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We consider a two-echelon inventory system with a capacitated centralized production facility and several
distribution centers (DCs). Both production and transportation times are stochastic with general distributions.

Demand arrives at each DC according to an independent Poisson process and is backlogged if the DC is out of
stock. We allow different holding and backlog costs at the different DCs. We assume that inventory at DCs is
managed using the one-for-one replenishment policy. The main objective of this paper is to investigate the control
of the multiechelon M/G/1 setting with general transportation times. To achieve this objective, we analyze several
decentralized allocation policies including the first-come, first-served (FCFS), strict priority (SP), and multilevel
rationing (MR) policies. For our analytic results, we assume no order crossing. We derive the cost function for a
capacitated two-echelon inventory system with general transportation times under these policies. Our numerical
examples show that the FCFS policy may outperform the MR policy, even though the latter has been shown to be
better in the centralized setting. This suggests that in decentralized settings there is a need to focus on policies that
prioritize customers when there is backlog. This focus is in contrast to the centralized settings, where inventory
rationing policies that focus on prioritization when there is available inventory are effective. We therefore introduce
and analyze the generalized multilevel rationing (GMR) priority policy. We compare the GMR policy with other
policies and show that the GMR policy outperforms the three policies used in the centralized setting. We also
compare the GMR policy with the myopic (T), longest queue first (LQF), and the optimal (when order crossing is
allowed during the transportation time) policies. Our results show that when the uncertainty of the transportation
times is low, the GMR policy outperforms the myopic (T) and LQF policies and that the gap between the optimal
policy and the GMR policy is not high.
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1. Introduction
Inventory management is an important part of supply
chain operations. An IBM report in 2009 indicates
that a 30%–60% reduction in spare parts inventory at
30 distribution centers (DCs) can save up to US$500
million per year (Mak and Shen 2009). One common
strategy to manage inventory and reduce the inven-
tory cost is customer prioritization. For example, the
empirical study by Jing and Lewis (2011) shows that
increasing the service level of new customers to 95%
by keeping some inventory on hand for them can
reduce the long-term stockout cost by up to 8.4%. Their
study highlights the impact of a priority policy on
the long-term economic value of different customer
segments.
Although the potential benefits of customer priori-

tization have been pointed out in the literature, this
paper is the first to investigate the possible benefit in

the capacitated multiechelon inventory management
setting. Specifically, we study a two-echelon inven-
tory system with a capacitated production facility that
keeps inventory at the warehouse and satisfies the
demand of several DCs. Inventory at the warehouse is
replenished from a production facility. We allow the
production times to be generally distributed. Demand
arrives at each DC according to a Poisson process and
demand that is not satisfied immediately from on-hand
inventory is backlogged. DCs keep stock to reduce the
stockout cost and replenish their inventory from the
warehouse using the one-for-one replenishment policy.
We allow the transportation times between the DCs
and the warehouse to have a general distribution. For
this decentralized inventory management problem, our
objective is to minimize the total holding and backlog
costs of the system by allowing customer prioritization
at the warehouse.
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Our model with the assumptions of Poisson demand,
continuous review, and one-for-one inventory replen-
ishment policy can be used for spare parts inventory
management (see, e.g., Axsater 2006). For example,
Schneeweiss and Schroder (1992) consider a hierar-
chical model for Lufthansa to manage the spare parts
inventory. In their model, similar to ours, order arrivals
follow a Poisson process and the inventory is managed
using the one-for-one replenishment policy. They state
that the implementation of their model by Deutsche
Lufthansa AG provided substantial savings. As another
example, consider an iPad that has failed under war-
ranty. In such a case, customers make an appointment
at one of the Apple stores, and after demonstrating
that the failed item is under warranty they receive a
refurbished iPad. The malfunctioning item is sent to
the refurbishing facility (representing a new demand
that can be modeled as coming from a Poisson pro-
cess), where it will be repaired and used to satisfy a
future demand. As the iPad is sold in many countries,
both the transportation time from the refurbishing
facility to the different stores and the prices paid
at these stores may vary. Thus, customer prioritiza-
tion may be valuable and our model may be appli-
cable in supply chains of high-tech products under
warranty.

1.1. Main Contributions
We consider a two-echelon inventory system with a
capacitated manufacturer and multiple DCs. The pro-
duction and transportation times are generally dis-
tributed and demand arrivals follow Poisson processes.
For our analytical results, we assume no order crossing
during the transportation from the warehouse to DCs.
Using the queueing decomposition (QD) approach intro-
duced in Abouee-Mehrizi et al. (2012; hereafter, ABB)
and further explained in Abouee-Mehrizi and Baron
(2014), we first obtain the production plus waiting time
of an order at the warehouse under the first-come,
first-served (FCFS), strict priority (SP), and multilevel
rationing (MR) policies. Then, following Svoronos and
Zipkin (1991), we derive the distribution of backlog
and inventory levels at each echelon to characterize
the total cost of each DC.
We next compare these policies numerically when

their prioritization is based on the backlog costs (i.e.,
a DC with a higher backlog cost is given a higher
priority). Although ABB analytically show that the MR
policy outperforms the SP and FCFS policies in the
centralized (single-echelon) M/G/1 settings, we find
that this is not necessarily the case in the multiechelon
inventory systems. Our numerical results demonstrate
that although the total cost of the system under SP
and MR policies is often lower than under the FCFS
policy, there are cases where the FCFS policy results in
a lower cost. These results indicate that the priority

policies that have been considered for centralized
inventory systems are less efficient in the multiechelon
setting. We thus consider a new priority policy for the
multiechelon inventory systems, namely, the general
multilevel rationing (GMR) policy. Unlike the MR
policy, the GMR policy allows a DC to be prioritized
when the inventory level hits a negative threshold, i.e.,
when the number of backlogs at the warehouse hits a
threshold. We show that the FCFS, SP, and MR policies
are special cases of this policy.
The four policies discussed above use no information

about the inventory in transit or at the DCs. That is,
these policies only use local information at the level
of warehouse inventory and backlog. Limiting the
information simplifies their implementation but renders
them not optimal in general.
In general, when transportation times are stochastic,

orders may cross each other. To better evaluate the
performance of the GMR, we also consider cases with
order crossing. We obtain the total cost of the system
under the longest queue first (LQF), myopic (T), and
GMR with order crossing (GMROC) policies using
simulation, and evaluate the performances of these
policies compared to the optimal policy (found using
dynamic programming). We demonstrate that order
crossing can significantly impact the total cost of the
system.
The main contributions of this paper are threefold.

(1) We derive the optimal cost and base-stock levels in a
multiechelon inventory system with a capacitated man-
ufacturer where the stock allocation at the manufacturer
follows the FCFS policy. As mentioned earlier, although
there is a vast body of literature considering the FCFS
policy in capacitated systems, this is the first paper to
provide an exact analysis of a multiechelon inventory
system under this policy. (2) We investigate customer
prioritization in a two-echelon inventory system with a
capacitated production facility. As part of this investiga-
tion, we introduce and analyze the GMR priority policy,
derive its optimal cost and control, and compare it to
other policies. Furthermore, we provide an extensive
numerical study comparing the performances of six
inventory allocation policies (with and without order
crossing), highlighting the potential benefits of such
policies under different settings. For example, in our
numerical study, the GMR policy outperforms the
FCFS policy by 9% on average. (3) We suggest an
additional application of QD, namely, that it can be
used to derive the exact optimal solution for several
priority policies in multiechelon M/G/1 make-to-stock
systems with general transportation times (and no order
crossing).

1.2. Literature Review
For a centralized inventory system, two priority policies
based on the backlog costs have been considered in
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the literature: the SP and MR policies. (We explain
these policies in the next section.) Ha (1997a) is the
first to consider the MR policy for a centralized sin-
gle product multiclass make-to-stock system where
the manufacturer has finite capacity and unsatisfied
demand is backlogged. He shows that a policy with
monotone switching curves is optimal for a system
with two classes of customers where the arrival process
follows a Poisson process and production times are
exponentially distributed. De Véricourt et al. (2002)
extend the previous work to a system with multiple
customer classes and show that the MR policy is opti-
mal. De Véricourt et al. (2001) introduce the SP policy,
compare the FCFS, SP, and MR policies for an M/M/1
make-to-stock queueing system, and show that the MR
policy outperforms the other two policies. Benjaafar
et al. (2010) investigate anM/M/1 make-to-stock system
with two classes of customers with both backlogging
and lost sales. They show that the optimal policy can
be described by three state-dependent thresholds: a
production base-stock level and two order-admission
levels, one for each class. As mentioned earlier, ABB
introduce the QD approach (they called it customer
composition) to generalize the results for the M/G/1
make-to-stock systems with backlogging.
In the decentralized settings where a supplier with

limited capacity satisfies demand for different types
of products, dynamic scheduling policies have been
considered. For example, Wein (1992) considers b�/h�
policy: when there are backlogs, prioritize the class
with the higher backlog cost; if no classes are in danger
of being backlogged, prioritize the class with the lower
holding cost. Veatch and Wein (1994) suggest a kanban-
like policy that works well for systems in which the
second stage is the bottleneck. But in our model, the sec-
ond stage (i.e., transportation time) is not the bottleneck
of the system; thus, the efficiency of such policies is lim-
ited. Zheng and Zipkin (1990) analyze an M/M/1 make-
to-stock system with two identical products under the
longest queue first policy and compare its performance
with the FCFS policy. Peña Perez and Zipkin (1997)
propose another heuristic called myopic (T). Ha (1997b)
and de Véricourt et al. (2000) characterize several
structural properties of the optimal policy for such
settings.
Multiechelon inventory systems with ample supply

have been studied since the seminal work by Clark
and Scarf (1960). For an uncapacitated serial inven-
tory system, they characterize the optimal policy for
a finite-horizon setting. Sherbrooke (1968) introduces
the METRIC model to approximate the number of
backlogs at each echelon for a two-echelon inventory
system with one-for-one replenishment policy. Graves
(1985) approximates the total cost of a similar system
with a central warehouse and several DCs where the

lead time (transportation time) at the warehouse is
generally distributed and the transportation times are
deterministic. Svoronos and Zipkin (1991) evaluate
a one-for-one replenishment policy in a serial sys-
tem setting, showing that the distribution of backlog
and inventory level at each echelon can be obtained
using the convolution of lead times at each echelon.
Muharremoglu and Tsitsiklis (2008) consider an unca-
pacitated serial inventory system and characterize the
optimal policy. Levi et al. (2008) study a two-echelon
inventory system with one warehouse and multiple
DCs and develop an algorithm to approximate the
optimal base-stock levels at each echelon.
Capacitated serial multiechelon inventory systems

have also been studied in the literature. Glasserman
(1997) studies a multiechelon periodic-review inventory
model where the supplier has limited capacity in each
period and provides bounds for the optimal base-stock
levels for a serial system with an echelon base-stock
policy. Roundy and Muckstadt (2000) consider a similar
problem and present an efficient approximation for
the distribution of the shortfall process in each period.
Parker and Kapuscinski (2004) show that a modified
echelon base-stock policy is optimal for a capacitated
two-echelon serial inventory system.
Few papers consider a capacitated nonserial mutliech-

elon inventory system that faces congestion. An excep-
tion is Mak and Shen (2009) who consider a two-echelon
inventory system with a manufacturer operating from
a warehouse and satisfying the demand arriving from
several DCs. They assume demand at each DC follows
a Poisson process, production times are exponentially
distributed, transportation times are deterministic, and
DCs are served based on a FCFS policy. They approxi-
mate the optimal base-stock levels at the DCs. Recently,
Abouee-Mehrizi et al. (2011) use the unit-flow approach
to obtain the optimal base-stock levels at the DCs for
such a system.

1.3. Organization
The rest of this paper is organized as follows. In §2,
we explain the capacitated two-echelon supply chain
model in more detail. We discuss stock allocation
polices in §3. In §4, we investigate the total cost at
the DCs for given rationing and base-stock levels at
the warehouse. Since the derivation of the optimal
cost under the GMR policy is intricate, we analyze
a system with two DCs. We analyze the cost of the
warehouse and obtain the optimal rationing and base-
stock levels in §5, and compare the cost of the different
polices and derive some managerial insights in §6.
We conclude the paper in §7. All proofs appear in
Online Appendix A, and relevant results from ABB are
provided in Online Appendix B. (Online appendices
available as supplemental material at http://dx.doi.org/
10.1287/msom.2014.0494.)
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2. Capacitated Two-Echelon Supply
Chain with Priorities

We study a supply chain with a production facility
operating from a warehouse and m DCs as shown in
Figure 1. For notational convenience, we number the
warehouse as DC 0. We assume that the centralized
warehouse is filled from the capacitated production
facility with production times, � , that follow a general
distribution with a Laplace transform (LT) b̃� · � and a
mean of 1/�. Demand arrives at DC j according to
a Poisson process with rate �j . We denote the total
arrivals to the system by � �=∑m

j=1 �j . For the stability
of the system, we assume � �= �/� < 1. DC j may
hold some stock with a holding cost of hj per unit of
inventory per unit of time. A customer arriving at DC j
is served immediately if the inventory level is positive;
otherwise, the order is backlogged with a backlog cost
of cj per unit of time. We denote the base-stock level at
DC j by Sj and assume this inventory is replenished
using a one-for-one policy. This means that DC j orders
a new unit of the product from the warehouse as soon
as a demand occurs at this DC.
With S0 denoting the base-stock level at the ware-

house, the production facility starts producing a new
product as soon as the inventory level at the warehouse
decreases to S0− 1. We assume that information on
demand is immediately communicated to the ware-
house; thus, such a decrease occurs whenever a demand
arrives at either of the DCs. The production continues
until the inventory level at the warehouse increases
to S0. When production ends, the product is either
kept at the warehouse or sent to a DC depending on
the prioritization policy and the inventory level at the
warehouse. We discuss these issues in more detail in
the following sections.
With these assumptions, the production facility can

be modeled as an M/G/1 make-to-stock system with a
centralized inventory location with postponement of the
allocation decision until the end of the production. Since
the backlog and holding costs of the DCs are different,

Figure 1 Two-Echelon Inventory System

�1

�m

Production facility/
warehouse

1

m

···

···

DCs

�m

�1

h0, S0
hm, cm, Sm

h1, c1, S1

Note. hj and Sj denote the holding costs rates and base-stock levels, respec-
tively, at the warehouse and DCs j = 0� � � � �m; cj , �j , and �j denote the
backlog costs, transportation times, and demand rates, respectively, at DCs
j = 1� � � � �m.

prioritizing DCs at the warehouse and keeping some
inventory for arrivals with higher backlogs or holding
costs may reduce the total cost of the system.
The transportation time between the warehouse and

DC j , 	j , is positive. We assume that the equilibrium
transportation time between the warehouse and DC j ,
is generally distributed with a LT of L̃j � · � and a mean
of 1/
j . Moreover, we assume that DCs receive products
from the warehouse sequentially, i.e., no order crossing
in time is allowed and the queue discipline at each
DC is FCFS. This is in contrast to the assumption of
independent and identically distributed transportation
times. (For a similar assumption see, e.g., Svoronos
and Zipkin 1991.) We do not allow transshipment of
inventory between the DCs.
Our objective is to determine the optimal rationing

and base-stock levels at the warehouse and DCs to
minimize the total expected holding and backlog costs.
We assume that the allocation policy at the warehouse
uses no information on the actual inventory level at the
DCs. Since the demand arrival at DC j is independent
of the arrivals at the other DCs, and the inventory at the
DCs is managed using the one-for-one replenishment
policy, the total cost of DC j is independent of the base-
stock levels at the other DCs (see, e.g., Axsater 1990).
For notational convenience, we use superscript “•”

to denote policy “•”: FCFS, SP, MR, and GMR. Let
C•
j �S0� Sj � denote the expected total holding and backlog
costs at DC j , given policy • when the base-stock level
at the warehouse is S0 and the base-stock level at DC j
is Sj . Similarly, let C•

0 �S0� denote the expected holding
cost at the warehouse. Note that the backlog cost of
the system is captured in the DCs’ cost functions, and
therefore it is not included in the warehouse’s cost
function. The objective function of policy • can be
expressed as

Minimize Z• =
m∑
j=1

C•
j �S0� Sj�+C•

0 �S0�� (1)

Note that under the FCFS and SP polices, the cost
function of DC j , C•

j �S0� Sj� depends only on the base-
stock levels at the warehouse and DC j ; however, under
the MR and GMR polices, this cost also depends on the
rationing levels at the warehouse. The expected holding
cost at the warehouse also depends on the rationing
levels under the MR and GMR policies. We describe
these controls in more detail in the next section.

3. Stock Allocation Policies
In this section, we discuss stock allocation policies.
Our focus is on analytically deriving the optimal cost
for each of these easy to implement policies rather
than characterizing the optimal control policy for this
multiechelon system. Recall that we are considering
a two-echelon inventory system with a production
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Table 1 Stock Allocation Under the FCFS, SP, and MR Policies

FCFS SP MR

Event E I0 B B1 B2 I1 I2 I0 B B1 B2 I1 I2 I0 B B1 B2 I1 I2

1 3 � � 0 0 1 1 3 � � 0 0 1 1 3 � � 0 0 1 1
2 1 2 � � 0 0 1 1 2 � � 0 0 1 1 2 � � 0 0 1 1
3 1 1 � � 0 0 1 1 1 � � 0 0 1 1 1 � � 0 0 1 1
4 2 0 � � 0 0 1 1 0 � � 0 0 1 1 1 �2� 0 1 1 0
5 2 0 �2� 0 1 1 0 0 �2� 0 1 1 0 1 �2�2� 0 2 1 −1
6 1 0 �2�1� 1 1 0 0 0 �2�1� 1 1 0 0 0 �2�2� 0 2 1 −1
7 2 0 �2�1�2� 1 2 0 −1 0 �2�1�2� 1 2 0 −1 0 �2�2�2� 0 3 1 −2
8 2 0 �2�1�2�2� 1 3 0 −2 0 �2�1�2�2� 1 3 0 −2 0 �2�2�2�2� 0 4 1 −3
9 1 0 �2�1�2�2�1� 2 3 −1 −2 0 �2�1�2�2�1� 2 3 −1 −2 0 �2�2�2�2�1� 1 4 0 −3

10 1 0 �2�1�2�2�1�1� 3 3 −2 −2 0 �2�1�2�2�1�1� 3 3 −2 −2 0 �2�2�2�2�1�1� 2 4 −1 −3
11 0 0 �1�2�2�1�1� 3 2 −2 −1 0 �2�2�2�1�1� 2 3 −1 −2 0 �2�2�2�2�1� 1 4 0 −3
12 0 0 �2�2�1�1� 2 2 −1 −1 0 �2�2�2�1� 1 3 0 −2 0 �2�2�2�2� 0 4 1 −3
13 0 0 �2�1�1� 2 1 −1 0 0 �2�2�2� 0 3 1 −2 1 �2�2�2�2� 0 4 1 −3
14 0 0 �1�1� 2 0 −1 1 0 �2�2� 0 2 1 −1 1 �2�2�2� 0 3 1 −2
15 0 0 �1� 1 0 0 1 0 �2� 0 1 1 0 1 �2�2� 0 2 1 −1
16 0 0 � � 0 0 1 1 0 � � 0 0 1 1 1 �2� 0 1 1 0
17 0 1 � � 0 0 1 1 1 � � 0 0 1 1 1 � � 0 0 1 1
18 0 2 � � 0 0 1 1 2 � � 0 0 1 1 2 � � 0 0 1 1
19 0 3 � � 0 0 1 1 3 � � 0 0 1 1 3 � � 0 0 1 1

facility operating from a warehouse and supplying a
single product to m DCs. Without loss of generality, we
prioritize the DCs assuming that DC 1 has the highest
priority and DC m has the lowest priority. We assume
that no prioritization is considered at DCs.
Table 1 shows the inventory and backlog levels of a

system with a centralized warehouse operating from
a manufacturer and two DCs, where the transportation
times between the warehouse and the DCs are zero.
In this table, column E represents the events occur-
ring at the warehouse, where 0 indicates production,
1 and 2 indicate an order arrival from DC 1 and DC 2,
respectively; column I0 is the inventory level at the
warehouse, which is nonnegative; column B is the set
of backlogged orders at the warehouse; columns B1
and B2 are the number of backlogs for DC 1 and DC 2
at the warehouse, respectively; and I1 and I2 are the
inventory level at DC 1 and DC 2, respectively. To keep
track of the number of backlogs at the DCs, we allow
negative Ij to represent the number of backlogs at DC j .
In contrast, since we capture the backlogs of orders at
the warehouse in B, we have 0≤ I0 ≤ S0. The base-stock
levels under all policies are S0 = 3, S1 = S2 = 1, starting
with I0 = 3, I1 = I2 = 1. Note that these values and
those for the rationing levels, were chosen for ease of
exposition (not as optimal controls of each policy).

3.1. FCFS Policy
Based on the first-come, first-served policy, orders at
the warehouse are served in order of their arrival.
Therefore, completed items are allocated to the DC
whose order has waited the longest time in the system.
For example, in Table 1 (column B), under the FCFS

policy, the first backlog at the warehouse at event 5

is for DC 2. This is the first backlog to be satisfied at
event 11. Note that at event 14, a backlog for DC 2 is
satisfied. This increases the inventory level at DC 2 even
though there are backlogged customers at DC 1. Such
allocation is clearly suboptimal when transportation
time is zero (as in this example); nevertheless, this is
the FCFS allocation policy.

3.2. SP Policy
Under the strict priority policy, orders at the warehouse
are satisfied on a FCFS basis as long as the stock level
at the warehouse is positive. Otherwise, when there
are backlogs at the warehouse, orders are prioritized
such that DC 1’s orders have the highest priority and
DC m’s orders have the lowest priority.
For example, at event 11 in Table 1, under the SP

policy, the order from DC 1 that has waited (among
DC 1’s backlogs) the longest time at the warehouse,
i.e., arrived at event 6, is satisfied. Note that under
the SP policy, although there is a backlog for DC 2 at
the warehouse that occurred at event 5, backlogs for
DC 1 at the warehouse are satisfied first. Note also
that in this example, the SP policy differs from the
FCFS policy only starting at event 11, i.e., until the first
allocation during a period with backlogs.

3.3. MR Policy
Under the multilevel rationing policy, the warehouse
has nonnegative and nondecreasing threshold levels
Rr , r = 1� � � � �m+ 1 with R1 = 0�R2 ≥ 0, and Rm+1 = S0,
the base-stock level at the warehouse. If the inventory
level, I0, is between Rr+1 and Rr + 1, i.e., Rr < I0 ≤Rr+1,
only orders from DC 1 to DC r are satisfied from
the warehouse on a FCFS basis, and orders from the
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other DCs are backlogged at the warehouse. When the
inventory level is below R2, only orders from DC 1 are
satisfied. When a production ends, backlogs for DCs
r = 1� � � � �m are served if I0 =Rr . If Rr =Rr+1, backlogs
for DC r are satisfied before backlogs for DC r + 1.
Note that de Véricourt et al. (2002) show that the

MR policy is the optimal policy in centralized M/M/1
make-to-stock systems. Also note that the SP policy is
a special case of the MR policy where all the rationing
levels except the last one are 0, i.e., R1 = R2 = · · · =
Rm = 0. ABB show that the MR policy results in a
lower cost than the SP and FCFS policies in centralized
M/G/1 make-to-stock systems.
In the example presented in Table 1, R1 = 0 as

required by the MR policy, R2 = 1, and R3 = S0 = 3.
When 0 < I0 ≤ 1, only DC 1’s orders are satisfied
from products available at the warehouse. Therefore,
at events 4 and 5, although the inventory level at
the warehouse is positive, i.e., I0 = 1, orders from
DC 2 are backlogged at the warehouse. Moreover, at
event 13, the finished product is kept at the warehouse
and the inventory level increases even though there
are backlogs for DC 2 at the warehouse. Next, after
inventory level increases to R2 = 1, the backlogs of DC 2
are satisfied (events 14–17) and only then the inventory
level increases from R2 = 1 to R3 = S0 = 3 (events 18
and 19). In this example, the MR policy differs from
the FCFS (and SP) policy starting at event 4, when an
item is reserved for a high-priority arrival and is not
allocated to a low-priority one.

3.4. Generalized Multilevel Rationing Policy
Because DCs hold inventory, a backlog at the ware-
house does not necessarily reflect backlogs at the DCs.
Therefore, when there is a backlog at the warehouse
and the SP and MR policies prioritize the high-priority
DC, this DC may still have inventory, whereas the
low-priority DC faces real backlogs. Clearly, such allo-
cation is not optimal. In our MR example in Table 1, at
event 13, the inventory level at the warehouse increases
to 1 (reserving a product for a future order from DC 1)
although there are three backlogs at DC 2 and the
inventory level at DC 1 is 1. Our numerical examples
in §6 show that the FCFS policy may result in a lower
cost than SP and MR policies.
We therefore introduce a new priority policy called

generalized multilevel rationing. The idea behind the
GMR policy is to differ the prioritization of the DCs.
Specifically, the GMR policy allows a DC to be priori-
tized when the inventory level hits a negative threshold,
i.e., when the number of backlogs at the warehouse
hits a threshold. Therefore, implementing the GMR
policy is as simple as implementing the MR policy.
Under the GMR policy, the warehouse has non-

decreasing threshold levels Rr , r = 1� � � � �m+ 1 with
R1 =−�, R2� � � � �Rm ∈ �−��Rm+1 and Rm+1 = S0, the

base-stock level at the warehouse. In the GMR policy,
the rationing levels are allowed to be negative. For
simplicity, we present the GMR policy for a system
with two DCs and explain this policy for the example
in Table 1. We describe and analyze the GMR policy for
a system with m DCs in Abouee-Mehrizi et al. (2013).
An important feature of the GMR policy is that the

FCFS, SP, and MR policies are special cases of the
GMR policy: the FCFS with R2 = · · · =Rm =−�, the SP
with R2� � � � �Rm = 0, and the MR with R2� � � � �Rm ≥ 0.
Therefore, the optimal cost under the GMR policy is
lower than under any of these three policies.
For a system with two DCs, in the GMR policy, there

are three rationing levels: R1 =−�, R2 ∈ Z, which may
be negative, and R3 = S0 ≥ 0, the base-stock level at
the warehouse. If R2 ≥ 0, the GMR policy is identical
to the MR policy, thus we assume R2 < 0. If R2 < 0,
under the GMR policy the first −R2 backlogs at the
warehouse are served based on the FCFS policy. Let B2+
denote the number of these backlogs. As soon as the
number of backlogs at the warehouse increases to −R2,
i.e., B2+ =−R2, the allocation policy changes. Let B̄j

denote the number of backlogs of DC j = 1�2 that find
at least −R2 backlogs at the warehouse upon their
arrival and are thus prioritized. As long as B̄1 > 0,
priority is given to orders from DC 1 over orders from
DC 2, if B̄1 = 0 and B̄2 > 0 priority is given to orders
from DC 2. With this prioritization, orders from DC 2
that arrive when the number of backlogs is −R2 or
more are given higher priority than orders of DC 1 that
arrive when the number of backlogs is less than −R2.
Note that a generalized SP policy would prioritize

when the number of backlogs exceeds a threshold
rather than prioritizing when backlogs exist. When
there are two DCs, the generalized SP policy is identical
to the GMR policy. When there are more than two
DCs, the generalized SP policy is a special case of the
GMR policy with identical R2� � � � �Rm, i.e., R1 =−�,
R2 =R3 = · · · =Rm ∈ �−��Rm+1 and Rm+1 = S0. We thus
do not discuss the generalized SP policy any further.
As we show in the example below and in §4, the

analysis of the GMR policy is more involved than that
of the MR policy, despite the simple difference in their
parameters. The main difficulty is to keep track of the
backlogs from different DCs at the warehouse.
The GMR allocation policy for the sequence of events

in Table 1 is demonstrated in Table 2. Column B2+
is the set of backlogs in Table 2, and columns B1
and B2 denote the number of backlogs of DC 1 and
DC 2. In this table, R2 =−3, R3 = S0 = 3. Therefore, the
first three backlogs at the warehouse (events 5–7) are
included in B2+ . Then, backlogged orders increase B̄j ,
(events 8–10). Note that until event 10, the GMR policy
is identical to both the FCFS and SP polices. They
differ once production ends and there are more than
−R2 �= 3� backlogs.
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Table 2 Stock Allocation Under the LQF and GMR Policies

GMR LQF

Event E I0 B B2+ B̄2 B̄1 B1 B2 I1 I2 I0 B B1 B2 I1 I2

1 3 � � 0 0 0 0 0 1 1 3 � � 0 0 1 1
2 1 2 � � 0 0 0 0 0 1 1 2 � � 0 0 1 1
3 1 1 � � 0 0 0 0 0 1 1 1 � � 0 0 1 1
4 2 0 � � 0 0 0 0 0 1 1 0 � � 0 0 1 1
5 2 0 �2� �2� 0 0 0 1 1 0 0 �2� 0 1 1 0
6 1 0 �2�1� �2�1� 0 0 1 1 0 0 0 �2�1� 1 1 0 0
7 2 0 �2�1�2� �2�1�2� 0 0 1 2 0 −1 0 �2�1�2� 1 2 0 −1
8 2 0 �2�1�2�2� �2�1�2� 1 0 1 3 0 −2 0 �2�1�2�2� 1 3 0 −2
9 1 0 �2�1�2�2�1� �2�1�2� 1 1 2 3 −1 −2 0 �2�1�2�2�1� 2 3 −1 −2

10 1 0 �2�1�2�2�1�1� �2�1�2� 1 2 3 3 −2 −2 0 �2�1�2�2�1�1� 3 3 −2 −2
11 0 0 �2�1�2�2�1� �2�1�2� 1 1 2 3 −1 −2 0 �2�2�2�1�1� 2 3 −1 −2
12 0 0 �2�1�2�2� �2�1�2� 1 0 1 3 0 −2 0 �2�2�1�1� 2 2 −1 −1
13 0 0 �2�1�2� �2�1�2� 0 0 1 2 0 −1 0 �2�2�1� 1 2 0 −1
14 0 0 �1�2� �1�2� 0 0 1 1 0 0 0 �2�1� 1 1 0 0
15 0 0 �2� �2� 0 0 0 1 1 0 0 �2� 0 1 1 0
16 0 0 � � 0 0 0 0 0 1 1 0 � � 0 0 1 1
17 0 1 � � 0 0 0 0 0 1 1 1 � � 0 0 1 1
18 0 2 � � 0 0 0 0 0 1 1 2 � � 0 0 1 1
19 0 3 � � 0 0 0 0 0 1 1 3 � � 0 0 1 1

When a production ends, backlogs of type B̄1 are
served first (events 11, 12). Once B̄1 = 0, backlogs
of type B̄2 are also satisfied (event 13) even though
there is a backlog of DC 1 at the warehouse (in B2+).
The backlogs in B2+ are then satisfied and inventory
is raised to the base-stock level in events 14–16 and
17–19, respectively.
Note that in events 12–14 of this example, the back-

log for DC 1 at the warehouse does not represent a
backlogged customer at this DC. Therefore, the GMR
policy does not increase the inventory level at DC 1
by much when there are many backlogged customers
at DC 2.
Note also that whereas the order filled at event 11 of

the SP policy is the first type 1 order backlogged at
the warehouse, the order filled at this event under the
GMR policy is the first type 1 order arriving after the
number of backlogs at the warehouse was 3 �=−R2�
or more, i.e., the second overall type 1 order to be
backlogged at the warehouse. Therefore, the GMR
policy does not necessarily fulfill orders of the same
type at the warehouse in a FCFS basis. However, since
there is a single product and items are only allocated
to customers at the DCs, the DCs still satisfy customers
based on the FCFS policy. Therefore, this assumption of
the GMR policy does not violate the FCFS allocation to
customers at the DCs, which helps to keep the analysis
tractable.

3.5. LQF Policy
Under the longest queue first policy, orders at the ware-
house are satisfied on a FCFS basis as long as the
stock level at the warehouse is positive. Otherwise,
when there are backlogs at the warehouse, orders are

prioritized such that orders from the DC with the
highest number of backlogs are served first. Thus, this
policy ignores the difference in backlog and holding
costs among the DCs. When the number of backlogs
are equal, the priority is assigned randomly. (This
randomization leads to lower costs in most of our
numerical examples.)
The LQF policy is shown in Table 2. For example, at

event 12 in Table 2, under the LQF policy, the order
from DC 2 that has a higher number of backlogs at the
warehouse is satisfied.

3.6. Myopic (T)
Myopic policies, unlike the other policies discussed
so far, use information about the current inventory
levels at DCs to determine the high-priority DC at
any given time. These policies help investigate the
effect of the inventory information at the DCs on the
total cost of the system. There are several versions of
myopic policies. Pena Prez and Zipkin (1997) compare
the myopic (P) policy with the myopic (T) policy and
show numerically that the latter is often better. The
difference between these policies is the length of their
look-ahead horizon. We consider the myopic (T) with
a look-ahead horizon as the steady-state flow time
of units to each DC. This flow time is defined as the
steady-state time elapsed from the time an order is
placed at a DC until the product corresponding to this
order is delivered, assuming all future allocations are
made to this DC. We denote the distribution of the
number of arrivals during the flow time of a unit to
DC j by Fj� · �. In §6.1, we derive Fj� · � for all j using
the QD approach while assuming there is no order
crossing in time.
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Given Fj � · �, the myopic (T) policy operates as follows:
when there is inventory at the warehouse, orders are
satisfied in a FCFS fashion. Otherwise, orders are
prioritized. At the time of production completion, the
inventory position (current inventory plus inventory in
transit) at each DC j , IOj , is observed. Then, the order
is sent to the DC with the lowest value of

−cj �1− Fj �IOj��+hjFj �IOj�� (2)

3.7. Specifying Priorities
The policies that we consider focus on prioritizing
according to the backlog costs cj . Specifically, we pri-
oritize DC 1 if c1 > c2. However, in some situations
prioritizing based on other parameters, such as the hold-
ing costs hj or the ratio of the holding to backlog costs
hj/cj , may be useful. We analyze the system for given
priorities of the DCs that can be based on any parameter.
Therefore, our results can be used to characterize the
exact costs under the SP, MR, and GMR policies where
priorities are dictated by other parameters.
An example is the MRh policy. This is an MR policy

where DCs are prioritized based on their holding costs.
If the holding costs of two DCs are equal, they are
prioritized based on their hj/cj ratios. The MRh policy
works well when h1 is small and h2 is large. In most of
the numerical examples considered in §6, this policy
does not perform well. Consequently, in the rest of
the paper we focus on priority policies based on the
backlog cost cj .

4. Distribution Centers’ Cost
Functions and Optimal
Base-Stock Levels

In this section we analyze the cost of DC j , C•
j �S0� Sj�,

for a given base-stock level at the warehouse, S0, and
at DC j , Sj , under the different allocation policies at
the warehouse. We devote §5 to the relevant costs at
the warehouse. We use the QD approach to derive the
total cost of the DCs and characterize their optimal
base-stock levels.
For given S0, let I •j denote the steady-state inventory

level at DC j , where I •j < 0 denotes backlogs at DC j .
(For convenience we omit the dependency of I0 and
other random variables defined here on S0 from the
notation.) To express I •j , we define the shortfall process
N •

j as,
N •

j = Sj − I •j � (3)

Note that the shortfall process describes the num-
ber of outstanding orders at DC j and is a standard
method to analyze a single class make-to-stock queue
with base-stock level control (see, e.g., Baron 2008,
and references therein). For a given Sj , if we know
the steady-state distribution of N •

j , we can obtain the
steady-state distribution of I •j using (3) and calculate
the total cost of a DC using Theorem 1 below. Let P •

j �i�

and E�N •
j � denote the steady-state probability of having

i outstanding orders and the expected number of out-
standing orders at DC j , respectively. Then, we have the
following:

Theorem 1. Given the base-stock levels S0 and Sj , the
long-run average cost of DC j is

C•
j �S0�Sj�= �hj+cj �

Sj−1∑
x=0

�Sj−x�P •
j �x�+cjE�N

•
j �−cjSj� (4)

and the optimal base-stock level at DC j , �S•
j �

∗, is

�S•
j �

∗ =min
{
k�

k∑
r=0

P •
j �r� > cj/�hj + cj �

}
� (5)

Although Theorem 1 provides the optimal Sj given
P •
j �x� for each x ≥ 0, the heart of the matter is, of course,
expressing these probabilities. We therefore investigate
P •
j �x�, the steady-state distribution of N

•
j . This will also

allow us to derive closed-form expressions for E�N •
j �,

considering that E�N •
j �=−�d�•

j �z�/dz��z=1, where �•
j �z�

denotes the steady-state probability generating function
(PGF) of N •

j .
Let N •

Lj
and N •

Wj
denote the steady-state number of

outstanding orders for DC j that are in transit and at
the warehouse, respectively. And, let �•

Lj
�z� and �•

Wj
�z�

denote the PGF of the distribution of N •
Lj
and N •

Wj
,

respectively. Svoronos and Zipkin (1991) show that N •
j

is the convolution of the steady-state distributions of
N •

Lj
and N •

Wj
, and under the FCFS policy, the PGF of

N •
j can be obtained using

�•
j �z�=�•

Lj
�z��•

Wj
�z�� (6)

In Lemmas 1 and 2 in §4.1 and 4.2, respectively, we
show that the relation (6) holds under the SP, MR, and
GMR polices. As a result, the PGF of the number of
outstanding orders in transit is

�•
Lj
�z�= L̃j ��j�1− z��� (7)

In the next section, we focus on deriving the PGF of
the number of DC j’s orders at the warehouse, �•

Wj
�z�,

under the different policies. The derivation of �•
Wj
�z�

for the FCFS, SP, and MR policies in §4.1 follows the
derivation in ABB. In §4.2, we extend the methodology
from ABB to the GMR policy.

4.1. FCFS, SP, and MR Policies
In this section, we investigate the steady-state distribu-
tion of the number of outstanding orders at DC j under
the FCFS, SP, and MR policies. We first demonstrate
that relation (6) holds under these allocation policies.

Lemma 1. The PGF of the number of outstanding orders
from DC j under the FCFS, SP, and MR policies can be
obtained using

�•
j �z�=�•

Lj
�z��•

Wj
�z�� (8)
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To obtain the PGF of the distribution of N •
Wj
, we first

characterize the steady-state LT of the waiting time
distribution of a DC j order at the warehouse, w̃•

j �s�.
Then, we obtain the PGF of the distribution of N •

Wj

using Little’s distributional law, as in Bertsimas and
Nakazato (1995):

�•
Wj
�z�= w̃•

j ��j�1− z��� (9)

To obtain w̃•
j �s�, we consider two cases: (1) an order

from DC j arriving at the warehouse is satisfied imme-
diately, and (2) an arriving order is backlogged.

Case 1. Recall that when a customer arrives at DC j ,
a new unit of the product is immediately ordered
from the warehouse; it is satisfied immediately if the
inventory level at the warehouse is greater than Rj

for j = 2� � � � �m under the FCFS, SP, and MR policies.
Therefore, w̃•

j �s � I0 >Rj� is equal to 1, i.e., the waiting
time at the warehouse of an order from DC j is zero if
the inventory level at the warehouse is greater than Rj

upon the order’s arrival.
Case 2. Consider the case where upon the arrival of

a demand from DC j , the warehouse is out of stock.
Since w̃•

j �s � I0 ≤Rj�, the LT of the steady-state waiting
time of orders of DC j at the warehouse, depends
on the allocation policy; thus, we study it for each
allocation policy separately.
Let P •�I0 >Rj� denote the probability that an order

from DC j to the warehouse is satisfied immediately.
Then, the LT of the steady-state waiting time distribu-
tion of an order of DC j , w̃•

j � · � is
w̃•

j �s�=P •�I0>Rj�+�1−P •�I0>Rj��w̃
•
j �s � I0≤Rj�� (10)

We can thus obtain the PGF of the distribution of the
total number of outstanding orders at DC j , �•

j �z� by
substituting (10) into (6):

�•
j �z� = P •�I0 >Rj�L̃j ��j�1− z��+ �1− P •�I0 >Rj��

· w̃•
j ��j�1− z� � I0 ≤Rj�L̃j ��j�1− z��� (11)

Note that �•
j �z� can be numerically inverted to obtain

P •
j �i� (see, e.g., Abate and Whitt 1992).
Given the rationing levels Rj for j = 2� � � � �m, to

obtain all elements in (11), we only need to characterize
the probability of backlog, P •�I0 ≤Rj�, and w̃•

j �s � I0 ≤Rj�
under the FCFS, SP, and MR policies. These derivations
are provided next.

4.1.1. FCFS Policy. To obtain w̃FCFS
j �s � I0 ≤ Rj�=

w̃FCFS
j �s � I0 = 0� under the FCFS policy, we define the

FCFS backlog queue to include periods of time when
there is no inventory in the system. This queue is
different from an M/G/1 queue since when the inven-
tory level decreases to zero and a new period with
no inventory begins, there are S0 outstanding orders
at the production facility; hence the server is busy.

This FCFS backlog queue is similar to the SP backlog
queue discussed in Online Appendix B, but here the
allocation policy is FCFS; see §3.2.1 in ABB for further
discussion.
Using the FCFS backlog queue, we can characterize

w̃FCFS
j �s � I0 = 0�. Let �b be the server utilization in the
FCFS backlog queue, and 1/�1 be the first moment
of the exceptional first service times; 1/�1 can be
obtained using b̃S0�s� in this queue (b̃j �s� is given in
(B.37) in Online Appendix B). Then, �b can be obtained
from (B.38) in Online Appendix B.

Theorem 2. The LT of the steady-state waiting time
distribution of an order from DC j at the warehouse that
finds the warehouse out of stock under the FCFS allocation
policy is

w̃FCFS
j �s � I0=0�=

�1−�b����b̃�s�− b̃S0�s��+sb̃S0�s��

s−��1− b̃�s��
� (12)

In steady-state, an order from DC j that finds the
warehouse out of stock upon its arrival encounters a
delay with a LT of w̃FCFS

j �s � I0 = 0�. After this delay, the
order is satisfied and spends 	j units of time in transit
with a LT of L̃j �s� before arriving at the DC.
Since DC j places a new order to the warehouse as

soon as a demand arrives to the DC, the probability
that an order from DC j finds the warehouse empty is
P FCFS�I0 ≤Rj�. Because Rj = 0 under the FCFS allocation
policy, this probability is identical to the probability
that the number of orders in a single class M/G/1
make-to-stock system with the FCFS policy is greater
than S0− 1 denoted by F̄ FCFS�S0− 1�. Letting �= �/�,
then the probability of having i people in a single class
M/G/1 make-to-stock system with the FCFS policy is
(see Equation (4) in ABB)

�1−��
i−1∏
j=0

1− b̃j ���

b̃���
�

and the probability that the number of orders in this
system is greater than S0− 1 is

F̄ FCFS�S0− 1� = 1−
S0−1∑
i=0

�1−��
i−1∏
j=0

1− b̃j ���

b̃���
� (13)

Substituting (12) and (13) into (11), we get the PGF
of the steady-state distribution of outstanding orders at
DC j , �FCFS

j �z�. We can then obtain the optimal cost
and base-stock level at a DC for a given base-stock
level at the warehouse using Theorem 1. Furthermore,
using (11) and that E�N FCFS

j �=−�d�FCFS
j �z�/dz��z=1, for

the FCFS policy (after some algebra), we get

E�N FCFS
j � = �j


j
+ F̄ FCFS�S0− 1��1−�b��j

· ���
2m2/�1+ �1−����m1

2+ 2/�1�
2�1−��2

� (14)
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which can be substituted into (4), where m2 and m1
2 are

the second moments of b̃� · � and b̃S0� · �, respectively.
4.1.2. SP Policy. To calculate w̃SP

j �s � I0 = 0�, we
note that this LT is identical to the LT of the steady-
state waiting time distribution of class j customers
in an M/G/1 make-to-stock queue with prioritization.
The LT of this distribution is given in (B.39) in Online
Appendix B.
Let F̄ SP�S0− 1�= P SP�I0 = 0� denote the probability

that an order from DC j finds the warehouse out of
stock under the SP policy. Since the orders are satisfied
in the order of their arrival under both SP and FCFS
policies as long as the inventory level at the warehouse
is positive, the probability that an order from DC j
finds the warehouse out of stock under the SP policy
is identical to the one under the FCFS policy, i.e.,
F̄ SP�S0− 1�= F̄ FCFS�S0− 1�, as given in (13).
Substituting w̃SP

j �s � I0 = 0� given in (B.39) and (13)
in (11), we obtain �SP

j �z�, the PGF of the steady-state
distribution of outstanding orders at DC j , so that we
can express the optimal cost and base-stock level at
a DC for a given base-stock level at the warehouse
under the SP policy. Using E�N SP

j �=−�d�SP
j �z�/dz��z=1,

we can substitute

E�N SP
j � = �j


j
+ F̄ SP�S0−1��1−�b�

�j�1−��

�1−�+
j /���1−�+

j−1/��

· �
2m2/�1+�1−����m1

2+2/�1�
2�1−��2

(15)

into (4), where m2 and m1
2 are the second moments of

b̃� · � and b̃S0� · �, respectively.
4.1.3. MR Policy. In this section, we determine

w̃MR
j �s�. Note that under the MR policy, unlike the FCFS
and SP policies, an order arriving at the warehouse
from DC j may be backlogged even if the inventory
level is positive. In general, an order from DC j is
served from on-hand inventory if the inventory level
at the warehouse is above Rj .
ABB analyze a single product multiclass M/G/1

make-to-stock queue with the MR policy and character-
ize the LT of the steady-state waiting time distribution
of a class j arrival that finds the inventory level less
than Rj + 1 as given in (B.41) in Online Appendix B. To
use the results in ABB (given in Online Appendix B),
we define the jth backlog queue, BQj , as a two-priority
queue with an exceptional first service time in each
busy period and a utilization of �j

b, where orders of
DCs 1� � � � � j− 1 are high priority and orders from DC j
are low priority. This queue corresponds to the original
system during periods when orders from DC j are
backlogged at the warehouse. We denote the LT of
the exceptional first service times in the jth backlog
queue, BQj , by b̃

j
�j
�s�, where �j =Rj+1−Rj . This LT

can be obtained using Algorithm 1 given in ABB. Then,
w̃MR

j �s � I0 ≤Rj� can be obtained using (B.41).
Substituting (B.41) and (B.44) of Online Appendix B

in (11), we express �MR
j �z�, the PGF of the steady-state

distribution of outstanding orders at DC j , and use it to
obtain the optimal cost and base-stock level at a DC for
given rationing levels at the warehouse under the MR
allocation policy. Using E�NMR

j �=−�d�MR
j �z�/dz��z=1,

we can substitute

E�NMR
j � = �j


j
+F MRj �Rj��1−�

j

b�
�j�1−��

�1−�+
j /���1−�+

j−1/��

· ��
+
j �
2m2/�1+�1−����+

j m
1
2+2/�1�

2�1−��2
� (16)

into (4), where m2 and m1
2 are the second moments of

b̃� · � and b̃
j
�j
� · �, respectively.

4.2. GMR Policy
In this section, we investigate the steady-state distribu-
tion of the number of outstanding orders at DC j under
the GMR policy. The analysis of outstanding orders
under this policy is more challenging than the previous
two priority policies since orders from the low-priority
DCs may be served before high-priority ones at the
warehouse. To keep the discussion simple, we only
consider an inventory system with a warehouse and
two DCs and explain how the required probabilities
can be obtained. In Abouee-Mehrizi et al. (2013), we
generalize the results to a system with m�> 2� DCs.
Note that in a system with two DCs, if R2 ≥ 0,

the GMR policy is identical to the MR policy. Thus,
we assume R2 < 0. To characterize the distribution
of the number of outstanding orders at DC j , we use
the backlog queues defined in §4.1.3. In a system with
two DCS, we need to consider the second backlog
queue, BQ2, and the third backlog queue, BQ3. This
third backlog queue, BQ3, is the standard FCFS single
class M/G/1 queue with an arrival rate of �. This
queue corresponds to the durations when the number
of backlogs is less than −R2, i.e., when the shortfall
process is lower than S0 + R2. The second backlog
queue, BQ2, is a two-class M/G/1 priority queue with
an exceptional first service time in each busy period
where the arrival rates of high- and low-priority orders
are �1 and �2, respectively. This queue corresponds to
the durations when the number of backlogs is more
than −R2− 1, i.e., there are backlogs in the system and
DCs are prioritized.
Note that under the GMR policy, orders may cross at

the warehouse since orders served under the priority
policy, B̄j , leave the warehouse before orders served
under the FCFS policy, B+

2 . Therefore, the distributional
Little’s law cannot be applied directly to the system.
Still, in each DC (and each backlog queue) backlogs of
that queue are served on a FCFS basis. Thus, Little’s
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distributional law can be used to obtain the required
PGF in each backlog queue. In the following lemma,
we state this argument precisely.

Lemma 2. The PGF of the number of outstanding orders
at DC j under the GMR policy can be obtained using

�GMR
j �z�=�GMR

Lj
�z��GMR

Wj
�z�� (17)

Given Lemma 2 and (7), we only need to derive
the steady-state distribution of backlogs of DC j at
the warehouse, �GMR

Wj
�z�, to express the distribution of

the outstanding orders at the DC. We next obtain this
distribution.
Under the GMR policy, as long as the total num-

ber of backlogs at the warehouse is not greater than
−R2 �R2 < 0�, orders are served based on the FCFS
policy. Therefore, as in Gayon et al. (2009), the num-
ber of type j = 1�2 backlogs is binomially distributed
with parameter ��j/��. Thus, when the warehouse is
out of stock and the total number of backlogs at the
warehouse is B2+ = i �<−R2� we have the following:

P�NWj
= nj � B2+ = i� I0 = 0�=

(
i

nj

)(
�j

�

)nj
(
�−�j

�

)i−nj

�

i= 0� � � � �−R2− 1� nj = 0� � � � � i� (18)

(Conditioning on I0 = 0 in (18) is only required for
i= 0.)
Recall that under the GMR policy when the total

number of backlogs at the warehouse is greater than
−R2, we have B2+ =−R2. The backlogged orders of B̄1
are served first and then orders of B̄2. The backlogs
of B2+ will be served in order of their arrival only if
the total number of backlogs at the warehouse is not
greater than −R2. When there are no backlogs of B̄1
and B̄2 (i.e., the total number of backlogs decreases to
−R2), backlogs of B2+ are satisfied. Therefore, when
there are more than −R2 backlogs at the warehouse,
the policy is similar to the MR and SP policies.
Let P�Bj

2+ = i � B2+ = −R2� denote the steady-state
probability of having i backlogs from DC j in B2+ given
that there are −R2 backlogs. Then, the distribution of
the number of backlogs of DC j given that B2+ =−R2 is

P�NWj
= nj � B2+ =−R2�

=
nj∑
k=0

P�B
j

2+ = k � B2+ =−R2�P�B̄j = nj − k � B2+ =−R2�

=
nj∑
k=0

(−R2
k

)(
�j

�

)k(�−�j

�

)−R2−k

· P�B̄j = nj − k � B2+ =−R2�� nj = 0�1� � � � � (19)

We next characterize P�B̄j = i�. Under the GMR policy,
orders arriving at the warehouse are served in a FCFS

basis as long as the total number of orders is less than
R3−R2; otherwise they are prioritized. Similarly, under
the MR policy orders arriving at the warehouse are
prioritized only if the total number of orders at the
warehouse is not less than R3−R2. Therefore, similar to
analysis of the MR policy, we can obtain P�B̄j = i� using
the PGF of PBQ2

j �i� given in (B.43) in Online Appendix B
and Little’s distributional law in (9).
Combining (18) and (19), we obtain the following

distribution for backlogs of DC j for a system with
two DCs if the warehouse is out of stock:

P�NWj
= nj � I0 = 0�

=
−R2−1∑
i=0

P�NWj
= nj � B2+ = i� I0 = 0�P�B2+ = i � I0 = 0�

+ P�NWj
= nj � B2+ =−R2�P�B2+ =−R2�� (20)

Next, we derive P�B2+ = i� for i <−R2, the probability
of having i <−R2 backlogs at the warehouse. Let N0
denote the total number of outstanding orders at the
warehouse. Given that I0 = 0 and B2+ <−R2, N0 can be
expressed as

N0 = S0+B2+� I0 = 0� B2+ <−R2� (21)

But, from the definition of the third backlog queue (the
shortfall queue), BQ3, the total number of outstanding
orders at the warehouse, N0, is identical in distribution
to the total number of jobs in BQ3. Therefore, by
conditioning on I0 = 0 (or equivalently N0 ≥ S0 =R3),
we get

P�B2+ = i � I0 = 0� =
PBQ3�i+R3�

1−∑R3−1
k=0 PBQ3�k�

�

i= 0� � � � �−R2� (22)

where PBQ3�i+R3� is the probability that the number
of jobs in BQ3 is equal to i+R3 (BQ3 is defined in §B.2
of Online Appendix B). Combining (18), (19), and (22),
we get the distribution of the number of outstanding
orders for DC j at the warehouse for a system with
two DCs (for R2 < 0).

Theorem 3. For the GMR policy, the distribution of the
number of outstanding orders for DC j at the warehouse for
a system with two DCs and R2 < 0 is

P�NWj
= nj � I0 = 0�

=
−R2−1∑
i=nj

(
i

nj

)(
�j

�

)nj
(
�−�j

�

)i−nj PBQ3�i+R3�

1−∑R3−1
y=0 PBQ3�y�

+
∑−R2−1

i=0 PBQ3�i+R3�

1−∑R3−1
y=0 PBQ3�y�

nj∑
i=0

(−R2
i

)(
�j

�

)i

·
(
�−�j

�

)R2−i

P
BQ2
j �nj − i�� (23)
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We next characterize the PGF of the distribution of
the total number of orders at DC j under the GMR
policy, �GMR

j �z�. Note that this distribution is the con-
volution of the distributions of the number of the
products in transit to DC j , and the number of back-
logged orders for DC j at the warehouse. Therefore,
we have the following:

Corollary 1. For given rationing levels at the ware-
house, the PGF of the number of outstanding orders at DC j
under the GMR policy is

�GMR
j �z� = L̃j ��j�1−z���1− F̄ BQ3�R3−1��+L̃j ��j�1−z��

·
(
F̄ BQ3�R3−1�

�∑
i=0

P�NWj
= i � I0=0�zi

)
� (24)

where F̄ BQ3�R3− 1� �= 1−
∑R3−1

k=0 PBQ3�k�.

Using (24) and Theorem 1, we can obtain the optimal
cost and base-stock level at a DC for given rationing
levels at the warehouse under the GMR policy.

5. Cost and Rationing Levels in the
Production Facility

In this section, we investigate the total cost of the
warehouse under the four allocation policies. Because
the backlog costs of the system is captured in the DCs’
cost, we only need to characterize the holding cost at
the warehouse.
Recall that we model the production facility as a sin-

gle product multiclass M/G/1 make-to-stock queueing
system. ABB analyze this system under FCFS, SP, and
MR policies. Given the allocation policy and rationing
levels, these results provide closed-form expressions
for each of these policies. We present these results
below. Let P�i� denote the steady-state probability of
having i orders in a single class M/G/1 queue. Then,
for the FCFS and SP policies, the holding cost of the
warehouse is given by

CFCFS
0 �S�=CSP

0 �S�= h
S∑

x=0
�S− x�P�x�� (25)

where using b̃j � · � from (B.37),

P�i�= �1−��
i−1∏
j=0

1− b̃j ���

b̃���
�

Given the rationing levels, the holding cost of the
warehouse under the MR policy is (see Theorem 7
in ABB)

CMR0 = h
m+1∑
r=2

[ m+1∏
j=r+1

F̄
BQj

h �Rj −Rj−1− 1�

·
Rr−Rr−1−1∑

x=0
�Rr − x�P

BQr

h �x�

]
� (26)

where P
BQr

h � · � can be obtained using (B.43).

We next discuss the total cost of the warehouse under
the GMR allocation policy. We derive this cost for a
system with m DCs in Abouee-Mehrizi et al. (2013).
Because in a system with two DCs, the GMR policy

is identical to the MR policy if R2 ≥ 0, the holding cost
at the warehouse under the GMR policy is identical
to the one under the MR policy and can be obtained
using (26) if R2 ≥ 0.
Now suppose R2 < 0. In this case, orders from DCs 1

and 2 are served based on the FCFS policy as long
as the inventory level at the warehouse is positive.
Therefore, the holding cost at the warehouse under the
GMR policy is identical to the one under the FCFS and
SP policies given in (25) if R2 < 0.

6. Comparison of Policies
In previous sections, we provided the exact solution
for computing the optimal cost of the system under the
FCFS, SP, MR, and GMR policies assuming no order
crossing. In this section, we address three questions:
(1) Is the analysis in the previous sections useful in
terms of computation times? (2) Does prioritization
decrease the total cost of the system, and what is the
added value of prioritizing using the GMR policy?
(3) How does the GMR with order crossing policy
perform when order crossing is allowed? We note
that the optimal controls of the GMROC policy may
differ from those of the GMR policy (that does not
allow order crossing). To answer this question, we
compare the GMR, LQF, myopic (T), and GMROC
policies with each other and with the optimal policy
(when order crossing exists). In answering each of these
questions we also investigate the factors that affect the
answers. Possible factors are the level of uncertainty
in the production and/or transportation times, how
busy the production facility is, and the relationships
between different cost parameters.

6.1. Set Up of Numerical Study
We consider a system with one manufacturer and two
DCs. We assume that the production and transportation
times are either deterministic or exponentially dis-
tributed. We set the mean production �= 1, the holding
costs at the warehouse and DC 2 h0 = h2 = 0�5, the back-
log cost at DC 1 c1 = 10, and the other parameters are
varied as follows: the utilization �= �/� ∈ �0�5�0�8�0�9�;
the proportion of arrival rates �1/�2 ∈ �0�2�0�5�1�2�5�;
the proportion of backlog costs c1/c2 ∈ �2�5�10�; the
mean of transportation times 1/
1 = 1/
2 ∈ �2�6�; and
the proportion of holding costs h1/h2 ∈ �1�2�. This gives
a total of 720 experiments.
Let �C•�∗ � · � denote the optimal cost of policy • �

Each of these costs has two parts: holding cost at the
warehouse and holding and backlog costs at the DCs.
For FCFS, SP, MR, and GMR policies, we calculate
the former using the results from §5 and the latter
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using the closed-form results from Theorem 1 in §4.
For the LQF, myopic (T), and GMROC policies, we
obtain both parts using simulation. For the optimal
policy we obtained the optimal cost from a dynamic
program.
For each case, we calculate the relative gaps between

the cost of policy “•" and the cost of the GMR policy:

�• �= C• −CGMR

CGMR
× 100� (27)

So a positive �• means that the GMR policy is the
better policy, whereas a negative �• means that the “•”
policy is the better policy.
We next explain the exhaustive search procedure that

we used to obtain the optimal base-stock and rationing
levels under different allocation policies. We search
for the optimal base-stock and rationing levels at the
warehouse, and obtain the optimal base-stock levels at
the DCs, S∗

1 and S∗
2 , using Theorem 1 for any given set

of base-stock and rationing levels at the warehouse.
To obtain the optimal base-stock level at the ware-

house under the FCFS and SP policies, we vary S0
from 0 to M such that M =min�i� C•�i+ 2�S∗

1�S
∗
2 � >

C•�i+ 1� S∗
1� S

∗
2 � > C•�i� S∗

1� S
∗
2 ��.

Similarly, to obtain the rationing levels under the
MR policy, we search over R3 = 0 � � �M by varying R2 =
0� � � � �R3. For each R3, we look for the optimal rationing
level R2. We let M =min�i� CMR�R∗

2� i+ 2�S∗
1�S

∗
2 � >

CMR�R∗
2� i+ 1� S∗

1� S
∗
2 � > CMR�R∗

2� i� S
∗
1� S

∗
2 ��.

To obtain the optimal rationing levels under the
GMR policy, we first search R2 = 0�−1� � � � �−N and
R3 = 0�1� � � � �M such that for the given R2,

M = min
{
j� CGMR�R2� j + 2� S∗

1� S
∗
2 �

> CGMR�R2� j + 1� S∗
1� S

∗
2 �

> CGMR�R2� j� S
∗
1� S

∗
2 �
}
�

and

N = min
{
i� CGMR�i− 2�R∗

3� S
∗
1� S

∗
2 �

> CGMR�i− 1�R∗
3� S

∗
1� S

∗
2 �

> CGMR�i�R∗
3� S

∗
1� S

∗
2 �
}
�

Considering that in a system with two DCs the GMR
policy is identical to the MR policy when R2 ≥ 0, we
compare the minimum total cost found by this search
with the optimal cost calculated for the MR policy and
choose the one with lower cost as the solution of the
GMR policy.
Note that the above procedure does not guarantee

obtaining the optimal controls and cost of the system
because of the termination condition (it stops whenever
it finds two consecutive increases in cost), the sequential
procedure used to obtain the rationing levels, and

the use of numerical inversion methods to determine
required probabilities. Nevertheless, we obtain the best
possible solution under the different allocation policies
in a reasonable amount of time.
To obtain the optimal base-stock levels for the LQF,

myopic (T), and GMROC policies, we use simula-
tion. The cost is calculated from the simulation based
on the allocation rule of each policy. For the myopic (T),
the allocation rule requires calculating Fj� · �, the dis-
tribution of the number of arrivals to DC j during a
unit flow time. We calculate this distribution assuming
that there is no order crossing using (6) with wj� · � as
given in (12). Note that although we assume no order
crossing to obtain Fj � · � and make an allocation decision,
allocated orders may cross during the transportation
time in the simulation. Therefore, the base-stock levels
and cost obtained for the myopic (T) policy using
simulation is for a system with order crossing. Note
also that without the QD approach we could not
express wj� · �.
Finally, to obtain the optimal policy, we model the

system using a dynamic program and apply the value
iteration algorithm (Sennott 1999) to calculate the
optimal cost when both production and transportation
times are exponential (and therefore order crossing
may occur).

6.2. Comparison of Computational Times
The detailed results for the 720 cases show that the
computational time required to obtain the optimal
cost under the FCFS policy varies from 0.11 to 220.92
seconds with an average of 23.09 seconds; under the
SP policy, it varies from 0.2 to 191.59 seconds with an
average of 17.49 seconds; and under the GMR policy, it
varies from 0.33 to 31,921.92 seconds (8.52 hours) with
an average of 326.40 seconds. We find these average
times acceptable.
We obtain the optimal costs under the LQF, myopic (T),

and GMROC policies using simulation. Our rudimen-
tary simulation (i.e., we do not use any optimization
feature of the software to find the optimal controls)
sometimes took a very long time (more than 10 hours)
to find the optimal control and none of the simulation
runs took less then two hours. In view of these long sim-
ulation times, and as detailed in the next subsections,
we only consider 48 cases for these policies. Obtaining
the cost of the optimal policy using a dynamic program
also took a very long time. For example, for the cases
with �≥ 0�7, the value iteration algorithm could not
find the optimal cost within 72 hours. To formulate
the problem as a dynamic program and obtain the
optimal policy, we keep track of the inventory level
at the warehouse, the number of backlogs of each
DC at the warehouse, and the inventory on transit to
each DC. Truncating inventory and backlogs at 20, we
have 205 = 3�200�000 possible states. In view of long
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run times, we only consider six cases for the optimal
policy.
We observe that computational times increase with

utilization. This is because higher utilization implies
higher base-stock levels, increasing the range of the
exhaustive search.
The results in this subsection indicate that our exact

derivations are practical in terms of computational
times for almost all combinations of parameters, but
the computational times of finding the optimal LQF
and myopic (T) costs as well as the optimal policy are
not comparable with the times required for the other
policies.

6.3. Importance of Prioritization
In this section, we discuss whether prioritization is
helpful by comparing the performance of the FCFS,
SP, MR, and GMR policies first analytically and then
numerically. These results are based on our analytical
derivation with no order crossing.

6.3.1. Theoretical Comparison. Recall from §3 that
the SP policy is a special case of the MR policy and
that both the MR and FCFS policies are special cases of
the GMR policy. Therefore, we have the following:

Observation 1. In a two-echelon inventory system,
we have CGMR

∗
� · �≤ CMR

∗
� · �≤ CSP

∗
� · �� and CGMR

∗
� · �≤

CFCFS∗� · �.
6.3.2. Numerical Comparison. The summary of

the comparisons between the performance of the FCFS,
SP, MR, and GMR polices are given in Tables 3 and 4.
The first row of each table indicates the distributions
of (production, transportation) times. These tables
show how the average relative gaps change when a

Table 3 Average Relative Gaps When Transportation Times Are

Deterministic

(Det., Det.) (Exp., Det.)

�FCFS �SP �MR �FCFS �SP �MR

h1 0.5 8�44 1�32 1�32 12�63 0�97 0�97
1 9�62 0�29 0�29 15�19 0�78 0�51

1/	i 2 11�04 0�61 0�61 15�57 0�61 0�40
6 7�02 0�99 0�99 12�25 1�13 1�07

c1/c2 2 2�99 1�65 1�65 4�18 1�24 1�24
5 8�92 0�59 0�59 13�99 0�90 0�82
10 15�18 0�16 0�16 23�56 0�48 0�15


 0.5 1�66 0�23 0�23 2�83 0�41 0�41
0.8 7�59 1�01 1�01 13�39 0�88 0�74
0.9 17�84 1�16 1�16 25�51 1�34 1�06

�1/�2 0.2 4�51 0�38 0�38 7�17 0�73 0�73
0.5 7�15 0�71 0�71 12�62 1�09 1�09
1 9�68 0�97 0�97 16�04 0�74 0�74
2 12�21 1�20 1�20 18�23 0�83 0�65
5 11�59 0�75 0�75 15�50 0�98 0�47

Average 9�03 0�80 0�80 13�91 0�87 0�74

Table 4 Average Relative Gaps When Transportation Times Are

Exponential

(Det., Exp.) (Exp., Exp.)

�FCFS �SP �MR �FCFS �SP �MR

h1 0.5 3�66 2�65 2�65 7�81 2�80 2�80
1 5�29 0�64 0�64 10�05 0�65 0�62

1/	i 2 7�47 1�49 1�49 12�76 1�12 1�08
6 1�48 1�80 1�80 5�10 2�34 2�34

c1/c2 2 1�56 2�67 2�67 2�84 2�83 2�83
5 4�42 1�47 1�47 8�94 1�58 1�58
10 7�45 0�80 0�80 15�01 0�78 0�73


 0.5 0�82 0�48 0�48 1�64 0�55 0�55
0.8 3�36 1�67 1�67 7�59 1�98 1�97
0.9 9�25 2�78 2�78 17�55 2�65 2�62

�1/�2 0.2 3�50 0�12 0�12 5�26 0�26 0�26
0.5 3�95 0�70 0�70 7�86 0�99 0�99
1 4�54 1�91 1�91 10�12 2�03 2�03
2 5�23 2�85 2�85 11�49 2�89 2�89
5 5�15 2�65 2�65 9�90 2�47 2�39

Average 4�48 1�64 1�64 8�93 1�73 1�71

parameter changes. Over the 720 cases, the average
cost savings of the GMR with respect to the FCFS is
9�08% with a minimum and a maximum of 0�01% and
64�02%, respectively (the detailed numerical examples
are not provided here). This demonstrates the value of
prioritizing using the GMR policy.
Below we make several comments and suggestions

based on the detailed numerical results; overall, we
find that prioritization has value when it is done
properly—as with the GMR.
1. In contrast to the centralized settings where the

MR and SP polices outperform the FCFS policy (see,
e.g., ABB), in some cases the FCFS policy outperforms
the MR policies. For example, in Table 4 with 1/
i = 6,
deterministic production and exponential transporta-
tion times, the average relative gap of the FCFS policy
is less than the average relative gaps of the MR policies.
2. The MR policy, which is known to be optimal

in the centralized M/M/1 make-to-stock system, is
often identical to the SP policy in the two-echelon
inventory system. In the 720 cases considered, there are
only 17 cases in which the MR policy outperforms the
SP policy. In these 17 cases, the production times are
exponential and the relative gap between the FCFS and
GMR policies is high. The reason is that since there is a
delay between the warehouse and the DCs, it is more
beneficial to keep the inventory at the high-priority
DC instead of keeping products at the warehouse for
this DC. In other words, if we want to keep inventory
to decrease the chance of backlogging at the high-
priority DC, it is more beneficial to keep it at the DC
rather than at the warehouse.
3. As h1 increases, the average relative gap of the

FCFS policy increases, whereas the average relative
gaps of the SP and MR polices decrease. This is expected
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because as the base-stock level at DC 1 decreases, the
probability of backlog at this DC increases. This obser-
vation suggests that prioritization is more important
when inventory holding costs are high.
4. As the transportation times increase, 1/
i, the

average relative gap of the FCFS policy decreases,
and the average relative gaps of the SP and MR poli-
cies increase. Intuitively, as the transportation times
increase, the two-echelon system behaves more like a
decentralized system, and therefore the SP and MR
policies introduced for the centralized systems become
less effective.
5. As c1/c2 increases, the average relative gap of the

FCFS policy increases, whereas the average relative
gaps of the SP and MR polices decrease. Intuitively,
prioritization has a higher value when the difference
between backlog costs is higher. Interestingly, from
the detailed results, we see that the average rate at
which the gap of the FCFS policy increases when c1/c2
increases independently of the transportation times.
6. As � increases, the average relative gap of all three

policies increases. Intuitively, as � increases, the average
number of orders in the system increases, and therefore
prioritization becomes more important. Interestingly,
the rate at which the relative gaps of the SP and MR
priority policies increase is low compared to the rate at
which the gap of the FCFS policy increases.
7. The effect of �1/�2 on the average relative gaps is

interesting. These gaps first increase and then decrease.
This suggests that prioritization is more important
when the demands made by different DCs are similar.
Furthermore, our detailed numerical results demon-
strate that when the utilization of the system is low, the
rate at which the gap of the FCFS changes by changing
�1/�2 is much lower than when the utilization of the
system is high.

6.4. Comparing the GMR Policy with LQF and
Myopic (T) Policies

In this section, we consider the LQF and myopic (T)
policies and investigate the relative performance of the
GMR policy compared to these policies. We recall that
myopic (T) uses more information on the number of
units at the DCs, thus, it is expected to lead to a lower
cost. To examine the impact of the order crossing in
time when the transportation times are stochastic, we
also consider the GMROC policy. In §6.4.1 we investi-
gate the performance of the GMR policy in a system
with no order crossing by considering deterministic
transportation time. To examine the performance of
the GMR policy in a system with order crossing, we
consider stochastic (exponential) transportation times
in §6.4.2.
We present numerical examples for only 48 cases

in Tables 5 and 6. In these cases, we set the mean
production �= 1, the holding costs at the warehouse
and DCs h0 = h1 = h2 = 0�5, the backlog cost at DC 1

Table 5 GMR Policy vs. Myopic (T), and LQF Policies When

Transportation Times Are Deterministic

(Det., Det.) (Exp., Det.)

1/	j c1/c2 �1/�2 �MT �LQF �MT �LQF

2 2 0.5 0�46 −0�85 2�04 6�23
1 3�80 −2�68 2�46 3�89
2 5�29 −1�66 −1�29 −0�82

5 0.5 0�02 10�50 −0�70 17�63
1 0�24 4�17 1�16 16�69
2 1�81 7�02 −2�30 6�59

6 2 0.5 3�03 −1�08 4�01 3�72
1 5�09 −3�60 6�21 2�56
2 4�67 −2�74 3�68 −2�37

5 0.5 −0�11 4�00 0�47 11�24
1 2�18 0�93 2�29 10�27
2 1�51 −0�67 −0�50 7�64

Average 2�33 1�11 1�46 6�94

c1 = 10, the manufacturer’s utilization �= �/�= 0�8,
and the other parameters are varied as follows: the
proportion of arrival rates �1/�2 ∈ �0�5�1�2�, the pro-
portion of backlog costs c1/c2 ∈ �2�5�, and the mean of
transportation times 1/
1 = 1/
2 ∈ �2�6�. For each policy
and test, we calculated the relative gap of this policy
with respect to the GMR policy, as in (27). We use LQF
and MT to denote the LQF and myopic (T) policies,
respectively, in Tables 5 and 6.

6.4.1. Performance of the GMR Policy in a System
Without Order Crossing. In this section, we focus
on systems with deterministic transportation times
in which there is no order crossing. The results in
Table 5 indicate that the GMR policy outperforms the
myopic (T) and LQF policies in the majority of cases.
This implies that when the assumption of the no order
crossing holds, the GMR policy performs well.

6.4.2. Performance of the GMR Policy in a System
with Order Crossing. In this section, we consider
systems with exponential transportation times in which
orders may cross each other in time, and compare the
performance of the LQF, myopic (T), and GMROC with
the GMR policy.
The results in Table 6 show that the myopic (T) and

LQF policies outperform the GMR policy in most cases
where transportation times are exponential, irrespective
of the production times. Interestingly, �GMROC, the
relative gap between the GMR policy with and without
order crossing, shows that the impact of the order
crossing can be significant with an average of −20�23 in
the examples that we considered. Moreover, although
either myopic (T) or the LQF policy outperforms the
GMROC policy, neither one of them dominates the
GMROC policy.
Note that in practice, uncertainty in transportation

times is typically much lower than the uncertainty in
production and waiting times. The intiution behind
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Table 6 GMR Policy vs. GMROC, Myopic (T), and LQF Policies When Transportation Times Are Exponential

(Det., Exp.) (Exp., Exp.)

1/	j c1/c2 �1/�2 �GMROC �MT �LQF �GMROC �MT �LQF

2 2 0.5 −10�52 −10�74 −13�42 −4�00 −4�00 −3�70
1 −10�22 −3�45 −14�15 −5�03 −1�34 −5�92
2 −11�05 −2�86 −15�36 −3�88 −5�19 1�36

5 0.5 −11�83 −13�49 −7�41 −6�89 −8�26 8�69
1 −10�26 −8�24 −12�34 −8�28 −8�65 3�95
2 −12�25 −9�01 −13�49 −6�75 −9�03 −2�89

6 2 0.5 −32�16 −36�78 −40�77 −20�54 −13�08 −31�35
1 −29�56 −35�74 −42�25 −21�78 −18�42 −26�29
2 −27�06 −30�61 −41�34 −20�84 −11�53 −30�47

5 0.5 −30�16 −38�33 −37�19 −23�24 −27�50 −19�91
1 −29�38 −38�09 −41�04 −24�09 −19�64 −26�31
2 −28�30 −41�95 −44�30 −22�13 −18�67 −31�01

Average −20�23 −22�44 −26�92 −13�95 −12�11 −13�66

the benefit of the GMR in this setting is that this
policy prioritizes the DCs at the production facility;
therefore, its prioritization does not improve control of
transportation times (see comment 4 in §6.3.2).

6.5. Comparing the GMR Policy with the
Optimal Policy

In this section, we compare the optimal policy with
the FCFS, MR, SP, GMR, GMROC, myopic (T), and
LQF policies. We present numerical examples for only
six cases in Table 7. In these cases, we set the mean
production �= 1; the holding costs h0 = 0�5, h1 = 1,
h2 = 0�5; the backlog cost at DC 1 c1 = 10; the proportion
of arrival rates �1/�2 = 1; the mean of transporta-
tion times 1/
1 = 1/
2 = 2 (transportation times are
exponentially distributed); and the other parameters
are varied as follows: the manufacturer’s utilization
� = �/� ∈ �0�5�0�6�, and the proportion of backlog
costs c1/c2 ∈ �2�5�10�. For each policy we calculate the
relative gap of this policy with respect to the optimal
policy

�opt• �= C• −Coptimal

Coptimal
× 100� (28)

The numerical results given in Table 7 demonstrate
that if we ignore order crossing during transportation,
the gap between the optimal policy and the GMR
policy is high. But the relative gap between the optimal
policy and the GMROC policy that considers order

Table 7 Comparison Between the Optimal Policy and the Other Policies


 c1/c2 �optFCFS �optSP �optMR �optGMR �optGMROC �optMT �optLQF

0.5 2 22�56 21�34 21�34 20�80 0�02 3�03 3�45
5 22�82 18�28 18�28 18�28 0�54 1�26 5�03
10 24�82 17�91 17�91 17�91 4�05 0�15 7�62

0.6 2 24�26 22�22 22�22 22�19 2�95 3�07 5�31
5 26�96 21�82 21�82 21�56 0�21 1�32 11�02
10 29�40 21�58 21�58 21�40 0�44 0�69 13�70

Average 25�14 20�52 20�52 20�35 1�37 1�59 7�69

crossing is low. Moreover, from Table 7, and as demon-
strated in §6.4.2, when we allow orders crossing, the
performance of the GMROC policy is comparable with
the LQF and mypoic (T) policies. Thus, although we
developed the GMR policy for the no order cross-
ing case, where it is analytically tractable, this policy
appears quite effective even when order crossing is
allowed. However, in such cases, similar to other poli-
cies, finding the optimal control of the GMROC policy
is time consuming.

7. Conclusion
In this paper, we studied a two-echelon inventory
system with several DCs where the supplier has limited
production capacity and where both production and
transportation times are general. We demonstrated that
the queueing decomposition approach can be used to
provide an exact analysis of several different policies
for this system, namely, the FCFS, SP, MR, and GMR
policies. We numerically compared the total cost of the
system under these policies to the LQF, myopic (T), and
optimal policies. This comparison shows that the GMR
policy is beneficial in many cases. We also obtained
the optimal cost of the system for several cases and
demonstrated that the impact of order crossing can be
high. Our derivations and numerical results suggest
several insights on how to manage multiechelon sys-
tems with several classes of customers: (1) developing
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new prioritization policies for the multiechelon system
such as the GMR policy; (2) prioritizing according to
the backlog costs when the uncertainty is in produc-
tion times rather than transportation times is effective;
and (3) in contrast to the centralized setting, in the
decentralized setting prioritization is more valuable
only when the warehouse is out of stock.
Finally, we note that the model presented in the paper

can be applied to spare systems with two transit legs,
one to move the replacement part from the warehouse
to the DC, and other to move the failed unit from the
DC to the warehouse for repair and refurbishment.
With regard to the time required to move the failed
unit from the DC to the warehouse, such additional
transportation time can be incorporated into our model
as follows: Assume, as is typical in manufacturing
models of make-to-stock queues, that supply of raw
materials is ample. Then, we model this transportation
time for facility j as an independent M/Gj/�, the
output process of such a queue—that is the arrival
process to the warehouse from DC j—is still Poisson
and so is the total arrival process to the warehouse.
Therefore, we can consider the transportation time in
the paper as the convolution of the transportation time
from the DC to the warehouse with the one from the
warehouse to the DC and all results in the paper would
still hold. Although assuming ample raw materials in
spare part systems may not be realistic, we still believe
that the priority policies introduced in this paper could
be useful in practice.
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