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INTRODUCTION

This article discusses inventory management
of perishable items, including the differences
between inventory models that consider
items’ perishability and the standard models
that ignore this issue. We hope that this
article will help fostering the interest of
students and researchers in inventory con-
trol of perishable items, and ultimately help
improving the inventory control of perishable
items in practice.

To emphasize the importance of appro-
priately managing inventory of perishables,
note that Ref. 1 estimates the total cost of
unsalable merchandise of suppliers to drug-
stores and supermarkets in 2005 by $2.05
billion. This cost goes directly to the bottom
line of many of these companies. Moreover,
higher clock speed in many industries results
in shorter and shorter life-cycles of many
products. The inventory control of such prod-
ucts might become similar to the one of per-
ishable items as well after some period, when
a newer version is presented, the value of old
items declines significantly. One important
difference between items with short life-cycle
and perishables is that in some cases, the firm
controls the introduction of the new technol-
ogy. Still, much of the insight derived for
managing perishable inventory may be valid
for products with short life cycles.

Most of the traditional inventory models
analyzed in the literature (e.g., EOQ, (Q, r),
and (S, s) policies) assume an infinite shelf-
life for items (see Multiechelon Multiprod-
uct Inventory Management). (An exception
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is the newsvendor model discussed in the
section titled ‘‘Extending the Newsvendor
Model’’.) Thus, when the shelf-life of the items
stored is finite, traditional control policies
may not be sufficient. For this reason, special
purpose models that focus on the manage-
ment of inventory of perishable items were
developed. Our purpose is to highlight the
reasons for these differences and enable fur-
ther investigation of the models developed for
perishable items by providing relevant refer-
ences. A more technical discussion of the tech-
niques employed in the analysis of perishable
items is given in the article titled Mathe-
matical Models for Perishable Inventory
Control in this encyclopedia.

This article continues as follows: the
section titled ‘‘Modeling Inventory Prob-
lems for Perishable Items’’ highlights the
differences between inventory models for
perishables and models that ignore per-
ishability. The section titled ‘‘Taxonomy of
Inventory Models for Perishable Items with
Infinite Horizon’’ provides a taxonomy of
models for controlling inventory of perish-
ables based on Ref. 2, and lists some of the
basic results of such models. An important
observation from this section is that effective
heuristics are required for the management
of perishable items. Thus, the section titled
‘‘Developing a Heuristic Control Policy’’
demonstrates the development of such a
heuristic based on Ref. 3, and finally, the
section titled ‘‘Future Research Directions’’
lists probable directions for future research
on the management of perishable items.

MODELING INVENTORY PROBLEMS FOR
PERISHABLE ITEMS

The analysis of inventory systems is primar-
ily focused on the tactical question of which
inventory control policies to use and the oper-
ational questions of when and how much
inventory to order. By and large, these are
the main questions for managing the inven-
tory of perishable items as well. This section
reminds the reader of the assumptions used
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in modeling standard inventory systems for
nonperished items and then lists the special
features of models for perishables. It con-
cludes by generalizing the newsvendor model
to consider items with finite shelf-life. In the
process, we present relevant notation.

Inventory Modeling for Nonperishables

In inventory models for nonperishables, time
is measured either in a discrete (i.e., periodic)
or continuous fashion. The choice of time
measurement is often related to the review
period (periodic or continuous) and to the
model horizon, T, that may be a single period,
finite, or infinite horizon. The replenishment
lead time, L, may be assumed to be zero,
deterministic, or stochastic (with or without
order crossings). The customers arrival rate
per time period, λ, may be deterministic or
stochastic, each individual’s demand, D, may
be deterministic or stochastic, and D may be
discrete or continuous. A typical assumption
is that the arrival process is Poisson with
rate λ; D = 1 (see Poisson Process and
its Generalizations). Finally, when there
are no items on the shelf, that is there are
shortages, demand is typically assumed to
be backlogged or lost.

The costs considered in the management
of standard inventory systems are per unit
procurement cost, c; per unit selling price,
p; order setup cost, K ≥ 0; and holding cost
per unit per time period, h > 0. Another cost
is that of shortages. The shortage costs can
include a one-time cost per shortage, Kb ≥ 0
if shortages are backlogged, or Kl ≥ 0 when
shortages result in lost sales, and a cost per
unit per unit time, cb ≥ 0, in cases of backlog,
or a cost per unit, cl ≥ 0, in the case of lost
sales.

Special Features of Models of Perishables

In addition to the above list of characteristics,
modeling of inventory for perishable items
also requires a characterization of the time
to perishability, Lp. This time to perishabil-
ity may be either deterministic or stochastic.
Moreover, when orders arrive in batches, all
items in a batch may share the same time to
perishability, or each item may have its own
shelf-life. An alternative assumption is that

the inventory of good items is deteriorating
with time at some rate, as in Ref. 4.

The two most common models for perisha-
bility are outdatedness due to reaching expiry
date (e.g., food items or medicine) and sudden
perishability due to disaster (e.g., spoilage
because of extreme weather conditions). The
perishability due to outdatedness is typically
modeled as a deterministic time to perisha-
bility and the perishability due to disaster is
typically modeled as an exponential (or its
discrete counterpart, geometric) time to per-
ishability. This is because the memory-less
property of these distributions often results
in more tractable models.

The treatment of lead time in the manage-
ment of inventory for perishable items is also
not trivial. One difficulty is that the items
might perish during the delivery time. This
might be addressed by assuming that the sup-
plier supplies fresh items upon their delivery
and changes their lead time accordingly. For
example, when the lead time is determin-
istic and items’ shelf-life is exponential, we
can assume that delivered items are fresh
by modeling the lead time as a geometric
random variable.

In the example above, changing the lead
time to support the assumption that sup-
plied items are fresh complicates the model
because it introduces another uncertainty in
the model; namely, the corrected lead time
becomes uncertain. To avoid complicating the
model, much of the literature on perishable
items assumes that supplied items (after the
lead time) are fresh.

Another complication is that when lead
times are long relative to the items’ shelf-
lives, there might be several orders out at
the same time. Then, orders might cross
each other. This potentially affects the shelf-
life distribution of delivered items. (Order
crossing typically increases the complexity of
traditional models as well.)

A general difficulty caused by the pres-
ence of lead time in a stochastic environment
is that shelf-life of items in stock depends on
which batch they arrived at. Thus, the con-
troller should keep track not only of the quan-
tity of the items on shelf but also the length
of time different items are on the shelf; that
is, their age and its distribution.
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Another challenge in the analysis of
perishable items is that items that have not
yet perished may have different remaining
shelf-life. (Either because items have a
unique shelf-life, or because batches with
common shelf-lives arrived in different
periods.) Thus, the information required to
completely characterize the on-hand and
on-order inventory includes not only the
quantity of inventory but also the remaining
shelf-lives of each unit in the inventory. This
increase in information requirement makes
the analysis of multiechelon supply chains
for perishable products especially challeng-
ing (because even for standard items, such
an analysis often relies on dynamic program-
ming and suffers from the curse of dimension-
ality). Therefore, some important theoretical
contributions developed in the analysis of
perishable items address the information
required to characterize the inventory level
process. (See the discussion in the section
titled ‘‘Models Without Order Setup Cost
or Lead Times’’ and in the article titled
Mathematical Models for Perishable
Inventory Control in this encyclopedia).

Another relevant decision in managing
perishables when items of several different
ages coexist, is items dispatching to fulfill
orders. In such cases, it might not be optimal
to dispatch products in a first-in-first-out
fashion. For an extreme case, consider the
following example.

Example 1. A last-in-first-out dispatching
policy would decrease the effect of perisha-
bility when an item’s shelf-life follows a new
worse-than-used distribution. (Let FLp (s)
denote the cumulative distribution function
of the shelf-life. Then, if

1 − F Lp (s + t ) ≥ (
1 − F Lp (s)

) (
1 − F Lp (t )

)
∀s ≥ 0, ∀t ≥ 0,

we say that Lp has a new worse-than-used
distribution.)

While perishable items with a new worse-
than-used shelf-life are hard to find in prac-
tice, this example highlights the difficulty of
characterizing the optimal dispatching pol-
icy. To substantially complicate the exact

analysis of the optimal control policy for
perishables, it is enough that a newly arriv-
ing batch may have a shorter shelf-life than
that of existing items. Moreover, in cases
when customers may control the items’ dis-
patching they may prefer fresher items (con-
sider items such as milk), causing the actual
dispatching to differ from first-in-first-out.

Extending the Newsvendor Model

The newsvendor model discussed in the
article titled Newsvendor Models in this
encyclopedia is an exception in the standard
inventory literature, because it considers
perishability. This model considers the order
quantity required to maximize the profit
over a single period when the demand over
the period is uncertain. In addition to the
costs listed above, the newsvendor model
also considers the salvage cost of perishable
items cs, which can be negative or positive.

The newsvendor model can also be used to
model perishable items that can be ordered
only once. Now, we model the length of the
single period (i.e., the lifetime) as uncertain,
but there are no further procurement oppor-
tunities. In this case, the uncertainty in
the demand depends on both, the uncertain
demand per time period and the uncertain
length of the selling season. A similar idea
was first investigated in Ref. 5, which in
contrast to the newsvendor model, allows
several ordering opportunities before the
perishability time.

To express the uncertainty in demand in
these settings, we assume that the shelf-
life Lp is a discrete random variable with a
z-transform Z Lp (z) = ∑∞

i=0 zi Pr
(
Lp = i

)
and

that the demand in time period i is inde-
pendent and identically distributed, Di, with
a probability density function (pdf), f Di (x),
and a moment-generating function, L∗

Di
(α) =∫ ∞

−∞ eαx f Di (x) dx. Then, the horizon consid-
ered by the planner is T = Lp, the overall
demand during the period, DT , is a random
sum of random variables with a moment-
generating function L∗

DT
:

L∗
DT

(α) = E
(
L∗

Di
(α) Lp

)
= Z Lp

(
L∗

Di
(α)

)
.
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Example 2. If Lp ∼ Poisson
(
p
)

and Di
∼ Normal

(
μ, σ 2

)
and are i.i.d, Then

Z Lp (z) = ep(z−1), L∗
Di

(α) = e
(
μα+(σα)2/ 2

)
and

the moment-generating function of overall
demand over the period is

L∗
DT

(α) = ep
(
exp

(
μα+(σα)2/ 2

)
−1

)
.

Because the moment-generating function
fully characterizes the demand distribution
over the products’ random shelf-life, the stan-
dard solution of the newsvendor model can
be implemented to maximize the profit even
when the valuable shelf-life of the items is
uncertain.

TAXONOMY OF INVENTORY MODELS FOR
PERISHABLE ITEMS WITH INFINITE
HORIZON

As shown above, the newsvendor model
is useful in the inventory management of
perishable items that can only be ordered
once. However, many perishable items such
as food and medicines are consumed over
a much longer horizon; then a single order
is not practical. Finite horizon models were
addressed in the literature almost solely in
the discrete review settings. In contrast,
infinite horizon models were considered in
both discrete and continuous review settings.
Below, we describe the primary models,
assumptions, and results in the inventory
literature on perishable items. We follow the
classification of Ref. 2 in the section titled
‘‘Taxonomy of Inventory Models for Perish-
able Items with Infinite Horizon’’ because it
is both thorough and recent. The interested
reader is encouraged to read Ref. 2.

The infinite horizon models for perishables
include a cost, cp, per perished item. This cost
replaces the salvage value of perished items
in the newsvendor model. It is also possible
to include a fixed cost, Kp, in cases where
batches of items perish; however, most of the
models do not include the latter cost.

A more detailed discussion of the state-
of-the-art results for each of these models
is given in the article titled Mathematical

Models for Perishable Inventory Control
in this encyclopedia.

Discrete Review Systems

Models with No Fixed Order Setup Cost and
No Lead Time. The simplest model is one
in which items’ shelf-life equals the review
period. Then, different periods are indepen-
dent and the standard newsvendor solution is
optimal in each period. The second simplest
model, in which items’ shelf-life equals two
review periods, is already much more inter-
esting. This model was pioneered in Ref. 6,
where it was shown that the optimal control
policy is state dependent.

That the optimal control policy is state
dependent, is somewhat surprising, because
the optimality of the base stock control policy
is easily established in discrete review mod-
els for nonperishables without order setup
cost. Moreover, this result is also important
because it implies that for models in this cate-
gory, the simple base stock-level control is not
optimal, in sharp contrast to the optimality
of this control for nonperishables.

Thus, for perishable items, the opti-
mal inventory control requires solving a
dynamic programming problem. The dif-
ficulty in finding and implementing the
optimal state-dependent controls motivated
researchers to search for effective heuristics.
For example, Broadheim et al. [7] suggested
a heuristic that is based only on the age
of the newest item in the system and the
simulation-based study in Ref. 8 considered
several heuristics including one that keeps
the total number of items in the system
fixed, ignoring their ages.

Models with Fixed Ordering Cost but no
Lead Time. The research on this category
was pioneered in Ref. 9, which highlights
the complexity of the optimal control struc-
ture for these models and suggests heuristic
for control of the system based on the (S, s)
model.

A nice observation for this model of the
Poisson demand with backlogs case is that
the optimal reorder level is always at or below
−1. This result, which was established in
Ref. 10, echoes the one in Ref. 11 for the
continuous review system. The proof follows
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because—with no lead time—higher reorder
points would increase holding cost without
reducing the backlog. (This result also holds
in the case where customer’s arrival process
is Poisson and each customer requests some
integer quantity of the product.)

Models with Lead Time. The inclusion of
positive lead time leads to much more com-
plicated models, as the number of states
required for the dynamic program increases.
With lead time, one needs to also keep track
of the age of ordered items. This model is con-
sidered in Ref. 12, where methods to solve it
are suggested. Recently, Berk [13] analyzed
the (Q,r) periodic review inventory model for
perishables with lead time by using the effec-
tive shelf-life distribution and assuming lost
sales.

Discussion. The assumption of zero lead
time in the case of a discrete review system
is often justified if the lead time is shorter
than the review period. Therefore, the analy-
sis of such models (with periodic review and
no lead time) is valuable. The zero lead time
assumption is not as meaningful for contin-
uous review models or when the lead time is
long and makes reviewing the items at such
intervals too expensive.

From an analysis point of view, treating
perishable items requires consideration
of the age distribution of the on-hand
inventory in both ordering and dispatching
of perishable items. Dispatching is also
important because, typically (and in contrast
to Example 1), the value of older items
in stock is lower than that of the newer
ones. The challenges in both ordering and
dispatching of perishables causes the tra-
ditional optimal policies for nonperishable
items to be suboptimal for perishables.

It turns out that the optimal control
policies for perishable items are fairly hard
to characterize. This difficulty encouraged
researchers to develop effective heuristics
for the periodic control of perishable items in
the absence of lead time. However, no such
heuristics were developed for models with
long lead time (Williams and Patuwo [12]
give an exact analysis of several relevant
cases and suggest guidelines for developing
such heuristics).

Continuous Review Systems

Models without Order Setup Cost or Lead
Times. This category was motivated to model
blood banks. It was originated by Graves [14],
who assumed that the items are continuously
produced, perish after a deterministic time,
and that demand follows a compound Pois-
son process with either a single unit or an
exponential demand at each arrival. A large
body of work within this category was done by
Perry et al. in Ref. 15 and references therein;
thus Karasesman et al. [2] named it the Perry
model.

An interesting observation that is used in
the analysis of the Perry model is that its per-
formance can often be characterized based on
knowledge of the virtual death process, that
is, the time until the next perishability [16].

The main assumption made in many of the
models within this category is that good items
arrive one by one independently of the deci-
sion making. Thus, in contrast to standard
inventory models, the controller does not
decide on when and how much to order. Still,
the controller might affect the arrival rate of
good items by advertising, for example.

Because of this lack of control on the input,
most work on the Perry model focused on
performance analysis rather than on finding
optimal controls.

Models without Order Setup Cost but
with Positive Lead Time. The first work on
continuous review models without setup
cost but with lead time is given in Ref. 17
where, as in many subsequent works, the
performance of an (S − 1, S) control policy
is investigated. However the optimality of
this control policy is not established, even
when time to perishability and interarrival
times are exponential. In fact, in view of
the fact that base stock is not the optimal
policy in the corresponding discrete review
model, even in the absence of lead time, this
control policy is probably not optimal for the
continuous review models either. While some
study of problems with fixed lead time and
time to perishability has been pursued [18],
the theoretical results about these applicable
models are far from being complete.
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Models with Order Setup Cost. Models with
order setup cost can be portioned into ones
with a fixed or variable order size, corre-
sponding to the (Q,R) or the (s,S) standard
inventory models. Both types of models can
be analyzed as cost minimization problems,
possibly subject to some service level con-
straint.

For fixed batch size problems, two policies
were considered: the standard (Q, R) and the
(Q, R, T) policy, where orders of a batch are
triggered by either the time passed (since the
inventory level was Q) being T, or by the
inventory level falling below R [19].

The vast majority of work allowing for
variable order size assumes no lead time,
as in Ref. 11. In Ref. 11, it is established
that with Poisson demand the (S,s) is the
optimal policy when shortages are either
backlogged or result in lost sales, and also
that s < −1 or s = 0 for these models, respec-
tively. (The insight behind the proof on the
optimal reorder point is similar to the one
for the corresponding discrete review model
discussed in the section titled ‘‘Models with
Fixed Ordering Cost but no Lead Time.’’)

Recently, Gurlur and Ozkaya [20] consid-
ered a zero lead time with backlog (s, S) policy
for perishables. They used sums and inte-
grations of relevant distribution functions to
express the expected cost rate function for
their model and developed a heuristic for the
positive lead time case.

Discussion. To summarize, stochastic
analysis is the main tool used in the inves-
tigation of continuous review models for
perishable items. This analysis is not trivial
and the characterization of the optimal
control policies is more complicated than in
the periodic review models. Therefore, there
is a need to find effective control policies
for these models as well, especially in the
presence of lead time.

There is still a place for developing effi-
cient heuristics for the control of continuous
review policies for perishables with lead time.
Both the heuristic reported in Ref. 20 and
the one for the no lead time case from Ref. 3,
which is also reproduced in the next section,
seem good starting points for finding such
heuristics.

DEVELOPING A HEURISTIC CONTROL
POLICY

As discussed above, there is a need for
developing effective control policies for both,
continuous and discrete review models of
perishable items. Below, we discuss such
a heuristic based on Ref. 3. Consider a
continuous review model with no lead time,
where the customers arrival process is
Poisson with rate λ and each customer
requests a continuous random quantity D of
items with a mean demand size of E (D). The
costs considered are the order setup cost,
K, holding cost per item per time period,
h, and cost of perishable items, cp. Let us
focus on an (S, s) control policy and allow no
backlog, which is legitimate due to the zero
lead time assumption. Thus, s = 0 is optimal
and due to the Poisson arrival process, the
times where the inventory level is raised
to S are renewal epochs (see Definition
and Examples of Renewal Processes,
properties of renewal processes)

In the standard (S, 0) model without per-
ishable items, the end of the inventory cycle,
denoted by TS is caused only due to the
arrival of a demand. Of course, TS is a ran-
dom variable that depends on S and on the
demand arrival process. But when items are
perishable, cycles can also end due to per-
ishability, at time Lp, which is the random
variable describing the time to perishability
of a new batch. To emphasize that the model
focuses on perishable items, we denote the
time to end the cycle by τ = min

(
TS, Lp

)
and

the corresponding control policy by (S, τ ), as
in Ref. 3.

Figure 1 shows a sample path of inventory
over more than two inventory cycles. The
first cycle ends due to the demand, as in a
standard (S, 0) model; then τ = TS1 ≤ L p1.
The second cycle ends due to perishability;
then τ = Lp2 < TS2.

Let V (t) denote the inventory level at
time t ∈ [0,τ ) from the beginning of the cycle.
Thus, V = {V(t) : t ≥ 0} is a regenerative pro-
cess such that V (0) = S. We let V(τ ) denote
the inventory level at the end of the cycle and
use E as the expected value operator (both
E(V) and E(V(τ )) are well defined because V
is a regenerative process). Then, the long-run
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Sample path (S,τ ) models. 

Order times

Demand X1

A2

X2

X3

Time to perishability Lp1
Lp2

Lp3

t

A3

A1
~exp(λ)

Interarrival times

V(t)

S

Figure 1. Sample path (S, τ ) models.

average cost C(S) is

C(S) = K + cp E
(

V(τ ) I{τ < Ts}
)

E(τ )
+ h E (V), (1)

where I{·} is the indicator function with a
value 1, if the event {·} occurs and 0 otherwise.

To find a heuristic control policy, we
replace the stochastic demand assumption
with a deterministic demand with a rate
λE (D). Then, starting at the reorder level S
for any time t before the end of the cycle, we
have

V (t) = S − t λ E (D) t ∈ [0, τ ).

Therefore, if items do not perish within a
cycle its length is TS = S/(λE (D)). Letting
f Lp (t) denote the pdf of Lp, the expected cycle
length is given by

E (τ ) = E
(
min

{
Lp, TS

})
=

∫ S/(λE(D))

0
t f Lp (t) dt

+ S
λ E (D)

Pr
(

Lp >
S

λ E (D)

)
. (2)

Since for every t < τ we have V(t) = S −
t λ E(D) and, as in the EOQ model, the aver-
age inventory resulting from an inventory
triangle of height Y is Y/2, we have

E (V) =
∫ S/(λE(D))

0

(
S − tλE (D) + tλE (D)

2

)

fLp (t) dt + S
2

Pr
(

Lp >
S

λE (D)

)
(3)

and

E
(
V(τ ) I{τ < TS}) =

∫ S/ (λE(D))

0
(S − t λ E (D))

f Lp (t) dt. (4)

Remark. This heuristic assumes a contin-
uous and deterministic demand process, thus
new demand arrives immediately after an old
batch perishes. In practice, when there is no
lead time, ordering the next batch after items
perish can be postponed until the next cus-
tomer’s arrival. That is, the order at the end
of the second cycle in Fig. 1 can be postponed
until the first arrival in the third cycle. Such
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postponement would increase E (τ ) and can
be incorporated into the heuristic by adding
the expected time to an arrival to the expected
cycle length whenever cycles end due to per-
ishability. In contrast, when the demand size
is continuous, it is likely that when the cycle
ends due to demand there is some demand
that should be satisfied from the next batch.
Then when no backlog is allowed, a similar
postponement is not feasible for cycles that
end due to demand. In any case, postponing
orders when cycles end due to perishability
might not be beneficial when lead time is pos-
itive. Thus, in the example given below, we
ignore such postponement and use E (τ ) as
given in Equation (2).

Example 3. The heuristic when Lp ∼
exp (ξ): Assuming Lp ∼ exp (ξ) using Equat-
ions (2)–(4), we get the approximated control
problem:

min
S

Ch(S) =

K + π

⎛
⎜⎝S −

λE(D)

(
1−e

−ξ S
λE(D)

)

ξ

⎞
⎟⎠

1−e
−ξ S

λE(D)

ξ

+ h

⎛
⎜⎜⎝S −

λE (D)

(
1 − e−ξ S

λE(D)

)
2ξ

⎞
⎟⎟⎠ ,

(5)

while in general there is no closed form
solution to problem (5), it is easily solved
numerically.

This heuristic, of solving Equation (5) was
investigated in Ref. 3, for cases in which the
time to perishability is exponential or deter-
ministic, arrivals follow a Poisson process,
and customers’ demand is either a unit or
exponentially distributed. For these cases,
Baron et al. [3] expressed the optimal order
up to level, that is, the one that minimizes
Equation (1) denoted by S∗, and compared it
to the order up to the level based on solv-
ing Equation (5), SH. For these cases, the
cost error of the heuristic is relatively small

(around 2% on average). Thus, Baron et al.
[3] suggested that this heuristic be used for
cases where S∗ cannot be found.

FUTURE RESEARCH DIRECTIONS

Below, we discuss several research direc-
tions and explain their importance. Many
of these extensions have attracted significant
research for standard items, but in our opin-
ion, they are not addressed well enough for
perishable items.

The most important research direction
for managing inventory of perishables is to
develop effective heuristics for inventory con-
trol of such items. Some heuristic control
policies were developed earlier, such as by
Nahmias [21], who discusses heuristics for
the deterministic shelf-life case. However,
developing effective heuristics for additional
settings is still required. Such settings should
include both continuous and periodic review
systems and focus on cases with positive lead
times. A closely related research direction
is to provide theoretical guarantees on the
performance of different heuristics, similar
to the established efficiency of power of two
policies for standard inventory items [22].

The standard assumption in the literature
on continuously reviewed perishable items is
that the planning horizon is infinite. Investi-
gating the inventory control of perishables for
finite horizons in such settings also deserves
more research attention.

Four other issues that have garnered a
lot of attention for standard inventory items
are their management (i) in multiechelon
settings, (ii) when aiming to coordinate
the supply chain, (iii) for multiple items,
and (iv) in the presence of competition (see
Business Process Outsourcing multiech-
elon, multiple items and Supply Chain
Coordination). An important feature
in investigating these issues is internal
transshipment. Many models address-
ing nonperishable items ignore internal
shipments, because the cost of internal
transshipments might offset their benefit.
However, because transshipments of per-
ishable items may reduce the proportion of
perished items, the value of internal trans-
shipments for perishable items is higher
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than for nonperishables. Thus, allowing
internal transshipments is preferable in
models that consider multiple sites.

Initial steps at investigating the above
issues for supply chains of perishable items
were taken (Section 4 in Ref. 2). For example,
for the supply of blood in multiechelon
settings (Ref. 23 and references within),
consider both, a rotation (or recycling) policy
and a retention one. In a rotation system at
the end of each period (e.g., day) the supplier
gathers all unsold (and not yet perished)
items from the retailers and then supply
them at the beginning of the next period; in
a retention system, supplied items are left
with the retailers until they are demanded or
perished. However, the literature addressing
issues (i)–(iv) for perishables typically
considered fairly restrictive settings.
Therefore, there is room for addressing these
issues and developing effective management
policies for managing the flow and allocation
of perishable items in supply chains.

Note that to properly address these
issues, investigation of the strategic plan-
ning of supply-chain networks is required
for perishable items. Appropriate models
for supply-chain networks require as input,
the inventory control policy used and
their performances (see Supply Chain
Coordination). For example, locating
warehouses and distribution centers should
consider the costs implied by different
supply-chain configurations. However, in the
absence of efficient methods to manage the
inventory within the supply chain and to
estimate the implied inventory-related costs,
designing the network of the supply chain
might be of limited value.

Another model that is well established
for standard items is joint manufacturing,
storing, and allocation of products for differ-
ent customer types. This is also relevant for
perishable items. An example is the choice
made at a central depot that serves several
different retailers with different importance.
Then, an allocation of items may need to
consider performance measures as seen by
the different customer types. Such measures
of service levels could be on-stock availability
of ‘‘fresh enough’’ items, fill rates, and so on.
In fact, inventory control of perishable items

subject to service level constraints even for a
single customer type has won little attention.
Such constraints could be quite specific in
defining appropriate service levels in relation
to the residual life of items sold. Customers
might not be satisfied with only a high
on-shelf availability, but may also demand
that available items are fresh enough.
Moreover, in some cases different customer
types prefer different levels of freshness
that require different storage processes. For
example, the shelf-life of tomatoes is longer
if they are kept on the vine, refrigerated
(that may also reduce their flavor), or turned
into a tomato paste, tomato juice, or ketchup.
Thus, it is likely that formulating problems
with different customer types would be very
application dependent. Still, in view of the
importance of these applications, for example
in the health-care industry, this is a topic
deserving further research.

The above discussion of different service
levels and storage requirements for perish-
able items raises another question; namely,
the effective analysis of the logistics required
for the delivery of perishable items. Logistics
planning for perishable items involves capac-
ity, storage, production, and transportation
decisions as well as their effect on items’
shelf-life. For example, some fruits are deliv-
ered to North America in ships, with part
of their ripening occurring during this long
and often uncertain transportation window.
Once ripened, such fruits are often stored
at cold temperatures to increase their shelf-
life. Thus, managing the logistics process
required to bring valuable items to final cus-
tomers is not simple, and deserves further
attention. Again, such research is likely to be
application dependent.

An important issue that is unique for per-
ishable items is the dispatching policy which
may be complex even for a single customer
type. In addition to the complexity high-
lighted by Example 1, the dispatching policy
can also affect the demand. For example, con-
sumers of food items such as milk, often check
the ‘‘best before’’ date of items on the shelf.
Thus, demand for a specific item depends not
only on its availability on the shelf and its
age, but also on the age and shelf availabil-
ity of items of different ages. That is, there
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are substitutability effects among items that
differ by age. In addition, in this setting, the
controller can only affect rather than dictate
the dispatching policy. This is a mirror prob-
lem to the models in the section titled ‘‘Models
Without Order Setup Cost or Lead Times,’’
where the controller can only affect rather
than dictate the arrival of new items. Again,
initial works on this subject exist (Section 5.2
of Ref. 2), but there is still plenty of opportu-
nity for research in more realistic settings.

As the last but not the least research
direction, we list the following simplifying
assumptions that are often made in works
on perishable items. Most of the references
above assume that (i) demand is known (in
case of stochastic demand its distribution
is known), (ii) there is no seasonality, (iii)
demand is independent of pricing, shelf
space allocation, and inventory level, (iv)
order yield is perfect, and (v) there is
no substitutability of items (both within
items of different ages and among different
products). For nonperishable items, all of
these assumptions have been relaxed to some
extent. However, the vast majority of papers
on managing inventory of perishables make
these assumptions. (Several initial attempts
at relaxing some of these assumptions are
referenced in Section 5 of Ref. 2.)
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