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Abstract. Problem definition: We provide guidelines on three fundamental decisions of cus-
tomer relationship management (CRM) and capacity management for profit-maximizing
service firms that serve heterogeneous repeat customers, whose acquisition, retention,
and behavior depend on their service access quality to bottleneck capacity: how much to
spend on customer acquisition, how much capacity to deploy, and how to allocate capac-
ity and tailor service access quality levels to different customer types. Academic/practical
relevance: These decisions require a clear understanding of the connections between cus-
tomers’ behavior and value, their service access quality, and the capacity allocation. How-
ever, existing models ignore these connections. Methodology: We develop and analyze a
novel fluid model that accounts for these connections. Simulation results suggest that the
fluid-optimal policy also yields nearly optimal performance for large stochastic queueing
systems with abandonment. Results: First, we derive new customer value metrics that
extend the standard ones by accounting for the effects of the capacity allocation, the
resulting service access qualities, and customer behavior: a customer’s lifetime value; her
Vµ index, where V is her one-time service value and µ her service rate; and her policy-
dependent value, which reflects the Vµ indices of other served types. Second, we link these
metrics to the profit-maximizing policy and to new capacity management prescriptions,
notably, optimality conditions for rationing capacity and for identifying which customers
to deny service. Further, unlike standard index policies, the optimal policy prioritizes
customers based not on their Vµ indices, but on policy- and type-dependent functions of
these indices. Managerial implications: First, our study highlights the importance of basing
decisions on more complete metrics that link customer value to the service access quality;
marketing-focused policies that ignore these links may reduce profits significantly. Sec-
ond, the proposed metrics provide guidelines for valuing customers in practice. Third,
our decision guidelines help managers design more profitable policies that effectively
integrate CRM and capacity management considerations.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2017.0635.

Keywords: abandonment • advertising • call centers • capacity management • congestion • customer relationship management • fluid models •
marketing–operations interface • priorities • promotions • service quality • staffing • queueing systems

1. Introduction
Many service firms serve heterogeneous repeat cus-
tomers whose acquisition, retention, and behavior dur-
ing their lifetime in the customer base depend on their
service quality. A key dimension of service quality is
access to bottleneck capacity, such as call centers, field
operations, or fulfillment operations. We study three
interrelated strategic decisions for a profit-maximizing
firm in this situation: how much to spend on new cus-
tomer acquisition, how much capacity to deploy, and
how to allocate this capacity and tailor service access
quality levels to different customer types.
This problem was motivated by several questions

that emerged in our conversations with managers of
a credit card company on how to manage customer
access to its call center. What is the value of a call and

the lifetime value of a customer? What are the effects
of the service access quality on these metrics? How
should the optimal decisions consider these effects,
and what are the consequences of ignoring them?
These questions highlight the importance of consider-
ing the effects of service access quality on the over-
all customer relationship, not only on individual calls,
consistent with the key premise of customer relation-
ship management (CRM). The importance of a CRM
approach to call center capacity management is sup-
ported by customer surveys and other researchers.
As Anton et al. (2004) estimate, firms that use call
centers conduct 80% of interactions with their cus-
tomers through this channel, and 92% of customers
base their opinion of a company on their call center
service experiences. Moreover, these experiences can
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have a dramatic impact on customer satisfaction and
retention. Long waiting times are cited by 67% of cus-
tomers as a major cause of frustration, and a poor
call center experience is cited by 40% of customers as
the sole reason for terminating their relationship with
a business (Genesys Telecommunications Labs 2007).
According to Akşin et al. (2007, p. 682), “firms would
benefit from a better understanding of the relation-
ship between customers’ service experiences and their
repeat purchase behavior, loyalty to the firm, and over-
all demand growth in order to make better decisions
about call center operations.” The importance of under-
standing this relationship for call centers has recently
also been recognized in the marketing literature (see
Sun and Li 2011).
This paper provides a foundation for building such

understanding, based on a new fluid model that in-
tegrates CRM and service operations management.
Whereas the call center contextmotivated this research,
our model emphasizes general features that apply to
any bottleneck capacity of a service firm. For instance,
at a high level, Amazon.com faces a similar problem
in allocating its fulfillment capacity among new cus-
tomers, Prime customers, and non-Prime customers.

We model homogeneous new customers and het-
erogeneous base (repeat) customer types that differ
in their service request rates, service-dependent and
-independent profits and costs, and reactions to their
service access quality, measured by their service prob-
ability. The firm uses advertising to control new cus-
tomer arrivals, and capacity level and allocation to
control customers’ service probabilities and, in turn,
their customer base transitions, from conversion to
base customers of different types, to switching among
types, to defection. The novelty of this model is to
link themakeup and value of the customer base to both
the capacity allocation, unlike prior CRM models, and
the service access quality of past interactions, unlike
prior capacity management models.

This paper makes the following contributions to
CRM and service capacity management:

1. Customer value metrics that depend on the capacity
allocation policy. We identify novel metrics that, un-
like standard ones, link the value of a customer to
the capacity allocation policy and the resulting ser-
vice probabilities and customer base transitions of
all types: (i) The customer lifetime value (CLV) of
base customers. (ii) The Vµ index of a customer type,
where V is her one-time service value (OTV) and µ
her service rate. A type’s Vµ index depends on the
CLVs and quantifies the value generated by allocating
one unit of capacity to serving that type, including
her instant service-dependent profit plus the expected
future service-independent profits of the types that she
may switch to. (iii) The policy-dependent value of a
customer type, which reflects not only her own Vµ

index, but also the Vµ indices of the served types that
she may switch to.

2. Guidelines for service capacity management. We con-
tribute (i) new analytical prescriptions for and (ii) im-
portant implications that follow from the profit-max-
imizing advertising, capacity, and capacity allocation
policies.

(i) The optimal capacity allocation policy in our
model features two key differences to standard index
policies: First, the Vµ indices consider the effect of
service on customers’ future requests and financial
impact. Second, since the value of serving a type also
depends on the Vµ indices of other types, customers’
optimal priority ranking does not correspond to that of
their Vµ indices. Furthermore, we find that under mild
conditions it is optimal to ration capacity, whereby
the firm serves only new and lucrative base customers
but denies service to unprofitable base customers. We
derive optimality conditions for capacity rationing,
first for the case where base customers’ service quality
only affects their retention, then for cases where they
also respond to service quality by switching their type
or by spreading negative word of mouth (WOM).

(ii) Our results have a number of important impli-
cations: First, the customer attributes may have sub-
tle effects on the optimal policy. The flexibility of our
model allows managers to account for these effects.
Second, in settings with repeat customers, the capacity
allocation policy plays a previously ignored key role
in controlling the customer base composition through
differentiated service levels. Third, marketing-focused
policies that ignore the effect of service probabili-
ties on the CLV may yield suboptimal decisions and
reduce profits significantly. Finally, simulation results
show that the optimal policy in the fluid model also
yields nearly optimal performance in a corresponding
stochastic many-server queueingmodel with abandon-
ment. This suggests that our fluidmodel approachmay
prove effective in tackling further problems of joint
CRM and capacity management for stochastic service
systems, such as the credit card call center that moti-
vated this research.

In Section 2 we review the related literature. In Sec-
tion 3 we present the model and problem formulation.
In Section 4 we develop the main results for the case
without base customer switching. In Section 5 we dis-
cuss how these results generalize under base customer
type switching and under word of mouth about ser-
vice quality. In Section 6 we discuss the implications of
our results. In Section 7 we offer concluding remarks.
All proofs and certain derivations are in the online
supplement.

2. Literature Review
This paper bridges research streams on advertising,
CRM, service capacity management to serve demand
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that is independent of past service quality, and oper-
ations management to serve demand that depends on
past service quality.

2.1. Advertising
The vast majority of papers on advertising, unlike ours,
ignore supply constraints. Feichtinger et al. (1994) offer
an extensive review. Papers that do consider supply
constraints study different settings. For example, in
Sethi and Zhang (1995) demand is independent of past
service quality, whereas inOlsen and Parker (2008) cus-
tomers are homogeneous; both studies consider sys-
tems with inventory.

2.2. CRM
Models of CRM and CLV are of central concern in mar-
keting. For reviews see Rust and Chung (2006) and
Reinartz and Venkatesan (2008) on CRM, and Gupta
et al. (2006) on CLV. Studies that propose and empiri-
cally demonstrate the value of CLV-based frameworks
for customer selection and marketing resource allo-
cation include Rust et al. (2004) and Venkatesan and
Kumar (2004). Based on the CLV components, CRM ini-
tiatives can be classified as focusing on customer acqui-
sition, growth, and/or retention. Studies that focus
on the relationship between acquisition and reten-
tion spending include Blattberg and Deighton (1996),
Reinartz et al. (2005), Musalem and Joshi (2009), Pfeifer
and Ovchinnikov (2011) and Ovchinnikov et al. (2014).
Studies that focus on the effects of marketing actions
on customer growth include Bitran and Mondschein
(1996), Lewis (2005), Li et al. (2005), Rust and Verhoef
(2005), and Günes et al. (2010). Papers that focus
on explaining or predicting customer retention and
churn include Verhoef (2003), Braun and Schweidel
(2011), and Ascarza and Hardie (2013). Studies that
link service quality, customer satisfaction, retention,
and other CLV components include Anderson and
Sullivan (1993), Rust et al. (1995), Zeithaml et al.
(1996), Bolton (1998), Ho et al. (2006) and Aflaki and
Popescu (2014).
Compared to the CRM literature, the key distinction

of ourmodel is that we explicitly link customer acquisi-
tion and retention to the capacity-allocation-dependent
service quality. Studies that optimize some notion of
service quality (Ho et al. 2006 and Aflaki and Popescu
2014) ignore capacity constraints (and customer acqui-
sition). The papers that consider a capacity constraint
(Pfeifer and Ovchinnikov 2011 and Ovchinnikov et al.
2014) study a firm’s optimal spending on customer
acquisition and retention of two base customer types
(“low” and “high”) that do not switch. However, their
models ignore the link between capacity allocation and
service quality: all base customers are served in each
period, whereas their retention depends on the firm’s
spending. These models are therefore not equipped to

study the design of optimal capacity allocation policies
and, unlike our model, cannot yield optimal capacity
rationing in the absence of uncertainty.

2.3. Service Capacity Management to Serve
Demand That Is Independent of Past
Service Quality

There is a vast literature on service capacity man-
agement. Capacity allocation studies consider opera-
tional tools including admission, priority and rout-
ing controls, marketing controls such as cross selling
and pricing, or a combination of both. Call centers
are among the most extensively studied service sys-
tems. Gans et al. (2003), Akşin et al. (2007), and Green
et al. (2007) survey the call center literature. Hassin and
Haviv (2003) andHassin (2016) survey the literature on
managing queueing systems with rational customers.
These research streams focus on service access qual-
ity, i.e., waiting time and/or abandonment, assuming
a fixed and perfect service delivery quality. However,
there is growing interest in considering service deliv-
ery failures (e.g., de Véricourt and Zhou 2005) or trade-
offs between the service delivery quality and waiting
time (e.g., Anand et al. 2011).

In contrast to this paper, these research streams
model a firm’s customer base as independent of the
capacity allocation policy and the service quality of
past interactions. That is, they model the arrivals of
potential customer requests as exogenous but allow the
outcomes of these requests (such as balking, retrial,
abandonment, or spending amount) to depend on the
service quality. Because these models do not keep track
of repeat customers, their service-level prescriptions
reflect only transaction-based metrics such as waiting
and abandonment costs. In contrast, the prescriptions
in our model also consider the effect of service levels
on customers’ future demand and their CLV.

2.4. Operations Management to Serve Demand
That Depends on Past Service Quality

Anumber of papers consider the link between demand
and past service quality with a different focus from
ours. Schwartz (1966) appears to be the first to consider
how demand depends on past inventory availability.
Gans (2002) and Bitran et al. (2008b) consider a gen-
eral notion of service quality in the absence of capacity
constraints, the former for oligopoly suppliers, the lat-
ter for a monopoly. Hall and Porteus (2000), Liu et al.
(2007), Gaur and Park (2007), and Olsen and Parker
(2008) study equilibrium capacity/inventory control
strategies and market shares of firms that compete for
customers who switch among them in reaction to poor
service. These papers, unlike ours, consider homoge-
neous customers and a single service level for eachfirm.
Sun and Li (2011) empirically estimate how retention
depends on customers’ allocation to onshore versus off-
shore call centers, and on their waiting and service
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time. Their results underscore the value of modeling
the link between these service quality metrics, reten-
tion, and CLV. Farzan (2013) considers a first-in-first-
out (FIFO) queue with repeat purchases that depend
on past service quality, but quality is independent of
the capacity allocation, unlike in our model. Adelman
andMersereau (2013) study the dynamic capacity allo-
cationproblemof a supplierwith afixed set of heteroge-
neous customers whose demands depend on their past
fill rates. In their model, past service quality affects cus-
tomers’ profitability, not their retention.

3. Model and Problem Formulation
The credit card company that motivated this research
uses call centers as the main customer contact chan-
nel. The firm also uses other channels such as the web,
email, and Short Message Service (SMS), but these are
much less costly and less suited for requests that require
interactionwith customer service representatives.
The focus of our model, one of the firm’s call centers,

is both sales- and service-oriented. Potential new cus-
tomers call in response to advertised credit card offers.
Existing cardholders call with service requests, e.g., to
increase their credit limit, report a lost or stolen card,
and so on.

Marketing and operations decisions are made each
month according to the following procedure. The mar-
keting department sets themonthly advertising spend-
ing level and the volume of credit card offers to be
mailed out, based on some measures of customer prof-
itability. The operations department is not involved in
these decisions, and they ignore operational factors,
specifically, service level considerations and staffing
cost. Once themonthly advertising level is determined,
credit card offers are mailed evenly over the course of
that month.

Following the advertising decisions, the operations
department forecasts the monthly call volume based
on a number of factors, including the number of offers
to be mailed to new customers and historical data on
their demand response, and the number and calling
pattern of base customers.

Based on the monthly call volume forecast, the oper-
ations department determines the staffing level for
that month tomeet certain predetermined service-level
targets.

This decision procedure raises the following issues:
(1) there is no clarity about the value of a call, the
value of a customer, and how these measures depend
on the call center’s service quality; (2) advertising and
staffing decisions either ignore service-level consider-
ations or make arbitrary assumptions about service-
level targets; (3) it is not clear whether to prioritize
certain customers and, if so, onwhat basis; and (4) mar-
keting and operations do not adequately coordinate
their decisions.

These issues are pertinent not only for this com-
pany, but also for other firms facing the challenge of
how to manage costly capacity in serving heteroge-
neous customers. To address these issues, in Section 3.1
we develop a deterministic fluid model that captures
the strategic marketing and operations trade-offs. In
Section 3.2 we discuss the model assumptions. In Sec-
tion 6.4 we show that this model also closely approxi-
mates large-scale stochastic queueing systems such as
the credit card company’s call center.

3.1. The Model
Consider a firm that serves new and base (i.e., exist-
ing) customers with some service capacity. Following
their first interactionwith the firm, new customersmay
turn into any of m base customer types. Base customers
make up the firm’s customer base and repeatedly inter-
act with the firm. We index new customers by i � 0
and base customers by i ∈ {1, 2, . . . ,m}. We say type i
customers when i ∈ {0, 1, 2, . . . ,m} and type i base cus-
tomers when i ∈ {1, 2, . . . ,m}. Service requests arrive as
detailed below. Let µi denote the service rate for type i
requests. Table 1 summarizes the notation.

We consider the system in steady state under
three stationary controls. The advertising policy con-
trols the new customer arrival rate λ0 as detailed
below. The capacity policy controls the capacity N ,
defined as the total processing time available per unit
time, at a unit cost C per unit time (in a call center N
corresponds to the number of servers). The capacity
allocation policy controls the service probabilities: let
the decision variable qi denote the steady-state type i
service probability and q :� (q1 , . . . , qm) the 1×m vector
of base customer service probabilities.

New customers arrive to the system according to a
deterministic process with constant rate λ0, which de-
pends on the firm’s advertising spending. We assume

Table 1. Summary of Notation

Decision variables
N Capacity
λ0 Arrival rate of new customers
qi Service probability of type i customers

System parameters
µi Service rate of type i customers
ri Arrival rate per type i base customer
θi j(qi) Probability that a type i customer, served with

probability qi , switches to type j customer
γi Service-independent departure rate per type i

base customer
Economic parameters

pi Profit per served request of type i customers
ci Cost per denied request of type i customers
Ri Service-independent profit rate per type i base customer
C Capacity cost rate

Steady-state performance measures
xi Average number of type i base customers
Π Profit rate
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that the firm cannot target advertising to acquire spe-
cific customer types. Let S(λ0)be the advertising spend-
ing rate per unit time as a function of the corresponding
new customer arrival rate. Advertising spending has
diminishing returns (SimonandArndt 1980), soS(λ0) is
strictly increasing and strictly convex in λ0. For analyti-
cal convenience we assume that S is twice continuously
differentiable and S′(0)� 0.

The customer base evolution depends as follows on
the customer flows and the service probabilities. Cus-
tomers’ service requests may be served or denied; re-
quests that are denied are lost. The service probabil-
ity qi is the fraction of type i requests that are served.
Customer transitions into, within, and out of the cus-
tomer base depend as follows on their service proba-
bilities. Let θi j(qi) be the probability that, following her
service request, a customer of type i ∈ {0, . . . ,m}who is
served with probability qi switches to a base customer
of type j ∈ {1, . . . ,m}. We assume that

θi j(qi)� qi θ̄i j + (1− qi) ¯
θi j ,

i � 0, 1, 2, . . . ,m; j � 1, 2, . . . ,m. (1)

The parameters θ̄i j and
¯
θi j denote the conditional

ĳ-switching probabilities given that type i has received
or has been denied service, respectively, where θ̄i j > ¯

θi j

or θ̄i j < ¯
θi j depending on the attributes of types i

and j. New customers do not join the customer base
if their service request is denied, that is,

¯
θ0 j � 0 for

j ∈ {1, . . . ,m}. Therefore, a new customer converts to a
type j base customer with probability θ0 j(q0) � q0θ̄0 j ,
and new customers join the customer base with rate
λ0q0

∑m
j�1 θ̄0 j .

A type i base customer generates service requests
with rate ri . Given service probability qi , after a ser-
vice request such a customer remains in the custo-
mer base with probability ∑m

j�1 θi j(qi), which we as-
sume to be increasing in qi , that is,

∑m
j�1(θ̄i j − ¯

θi j) > 0

Figure 1. (Color online) Flows of New (Type 0) Customers (Dashed Lines) and Type i Base Customers (Solid Lines) for the
Case Where Base Customers Do Not Switch Type

Customer base xi

Attrition rate, �ixi

Capacity, N

Arrival rate, �0

Arrival rate, rixi

Potential new customers

Denied, �0(1 – q0)

Served, rixiqi�ii

Served, �0q0�0i

Denied, rixi(1 – qi)�ii

Served, �0q0(1 – �0i)

Denied, rixi(1 – qi)(1 – �ii)

Served, rixi qi(1 – �ii)

from (1). A type i customer therefore leaves for service-
dependent reasons with rate ri(1 −

∑m
j�1 θi j(qi)). Base

customers may also leave the company for service-
independent reasons, such as relocation, switching
to a competitor, or death. Let γi > 0 be the service-
independent departure rate of a type i customer.

Let xi denote the steady-state number of type i base
customers or simply the type i customer base. In steady
state, the flows into and out of this customer base must
balance. Using (1) we have

λ0q0θ̄0i +

m∑
j�1

x j r j(q j θ̄ji + (1− q j) ¯
θji)

� xi(γi + ri) i � 1, 2, . . . ,m , (2)

where the left-hand side accounts for the inflow rates
due to (new and base) customers of type j , i who
switch to, and those of type i who remain as, type i
after their service request; the right-hand side sums the
outflow rates due to service-independent attrition and
service requests. Figure 1 shows the customer flows for
the case where base customers do not switch type, that
is, θi j(qi) ≡ 0 for i , j ∈ {1, . . . ,m}; we focus on this case
in Section 4.

To write (2) in matrix form, define the 1 × m vec-
tors x :� (x1 , x2 , . . . , xm) and θ̄0 :� (θ̄01 , θ̄02 , . . . , θ̄0m)
and the m × m matrices Θ̄ :� {θ̄i j} and

¯
Θ :� {

¯
θi j}

for i , j ∈ {1, . . . ,m}, Dγ :� diag(γ1 , γ2 , . . . , γm), Dr :�
diag(r1 , r2 , . . . , rm), and Dq :� diag(q1 , q2 , . . . , qm). Then
we have from (2) that

λ0q0θ̄0 + xDr( ¯
Θ+Dq(Θ̄− ¯

Θ))� x(Dγ +Dr). (3)

Define the m ×m matrix

T(q) :� (Dγ +Dr(I− ¯
Θ−Dq(Θ̄− ¯

Θ)))−1 , (4)

where I is the m×m identity matrix. It follows from (3)
and (4) that

x(q)� λ0q0θ̄0T(q). (5)
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Then Ti j(q) is the average time that a type i base cus-
tomer spendsas type j before leaving thecustomerbase,
as a function of the base customer service probabili-
ties q, where Ti j(q) <∞ since γj > 0 for j ∈ {1, . . . ,m}. If
base customers do not switch type, (4) yields Ti j(q) � 0
for i , j and

Tii(q)�
1

γi + ri(1− qi θ̄ii − (1− qi) ¯
θii)

(6)

is the mean lifetime as a type i base customer; the
denominator is her departure rate, and θ̄ii and ¯

θii are
her loyalty probabilities given that she receives or is
denied service, respectively. Then by (5) and (6),

xi �
λ0q0θ̄0i

γi + ri(1− qi θ̄ii − (1− qi) ¯
θii)

. (7)

By Little’s law, the type i customer base equals
throughput multiplied by sojourn time.
Let Π denote the firm’s steady-state profit rate. The

profit has service-dependent and service-independent
components. On average a type i request yields a profit
of pi if served and a cost of ci if denied. Therefore,
the service-dependent profit rate of a type i base cus-
tomer equals ri(pi qi − ci(1− qi)). Let Ri ≥ 0 denote the
average service-independent profit rate of a type i base
customer. For credit card companies, Ri corresponds
to call-center-independent profits such as subscription
fees and interest payments from cardholders and trans-
action fees from merchants.
The firm solves the following profit-maximization

problem by choosing the new customer arrival rate λ0,
the capacity N , and the new and base customer service
probabilities q0 and q:

maximize
q0 ,q≥0,N≥0, λ0≥0

Π� λ0(p0q0 − c0(1− q0))

+

m∑
i�1

xi(Ri + ri[pi qi − ci(1− qi)])

−CN − S(λ0) (8)

subject to

xi � λ0q0

m∑
j�1
θ̄0 jT ji(q), i � 1, 2, . . . ,m , (9)

qi ≤ 1, i � 0, 1, 2, . . . ,m , (10)
λ0q0

µ0
+

m∑
i�1

xi ri qi

µi
≤ N. (11)

In the profit rate (8), the first product is the new cus-
tomer profit rate, the sum is over the base customer
profit rates, the third term is the capacity cost rate,
and the last is the advertising cost rate. The customer
base equations (9) correspond to (5). In the capacity
constraint (11), the left-hand side expresses the total
processing time required to achieve the desired service
probabilities.

3.2. Discussion of Model Assumptions
We discuss our assumptions on service quality, service
capacity, and service demand, focusing on the credit
card company that motivated this work. We note that
our model can be tailored to a range of firms that serve
heterogeneous repeat customers with costly capacity.

3.2.1. Service Quality. We model the service access
quality as controllable and the service delivery quality
as fixed.

Controllable service access quality. We model the ser-
vice probabilities qi as the measures of service access
quality. Our focus on controlling the service access
quality, taking the service delivery quality as fixed, is
motivated by the call center of the credit card company
introduced above: whereas it was clear that the qual-
ity of each customer encounter must meet strict service
delivery standards, it was less clear what service access
quality to offer to different customer types.

One could also reinterpret our model by assuming
that all requests are served, but with discretionary task
completion (Hopp et al. 2007): that is, service rates
depend on the capacity allocation, so qi is type i’s ser-
vice delivery quality that varies with its service rate.

Markovian customer response to service access quality.
We assume that a base customer type’s response to
the outcome of her most recent request is independent
of her service history. This “recency effect” is com-
monly assumed inmodels that link demand to past ser-
vice levels (e.g., Hall and Porteus 2000, Ho et al. 2006,
Liu et al. 2007) though some (e.g., Aflaki and Popescu
2014) consider a customer’s service history. However,
by allowing for an arbitrary number of types and a
variety of switching behaviors, our model can capture
history-dependent customer responses.

Fixed service delivery quality. The fixed parameters θ̄i j ,

¯
θi j , ri , γi , pi , and Ri serve as aggregate measures of
customers’ responses to the service delivery quality,
the firm, and its products and services relative to com-
petitors. The credit card company call center managers
did not control these parameters and so treated them
as given. Optimization over these parameters (e.g., to
study the effects of training or product improvements
on loyalty) is feasible in our model but outside the
scope of this paper. We illustrate the sensitivity of our
results to some of these parameters in Section 6.1.

3.2.2. Service Capacity. Focus on bottleneck capacity.
Our model focuses on a single service capacity as the
bottleneck for quality, because, for the credit card com-
pany, the call center is both the costliest and the most
important customer contact channel in terms of cus-
tomer acquisition and retention. Therefore, the com-
pany’s key trade-off between the value and cost of
service quality focuses on call center operations. In
contrast, no such trade-offs arise for other attributes of
the company’s product and service quality, such as the
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features of its credit cards, the invoice accuracy, and so
on. Indeed, the company keeps these quality attributes
relatively fixed, as discussed previously.
Premium versus low-cost channel. One can view our

single-channel model as capturing a premium high-
cost channel explicitly and a self-service low-cost chan-
nel such as the web implicitly and approximately: the
average cost of serving a customer through the web is
an order of magnitude cheaper than serving her via
call centers. In this interpretation the profit of serving a
type i request through the web corresponds to −ci . Our
model can be extended to multiple channels by consid-
ering multiple capacity pools with different financial
parameters, service rates, interaction rates, and so on.
3.2.3. Service Demand. Independence of base customer
demand from advertising. To focus on the effect of service
access quality on customer behavior, we do not model
the effect of advertising on base customers. However,
our model implicitly captures these advertising effects
through the request rate ri , the profits Ri and pi , the
probabilities θ̄i j and ¯

θi j , and the service-independent
defection rate γi .
Stationary demand. We assume that the new customer

arrival rate is a concave, stationary, and deterministic
function of the advertising spending rate. Under these
assumptions the optimal advertising policy is to spend
continuously at an even rate and yields a constant
demand rate (Sasieni 1971, Feinberg 2001). Indeed,
although the credit card company sets the advertising
level at the beginning of each month, it mails out the
offers steadily over the month, which yields a steady
demand response. To focus on strategic-level guide-
lines, our model ignores the typical predictable intra-
day and intraweek arrival rate fluctuations, to focus on
the first-order relationship between advertising spend-
ing and demand response levels. Nevertheless, for
operations that can flexibly adjust the capacity over
time (this holds for the credit card company call center
and increasingly for other companies, because of flex-
ible workforce contracts and outsourcing providers),
our results can also be used at the tactical level to adjust
capacity to both predictable and unpredictable short-
term arrival rate fluctuations, so as to maintain the
optimal service levels (see Sections 4.2.1 and 4.2.2).

4. Main Results: The Case Without Base
Customer Switching

For simplicity we present the main results for the case
without base customer switching. As shown in Sec-
tion 5.1, these results extend to the case with base
customer switching. In Section 4.1 we reformulate
problem (8)–(11) in terms of customers’ Vµ indices,
which are novel service-probability-dependent cus-
tomer value metrics, and the capacity allocation. In
Section 4.2 we characterize the optimal policy.

4.1. Service Quality, Vµ Indices, Capacity
Allocation, and Customer Value

In Section 4.1.1 we derive a customer type’s Vµ index
from the service-probability-dependentmetrics of base
customer lifetime value. In Section 4.1.2we reformulate
problem (8)–(11), and in Section 4.1.3 we define the
value of a new customer, in terms of these Vµ indices
and the capacity allocation policy.
4.1.1. Service-Probability-Dependent Customer Life-
time Value and the Vµ Index. Let Li(q) denote the
mean type i base customer lifetime value (CLV) as a func-
tion of the base customer service probabilities q. It is
given by

Li(q) :� Tii(q)(Ri + ri(pi qi − ci(1− qi)))

�
Ri + ri(pi qi − ci(1− qi))

γi + ri(1− qi θ̄ii − (1− qi) ¯
θii)

, (12)

the product of her mean customer base sojourn time
by her mean profit rate. Clearly, without base customer
switching, the type i CLV only depends on her own
service probability qi .

Let V0 denote the mean one-time service value (OTV)
of a new customer, i.e., the value of serving a new
customer’s current request, but none of her future
requests:

V0 :� p0 + c0 +

m∑
i�1
θ̄0iLi(0). (13)

Serving a new customer yields an instant profit of p0,
plus a future service-independent profit stream; with
probability θ̄0i the new customer turns into a type i
base customer with CLV Li(0) (given that she is not
served). Not serving a new customer yields a loss of c0;
the difference yields (13).

Similarly, let Vi denote themeanOTV of a type i base
customer:

Vi :� pi + ci + (θ̄ii − ¯
θii)Li(0), i � 1, 2, . . . ,m. (14)

Serving a type i customer’s current request but none
of her future requests yields pi + θ̄iiLi(0), and serving
none of her requests yields −ci + ¯

θiiLi(0), so the differ-
ence yields (14). From (12) and (14), the base customer
OTV and CLV satisfy the following intuitive relation-
ship (see Online Appendix A):

Vi �
Li(ei) − Li(0)

riTii(ei)
, i � 1, 2, . . . ,m , (15)

where the policy q � ei serves all type i base customer
requests (qi � 1) but no other types (q j � 0 for j , i), and
riTii(ei) is the resulting mean lifetime number of type i
requests.

We define a type’s Vµ index as the product of her
OTV by her service rate; it quantifies the value gener-
ated by allocating one unit of capacity to serving that
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type, including her instant service-dependent profit
plus the expected future service-independent profits
of the types that she may switch to. For i ≥ 1 we
assume that Viµi ≥ Vi+1µi+1 without loss of generality
and Viµi > Vi+1µi+1 for simplicity. (Cases with Viµi �

Vi+1µi+1 add cumbersome detail but no insight to the
analysis.)
4.1.2. Profit Maximization in Terms of the Vµ Indices
and the Capacity Allocation. Let Ni be the capacity,
i.e., the total processing time per unit time, that is allo-
cated to and consumed by type i customers. By Little’s
law the capacity allocated to type i equals throughput
multiplied by service time, so the service probabilities
map as follows to the capacity allocation:

N0 :�
λ0q0

µ0
, (16)

Ni :�
xi ri qi

µi
, i � 1, 2, . . . ,m. (17)

Define the 1 × (m + 1) vector N :� (N0 ,N1 , . . . ,Nm).
From (3), (4), (16), and (17), the customer base depends
as follows on the capacity allocation (see Online
Appendix A):

xi � (N0µ0θ̄0i + Niµi(θ̄ii − ¯
θii))Tii(0), i � 1, 2, . . . ,m.

(18)
By (8), (12)–(14), and (16)–(18), the total customer value
satisfies (see Online Appendix A)

λ0(p0q0 − c0(1− q0))+
m∑

i�1
xi(Ri + ri[pi qi − ci(1− qi)])

�

m∑
i�0

NiViµi − λ0c0 , (19)

where NiViµi expresses the value generated by allocat-
ing Ni units of capacity to type i customers.
Write s0 for the mean service time of a new customer

request. Then
s0 :� 1

µ0
(20)

and λ0s0 is the offered load of new customers. Let si
be the expected total processing time of all type i base
customer requests that may be generated as a result of
serving a new customer. Then

si :� θ̄0iTii(ei)
ri

µi
, (21)

where θ̄0i is the probability that a new customer who
is served joins as a type i base customer, Tii(ei) is a
type i customer’s expected lifetime if all her requests
are served, and ri/µi is her expected total process-
ing requirement per unit time. Therefore, λ0q0si is the
offered load of type i base customers if new customers
have arrival rate λ0 and service probability q0.

Let Π(N,N, λ0) denote the profit rate as a function
of the capacity allocation vector N, the total capac-
ity N , and the new customer arrival rate λ0. The prob-
lem (8)–(11) is equivalent to

maximize
N≥0,N≥0, λ0≥0

Π(N,N, λ0)

�

m∑
i�0

NiViµi − λ0c0 −CN − S(λ0) (22)

subject to

N0 ≤ λ0s0 , (23)
Ni ≤ N0µ0si , i � 1, 2, . . . ,m , (24)

m∑
i�0

Ni ≤ N. (25)

The profit (22) follows from (8) and (19). By (6),
(16)–(18), (20), and (21), the capacity allocation con-
straints (23) and (24) are equivalent to the service prob-
ability constraints (10) and ensure that the capacity
consumed by each type does not exceed its offered
load. Finally, (25) corresponds to (11).
4.1.3. The Maximum Value of a New Customer De-
pends on All Vµ Indices. As a preliminary to the opti-
mal policy, we characterize the maximum value of a
new customer. This value depends on the capacity allo-
cation policy through the service probabilities of base
customers.

Let s̄i be the expected total processing time of all
requests generated by a new customer under the policy
that serves her first request and her subsequent ones
if and only if she turns into one of the i highest-value
base customer types (in terms of their Vµ indices):

s̄i :�
i∑

j�0
s j , i � 0, . . . ,m. (26)

Let V̄i denote the expected total value per processing
time of a new customer under this policy:

V̄i �
p0 + c0 +

∑i
j�1 θ̄0 jL j(e j)+

∑m
j�i+1 θ̄0 jL j(0)

s̄i
,

i � 0, . . . ,m. (27)

The numerator sums the immediate profit of serving
a new customer plus her expected future profit as a
base customer; with probability θ̄0 j she switches to
type j and her CLV is L j(e j) or L j(0), depending on
whether type j is served or not, respectively. Equiv-
alently, from (13), (15), (21), and (27), V̄i equals the
load-weighted convex combination of the Vµ indices
of types that are served:

V̄i :�
∑i

j�0 s jVjµ j

s̄i
, i � 0, . . . ,m , (28)

where s j/s̄i is type j’s share of the total processing time
generated by a new customer.
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Remark 1. Importantly, the value of serving a new cus-
tomer, V̄i , depends on the service policy, that is, not
only on her own Vµ index, but also on the Vµ indices
of base customers that are served. As a result, new cus-
tomers’ optimal priority ranking does not correspond
to the ranking of their Vµ index, in contrast to standard
index policies in the literature. These key implications
derive from two distinctive features of our model: the
presence of customer base transitions and their depen-
dence on the service quality. Under base customer
switching, these implications extend to the values of
and the priority ranking among base customers, as we
show in Section 5.1.

Lemma 1 characterizes the service policy that yields
the maximum new customer value, V̄k . This metric and
the Vµ indices drive the optimal policy under fixed
advertising in Sections 4.2.1 and 4.2.2.

Lemma 1. Consider a systemwithout base customer switch-
ing. Define

k :� 0 if V̄0 > V̄1 and
k :� max{1 ≤ i ≤ m: V̄i−1 ≤ V̄i} if V̄0 ≤ V̄1.

(29)

Then V̄k is the maximum value of a new customer per pro-
cessing time:

V̄k � max
0≤i≤m

V̄i , (30)

V̄0 < · · · < V̄k−1 ≤ V̄k > V̄k+1 > · · · > V̄m , (31)
Viµi ≥ V̄i for i ≤ k , and V̄i >Viµi for i > k. (32)

When the advertising level is a decision rather than
fixed, serving every new customer is optimal, so the net
value of a new customer equals V̄i minus the service
denial cost c0 (per processing time):

Ṽi :� V̄i −
c0

s̄i
, i � 0, . . . ,m. (33)

Lemma 2 characterizes the service policy that yields
the maximum new customer net value, Ṽk∗ . This met-
ric and the Vµ indices drive the jointly optimal policy,
under optimal advertising, in Section 4.2.3.

Lemma 2. Consider a systemwithout base customer switch-
ing. Define

k∗ :� 0 if Ṽ0 > Ṽ1 and
k∗ :� max{1 ≤ i ≤ m: Ṽi−1 ≤ Ṽi} if Ṽ0 ≤ Ṽ1.

(34)

Then k∗ ≥ k and Ṽk∗ is the maximum net value of a new
customer per processing time:

Ṽk∗ � max
0≤i≤m

Ṽi , (35)

Ṽ0 < · · ·< Ṽk∗−1 ≤ Ṽk∗ > Ṽk∗+1 > · · ·> Ṽm , (36)
Viµi ≥ Ṽi for i ≤ k∗ , and Ṽi >Viµi for i > k∗. (37)

4.2. Optimal Policy: Capacity Allocation, Capacity
Level, and Advertising

We present in Section 4.2.1 the optimal capacity alloca-
tion for fixed capacity and advertising, in Section 4.2.2
theoptimal capacity allocationand level forfixedadver-
tising, and in Section 4.2.3 the jointly optimal policy.
4.2.1. Optimal Capacity Allocation for Fixed Capacity
and Advertising Levels. Consider the problem of opti-
mizing the capacity allocation for fixed capacity and
new customer arrival rate. This problem may arise due
to hiring lead times, time lags between advertising and
demand response, unplanned demand bursts, or poor
marketing–operations coordination.

The total offered load if all new customers are served
is λ0 s̄m . We say capacity is “rationed” if N < λ0 s̄m . The
key property of a capacity allocation policy is the pri-
ority ranking that determines which customer types are
served when capacity is rationed. Proposition 1 estab-
lishes the optimal priority ranking and the correspond-
ing capacity allocation.

Proposition 1. Consider a system without base customer
switching. Fix the new customer arrival rate λ0 and the
capacity N . Determine the index k from Lemma 1.

1. It is optimal to prioritize base customers of type i ≤ k
over new customers, new customers over base customers of
type i > k, and base customers in decreasing order of their
Viµi index.

2. The optimal capacity allocation satisfies

N ∗i �


min(λ0 s̄k ,N)

si

s̄k
, i ≤ k ,

min(λ0si , (N − λ0 s̄i−1)+), i > k.
(38)

3. The optimal profit rate is concave in the capacity N and
satisfies

Π∗(N, λ0) :� min(λ0 s̄k ,N)V̄k

+

m∑
i�k+1

min(λ0si , (N − λ0 s̄i−1)+)Viµi

− λ0c0 −CN − S(λ0). (39)

The greedy policy that prioritizes all types according
to their Vµ index is not optimal in general, as noted in
Remark 1; it is only optimal if new customers have the
largest Vµ index. Rather, the optimal policy allocates
the capacity to maximize the value generated per pro-
cessing time. By Lemma 1, this requires prioritizing all
base customers of type i ≤ k ahead of new customers,
where k is determined so that new customers’ policy-
dependent value, V̄k , is smaller than the Vµ indices of
base customerswith higher priority and larger than the
indices of those with lower priority. Then, if N < λ0 s̄k ,
it is optimal to turn away enough new customers to
ensure service for all base customers of type i ≤ k, and
to serve none of type i > k. However, if N ≥ λ0 s̄k , it is
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optimal to serve all requests of type i ≤ k, and those
of type i > k in decreasing order of their Vµ indices.
In Section 6.4 we discuss how to implement this policy
in, and contrast it with standard policies for, stochastic
queueing systems with abandonment.
The profit rate (39) reflects the value generated under

the optimal capacity allocation: for N < λ0 s̄k each unit
of capacity has a value of V̄k , and for N > λ0 s̄k the value
of each additional capacity unit is given by the largest
Vµ index among types with unserved requests.
4.2.2. Optimal Capacity Allocation and Capacity Level
for a Fixed Advertising Level. We turn to the problem
of optimizing the capacity allocation and the capacity
level for fixed advertising. This problem arises because
the advertising policy is often a strategic decision that
affects the more tactical operational decisions, and also
in response to unplanned bursts of arrivals. The opti-
mal capacity, denoted by N ∗, is the largest capacity level
with nonnegative marginal profit. The marginal profit
of a unit of capacity equals its value under the optimal
capacity allocation, minus its cost C. Proposition 2 fol-
lows from the optimal profit rate (39) in Proposition 1.

Proposition 2. Consider a system without base customer
switching. Fix the new customer arrival rate λ0 and deter-
mine the index k from Lemma 1. Under the optimal capac-
ity allocation policy it is profitable to operate if and only if
V̄k > C in which case the following holds:
1. It is optimal to serve new customers, all base customers

of type i ≤ k, and base customers of type j > k if and only if
Vjµ j ≥ C.
2. The optimal capacity level is

N ∗ � λ0

(
s̄k +

m∑
i�k+1

si1{Viµi≥C}

)
, (40)

and rationing capacity is optimal if and only if C >Vmµm .
3. The optimal profit rate is

Π∗(λ0) :� λ0

(
s̄k(Ṽk −C)+

m∑
i�k+1

si(Viµi −C)+
)
− S(λ0).

(41)

An important implication of Proposition 2 is that
rationing capacity is optimal under practically plausible
conditions. Mathematically, this holds if and only if
V̄k > C >Vmµm ; that is, the capacity cost is smaller than
the maximum value of a new customer per processing
time, but larger than the smallest Vµ index of base cus-
tomers. As we show in Section 6.1, these conditions are
easily met, which suggests that they may commonly
hold in practice. Under these conditions, the optimal
policy achieves two goals: (1) It serves all “high-value”
base customers (of type i ≤ k) and all new customers
because they generate these base customers. Note that,
taken on their own, these requests of new customers
may not be profitable; that is, their Vµ index may be

lower than the capacity cost (i.e., V0µ0 < C < V̄k). (2)
It serves “low-value” base customers (of type i > k) if
and only if their Vµ index exceeds the capacity cost.
Importantly, the optimal policy deliberately denies service
to unprofitable base customers who were acquired along
with high-value customers.
4.2.3. Jointly Optimal Capacity Allocation, Capacity
Level, and Advertising Level. Let λ∗0 denote the opti-
mal new customer arrival rate, that is, under the opti-
mal advertising level. Proposition 3 summarizes the
solution to the profit-maximization problem (22)–(25).

Proposition 3. Consider a system without base customer
switching. Determine the index k∗ from Lemma 2. Under the
jointly optimal advertising, capacity, and capacity allocation
policies, it is profitable to operate if and only if Ṽk∗ > C in
which case the following holds:

1. It is optimal to serve new customers, all base customers
of type i ≤ k∗, and base customers of type j > k∗ if and only
if Vjµ j ≥ C.
2. The optimal capacity level is

N ∗ � λ∗0

(
s̄k∗ +

m∑
i�k∗+1

si1{Viµi≥C}

)
, (42)

and rationing capacity is optimal if and only if C >Vmµm .
3. The optimal new customer arrival rate satisfies λ∗0 >

0 and

s̄k∗(Ṽk∗ −C)+
m∑

i�k∗+1
si(Viµi −C)+ � S′(λ∗0), (43)

and the optimal profit rate satisfies

Π∗ � λ∗0

(
s̄k∗(Ṽk∗ −C)+

m∑
i�k∗+1

si(Viµi −C)+
)
− S(λ∗0).

(44)

The profitability condition and the optimal capac-
ity level and allocation policy in Proposition 3 parallel
their counterparts in Proposition 2, adjusted for the
service denial cost effect explained in Section 4.1.3. In
particular, Proposition 3 suggests that rationing capac-
ity is sensible in practice; it is optimal if and only if
Ṽk∗ > C > Vmµm . These conditions are easily met as
shown in Section 6.1.

The optimal advertising spending specified in (43)
balances the maximum value of a new customer with
the marginal advertising cost of acquiring this cus-
tomer. Like the optimal capacity level, the optimal
advertising depends on the optimal capacity allocation
policy and the resulting CLV.

5. Extensions
We discuss how the optimality conditions for capacity
rationing generalize under base customer type switch-
ing in Section 5.1 and under word of mouth about ser-
vice quality in Section 5.2.
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5.1. Switching Among Base Customer Types
We extend themain results of Section 4 under base cus-
tomer switching (see Online Appendix A for details).
5.1.1. Service-Probability-Dependent Customer Life-
time Value and the Vµ Index. The formula (12) for the
mean type i CLV generalizes to

Li(q) :�
m∑

j�1
Ti j(q)(R j + r j(p j q j − c j(1− q j))). (45)

Each summand in (45) measures the type j contribu-
tion to this CLV, which equals the product of the aver-
age time Ti j(q) (defined in (4)) that a type i base cus-
tomer spends as type j before leaving the customer
base, multiplied by a type j customer’s average profit
rate per unit time.
The formulas (13) and (14) for the customer OTVs

generalize to

Vi :� pi + ci +

m∑
j�1
(θ̄i j − ¯

θi j)L j(0), i �0,1,2, . . . ,m , (46)

where (θ̄i j − ¯
θi j)L j(0) for i , j measures the effect of

serving a type i customer on her future profits as type j.
For a new customer (i � 0), (46) agrees with (13) since

¯
θ0 j � 0 for all j.
The relationship (15) between base customer OTV

and CLV continues to hold: by (4) and (45),

Vi �
Li(ei) − Li(0)

riTii(ei)
, i � 1, 2, . . . ,m.

5.1.2. Profit Maximization in Terms of the Vµ Indices
and the Capacity Allocation. The expression (18) for
the customer base as a function of the capacity alloca-
tion generalizes to

xi �

m∑
j�1

(
N0µ0θ̄0 j +

m∑
k�1

Nkµk(θ̄k j − ¯
θk j)

)
T ji(0),

i � 1, 2, . . . ,m , (47)

which follows from (3), (4), (16), and (17). The expres-
sion (19) for the total customer value in terms of the
capacity allocation and Vµ indices continues to hold:
(16) and (17) and (45)–(47) imply

λ0(p0q0 − c0(1− q0))+
m∑

i�1
xi(Ri + ri[pi qi − ci(1− qi)])

�

m∑
i�0

NiViµi − λ0c0. (48)

Finally, we generalize (21) and (24) to quantify the
offered load of each base customer type in terms of
the capacity allocated to other types. Let s ji denote
the expected total processing time of all type i base
customer requests that may be generated as a result

of serving a type j customer, under the policy that
serves all requests of type i but none of other types (i.e.,
q� ei). Then

s ji �

m∑
k�1
(θ̄jk − ¯

θjk)Tki(ei)
ri

µi
,

i � 1, 2, . . . ,m; j � 0, 1, 2, . . . ,m. (49)

Note that, without base customer switching, s0i defined
in (49) agrees with si defined in (21).

It follows from (48) and (49) that the profit-maxi-
mization problem (22)–(25) for the case without base
customer switching continues to hold if base customers
switch type, except that the capacity allocation con-
straints for base customers generalize from Ni ≤N0µ0si
in (24) to

Ni ≤ N0µ0s0i +

m∑
j,i≥1

N jµ j s ji , i � 1, 2, . . . ,m. (50)

The right-hand side of (50) expresses the offered load
of type i base customers as a function of the capacity
allocated to all other types.

5.1.3. Optimality Conditions for Capacity Rationing.
Because the profit function (22) in the maximization
problem (22)–(25) has the same structure under base
customer switching, the main results of Section 4 gen-
eralize to this case: It is optimal to serve new customers
and a subset of base customer types and to deny service
to any remaining types by rationing capacity. However,
as noted in Remark 1, under base customer switching
the value of a base customer type is no longer limited
to its own Vµ index: serving her affects other types’
offered loads as shown in (50), so their capacity allo-
cations and their values are interdependent. Therefore,
the optimal priority ranking among base customers no
longer corresponds to that of their Vµ indices. As a
result, determining the optimal capacity allocation pol-
icy requires solving the full problem.

Nevertheless, the optimality conditions for capacity
rationing in Proposition 3, Ṽk∗ > C > Vmµm , general-
ize naturally under base customer switching, by noting
that Ṽk∗ is the maximum over all type subsets of the
ratio of total customer value generated to total process-
ing time required, and Vmµm is the minimum over all
types of the ratio of marginal customer value gener-
ated to marginal processing time required. To formal-
ize these measures under base customer switching, let
I � {1, 2, . . . ,m}, let C be an arbitrary subset of I and
define C−i :� C\{i}. Under the policy that serves new
customers and all base customer types in C but no
other types, the capacity allocation constraints (23) for
new customers and (50) for base customer types in C
are binding. Given this capacity allocation policy, let
N̄i(C) for i ∈ I denote the ratio of the type i customer
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throughput Niµi to new customer throughput N0µ0.
Then we have N̄i(C)� 0 for i <C, and from (50)

N̄i(C)� s0iµi +
∑
j∈C−i

N̄ j(C)s jiµi , i ∈C. (51)

Let Ṽ(C) be the ratio of total customer value to total
processing time for policy C. By (48) and (51)

Ṽ(C) :�
V0 − c0 +

∑
i∈C(s0i +

∑
j∈C−i

N̄ j(C)s ji)Viµi

1/µ0 +
∑

i∈C(s0i +
∑

j∈C−i
N̄ j(C)s ji)

. (52)

Let ∆V(I,I−i) denote the ratio of marginal value gen-
erated to marginal processing time required when
changing the policy from serving all types except i, to
serving all types. By (48) and (51)

∆V(I,I−i)

:�
[∑

j∈I−i

Vjµ j

∑
k∈I− j

(N̄k(I) − N̄k(I−i))sk j

+Viµi

(
s0i +

∑
k∈I−i

N̄k(I)ski

)]
·
[∑

j∈I−i

∑
k∈I− j

(N̄k(I) − N̄k(I−i))sk j

+

(
s0i +

∑
k∈I−i

N̄k(I)ski

)]−1

. (53)

Note that, without base customer switching, (52) for
C� {1, 2, . . . , i} agrees with (33), that is, Ṽ(C)� Ṽi , and
(53) implies ∆V(I,I−i) � Viµi . Under base customer
switching, capacity rationing is optimal if and only if
maxC⊂I Ṽ(C)> C >mini∈I∆V(I,I−i): the first inequal-
ity must hold for profitable operation, and the second
must hold for profits to increase by denying service to
at least one type.

5.2. Word of Mouth About Service Quality
The policy of rationing capacity and denying service
to some base customers may adversely effect the firm’s
ability to attract new customers. We show that negative
WOM from base customers about their service qual-
ity reduces, but does not eliminate, the capacity cost
range in which such a policy is optimal. For simplicity
we focus on the case of homogeneous base customers
(m � 1), but this intuitive result continues to hold in the
case of heterogeneous base customers.
We consider λ0 to be the maximum new customer

arrival rate that is generated by spending S(λ0) on
advertising. To model negative WOM about service
quality, we assume that the effective new customer
arrival rate, λe

0, decreases in the base customer service
denial rate, x1r1(1− q1):

λe
0 :� λ0 − δx1r1(1− q1)� λ0 − δ(x1r1 −N1µ1). (54)

The parameter δ ≥ 0 captures the WOM intensity. The
second equality in (54) follows from (17).

We denote the effective new customer arrival rate by
λe

0(N, λ0), as it also depends on the capacity allocation
N as discussed below. Let Πw(N,N, λ0)be the profit
function with WOM.

WOM has two effects on problem (22)–(25). First, in
the profit function (22) the maximum new customer
service denial cost changes from λ0c0 to λe

0(N, λ0)c0.
For m � 1 we get

Πw(N,N, λ0)� N0V0µ0 + N1V1µ1 − λe
0(N, λ0)c0

−CN − S(λ0). (55)

Second, the capacity allocation constraint for new cus-
tomers (23) changes from N0 ≤ λ0s0 to

N0 ≤ λe
0(N, λ0)s0. (56)

To consider how λe
0(N, λ0) depends on the capacity

allocation, let a :� θ̄01r1T11(0). Then we have from (54),
together with (6), (18), (20), and (21), that

λe
0(N, λ0)� λ0 − δa

(
N0

s0
− N1

s1

)
. (57)

Increasing N0 increases the number of new cus-
tomers served at a rate 1/s0, which raises the base
customer service denial rate by a/s0. However, increas-
ing N1 increases the number of base customers served
at a rate 1/s1, which reduces their service denial rate
by a/s1. That is, a measures the increase (decrease) in
base customer service denials per new (base) customer
served. If all base customers are served (N1/s1 �N0/s0),
there is no negative WOM, and λe

0(N, λ0)� λ0 in (57).
In summary, the problem with WOM is to maximize

the profit (55) subject to the constraints (24), (25), (56),
and (57). Let λw∗

0 denote the optimal new customer
arrival rate and Nw∗ the optimal capacity level with
WOM. Proposition 4 shows that WOM reduces, but
does not eliminate, the capacity cost range in which
rationing capacity is optimal (see Online Appendix A
for details).

Proposition 4. Consider a system with homogeneous base
customers (m � 1). WOM affects the optimal policy and
reduces the optimal profit if and only if Ṽ0 > C >V1µ1. Let

V̄w
1 (δ) :�

s0(δa/(1+ δa))Ṽ0 + s1V1µ1

s0(δa/(1+ δa)+ s1
. (58)

1. If Ṽ0 > V̄w
1 (δ) > C > V1µ1, then with WOM it is opti-

mal to serve all customers, Nw∗ � λw∗
0 s̄1, but without WOM

it is optimal to serve only new customers, N ∗ � λ∗0s0. WOM
yields a lower advertising level, λw∗

0 < λ∗0, but a higher or
lower capacity level than without WOM.
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2. If Ṽ0 > C > V̄w
1 (δ) > V1µ1, then with or without

WOM, it is strictly optimal to serve only new customers, but
WOM reduces advertising and capacity levels: λw∗

0 < λ∗0 and
Nw∗ � λw∗

0 s0/(1+ δa) < N ∗ � λ∗0s0. In the limit as δ←∞,
WOM makes it unprofitable to operate.

The metric V̄w
1 (δ) captures, for a system that priori-

tizes new customers, the average value per processing
time from serving additional base customer requests
(with value V1µ1) and all the new customer requests
(with value Ṽ0) that are generated as a result. With
WOM it is therefore optimal to serve base customers if
and only if V̄w

1 (δ) > C. The ratio δa/(1 + δa) in V̄w
1 (δ)

measures the WOM-driven increase in the effective
new customer arrival rate per increase in base customer
throughput. Without WOM (δ � 0) this ratio is clearly
0, so that V

w
1 (0) � V1µ1, as in the basic model. With

extreme WOM (δ→∞) this ratio is one; that is, each
additional base customer served generates an addi-
tional new customer. In this limiting caseWOM imposes
a policy that serves all customers, so V̄w

1 (∞) � Ṽ1 < C;
this policy is unprofitable by Part 2 of Proposition 4.

6. Implications
In Section 6.1 we illustrate how the optimal service pol-
icy depends on customer attributes. In Section 6.2 we
highlight the key role of the optimal capacity alloca-
tion policy in controlling the customer base. In Sec-
tion 6.3 we show that ignoring the effect of service
probabilities on the CLV may significantly reduce per-
formance. Finally, in Section 6.4 we discuss the appli-
cation of our deterministic fluid model to approximate
and optimize large-scale stochastic queueing systems
with abandonment.

Figure 2. (Color online) Example 1: Effect of Service-Independent Profit on Optimal Service Policy
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Note. Service-independent type 1 profit: R1/γ1 � 1,000. (a) New customer value per processing time as a function of the service policy and the
service-independent type 2 profit R2/γ2. (b) Optimal policy as a function of the capacity cost C and R2/γ2.

6.1. The Effects of Customer Attributes on the
Optimal Service Policy

We present two examples of how the optimal pol-
icy of Proposition 3 depends on customer attributes.
Throughoutwe assume p0 �−10 and c0 �0 for new cus-
tomers, two base customer types with pi �−10, ci � 10,
θ̄0i � 0.2, θ̄ii � 1, and ri/γi � 10 for i � 1, 2, and µi � 1 for
i ∈ {0, 1, 2}.

Example 1. Effect of service-independent profit on optimal
service policy.

Consider the case where the service-independent
profit of type 1 exceeds that of type 2: We fix R1/γ1 �

1,000 and vary R2/γ2 ∈ [0, 1,000]. We assume equally
loyal base customers:

¯
θ11 � ¯

θ22 � 0.3. Leaving the capac-
ity cost aside, Figure 2(a) shows how the service-
independent type 2 profit R2/γ2 effects a new cus-
tomer’s total value per processing time under three
policies: serving no base customers (Ṽ0), serving only
those of type 1 (Ṽ1), or serving both types (Ṽ2), respec-
tively. The policy that maximizes this new customer
value denies service to type 2 customers (so k∗ � 1) if
their service-independent profit is below a threshold
(R2/γ2 < 820), but serves them otherwise (k∗ � 2 for
R2/γ2 ≥ 820). By Proposition 3 the optimal service pol-
icy depends not only on the maximum new customer
value Ṽk∗ , but also on the Vµ index of lower ranked
types i > k∗, and on the capacity cost C. Figure 2(b)
identifies the optimal policy depending on the capac-
ity cost C and the service-independent type 2 profit
R2/γ2: by Proposition 3, it is not profitable to operate
if the capacity cost exceeds Ṽk∗ ; it is optimal to deny
service to type 2 customers if k∗ � 1 and Ṽ1 > C >V2µ2,
which holds if their service-independent profit is
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Figure 3. (Color online) Example 2: Effect of Loyalty on Optimal Service Policy
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Note. Type 1 loyalty probability: θ11 � 0.3. (a) New customer value per processing time as a function of the service policy and the type 2 loyalty
probability

¯
θ22. (b) Optimal policy as a function of the capacity cost C and

¯
θ22.

sufficiently low (R2/γ2 < 820), but to serve all customers
otherwise.

Example 2. Effect of loyalty on optimal service policy.
Consider the case where type 1 customers are less

loyal than type 2 customers after service denial: We fix

¯
θ11 � 0.3 and vary

¯
θ22 ∈ [0.3, 1.0]. We assume equally

lucrative base customers: R1 � R2 � 800. As shown in
Figure 3(a), leaving the capacity cost aside, the policy
that maximizes a new customer’s total value per pro-
cessing time serves all requests only if type 2 customers’
loyalty is below a threshold (k∗ � 2 for

¯
θ22 ≤ 0.66), but

denies service to type 2 if their loyalty is moderate
(k∗ � 1 for 0.66 <

¯
θ22 ≤ 0.83) and to all base customers

if type 2 are very loyal upon service denial (k∗ � 0 for

¯
θ22 > 0.83). Figure 3(b) indicates theoptimal servicepol-
icy depending on the capacity cost C and the type 2 loy-
alty probability

¯
θ22: By Proposition 3, determining the

optimal service policy requires comparing the capacity
cost C with V2µ2 if k∗ � 1, but with both V1µ1 and V2µ2
if k∗ � 0. These comparisons yield the four policies in
Figure 3(b).

6.2. Using the Capacity Allocation Policy to
Control the Customer Base

Our analysis implies that the capacity allocation policy
plays a key role in controlling both the composition
and the size of the customer base: by targeting different
service levels to different customer types, the allocation
policy can influence both the switching rates among,
and the retention rates of, base customer types. Here
we focus on the retention effects in the absence of base
customer switching. From (7) the ratio of the customer
bases of two types, say 1 and 2, satisfies

x1

x2
�
λ0q0θ̄01/(γ1 + r1(1− q1θ̄11 − (1− q1) ¯

θ11))
λ0q0θ̄02/(γ2 + r2(1− q2θ̄22 − (1− q2) ¯

θ22))
, (59)

where λ0q0θ̄0 j is the type j joining rate and 1/(γj +

r j(1− q j θ̄j j − (1− q j) ¯
θj j)) is the type j lifetime.

To illustrate how the optimal policy can effect this
ratio we revisit Examples 1 and 2 of Section 6.1, assum-
ing that both types have equal service-independent
attrition rates (γ1 � γ2). Recall that both types have
equal probabilities for joining (θ̄01 � θ̄02 � 0.2) and
remaining (θ̄11 � θ̄22 � 1) in the customer base after
being served, and equal normalized service request
rates (r1/γ1 � r2/γ2 �10). It follows from (59) that, if giv-
ing equal service to both types is optimal (so q∗1 � q∗2),
then their customer bases are equal; that is, x∗1 � x∗2.
However, if serving only type 1 is optimal (so q∗1 � 1,
q∗2 � 0), then the customer base of type 1 is larger than
that of type 2: by (59) we have

x∗1
x∗2

�
γ2 + r2(1− ¯

θ22)
γ1

� 1+ 10(1−
¯
θ22), (60)

where the fraction represents the ratio of type 2 to
type 1 departure rates, and the second equality holds
since γ1 � γ2 and r2/γ2 � 10. The type 2 customer base
is smaller because its members leave at a larger rate
because of service denial, at rate r2(1− ¯

θ22) where r2 is
their service request rate and

¯
θ22 is their loyalty prob-

ability given service denial. In Example 1, this prob-
ability is fixed at

¯
θ22 � 0.3, so from (60) we have x∗1 �

8x∗2 whenever it is optimal to deny service to type 2.
However, in Example 2 the type 2 loyalty probability

¯
θ22 varies, so the customer base ratio x∗1/x∗2 depends
not only on the optimal policy but also on this loyalty
probability. To illustrate this point, consider in Figure
3(b) how the optimal policy at a capacity cost of C � 50
varies with

¯
θ22. For ¯

θ22 ≤ 0.75 it is optimal to serve all
customers so that x∗1 � x∗2. For larger values of

¯
θ22 the

optimal policy is to deny service to type 2 customers,
but by (60) the customer base ratio x∗1/x∗2 decreases
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in
¯
θ22: the higher the loyalty of type 2 customers after

service denial, the larger their base relative to that of
type 1. In the limit as

¯
θ22 → 1, type 2 customers are

so loyal that they leave only for service-independent
reasons, and we again have x∗1 � x∗2.

6.3. Ignoring the Effect of Service Probabilities on
the CLV Hurts Performance

Standard approaches in themarketing literature ignore
the effect of service probabilities on the CLV. We show
that doing so may significantly reduce performance.
We focus on Example 1 in Section 6.1 with R2/γ2 � 250,
so Ṽ1 > Ṽ2 > V2µ2 and k∗ � 1 by Figure 2. By Proposi-
tion 3 the optimal policy is to deny service to type 2
customers if Ṽ1 > C >V2µ2 but to serve all customers if
V2µ2 ≥ C. We contrast this policy with two alternative
policies, marketing driven and uncoordinated.

In the marketing-driven policy, the marketing depart-
ment optimizes the advertising and capacity levels,
assuming that all requests must be served. Let λM

0
and NM denote, respectively, the optimal new cus-
tomer arrival rate and capacity level under this pol-
icy. The new customer arrival rate λM

0 balances the
marginal cost of acquiring a new customer with the
profit when serving all her requests, that is, λM

0 > 0
satisfies

s̄2(Ṽ2 −C)� S′(λM
0 ) if Ṽ2 > C, (61)

and λM
0 � 0 otherwise. The capacity level NM � λM

0 (s0 +

s1 + s2) because all requests are served.
In theuncoordinatedpolicy, themarketingdepartment

also optimizes the advertising level, assuming that all
requests will be served, but the operations department
optimizes the capacity allocation policy and capacity
level (in line with Proposition 2), given the new cus-
tomer arrival rate set by marketing. Let λU

0 and NU

denote, respectively, the optimal new customer arrival

Figure 4. (Color online) Ignoring the Effect of Service Probabilities on the CLV Hurts Performance
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uncoordinated (U) policies. (Parameters of Example 1, with R2/γ2 � 250.)

rate and capacity level under this policy. Then λU
0 � λM

0 ,
because both policies determine the new customer
arrival rate by (61). By Proposition 2 the optimal capac-
ity satisfies NU � λU

0 (s0 + s1) if Ṽ1 > C > V2µ2, and NU �

λU
0 (s0+ s1+ s2) ifV2µ2 ≥ C (note that Ṽ1 � V̄1 since c0 � 0).
Figure 4 compares the capacity and the new cus-

tomer arrival rate for the optimal, marketing-driven,
and uncoordinated policies, depending on the capac-
ity cost. For C > V2µ2, both the marketing-driven and
the uncoordinated policies reduce the arrival rate, and
even cause the system to shut down for C ≥ Ṽ2, because
they impose a suboptimal service level that reduces the
new customer CLV (since Ṽ2 < Ṽ1). For C > V2µ2, the
uncoordinated policy also yields a lower-than-optimal
capacity, whereas the capacity under the marketing-
driven policy may be lower or higher than optimal,
because of two countervailing effects: the new cus-
tomer arrival rate is lower than optimal (i.e., λM

0 < λ∗0),
but all requests are served, rather than only those of
new customers, as is optimal.

These policies may result in significant profit losses.
At a cost of C � 25, the loss relative to the optimal profit
is 56% for the marketing-driven and 15% for the unco-
ordinated policy. These losses increase in the capacity
cost, up to the extreme case of suboptimal shutdown
for C ∈ [Ṽ2 , Ṽ1).
This discussion underscores the importance of

accounting for the optimal service level in evaluating
the CLV, particularly when this metric drives sub-
stantial resource allocation decisions. Any policy that
imposes arbitrary service levels (e.g., FIFO for all cus-
tomer types with an industry-standard service access
quality) would be similarly suboptimal.

6.4. Implementing the Fluid-Optimal Policy in a
Large Stochastic System

We discuss the application of the deterministic fluid
model to optimize large-scale stochastic queueing
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systems with abandonment, such as the credit card call
center that motivated this research.

6.4.1. The Primitives of the Stochastic Queueing Mo-
del. Consider a service facility such as an inbound
call center operating as a stochastic queueing sys-
tem with N identical parallel servers. New customer
arrivals follow a Poisson process with rate λ0. Type i
base customers’ call interarrival times, service times,
and service-independent sojourn times are indepen-
dent draws from exponential distributions with means
1/ri , 1/µi , and 1/γi , respectively. The financial param-
eters (Ri , pi , and ci) and the switching probabilities
θi j(qi) are as in the deterministic model.
Unlike in the deterministic model, because of queue-

ing delays and customer impatience, the stochastic
system may fail to serve all requests even if it is under-
utilized. We model type i customers’ impatience by
independent and exponentially distributed abandon-
ment times with mean τi . Abandonments are equiva-
lent to service denials (and denied requests are lost, as
in the fluid model). In this model customer base transi-
tions depend on waiting times only through the result-
ing service probabilities qi : conditional on the outcome
of receiving or being denied service, a customer’s tran-
sition is independent of her waiting time. This assump-
tion is consistent with the notions of “critical incidents”
and “end effects” in the service literature. The preva-
lent assumption is that customers think about termi-
nating their relationship with providers only when
some critical incident occurs (Keaveney 1995, Gremler
2004). In our setting the abandonment is the natural
critical incident: this is how customers signal that their
waiting times are too long. Bitran et al. (2008a) (see Sec-
tion 4.2.1 and references therein) suggest the presence
of an “end effect,” whereby the outcome of a service
encounter may dominate the memory of the preceding
waiting experience.

6.4.2. Implementing the Fluid-Optimal Policy in the
Stochastic Queueing Model. Because of the state de-
pendence and feedback in customer flows, the relation-
ships between the capacity allocation policy and the
service probabilities seem to be analytically intractable
in the stochastic model, unlike their counterparts (16)
and (17) in the fluid model. It is therefore difficult to
optimize the stochastic system directly. However, sim-
ulation results summarized in Section 6.4.3 suggest
that the following natural implementation of the fluid-
optimal capacity allocation policy yields nearly optimal
performance for a stochastic system with sufficiently
many servers: operate a head-of-the-line priority pol-
icy that gives customer types strict (nonpreemptive)pri-
orities according to the ranking specified in part 1 of
Proposition 1. (In the case with base customer switch-
ing, the fluid-optimal priority ranking is determined by
solving the problemnumerically.) This implementation

assumes flexible servers, so the firm can pool capac-
ity across types. This is common in practice, including
in the credit card company discussed above. Another
practice is to dedicate capacity to each type.

The fluid-optimal policy of Proposition 1 features
two key differences from standard index policies for
systems with abandonment, such as the cµ/θ rule
(Atar et al. 2010) and cµ type policies (Tezcan and Dai
2010). (1) The Vµ indices consider the effect of ser-
vice on customers’ future requests and financial impact.
(2) The values V̄k and Ṽk that determine the priority
of one type, new customers, also depend on the Vµ
indices of other types. These differences reflect that,
unlike standard models, ours captures customer base
transitions that link future requests to past service
quality.
6.4.3. Summary of SimulationResults. Webriefly sum-
marize results from simulations (see Online Appen-
dix B for details) that evaluate the performance of the
fluid-optimal policy in the stochastic queueing model
described above. Focusing for simplicity on the case of
homogeneous base customers, we consider a number
of customer parameter combinations, some where it is
never optimal and others where it may be optimal to
deny service to base customers, according to Proposi-
tion 3. For each parameter combination we vary the
server cost C in a range that yields enough servers, 100
or more, for the fluid model results to be applicable.
We compare (1) the fluid-optimal new customer arrival
rate, capacity level, and priority ranking with their
counterparts from simulation-based optimization and
(2) the simulation-based profit under the fluid-optimal
prescriptions with the simulation-based optimal profit.

The main finding from over 350 simulation exper-
iments is that on average the fluid-optimal prescrip-
tions yield a relative profit loss below 1%. We observe
worse profit performance (losses around 6%) only at
capacity costs with jumps in the fluid-optimal service
and capacity levels. (The fluid-optimal new customer
arrival rate and capacity typically deviate more from
simulation-optimal levels, whereas the fluid-optimal
priority ranking is typically optimal for the stochastic
system.)

7. Concluding Remarks
We study the profit-maximizing advertising, capac-
ity, and capacity allocation policies for a service firm
with heterogeneous repeat customers whose acquisi-
tion, retention, and behavior during their lifetime in
the customer base depend on their service probability.
We develop our results in the context of a new fluid
model that integrates CRM and capacity management.
Thismodel links themakeup and value of the customer
base both to the capacity allocation, unlike prior CRM
models, and to the service access quality of past inter-
actions, unlike prior capacity management models.
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We make several contributions to CRM and service
capacity management: We derive newmetrics that link
the value of a customer to the capacity allocation policy
and the resulting service probabilities and customer
base transitions of all types: the CLV of base customers,
the Vµ index, and the policy-dependent value of a
customer type. We provide new capacity management
prescriptions that hinge on these metrics, notably, opti-
mality conditions for rationing capacity and for iden-
tifying which customers to deny service. These results
have important implications: firms need to understand
how customer attributes affect the optimal policy; with
repeat business the capacity allocation policy plays a
previously ignored key role in controlling the customer
base; marketing-focused policies that ignore the effect
of service probabilities on the CLV may reduce profits
significantly; and the fluid model approach may also
prove effective for CRM and capacity management for
stochastic systems such as the credit card call center
that motivated this work.

Our results prescribe a “bang-bang” structure for the
optimal capacity allocation: customers get either per-
fect service or none at all. This may seem unrealistic
in some cases. However, it is easy to modify these pre-
scriptions to ensure a minimum, strictly positive, ser-
vice probability even for the least profitable types. The
corresponding modified fluid-optimal capacity alloca-
tion can be determined by adding minimum-capacity
constraints to the profit-maximization problem. Imple-
menting this modified allocation in a stochastic system
would increase the fluid-optimal number of servers
and thereby reduce the delays and the abandonment
rates of the lower-priority classes.

Our results alsopoint to the interplaybetween the tar-
geting levels of the advertising and capacity allocation
policies. On one hand, as shown in Section 6.3, impos-
ing or assuming suboptimal nontargeted service levels
reduces the value of an acquired customer and yields
lower than optimal advertising spending. On the other
hand, our results suggest that, if the firm could better
target advertising in order to selectively acquire more
profitable customer types (our model assumes it can-
not), then the optimal service policy would target high
service levels tomore, or possibly all, customer types.

Our study focuses on a stationary environment that
yields constant optimal arrival rates. In nonstation-
ary environments, for example, if the new customers’
demand response to advertising changes over time,
the optimal service probabilities may be time depen-
dent. Establishing the structure of the optimal policies
becomes more complicated as a result of the interplay
between time-dependent service probabilities and cus-
tomer value metrics. However, if the capacity level can
be adjusted on the time scale of demand fluctuations,
restricting attention to stationary service policies while
dynamically adjusting the advertising and capacity

levels not only simplifies the analysis (the customer
value metrics presented in this paper remain valid) but
may also be practically appealing and nearly optimal.
Araghi (2014) studies a special case where the firm
follows a periodic advertising policy and the new cus-
tomer arrival rate decays exponentially between adver-
tising pulses.

We focus for simplicity on controlling the customer
base through differentiated service levels via the capac-
ity allocation policy. However, our framework can be
extended to allow for targeted advertising to base cus-
tomers. For example, in the case of the credit card com-
pany, base customers’ credit card spending, which cor-
responds to their service-independent profit Ri , may
depend both on their service access quality and on
advertisements. In this case the switching probabilities
θi j would be functions of both the service probability
and the advertising dollars targeted to type i.
Finally, ourmodel parameters canbe estimatedbased

on data that can be tracked. Such estimates would help
quantify the effects of service access quality attributes
onCLV, akey requirement for thepractical implementa-
tion of capacity management policies that reflect CRM
principles.
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