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This paper provides the first exact analysis of a preemptive M/M/c queue with two priority classes having

different service rates. To perform our analysis, we introduce a new technique to reduce the 2-dimensionally

(2D) infinite Markov Chain (MC), representing the two class state space, into a 1-dimensionally (1D) infinite

MC, from which the Generating Function (GF) of the number of low-priority jobs can be derived in closed

form. (The high-priority jobs form a simple M/M/c system, and are thus easy to solve.) We demonstrate our

methodology for the c= 1,2 cases; when c > 2, the closed-form expression of the GF becomes cumbersome.

We thus develop an exact algorithm to calculate the moments of the number of low-priority jobs for any

c ≥ 2. Numerical examples demonstrate the accuracy of our algorithm, and generate insights on: (i) the

relative effect of improving the service rate of either priority class on the mean sojourn time of low-priority

jobs; (ii) the performance of a system having many slow servers compared with one having fewer fast servers;

and (iii) the validity of the square root staffing rule in maintaining a fixed service level for the low priority

class. Finally, we demonstrate the potential of our methodology to solve other problems such as an M/M/c

queue with two priority classes, where the high-priority class is completely impatient.
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1. Introduction

The last decade has witnessed a growing usage of prioritization in the service industry. Examples

range from amusement parks, where customers with VIP tickets can skip regular lines, to cloud

computing, where customers who pay the standard price have strict priority over customers who

pay the discounted price, to hospital emergency departments that prioritize more urgent patients.

There are three main motivations for prioritization. The first motivation is that different cus-

tomers may have different willingness to pay (or valuations) for the same product. The second
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motivation is that customers may require different products or services, where some of these prod-

ucts are more profitable than others. The third motivation is that having different service levels may

substantially affect long term profitability; for example first time customers who receive excellent

service are more likely to become loyal ones, see, e.g., Afèche et al. (2012).

Modeling the effects of prioritization due to the first and third motivations can be achieved with

identical service time distributions for different segments. However, appropriately characterizing the

effects of prioritization due to the second motivation requires capturing differences in service times.

Moreover, there are many practical applications where customers with different service requests are

given different priorities. For example, contact centers prioritize phone calls over emails. Similarly,

renewals of driver’s licenses require a photograph and thus typically take longer than renewals of

car licenses; the latter are prioritized (according to the principal of shortest processing time first).

Likewise, at airports processing times of the aircrew are shorter than those of air-travelers, who

have a lower priority. In all of these applications, there are several servers rather than a single one.

There are many papers that use queueing theory to derive and analyze different prioritization

policies in services (e.g., Maglaras and Zeevi 2005 and references therein), inventory settings (e.g.,

Abouee-Mehrizi et al. 2012 and references therein), and dynamic scheduling (e.g., Van Mieghem

1995 and references therein). This literature typically focuses on characterizing the distribution of

the sojourn time of different priority classes. Specifically, the distribution of sojourn times for single-

server queues with priorities, such as the M/G/1 (see e.g., Takagi 1991) are well known. Miller

(1981) gives a computationally efficient algorithm to derive the steady state probability distribution

of an M/M/1 queue with priority by using the matrix-analytic method. But it is difficult to extend

these results to multi-server priority queues. In fact, to the best of our knowledge no exact solution

for the sojourn time distribution in a multi-server queueing system serving multiple priority classes

with different service rates has appeared in the literature.

Much of the multi-server literature has focused on the M/M/c queue. The M/M/c queue with

multiple priority classes and identical service rates was first investigated by Davis (1966), finding

a closed-form expression for the Laplace transform (LT) of any priority class’s waiting time. For
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the same setting, Kella and Yechiali (1985) elegantly derived this LT. Buzen and Bondi (1983)

gave a simple approximation for each priority class’s mean sojourn time in a preemptive system

with different service rates for each priority class. Maglaras and Zeevi (2004) used a diffusion

approximation to solve a similar problem with impatient high priority customers in a heavy-traffic

regime. Recently, Harchol-Balter et al. (2005) approximated the sojourn time of a preemptive

M/PH/c queue with different service rates. They also provide a taxonomy of relevant literature.

In this paper, we consider an M/M/c queue with two priority classes under a preemptive disci-

pline under either preemptive-resume or preemptive-repeat (new service times are drawn whenever

preempted customers re-enter service). In particular, preemptive-resume may be an appropriate

model in the emergency department and contact center contexts.

We assume that Class-i jobs arrive according to a Poisson process with rate λi, i= 1,2. Service

times for Class-i jobs are exponentially distributed with parameter µi, i = 1,2. For stability, we

require
∑2

i=1
λi
µi

< c. Class-1 jobs have preemptive priority, thus the analysis of Class-1 jobs is

straightforward. The main goal of this paper is to develop an efficient exact algorithm to calculate

Class-2 jobs’ expected sojourn time and probability of waiting, in steady state.

To develop our algorithm, we use an approach for the analysis of continuous-time Markov chains

(MCs), which we call Queue Decomposition, based on Abouee-Mehrizi et al. (2012): In many cases,

the metrics of interest for a queueing system only depend on certain parts of the MC. In these

cases, for the other parts of the MC, we do not need to keep track of detailed information; the

transition probabilities and the time the system stays in such parts of the MC are sufficient. The

queue decomposition approach is simple, yet powerful, because it allows us to focus the analysis

on smaller and simpler parts of the original system. The analysis of each part of the MC jointly

with a careful characterization of the transition probabilities between these parts yields an exact

analysis of the original system.

In our case, we are interested in the number of Class-2 jobs in steady state, which is distributed

identically to the number of Class-2 jobs seen by Class-2 departures. Such departures only occur
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when there are fewer than c Class-1 jobs in the system. Thus, it is not necessary to track all the

information when the MC has c or more Class-1 jobs.

Using our analysis, we derive insights on how the performances of a priority system changes as

the characteristics of the jobs or servers change. These insights were unavailable before, due to the

lack of exact algorithms for this preemptive system with different service rates for each priority

class. In particular, we consider the following three questions:

1. How does changing µ1 or µ2 affect the expected sojourn time of Class-2 jobs?

2. Do Class-2 jobs prefer few fast servers or many slow servers? Why?

3. Does the square root staffing rule hold for Class-2 jobs?

After introducing the model and background results in Section 2, we present the key ideas of our

methodology in Section 3. We demonstrate the methodology on the single-server case in Section 4.

We discuss the c≥ 2 servers case in Section 5. We provide an efficient exact numerical method for

systems with c≥ 2 in Section 6. Numerical results, insights, and extensions are given in Section 7.

We summarize the paper in Section 8. All proofs are in the Appendix.

2. Model and Preliminary Results

We consider an M/M/c queue with two priority classes. Let qi, i= 1,2 be the number of Class-

i jobs in the system, and Si and Wi, i = 1,2 be the random variables representing the steady

state sojourn time (from arrival until departure) and waiting time of Class-i jobs in the system

respectively. Note that, due to Class-1 jobs’ preemptive priority, Class-2 jobs might be preempted

from service. In this case, we consider the difference between a Class-2 job’s sojourn time and its

total service time as its waiting time, i.e., E [W2] =E [S2]− 1
µ2
.

For the µ1 = µ2 case, the sojourn time distribution of each priority class is given in Buzen

and Bondi (1983). We, however, consider this problem when Class-1 and Class-2 have different

service requirements (i.e., µ1 ̸= µ2). Figure 1 illustrates the Markov Chain (MC) for the number of

jobs from different priority classes, (q1, q2), in the system. This MC is infinite in two dimensions,

complicating the analysis.
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Figure 1 MC of the M/M/c queue with two priority classes.

Due to the preemptive priority, Class-1 jobs see a classic M/M/c queue. Their service rate at

state (q1, q2) is µ1min(q1, c); independent of q2. Thus, the distribution of Class-1 jobs’ sojourn time

is (e.g., Section 3.4, Buzacott and Shanthikumar 1993)

P {S1 < t}= 1− e−µ1t − (e−(cµ1−λ1)t − e−µ1t)

1− (c− λ1
µ1
)

λc
1

µc
1c!

((1− λ1

cµ1

)
c−1∑
i=0

λi
1

µi
1i!

+
λc
1

µc
1c!

)−1.

Therefore, we focus on deriving the sojourn time and probability of no wait for Class-2 jobs.

Let rq1,q2 be Class-2 jobs’ service rate when the MC is at state (q1, q2). In state (q1, q2), the

number of servers available to Class-2 jobs is c−min(q1, c). Thus,

rq1,q2 = µ2min(c−min(q1, c), q2). (1)

Let Rq2 denote Class-2 jobs’ service rate vector when there are q2 Class-2 jobs in the system, i.e.,

Rq2 includes all rq1,q2 for states in the qth2 column of the MC in Figure 1. When q1 ≥ c, Class-2 jobs’

service rate is always zero, so Rq2 does not include rq1,q2 for q1 ≥ c. Using (1),

Rq2 = (r0,q2 , . . . , rc−1,q2). (2)

Note that we have an identical service rate vector Rq2 = (cµ2, (c− 1)µ2, . . . , µ2) for any q2 ≥ c.



Author:
6 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Let v(q1, q2) denote the total rate at which the MC moves out of state (q1, q2). Then

v(q1, q2) = λ1 +λ2 +µ1min(q1, c)+µ2min(c−min(q1, c), q2). (3)

Before moving to the next section, we recall several results and define several special matrices

that are used extensively in the paper. Let t be a random time interval with Laplace transform

LT t(s); let X be the number of Poisson(λ) arrivals during t, and GX(z) be the generating function

(GF) of X. The distribution of X as a function of LT t(s) is given as:

P {X = x} =
(−λ)x

x!
LT t(x)(λ); (4)

GX(z) = LT t(λ−λz), (5)

where LT t(x)(λ) denotes the xth derivative of LT t(s) evaluated at λ (see e.g., (3.58) and (3.67)

respectively in Buzacott and Shanthikumar 1993).

We write any column vector as the transpose of a corresponding row vector. Let 0i×j and 1i×j

denote i × j matrices with all elements zero or one, respectively, and let I denote the identity

matrix. The following Lemma is important for derivations in Sections 4 and 5.

Lemma 1. Assume a MC’s state space is composed of two sets: a transient set, T and an absorbing

set, A. Let ΓT→T and ΓT→A be the one step transition matrices from T to T and T to A respectively.

Then, P {Aj | Ti} , the probability of being absorbed in state Aj ∈A starting at state Ti ∈T is

[P {Aj | Ti}]Ti∈T,Aj∈A = (I −ΓT→T)
−1ΓT→A. (6)

3. Simplification - The 1D-Infinite MC

Finding the distribution of S2 is challenging because the Markov chain (MC) in Figure 1 is 2D-

infinite. We transform the 2D-infinite continuous-time MC into a 1D-infinite discrete-time MC.

We first simplify the MC by aggregating the behavior of the system during a Class-1 busy period

(BP ), which starts when there are c or more Class-1 jobs in the system (i.e., once q1 increases to

c) and ends when the number of Class-1 jobs q1 drops to c− 1.
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Clearly, during each BP the service rate of Class-1 jobs is cµ1 and the arrival rate of Class-1 jobs

is λ1. Thus, during this BP , the MC of Class-1 jobs is identical to the busy period of an M/M/1

queue with arrival rate λ1 and service rate cµ1 (see e.g., Harchol-Balter et al. 2005). Thus, the

Laplace transform (LT) of this BP is (see, e.g., Takagi 1991, Chapter 1)

LTBP (s) =
1

2λ1

(λ1 + cµ1 + s−
√

(λ1 + cµ1 + s)2 − 4cλ1µ1). (7)

Next, using (4), we obtain the probability of having l Class-2 arrivals during the BP

αBP
l =

(−λ2)
l

l!
LTBP (l)

(λ2), l= 0,1,2, . . . . (8)

Let GαBP (z) be the generating function (GF) of αBP ; then from (5), we have

GαBP (z) =LTBP (λ2 −λ2z). (9)

During the BP , all Class-2 arrivals join the queue. When the BP is over, q1 becomes c− 1 and

the distribution of the number of Class-2 arrivals in the BP can be calculated from (7) and (8).

Specifically, let BPi denote a Class-1 busy period that starts from a Class-1 arrival at state (c−1, i),

i= 0,1, . . .; then BPi ends in state (c− 1, i+ j) with probability (w.p.) αBP
j , for j ≥ 0. Using this

method, we lose information on when those Class-2 arrivals occurred during the BP , but we will

establish next that this information is not necessary.

After aggregating the Class-1 busy periods in the MC into the BPi’s, we get a 1D-infinite

discrete-time MC with c+1 rows: The first c rows are identical to the first c rows in the original

MC, and the (c+ 1)th row is composed of BPi’s. When the system leaves BPi, it may enter any

state (c− 1, q2) with q2 ≥ i. Figure 2 illustrates this 1D-infinite discrete-time MC.

Still, to the best of our knowledge, there are no known exact solutions for this ladder-like 1D-

infinite discrete-time MC. We overcome this difficulty by observing the system state at departure

epochs of Class-2 jobs, i.e., analyzing the embedded Markov chain (EMC).

From Section 5.1.3 of Gross et al. (2008), Class-2 departures in steady state observe the steady

state distribution of q2. Thus, if we can derive the steady state probability distribution of the EMC,
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Figure 2 The Simplified MC.

we obtain the distribution of q2. Then, we can derive different moments of q2, and the expected

sojourn time of Class-2 jobs, E [S2], from Little’s Law. If we further assume that the service order

of Class-2 follows FIFO (e.g., when items are made to order), we can use Distributional Little’s

Law from Bertsimas and Nakazato (1995) to express the sojourn time distribution of Class-2 jobs.

To determine the steady state distribution of the EMC, we can follow the three steps used to

analyze the EMC of the standard M/G/1 model (see e.g., Section 3.3.2, Buzacott and Shanthiku-

mar 1993): 1) derive the one-step transition matrix of the EMC, 2) characterize the generating

function (GF) of the number of jobs seen by a departure in steady state, and 3) derive the unknown

constant in the expression of this GF.

4. The Single-server Case

To develop some intuition for our analytical procedure, we first demonstrate it in the single-server

setting. The solution for the sojourn time of Class-2 jobs in this case is known (see e.g., Takagi

(1991) Chapter 3):

LT Ŝ2(s) =
2(λ1µ2 +λ2µ1 −µ1µ2)

(µ2 − 2µ1)s+λ1µ2 +2λ2µ1 −µ1µ2 −µ2

√
(s+λ1 +µ1)2 − 4λ1µ1

. (10)

Our methodology provides an alternative proof, and more importantly it can be used in the multi-

server case. For convenience, we denote quantities related to the c= 1 case with a “hat” (ˆ).
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Let L̂2
k, the number of Class-2 jobs seen by the kth Class-2 departure, be the state of the EMC.

Note that the system has one server, so Class-2 departures always see no Class-1 jobs. Let M̂ be

the EMC’s transition matrix, i.e., the entry m̂i→j in M̂ is defined as m̂i→j = P{L̂2
k+1 = j

∣∣∣L̂2
k = i}.

We next derive an equation relating L̂2
k to L̂2

k+1. Let D̂k be the kth inter-departure time of Class-2

jobs (the time between the kth and the (k+1)st Class-2 departure). Let the random variable αD̂k

be the number of Poisson(λ2) arrivals during D̂k. The number of Class-2 jobs seen by the (k+1)st

Class-2 departure equals the number of Class-2 jobs seen by the kth Class-2 departure minus one

(the (k+1)st Class-2 departure) plus the number of Class-2 jobs that arrived during D̂k:

L̂2
k+1 = L̂2

k − 1+αD̂k . (11)

From (11), we know that L̂2
k+1 ≥ L̂2

k − 1, so m̂i→j is zero, if j < i− 1.

Thus, the transition matrix has the form illustrated in (12). Each row and column is labeled by

the corresponding state L̂2
k. All elements of the lower triangle below the second row in M̂ are zero.

M̂ =

0 1 2 3 4 · · ·
0 m̂0→0 m̂0→1 m̂0→2 m̂0→3 m̂0→4 · · ·
1 m̂1→0 m̂1→1 m̂1→2 m̂1→3 m̂1→4 · · ·
2 0 m̂2→1 m̂2→2 m̂2→3 m̂2→4 · · ·
3 0 0 m̂3→2 m̂3→3 m̂3→4 · · ·
4 0 0 0 m̂4→3 m̂4→4 · · ·
...

...
...

...
...

...
. . .

. (12)

For n ≥ 0, let d̂n = P
{
L̂2 = n

}
= limk→∞P

{
L̂2

k = n
}
, i.e., L̂2 is the time-stationary limiting

random variable of L̂2
k and d̂n is the steady state probability that a Class-2 departure sees n Class-2

jobs. Let GL̂2(z) =
∑∞

n=0 d̂nz
n be the generating function of L̂2.

4.1. Transition Matrix of the EMC

The transition rate m̂L̂2
k
→L̂2

k+1
is closely related to the Class-2 jobs’ service rate vector during the

inter-departure time D̂k. The service rate vector, by (2), is only defined when no Class-1 jobs are

in the system, and, since c= 1, has only one element. Furthermore,

• If L̂2
k ≥ 1: The Class-2 jobs’ service rate vector remains µ2 until the (k+1)st Class-2 departure.

The service rate vector is independent of Class-2 arrivals during D̂k.
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Figure 3 MC for the single server case where L̂2
k ≥ c= 1.

• If L̂2
k = 0: The Class-2 jobs’ service rate vector is zero until the next Class-2 arrival, and then

it becomes µ2.

4.1.1. The Transition Probabilities for L̂2
k ≥ 1 We know from (11) that the transition

probabilities of the EMC are determined by αD̂k , which depends on D̂k. Thus, we first derive the

Laplace transform of D̂k, LT
D̂k(s). Then, using LT D̂k(s) and (4), we express the distribution of

αD̂k , and then write the transition probabilities of the EMC using (11).

Figure 3 illustrates the service process of the (k + 1)st Class-2 departure at the MC (not the

EMC). At the kth Class-2 departure, the MC enters state (0, L̂2
k). Because L̂

2
k ≥ 1, the rate of exiting

from state (0, L̂2
k) is v(0, L̂2

k) = λ1 + λ2 + µ2, thus after an exp(λ1 + λ2 + µ2) distributed time, the

system would go to one of the following three states:

• State BPL̂2
k
, w.p. λ1

v(0,L̂2
k
)
. The MC stays in the BP for a time period with an LT of LTBP (s).

After this BP , the MC goes to state (0, L̂2
k + l) (with l ≥ 0 Class-2 arrivals during the BPL̂2

k

calculated from (8)). Due to the memoryless property and the fact that the Class-2 jobs’ service

rate vector stays the same, the LT of the time period from when the MC enters (0, L̂2
k+ l) until the

next Class-2 departure is identical to LT D̂k(s). Therefore, w.p. λ1

v(0,L̂2
k
)
, LT D̂k(s) equals the LT of

the sum of the time until the next event, the length of a BP , and D̂k:
λ1+λ2+µ2

λ1+λ2+µ2+s
LTBP (s)LT D̂k(s).

• State (0, L̂2
k + 1), w.p. λ2

v(0,L̂2
k
)
. Here, using similar reasoning as above: LT D̂k(s) =

λ1+λ2+µ2
λ1+λ2+µ2+s

LT D̂k(s).

• State (0, L̂2
k − 1), w.p. µ2

v(0,L̂2
k
)
. The (k+1)st Class-2 departure occurs: LT D̂k(s) = λ1+λ2+µ2

λ1+λ2+µ2+s
.

Using the Total Probability Theorem (see, e.g., Papoulis 1984) and multiplying by (λ1 + λ2 +

µ2 + s), we get
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Figure 4 MC for the single server case where L̂2
k = 0.

(λ1 +λ2 +µ2 + s)LT D̂k(s) = λ1LT
BP (s)LT D̂k(s)+λ2LT

D̂k(s)+µ2, (13)

solving which gives

LT D̂k(s) =
µ2

λ1 +µ2 + s−λ1LTBP (s)
.

We now return to the EMC. To simplify the notation, we let α
D̂k
l = (−λ2)

l

l!
LT D̂k

(l)
(λ2). Then,

using (4) and (11), we get the transition probabilities of the EMC from L̂2
k ≥ 1 to any L̂2

k+1 ≥ 0:

m̂L̂2
k
→L̂2

k+1
=

{
0 for L̂2

k+1 < L̂2
k − 1

α
D̂k

L̂2
k+1

−L̂2
k
+1

for L̂2
k+1 ≥ L̂2

k − 1
, (14)

which characterizes the rows of M̂ in (12) corresponding to any i≥ 1.

4.1.2. The Transition Probabilities for L̂2
k = 0 If L̂2

k = 0 when the kth Class-2 departure

occurs, the next Class-2 event must be an arrival. This arrival may occur during BP0, and there

may be other Class-2 arrivals during BP0. Taking this possibility into account, assume that when

the service of the next Class-2 arrival is initiated, there are l ≥ 1 Class-2 jobs in the system, i.e.,

the system enters state (0, l) for l≥ 1. There are no transitions in the EMC until then.

Due to the memoryless property, the distribution of L̂2
k+1 given the system is in state (0, l) is the

same as the distribution of L̂2
k+1 given L̂2

k = l, as given in (14) for l≥ 1. Thus, we require the first-

passage probability distribution from state (0,0) to states {(0, l) | l≥ 1}. To find this probability,

we consider the system after the kth Class-2 departure as a MC with transient states {(0,0),BP0},

and absorbing states {(0, l) | l≥ 1}. Let Γ̂0→0 and Γ̂0→1+ be the one-step transition matrices from

{(0,0),BP0} to {(0,0),BP0} and {(0, l) | l≥ 1}, respectively.
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In Figure 4, we use v(0,0) = λ1+λ2, depict the arrival process of jobs in (0,0), and omit details

that are not relevant to the development of this case. From Figure 4, we can get Γ̂0→0 and Γ̂0→1+ :

Γ̂0→0 =

(0,0) BP0

(0,0) 0 λ1
λ1+λ2

BP0 αBP
0 0

, Γ̂0→1+ =

(0,1) (0,2) (0,3) · · ·
(0,0) λ2

λ1+λ2
0 0 · · ·

BP0 αBP
1 αBP

2 αBP
3 · · ·

.

Let Ψ̂01 be the 1×∞ absorbing distribution matrix from {(0,0)} to {(0, l) | l≥ 1}. Using Lemma

1, we can calculate Ψ̂01 as:

Ψ̂01 = [1 0] (I2×2 − Γ̂0→0)
−1Γ̂0→1+ . (15)

Then, we use conditional probability to calculate the transition probabilities for L̂2
k = 0:

m̂0→L̂2
k+1

=

L̂2
k+1+1∑
l=1

m̂l→L̂2
k+1

P {(0, l) | (0,0)} , ∀L̂2
k+1 ≥ 0, (16)

in which m̂l→L̂2
k+1

is given by (14), and P {(0, l) | (0,0)} is the corresponding probability of absorp-

tion in {(0, l) | l≥ 1} given in (15). Note that for the (k+1)st Class-2 departure to see L̂2
k+1 Class-2

jobs, l can be at most L̂2
k+1 +1; thus l ∈

[
1, L̂2

k+1 +1
]
.

Using (14) and (16), we can write m̂0→L̂2
k+1

for L̂2
k+1 ≥ 0 as the product of two matrices:

m̂0→L̂2
k+1

= Ψ̂01

[
α

D̂k

L̂2
k+1

· · · αD̂k
1 α

D̂k
0 01×∞

]T

. (17)

Note that (17) characterizes the i= 0 row of M̂ in (12). Thus, using (14) and (17), we obtain

the transition matrix of the EMC in (12) as:

M̂ =

0 1 2 · · · n · · ·

0 Ψ̂01

[
α

D̂k
0

0∞×1

]
Ψ̂01

 α
D̂k
1

α
D̂k
0

0∞×1

 Ψ̂01


α

D̂k
2

α
D̂k
1

α
D̂k
0

0∞×1

 · · · Ψ̂01


αD̂k

n
...

α
D̂k
1

α
D̂k
0

0∞×1

 · · ·

1 α
D̂k
0 α

D̂k
1 α

D̂k
2 · · · αD̂k

n · · ·
2 0 α

D̂k
0 α

D̂k
1 · · · α

D̂k
n−1 · · ·

3 0 0 α
D̂k
0

. . . α
D̂k
n−2 · · ·

4 0 0 0
...

. . . · · ·
...

...
...

...
...

...
. . .

. (18)
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4.2. Generating Function Approach

In this section we derive the steady state distribution of the EMC: d̂n, for n≥ 0. The equilibrium

equations are given by
[
d̂0, d̂1, . . .

]
M̂ =

[
d̂0, d̂1, . . .

]
. Hence, from (18) we get

d̂n = (
[
d̂1, d̂2, . . .

]
+ d̂0Ψ̂01)

[
αD̂k

n · · · αD̂k
1 α

D̂k
0 01×∞

]T
for ∀n≥ 0. (19)

Note that (19) has an infinite number of unknowns appearing in an (identical) infinite number

of equations. To find these unknowns, we calculate the GF, as in the standard M/G/1 model (see

e.g., Buzacott and Shanthikumar (1993), Section 3.3.2). Multiplying the nth equation in (19) by

zn and summing over all n gives

GL̂2(z) = (
[
d̂1, d̂2, . . .

]
+ d̂0Ψ̂01)

∞∑
n=0

[
αD̂k

n · · · αD̂k
1 α

D̂k
0 01×∞

]T
zn.

Let G
αD̂k

(z) be the GF of αD̂k that can be calculated from (5) as: G
αD̂k

(z) = LT D̂k(λ2 − λ2z).

Then, after some matrix algebra (see Appendix A1.1 for details), we get:

GL̂2(z) =− d̂0
(λ1 +λ2 −αBP

0 λ1)

(λ1 +λ2 − zλ2 −λ1GαBP (z))G
αD̂k

(z)

z−G
αD̂k

(z)
. (20)

Note that, other than d̂0, all expressions in (20) are given in closed form. Therefore, all that is

required to express GL̂2(z) in closed form is a closed-form expression for d̂0, which is derived next.

4.3. Finding the Idle Rate: d̂0

To obtain d̂0, we let z→ 1 in (20) and get (note that z−G
αD̂k

(z) is zero when z→ 1, so we need

to apply L’Hopital’s rule to calculate the limit on the right-hand side of (20)):

1 =− 2d̂0

λ1 +λ2 −µ1 +
√

(λ1 +µ1 +λ2)2 − 4λ1µ1

λ2µ1µ2

λ1µ2 +λ2µ1 −µ1µ2

, (21)

solving which gives d̂0:

d̂0 =−λ1µ2 +λ2µ1 −µ1µ2

2λ2µ1µ2

(λ1 +λ2 −µ1 +
√

(λ1 +λ2 +µ1)2 − 4λ1µ1).

Substituting d̂0 in (20) gives us GL̂2(z) in closed form:

GL̂2(z) =
2(λ1µ2 +λ2µ1 −µ1µ2)

µ2(λ1 +λ2 −µ1)+λ2(2µ1 −µ2)z−µ2

√
(λ1 +λ2 +µ1 −λ2z)2 − 4λ1µ1

.
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In a single-server queue, the service order in each priority class follows the FIFO rule, so we

can use Distributional Little’s Law (Bertsimas and Nakazato 1995) to get the LT of Class-2 jobs’

sojourn time: LT Ŝ2(s) =GL̂2(1− s
λ2
), which, of course, leads to (10).

5. General case: c≥ 2

The derivation of the general c ≥ 2 servers case is very similar to the single-server case, but it

is more complicated because Class-2 departures may see different numbers (i.e., 0,1, . . . , c− 1) of

Class-1 jobs. Let (L1
k,L

2
k) denote the state of the embedded Markov chain (EMC), i.e., L1

k and L2
k

are the number of Class-1 and Class-2 jobs seen by the kth Class-2 departure, respectively.

To display the one-dimensionally infinite transition matrix of the EMC for c≥ 2, we order the

states: {(0,0), . . . , (c− 1,0), (0,1), . . . , (c− 1,1), . . . , (0, n), . . . , (c− 1, n), . . .}. Let Qn be the set of

states with L2
k = n in the EMC, i.e., Qn = {(0, n), . . . , (c− 1, n)}. When no confusion arises we also

use Qn to denote the set of states with q2 = n in the MC.

Using the ordering defined above, we specify the infinite dimensional transition matrix of the

EMC, M . Let entry m(L1
k
,L2

k
)→(L1

k+1
,L2

k+1
) be the probability that the (k + 1)st Class-2 departure

sees (L1
k+1,L

2
k+1) given the kth Class-2 departure left behind (L1

k,L
2
k), and let Mi→j be the c× c

transition matrix from Qi to Qj in the EMC. We illustrate Mi→j here:

Mi→j =

(0, j) (1, j) · · · (c− 1, j)
(0, i) m(0,i)→(0,j) m(0,i)→(1,j) · · · m(0,i)→(c−1,j)

(1, i) m(1,i)→(0,j) m(1,i)→(1,j) · · · m(1,i)→(c−1,j)

...
...

...
. . .

...
(c− 1, i) m(c−1,i)→(0,j) m(c−1,i)→(1,j) · · · m(c−1,i)→(c−1,j)

. (22)

Class-2 jobs are only served when there are fewer than c Class-1 jobs (i.e., q1 < c) in the system,

so the number of Class-1 jobs observed by the kth Class-2 departure must be smaller than c, i.e.,

L1
k = 0,1, . . . , c− 1. Similar to D̂k and αD̂k in Section 4, let Dk be the kth inter-departure time of

Class-2 jobs and αDk be the number of Class-2 arrivals during Dk. Analogous to (11):

L2
k+1 =L2

k − 1+αDk . (23)

The transition matrix M has the form illustrated in (24). Each row and column is labeled by the
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corresponding set Qi. Every block Mi→j is as illustrated in (22). Given (23), we have Mi→j = 0c×c

for j < i− 1, i.e., all blocks of the lower triangle below the row Q1 in M are zero.

M =

Q0 Q1 Q2 Q3 Q4 · · ·
Q0 M0→0 M0→1 M0→2 M0→3 M0→4 · · ·
Q1 M1→0 M1→1 M1→2 M1→3 M1→4 · · ·
Q2 0c×c M2→1 M2→2 M2→3 M2→4 · · ·
Q3 0c×c 0c×c M3→2 M3→3 M3→4 · · ·
Q4 0c×c 0c×c 0c×c M4→3 M4→4 · · ·
...

...
...

...
...

...
. . .

. (24)

For i = 0, . . . , c − 1 and n ≥ 0, let din = P {(L1,L2) = (i, n)} = limk→∞P {(L1
k,L

2
k) = (i, n)}, so

that (L1,L2) is the time-stationary limiting random variable of (L1
k,L

2
k), and din is the steady state

probability that a Class-2 job sees i Class-1 and n Class-2 jobs at departure.

Let d⃗n = (d0n, . . . , d(c−1)n): d⃗n is the 1× c row vector of steady state probabilities that the EMC

is in Qn. Let d⃗=
[
d⃗0 d⃗1 d⃗2 · · ·

]
, i.e., d⃗ is the 1×∞ row vector composed of d⃗n, n≥ 0.

As in Section 4.1, we derive the transition matrix of the EMC based on the observation that the

Class-2 jobs’ service rate vector in (2) depends on Class-2 arrivals in Dk as follows:

• If L2
k ≥ c: The Class-2 jobs’ service rate vector remains Rc = (cµ2, (c− 1)µ2, . . . , µ2) at least

until the (k+1)st Class-2 departure, independent of Class-2 arrivals during Dk.

• If L2
k = 1, . . . , c− 1: The Class-2 jobs’ service rate vector remains RL2

k
(as defined in (2)) until

either the (k+1)st Class-2 departure or a Class-2 arrival. If there is a Class-2 arrival, this vector

becomes RL2
k
+1. (If this Class-2 arrival occurs during BPL2

k
together with other l Class-2 arrivals,

then when the MC leaves BPL2
k
, the service rate vector would be RL2

k
+l+1, l≥ 0.)

• If L2
k = 0: The Class-2 jobs’ service rate vector is R0 = (0, . . . ,0), and remains R0 until the next

Class-2 arrival. It then becomes R1 (or Rl+1, l≥ 0; see the discussion in previous bullet point).

We next demonstrate the derivation of M for c= 2. The c > 2 case can be analyzed similarly.

5.1. Transition Matrix of the EMC

In Section 4.1.1, we derived the Laplace transform of D̂k, LT
D̂k , expressed the distribution of αD̂k

using (4), and then wrote the transition probabilities of the EMC at the moment of the (k+1)st

Class-2 departure using (23). We follow the same process here, for c = 2. We first derive LTDk

when L2
k ≥ 2, and then L2

k = 1, and finally L2
k = 0.
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Figure 5 MC of the c= 2 servers case where L2
k ≥ 1 for Sections 5.1.1 and 5.1.2.

5.1.1. The Transition Probabilities for L2
k ≥ 2 Since rq1,q2 depends on the number of

Class-1 jobs in the network, Dk depends on the values of L1
k and L1

k+1. For every L2
k ≥ 2, there

are four feasible combinations of L1
k and L1

k+1: 0→ 0, 0→ 1, 1→ 0 and 1→ 1. Thus, we have 22

different inter-departure time distributions in the EMC. (For general c > 2 we have c2 different

inter-departure times when L2
k ≥ c.)

Let LTL1
k,L

1
k+1(s) be the LT of Dk conditioning on L1

k and L1
k+1, given L2

k ≥ 2 (we omit the latter

dependency for notational convenience). For example, LT 00(s) is the LT of Dk when the kth and

(k+1)st Class-2 departures see no Class-1 jobs in the network at their departures.

Figure 5 illustrates the service and arrival process of the Class-2 jobs in the MC after the kth

Class-2 departure when L2
k ≥ 1, omitting details that are not relevant.

We next discuss the possible steps of the MC after the kth Class-2 departure to express LT 00(s),

LT 01(s), LT 10(s), and LT 11(s). Consider LT 10(s) for example. The rate of exiting from state (1,L2
k)

is v(1,L2
k) = λ1+λ2+µ1+µ2, thus after an exp(λ1+λ2+µ1+µ2) distributed time, the MC would

move to one of the following four states:

• State BPL2
k
, w.p. λ1

v(1,L2
k
)
. Similar reasoning as in Section 4.1.1 gives: LT 10(s) =

λ1+λ2+µ1+µ2
λ1+λ2+µ1+µ2+s

LTBP (s)LT 10(s).
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• State (1,L2
k +1), w.p. λ2

v(1,L2
k
)
. Similar reasoning gives: LT 10(s) = λ1+λ2+µ1+µ2

λ1+λ2+µ1+µ2+s
LT 10(s).

• State (0,L2
k), w.p.

µ1

v(1,L2
k
)
. From the memoryless property, the LT of the time from when the

MC enters state (0,L2
k) until the next Class-2 departure occurs (with L1

k+1 = 0) is LT 00(s). Thus,

w.p. µ1

v(1,L2
k
)
, LT 10(s) is λ1+λ2+µ1+µ2

λ1+λ2+µ1+µ2+s
LT 00(s).

• State (1,L2
k−1), w.p. µ2

v(1,L2
k
)
. The next Class-2 departure occurs, but L1

k+1 is not 0, so transition

in the EMC from L1
k = 1 to L1

k+1 = 0 is infeasible. Therefore, LT 10(s) = 0.

Using the Total Probability Theorem (see, e.g., Papoulis 1984) and multiplying by λ1 + λ2 +

µ1 +µ2 + s, we get

(λ1 +λ2 +µ1 +µ2 + s)LT 10(s) = λ1LT
BP (s)LT 10(s)+λ2LT

10(s)+µ1LT
00(s). (25)

Using similar logic, we derive the following three additional equations:

(λ1 +λ2 +2µ2 + s)LT 00(s) = λ1LT
10(s)+λ2LT

00(s)+ 2µ2; (26)

(λ1 +λ2 +2µ2 + s)LT 01(s) = λ1LT
11(s)+λ2LT

01(s); (27)

(λ1 +λ2 +µ1 +µ2 + s)LT 11(s) = λ1LT
BP (s)LT 11(s)+λ2LT

11(s)+µ1LT
01(s)+µ2. (28)

Thus, (25−28) give four equations with four unknowns, which can be solved in closed form. Using

Θ(s) = ((λ1 +2µ2 + s)(λ1 +µ1 +µ2 + s−λ1LT
BP (s))−λ1µ1)

−1, we get:

LT 00(s) = 2µ2(λ1 +µ1 +µ2 + s−λ1LT
BP (s))Θ(s) ; LT 01(s) = λ1µ2Θ(s) ;

LT 11(s) = µ2(λ1 +2µ2 + s)Θ(s) ; LT 10(s) = 2µ1µ2Θ(s) .

Let α
L1
k,L

1
k+1

l = (−λ2)
l

l!
LTL1

k,L
1
k+1

(l)

(λ2) be the probability of having l Class-2 arrivals in Dk that

starts with L1
k and ends with L1

k+1 Class-1 jobs. Then, using (4) and (23), we get, for L2
k ≥ 2:

m(L1
k
,L2

k
)→(L1

k+1
,L2

k+1
) =

{
0 if L2

k+1 <L2
k − 1

α
L1
k,L

1
k+1

L2
k+1

−L2
k
+1

if L2
k+1 ≥L2

k − 1
. (29)

Letting Al =

[
α00

l α01
l

α10
l α11

l

]
be the 2× 2 matrix of the probability that αDk = l, as a function of the

four different Dk, we get the matrices ML2
k
→L2

k+1
for L2

k ≥ 2 and L2
k+1 ≥ 0:

ML2
k
→L2

k+1
=

{
02×2 if L2

k+1 <L2
k − 1

AL2
k+1

−L2
k
+1 if L2

k+1 ≥L2
k − 1 . (30)

Note that (30) characterizes the rows of M in (24) that correspond to any Qi with i≥ 2.
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5.1.2. The Transition Probabilities for L2
k = 1 Here, when the kth Class-2 departure

occurs, the MC moves into Q1. Before the next Class-2 arrival or departure, there may be many

Class-1 arrivals and departures, so the MC may move among states in Q1 ∪BP1. When the MC

leaves Q1 ∪BP1, it may move to Q0 (Class-2 departure) or to ∪∞
i=2Qi (Class-2 arrival). In both of

these cases we can establish the conditional distribution of (L1
k+1,L

2
k+1). Thus, we need to find the

absorbing distribution matrices from Q1 to Q0 and ∪∞
i=2Qi.

We again consider the MC after the kth Class-2 departure as a MC with a transient set: Q1∪BP1,

and absorbing sets: ∪∞
i=2Qi ∪Q0. In the MC, let Γ1→1, Γ1→0 and Γ1→2+ be the one-step transition

matrices from Q1 ∪BP1 to Q1 ∪BP1, Q0, and ∪∞
i=2Qi, respectively.

From Figure 5, we can see that Γ1→1, Γ1→0 and Γ1→2+ are:

Γ1→1 =

(0,1) (1,1) BP1

(0,1) 0 λ1
v(0,1)

0

(1,1) µ1
v(1,1)

0 λ1
v(1,1)

BP1 0 αBP
0 0

, Γ1→0 =

(0,0) (1,0)
(0,1) µ2

v(0,1)
0

(1,1) 0 µ2
v(1,1)

BP1 0 0

,

and Γ1→2+ =

(0,2) (1,2) (0,3) (1,3) · · ·
(0,1) λ2

v(0,1)
0 0 0 · · ·

(1,1) 0 λ2
v(1,1)

0 0 · · ·
BP1 0 αBP

1 0 αBP
2 · · ·

.

We next discuss the possible steps of the MC, when it leaves the set Q1 ∪BP1.

• If the MC moves to Q0, then the (k+1)st Class-2 departure happens before the next Class-2

arrival. Using Lemma 1, the probability of absorption in Q0 (starting at Q1) is

Ψ10 =

[
1 0 0
0 1 0

]
· (I3×3 −Γ1→1)

−1Γ1→0 =

µ2

[
λ1 +λ2 +µ1 +µ2 −αBP

0 λ1 λ1

µ1 λ1 +λ2 +µ2

]
(λ1 +λ2 +µ2 −αBP

0 λ1)(λ1 +λ2 +µ2)+λ2µ1 +µ1µ2

. (31)

At this absorption time the EMC moves into a state (L1
k+1,L

2
k+1)∈Q0. Thus, the transition matrix

from Q1 to Q0 in the EMC, M1→0, is Ψ10.

• If the MC moves to ∪∞
i=2Qi, then a Class-2 arrival happens before the (k+1)st Class-2 depar-

ture. (Again, this Class-2 arrival may have occurred during BP1; the number of Class-2 arrivals

during the BP1 can be calculated from (8).) From Lemma 1, the absorbing distribution matrix

from Q1 to ∪∞
i=2Qi is

Ψ12 =

[
1 0 0
0 1 0

]
· (I3×3 −Γ1→1)

−1Γ1→2+ . (32)
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After the MC enters states within ∪∞
i=2Qi, the Class-2 jobs’ service rate vector is identical to the

one for L2
k ≥ 2. Using the memoryless property, the distribution of (L1

k+1,L
2
k+1) given the MC is in

∪∞
i=2Qi is identical to the distribution of (L1

k+1,L
2
k+1) given (L1

k,L
2
k) ∈ ∪∞

i=2Qi, (29). Then, we use

conditional probability to calculate transition probabilities of the EMC:

m(L1
k
,1)→(L1

k+1
,L2

k+1
) =

∑
(q1,q2)∈∪

L2
k+1

+1

i=2 Qi

m(q1,q2)→(L1
k+1

,L2
k+1

)P
{
(q1, q2) | (L1

k,1)
}
, (33)

in which m(q1,q2)→(L1
k+1

,L2
k+1

) is given in (29) and P {(q1, q2) | (L1
k,1)} is the corresponding proba-

bility of absorption in ∪∞
i=2Qi given in (32). The upper bound of q2 is L2

k+1 + 1, because for the

(k+1)st Class-2 departure to see L2
k+1 Class-2 jobs, q2 can be at most L2

k+1 +1. The lower bound

of q2 is 2, because (q1, q2) is in ∪∞
i=2Qi.

From (31) and (33), we get matrices M1→L2
k+1

for L2
k+1 ≥ 0, expressing the Q1 row of M in (24)

M1→L2
k+1

=

{
Ψ10 if L2

k+1 = 0

Ψ12

[
AT

L2
k+1

−1
· · · AT

1 AT
0 02×∞

]T
if L2

k+1 ≥ 1
. (34)

5.1.3. The Transition Probabilities for L2
k = 0 Using a similar analysis, we obtain the

matrices M0→L2
k+1

for L2
k+1 ≥ 0, characterizing the Q0 row of M in (24) (see Appendix A2.1):

M0→L2
k+1

=

{
Ψ01Ψ10 if L2

k+1 = 0

(Ψ01Ψ12 +Ψ02)
[
AT

n−1 · · · AT
1 AT

0 02×∞
]T

if L2
k+1 ≥ 1

. (35)

Thus, using (30), (34) and (35), we obtain the transition matrix of the EMC in (24) as:

M =

Q0 Q1 Q2 · · · Qn · · ·

Q0 Ψ01Ψ10 (Ψ01Ψ12 +Ψ02)

[
A0

0∞×2

]
(Ψ01Ψ12 +Ψ02)

 A1

A0

0∞×2

 · · · (Ψ01Ψ12 +Ψ02)


An−1

.

..
A1

A0

0∞×2

 · · ·

Q1 Ψ10 Ψ12

[
A0

0∞×2

]
Ψ12

 A1

A0

0∞×2

 · · · Ψ12


An−1

.

..
A1

A0

0∞×2

 · · ·

Q2 0 A0 A1 · · · An−1 · · ·

Q3 0 0 A0

. . . An−2 · · ·

Q4 0 0 0
..
.

. . . · · ·
..
.

..

.
..
.

..

.
..
.

..

.
. . .

. (36)

Using the transition matrix of the EMC, we can employ a similar exact analysis to the one in

Sections 4.2 and 4.3 to obtain the closed-form expression of Laplace Transform of the Class-2 jobs’
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sojourn time for c = 2 case. However, the process becomes more cumbersome (see Appendix A3

for details). In the following section we focus on providing an efficient exact numerical method for

the general c≥ 2 case.

6. Numerical Method

From the structure of the transition matrix of the EMC in (36), we see that it is an M/G/1-type

Markov chain. Riska and Smirni (2002) gives an exact aggregate method to derive the steady state

probability distribution of the MC and different moments of the number of Class-2 jobs in the

system. As an example, we derive the first moment (see Algorithm 1 in Appendix A5). The main

steps of this numerical procedure, which is the basis for our results in Section 7, are:

• Transform the 2D-infinite continuous-time MC (in Figure 1) into an M/G/1-type MC (with

the transition matrix (24)) by: (i) using the Class-1 busy period to simplify the original MC to

the MC in Figure 2; (ii) deriving the transition matrix of the EMC by observing the system state

at Class-2 departures; deriving Mi→j (1≤ i≤ c+1) for three cases: L2
k ≥ c, L2

k = 0,1, . . . , c− 1 and

L2
k = 0 as done in Section 5.1; and inserting Mi→j into M according to (23). The derivation of Ai

in Section 5.1.1 becomes cumbersome as the number of servers c increases. We discuss the main

difficulty and give an efficient exact numerical method to compute Ai in Appendix A2.2.

• Use Theorem 3.1, (18), and (21) from Riska and Smirni (2002) to derive the average number

of Class-2 jobs in the system.

We next discuss the relation between steady state probability distributions of the original and

embedded MCs, and the probability of no wait for Class-2 jobs. These quantities are important for

our numerical results.

6.1. Relation between Original and Embedded Markov Chains

Let pij for i, j = 0,1, . . . be the steady state probability distribution of the original MC. Recall that

dij for i= 0, . . . , c− 1 and j = 0,1, . . . is the steady state probability distribution of the embedded

Markov chain (EMC). We show how to derive either distribution from the other.
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We start by deriving dij using pij. For a Class-2 departure to leave state (i, j) behind (w.p. dij),

there must be a Class-2 service completion at state (i, j+1) with i < c, which happens with rate

µ2min(c−min(i, c) , j+1). Therefore, we have

Lemma 2. For the steady state probability distributions of both the original MC and the EMC, we

have

dij =
pi(j+1)min(c−min(i, c) , j+1)∑c−1

q1=0

∑∞
q2=0 pq1q2 min(c−min(q1, c) , q2)

for i= 0, . . . , c− 1 and j = 0,1, . . ..

Note that dij for i= 0, . . . , c− 1 and j = 0,1, . . ., is independent of pij for i≥ c and j = 0,1, . . ..

Next, we derive pij from dij. From Poisson arrivals see time average (PASTA) and departures see

what arrivals do, the probability of having no Class-2 jobs in the system in steady state is identical

to the probability that a Class-2 departure sees no Class-2 jobs in the system:

∞∑
l=0

pl0 =
c−1∑
l=0

dl0. (37)

Using a similar discussion as the one used in the proof of Lemma 5 in Appendix A3, we can

obtain pi0∑∞
l=0 pl0

, and thus express pi0 using (37). Specifically, from Figure 1, the balance equation

of flow in and out of the set of states {(l,0) | l= 0,1, . . .} is

λ2

∞∑
l=0

pl0 = µ2

c−1∑
l=0

pl1,

which gives
∑c−1

l=0 pl1 =
λ2
µ2

∑c−1

l=0 dl0. Further, from Lemma 2, we have

pi1∑c−1

l=0 pl1
=

di0

min(c−min(i, c) ,1)
∑c−1

l=0
dl0

min(c−min(l,c),1)

.

Thus, we obtain pi1 for i= 0, . . . , c− 1. In a similar fashion, we can derive pij, for i= 0, . . . , c− 1

and j = 2,3, . . ..

Once pij for i= 0, . . . , c−1 are derived, pij for i≥ c can be calculated by solving balance equations

of the flows into and out of state (i, j), for i= c, c+1, . . . and j = 1,2, . . .. However, the results in

Section 7 do not require pij for i≥ c. Thus, we do not further discuss their calculation.
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6.2. Probability of No Wait for Class-2 jobs

Here we use pij to calculate the probability of no wait for Class-2 jobs. For a Class-2 job’s waiting

time to be zero, it should (i) arrive when there is at least one idle server, and (ii) not be preempted

by Class-1 jobs.

Say a Class-2 job arrives at state (i, j) (w.p., pij), for i+ j < c, i.e., there are c− i− j servers

available. We call this Class-2 job the tagged Class-2 job. Due to the first come first serve rule, the

chance of this tagged Class-2 job being preempted is independent of future Class-2 arrivals.

This tagged Class-2 job’s service process, until its service completion or it is preempted by Class-

1 jobs, can be represented by the MC in Figure 6. The state of this MC represent the number of

Class-1 jobs, and the number of Class-2 jobs, including the tagged Class-2 job, when the tagged

job arrives. For example, consider the case when the tagged Class-2 job arrived at state (0, c− 1)

sending the system into state (0, c). If a Class-1 job arrives (w.p. λ1
λ1+cµ2

) at this state, the tagged

Class-2 job will be preempted; otherwise, if a Class-2 job finishes service (w.p. cµ2
λ1+cµ2

), the system

moves to state (0, c− 1), then the tagged Class-2 job will not be preempted unless the number of

Class-1 jobs reaches 2. The states on the southeast border of the MC represent the tagged job

being preempted. The states on the west border represent it finishing before being preempted.

Thus, the probability that a tagged Class-2 job (which arrives at state (i, j− 1)) finishes service

without being preempted is the probability that the MC in Figure 6, starting from state (i, j), is

absorbed on the west border. This probability can be derived by applying Lemma 1 on the MC.

Then, using the Total Probability Theorem (see, e.g., Papoulis 1984), the probability of no wait

for Class-2 jobs is

P {W2 = 0}=
c−1∑
i=0

c−i−1∑
j=0

pij ·P {the tagged Class-2 job is not preempted before being served} .

(38)

7. Numerical Results and Extensions

We run Algorithm 1 on a 64-bit desktop with an Intel Quad Core i5-2400 @ 3.10GHz processor.

For c≤ 10, it completes within 1 second. The processing time of Algorithm 1 increases with c; for
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Figure 6 The Markov chain for the absorption of the tagged Class-2 job in either preemption or service completion.

c= 50, it takes 109 seconds. Additional details on the running times are available upon request.

Potential inaccuracies in Algorithm 1 arise from two sources. The first is that αBP
l requires

numerical inversion of the probability GF. Abate and Whitt (1992) give an efficient inversion

algorithm with a controllable error bound. The second source is the limited storage space on any

computer, so it is not practical to store an infinite number of matrices. Thus, we derive Ai for i

up to Limit=min{i | max(Ai)≤ Tolerance} where the Ais are given in (A5) in Appendix A2.2.

Both inaccuracy sources can be well controlled by using an accuracy tolerance 10−8.

We validate Algorithm 1 in two cases where exact results are available: when c= 2 (based on

the exact derivation in Appendix A3), and when µ1 = µ2 (see, e.g., Buzen and Bondi 1983). In

total, we examined 280 different parameter settings for validation; all relative errors were less than

0.001%, significantly outperforming the approximation in Harchol-Balter et al. (2005), which is to

our knowledge the best approximation, with a relative error within 2% compared to simulation.

Given the accuracy of Algorithm 1, we next use it to answer the three questions raised in Section
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1. Then, we apply our methodology to the problem in Maglaras and Zeevi (2004) when Class-1 jobs

are infinitely impatient (i.e., they leave the system if upon arrival there is no available server) by

replacing the Class-1 BP in our model with a Class-1 jobs’ exponential service time. Throughout

this section, we use λi = cρiµi for i= 1,2, so that ρ1+ρ2 < 1 is each server’s occupation rate in the

M/M/c queue. Thus, once c, ρ1, ρ2, µ1 and µ2 are given, the system is determined.

7.1. Insight 1 - How Changing µ1 or µ2 Affects E [S2]

Consider a company that operates an M/M/2 system to serve two priority classes where Class-1

has preemptive priority over Class-2. The company receives complaints of long sojourn times from

Class-2 customers. In this section, we answer the question: When the manager is able to improve

the service rate of one priority class, which service rate should she improve?

Any Class-2 customer’s sojourn time is dictated by its interaction with customers of both types.

All Class-1 customers present during a Class-2 customer’s sojourn time may affect it, while only

those Class-2 customers present when the customer arrives can affect her sojourn time. Increasing

µ1 reduces the Class-1 interference, while increasing µ2 reduces the Class-2 interference, as well as

the customer’s own service time. Which of these effects dominates (and which service rate is thus

preferable to improve) depends on the relation between λ1 and λ2.

Figure 7 illustrates the effect of improving µ1 or µ2 on E [S2] in different parameter settings.

The solid lines show how E [S2] changes when improving µ2 while keeping µ1 = 1 and the dashed

lines show the effect of improving µ1 while fixing µ2 = 1. In Figure 7(a) Class-1’s workload is lower

than Class-2’s (λ1 = 0.8 and λ2 = 1.1), which is common in practice. In this case, upgrading µ2

is more effective. In contrast, when λ1 = 1.1 and λ2 = 0.8, Figure 7(b), it is better to improve µ1:

When Class-2 customers complain about long sojourn times, it is better to improve the service

rate of the other class. This case may occur in settings such as the contact center example, where

answering phone calls comprises a larger portion of the total workload, compared to answering

emails. Finally, when λ1 = 1 and λ2 = 0.9, Figure 7(c), we see that it is better to improve µ1 if the

maximum service rate the company can achieve is below 3.5; otherwise it is better to improve µ2.
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Figure 7 The effect of improving µi, i= 1,2 on E[R2] under different combinations of λi for i= 1,2.

Next, we examine how the number of servers may affect the manager’s decision. In Figures 8

(a) and (b) we keep the initial service and workload for both classes the same (i.e. µ1 = µ2 = 1,

ρ1 = 0.55, and ρ2 = 0.4), and change c (i.e., c= 1 in 8(a), c= 2 in 7(b), and c= 3 in 8(b). When c

increases both curves move downward, but the solid curve (improving µ2) moves faster than the

dashed curve (improving µ1). When c= 3, these two curves cross, and for c≥ 4 (not shown here),

the solid curve is below the dashed one. However, this phenomenon does not hold for the ρ1 = 0.4

and ρ2 = 0.55 case (in Figure 7(a)): the solid curve is already below the dashed one when c= 2,

and increasing c only increases the gap between them. Thus, managers cannot decide on which

service rate to improve simply by approximating an M/M/c system as an M/M/1, as different c

values lead to different answers. This insight holds for different combinations of λ1 and λ2.

Still, a simple rule of thumb is: If the conclusion from the M/M/1 system is to improve µ2,

then the manager can go ahead and implement it. In contrast, if the conclusion from the M/M/1

system is to improve µ1, the manager needs to examine Class-2 jobs’ sojourn time carefully for the

M/M/c system, because the number of servers affects this decision.

7.2. Insight 2 - Few Fast Servers vs. Many Slow Servers

In this section we compare systems with different numbers of servers, while keeping the arrival rates

λi and the occupation rates ρi (i= 1,2) the same (i.e., we increase c and reduce µi while holding

cµi =
λi
ρi

constant). That is we investigate the effect of having many slow servers compared with
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Figure 8 The effect of improving µi, i= 1,2 on E [R2] under different numbers of servers.

having fewer fast servers. We use ρ1 = ρ2 = 0.475. (Similar result holds for different combinations

of ρ1 and ρ2. However, the smaller ρ1
ρ1+ρ2

is, the less obvious the result becomes.)

In Figure 9, we fix λ1 = 1 and illustrate the effect of having more slow servers on the expected

sojourn times of both classes, under different λ2’s. When comparing figures, note that since we

keep λ2
cµ2

= ρ2 = 0.475, for the same c, a smaller λ2 results in smaller µ2 and vice-versa. Also, within

each figure as c increases, both µ1 and µ2 decrease.

We see that in most cases jobs prefer fewer fast servers. Morse (1958) observes that the optimal

number of servers for a single class M/M/c queue is one, thus Class-1 jobs prefer one fast server.

But the number of servers affects E[S2] in different ways for different values of λ2. When λ2 =
1
3
,

Class-2 sojourn times increase faster than Class-1 jobs’ as c increases, but when λ2 = 3, the opposite

is true. There are two competing effects here: On the one hand, reducing µ2 increases Class-2

sojourn times due to Class-2 service time. On the other hand, higher c increases Class-2 jobs’

access to servers, reducing the effect of preemption. When λ2 = 1, these two effects balance and

the sojourn times of both classes increase with c at similar rates. When Class-2 jobs are short

(e.g., λ2 = 5), the increased access is more beneficial as they are more likely to finish before being

interrupted.

Another observation from Figures 9 (c) is that when λ1 = 1 and λ2 = 3, Class-2 jobs’ average

sojourn time may decrease with c, when c is small. This trend is more obvious in Figure 9 (d) when

λ1 = 1 and λ2 = 5: E [S2] decreases by about 5% (10.4 vs. 9.9) when c increases from 2 to 15. In
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Figure 9 The effect of c on expected sojourn times of both priority classes, under different λi, i= 1,2.
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Figure 10 The effect of c on expected waiting time of Class-2 jobs, under different λi, i= 1,2.

this case, the benefit of improved access to servers for Class-2 jobs dominates the negative effect

of decreasing µ2. Similar result has been shown in Wierman et al. (2006) by approximation. Our

results, based on exact analysis, sharpen and provide validation of theirs.

To further investigate the different effects of increasing the number of servers, we decompose

E [S2] = E [W2] +
1
µ2

in Figure 10 (a-d) for the same four cases. Of course Class-2 jobs’ expected

service time increases linearly with c in all four cases, but with different slopes. As 1
µ2

= ρ2
λ2
c, Class-2

jobs’ expected service time increase slowly when λ2 is large, and vice-versa. At the same time,

E [W2] decreases at a similar speed in all four cases. Combining these changes, the decrease in

E [W2] becomes greater than the increase in the mean service time in the λ2 = 5 case.

To investigate how likely it is that Class-2 jobs will not preempted, we look at the probability

of no wait P {W2 = 0} in (38), and the probability of no wait given they see at least one idle
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Figure 11 P {W2 = 0} and P {W2 = 0}/
∑c−1

i=0

∑c−i−1
j=0 pij as a function of c, for λ1 = 1, ρ1 = ρ2 = 0.475.

server at arrival, i.e., P {W2 = 0}/
∑c−1

i=0

∑c−i−1

j=0 pij. Figure 11 (a-b) illustrates these two quantities,

respectively, as functions of c, for the same four cases in Figure 10.

From Figure 11(a), we observe that for any c= 1, . . . ,100, P {W2 = 0} does not change much when

λ2 increases from 1/3 to 5. However, P {W2 = 0}/
∑c−1

i=0

∑c−i−1

j=0 pij changes more dramatically, and

we suspect this change causes E [W2] to decrease relatively faster to 1
µ2

in the λ2 = 5 case than in

the λ2 = 1/3 case. In Figure 11(b), when λ2 = 5, more than 90% of Class-2 jobs that see at least

one idle server at arrival finish service without being preempted. However, when λ2 = 1/3, only

50% of those Class-2 jobs are not preempted (when c= 20). The probability even decreases by 5%

when c increases from 1 to 6. Thus, as λ2 and µ2 increases, Class-2 jobs suffer less preemption and

E [S2] is lower.

7.3. Insight 3 - Square Root Staffing Rule

The square root staffing rule has been widely studied in the literature (see, e.g., Whitt 1992, and

reference therein). The square root staffing rule suggests increasing the staffing level, c, relative to

ρ according to ρ= 1− γ√
c
, where γ is a rough service grade indicator, to keep service level measures

approximately the same.

In this section we investigate whether the square root staffing rule holds in the M/M/c pre-

emptive priority queue. Specifically, we consider a series of queueing systems (indexed with the
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number of servers, c = 1,2, . . .) with the following parameters: the number of servers c, fixed

service rates µc
1 = µ1 and µc

2 = µ2, a total workload ρc1 + ρc2 = 1 − γ√
c
, and a fixed ratio of

workload w =
ρc1

ρc1+ρc2
, for c = 1,2, . . .. We demonstrate numerically that when c → ∞, the lim-

its of P {W c
2 > 0},

√
cE [W c

2 |W c
2 > 0], and

√
cE [W c

2 ] exist, which is a new result. From E [W2] =

P {W2 > 0}E [W2|W2 > 0], we know that if either two of the above three limits exist, the other

limit does as well.

First, we consider E [W2]. In the special case of µ1 = µ2 = µ, the overall mean waiting time for

both priority classes would remain the same if the scheduling discipline were changed to First-

Come-First-Serve (see, e.g., Buzen and Bondi 1983). Moreover, with regard to the total average

waiting time for all customers, the square root staffing rule holds in a First-Come-First-Serve

system with workload ρc1+ρc2 = 1− γ√
c
, for c= 1,2, . . ., i.e., limc→∞

√
c (wE [W c

1 ] + (1−w)E [W c
2 ]) =

α
γµ
, where E [W c

i ] =E [Sc
i ]− 1

µ
for i= 1,2. Due to the preemptive priority, Class-1 jobs face a classic

M/M/c queue. Following the above rules of choosing parameters, we have ρc1 =w
(
1− γ√

c

)
, so that

limc→∞
√
cE [W c

1 ] = 0. Thus, limc→∞
√
cE [W c

2 ] =
α

γµ(1−w)
for the µ1 = µ2 case.

However, it is not clear whether the square root staffing rule still holds when µ1 ̸= µ2. To explore

this, we test the case of µ1 = 1, µ2 = 2, γ = 1 for three different combinations of workload: 1)

w= 0.2; 2) w= 0.5; 3) w= 0.8. As illustrated by Figure 12(a), limc→∞
√
cE [W c

2 ] seems to exist in

all three cases and the rate of convergence is high. Moreover, it can be verified from Figure 12(b)

that the step difference of
√
cE [W c

2 ] (i.e.,
√
c+1E

[
W c+1

2

]
−
√
cE [W c

2 ]) converges to zero faster

than 1
c
. This result suggests that limc→∞

√
cE [W c

2 ] exists.

Numerical results suggest that the square root staffing rule holds for P {W2 > 0} and

E [W2|W2 > 0] for different combinations of µ1, µ2, γ, and w as well (these can be derived using

(38)). Due to the page limit, we do not include them here.

In view of these results, we conjecture that in the preemptive-resume M/M/c queue, the square

root staffing rule holds for Class-2 jobs’ performance measures: P {W2 > 0}, E [W2|W2 > 0], and

E [W2]. In practice, using the square root staffing rule can provide supreme service to Class-1 jobs

while maintaining a specified service level for Class-2 jobs and keeping the utilization of all servers
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Figure 12 To test if square root safety capacity rule hold for E [W2], when µ1 = 1, µ2 = 2, γ = 1 and 1) π = 0.2;

2) π= 0.5; 3) π= 0.8.

close to one. This result is similar to the one in Pang and Perry (2014), who consider “call blending”

where inbound calls are prioritized over outbound calls with infinite supply. They prove that a

logarithmic safety staffing rule holds. Thus, it is possible to answer all inbound calls immediately,

maintain a certain throughput rate of outbound calls, and keep all servers almost fully utilized.

(Their logarithmic, rather than a square root, safety staffing rule works because the infinite supply

is used to reduce demand variability.)

7.4. Extension to Impatient Class-1 Jobs

Maglaras and Zeevi (2004) considered an M/M/c queue with two priority classes where the first

class is completely impatient, i.e., if not served at arrival, they leave the system. They applied

diffusion approximations to the problem in the asymptotic Halfin and Whitt (1981) regime. Our

methodology can be applied to this system by replacing the Class-1 BP in our model with the

exp(cµ1) busy periods caused by a Class-1 job that brings the number of Class-1 jobs in the system

to c. Therefore, we can obtain a closed-form expression of the GF of L2 when c= 2; and we have

an efficient numerical algorithm to calculate the distribution of L2 when c≥ 2.

Table 1 illustrates the accuracy of the two approximations (2D diffusion and perturbation) in

Maglaras and Zeevi (2004) and of our Algorithm 1, compared with simulation under different

settings in their paper. For simulation, 2D diffusion and perturbation approximations, we generate

E[L1+L2] from their results. (Unfortunately, the confidence intervals of their simulation were not
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provided.) For our algorithm, we generate E[L1 + L2] from the sum of E[L1], obtained using a

single-class M/M/c/c model (page 81, Gross et al. 2008), and E[L2], obtained using Algorithm 1.

The results of our algorithm are typically closer to the simulation than their two approximations;

in fact, since our algorithm is so accurate, errors must be due to inaccuracy of the simulation.

Furthermore, Maglaras and Zeevi’s approximations are only accurate in the Halfin and Whitt

regime, i.e., for high ρ and c, whereas our method is accurate for all combinations of ρ and c.

However, the computational burden of our algorithm increases with c: When c= 150, our algorithm

takes 30 minutes.

Simulation 2D Diffusion Perturbation Our Algorithm

(c, ρ,µ1, µ2) E
[
L1 +L2

]
E[L1 +L2] %Error E[L1 +L2] %Error E[L1 +L2] %Error

(100,0.95,1,2) 108.22 109.28 1.0% 112.34 3.8% 108.42 0.2%

(50,0.95,1,2) 65.71 64.88 1.3% 66.82 1.7% 64.57 1.7%

(150,0.95,1,2) 154.49 154.30 0.1% 158.63 2.7% 153.58 0.6%

(100,0.925,1,2) 99.64 98.02 1.6% 102.50 2.9% 98.13 1.5%

(100,0.975,1,2) 140.36 136.57 2.7% 139.77 0.4% 138.42 1.4%

(100,0.95,1,5) 120.46 120.02 0.4% 119.43 0.9% 118.97 1.2%

(100,0.95,2,1) 102.74 103.24 0.5% 111.39 8.4% 102.60 0.1%

(100,0.95,5,1) 101.49 101.16 0.3% 115.83 14.1% 101.31 0.2%

(100,0.95,20,10) 103.44 103.39 0.1% 112.27 8.5% 102.60 0.8%

Table 1 2D Diffusion and Perturbation in Maglaras & Zeevi 2004 v.s. Algorithm 1 in terms of E[L1 +L2] for

different settings with ρ1 = ρ2 =
ρ
2
.

8. Summary

This paper analyzed an M/M/c queue with two preemptive-resume priority classes. This problem

is usually described by a 2-dimension infinite MC, representing the two class state space. We intro-

duced a technique to reduce this 2D-infinite MC into a 1D-infinite MC, from which the Generating

Function (GF) of the number of low-priority jobs can be derived in closed form. We demonstrate

this methodology for the c= 1,2 cases. When c > 2, the closed-form expression of the GF becomes

cumbersome. We thus derive an exact numerical algorithm to calculate different moments of the

number of Class-2 jobs in the system for any c≥ 2.

We use our algorithm to generate the following insights: First, for a company serving two pri-

ority classes and receiving complaints of long sojourn times from Class-2 customers, we provide
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guidelines on when the manager should improve the service rate of either customer class. Second,

we demonstrated that unlike a single-class system, Class-2 jobs may prefer many slow servers to a

few fast servers. Third, we numerically validated the existence of the square root staffing rule for

Class-2 jobs in an M/M/c queue with preemptive priority. Finally, we applied our methodology to

the problem considered by Maglaras and Zeevi (2004).

For future research, it would be beneficial to extend our methodology to more than two priority

classes, though this appears to be quite challenging. As priority queues have a direct application in

information and communication services, it would be interesting to incorporate pricing and system

design into the model and try to maximize profit.

Acknowledgement: The authors are grateful to Professor Costis Maglaras for providing data for com-

parison, and to Professor Hossein Abouee-Mehrizi for his help with the numerical method to express αBP
l .
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Figure A1 MC for the c= 2 servers case where L2
k = 0.

Appendix

A1. Calculations

A1.1. Calculation for GL̂2(z) The following equation will be used in the calculation for

GL̂2(z). The derivation is straightforward, so we skip all the details.

∞∑
n=0

[
αD̂k

n · · · αD̂k
1 α

D̂k
0 01×∞

]T
zn =

[
1 z z2 z3 · · ·

]T
G

αD̂k
(z). (A1)

With the help of (A1), we derive GL̂2(z):

GL̂2(z) = (
[
d̂1, d̂2, ...

]
+ d̂0Ψ̂01)

∞∑
n=0

[
αD̂k

n · · · αD̂k
1 α

D̂k
0 01×∞

]T
zn,

GL̂2(z) =
[
d̂1, d̂2, ...

] [
1 z z2 z3 · · ·

]T
G

αD̂k
(z)+ d̂0Ψ̂01

[
1 z z2 z3 · · ·

]T
G

αD̂k
(z),

GL̂2(z) =
GL̂2(z)− d̂0

z
G

αD̂k
(z)+

d̂0
z

zλ2 +λ1GαBP (z)−αBP
0 λ1

λ1 +λ2 −αBP
0 λ1

G
αD̂k

(z).

Solving for GL̂2(z) leads to (20).

A2. Transition Probabilities

A2.1. The Transition Probabilities for L2
k = 0 when c = 2 As in Section 4.1.2, to find

the one-step transition probabilities of the EMC, we first express the first-passage probability

distribution from Q0 to ∪∞
i=1Qi.

We think of the MC after the kth Class-2 departure as a MC with transient set: Q0 ∪BP0, and

absorbing sets: Q1 and ∪∞
i=2Qi. (Defining Q1 and ∪∞

i=2Qi instead of ∪∞
i=1Qi is for computational
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convenience.) Let Γ0→0, Γ0→1 and Γ0→2+ be the one-step transition matrices from Q0 ∪ BP0 to

Q0 ∪BP0, Q1 and ∪∞
i=2Qi, respectively.

In Figure A1, we illustrate the arrival process of Class-2 jobs omitting details that are not

relevant to the development of this case. From Figure A1, we get Γ0→0, Γ0→1 and Γ0→2+ :

Γ0→0 =

(0,0) (1,0) BP0

(0,0) 0 λ1
v(0,0)

0

(1,0) µ1
v(1,0)

0 λ1
v(1,0)

BP0 0 αBP
0 0

, Γ0→1 =

(0,1) (1,1)
(0,0) λ2

v(0,0)
0

(1,0) 0 λ2
v(1,0)

BP0 0 αBP
1

,

and Γ0→2+ =

(0,2) (1,2) (0,3) (1,3) · · ·
(0,0) 0 0 0 0 · · ·
(1,0) 0 0 0 0 · · ·
BP0 0 αBP

2 0 αBP
3 · · ·

.

Let Ψ01 be the absorbing distribution matrix fromQ0 toQ1. Let Ψ02 be the absorbing distribution

matrix from Q0 to ∪∞
i=2Qi. Using Lemma 1, we calculate Ψ01 and Ψ02 as:

Ψ01 =

[
1 0 0
0 1 0

]
· (I3×3 −Γ0→0)

−1Γ0→1 =

[
λ2(λ1 +λ2 +µ1 −αBP

0 λ1) λ1(λ2 +αBP
1 λ1)

λ2µ1 (λ1 +λ2)(λ2 +αBP
1 λ1)

]
λ2
1 +λ2

2 −αBP
0 λ2

1 +2λ1λ2 +λ2µ1 −αBP
0 λ1λ2

, (A2)

and

Ψ02 =

[
1 0 0
0 1 0

]
· (I3×3 −Γ0→0)

−1Γ0→2+ . (A3)

When the MC goes to ∪∞
i=1Qi, there are one or more Class-2 jobs in the system and there are no

transitions in the EMC. As in Section 4.1.2, we use conditional probability to calculate transition

probabilities of the EMC:

m(L1
k
,0)→(L1

k+1
,L2

k+1
) =

∑
(q1,q2)∈∪

L2
k+1

+1

i=1 Qi

m(q1,q2)→(L1
k+1

,L2
k+1

)P
{
(q1, q2) | (L1

k,0)
}
, (A4)

in which m(q1,q2)→(L1
k+1

,L2
k+1

) is given in (33) and P {(q1, q2) | (L1
k,0)} is the corresponding proba-

bility of absorption in Q1 or ∪∞
i=2Qi given in (A2) and (A3) respectively. Similar to (33), we must

have q2 ∈
[
1,L2

k+1 +1
]
.

From (A4), we get the matrices M0→L2
k+1

in (35) for L2
k+1 ≥ 0.
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A2.2. Numerical Method for The Transition Probabilities for L2
k ≥ c when c = 2

Deriving Ai in (30), the probability of i= 0,1, ... Class-2 arrivals during different inter-departure

times, is numerically complex because: (i) It is time-consuming to derive the LTs for c2 different

Dk, depending on c2 different combinations of L1
k and L1

k+1 – key steps in expressing the transition

matrix for L2
k ≥ c; (ii) The derivation of α

L1
k,L

1
k+1

l using (4) and the LTs of Dk’s is cumbersome. We

next develop an efficient numerical algorithm to calculate Ai. Then, the techniques in Subsections

5.1.2 and 5.1.3 can be used to derive the transition matrix of the embedded Markov chain (EMC)

for L2
k ≥ c.

We demonstrate the algorithm for calculating Ai by deriving the transition probabilities of the

EMC for L2
k ≥ c= 2. The general case with c > 2 is similar.

As in Section 5.1.2, we first think of the MC after the kth Class-2 departure as a MC with transient

set: QL2
k
∪ BPL2

k
, and absorbing sets: QL2

k
−1 and ∪∞

i=L2
k
+1
Qi. Let Γ2→2, Γ2→1 and Γ2→3+ be the

one-step transition matrices from QL2
k
∪BPL2

k
to QL2

k
∪BPL2

k
, QL2

k
−1 and ∪∞

i=L2
k
+1
Qi, respectively.

From Figure 5, we get Γ2→2, Γ2→1 and Γ2→3+ :

Γ2→2 =

(0,L2
k) (1,L2

k) BPL2
k

(0,L2
k) 0 λ1

v(0,L2
k
)

0

(1,L2
k)

µ1

v(1,L2
k
)

0 λ1

v(1,L2
k
)

BPL2
k

0 αBP
0 0

, Γ2→1 =

(0,L2
k − 1) (1,L2

k − 1)
(0,L2

k)
2µ2

v(0,L2
k
)

0

(1,L2
k) 0 µ2

v(1,L2
k
)

BPL2
k

0 0

,

and Γ2→3+ =

(0,L2
k +1) (1,L2

k +1) (0,L2
k +2) (1,L2

k +2) · · ·
(0,L2

k)
λ2

v(0,L2
k
)

0 0 0 · · ·
(1,L2

k) 0 λ2

v(1,L2
k
)

0 0 · · ·
BPL2

k
0 αBP

1 0 αBP
2 · · ·

.

Then, with similar reasoning as in Section 5.1.2, we calculate Ai from:

Ai =

{
Ψ21 for i= 0

Ψ23+

[
AT

i−1 · · · AT
1 AT

0 02×∞
]T

for i≥ 1
, (A5)

where

Ψ21 =

[
1 0 0
0 1 0

]
· (I −Γ2→2)

−1Γ2→1 =

[
2µ2(λ1 +λ2 +µ1 +µ2 −αBP

0 λ1) λ1µ2

2µ1µ2 µ2(λ1 +λ2 +2µ2)

]
(λ1 +λ2 +µ1 +µ2 −αBP

0 λ1)(λ1 +λ2 +2µ2)−λ1µ1

. (A6)

and

Ψ23+ =

[
1 0 0
0 1 0

]
· (I −Γ2→2)

−1Γ2→3+ . (A7)
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Notice that Ai only depends on A0,A1, . . . ,Ai−1. Thus, Ai can be calculated recursively from A0

(which is Ψ21 in (A6)).

Once we get Ai, we obtain the rows of M in (24) that correspond to any Qi with i ≥ 2

numerically. Then, using (34) and (35), we compute the transition matrix in (24). Since we

cannot practically store an infinite number of matrices, we derive Ai for i up to Limit =

min{i | max(Ai)≤ Tolerance} using (A5). These matrices accurately capture the behavior of the

entire system when the Tolerance is small enough.

A3. Derivation of GL2(z) in Closed Form

Let G(i,L2)(z) =
∑∞

n=0 dinz
n be the GF of L2 when L1 = i, i.e., of the joint event L2 = n and L1 = i,

for i= 0,1, . . . , c− 1. So
∑∞

n=0 d⃗nz
n =

[
G(0,L2)(z), . . . ,G(c−1,L2)(z)

]
is the 1× c row vector of GF of

L2 for L1 = 0,1, . . . , c− 1.

Note that a Class-2 departure can only see 0, . . . , c− 1 Class-1 jobs, so once we get G(i,L2)(z),

0≤ i≤ c− 1, using the total probability theorem (see, e.g., Papoulis 1984), we have the GF of the

number of Class-2 jobs at Class-2 departures:

GL2(z) =
c−1∑
i=0

G(i,L2)(z). (A8)

A3.1. Generating Function Approach We now derive the steady state distribution of the

EMC for the case of c= 2. Recalling that d⃗ is the row vector of the steady state distribution of the

EMC, the equilibrium equations are given by d⃗ ·M = d⃗, so from (36)

d⃗n =

{
(d⃗1 + d⃗0Ψ01)Ψ10 if n= 0

(
[
d⃗2, d⃗3, ...

]
+ d⃗1Ψ12 + d⃗0(Ψ01Ψ12 +Ψ02))

[
AT

n−1 · · · AT
1 AT

0 02×∞
]T

if n≥ 1
. (A9)

Note that (A9), just as (19), has an infinite number of unknowns appearing in an infinite (identi-

cal) number of equations. To find these unknowns, we calculate the GF as in the standard M/G/1

queue. Multiplying the nth equation in (A9) by zn and summing over all n:

[G(0,L2)(z),G(1,L2)(z)]
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= d⃗0 +(
[
d⃗2, d⃗3, . . .

]
+ d⃗1Ψ12 + d⃗0(Ψ01Ψ12 +Ψ02))

∞∑
n=1

[
AT

n−1 · · · AT
1 AT

0 02×∞
]T

zn.

With some matrix calculations (see Appendix A3.2 for details), we get:

[
G(0,L2)(z),G(1,L2)(z)

]
= d⃗0D(z), (A10)

where D(z) is given in closed form in Appendix A3.2.

Therefore, if we can express d⃗0 in closed form as well, we could use (A10) to express[
G(0,L2)(z),G(1,L2)(z)

]
in closed form. Then, we get the GF of L2:

GL2(z) =G(0,L2)(z)+G(1,L2)(z). (A11)

If we further assume that the service order in each priority class follows the FIFO rule, we can

use the Distributional Little’s Law (Bertsimas and Nakazato 1995) to get the LT of Class-2 jobs’

sojourn time:

LT S2(s) =G(0,L2)(1−
s

λ2

)+G(1,L2)(1−
s

λ2

).

The next two sections are devoted to deriving d⃗0.

A3.2. Calculation for GL2(z) The following results will be used in the calculation for D(z).

The derivation of them is straightforward, so we skip all the details.

∞∑
i=1

[
AT

n−1 · · · AT
1 AT

0 01×∞
]T

zi = zΥGA, (A12)

in which Υ =
[
I2×2 zI2×2 z2I2×2 z3I2×2 · · ·

]T
and GA =

[
Gα00(z) Gα01(z)
Gα10(z) Gα11(z)

]
.

[
d⃗2, d⃗3, ...

]
zΥ =

1

z
(GL2(z)− d⃗0 − d⃗1z) (A13)

d⃗1 = d⃗0(Ψ
−1
10 −Ψ01) (A14)

z2Ψ−1
10 Ψ12Υ =

z2Ψ−1
10

[
λ2(λ1 +λ2 +µ1 +µ2 −αB

0 λ1)
1
z
λ1(zλ2 +λ1GαB (z)−αB

0 λ1)
λ2µ1

1
z
(λ1 +λ2 +µ2)(zλ2 +λ1GαB (z)−αB

0 λ1)

]
(λ1 +λ2 +µ2)(λ1 +λ2 +µ2 −λ1αB

0 )+µ1(λ2 +µ2)

=

[
z2 λ2

µ2
0

0 z
µ2
(zλ2 +λ1GαB (z)−αB

0 λ1)

]
(A15)



Author:
Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 39

Ψ02Υ =

 0 1
z2

λ2
1(GαB (z)−αB

0 −zαB
1 )

λ2
1+λ2

2−αB
0 λ2

1+2λ1λ2+λ2µ1−αB
0 λ1λ2

0 1
z2

λ1(λ1+λ2)(GαB (z)−αB
0 −zαB

1 )

λ2
1+λ2

2−αB
0 λ2

1+2λ1λ2+λ2µ1−αB
0 λ1λ2

 (A16)

With the help of these results, we derive D(z):

[
G(0,L2)(z),G(1,L2)(z)

]
= d⃗0+(

[
d⃗2, d⃗3, ...

]
+ d⃗1Ψ12+ d⃗0(Ψ01Ψ12+Ψ02))

∞∑
n=1

[
AT

n−1 · · · AT
1 AT

0 01×∞
]T

zn.

From (A12), we have

[
G(0,L2)(z),G(1,L2)(z)

]
= d⃗0 + z

{[
d⃗2, d⃗3, ...

]
+ d⃗1Ψ12 + d⃗0(Ψ01Ψ12 +Ψ02)

}
ΥGA.

From (A13), we have

[G(0,L2)(z),G(1,L2)(z)] = d⃗0+
1

z
([G(0,L2)(z),G(1,L2)(z)]− d⃗0− d⃗1z)GA+z(d⃗1Ψ12+ d⃗0(Ψ01Ψ12+Ψ02))ΥGA.

Moving
[
G(0,L2)(z),G(1,L2)(z)

]
to the left side of the equation gives

[
G(0,L2)(z),G(1,L2)(z)

]
(zI2×2−GA) = d⃗0(z

2(Ψ01Ψ12+Ψ02+)ΥGA−GA+zI2×2)+ d⃗1(z
2Ψ12ΥGA−zGA).

From (A14), we have

[
G(0,L2)(z),G(1,L2)(z)

]
(zI2×2−GA) = d⃗0

{
(z2Ψ−1

10 Ψ12Υ+ z2Ψ02Υ− I2×2 − z(Ψ−1
10 −Ψ01))GA + zI2×2

}
.

From (A15) and (A16), we have

[
G(0,L2)(z),G(1,L2)(z)

]
(zI2×2 −GA)

= d⃗0(


z2 λ2

µ2
− 1 λ2

1

(G
αB (z)−αB

0 −zαB
1 )

λ2
1+λ2

2−αB
0 λ2

1+2λ1λ2+λ2µ1−αB
0 λ1λ2

0

z
µ2
(zλ2 +λ1GαB (z)−αB

0 λ1)

+
λ1(λ1+λ2)(GαB (z)−αB

0 −zαB
1 )

λ2
1+λ2

2−αB
0 λ2

1+2λ1λ2+λ2µ1−αB
0 λ1λ2

− 1

GA − z(Ψ−1
10 −Ψ01)GA + zI2×2).

We know, (zI2×2 −GA)
−1 =

Gα11(z)− z −Gα01(z)
−Gα10(z) Gα00(z)− z


zG

α00 (z)+zG
α11 (z)−G

α00 (z)Gα11 (z)+G
α01 (z)Gα10 (z)−z2

, so we have:

D(z) =




z2 λ2

µ2
− 1

λ2
1(GαBP (z)−αBP

0 −zαBP
1 )

λ2
1+λ2

2−αBP
0 λ2

1+2λ1λ2+λ2µ1−αBP
0 λ1λ2

0

z
µ2
(zλ2 +λ1GαBP (z)−αBP

0 λ1)

+
λ1(λ1+λ2)(GαBP (z)−αBP

0 −zαBP
1 )

λ2
1+λ2

2−αBP
0 λ2

1+2λ1λ2+λ2µ1−αBP
0 λ1λ2

− 1

C (z)− z(Ψ−1
10 −Ψ01)C (z)

+z

[
−(z−Gα11(z)) −Gα01(z)

−Gα10(z) −(z−Gα00(z))

]


zGα00(z)+ zGα11(z)−Gα00(z)Gα11(z)+Gα01(z)Gα10(z)− z2

, (A17)
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in which

C (z) =

[
Gα00(z) Gα01(z)
Gα10(z) Gα11(z)

][
Gα11(z)− z −Gα01(z)
−Gα10(z) Gα00(z)− z

]
.

Ψ−1
10 can be calculated from (31) as Ψ−1

10 = 1
µ2

[
λ1 +λ2 +µ2 −λ1

−µ1 λ1 +λ2 +µ1 +µ2 −αBP
0 λ1

]
, and

G
α
L1
k
,L1

k+1
(z) is the GF of αL1

k,L
1
k+1 . It can be calculated from (5) as:

G
α
L1
k
,L1

k+1
(z) =LTL1

k,L
1
k+1(λ2 −λ2z). (A18)

A3.3. Expressing d⃗0 in Closed Form To obtain d⃗0, we let z→ 1 in (A10) and get

[
G(0,L2)(1),G(1,L2)(1)

]
= d⃗0 · lim

z→1
D(z). (A19)

Notice that the denominator of D(z) is zero when z → 1, so we need to apply

L’Hopital’s rule to calculate limz→1D(z). The value of limz→1D(z) is determined by

GαBP (z),Gα00(z),Gα11(z),Gα01(z),Gα10(z) and their first order derivatives, which can all be cal-

culated from (9) and (A18).

Note that (A19) is composed of two equations with four unknowns: G(0,L2)(1), G(1,L2)(1), d00

and d10. Another equation is the normalization requirement

G(0,L2)(1)+G(1,L2)(1) = 1. (A20)

Thus, to find a closed-form expression of
[
G(0,L2)(z),G(1,L2)(z)

]
, we need another linearly inde-

pendent equation of these four variables. To find this equation, we focus on the value of φ1 =
d10

d10+d00
.

Let a Level-j Class-2 busy period (j = 0,1, . . .) start once a Class-2 job arrives at the system

when j Class-2 jobs are present (but not necessarily in service), and terminate at the first time the

number of Class-2 jobs in the system drops back to j. Let “a Level-j Class-2 busy period starts

with i Class-1 jobs” denote that the first Class-2 arrival in this Level-j Class-2 busy period sees

i Class-1 jobs, similarly “a Level-j Class-2 busy period ends with i Class-1 jobs” denote that the

Class-2 departure that ends this Level-j Class-2 busy period sees i Class-1 jobs. Recall that, in our

M/M/2 queue, a Class-2 departure sees either zero or one Class-1 job. With these definitions, φ1

is the probability that a Level-0 Class-2 busy period ends with one Class-1 job.
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Let Πi be the probability that a Level-0 Class-2 busy period starts with i≥ 0 Class-1 jobs. Let Fi

be the probability that a Level-0 Class-2 busy period that started with i≥ 0 Class-1 jobs ends with

one Class-1 job. Note that, in the c= 2 case, the probability that a Level-j Class-2 busy period

(j = 1,2, . . .) that started with a fixed i≥ 0 Class-1 jobs ends with one Class-1 jobs is the same for

any Level-j Class-2 busy period for any j = 1,2, . . .. Let Bi be this probability.

Using the Total Probability Theorem, we have

φ1 =
∞∑
i=0

ΠiFi . (A21)

Thus, if we can find Fi and Πi in closed form, we can also express φ1 in closed form.

We now discuss the possible sequences of events in these busy periods, and use the memoryless

property to write recursive expressions for Fi and Bi. For example, if a Level-0 Class-2 busy period

starts with no Class-1 jobs (i.e., a Class-2 job arrives at an empty system), then three events may

happen next in the system:

1. Class-1 arrival, w.p. λ1
λ1+λ2+µ2

. Thus, one Class-1 job is in the system. Then, due to the

memoryless property, F0 is identical to F1, the probability that a Level-0 Class-2 busy period that

started with one Class-1 job ends with one Class-1 job.

2. Class-2 arrival, w.p. λ2
λ1+λ2+µ2

. A Level-1 Class-2 busy period is started. It ends with one

Class-2 job and either zero or one Class-1 job:

(a) One Class-1 job, w.p. B0. Then, due to the memoryless property, a Level-0 Class-2 busy

period starts with one Class-1 job, and it will end with one Class-1 job w.p. F1.

(b) No Class-1 jobs, w.p. 1−B0. Then, due to the memoryless property, a Level-0 Class-2

busy period starts with no Class-1 jobs, and it will end with one Class-1 job w.p. F0.

3. Class-2 departure, w.p. µ2
λ1+λ2+µ2

. A Level-0 Class-2 busy period ends with no Class-1 jobs.

That is, it ends with one Class-1 job w.p. 0.

Using the Total Probability Theorem and multiplying by λ1 +λ2 +µ2, we get

(λ1 +λ2 +µ2)F0 = λ1F1 +λ2(B0F1 +(1−B0)F0)+µ2 · 0. (A22)
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Similar logic yields

(λ1 +λ2 +µ1 +µ2)F1 = λ1F2 +λ2(B1F1 +(1−B1)F0)+µ1F0 +µ2, (A23)

(λ1 +λ2 +2µ1)Fi = λ1Fi+1 +λ2(BiF1 +(1−Bi)F0)+ 2µ1Fi−1 for i≥ 2, (A24)

for a Level-0 Class-2 busy period; and

(λ1 +λ2 +2µ2)B0 = λ1B1 +λ2(B0B1 +(1−B0)B0)+ 2µ2 · 0, (A25)

(λ1 +λ2 +µ1 +µ2)B1 = λ1B2 +λ2(B1B1 +(1−B1)B0)+µ1B0 +µ2, (A26)

(λ1 +λ2 +2µ1)Bi = λ1Bi+1 +λ2(BiB1 +(1−Bi)B0)+ 2µ1Bi−1 for i≥ 2, (A27)

for Level-j Class-2 busy periods, j = 1,2, . . ..

Note that Bi is independent of Fi, but Fi depends on Bi. Therefore, we first express Bi.

Lemma 3. Bi is given by

Bi =


λ1∆

B
0

2µ2−λ2∆
B
0

if i= 0

λ1∆
B
0

2µ2−λ2∆
B
0
+∆B

0 +κ g−gi

1−g
if i≥ 1

,

where ∆B
0 = −2µ1+gλ1+gλ2+2gµ1−g2λ1

gλ2
, κ= 1

λ1g
((λ1 + λ2 + µ1 + µ2 − λ2∆

B
0 )∆

B
0 − λ1µ2∆

B
0

2µ2−λ2∆
B
0
− µ2), and

g is the only root in (0,1) of the following quartic function:

λ2
1g

4+λ1(2µ2−λ1−λ2−4µ1)g
3+2(µ1(2µ1+4λ1+λ2−2µ2)−λ1µ2)g

2+4µ1(µ2−λ1−λ2−3µ1)g+8µ2
1.

Then, using the same technique, we can express Fi.

Lemma 4. Fi is given by

Fi =


2λ1µ2∆

F
0

µ2(2µ2−λ2∆
B
0 )

if i= 0

2λ1+2µ2−λ2∆
B
0

2µ2−λ2∆
B
0

∆F
0 + ξ1

h−hi

1−h
+ ξ2

g−gi

1−g
if i≥ 1

, (A28)

where h= 1
2λ1

((λ1 +λ2 +2µ1)−
√

(λ1 +λ2 +2µ1)2 − 8λ1µ1), and ξ1
ξ2
∆F

0

=H−1

 −µ2
λ1

1
λ1
(µ2 − 1

λ1
µ2(λ1 +λ2 +2µ1))

( 2
λ2
1
µ1µ2 +

1
λ2
1
(µ2 − 1

λ1
µ2(λ1 +λ2 +2µ1))(λ1 +λ2 +2µ1))

 ,
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Figure A2 The MC when there are no Class-2 jobs.

in which

H =


h g −λ1+λ2+µ1+µ2−λ2∆

B
0

λ1

h2 g2 µ1+µ2+gκλ2
λ1

− λ1+λ2+2µ1

λ2
1

(λ1 +λ2 +µ1 +µ2 −λ2∆
B
0 )+

2µ2

2µ2−λ2∆
B
0

h3 g3
2µ1

λ2
1
(λ1 +λ2 +µ1 +µ2 −λ2∆

B
0 )+

λ2κg
2

λ1

+λ1+λ2+2µ1

λ2
1

(µ1 +µ2 + gκλ2 − λ1+λ2+2µ1
λ1

(λ1 +λ2 +µ1 +µ2 −λ2∆
B
0 )+

2λ1µ2

2µ2−λ2∆
B
0
)

 ,

which is a nonsingular matrix according to the row reduction result.

Now we seek Πi. The MC in Figure A2 tracks the number of Class-1 jobs present when a Level-0

Class-2 busy period starts; Πi,∀i≥ 0 is the solution to this MC. To find the Πi, we write down the

Balance Equations:

λ2(1−Π0) = λ1Π0 −µ1Π1 +λ2φ1 (A29)

λ2(1−Π0 −Π1) = λ1Π1 − 2µ1Π2 (A30)

...

λ2(1−
i∑

j=0

Πj) = λ1Πi − 2µ1Πi+1 (A31)

Again, using the same technique, we can express Πi.

Lemma 5. Πi can be expressed as a function of φ1:

Πi =

{
µ1(1−f)+λ2(1−φ1)

λ1+λ2+µ1−fµ1
if i= 0

(1−f)(λ1+λ2φ1)

λ1+λ2+µ1−fµ1
f i−1 if i≥ 1

, (A32)

where f = 1
4µ1

(λ1 +λ2 +2µ1 −
√

(λ1 +λ2 +2µ1)2 − 8λ1µ1).

Substituting (A28) and (A32) in (A21) gives us an equation of φ1, from which we can get φ1:

φ1 =
λ1(f − 1)E+∆F

0
2λ1

2µ2−λ2∆
B
0
(λ2 +µ1 − fµ1)

−λ2(f − 1)E+∆F
0

2λ1λ2

2µ2−λ2∆
B
0
+(λ1 +λ2 +µ1 − fµ1)

, (A33)
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where E =− 1
f−1

( gξ2
g−1

+ hξ1
h−1

− ∆F
0 (2λ1+2µ2−λ2∆

B
0 )

2µ2−λ2∆
B
0

)+ gξ2
(fg−1)(g−1)

+ hξ1
(fh−1)(h−1)

.

Hence, (A19), (A20) and (A33) give four equations with four unknowns whose solution gives d⃗0.

A4. Proofs

A4.1. Proof of Lemma 1 The one step transition probability of the MC can be written in

matrix form as
T A

P =
T
A

[
ΓT→T ΓT→A

0 I

]
,

where I is the identity matrix. Then, P n represents the n step transition probabilities for the MC.

Using induction, we obtain

P n =

[
Γn
T→T

∑n

i=0Γ
i
T→TΓT→A

0 I

]
.

By letting n go to infinity and noting that
∑n

i=0Γ
i
T→T = (I − ΓT→T )

−1, the probability that the

system eventually reaches a state Ai ∈A is as given in the Lemma.

A4.2. Proof of Lemma 3 After some algebra, we can write (A25−A27) as:

B1 =
(λ1 +2µ2 +λ2B0)B0

λ1 +λ2B0

, (A34)

B2 =
1

λ1

((λ1 +λ2 +µ1 +µ2 −λ2(B1 −B0))B1 − (λ2 +µ1)B0 −µ2), (A35)

Bi+1 =
1

λ1

((λ1 +λ2 +2µ1 −λ2(B1 −B0))Bi − 2µ1Bi−1 −λ2B0) for i≥ 2. (A36)

Let ∆B
i =Bi+1 −Bi for i≥ 0, be the step difference of the sequence Bi. So, we have

Bi =B1 +
i−1∑
j=1

∆B
j for i≥ 2. (A37)

From the definition of ∆B
i and (A34), we get ∆B

0 = 2µ2B0
λ1+λ2B0

. Similarly, we get from (A34−A36)

∆B
1 =

1

λ1

((λ1 +λ2 +µ1 +µ2 −λ2∆
B
0 )∆

B
0 − λ1µ2∆

B
0

2µ2 −λ2∆B
0

−µ2), (A38)

∆B
2 =

1

λ1

((λ1 +λ2 +2µ1 −λ2∆
B
0 )∆

B
1 − (µ1 +µ2)∆

B
0 − λ1µ2∆

B
0

2µ2 −λ2∆B
0

+µ2), (A39)

∆B
i =

(λ1 +λ2 +2µ1 −λ2∆
B
0 )

λ1

∆B
i−1 −

2µ1

λ1

∆B
i−2 for i≥ 3. (A40)
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We notice that ∆B
i is a linear homogeneous function of ∆B

i−1 and ∆B
i−2 , so ∆B

i is a linear

homogeneous recurrence sequence (see e.g., Green and Knuth (1990) Chapter 2). The solution to

the recurrence sequence takes the form ∆B
i = κ1g

i
1 + κ2g

i
2, i ≥ 1, where g1 and g2 are roots of

the Characteristic Polynomial : CP (g) = λ1g
2 − (λ1 +λ2 +2µ1 −λ2∆

B
0 )g+2µ1. Note that because

Bi ∈ [0,1], we have

lim
i→∞

∆B
i = 0. (A41)

For ∆B
i to satisfy (A41), i.e., converge to zero, either gj < 1 or κj = 0 for both j = 1,2. Because

B0,B1 ∈ [0,1], we have ∆B
0 < 1, so we have CP (1) = λ2(∆

B
0 − 1) < 0. Thus, CP (g) has only one

root that is smaller than one:

g=
1

2λ1

(λ1 +λ2 +2µ1 −λ2∆
B
0 −

√
(λ1 +λ2 +2µ1 −λ2∆B

0 )
2 − 8λ1µ1). (A42)

(It is also easy to verify that g is greater than zero.) For the other root that is greater than one,

the corresponding κj must be zero. Thus, ∆B
i takes the form

∆B
i = κgi, i≥ 1. (A43)

Notice that g is a function of ∆B
0 , so in the expression of ∆B

i we have two unknowns: κ and ∆B
0 .

Substituting (A43) into (A38) and (A39) gives

κg =
1

λ1

((λ1 +λ2 +µ1 +µ2 −λ2∆
B
0 )∆

B
0 − λ1µ2∆

B
0

2µ2 −λ2∆B
0

−µ2), (A44)

κg2 =
1

λ1

((λ1 +λ2 +2µ1 −λ2∆
B
0 )∆

B
1 − (µ1 +µ2)∆

B
0 − λ1µ2∆

B
0

2µ2 −λ2∆B
0

+µ2). (A45)

Dividing (A45) with (A44) gives:

g=− 1

λ1

λ3
2∆

B
0

4 −λ2
2(2λ1 +2λ2 +3µ1 +3µ2)∆

B
0

3

+λ2(λ
2
1 +2λ1λ2 +λ2

2 +2λ1µ1 +3λ1µ2 +3λ2µ1 +6λ2µ2 +2µ2
1 +8µ1µ2 +2µ2

2)∆
B
0

2

−µ2(3λ
2
2 +8λ2µ1 +4λ2µ2 +3λ1λ2 +4µ2

1 +4µ1µ2 +2λ1µ1)∆
B
0 +2µ2

2(λ2 +2µ1)

λ2
2∆

B
0
3 −λ2(λ2 +λ1 +µ1 +3µ2)∆B

0
2
+µ2(2µ2 +λ1 +3λ2 +2µ1)∆B

0 − 2µ2
2

. (A46)

Substituting ∆B
0 =−λ1g

2−(λ1+λ2+2µ1)g+2µ1
λ2g

into (A46) gives a polynomial equation of degree six:

0 = λ3
1(µ1 − µ2)g

6 − λ2
1(6µ

2
1 + 2µ2

2 + 2λ1µ1 − λ1µ2 + 2λ2µ1 − λ2µ2 − 8µ1µ2)g
5 + (λ3

1µ1 + 2λ2
1λ2µ1 +

16λ2
1µ

2
1 − 14λ2

1µ1µ2 + 2λ2
1µ

2
2 + λ1λ

2
2µ1 + 8λ1λ2µ

2
1 − 6λ1λ2µ1µ2 + 12λ1µ

3
1 − 20λ1µ

2
1µ2 + 8λ1µ1µ

2
2)g

4 −
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(14λ2
1µ

2
1 − 6λ2

1µ1µ2 + 16λ1λ2µ
2
1 − 6λ1λ2µ1µ2 + 40λ1µ

3
1 − 44λ1µ

2
1µ2 − 8λ1µ1µ

2
2 + 2λ2

2µ
2
1 + 8λ2µ

3
1 −

8λ2µ
2
1µ2+8µ4

1−16µ3
1µ2+8µ2

1µ
2
2)g

3+4µ2
1(λ

2
1+2λ1λ2+11λ1µ1−6λ1µ2+λ2

2+6λ2µ1−3λ2µ2+8µ2
1−

10µ1µ2 +2µ2
2)g

2 − (40µ4
1 +16λ1µ

3
1 +16λ2µ

3
1 − 24µ3

1µ2)g+16µ4
1

If µ1 ̸= µ2, then we have several possible solutions:

ga =
µ1

2λ1(µ1 −µ2)
(λ1 +λ2 +2µ1 − 2µ2 −

√
(λ1 +λ2 +2µ1 − 2µ2)2 − 8λ1(µ1 −µ2)),

gb =
µ1

2λ1(µ1 −µ2)
(λ1 +λ2 +2µ1 − 2µ2 +

√
(λ1 +λ2 +2µ1 − 2µ2)2 − 8λ1(µ1 −µ2)),

and roots of ϖ(g) = a4x
4+a3x

3+a2x
2+a1x+a0, where a4 = λ2

1, a3 = λ1(2µ2−λ2−4µ1−λ1), a2 =

2(2µ2
1 + 4λ1µ1 − λ1µ2 + λ2µ1 − 2µ1µ2), a1 = 4µ1(µ2 − λ1 − λ2 − 3µ1), a0 = 8µ2

1. It is easy to check

that ga > 1; if µ1 >µ2, then gb > ga so gb > 1; if µ1 <µ2, then gb < 0. So, g cannot be ga or gb, and

g must be one of the four roots of ϖ(g).

The four roots of a quartic function (polynomial of degree four) are well known. Let ∆1 = a2
2 −

3a3a1 + 12a4a0, ∆2 = 2a3
2 − 9a3a2a1 + 27a4a

2
1 + 27a2

3a0 − 72a4a2a0, and ∆ =
3√2∆1

3a4
3
√

∆2+
√

−4∆3
1+∆2

2

+

3
√

∆2+
√

−4∆3
1+∆2

2

3 3√2a4
, then the four roots of ϖ(g) are

x1 = − a3

4a4

− 1

2

√
a2
3

4a2
4

− 2a2

3a4

+∆− 1

2

√√√√√√ a2
3

2a2
4

− 4a2

3a4

−∆−
−a33

a34
+ 4a3a2

a24
− 8a1

a4

4

√
a23
4a24

− 2a2
3a4

+∆

, (A47)

x2 = − a3

4a4

− 1

2

√
a2
3

4a2
4

− 2a2

3a4

+∆+
1

2

√√√√√√ a2
3

2a2
4

− 4a2

3a4

−∆−
−a33

a34
+ 4a3a2

a24
− 8a1

a4

4

√
a23
4a24

− 2a2
3a4

+∆

, (A48)

x3 = − a3

4a4

+
1

2

√
a2
3

4a2
4

− 2a2

3a4

+∆− 1

2

√√√√√√ a2
3

2a2
4

− 4a2

3a4

−∆+
−a33

a34
+ 4a3a2

a24
− 8a1

a4

4

√
a23
4a24

− 2a2
3a4

+∆

, (A49)

x4 = − a3

4a4

+
1

2

√
a2
3

4a2
4

− 2a2

3a4

+∆+
1

2

√√√√√√ a2
3

2a2
4

− 4a2

3a4

−∆+
−a33

a34
+ 4a3a2

a24
− 8a1

a4

4

√
a23
4a24

− 2a2
3a4

+∆

. (A50)

Because ϖ(1) < 0 and limg→∞ϖ(g) =∞, ϖ(g) has at least one root in (1,∞). Because ϖ(0) =

8µ2
1 > 0 and ϖ(1) =−λ2(λ1+2µ1)< 0, ϖ(g) has at least one root in (0,1). Because ϖ(0) = 8µ2

1 > 0

and limg→−∞ϖ(g) =∞, ϖ(g) has either two or no roots in (−∞,0). Next, we prove ϖ(g) has only
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one root in (0,1).

From
∑2

i=1
λi
µi

< 2, we get that µ2 >
λ2µ1

2µ1−λ1
. Then we discuss the following three cases:

1. If λ2µ1
2µ1−λ1

≥ λ2+λ1+4µ1
2

, then µ2 >
λ2+λ1+4µ1

2
, i.e., a3 = λ1(2µ2 − λ2 − 4µ1 − λ1)> 0. Note from

(A47) that, in this case, x1 is either a complex root or a negative real root:

(a) If x1 is a complex root, because of the Complex Conjugate Root Theorem (i.e., Jeffrey

2005), x2 must be the other complex root. Obviously x4 ≥ x3, so we know x4 ∈ (1,∞) and x3 ∈ (0,1).

(b) If x1 is a negative real root, because ϖ(g) has either two or no roots in (−∞,0), ϖ(g)

must have two negative real roots. Therefore, ϖ(g) has only one root in (0,1).

2. If λ2µ1
2µ1−λ1

< λ2+λ1+4µ1
2

and µ2 >
λ2+λ1+4µ1

2
, then as in the first case, we know x4 ∈ (1,∞) and

x3 ∈ (0,1).

3. If λ2µ1
2µ1−λ1

< λ2+λ1+4µ1
2

and λ2µ1
2µ1−λ1

< µ2 ≤ λ2+λ1+4µ1
2

, we let ϵ = λ2+λ1+4µ1
2

− µ2 (i.e., 0 ≤ ϵ <

λ2
1+2λ1µ1+λ2λ1−8µ2

1
2(λ1−2µ1)

), ϖ1(g) = −2λ1g
3 + 2(λ1 + 2µ1)g

2 − 4µ1g and ϖ2(g) = λ2
1g

4 + (−λ2
1 + 2λ1µ1 −

λ2λ1 − 4µ2
1)g

2 − 2µ1(2µ1 +λ1 +λ2)g+8µ2
1, so that ϖ(g) = ϵϖ1(g)+ϖ2(g).

ϖ1(g) and ϖ2(g) have some properties that are easy to derive that can be used to identify the root

we want.

• ϖ1(g) is a convex function on [0,1] and ϖ1(0) =ϖ1(1) = 0.

• ϖ2(g) is a decreasing function on [0,1], ϖ2(0) = 8µ2
1 > 0 and ϖ2(1) =−λ2(λ1 +2µ1)< 0.

To prove ϖ2(g) is a decreasing function on [0,1], we just need to prove the first derivative of ϖ2(g)

is negative, i.e., ϖ′
2(g) = 4λ2

1g
3 + (4λ1µ1 − 2λ2

1 − 2λ2λ1 − 8µ2
1)g − (4µ2

1 + 2λ1µ1 + 2λ2µ1) < 0, for

∀g ∈ [0,1].

Obviously, ϖ′
2(0) =−(4µ2

1+2λ1µ1+2λ2µ1)< 0 and ϖ′
2(1) =−2(4µ2

1−λ2
1)−2µ1(2µ1−λ1)−2λ2λ1−

2λ2µ1 < 0. We know the second derivative of ϖ2(g) is ϖ
′′
2 (g) = 12λ2

1g
2+(4λ1µ1−2λ2

1−2λ2λ1−8µ2
1)

and ϖ′′
2 (0) =−4µ1(2µ1−λ1)−2λ2

1−2λ2λ1 < 0. If there exists a point ḡ in [0,1] such that ϖ′
2(ḡ)> 0,

then ϖ′
2(g) must have two critical points in [0,1], i.e., ϖ′′

2 (g) must have two roots in [0,1]. However,

we know ϖ′′
2 (g) has one negative root and one positive root. Therefore, ϖ′

2(g)< 0 for ∀g ∈ [0,1].

Thus, ϖ2(g) is a decreasing function for ∀g ∈ [0,1].

Therefore, for ∀ϵ≥ 0, ϖ(g) = ϵϖ1(g)+ϖ2(g) has only one root in (0,1).
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Hence, we proved ϖ(g) has only one root in (0,1). Then, we just need to pick up the root in

(0,1) from the four roots of ϖ(g), which is not difficult. Once we get g, solving (A42) and (A44)

gives the corresponding ∆B
0 and κ as given in Lemma 3.

A4.3. Proof of Lemma 4 As in the Proof of Lemma 3, we write (A22−A24) in another

form:

F1 =
(λ1 +µ2 +λ2B0)F0

λ1 +λ2B0

=
2λ1 +2µ2 −λ2∆

B
0

2λ1

F0, (A51)

F2 =
1

λ1

((λ1 +λ2 +µ1 +µ2)F1 − (λ2 +µ1)F0 −λ2B1(F1 −F0)−µ2), (A52)

Fi+1 =
1

λ1

((λ1 +λ2 +2µ1)Fi − 2µ1Fi−1 −λ2Bi(F1 −F0)−λ2F0) for i≥ 2. (A53)

Let ∆F
i = Fi+1 −Fi be the step difference of the sequence Fi. So, we have

Fi = F1 +
i−1∑
j=1

∆F
j for i≥ 2.

Because Fi ∈ [0,1], we have limi→∞∆F
i = 0. Using (A51), we get ∆F

0 = µ2F0
λ1+λ2B0

. Similarly, from

(A51−A53), we get

∆F
1 =

1

λ1

((λ1 +λ2 +µ1 +µ2 −λ2∆
B
0 )∆

F
0 −µ2),

∆F
2 =

1

λ1

((λ1 +λ2 +2µ1)∆
F
1 − (λ2κg+µ1 +µ2)∆

F
0 − (λ1 +λ2B0)∆

F
0 +µ2),

∆F
i =

(λ1 +λ2 +2µ1)

λ1

∆F
i−1 −

2µ1

λ1

∆F
i−2 −

λ2κ∆
F
0

λ1g
gi for i≥ 3.

Note that ∆F
i is a linear non-homogeneous function of ∆F

i−1 and ∆F
i−2, so ∆F

i is a non-homogeneous

recurrence sequence (see e.g., Green and Knuth (1990) Chapter 2), with solution of the form

∆F
i = ξ1h

i
1 + ξ2h

i
2 + ξ3g

i,

where g is given in Lemma 3; h1 and h2 are roots of λ1h
2 − (λ1 + λ2 +2µ1)h+2µ1 = 0. We know

one of the two roots is greater than one. Because ∆F
i converges to zero, with the same discussion

in the proof of Lemma 3, we get that ∆F
i has the form:

∆F
i = ξ1h

i + ξ2g
i, i≥ 1
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where h= 1
2λ1

((λ1 +λ2 +2µ1)−
√

(λ1 +λ2 +2µ1)2 − 8λ1µ1). To find ξ1, ξ2 and ∆F
0 , we solve three

equations

∆F
1 = ξ1h+ ξ2g, ∆

F
2 = ξ1h

2 + ξ2g
2, ∆F

3 = ξ1h
3 + ξ2g

3.

Notice that ∆F
i , i= 1,2,3 are all linear functions of ∆F

0 , so it is not hard to get the expression for

ξ1, ξ2 and ∆F
0 in Lemma 4.

A4.4. Proof of Lemma 5 Subtracting the (i− 1)st equation from the ith equation given in

(A30-A31) yields

2µ1Πi = (λ1 +λ2 +2µ1)Πi−1 −λ1Πi−2 for i≥ 3.

This means that Πi is a linear homogeneous recurrence sequence. The solution to the recurrence

sequence takes the form

Πi = ω1f
i
1 +ω2f

i
2, i≥ 1,

where ω1 and ω2 are roots of

2µ1f
2 − (λ1 +λ2 +2µ1)f +λ1 = 0. (A54)

Because Πi ∈ [0,1], we know either fj < 1 or ωj = 0 for both j = 1,2. Equation (A54) has one

root greater than one and the other root smaller than one. For the root greater than one, the

corresponding ωj must be zero. Thus, Πi takes the form

Πi = ωf i for i≥ 1, (A55)

where f = 1
4µ1

(λ1 +λ2 +2µ1 −
√

(λ1 +λ2 +2µ1)2 − 8λ1µ1), which is the root smaller than one.

Substituting Π1 in (A55) gives ω= Π1
f
. From (A29), we get

Π1 =
1

µ1

((λ1 +λ2)Π0 −λ2(1−φ1)).

Therefore, from

1=
∞∑
i=0

Πi =
Π1

1− f
+Π0 =

(λ1 +λ2)Π0 −λ2(1−φ1)

µ1(1− f)
+Π0

we get Π0 =
µ1(1−f)+λ2(1−φ1)

µ1(1−f)+(λ1+λ2)
. Therefore, Πi can be expressed as a function of φ1 as in (A32).
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A5. Algorithms

Algorithm 1 Calculate the transition matrix of the EMC for ∀c≥ 2.

Step 1: Let Γc→c, Γc→(c−1) and Γc→(c+1)+ be the one-step transition matrices from Qc ∪BPc to

Qc∪BPc, Qc−1 and ∪∞
j=c+1Qj. Set Ψc1 =

[
Ic×c 0c×1

]
· (I−Γc→c)

−1Γc→(c−1) and Ψc2 =
[
Ic×c 0c×1

]
·

(I −Γc→c)
−1Γc→(c+1)+. Set A0 =Ψc1 and let i= 1.

Step 2: Set Ai =Ψc2

[
AT

i−1 · · · AT
1 AT

0 0c×∞
]T
.

Step 3: Let i= i+1. If max(Ai)>Tolerance, then go to Step 2; else set Limit= i and i= c−1,

and go to Step 4

Step 4: Let Γi→i, Γi→(i−1) and Γi→(i+1)+ be the one-step transition matrices from Qi ∪BPi to

Qi ∪BPi, Qi−1 and ∪∞
j=i+1Qj. Set Ψi1 =

[
Ic×c 0c×1

]
· (I −Γi→i)

−1Γi→(i−1), and Ψi2 =
[
Ic×c 0c×1

]
·

(I −Γi→i)
−1Γi→(i+1)+. Let j = 0.

Step 5: If j < i − 1, then set Mi→j = 0c×c; else if j = i − 1, then set Mi→j = Ψi1; else

if i ≤ j < c − 1, then set Mi→j = Ψi2

[
MT

i+1→j · · · MT
c−2→j MT

c−1→j 0c×∞
]T

; else set Mi→j =

Ψi2

[
MT

i+1→j · · · MT
c−1→j AT

j−c+1 · · · AT
0 0c×∞

]T
.

Step 6: Let j = j+1. If j < Limit, then go to Step 5; else let i= i− 1. If i≥ 1, then let j = 0

and go to Step 5; else let i= 0 and go to Step 7.

Step 7: Let Γ0→0 and Γ0→1+ be the one-step transition matrices from Q0 ∪BP0 to Q0 ∪BP0,

∪∞
j=1Qj. Set Ψ0 =

[
Ic×c 0c×1

]
· (I −Γ0→0)

−1Γ0→1+. Let j = 0.

Step 8: If 0≤ j < c−1, then set M0→j =Ψ0

[
MT

1→j · · · MT
c−2→j MT

c−1→j 0c×∞
]T
; else if M0→j =

Ψ0

[
MT

i+1→j · · · MT
c−1→j AT

j−c+1 · · · AT
0 0c×∞

]T
.

Step 9: Let j = j+1. If j < Limit, go to Step 8; else set G=A0 and go to Step 10.

Step 10: Set G=
∑Limit

i=0 AiG
i.

Step 11: If max(G −
∑Limit

i=0 AiG
i) > Tolerance, then go to Step 10; else set L̂ = M0→0 · · · M0→c−1

...
. . .

...
Mc−1→0 · · · Mc−1→c−1

 , B̂=
[
0c×c(c−1) A0

]
, F̂(i) =

 M0→i

...
Mc−1→i

 for i = c, . . . ,Limit, B=A0,

F(0) =L=A1, F
(i) =Ai+1 for i≥ 1, Ŝ(i) =

∑Limit

j=i F̂(j)Gj−i for i≥ 1 and S(i) =
∑Limit

j=i F(j)Gj−i for

i≥ 0, and go to Step 12.
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Step 12: Solve
[
π
(0)

1×c2
π
(1)
1×c π

(∗)
1×c

]
·

1c2×1 L̂ F̂(1) −
∑Limit

j=3 Ŝ(j)G
∑Limit

j=2 F̂(j) +
∑Limit

j=3 Ŝ(j)G

1c×1 B̂ L−
∑Limit

j=2 S(j)G
∑Limit

j=1 F(j) +
∑Limit

j=2 S(j)G

1c×1 0c×c B−
∑Limit

j=1 S(j)G
∑Limit

j=1 F(j) +L+
∑Limit

j=1 S(j)G

=

[
1,01×(c2+2c)

]
.

Step 13: Set F̂[k,i] =
∑Limit

j=i jkF̂(j) for i ≥ 1 and k =0 or 1, F[k,i] =
∑Limit

j=i jkF(j) for i ≥ 1,

b[1] =−π(0)
∑Limit

j=1 (j+1)F̂(j)−π(1)(2L+
∑Limit

j=1 (j+2)F(j))−π(∗)(L+
∑Limit

j=1 (j+1)F(j)), and c[1] =

−π(0)
∑Limit

j=2 jF̂[0,j]1
T −π(1)

∑Limit

j=1 (j+1)F[0,j]1
T −π(∗)∑Limit

j=1 jF[0,j]1
T .

Step 14: Solve r[1] ·
[
B+L+

∑Limit

j=1 F(j), (F[1,1] −B)1T
]
=
[
b[1], c[1]

]
.

Step 15: Let E [L2] = π
(0)

1×c2
·
[
01×c 11×c · · · (c−1)1×c

]T
+π

(1)
1×c ·

[
c1×c

]T
+(r[1]+(c−1)π

(∗)
1×c) ·1T .

Stop.


