental Methods,”Econometrica, 55(3), 675-685.

[31] Karni, Edi and Zvi Safra (1995): “The Impossibility of Experimental Elicitation of

Subjective Probabilities,”Theory and Decision, 38(3), 313-320.

[32] Laury, Susan K., Melayne Morgan McInnes, and J. Todd Swarthout (2012): “Avoid-

ing the Curves: Direct Elicitation of Time Preferences,”Journal of Risk and Uncer-

tainty, 44(3), 181-217.

[33] Machina, Mark J. (1982): ““Expected Utility”Analysis without the Independence

Axiom,”Econometrica, 50(2), 277-323.

[34] Machina, Mark J. (1989): “Dynamic Consistency and Non-Expected Utility Models

of Choice Under Uncertainty,”Journal of Economic Literature, 27(4), 1622-1668.

[35] Machina, Mark J. and David Schmeidler (1992): “A More Robust Definition of

Subjective Probability, ”Econometrica, 60(4), 745-780.

[36] McKelvey, Richard D. and Talbot Page (1990): “Public and Private Information:

An Experimental Study of Information Pooling,”Econometrica, 58(6), 1321-1339.

[37] Möbius, Markus M., Muriel Niederle, Paul Niehaus and Tanya Rosenblat (2007):

“Gender Differences in Incorporating Performance Feedback,”Working Paper, Har-

vard University, Cambridge.

22



[38] Offerman, Theo, Joep Sonnemans, Gijs van de Kuilen and Peter P. Wakker (2009):

“A Truth Serum for Non-Bayesians: Correcting Proper Scoring Rules for Risk Atti-

tudes,”Review of Economic Studies, 76, 1461-1489.

[39] Qu, Xiangyu (2012): “A Mechanism for Eliciting a Probability Distribution,”Eco-

nomics Letters, 115, 399-400.

[40] Quiggin, John (1982): “A Theory of Anticipated Utility,” Journal of Economic

Behavior and Organization, 3, 323-343.

[41] Roth, Alvin E. and Michael W. K. Malouf (1979): “Game-Theoretic Models and the

Role of Information in Bargaining,”Psychological Review, 86(6), 574-594.

[42] Savage, Leonard J. (1971): “Elicitation of Personal Probabilities and Expectations,”

Journal of the American Statistical Association, 66(336), 783-801.

[43] Schlag, Karl H. and Joël van der Weele (2009): “Eliciting Probabilities, Means,

Medians, Variances and Covariances without Assuming risk-neutrality,” Working

Paper, Universitat Pompeu Fabra, Barcelona.

[44] Selten, Reinhard, Abdolkarim Sadrieh, and Klaus Abbink (1999): “Money Does Not

Induce risk-neutral Behavior, But Binary Lotteries Do Even Worse,”Theory and

Decision, 46(3), 211-249.

[45] Smith, Cedric A. B. (1961): “Consistency in Statistical Inference and Decision,”

Journal of the Royal Statistical Society, Series B, 23(1), 1-25.

[46] Trautmann, Stefan T. and Gijs van de Kuilen (2011): “Belief Elicitation: A Horse

Race among Truth Serums,”Working Paper, Tilburg University.

23



P-experiment M-experiment
Average of NSD -138.203 -0.218
Standard Deviation 279.145 0.584
Observations 276 2436

Average of NSD under the BSR -105.891 -0.207
Standard deviation 175.994 0.523
Observations 137 1216

Average of NSD under the QSR -170.050 -0.230
Standard Deviation 350.359 0.639
Observations 139 1220

t-test 2.021 1.019
p-value 0.044 0.308

Note: NSD is the negative of the square of the difference between the reported number
and the action that minimizes the expected loss (it is the true probability in percentage
in the P-experiment and the average of forecasts in the M-experiment). t-test is the value
of the t-test statistic for the null hypothesis that the mean of the NSD under the BSR is
equal to that under the QSR. Heteroskedasticity is allowed and the p-value is computed
by its asymptotic distribution.

Table 1: Summary of NSD from both experiments

Dependent Variable NSD NSD NSD NSD

Constant -170.05∗∗∗ -200.52∗∗∗ -98.50 -99.96∗∗

(29.72) (39.18) (66.23) (39.11)
BSR 64.16∗∗ 80.08∗∗ 27.00 25.24

(29.69) (39.64) (26.29) (41.87)

Adjusted R2 0.013 0.012 -0.050 -0.014

Sample Full Risk-averse Risk-neutral Risk-loving
# of Observations 276 198 20 51

Note: “***”and “**” indicate significance at the 1% and 5% levels, respectively. Het-
eroskedasticity and autocorrelation robust standard errors are in parentheses. NSD is
the negative of the square of the difference between the reported prediction and the true
probability (in percentage terms); BSR is a dummy variable equaling 1 if the BSR is
used.

Table 2: Subject performance under the BSR and the QSR, P-experiment.
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Dependent Variable NSD NSD NSD NSD

Constant 33.79 93.68 -3.41 -160.03∗∗

(66.85) (100.24) (50.77) (61.49)
BSR -95.28 -176.41∗ 97.47 102.80

(73.18) (106.16) (133.20) (69.96)
|Trueprob− 50| -6.85∗∗∗ -9.70∗∗ -3.80 1.99

(2.92) (4.18) (2.94) (1.53)
|Trueprob− 50| × BSR 5.27∗ 8.38∗ -2.37 -2.66

(3.12) (4.36) (5.04) (1.89)

Adjusted R2 0.047 0.065 -0.063 -0.044

The impact of the BSR
when true probability is 0.15 or 0.85

βBSR + 35β|Trueprob−50|×BSR 89.10∗∗ 117.06∗∗ 14.38 9.70
(43.27) (56.24) (56.84) (44.24)

when true probability is 0.10 or 0.90
βBSR + 40β|Trueprob−50|×BSR 115.44∗∗ 158.98∗∗ 2.51 -3.60

(57.61) (76.27) (78.94) (47.47)

Sample Full Risk-averse Risk-neutral Risk-loving
# of Observations 276 198 20 51

Note: “***”, “**”, and “*”indicate significance at the 1%, 5%, and 10% levels, respec-
tively. Heteroskedasticity and autocorrelation robust standard errors are in parentheses.
NSD is the negative of the square of the difference between the reported prediction and
the true probability (in percentage terms); BSR is a dummy variable equaling 1 if the
BSR is used; Trueprob is the true probability in percentage terms.

Table 3: Subject performance under the BSR and the QSR in relation to the difference
between the true probability and 0.50, P-experiment.
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Dependent Variable Reported Reported Reported Reported

BSR 2.48 2.63 3.52 1.78
(1.53) (1.89) (2.26) (3.40)

BSR× Trueprob 0.92∗∗∗ 0.91∗∗∗ 0.87∗∗∗ 0.97∗∗∗

(0.03) (0.03) (0.08) (0.07)
QSR 8.33∗∗∗ 9.65∗∗∗ 14.23 2.85

(2.09) (2.51) (10.26) (3.51)
QSR× Trueprob 0.84∗∗∗ 0.80∗∗∗ 0.78∗∗∗ 0.99∗∗∗

(0.04) (0.04) (0.14) (0.06)

Adjusted R2 0.859 0.841 0.887 0.907

Wald test for the equivalence
between the behaviors

H0 : βBSR = βQSR 7.17 7.24 1.60 0.98
and βBSR×Trueprob = βQSR×Trueprob (0.028) (0.027) (0.450) (0.611)

Sample Full Risk-averse Risk-neutral Risk-loving
# of Observations 276 198 20 51

Note: “***”indicates significance at the 1% level. Heteroskedasticity and autocorrelation
robust standard errors are in parentheses under coeffi cient estimates. Reported is the
reported prediction in percentage terms; BSR is a dummy variable equaling 1 if the BSR
is used; Trueprob is the true probability in percentage terms; QSR is a dummy variable
equaling 1 if the QSR is used. In parentheses under the values of the test statistics are
p-values.

Table 4: Subject behaviors in the P-experiment.
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Dependent Variable NSD NSD

Constant -0.230∗∗∗ -0.294∗∗∗

(0.026) (0.055)
BSR 0.023 0.018

(0.026) (0.072)
Experience 0.006

(0.004)
BSR × Experience 0.000

(0.005)

Adjusted R2 0.000 0.003

Wald test for the impact of Experience
H0: βExperience = 0 and βBSR×Experience = 0 4.806

(0.090)
Wald test for the impact of BSR

H0: βBSR = 0 and βBSR×Experience = 0 1.144
(0.564)

The effect of EXPERIENCE under the BSR:
βEXPERIENCE + βBSR×EXPERIENCE 0.006∗

(0.039)
Observations 2436 2436

Note: “∗∗∗” and “∗ indicate significance at the 1% and 10% levels, respectively. Het-
eroskedasticity and autocorrelation robust standard errors are in parentheses under co-
effi cient estimates. In parentheses under the values of the test statistics are p-values.
NSD is the negative of the square of the difference between the reported number and the
average forecast; BSR is a dummy variable equaling 1 if the BSR is used; The variable
Experience takes the value of 1 to 20 to denote the period number under the particular
incentive scheme.

Table 5: Subject performance under the BSR and the QSR, M-experiment
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