
This article was downloaded by: [142.150.190.39] On: 28 April 2014, At: 08:54
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Using Strategic Idleness to Improve Customer Service
Experience in Service Networks
Opher Baron, Oded Berman, Dmitry Krass, Jianfu Wang

To cite this article:
Opher Baron, Oded Berman, Dmitry Krass, Jianfu Wang (2014) Using Strategic Idleness to Improve Customer Service
Experience in Service Networks. Operations Research 62(1):123-140. http://dx.doi.org/10.1287/opre.2013.1236

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2014, INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org



OPERATIONS RESEARCH
Vol. 62, No. 1, January–February 2014, pp. 123–140

ISSN 0030-364X (print) � ISSN 1526-5463 (online) http://dx.doi.org/10.1287/opre.2013.1236

©2014 INFORMS

Using Strategic Idleness to Improve Customer
Service Experience in Service Networks

Opher Baron, Oded Berman, Dmitry Krass
Rotman School of Management, University of Toronto, Toronto, Ontario M5S 3E6, Canada

{opher.baron@rotman.utoronto.ca, berman@rotman.utoronto.ca, krass@rotman.utoronto.ca}

Jianfu Wang
Nanyang Business School, Nanyang Technological University, Singapore 639798, Republic of Singapore, jianfu.wang.ntu@gmail.com

The most common measure of waiting time is the overall expected waiting time for service. However, in service networks

the perception of waiting may also depend on how it is distributed among different stations. Therefore, reducing the

probability of a long wait at any station may be important in improving customers’ perception of service quality. In

a single-station queue it is known that the policy that minimizes the waiting time and the probability of long waits is

nonidling. However, this is not necessarily the case for queueing networks with several stations. We present a family of

threshold-based policies (TBPs) that strategically idle some stations. We demonstrate the advantage of strategically idling

by applying TBP in a network with two single-server queues in tandem. We provide closed form results for the special case

where the first station has infinite capacity and develop efficient algorithms when this is not the case. We compare TBPs

with the nonidling and Kanban policies, and we discuss when a TBP is advantageous. Using simulation, we demonstrate

that the analytical insights for the two-station case hold for a three-station serial queue as well.
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1. Introduction

Multistage service networks, where customers must visit

several stations during a single service encounter, abound in

modern economy. Examples range from call centers, where

a typical service path may include an automated response

system, followed by a generalist call taker, and eventually

(and if required) a specialist, to hospital emergency rooms,

where the initial triage stage may be followed by any num-

ber of medical tests and procedures.

Although there are many determinants of service quality,

the link between customer waiting times and the perceived

service quality is well recognized (Friedman and Fried-

man 1997, Taylor 1994). Waiting times have long been the

focus of much of the queueing literature. The most com-

mon measure of waiting time is the overall expected wait-

ing time for service (see, e.g., the survey by Gans et al.

2003). A related measure is the probability that the total

waiting time exceeds a certain predefined threshold. These

measures take a macro view of the network, treating it as

a one-stage system.

However, considering only such macrolevel measures

might not be sufficient to measure service quality and may

even be misleading. There is a strong body of evidence

showing that it is also important to consider what happens

within the network. A poor level of service received at a

particular station may not be compensated by an excep-

tional service at another station, even if the overall measure

appears to be acceptable. The adverse impact of a long

waiting time at a particular station is further supported by

marketing literature, e.g., Soman and Shi (2003), and by

the psychology of queueing literature, e.g., Larson (1987).

Baron et al. (2008), Baron and Milner (2009), de Veŕicourt

and Jennings (2011), and references therein also focused

on the probability of a long waiting time as a service-level

measure.

Several other papers looked beyond the traditional mean

waiting time measures. de Véricourt and Zhou (2005) ana-

lyzed a call-routing problem while considering both the

call resolution probability and the average service time in

the overall service-level measure. Mehrotra et al. (2012)

considered a similar problem with heterogeneous servers.

Saghafian et al. (2012) analyzed the service policy in emer-

gency departments while considering the weighted average

of the expected length of stay and the expected time to first

treatment.

We recently encountered an explicit example of focusing

on the probability of overly long waits at any single station

at a company we call XYZ (name changed to protect con-

fidentiality), one of the leaders in preventive healthcare ser-

vices in North America. The company’s primary clientele

are executives and busy professionals, so its primary focus

is on providing excellent customer service experience. XYZ

operates a service network with 15–20 stations. In addition

to closely tracking macrolevel measures, the company also

records all instances where a customer waits longer than

20 minutes at a station. Any such incident results in a red
face flashing on the manager’s screen, who takes immedi-

ate steps to expedite the customer. All red face incidents
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are regarded as service failures, irrespective of whether cus-

tomer’s overall waiting time in the system was acceptable

or not. We note that this example is not unique, e.g., the

proportion of customers waiting longer than a specified

time at a station is a common key performance indicator in

call centers. The focus on long waits implies that service

quality is affected not only by the overall waiting time, but

also by the distribution of waiting among stations.

The focus of this paper is to simultaneously consider

two objectives in a service network, one based on some

macrolevel measure and one based on the probability of
excessive wait at any one station. The difference in man-

aging these two objectives can be rather dramatic. Indeed,

the macrolevel service measures are typically minimized by

using work-conserving policies, where system resources are

not idled as long as there is work in the system. Such poli-

cies are optimal with respect to minimizing overall service

times and are the focus of most studies of queueing net-

works (see, e.g., Chen and Yao 2001 and reference therein).

However, using a work-conserving policy is not necessar-

ily a good idea when it comes to the second objective.

Consider a situation where one station in the network accu-

mulates a long queue, while the waiting times are low at

the upstream stations. In such a case, continuing to operate

upstream stations at the normal rate may increase the prob-

ability of excessive waits at downstream stations. A bet-

ter idea may be to temporarily reduce the service rate or

idle the upstream stations, allowing the downstream queue

to dissipate. By intentionally idling some resources we

are effectively redistributing the waiting times more evenly

within the network. As long as such redistribution does not

significantly increase the overall system times (i.e., the first

objective), it may well improve the overall customer service

experience.

Our objective is to propose and analyze a class of

scheduling policies that intentionally idle some resources

to reduce the probability of excessive waits at any one sta-

tion. We refer to such intentional idling of resources as

strategic idleness (SI). Note that the classical way of reduc-

ing waiting time and probabilities of long waits is to add

resource capacity to the system (e.g., adding a doctor in the

healthcare setting), which is often quite expensive. On the

other hand, changing the scheduling rules to intentionally

idle some resources can often be done at a negligible cost.

Thus, a switch to an SI policy may be very cost-effective of

improving customer service experience. Indeed, we estab-

lish that in contrast to the single station queue, where a non-

idling (NI) scheduling policy minimizes both the sojourn

time and the probability of long waits, for a multistage

queueing network, policies with SI may significantly reduce

the probability of long waits while only slightly increasing

the overall time in the system. To the best of our knowl-

edge, ours is the first paper to systematically study SI as a

mechanism for reducing the probability of excessive waits

and improving the customer service experience.

In service networks, long waits can be measured in a

variety of ways. For example, consider a two-station tan-

dem queue with station 1 as the upstream machine and sta-

tion 2 as the downstream one. The specific measure we con-

sider is PW�t�= 1

2

∑2
i=1 P�Wi > t�, where Wi is the steady

state customers’ waiting time for station i, and t is the

time threshold designating an “excessive wait.” We inter-

pret PW�t� as the frequency with which customers experi-

ence excessive waits. We note that in place of PW�t� one

can use other related measures, e.g., 1−P�W1 < t�W2 < t�,
i.e., the probability that a customer experiences at least one

excessive wait.

There are many possible policy classes that involve SI.

Our primary focus is on a specific family of threshold-
based policies �TBPs�. The idea behind the TBP is simple,

it compares the difference between queue lengths at differ-

ent stations and idles some upstream stations if this differ-

ence is larger than a predetermined threshold. For example,

consider the two-station tandem queue described above: let

q1, q2 be the lengths of queues in front of the respective

stations. A TBP, defined by the value of the threshold TH,

idles station 1 whenever the difference q2 − q1 � TH (we

only consider TH � 0 as using TH < 0 is clearly coun-

terproductive, e.g., with TH = −1 when q1 = 1, q2 = 0,

station 1 would be idled).

We note that, assuming Poisson arrivals to station 1 and

exponentially distributed and independent service times at

both stations, the performance of the NI policy is easy to

analyze (see, e.g., Ross 2000, Chapter 8). However, such

an analysis for the system operating under the TBP is quite

challenging for several reasons. First, the process is not

reversible, so arrivals to station 2 do not follow a Poisson

process. Second, as explained in §3, a customer’s waiting

time for station 1 depends on future arrivals, so Little’s

distributional law (see, e.g., Bertsimas and Nakazato 1995,

Bertsimas and Mourtzinou 1996) does not hold.

We develop efficient algorithms to calculate the distribu-

tion of waiting time for each station and the system sojourn

time under the TBP. These algorithms use a new analysis of

the waiting time faced by specific customers. Using these

results we present trade-off curves between the probability

of long waits and the expected sojourn time. (Note that the

distribution of the system sojourn time can provide other

measures than the mean, but the trade-offs between PW�t�
and these measures are similar to the trade-off between

PW�t� and the mean sojourn time.) For the asymptotic case

when �1 =�, we derive closed form expressions for the

performance measures. We derive interesting insights that

also hold in the case of finite processing capacity for both

stations.

Our results show that TBP can significantly reduce the

probability of long waits (as expressed by PW�t� or sim-

ilar measures) versus the NI policy as long as the waits

of length t are sufficiently rare in the system. If, on the

other hand, the frequency of such “excessive” waits is

high under the NI policy (indicating that they are not, in
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fact, excessive), then the TBP is unlikely to provide an

improvement—the only way to decrease such waits is by

adding capacity.

We also consider the class of TBPs in a tandem queue

network with three stations. By developing a simulation

model, we show that a TBP can reduce the probability

of long waits while only slightly increasing sojourn times.

A comparison with Kanban policies indicates that the TBPs

perform significantly better in this case.

We note that service systems, such as XYZ, do not

always reach steady state before the end of a business day.

Moreover, such systems often operate a nonserial queueing

network. However, the results for the serial system under

the steady state assumption still provide valuable insights

for such systems. Specifically, polices with SI such as the

TBP can improve customers’ perception of the service level

with little cost. In Baron et al. (2014), we tested a gen-

eralized TBP with a simulation model of the open-shop

operation of XYZ; we indeed established that TBP can be

effective in improving customers’ perception of the service

level.

The outline of this paper is as follows. In the next sec-

tion, we provide a brief discussion of other policies with

idling. After introducing the TBP for the two-station net-

work in §3, we consider the asymptotic �1 = � case in

§4. In §5, we analyze the case of finite processing rate for

both stations. In §7, we discuss generalization of the TBPs,

to n-station serial queues and list several open questions.

All proofs are in Section EC.1 of the e-companion (avail-

able as supplemental material at http://dx.doi.org/10.1287/

opre.2013.1236).

2. Literature Review—Other

Policies with Idling

Note that the main idea behind the TBP—idling an

upstream station when a downstream station is facing a

large workload—can be achieved by other policy classes.

We next briefly review classes of policies that are discussed

in the literature of manufacturing systems.

Masin et al. (2005) developed a unified model that

encompasses and compares a wide range of production con-

trol policies. We follow their exposition focusing on a serial

manufacturing system with M stations, and each station i
has an input pile, IPi, and an output pile, OPi, for i =
1� � � � �M . Let OP0 represent an ample pile of raw mate-

rials, i.e., OP0 = �. Each part waits in IPi before being

processed at station i and then transferred to OPi, and stays

in OPi until it can be transferred to IPi+1.

There are four well-known static control policies (i.e.,

controls that are independent of the system state): the fixed
buffer policy (see, e.g., Conway et al. 1988) places a finite

buffer FBi+1 between stations i and i+ 1, i.e., IP1 < FB1

and OPi + IPi+1 � FBi+1 for i = 1� � � � �M − 1; the Kan-

ban policy, implemented by Toyota (Sugimori et al. 1977),

places an upper bound KBi on the total number of parts

associated with station i, i.e., IPi + OPi � KBi for i =
1� � � � �M ; the constant work in process (CONWIP) policy,
first presented by Spearman et al. (1990), places an upper

bound CW on the total number of parts in the system, i.e.,∑M
j=1�IPj +OPj ��CW (for a recursive calculation of sev-

eral performance measure in a resulting closed queueing

network, see Solberg 1977); the base-stock policy (see, e.g.,

van Ryzin et al. 1993) places an upper bound BSi on the

total number of parts at the downstream of station i, i.e.,∑M
j=i�IPj +OPj �� BSi for i= 1� � � � �M .

More sophisticated dynamic control policies where con-

trols depend on the state of the system were also studied.

Weber and Stidham (1987) considered a general model for

control of service rates (�i ∈ 	0� �̄i
) in a serial or closed

queueing network, where control policies depend on the

entire state vector q = �q1� q2� � � � � qM�, where qi =OPi−1+
IPi. They considered the sum of total inventory holding cost

and station operating cost as the objective function. They

provided necessary conditions, called the “monotonicity

result,” for any control policy to be optimal: (1) the optimal

service rate at station i does not decrease as a customer

finishes service at another station; (2) the optimal service

rate at station i does not increase as a customer finishes ser-

vice at station i. They applied their monotonicity result to

models where stations can only be turned on or off (�i = 0

or �̄i) and showed that it is optimal to turn an off-station

on as the numbers of customers at its downstream stations

decrease, or as the numbers of customers at upstream sta-

tions increase. Note that the four control policies discussed

above and TBP all satisfy this monotonicity result. Veatch

and Wein (1994) considered the optimal control of a two-

station tandem production/inventory system with a similar

objective function. They compared these four policies, gave

conditions under which certain simple controls are optimal,

and computed the dynamic optimal controls using dynamic

programming.

There are several conceptual differences between the

control policies discussed above, tailored to manufacturing

systems, and the TBP, tailored to service systems. First,

the main motivation behind developing policies in manu-

facturing setting is the control of expected inventory costs.

This motivation is different for service systems focusing

on the effect of the distribution of waiting time on cus-

tomers’ experience. As we demonstrate below, this differ-

ent motivation also leads to a different analysis. In fact,

to the best of our knowledge, no analysis of the distribu-

tion of waiting times under the policies mentioned above is

available; such an analysis appears to be subject to many

of the challenges as in the analysis of the TBP. Second,

another important modeling difference is that the control

for manufacturing systems is often modeled as a make-to-

stock system, whereas the control for service systems must

be modeled as a make-to-order system. Third, from a mod-

eling perspective, the supply and demand models are also

different in a service system: the service at a first station

is initiated by an exogenous arrival process, and customers

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

42
.1

50
.1

90
.3

9]
 o

n 
28

 A
pr

il 
20

14
, a

t 0
8:

54
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



Baron et al.: Using Strategic Idleness to Improve Customer Service Experience
126 Operations Research 62(1), pp. 123–140, © 2014 INFORMS

leave the system as they complete service at the last station,

whereas in manufacturing the exogenous demand arrives to

the last station. A final difference is with respect to admis-

sion control. In contrast to our model, where all customers

are accepted, models for manufacturing systems often oper-

ate with admission control where not all arriving orders

are fulfilled. (Note that IP1 is bounded in the four policies

above, so not all arriving customers are admitted. Still, if

all customers need to be admitted, IP1 can be removed from

all constraints. For example, a CONWIP policy could place

an upper bound CW on the total number of parts without

considering IP1, i.e., OP1 +
∑M

j=2�IPj +OPj ��CW .)

Despite these differences, the control policies developed

for manufacturing systems can be applied in service sys-

tems (sometimes with a few modifications). When applied

in a two-station tandem queue service system without

admission control, the fixed buffer, Kanban, CONWIP, and

base-stock policies can all be shown to be equivalent. To

illustrate the equivalence of Kanban policy and fixed buffer

policy, note that a Kanban policy with KB1 and KB2 is

equivalent to a fixed buffer policy with buffer size FB2 =
KB1 + KB2 between the two stations; and a fixed Buffer

policy with buffer size FB2 is equivalent to a Kanban policy

with KB1 = 1 and KB2 = FB2 − 1. Thus, in the two-station

tandem queue service system we consider in this paper,

we focus on a Kanban policy that idles station 1 whenever

q2 � BS, where BS is the size of the buffer between the

two stations.

In this paper, we compare our TBP with the Kanban

policy. Note that in the two-station case, our TBP is a

more sophisticated dynamic control policy, where the upper

bound of q2 is a linear function of q1, i.e., station 1 is idled

whenever q2 � q1 + TH; and a Kanban policy idles sta-

tion 1 based only on q2 � BS irrespective of the value of

q1, and thus—intuitively—it provides less flexible control

than a TBP. This intuition appears to be supported by our

results. For the asymptotic case when station 1 has infinite

processing capacity, we derive closed form expressions for

the PW�t� measure under a Kanban policy, allowing us to

make analytical comparisons to a TBP. For the finite capac-

ity case, we use Monte Carlo simulation to compare TBP

and Kanban policies. Our results indicate that, similar to a

TBP, the Kanban policy allows for the trade-off between

the PW�t� measure and expected service times. However,

this policy appears to be less efficient than the TBP.

In closing this section we note that (i) the idea of inten-

tionally idling a capacitated resource has also been consid-

ered by Afèche (2013). In the revenue management context,

he showed how such delays can allow a seller to differen-

tiate between customer types and thus improve the over-

all profit. His motivation and analysis are much different

from ours. (ii) Recent polices for control of manufactur-

ing systems often considered prioritization among several

customer classes, but are focused on a single-stage system.

Ha (1997a, b) was the first to discuss inventory rationing

problems in a centralized make-to-stock system. He focused

on base-stock-level production control. (iii) In the revenue

management context, Caldentey and Wein (2006) developed

a diffusion approximation for profit maximization with two

classes of customers. They showed that a dynamic control

policy based upon the inventory or backlog level is effective.

Finally, we are aware that there are other policies that

consider the entire system state. This paper serves as a

stepping stone motivating the analysis of such policies in

service systems.

3. Two Queues in Tandem—

Preliminary Analysis

Consider the two-station tandem queueing network with

two sequential single server stations and infinite buffer

space discussed before. We define a simple TBP for this

network as follows: upon completing service, station 1 is

idled and will not admit the next customer to service if

��q1� q2�= q2 − q1 � TH�

Station 1 will resume work once ��q1� q2� < TH. When no

ambiguity arises, we will use � instead of ��q1� q2�. We

denote TBP�TH� as the TBP with threshold TH . We say

that a customer is stopped (at station 1) if this customer is

waiting at station 1 while this station is idled.
Three events can occur in this tandem queueing network:

1. Arrival—Arrival to the network decreases � by 1.

Arrivals occur with rate � at any state.

2. Completion 1—Service completion at station 1

increases � by 2. This happens with rate �1, if q1 � 1 and

�< TH (when station 1 is not idled).

3. Completion 2—Service completion at station 2

decreases � by 1. This event has rate �2, if q2 � 1.

Note that since � decreases when station 2 completes

service or when a new customer arrives to station 1, either

of these two events may cause station 1 to resume work.

From these three events, we conclude that there are two

situations when station 1 is idled: �= TH or �= TH + 1.

When �= TH+1, station 1 is idled, so only arrival or Com-

pletion 2 can happen in the network. After a time period,

which is distributed ∼ exp�� + �2�, one of these events

happen, reducing � to TH. Note that station 1 remains

idled. This sequence repeats and after another time period

∼ exp��+�2�, � is reduced to TH−1, at which point sta-

tion 1 resumes work, and its idle period ends. We define

stoppage as the time period from the moment when the

value of � changes and station 1 becomes idled until the

moment when either arrival or Completion 2 happens. With

this definition, when � = TH + 1, customers in station 1

experience two stoppages before station 1 resumes work;

when �= TH� they experience only one stoppage.

Let Qi�t�, i= 1�2 be the random variable (RV) denoting

the total number of customers at station i (in queue and

in service) at time t. Given TH, the process �Q1�t��Q2�t��
is a continuous time Markov chain (MC). Let q1� q2
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denote the steady state probability of MC�Q1�Q2�. Let

S be the sojourn time for any customer, i.e., S =
total waiting time+ total service time. Let �2 = �

�2
.

To investigate the trade-off between PW�t� and E	S

under the TBP, we first characterize the distribution of three

steady state service measures: the waiting time at station 1,

W1; the waiting time at station 2, W2; and the sojourn time,

S. We can calculate the distributions of these three mea-

sures by conditioning on the state �q1� q2� seen by a ran-

dom arrival. Let Xq1� q2 be any one of these three measures

experienced by a tagged customer (TC) who arrives in state

�q1� q2�. Then, the steady state distribution of X can be

calculated as

P�X > t�

= ∑
q1� q2

P�Xq1� q2 > t � TC sees �q1� q2� at arrival�

·P�TC sees �q1� q2� at arrival�

= ∑
q1� q2

P�Xq1� q2 > t � TC sees �q1� q2� at arrival�q1� q2
� (1)

where the second equality follows by Poisson Arrivals See

Time Average.

Similar to �1�, the Laplace transform (LT) of X can be

written as

LX�h�=
∑
q1�q2

LXq1�q2�h �TC sees �q1�q2� at arrival�q1�q2
� (2)

4. Asymptotic Case: Station 1 Has an

Infinite Service Capacity

We next calculate the steady state performance measures

under the TBP and compare them with the measures for the

nonidling network and the Kanban policy when station 1

has infinite capacity. For convenience, we denote quantities

related to this asymptotic case with a ,̂ e.g., Ŵi is the wait-

ing time at station i. A full list of notation can be found in

Table EC.1 in Section EC.5 of the e-companion.

The MC for the �1 = � case is depicted in Figure 1.

As described in §3, three events occur in this MC: arrival,

Completion 1, and Completion 2. However, since Comple-

tion 1 happens instantaneously, only two events are shown

on the figure: arrival (at rate �) and Completion 2 (at rate

�2). Consider the state �0�TH�, where station 1 is idled

under the TBP. An arrival momentarily bring the MC to

state �1�TH�, where �= TH−1, and thus station 1 resumes

work, instantaneously bringing the MC to state �0�TH+1�
and idling station 1 again. At the next arrival the MC tran-

sitions to state �1�TH + 1�, where � = TH and thus the

newly arrived customer is stopped. This stoppage lasts until

either a new arrival, which allows the system to process the

first customer from station 1 and sends the system to state

�1�TH + 2�, or Completion 2, which also releases the cus-

tomer from station 1 and sends the system to �0�TH�. In
general, whenever q1 > 0, station 1 is idled and the system

is either in state �q1� q1 +TH� or �q1� q1 +TH + 1�.

The steady state distribution of this simple birth and

death MC (similar to the solution of an M/M/1 queue), for

q1 = 0� q2 = 0� � � � �TH + 1 and for q1 > 0, q2 = q1 + TH,

q1 +TH + 1, is

q1� q2
= �

q1+q2
2 �1−�2�� (3)

Remark 1. If we consider q1+q2 as the total queue length,
this network has the same steady state probability distribu-

tion as an M/M/1 queue with �2 = �/�2. Because station 2

works as long as there are customers in the network, the

sojourn time is the same as the sojourn time in the system

with �1 =� operating under a nonidling policy. Thus, in

the asymptotic case the TBP does not increase the sojourn

times, and we can focus solely on the PW�t� measure.

Remark 2. Suppose the system is in state �q1�q1+TH+1�
for q1 > 0 (station 1 is idled). The next arrival (Comple-

tion 2) event sends the system to state �q1+1�q1+TH+1�
(state �q1� q1 +TH�), with �= TH, and station 1 is stopped

again. Thus, the next event must be another arrival or

Completion 2. Similarly, suppose the system is in state

�q1� q1 +TH� for q1 > 0 (station 1 is idled). The next event

must be arrival or Completion 2, which will trigger a Com-

pletion 1 event and send the system to �q1� q1 + TH + 1�
or �q1 − 1� q1 + TH�, respectively, with �= TH + 1 in both

cases. Thus, as long as q1 > 0, between any two Completion

1 events there are always two other events. This leads to the

following proposition.

Proposition 1. Let M̂q1� q2 be the number of stoppages a
TC sees before entering station 2, given she arrives in
state �q1� q2�. Then either q2 < TH and M̂q1� q2 = 0 or q2 ∈
�q1 +TH� q1 +TH + 1� and M̂q1� q2 = q1 + q2 −TH .

4.1. Distribution of Ŵ1, Waiting Time at Station 1

In general, the TC’s waiting time for station 1 is composed

of two parts: the service time of customers in front of her

in station 1 and the stoppages of station 1. However, when

�1 =�, the service time of station 1 is zero, and thus Ŵ1

is only caused by stoppage.

Let Ŵ
q1� q2
1 denote the TC’s waiting time at station 1,

given that she arrives at state �q1� q2�. From Proposition 1,

if q1 + q2 � TH, the TC sees no stoppage and Ŵ
q1� q2
1 = 0;

similarly, if q1 + q2 > TH , then M̂q1�q2 = q1 + q2 − TH , so

that Ŵ
q1� q2
1 is distributed as Erlang��+�2� q1 + q2 − TH�.

Thus, using (2) and (3), the LT of Ŵ1 is

LŴ1
�h�

=
TH∑
i=0

�i
2�1−�2�+

�∑
i=TH+1

�i
2�1−�2�

(
�+�2

�+�2 +h

)i−TH

= �1−�TH+1
2 �+�TH+1

2

�2 −��2

��2 −��2�+h
� (4)

From the transform of Ŵ1 we conclude that there is no

waiting in station 1 with probability (w.p.) 1− �TH+1
2 , and
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Figure 1. MC when �1 =� and TH > 0.

�

�2

�2 �2�2�2�2�2�2

�2�2
�2

���

� � � � � � �

0, 0 0, 1 0, TH 0, TH + 1

q1, q1 + TH q1, q1 + TH + 1 q1 + 1, q1 + TH + 2

1, TH + 1 1, TH + 2

the waiting is distributed as an exp��2 − ��2� RV with

probability �TH+1
2 . Hence,

P�Ŵ1 > t�= �TH+1
2 e−��2−��2�t � (5)

Note that given waiting (i.e., w.p. �TH+1
2 ), Ŵ1 is distributed

as the waiting time given waiting in an M/M/1 queue with

arrival rate ��2 and service rate �2.

As intuition suggests, P�Ŵ1 > t� is a decreasing function

of TH . When TH decreases, customers see more stoppages,

and thus wait more in station 1. When TH increases, the

TBP’s effect on the network is reduced, and customers’

wait in station 1 is also reduced. The extreme case when

TH =� results in a nonidling network, so customers do

not wait for station 1.

4.2. Distribution of the Waiting Time Ŵ2 and

Service Measure P̂W�t�

We next derive Ŵ
q1� q2
2 , the TC’s waiting time at station 2

given that she arrives at state �q1� q2�, and then use (2) to

calculate the LT of Ŵ2. Let K be the RV denoting (we

omit the dependency on q1� q2) the number of customers

in station 2 when the TC enters this station; thus Ŵ
q1� q2
2 is

distributed as Erlang��2�K�.
From Proposition 1, if q1 + q2 � TH , then q1 = 0 and

the TC gets into station 2 immediately, implying that K =
q1 + q2 = q2. Thus, for q1 + q2 � TH , the distribution of

Ŵ
q1� q2
2 is Erlang��2� q1 + q2� with the LT given by

LŴ
q1� q2
2

�h�=
(

�2

�2 +h

)q1+q2

� (6)

Now suppose the TC arrives at state �q1� q2� with

q1 + q2 > TH� implying that the number of stoppages is

M̂q1� q2 = q1+q2−TH . In this case, M̂q1� q2 arrival or Com-

pletion 2 events are required to end these stoppages, and

q1 + q2 − K of these are Completion 2 events, so K ∈
	TH� q1 + q2
. Since the probability that the next event is

an arrival (Completions 2) is �/��+�2� (�2/��+�2�), it
follows that q1 + q2 −K has the binomial distribution

P�q1 + q2 −K = n�

=
(
q1 + q2 −TH

n

)(
�

�+�2

)q1+q2−TH−n(
�2

�+�2

)n

�

n= 0� � � � � q1 + q2 −TH�

Thus

P�K = k�

=
(
q1 + q2 −TH

q1 + q2 − k

)(
�

�+�2

)k−TH(
�2

�+�2

)q1+q2−k

�

k= TH� � � � � q1 + q2�

Therefore, for q1 + q2 > TH, the LT of Ŵ
q1� q2
2 is

LŴ
q1�q2
2

�h�=
q1+q2∑
k=TH

(
q1+q2−TH

q1+q2−k

)

·
(

�

�+�2

)k−TH(
�2

�+�2

)q1+q2−k(
�2

�2+h

)k

=
(

�2

�2+h

)TH(
�2

�+�2

+ �

�+�2

�2

�2+h

)q1+q2−TH

=
(

�2

�2+h

)q1+q2
(
�+�2+h

�+�2

)q1+q2−TH

� (7)

The second equality follows the Binomial Formula. The

third equality follows because for q1 + q2 > TH�

(
�2

�2 +h

)TH(
��2

��+�2���2 +h�
+ �2

�+�2

)q1+q2−TH

·
(

�+�2

�+�2 +h

)q1+q2−TH

=
(

�2

�2 +h

)q1+q2

� (8)

We can now write the LT of Ŵ2 using (2), (3), (6),

and (7):

LŴ2
�h�=

TH−1∑
i=0

�i
2�1−�2�

(
�2

�2 +h

)i

+
�∑

i=TH

�2i−TH
2 �1−�2

2�

(
�2

�2 +h

)i

� (9)

From the LT of Ŵ2 we know that Ŵ2 is distributed as an

Erlang��2� q1+q2� RV with probability �
q1+q2
2 �1−�2�, for

0� q1 + q2 < TH (i.e., when the TC experiences no stop-

pages), and as the sum of an Erlang��2�TH−1� RV and an
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exp��2 − ��2� RV w.p. �TH
2 . Using �9�, we can derive the

tail distribution of Ŵ2 under the TBP with threshold TH:

P�Ŵ2>t�

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�2−TH
2 e−��2−��2�t if TH=0�1�

�2−TH
2 e−��2−��2�t+�2e

−�2t

·
TH−2∑
k=0

��2t�
k

k! �k
2−�2

2e
−�2t�−TH

2

·
TH−2∑
k=0

��2t�
k

k! �2k
2 if TH�2�

(10)

Using �5� and �10�, the distribution of our main service-

level measure under the TBP with threshold TH is

PWTBP�TH��t�

= 1

2
�P�Ŵ1>t�+P�Ŵ2>t��

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
�2
2e

−��2−��2�t+ 1

2
�2e

−��2−��2�t if TH=0�1�

1

2
�TH+1
2 e−��2−��2�t+ 1

2
�2e

−�2t

·
TH−2∑
k=0

��2�2t�
k

k! + 1

2
�2−TH
2 e−��2−��2�t

− 1

2
�2−TH
2 e−�2t

TH−2∑
k=0

��2t�
k

k! �2k
2 if TH�2�

(11)

We observe that under the nonidling policy all waiting

happens at station 2, and thus

PWNI�t�= 1

2
�2e

−��2−��t� t > 0� (12)

Here, �2 represents the probability of waiting, and

exp�−��2 − ��t� is the conditional probability of wait-

ing more than t given an M/M/1 queue with parameters

����2�. In the expression for PWTBP�t� when TH = 0�1 we

see the same structure as in (12). The first term essentially

has the probability of waiting reduced to �2
2 from �2 and

the arrival rate reduced to �2� from �. The second term is

just the probability of waiting longer than t in an M/M/1
queue with arrival rate �2�. Thus, the TBP effectively oper-

ates two M/M/1 stations with parameters ��2���2�, where
the probability of waiting at one of these stations is further

reduced by �2. The slower arrival rate (and the additional

reduction in probability of waiting) brings the probability

of wait longer than t at station 2 to below the level experi-

enced at this station under the nonidling policy. However,

the customer now has two chances to experience a long

wait—once at each station.

4.3. Insight 1: Comparing the TBP and Nonidling

Policy for the Asymptotic Case

Based on Remark 1 above, it suffices to compare PWTBP�t�
with PWNI�t� since the expected service times are the same.

From our earlier discussion, it is obvious that the number

of stoppages is increased when TH is reduced. Thus, setting

TH = 0 corresponds to the most aggressive redistribution

of the waiting time from station 2 to station 1 achievable

by a TBP (from (11)). On the other hand, PWTBP����t� =
PWNI�t� since when TH =�, station 1 is never intention-

ally idled.

For any “excessive wait” value t > 0, let TH∗�t� =
argminTH PWTBP�TH��t� be the threshold value that mini-

mizes PW�t�. This value is characterized in the following

result.

Proposition 2. For any t, the threshold TH∗�t� ∈ �0����
Specifically, let t∗ = ln�1 + �2�/���1 − �2�� (note that
PWTBP�0��t∗� = ��2/2���2 + 1�−1/�2). If t � t∗, then
TH∗�t�=�, and if t > t∗, then TH∗�t�= 0.

This proposition indicates that the optimal TBP is to idle

station 1 as much as possible when t is sufficiently large

(i.e., use TH∗ = 0 when t > t∗), or to not idle it at all when

t is small (i.e., t � t∗). The intuitive explanation behind this

is that reducing the queue sizes at station 2 via the TBP

reduces P�Ŵ2 > t� but introduces P�Ŵ1 > t� > 0 (which is

0 under the NI policy). When t is large, the reduction in

P�Ŵ2 > t� is substantial, whereas the increase in P�Ŵ1 > t�
is small, and thus TBP outperforms the NI policy. How-

ever, if t is small, the waits longer than t are quite com-

mon at station 2 even if some customers are reallocated to

station 1, whereas the increase in P�Ŵ1 > t� may be sub-

stantial. Thus TH∗ = �, and TBP is equivalent to the NI

policy. In this case the re-allocation of waiting time will

not solve the problem of excessive waits—the only solution

is adding more capacity to the system.

From (11) and (12), the reduction in PW�t� due to TBP

for t > t∗ is

PWNI�t�−PWTBP�0��t�

PWNI�t�
= 1− �1+�2�e

−��1−�2�t �

Thus, the relative improvement in PW�t� increases with t,
and approaches 100% as t increases. This shows that the

TBP can dramatically reduce the incidence of excessive

waits, but only if the designation of an “excessive” wait is

used correctly, i.e., a wait is “excessive” if it is uncommon

in the system.

The implications for the decision maker are clear: if

waits of at least t adversely affect customer service experi-

ence, and t > t∗, the TBP can be used to improve PW�t�.
If t � t∗, then the only way to improve PW�t� is by adding

capacity to the system (i.e., increasing �2). Most of the

behaviors observed for the �1 =� case will also hold for

the �1 <� case discussed in §5.

4.4. Insight 2: Comparing the TBP and the

Kanban Policy for the Asymptotic Case

For the two-station tandem queue, a Kanban policy is

defined by the buffer size (BS � 1) in front of station 2:

station 1 is idled and will not admit the next customer to

service whenever q2 � BS.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

42
.1

50
.1

90
.3

9]
 o

n 
28

 A
pr

il 
20

14
, a

t 0
8:

54
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



Baron et al.: Using Strategic Idleness to Improve Customer Service Experience
130 Operations Research 62(1), pp. 123–140, © 2014 INFORMS

Figure 2. PW�t� as a function of t under TBP versus

Kanban policy.
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Observe that in the �1 =� case, under the Kanban(BS)

policy station 2 operates as long as there are customers in

the system for any BS � 1. Thus the expected sojourn time

for any Kanban policy is the same as for an NI policy.

Therefore, as in the TBP case, we focus only on PW�t�.
Using similar analysis as for the TBP, we have the

following.

Proposition 3. For BS � 1,

PWKanban�BS��t�

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

2
�2e

−��2−��t if BS= 1�

1

2
�BS
2 e−��2−��t + 1

2
e−�2t

·
BS−2∑
k=0

��2t�
k

k! �k+1
2 if BS � 2�

(13)

Note that PWKanban�1��t� = PWNI�t� = PWKanban����t�.
This is because when BS = 1, the Kanban policy shifts all

waiting time to station 1 without changing the distribution

of waiting times. This shows that by optimizing the buffer

size, a Kanban policy can outperform the NI policy with

respect to the PW�t� measure. The second equation holds

because when BS=�, station 1 is never idled.

In Figure 2 we compare PWTBP�0��t� with PWKanban�t�
under different BS values, when �= 0�85 and �2 = 1. Note

that t∗ = 4.82 in this case, and thus TBP(0) outperforms

the NI policy for t > 4�82. Recalling that the Kanban(1)

policy is equivalent to the NI policy, we see that this is

indeed the case in Figure 1, with the relative gap growing

with t. Comparing TBP(0) with Kanban(5) we see that the

TBP has a lower PW�t� for t > 9�28, whereas the Kanban

performs better for lower values of t.
Furthermore, using a similar analysis to the one in the

proof of Proposition 2, we can obtain the buffer size BS∗�t�
that minimizes PWKanban�BS��t� for any t. (Specifically, the
function ��2t�

BS−1/�BS− 1�! − �1− �2�e
�t has one or two

zero points; if the function has two zero points, BS∗�t� is

the smaller zero point; otherwise BS∗�t�= 1.) The resulting

Kanban�BS∗�t�� policy is plotted in Figure 2 along with

the associated BS∗�t� values. This policy achieves lower

PW�t� values than the TBP(0) for t < 9�96 and slightly

higher values for t > 9�96.
For the asymptotic case the Kanban policies perform

competitively with TBP(0), particularly when the buffer

size is optimized for a given t value. We note that the

TBP is more robust—because the same optimal thresh-

old TH∗ = 0 value applies over a wide range of t values,

whereas the optimal buffer size BS∗�t� is sensitive to t.
More importantly, the performance of Kanban policies in

the asymptotic case are somewhat misleading; we will see

in the following sections that the performance in other cases

may be significantly worse than that of the TBP.

5. Analysis of the Tandem Queue:

General Case

In this section, we begin by analyzing the TBP for the

tandem queueing network when �1 <�.

Figure 3 illustrates the MC of the tandem queueing net-

work under the TBP with TH = 1. Recall that under the

TBP it is not possible to reach a state �q1� q2� such that

q2 − q1 > TH + 1. As illustrated in the figure, the states

can be classified into three groups, depending on whether

customers waiting for service at station 1 experience stop-

page before they enter station 2. For example, if the system

is currently in state �2�0�, neither customer at station 1

can possibly experience any stoppages before entering sta-

tion 2. The same is true for all the other states above the

dashed line in the top left corner of Figure 3. On the other

hand, in all states to the right of the dashed boundary line,

station 1 is idled, and thus all customers at this station will

experience one or more stoppage before entering station 2;

state �2�3� is an example of this type.

Finally, customers at station 1 in all the states below and

to the left of the dashed line may or may not experience a

stoppage before entering station 2. Consider, for example,

state �3�0�. Whereas the first two customers at station 1

will not experience a stoppage, the situation is less clear

for the last customer. We refer to this customer as the TC.

If the next two events are both “Completion 1,” the system

will move to state �1�2� and the TC will be stopped. If, on

the other hand, at least one of the next two events is arrival

or Completion 2, the TC will not be stopped.

This discussion illustrates why the analysis of the TBPs

is challenging. The number of stoppages experienced by the

TC (and thus the distribution of her waiting time) depends

on queue lengths at both stations and on customers arriving

after the TC, i.e., this number depends on future events.

The latter dependency prevents us from using distributional

Little’s law. Furthermore, the distribution of waiting time

experienced by a customer depends not just on the state of

the system, but also on the customer’s position in the line at

station 1. As discussed in the example above, the customer
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Figure 3. The MC �Q1�Q2� for TH = 1.
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immediately in front of the TC will not experience any

stoppages, and thus his distribution of the waiting time is

clearly different from that for the TC. This implies that the

observed state �q1� q2� of the system is not sufficient to

uniquely express the distribution of W
q1� q2
1 .

To overcome this difficulty, we augment the state space

with a position indicator for each customer. Specifically,

for each TC, in addition to the queue length indicators, we

also include the position of the TC in station 1; we denote

this position s for s � 1. Note that each TC now generates

a new MC upon arrival, which we name TCMC.

This TCMC has three dimensions. When the TC arrives

in state �q1� q2�, she joins station 1 and becomes the sth=
�q1 + 1�th customer, so that the first state of the TCMC is

�q1+1� q2� q1+1�. If we consider all states with the same s

as one layer, each layer looks similar to the MC in Figure 3

except that there are no states with q1 > s. The same three

events discussed in Section 3 may occur in the TCMC as

well. Their effect on state �q1� q2� s� is as follows.

1. Arrival—The TCMC transitions to state �q1 +
1� q2� s�. Arrivals occur with rate � in any state.

2. Completion 1—The TCMC transitions to state �q1 −
1� q2 + 1� s− 1�. This happens with rate �1, if q1 > 0 and

�< TH (when station 1 is not idled).

3. Completion 2—The TCMC transitions to state

�q1� q2 − 1� s�. This event occurs with rate �2, if q2 � 1.

When s > 1, the TC is waiting in station 1. When s = 1,

the TC is either in service or is the first in line to enter

service when the stoppage of station 1 ends. Since � <

�1, the TCMC �q1� q2� s� will be absorbed in some state

with s = 0, when the TC moves to station 2. Let Xq1� q2� s

represent the TC’s performance measure, given the network

is in state �q1� q2� s�.
To obtain the performance measure using (2) we can

keep track of the TCMC starting from the state �q1 + 1�
q2� q1 + 1� and calculate the conditional performance mea-

sure according to all possible paths the TC may take

until an absorbing state is reached. However, because the

TCMC is three-dimensional, the required computational

effort grows rapidly using this intuitive approach. We thus

simplify the problem as shown below.

We first show that, similarly to the �1 = � case, the

number of stoppages can be bounded.

Lemma 1. If the TCMC is in state �q1� q2� s�, then the max-
imum number of stoppages the TC may see, Mq1� q2� s , is

Mq1� q2� s =max�2s−TH + ��q1� q2�− 1�0��

Specially, if ��q1� q2�� TH−2s+1, there will be no stop-
page for the TC. Thus, the performance measure experi-
enced by a customer that reaches such states are indepen-
dent of future arrivals.

It is easy to see that M̂q1� q2 = Mq1+1� q2� q1+1, i.e.,

Lemma 1 shows that, the number of stoppages the TC sees

in the �1 =� case is the maximum number of stoppages

the TC may see in �1 <� case. The reason is that when

�1 = �, the service time of station 1 is zero, so the set

of sequential events Completion 1⇒ Arrival (or Comple-

tion 2)⇒Arrival (or Completion 2) repeats for sure; when

�1 < �, this set of sequential events repeats only in the

worst case.
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We define a no-stoppage state to be a state in the TCMC

s.t. ��q1� q2� � TH − 2s + 1, i.e., Mq1� q2� s = 0. For exam-

ple, consider again state �3�0� in the MC in Figure 3. As

discussed previously, states �3�0�1� and �3�0�2� in the

corresponding TCMC are no stoppage. On the other hand,

by Lemma 1, M3�0�3 = 1, so stoppage may occur in state

�3�0�3�.
Observe that once the TCMC reaches a no-stoppage

state, the network acts like a nonidling tandem queue-

ing network for the TC, and the distributions of the three

steady state service measures can be calculated directly

(see below). In the following sections, we treat no-stoppage

states as absorbing states and use a recursion method to

develop all three performance measures as follows:

• If state �q1� q2� s� is a no-stoppage state, i.e., �� TH−
2s + 1, then the distribution of Xq1� q2� s can be calculated

from Propositions 4 and 5 below.

• If station 1 is stopped, i.e.,�=TH orTH+1, both arrival

(w.p. �/��+�2�) and Completion 2 (w.p. �2/��+�2�) can
happen in the TCMC. Using conditional probability, the

distribution of Xq1� q2� s can be recursively calculated from

the distributions of Xq1+1� q2� s and Xq1� q2−1� s .

• For states �q1� q2� s� such that TH − 2s + 1 < � �

TH − 1, arrival (w.p. �/�� + �1 + �2�), Completion 1

(w.p. �1/��+�1 +�2�), and Completion 2 (w.p. �2/��+
�1 + �2�) can all happen in the TCMC. Using condi-

tional probability, the distribution of Xq1� q2� s can be cal-

culated from the distributions of Xq1+1� q2� s , Xq1−1� q2+1� s−1,

and Xq1� q2−1� s .

Calculating the LT of X, similarly to (2), requires the

steady state probability vector of the MC �Q1�Q2�. It is
easily seen that this MC is irreducible and aperiodic, and

has equilibrium probabilities, q1� q2
. The balance equation

for the �Q1�Q2� MC are as follows (these are easier to

follow when looking at Figure 3):

(1) When � < TH and q1 = q2 = 0, we have �0�0 =
�20�1.

(2) When �< TH and q1 > 0, q2 = 0, we have ��+�1�
·q1�0

= �q1−1�0 +�2q1�1
.

(3) When � < TH and q1 > 0� q2 > 0, we have �� +
�1 +�2�q1� q2

= �q1−1� q2
+�1q1+1� q2−1 +�2q1� q2+1.

(4) When � � TH and q1 = 0� 0 < q2 � TH , we have

��+�2�0� q2
=�11� q2−1 +�20� q2+1.

(5) When � = TH and q1 > 0 (then q2 = q1 + TH), we

have ��+�2�q1� q2
= �q1−1� q2

+�1q1+1� q2−1+�2q1�q2+1.

(6) When � = TH + 1 and q1 � 1 (implying q2 = q1 +
TH + 1), we have ��+�2�q1� q2

=�1q1+1� q2−1.

(7) We also require
∑

q1� q2
q1� q2

= 1.

To solve these balance equations, we approximate q1� q2

by assuming that station 1 has a finite waiting room of size

Limit. For any finite value of Limit, we can calculate an

approximation of q1� q2
by solving the balance equations

numerically. When Limit goes to infinity, the approximation

approaches q1� q2
. In our numerical experiments we found

that P�q1 = 100� < 10−5, so Limit = 100 appears to be an

adequate value for our parameter choices.

5.1. Distribution of Waiting Time for Station 1: W1

In this section, we consider the TC’s waiting time for sta-

tion 1, W1. Note that there are two components of W1: the

time spent waiting for s − 1 Completion 1 events and the

time spent when station 1 is idled. The first component

depends only on s, and the second one is determined by s
and �= q2 − q1. Thus, given s and �, W1 does not depend

on the values of q1 and q2. Indeed, from Lemma 1 we

see that the maximum number of stoppage Mq1� q2� s only

depends on s and �; thus, we will next use Ms�� to denote

the maximum number of stoppages for a customer that is at

a position s in queue 1 when q2−q1 = �. A revised TCMC,

with the state description �s� ��, is illustrated in Figure 4

for the case TH = 1; this simplified TCMC will be used to

compute W1.

Arrival or Completion 2 events do not affect s; these

events only decrease the value of � by 1. Completion 1

decreases the value of s by 1 and increases the value of �
by 2. If �= TH or TH + 1, station 1 is idled, so that the

next event can only be arrival or Completion 2.

In Figure 4, the column on the right-hand side, starting

from �1�0�� represents the no-stoppage states established in

Lemma 1. The states above the doted line are states where

station 1 is idled, i.e., with �� TH = 1.

Let Ws��
1 be the TC’s waiting time for station 1 while the

network is in state �s� ��, and denote its LT by LWs��
1
�h�.

Note that Ws��
1 is composed of two parts. The first part is

the service time of the s−1 customers in front of the TC in

station 1. This service time distribution is Erlang�s−1��1�.
The second part consists of stoppages in station 1. As in

the �1 =� case, the length of each stoppage is distributed

as an exp��+�2� RV.
Let Bs��

1 denote the actual number of stoppages the TC

will experience if she is in state �s� ��. Thus, the LT of

Ws��
1 is

LWs��
1
�h�=

(
�1

�1+h

)s−1Ms��∑
i=1

P�Bs��
1 = i�

(
�+�2

�+�2+h

)i

� (14)

where Ms�� can be found from Lemma 1, and∑Ms��

i=1 P�Bs��
1 = i�= 1.

Thus, finding LWs��
1
�h� is equivalent to finding the distri-

bution of Bs��
1 , for any s � 1, �� TH+1. This can be done

as follows:

• If �s� �� is a no-stoppage state, i.e., �� TH − 2s+ 1,

then Bs��
1 = 0 from Lemma 1.

• If station 1 is stopped, i.e., for states with �= TH or

TH + 1, Bs��
1 has the same distribution as 1+Bs��−1

1 .

• Otherwise, for states �s� �� such that TH − 2s + 1 <
� � TH − 1, the TCMC will go to state �s� � − 1� (w.p.

��+ �2�/��+ �1 + �2�), or to state �s − 1� �+ 2� (w.p.

�1/��+�1 +�2�). Therefore, B
s��
1 is distributed the same

as Bs��−1
1 or Bs−1��+2

1 , depending on which state the TCMC

transitions to.
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Figure 4. The revised TCMC �s� ��, when TH = 1.

�1 �1 �1 �1 �1 �1 �1

�1�1�1

�1 �1 �1

�1�1

States where Station 1 is working

Absorbing states: � ≤ TH – 2s +1

States that Station 1 is idled

4, 0

3, 2 3, 1 3, 0 3, –1 3, –2 3, –3 3, –4

2, –22, –12, 0

1, 2 1, 1 1, 0

2, 12, 2

4, –1 4, –2 4, –3 4, –4 4, –5 4, –6
� + �2 � + �2 � + �2 � + �2 � + �2 � + �2 � + �2

� + �2� + �2� + �2� + �2� + �2

� + �2 � + �2 � + �2 � + �2 � + �2

� + �2� + �2� + �2

� + �2� + �2

Since s ∈ �1� � � � �Limit� and � ∈ �−Limit� � � � �TH + 1�,
the distribution of Bs��

1 can now be computed iteratively;

see Algorithm 1 in Section EC.2 of the e-companion for

details.

5.2. Distribution of Waiting Time for Station 2: W2

In this section we calculate W
q1� q2� s
2 —the TC’s waiting time

for station 2, given that the network is at state �q1� q2� s�.
Let Kq1� q2� s be the number of customers the TC sees when

she enters station 2. Given Kq1� q2� s = k� we know that

W
q1� q2� s
2 ∼ Erlang��2� k�. So once we know the distribution

of Kq1� q2� s , the LT of W
q1� q2� s
2 can be expressed as

LW
q1� q2� s
2

�h�=
q2+s−1∑
k=0

(
�2

�2 +h

)k

P�Kq1� q2� s = k�� (15)

We next derive the distribution of Kq1� q2� s , first for no-

stoppage states and then for states with stoppages.

5.2.1. Distribution of W2 at No-Stoppage States.
First, assume that the network is currently in a no-stoppage

state, i.e., �q1� q2� s�, and �� TH−2s+1. Given Lemma 1,

station 1 will not be idled before the TC enters station 2.

Thus, the arrival process does not affect the network, and

we need to only consider the service processes of stations 1

and 2. Still, it is possible for station 2 to be starved, i.e.,
q2 = 0, before the TC enters this station. We next discuss

how to consider the starvation periods when calculating the

distribution of Kq1� q2� s .

We represent the service operation of the TC by a Ran-

dom Walk (RW) process in a two dimensional lattice graph,

where the x and y axes represent the number of customers

served by the first and second servers, respectively. Let

the TC be the N th arrival to the original tandem queue.

Denote the total number of customers served by stations 1

and 2 before the TC’s arrival by XN and YN , respectively.
Note that XN ∈ 	0� � � � �N − 1
, YN ∈ 	0� � � � �XN 
, and q2 =
XN − YN . The RW process is depicted in Figure 5. Obvi-

ously, the RW cannot go above the line x = y (service 1

must finish before service 2). When station 1 completes

service the RW moves to the right, and when station 2

completes service the RW moves up. Because both ser-

vice completions are exponentially distributed, when both

stations are busy, P�RW moves right�=�1/��1 +�2� and

Figure 5. Lattice graph of number of customers served

by each station.

Starting point for the tagged customer

Case 1

x

q2 + s

�2

�1

�1

q2

q2 + s – 1

Case 2

x = y

y

Case 3
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P�RW moves up� = �2/��1 + �2�. Any point on the line

x= y means that station 2 is starved, and the next possible

move for the RW is only to the right. We call points on the

line x= y points with station 2 starved and other points in

Figure 5 points with station 2 working.

For any TC, we can ignore YN , because these customers

have already left the network. Therefore, upon arrival of the

TC,we reset the startingpoint of theRWto �XN �YN �=�q2�0�.
When the TC arrives to state �q1� q2� s� , there are q2 cus-

tomers in station 2, which corresponds to the point �q2�0�
on Figure 5. When the TC finishes service in station 1, this

station has finished s customers, which represents the RW

moving right s steps and reaching the line x = q2 + s. By
this time, station 2 has served n customers, where 0� n�
q2 + s − 1. Thus, the sojourn time of the TC at station 1

corresponds to the time the RW moves from point �q2�0�
to a point on the line �q2 + s� n�, with 0� n� q2 + s− 1.

Let B
q1� q2� s
2 , the number of times station 2 is starved from

when the TC arrives to the network and until she finishes

service at station 1. The joint distribution of n and B
q1� q2� s
2

can be calculated using the result from Milch and Wag-

goner (1970). This gives us the marginal distribution of n.
Since the number of customers the TC sees upon entering

station 2 is Kq1� q2� s = q2 + s− 1− n, this also provides the

distribution of Kq1� q2� s:

Proposition 4. For any state �q1� q2� s� with � � TH −
2s+ 1, the distribution of Kq1� q2� s is

P�Kq1� q2� s = k�

=
[(

2s+ q2 − 3

s− 1

)
−
(
2s+ q2 − 3

s+ q2 − 1

)]

·
(

�1

�1 +�2

)s−1(
�2

�1 +�2

)q2+s−1

+
s∑

i=2

[(
2s+ q2 − i− 2

s+ q2 − 2

)
−
(
2s+ q2 − i− 2

s+ q2 − 1

)]

·
(

�1

�1 +�2

)s−i(
�2

�1 +�2

)q2+s−1

if k= 0

=
[(

2s+ q2 − k− 2

s− 1

)
−
(
2s+ q2 − k− 2

s+ q2 − 1

)]

·
(

�1

�1 +�2

)s(
�2

�1 +�2

)q2+s−k−1

+
s−k∑
i=1

[(
2s+ q2 − k− i− 2

s+ q2 − 2

)

−
(
2s+ q2 − k− i− 2

s+ q2 − 1

)](
�1

�1 +�2

)s−i

·
(

�2

�1 +�2

)q2+s−k−1

if 0< k� s− 1

=
(
q2 + 2s− 2− k

q2 + s− 1− k

)(
�1

�1 +�2

)s(
�2

�1 +�2

)q2+s−1−k

if s− 1< k� q2 + s− 1� (16)

5.2.2. Distribution of W2 for States with Stoppages.
To calculate Kq1� q2� s for states with stoppages, we observe

the following:

• If station 1 is stopped, i.e., � = TH or TH + 1, both

arrival (w.p. �/�� + �2�) and Completion 2 (w.p. �2/

�� + �2�) can happen in the TCMC. So Kq1� q2� s will be

distributed as Kq1+1� q2� s or Kq1� q2−1� s , depending on which

event happens.

• For states �q1� q2� s� such that TH − 2s + 1 < � �

TH − 1, arrival (w.p. �/�� + �1 + �2�), Completion 1

(w.p. �1/��+�1 +�2�), and Completion 2 (w.p. �2/��+
�1+�2�) can all happen in the TCMC. So Kq1� q2� s will be

distributed as Kq1+1� q2� s , Kq1−1� q2+1� s−1, and Kq1� q2−1� s , with

these probabilities respectively.

Notice that the distribution of Kq1� q2� s depends only on

which no-stoppage state the process finally reaches, and

is independent of the other details of the service process

before that. Algorithm 2, given in Section EC.2 of the e-

companion, uses these three conditions and Proposition 4

to express Kq1� q2� s for any state �q1� q2� s�. The distribution

of W
q1� q2� s
2 can now be computed from (15).

Remark 3. It may be of interest to compute the distribu-

tion of the total wait in the system for the TC, Wq1� q2� s =
W

q1� q2� s
1 +W

q1� q2� s
2 . First note that W

q1� q2� s
1 and W

q1� q2� s
2 are

not independent: since station 2 is never intentionally idled,

the longer the TC stays in station 1, the fewer customers

she will see, on average, when she enters station 2. Still,

in a similar way to Algorithms 1 and 2, one can calculate

the distribution of Wq1� q2� s .

5.3. Distribution of Sojourn Time: S

In this section, we calculate the LT of sojourn time, which

is the sum of waits and services in both stations, for the

TC. This derivation allows us to express both E	S
 and

P�S > t�.

We focus on station 2. The TC’s sojourn time, Sq1� q2� s�

is between her arrival to the network and her departure,

i.e., the time when station 2 finishes serving q2 + s cus-

tomers. We note that if there are customers in the network,

station 2 always serves customers when station 1 is idled;

and station 1 always serves customers (if there are any cus-

tomers in station 1) when station 2 is starved. Thus, the

TC’s sojourn time is composed of two parts. The first part

is the service time of the q2 + s customers at station 2,

which is Erlang��2� q2 + s�. The second part is the total

time that station 2 starves until it serves the TC. This time

may depend on the behavior of the network after the TC’s

arrival and is therefore more challenging to characterize.

We know that the number of times station 2 is starved

B
q1� q2� s
2 � s, because in the worst case Completion 2 hap-

pens q2 times and then the {Completion 1, Completion 2}

sequence repeats until the TC is served at station 2, so that∑s
i=0 P�B

q1� q2� s
2 = i�= 1.
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Similar to �15�, the common form of the LT of Sq1� q2� s is

LSq1� q2� s �h�=
(

�2

�2 +h

)q2+s

·
s∑

i=0

P�B
q1� q2� s
2 = i�

(
�+�2

�+�2 +h

)i

� (17)

This transforms the problem to finding the distribution

of B
q1� q2� s
2 , for any state �q1� q2� s�. We first consider no-

stoppage states. As in the proof of Proposition 4, for the

no-stoppage states we use the joint distribution of q2 +
s − 1− Kq1� q2� s and B

q1� q2� s
2 , P�q2 + s − 1− Kq1� q2� s = n,

B
q1
2 , q2� s = i�. Using this distribution and the law of total

probability, we get the following:

Proposition 5. For any state �q1� q2� s� with � � TH −
2s+ 1, the distribution of Bq1� q2� s

2 is

P�B
q1� q2� s
2 = i�

=
q2−1∑
n=0

(
n+ s− 1

n

)(
�1

�1 +�2

)s(
�2

�1 +�2

)n

+
q2+s−2∑
n=q2

[(
s+ n− 1

s− 1

)
−
(
s+ n− 1

s+ q2 − 1

)]

·
(

�1

�1 +�2

)s(
�2

�1 +�2

)n

� if i= 0

=
q2+s−2∑
n=q2

[(
s+ n− 2

s+ q2 − 2

)
−
(
s+ n− 2

s+ q2 − 1

)]

·
(

�1

�1 +�2

)s−1(
�2

�1 +�2

)n

+
[(

2s+ q2 − 3

s− 1

)
−
(
2s+ q2 − 3

s+ q2 − 1

)]

·
(

�1

�1 +�2

)s−1(
�2

�1 +�2

)q2+s−1

� if i= 1

=
q2+s−2∑
n=q2

[(
s+ n− i− 1

s+ q2 − 2

)
−
(
s+ n− i− 1

s+ q2 − 1

)]

·
(

�1

�1 +�2

)s−i(
�2

�1 +�2

)n

+
[(

2s+ q2 − i− 2

s+ q2 − 2

)
−
(
2s+ q2 − i− 2

s+ q2 − 1

)]

·
(

�1

�1 +�2

)s−i(
�2

�1 +�2

)q2+s−1

�

if 2� i < n− q2 + 1� (18)

We can now calculate B
q1� q2� s
2 for any state �q1� q2� s� as

follows:

• If the state �q1� q2� s� is in a no-stoppage state, i.e.,

�� TH−2s+1, the distribution is given by Proposition 5.

• If station 1 is idled, i.e., �= TH or TH+1, both arrival

(w.p. �/�� + �2�) and Completion 2 (w.p. �2/�� + �2�)
can happen in the TCMC. So B

q1� q2� s
2 will be distributed as

B
q1+1� q2� s
2 or B

q1� q2−1� s
2 .

• For states �q1� q2� s� such that TH − 2s + 1 < � �

TH−1 and q2 = 0, there is no customer in station 2. Arrival

(w.p. �/��+�1�) and Completion 1 (w.p. �1/��+�1�) can
happen in the TCMC. So B

q1�0� s
2 is distributed as B

q1+1�0� s
2

or B
q1−1�1� s−1

2 + 1.

• For states �q1� q2� s� such that TH − 2s + 1 < � �

TH − 1 and q2 �= 0, arrival (w.p. �/��+�1 +�2�), Com-

pletion 1 (w.p. �1/��+�1 +�2�), and Completion 2 (w.p.

�2/��+�1+�2�) can all happen in the TCMC. So B
q1� q2� s
2

will be distributed as B
q1+1� q2� s
2 , B

q1−1� q2+1� s−1

2 or B
q1� q2−1� s
2 .

Algorithm 3 in Section EC.2 of the e-companion uses

these four conditions to compute the distribution of B
q1� q2� s
2

for any state �q1� q2� s�. The LT of the sojourn times Sq1�q2�s

can then be computed from (17).

6. Insights for the �1 <� Case

In this section, we compare the performance of the TBP,

the nonidling policy, and the Kanban policy with respect

to the expected sojourn time, E	S
, and the probability of

excessive waits, PW�t�.

6.1. Insight 3: Comparing the TBP

and the Nonidling Policy

First, we compare the performance of TBP and the non-

idling policy. The key questions are as follows: (1) What

degree of improvement can be achieved by the TBP for the

PW�t� measure? And (2) by how much do sojourn times

have to increase to achieve this improvement? We note that

service measure P�S > t′� could be used in place of E	S
.
Numerical results show that the trade-off curves of PW�t�
and P�S > t′� behave the same as the trade-off curves of

PW�t� and E	S
, so only E	S
 is considered in our numer-

ical results.

The expressions for the service measures for the non-

idling policy are determined by �� �1, �2, and t, and can

be obtained from, e.g., using Burke’s (1956) theorem:

E	SNI 
=
2∑

i=1

1

�i −�
� PWNI�t�= 1

2

2∑
i=1

�

�i

e−��i−��t�

To illustrate the trade-off between PWTBP�t� and the

expected sojourn time under the TBP, E	STBP
, we proceed
as follows. We initially set �= 0�85, �1 = 1, and �2 = 0�9.
Thus, station 2 is the bottleneck, and the system utilization

ratio �= �2 = 0�85/0�9≈ 94%. Next we select t such that

PWNI�t�= 10%—from the expressions above, this value is

t = 31�78, and E	SNI 
= 26�67.
We calculate the performance measures E	STBP
 and

PWTBP�t� using TH = 100�99� � � � �0. For TH = 100

the performance measures, �E	STBP
�PWTBP�31�78�� =
�26�67�0�1� are identical to these measures for the nonidle
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Figure 6. Trade-off curves corresponding to excessive wait probabilities of 10% (under the nonidling policy).
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Note. The nonidling policy corresponds to the leftmost point on each curve.

system. The results in Figure 6(a) present the trade-off

curve of the TBP for different thresholds. The points cor-

responding to selected TH values are labeled on the curve

(they decrease from left to right).

From the figure, we observe that the average sojourn

times along the x-axis increase as TH values are decreased

from 100: the lower the threshold, the more the TBP

departs from the nonidling policy, with the incidents of

idling of station 1 increasing. At TH = 0, E	STBP
= 30�5—
a 14�4% increase over E�SNI�, the expected sojourn time

under the nonidle policy. Initially, as TH is decreased from

100, the PW�t� values are reduced, indicating that the TBP

is achieving the desired trade-off between the two perfor-

mance measures. The PWTBP�t� is minimized at just over

7%, corresponding to TH∗ = 13 (labeled with a star). For

this TH value, E	STBP
= 27�31. Thus, a TBP with TH = 13

achieves a nearly 30% improvement in the PW�t� measure

(7% versus 10%) at the cost of increasing the expected

sojourn times by about 2% (from 26�67 to 27�31)—a trade-

off that may be quite attractive. Reducing TH below 13

turns out to be counterproductive; thus, from the point of

view of biobjective optimization, the TH values below 13

are Pareto inferior. However, all TH values greater than or

equal to 13 are Pareto optimal.

To gain additional insight, in Figure 6(b), we plot

P�Wi > 31�78� for i = 1�2 under the TBP. Since station 2

is the bottleneck in this case, the probability of waiting

longer than t is much greater there under the nonidling pol-

icy. This is shown on the extreme left of the plot, where

TH = 100 and the TBP is essentially identical to the NI

policy. For very high TH values, most of the contribution to

PW�t� comes from station 2. As TH is reduced, P�W1 > t�
increases and P�W2 > t� declines. Eventually, when TH
decreases below 10, there is a much higher probability of

long waits at station 1 than at station 2. It is interesting to

note that PW�t� is minimized at TH∗ = 13 when the val-

ues of P�W1 > t� and P�W2 > t� are approximately equal.

We have observed similar behavior with other parameter

settings as well.

We have observed from numerical results with different

parameter settings that P�W1 > t� is a concave increasing

function and P�W2 > t� is a convex decreasing function of

E	S
, as in Figure 6(b). However, for different values of t,
the behavior of PW�t� = 1

2
�P�W1 > t�+ P�W2 > t�� as a

function of E	S
 varies, typically being convex in some

regions and concave in others.

To illustrate the improvements that can be achieved with

the TBP compared with the NI policy for different val-

ues of t, we plot the relative change in PW�t� versus the

relative change in E	S
 for four different values of t in

Figure 7. Here 100% on both axes relates to corresponding

values for the NI policy (or, equivalently, TBP(100) pol-

icy). Thus, on the x-axis the values increase from 100%

since introducing SI can only hurt the expected service

times, whereas on the y-axis we have values above and

Figure 7. Trade-off curves of the TBP corresponding

to excessive wait probabilities of 20%, 15%,

10%, and 5% (under the nonidling policy) for

different system parameters.
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below 100% since the TBP can improve or hurt the PW�t�
objective. The four values of t = 45�11�31�78�24�44� and
19�58 were selected to correspond to “excessive wait” prob-

abilities of 5%�10%�15%, and 20% under the NI policy,

respectively.

For the case where excessive waits are rare (t = 45�11),
the TBP provides very attractive trade-offs: decreasing

PW�t� by close to 60% at the cost of increasing E	S
 by
just 2%. Moreover, most of the decrease in PW�t� occurs

for even smaller values of E	S
, corresponding to thresh-

olds higher than the PW�t�-minimizing value of TH∗ = 13.

Thus, the value of TH that minimizes PW�t� may not be

the best choice. The reduction in PW�t� provided by the

TBP for the t = 31�78 case is a bit smaller, but is also quite

substantial at nearly 30%, whereas the increase in E	S
 is
just over 2%.

The TBP is much less successful for the t = 24�44 case

where “excessive waits” occur 15% of the time under the

NI policy. Here, as the threshold is decreased from 100,

both objectives are initially hurt, with PW�t� rising sharply.

This is because the decrease in P�W2 > t� is very small,

whereas P�W1 > t� increases rapidly. For lower TH values,

Figure 8. Trade-off curves of the TBP corresponding to t∗ and excessive wait probabilities of 10%, 5%, and 1% (under

the nonidling policy) for different system parameters.
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the PW�t� begins to fall, eventually falling about 5% below

the value for the NI policy around TH∗ = 12. The cost of

this improvement is the 3% increase in E	S
. Thus, the
trade-offs offered by the TBP are much less attractive in

this case. We also observe that here PW�t� is not a convex

function of E	S
.
As the probability of excessive waits is increased to

20%, the Pareto-optimal trade-offs disappear: although the

behavior of PW�t� as TH values are increased is similar to

the previous case (first an increase, then a slight decrease,

followed by another increase), the level never gets below

the value achieved for TH = 100, i.e., the value for the NI

policy.

Thus, we observe similar patterns to the ones derived

analytically for the asymptotic �1 = � case: the TBP

reduces PW�t� when the “excessive waits” are sufficiently

rare in the system.

Since the TBP redistributes some waiting times from sta-

tion 2 to station 1, intuitively it should be most effective

when station 2 is the system’s bottleneck. This intuition is

supported by Figure 8. The four curves presented on four

panels correspond to t∗ (dashed line) and values of t such
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that the probabilities of long waits are 1% (lower solid),

5% (middle solid), and 10% (top solid) under the NI pol-

icy. Figure 8 panels (a) and (b) present results for cases

where the processing rates of stations 1 and 2 are identical.

Figure 8 panels (c) and (d) present cases where the pro-

cessing rate of station 2 is reduced to 0�95, making it more

of a bottleneck. We see similar patterns to those described

for the previous figure: the TBP reduces the PW�t� in all

cases at the cost of a small increase in E	S
; the relative

improvement in PW�t� is increasing in t. Moreover, we

see that the improvements provided by the TBP are greater

when station 2 is more of a bottleneck (Figure 8, (a) versus

(c) and (b) versus (d)), even under similar utilization levels

but different arrival rates (Figure 8, (b) versus (c)).

Figures 7 and 8 provide some intuitions on identifying

t∗s and TH∗s for different parameter settings. We notice

that TH∗ is relatively stable for similar arrival rates, and

that PWNI�t∗� is relatively stable for similar utilization level

at station 2. Specifically, comparing Figure 7 with Fig-

ure 8, (a) and (c), TH∗ ∈ 	11�15
 is stable for the same

arrival rate, � = 0�85. This is also supported by compar-

ing Figure 8, (b) and (d), where TH∗ ∈ 	16�23
. Simi-

larly, PWNI�t∗� is stable under similar utilization levels.

For example, when � = 0�95 (Figure 8(d) and Figure 7),

PWNI�t∗� is about 15%, and when � = �9 (Figure 8, (b)

and (c)), PWNI�t∗� is about 12%.

6.2. Insight 4: Comparing the TBP

and Kanban Policies

Because the analytical derivation of the waiting time at

each station is not available and is beyond the scope of

this paper, to compare the performance of the Kanban pol-

icy and the TBP, we constructed a simulation model using

MATLAB. We simulated one million customers under the

Kanban policies with BS = 100�99� � � � �1 and the TBPs

with TH = 100�99� � � � �1. (Despite having analytic results

Figure 9. Trade-off curves corresponding to t = 31�78 under the TBP and the Kanban policy.
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for the TBP, we use simulation so that we compare both

policies under the same sample path.) The results are pre-

sented in Figure 9 for a system with �2 = 0�9 in the left

panel and �2 = 0�95 in the right. In both cases, the value

of t was chosen to correspond to 10% probability of long

wait under the NI policy. With BS = 100, the Kanban pol-

icy performs identically to the NI one, which gives us the

starting point on each panel. We then decrease the value

of the buffer size BS in steps of 1 and plot the values of

PW�t� and E	S
 for each BS. We plot the TBP curve in a

similar fashion.

First consider Figure 9(a). Although the TBP gener-

ally outperforms the Kanban policy (recall that the Pareto-

optimal points are the ones on the southwestern frontier),

when relative E	S
 � 101�54, the Kanban policy outper-

forms the TBP, achieving lower PW�t� values for the same

sojourn times. We note that selecting the right BS value is

very important—values that are too high or too low may

lead to performance worse than that of the NI policy. In

fact, our numerical experiments show that the BS∗ that min-

imizes PW�t� appears to be very sensitive to t, whereas the
TBP is much more robust in this respect (see Table 1). This

lack of robustness presents a challenge for implementing

Kanban policies, because the exact value of t may differ

among customers.

Now consider Figure 9(b), where �2 = 0�95. Here the

TBP clearly dominates the Kanban policy (which produces

very few Pareto-optimal values). The intuition behind the

poor performance of the Kanban policy in this case is that

the Kanban policy ignores the queue size in front of sta-

tion 1. Although this is not a major issue when station 2

is the main bottleneck in the system (as in the left panel),

when the processing rates of stations 1 and 2 are similar

(as in the right panel) and station 1 is idled even when

facing a long queue, long wait times occur. Thus, whereas

the Kanban policy performed very well for the asymp-

totic �1 =� case, the performance under more realistic
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Table 1. Performance of TBP and Kanban policies for different values of t.

t TH∗ PWTBP�TH∗��t� ETBP�TH∗�	S
 BS∗ PWKanban�BS∗��t� EKanban�BS∗�	S
 PWNI�t� ENI 	S


15 100 0.2663 26.20 100 0.2664 26.20 0.2662 26.20
20 100 0.1930 26.20 100 0.1931 26.20 0.1930 26.20
25 12 0.1329 26.86 22 0.1243 27.76 0.1437 26.20
30 12 0.0810 26.86 25 0.0764 26.99 0.1082 26.20
35 12 0.0485 26.86 27 0.0470 26.71 0.0828 26.20
40 13 0.0284 26.74 31 0.0293 26.41 0.0630 26.20
45 12 0.0158 26.86 34 0.0180 26.30 0.0482 26.20
50 11 0.0079 27.00 37 0.0109 26.24 0.0371 26.20

conditions appears to be significantly worse. The additional

flexibility afforded by the TBP, which takes both q1 and q2
into account, is apparently important in the case of a more

balanced system.

7. Summary and Open Questions

In this paper, we studied strategic idling—i.e., purpose-

fully idling some upstream stations when the downstream

stations become too busy—in a two-station tandem queue

network. The purpose of SI is to reduce the incidence of

excessive waits and thus improve customer service expe-

rience in queueing networks. Numerical results indicate

that TBP can be quite effective in reducing the incidence

of excessive waits, without significantly increasing system

sojourn times. Thus, the TBP makes it possible to improve

the service experience of customers without adding any

capacity to the system (by, instead, idling some of the exist-

ing capacity). A comparison with Kanban policies indicates

that the TBP is more efficient.

We demonstrated that these insights hold in more general

settings. Specifically, in Section EC.3 of the e-companion,

we present a simple example that illustrates possible TBPs

and Kanban policies for a three-station serial queueing net-

work with exponential service time at each station and Pois-

son arrivals; and in our working paper, Baron et al. (2014),

we consider an open-shop queueing network that does not

reach steady state. Both studies used simulation. The results

indicate that the managerial insights listed earlier for the

two-station system likely hold in other more general set-

tings as well. A generalization of the TBP to n-station
tandem queue system is presented in the e-companion, Sec-

tion EC.4.

Clearly, this paper undertakes only an initial study of

the TBPs and SI, and much work remains to be done. It

would be interesting to inspect the effect of the TBP in an

emergency department setting and compare the result with

that of Saghafian et al. (2012). It would be very benefi-

cial to extend our analytical results to more general settings

(n-station networks, nonstationary arrival rate, general ser-

vice time, etc.), though this appears to be quite difficult.

In particular, the structure of the optimal TBPs (i.e., the

specification of � functions and the TH values) needs to be

investigated.

There are several other possible directions for future

research. An analysis of waiting time distributions under

either of the control policies developed for manufactur-

ing settings is an obvious one. It would also be interest-

ing to further investigate the application of the TBP and

other policies with SI in additional settings such as open-

shop queueing networks. Also, the trade-offs between other

service-level measures can be explored. Finally, in practice

there is value to adequately defining excessive wait and

acceptable average sojourn times. Both measures should be

related to customers patience and may be evaluated using

customer surveys.
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