
This article was downloaded by: [128.100.40.87] On: 30 January 2014, At: 08:25
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Manufacturing & Service Operations Management

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Pricing Time-Sensitive Services Based on Realized
Performance
Philipp Afèche, Opher Baron, Yoav Kerner,

To cite this article:
Philipp Afèche, Opher Baron, Yoav Kerner,  (2013) Pricing Time-Sensitive Services Based on Realized Performance.
Manufacturing & Service Operations Management 15(3):492-506. http://dx.doi.org/10.1287/msom.2013.0434

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2013, INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
http://dx.doi.org/10.1287/msom.2013.0434
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org


MANUFACTURING & SERVICE
OPERATIONS MANAGEMENT

Vol. 15, No. 3, Summer 2013, pp. 492–506
ISSN 1523-4614 (print) � ISSN 1526-5498 (online) http://dx.doi.org/10.1287/msom.2013.0434

© 2013 INFORMS

Pricing Time-Sensitive Services Based on
Realized Performance

Philipp Afèche, Opher Baron
Rotman School of Management, University of Toronto, Toronto, Ontario M5S 3E6, Canada

{afeche@rotman.utoronto.ca, opher.baron@rotman.utoronto.ca}

Yoav Kerner
Department of Industrial Engineering and Management, Ben-Gurion University of the Negev,

Beer Sheva 84105, Israel, kerneryo@bgu.ac.il

Services such as FedEx charge up-front fees but reimburse customers for delays. However, lead-time pricing
studies ignore such delay refunds. This paper contributes to filling this gap. It studies revenue-maximizing

tariffs that depend on realized lead times for a provider serving multiple time-sensitive customer types. We relax
two key assumptions of the standard model in the lead-time pricing literature. First, customers may be risk
averse (RA) with respect to payoff uncertainty, where payoff equals valuation, minus delay cost, minus payment.
Second, tariffs may be arbitrary functions of realized lead times. The standard model assumes risk-neutral (RN)
customers and restricts attention to flat rates. We report three main findings: (1) With RN customers, flat-rate
pricing maximizes revenues but leaves customers exposed to payoff variability. (2) With RA customers, flat-rate
pricing is suboptimal. If types are distinguishable, the optimal lead-time-dependent tariffs fully insure delay
cost risk and yield the same revenue as under optimal flat rates for RN customers. With indistinguishable RA
types, the differentiated first-best tariffs may be incentive-compatible even for uniform service, yielding higher
revenues than with RN customers. (3) Under price and capacity optimization, lead-time-dependent pricing
yields higher profits with less capacity compared to flat-rate pricing.
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1. Introduction
Firms in a range of industries sell services and prod-
ucts with an inherent lead time between order place-
ment and delivery. Their customers face lead-time
uncertainty. Several firms offer tariffs that depend on
realized lead times: They charge up-front fees but issue
refunds for delivery delays. For example, such tariffs
are commonly used by transportation carriers and by
make-to-order suppliers of critical components. FedEx
offers delay refunds, as does Beta LAYOUT, a custom
printed-circuit-board supplier with headquarters in
Germany. Delay penalty clauses are also common in
contracts for construction projects (Friedlander 2001).

Although delay refunds are important in practice,
they have so far been ignored in the lead-time pricing
literature. This seems to be the first paper to study
the rationale for and the design of tariffs that charge
based on realized lead times. We also refer to such
tariffs as lead-time-dependent. We address three fun-
damental questions for a revenue-maximizing service
provider that serves time-sensitive customers:

1. Under what conditions can charging based on
realized lead time increase revenue?

2. What are the properties of the optimal lead-time-
dependent pricing scheme?

3. What is the value of optimal lead-time-
dependent pricing?

1.1. Analytical Framework, Main Results, and
Contributions

We model the provider as a queueing system. The
customer population may comprise multiple types.
Customers of the same type may differ in their val-
uations for instant delivery but have the same delay
cost and utility functions. The provider is informed
about aggregate demand statistics and designs a static
(menu of) price-lead-time tariff(s) to maximize her
revenue rate. We consider these tariff design decisions
taking the number of price-service classes and the
scheduling policy as given. Customers cannot observe
the queue length and base their purchase decisions on
the posted tariff(s).

This paper reports the following main contributions
to the lead-time pricing literature:

1. Modeling. We relax two assumptions in the stan-
dard model since Naor (1969). (i) The key novelty
of our model is that customers may be risk averse to
delay cost and payment variability. That is, we allow
a customer’s utility to be concave in her service pay-
off, which equals her valuation, minus delay cost,
minus payment. The standard model assumes risk-
neutral customers; that is, they evaluate the cost of
service based on the sum of expected delay cost plus
payment. (ii) We allow general tariffs whereby a cus-
tomer’s total payment can be an arbitrary function of
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her realized lead time. The standard model restricts
attention to schemes that charge one or more flat rates;
that is, a customer’s payment is determined ex ante,
at the instant of her purchase decision.

2. Results. We obtain novel results on the value
and structure of optimal lead-time-dependent pricing:
(i) If customers are risk neutral, as in the standard
model, charging based on realized lead times has zero
value, and flat-rate pricing is optimal. However, flat-
rate pricing leaves customers exposed to delay cost
risk. In reality, such delay cost risk may concern cus-
tomers. (ii) If customers are risk averse, flat-rate pric-
ing reduces the system utilization and revenue. If the
provider can distinguish among types, then optimal
lead-time-dependent tariffs fully protect against delay
cost risk and yield the same revenue as under optimal
flat rates for risk-neutral customers. (iii) Pricing based
on realized lead times can also be an attractive tool for
price discrimination. If the provider serves indistin-
guishable customer types with uniform service, e.g.,
first-in-first-out (FIFO), a menu of differentiated tar-
iffs can have a positive value. Even the differentiated
first-best tariff set may be incentive-compatible, yield-
ing higher revenues than with risk-neutral customers.
In contrast, with risk-neutral customers, a differenti-
ated menu of tariffs has no value under uniform ser-
vice. (iv) The simplest practical refund policy, which
issues a full refund for late delivery, performs well
relative to the optimal lead-time-dependent tariff.
(v) Under joint pricing and capacity optimization,
optimal pricing based on the realized lead time yields
higher profits with less capacity compared to flat-rate
pricing. The profit gain can be significant, particularly
if the capacity cost is significant.

Our model and results provide some theoretical
support for customer risk aversion as one reason
for the use of lead-time-dependent pricing in prac-
tice. These findings also suggest that it is critical for
providers to understand customer preferences with
respect to delay cost and payment risk.

1.2. Literature and Positioning
We categorize the lead-time management literature
into three streams—operations, information, and pri-
cing—based on the levers used for managing lead
times.

Operations levers focus on managing lead times
through capacity, admission control, routing, sequenc-
ing, and expediting. This stream includes Baker
(1984), Wein (1991), Duenyas (1995), Duenyas and
Hopp (1995), Spearman and Zhang (1999), Plambeck
et al. (2001), Harrison (2003), Plambeck (2004), Ho
and Zheng (2004), Keskinocak and Tayur (2004), and
Shang and Liu (2011).

Information levers focus on managing customer
expectations and behavior by quoting lead times

or waiting times, and by releasing information on
factors like queue lengths that affect lead times. This
stream includes Hassin (1986), Whitt (1999), Armony
and Maglaras (2004), Dobson and Pinker (2006), Guo
and Zipkin (2007), Armony et al. (2009), and Allon
et al. (2011).

Pricing levers focus on regulating the total demand
rate and customers’ service class choices. Papers in
this stream are closest to ours. See Hassin and Haviv
(2003) for an excellent survey. As noted above, our
model has two distinctive features: it captures cus-
tomer risk aversion with respect to delay costs and
payments, and it allows general price tariffs. Some
papers assume customers with nonlinear delay cost
functions in the standard model (e.g., Dewan and
Mendelson 1990, Van Mieghem 2000, Kittsteiner
and Moldovanu 2005, Ata and Olsen 2009, Bansal
and Maglaras 2009b, Kumar and Randhawa 2010).
In these cases, customers are not risk neutral with
respect to lead-time uncertainty, but still risk neu-
tral with respect to the resulting delay cost vari-
ability. Risk considerations are absent in aggregate
demand models that capture arrival rates as decreas-
ing functions of prices and lead times, where each
price is a flat rate (e.g., So and Song 1998, Boyaci
and Ray 2003, Charnsirisakskul et al. 2006, Allon and
Federgruen 2007, Çelik and Maglaras 2008). In some
models, purchase decisions do not explicitly depend
on lead-time variability, only on the quoted lead times
and flat rates, but the provider has a strong incen-
tive to keep lead-time variability small and incurs the
cost of managing the system accordingly. In So and
Song (1998), the provider has to build enough safety
capacity to meet an exogenous lead-time reliability
constraint. In Charnsirisakskul et al. (2006), Çelik and
Maglaras (2008), and Feng et al. (2011), the provider
incurs early/late delivery or expediting costs when
actual lead times deviate from quoted ones; these
costs are exogenous and do not affect customers’ pur-
chase decisions, unlike in our setting where tariffs
may specify delay discounts that customers consider
in their purchase decisions.

The price flexibility in tariffs that depend on
realized lead times is also different from that in
price-service differentiation and in dynamic (state-
dependent) pricing. In price-service differentiation,
the provider offers a menu of flat rates, each for a
different service class and based on some lead-time
statistic for that class (e.g., Mendelson and Whang
1990, Maglaras and Zeevi 2005). In dynamic pricing,
the flat rate fluctuates over time, for example, based
on the queue length (e.g., Low 1974, Chen and Frank
2001, Çelik and Maglaras 2008, Ata and Olsen 2009,
Feng et al. 2011). In these settings, different flat rates
reflect performance fluctuations across service classes
or across consecutive customers, but unlike in ours,
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each customer knows her payment exactly when she
makes her purchase decision.

A few studies show that it can be optimal to depart
from flat-rate pricing by charging customers based on
their realized processing (or service) time. Doing so
either allows the provider to manipulate customers’
service class or service rate choices (Mendelson and
Whang 1990; Hassin 1995; Ha 1998, 2001; Kittsteiner
and Moldovanu 2005), or to benefit from spending
more time with customers than necessary (Debo et al.
2008). In these papers, departing from flat-rate pric-
ing is optimal only because one party is ex ante better
informed about, and/or has control over, customers’
processing times; see §3 for details. In contrast, in
our setting all parties are equally informed about pro-
cessing times, which are exogenous, and charges are
based on the entire realized lead times in response to
customers’ delay cost risk considerations.

This paper is also related to pricing studies with-
out queueing in which customers are uncertain about
a component of their utility when they make their
purchase decisions. A number of papers consider the
design of pricing contracts with refunds in advance-
purchase situations where customers learn their val-
uations over time, for example, Courty and Hao
(2000), Gallego and Sahin (2010), and Akan et al.
(2013). Liu and van Ryzin (2008) and Bansal and
Maglaras (2009a) consider risk-averse customers in
settings with uncertain product availability.

Delay refund contracts can be viewed as a form of
insurance. As such this paper is also related to the eco-
nomics literature on insurance for risk-averse agents.
Rothschild and Stiglitz (1976) and Stiglitz (1977)
are seminal studies for competitive and monopoly
markets, respectively. See Landsberger and Meilijson
(1999) for a general model of insurance under adverse
selection.

1.3. Plan of the Paper
In §2 we specify and discuss the model. In §3 we
study under what conditions charging based on real-
ized lead time can increase revenue and the prop-
erties of the optimal lead-time-dependent pricing
schemes. In §4 we study the value of optimal lead-
time-dependent pricing, first for fixed capacity and
then under joint price and capacity optimization. In §5
we provide concluding remarks. Proofs are in the
online supplement, available at http://dx.doi.org/10
.1287/msom.2013.0434.

2. Model
We model a capacitated provider that serves delay-
sensitive customers as a queueing system with
well-defined moments of the steady-state lead-time
distributions. We use the terms “lead time” and
“delay” interchangeably; both refer to the entire

time interval between order placement and delivery,
that is, the system sojourn time including waiting
and time in service. Except in §4.2, we study a sys-
tem with fixed processing capacity. When consider-
ing the capacity explicitly, we denote it by �. Poten-
tial customers have unit demand and arrive according
to an exogenous stationary stochastic process with a
finite rate å. The provider is risk neutral and makes
static price and lead-time decisions to maximize her
long-run average revenue rate. We say “optimal”
to mean revenue-maximizing (or profit-maximizing
when capacity is a decision variable). In contrast, we
consider customers that are risk averse and maximize
their expected utility given the posted information.
It is standard to assume that both the provider and
the customers are risk neutral. That providers are risk
neutral seems plausible because they typically serve a
significant volume of customers. However, customers
may not be risk neutral, as noted in §1 and further
discussed below.

Customers have independent and identically dis-
tributed (i.i.d.) processing requirements, unless spec-
ified otherwise. Service time realizations become
known only once processing is completed. We nor-
malize the marginal cost of serving a customer to
zero. The population of potential customers may con-
sist of one or more types. Each customer is charac-
terized by three attributes: a valuation, a delay cost
function, and a utility function. Customers of the same
type may differ in their valuations, but they have the
same delay cost and utility functions. The provider
may offer one or more price-service classes. We use
“type” and “class” in reference to a customer group
and a price-service option, respectively. Each class
has two attributes: a price function and a lead-time
distribution.

Below we first formalize the problem for the basic
single-type, single-class model and then outline how
it extends to multiple types and/or classes. We next
discuss key features of our model and how it relates
to the standard model and to pricing schemes in
practice.

2.1. One Type, One Class
In this case customers only differ in their valuations,
which are continuous, nonnegative i.i.d. random vari-
ables with a continuous, strictly positive probabil-
ity density function f . Let F denote the cumulative
distribution function (c.d.f.), F̄ = 1 − F , and F̄ −1 be
its inverse. If all customers with valuation higher
than the marginal valuation v decide to buy, then
their arrival rate is �4v5 2= åF̄ 4v5. We also call � the
demand rate. Conversely, the marginal value func-
tion v4�5 2= F̄ −14�/å5 maps arrival rates to marginal
valuations. A customer with valuation v who experi-
ences lead time w has net valuation v − C4w5, where
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the delay cost function C2 �+ → � is increasing with
C405 = 0. It captures the opportunity cost and/or the
diminished value due to delay. The payoff from ser-
vice for a customer with valuation v and lead time w
is v − C4w5− P4w5, where P2 �+ → � is an arbitrary
price function or tariff chosen by the provider and
P4w5 is the customer’s payment. The full price equals
delay cost plus payment, so payoff equals valuation
minus full price. Customers base their decisions on
the utility of their payoff. A customer with payoff
v−C4w5− P4w5 has utility

U4v−C4w5− P4w551

where U is an increasing and (weakly) concave util-
ity function with U405 = 0. We call customers with
U4X5 = X risk neutral (RN) and those with strictly
concave utility U risk averse (RA).

Because of lead-time variability, a customer’s full
price is uncertain at the instant of her purchase deci-
sion. Let W denote the steady-state lead time. Given
the capacity, the scheduling policy, and the statisti-
cal properties of the arrival and service processes,
the distribution of W only depends on the arrival
rate �. We write W4�5 when making this dependence
explicit. For example, in a FIFO M/M/1 queue with
service rate � the distribution of W4�5 is exponential
with parameter �−�.

The provider does not know individual customers’
valuations but is informed about aggregate demand
characteristics, that is, the valuation distribution F , the
delay cost function C, the utility function U , the rate å,
and the statistical properties of the arrival and ser-
vice processes. Based on this information and the rela-
tionship between � and W4�5, the provider chooses
and announces a price function P and a distribution
of W , taking into account the resulting purchase deci-
sions and arrival rate �. Customers cannot observe
the queue length and evaluate their payoff distribu-
tion based on the announced tariff P and distribution
of W . Customers with valuation v buy if and only if
their expected utility E6U 4v − C4W5− P4W557 is non-
negative. Purchase decisions are irrevocable; that is,
we assume no reneging or retrials. We require that the
announced distribution of W matches the distribution
of W4�5, that is, the actual steady-state lead-time dis-
tribution given the resulting arrival rate. This require-
ment captures the notion that reputation effects and
third-party auditors commit the provider to perform
in line with her announcements.

The provider solves the revenue-maximization
problem

max
�1P

�E
[

P4W4�55
]

(1)

s.t. E
[

U
(

v4�5−C4W4�55− P4W4�55
)]

= 00 (2)

The demand relationship (2) requires that for any
price function P and corresponding equilibrium
arrival rate �, customers with marginal valuation v4�5

have zero expected utility. For a given W4�5, the
expected utility E6U 4v−C4W4�55− P4W4�5557 strictly
increases in v, so (2) ensures that customers buy if
and only if their valuation exceeds v4�5, and it rules
out suboptimal pricing that leaves all customers with
strictly positive expected utility if �=å.

Constant Absolute Risk Aversion (CARA) and Linear
Delay Costs. Our fundamental structural results hold
for any RA customers. For more specific results, in
§§3.3 and 4, we assume exponential (CARA) utility
functions, given by U4X5 = 1 − exp4−rX5, r > 0, and
linear delay costs C4W5= cW . In this case, (2) yields

1 − exp4−r v4�55E
[

exp r
(

cW4�5+ P4W4�55
)]

= 00 (3)

Consider the linear tariff P4W5 = � − �W , with �1
�≥ 0 constants. Let W̃ 4�1 s5 2= E6exp4sW4�557 and
L4�1 s5 2= ln W̃ 4�1 s5 denote, respectively, the moment-
generating function (MGF) and the semi-invariant
MGF of the random variable W4�5, evaluated at s.
By (3), the equilibrium arrival rate � satisfies

� = v4�5−
ln4E6exp4r4c−�5W4�5575

r

= v4�5−
L4�1 r4c−�55

r
0 (4)

That is, if the provider announces the tariff P4W5 =

� − �W and the distribution of W4�5, then � satis-
fies (4). Note that �+ L4�1 r4c − �55/r is the certainty
equivalent (CE) of the full price, that is, customers
are indifferent between paying this certain amount
and the random full price � + 4c − �5W4�5. Sim-
ilarly, L4�1 r4c−�55/r is the CE of the net delay
cost 4c−�5W4�5. For a FIFO M/M/1 queue with ser-
vice rate �,

L4�1 r4c−�55

r
= ln

(

�−�

�−�− r4c−�5

)

0

2.2. Multiple Types and/or Classes
In cases with more than one type and/or more
than one price-service class, we specify whether the
provider can distinguish among types and how prob-
lem (1)–(2) generalizes. We index customer types by
i ∈ 81121 0 0 0 1N 9. The functions vi, Ci, and Ui specify
the type i attributes as explained above. An arrival is
of type i with probability åi/å, where åi is the arrival
rate of potential type i customers. Let �i denote the
type i arrival rate, Ë= 4�11�21 0 0 0 1�N 5 and �=

∑N
i=1 �i.

We index price-service classes by k ∈ 81121 0 0 0 1K9,
where Wk denotes the steady-state lead time of class k
and Pk4Wk5 its price function.

2.3. Discussion

2.3.1. Risk-Averse Customers. The key modeling
novelty is that we let demand be sensitive to both
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delay cost and payment variability by modeling cus-
tomers as risk averse with respect to their payoff.

The standard model assumes that customers are
risk neutral with respect to their payoff, so U4X5 =

X, and pay a flat rate p, so P4W5= p. In evaluating
the cost of service, they only consider its expected
full price: E6C4W57 + p. A customer with valuation
v makes a purchase if her expected payoff is non-
negative, i.e., v ≥ E6C4W57 + p. However, because of
lead-time variability, customers face delay cost risk.
A customer’s ex post payoff may be lower than her
ex ante expectation and even negative. Specifically,
for the marginal customer whose valuation equals
the expected full price, the ex post payoff is neg-
ative whenever the realized delay cost exceeds its
mean. For example, under linear delay costs, this
event occurs whenever the realized lead time exceeds
its mean; in an M/M/1 queue with FIFO service, this
probability equals 1/e ≈ 0037. Obviously, customers
who end up with lower than expected, or even nega-
tive, payoff are less satisfied. In reality, such delay cost
risk may concern customers and motivate providers
to compensate them based on their actual delays, par-
ticularly if losses due to delay costs can be significant.
(See Holt and Laury 2002 for experimental evidence
of risk aversion even with low stakes.) For example, in
commercial shipments, construction projects, and the
procurement of critical components, delays can trans-
late into considerable financial losses for customers.
Providers in these industries commonly offer con-
tracts that specify compensation payments for delays.
However, by assuming that customers are indifferent
between any two tariffs with the same expected full
price, the standard model ignores these delay cost risk
concerns. This limitation calls for a model that fits
settings where customers are sensitive to full price
risk, that is, to delay cost variability and to how much
they pay as a function of their ex post delay cost. Our
model with risk-averse customers provides a natural
framework for such settings and subsumes the stan-
dard model as a special case.

2.3.2. Delay Cost Structure and Risk Neutral-
ity in the Standard Model. Some papers study the
standard model with delay cost functions that are
convex (Dewan and Mendelson 1990, Van Mieghem
2000, Kittsteiner and Moldovanu 2005, Kumar and
Randhawa 2010) or with convex-concave delay costs
that capture sensitivity to deadlines (Ata and Olsen
2009, Bansal and Maglaras 2009b). In the standard
model, customers with nonlinear delay costs are not
risk neutral with respect to lead-time uncertainty but
are still risk neutral “with respect to money,” that is,
the resulting delay cost variability; they are indifferent
between any two delay cost distributions that have
the same mean. For illustration, consider the dead-
line delay cost structure C4W5= c · I8W > w̄9, where I

denotes the indicator function; that is, the delay cost
c > 0 is incurred only if the lead time exceeds the
deadline w̄ > 0. In this sense, customers are satisfi-
cers with respect to their delay (Bansal and Maglaras
2009b). In this case E6C4W57 = cPr8W > w̄9. In the
standard model, customers are indifferent between
any two tariffs that yield the same mean payment, for
example, a flat rate p and the lead-time-sensitive tariff
P4W5 = p + c · Pr8W > w̄9 − c · I8W > w̄9 that charges
more than p if delivery is on time and less than p if it
is late. The mean payment is p and the mean full price
is p + cPr8W > w̄9 for both tariffs, but only the lead-
time-sensitive tariff eliminates full price variability.

2.3.3. Price and Lead-Time Quotation. The as-
sumption that the provider announces an arbitrary
price function and a lead-time distribution describes
a generalized price and lead-time quotation model.
There are clear parallels between our model, the stan-
dard model, and current schemes in practice. In gen-
eral, customers may not need the entire lead-time
distribution to evaluate their expected utility; the
information they require depends on the tariff and
on their delay cost structure and risk preferences.
In the standard model with RN customers, flat-rate
pricing, and linear delay costs, customers only need
to know the expected lead time. Lead-time-sensitive
pricing schemes in practice typically specify a tar-
get lead time, a regular price for “on-time” delivery/
completion, and a schedule of refund payments as a
function of the delay. For example, a number of trans-
portation providers offer such contracts. The simplest
contracts specify a full refund for late delivery. Pack-
age carriers like FedEx and UPS offer such contracts
for their express delivery services, as do certain less-
than-truckload (LTL) carriers (Bohman 2003). In such
cases, customers with a corresponding deadline delay
cost structure only need to know the on-time proba-
bility. More sophisticated delay refund schedules, for
example, for ocean freight or construction projects,
specify two or more refund levels as a function of
the delay, on a time scale of days, hours, or even
minutes (Friedlander 2001). In such cases, customers
may require more information on the lead-time
distribution to forecast their expected utility. On-time
performance and related lead-time statistics are typ-
ically published by the carriers themselves but are
also increasingly available from third-party providers
of information, auditing, and/or refund claim pro-
cessing services. For example, the company Package-
Fox (packagefox.com) sells such services to FedEx
and UPS express delivery customers and releases on-
time performance statistics. With growing competi-
tive pressures and the proliferation of sophisticated IT
solutions, customers are gaining access to increasingly
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detailed and up-to-date information on lead-time dis-
tributions. For example, the maritime shipping ana-
lyst SeaIntel and the ocean cargo technology provider
INTTRA recently launched a monthly schedule reli-
ability report that provides detailed container deliv-
ery time statistics for each major carrier and port–port
combination (Burnson 2012). The increasing availabil-
ity of detailed lead-time forecasts and the prolifera-
tion of third-party tracking/auditing services make
it increasingly manageable for customers to evalu-
ate their expected utility before a purchase, verify
their actual lead times ex post, and enforce con-
tracts by collecting delay refunds. To summarize, our
model framework is general enough to accommodate
a range of delay refund schemes that are found in
practice.

3. The Optimal Lead-Time-Dependent
Pricing

In this section, we address the first two questions
posed in the introduction: Under what conditions can
charging based on realized lead time increase rev-
enue? What are the properties of the optimal lead-
time-dependent pricing scheme? We start with RN
customers in §3.1. We then consider distinguishable
and indistinguishable RA customer types, in §§3.2
and 3.3, respectively.

3.1. Standard Model: RN Customers
We have the following revenue equivalence result:

Proposition 1. Suppose that customers are RN. Then
the following holds for any given number of price-service
classes and any scheduling policy:

1. If customers have i.i.d. service requirements, the max-
imum expected revenue rate over all price functions can
be attained by charging for each price-service class k a flat
rate Pk4Wk5= pk.

2. If customer types differ in their service requirements,
then part 1 holds under the restriction that the provider
can distinguish among types.

By Proposition 1, pricing independently of the real-
ized lead times entails no revenue loss in the standard
model with RN customers. However, charging flat
rates in the presence of lead-time variability exposes
customers to full price risk—their delay cost is ex ante
uncertain and their ex post payoff may be negative.
The optimal flat rates moderate full price variability
by controlling the utilization and the resulting lead-
time variability. Still, whatever the variability level
and the delay cost structure, with flat rates, the prob-
ability and/or magnitude of negative payoff realiza-
tions may be significant for some customers. The
provider could reimburse customers for long lead
times to eliminate their full price risk, but by Propo-
sition 1, it has no incentive to do so if they are RN.

The distinction between parts 1 and 2 of Propo-
sition 1 is important. If types have different service
requirements, the lead-time distribution of a given
service class may vary by type. If types are indis-
tinguishable, the maximum attainable revenue over
all tariffs may not be attainable by charging a flat
rate for each class. In particular, ensuring incentive-
compatibility at the optimal arrival rates may only be
feasible by charging based on the realized processing
(i.e., service) time.

Part 2 of Proposition 1 is related to a few exceptions
in the literature when it is optimal for the provider
to charge based on the realized processing time,
in contrast to our tariffs that depend on the entire
lead time, including the time in queue. In these
papers, unlike in ours, the rationale for departing
from flat-rate pricing is that one party is ex ante better
informed about and/or has control over processing
times. Mendelson and Whang (1990) characterize the
welfare-maximizing priority pricing mechanism for a
multiclass M/M/1 queue serving multiple indistin-
guishable RN types with type-dependent service time
distributions. In their setting, service-time-dependent
tariffs may be optimal to deter customers with long
jobs from buying a class targeted to customers with
shorter jobs. Similar results are given in Hassin
(1995) and Kittsteiner and Moldovanu (2005) for pri-
ority auctions in queues with privately informed cus-
tomers that have heterogeneous service requirements.
In Ha (1998, 2001), customers choose their service
requirements. The optimal tariffs include a compo-
nent that depends on the realized processing time.
In Debo et al. (2008), customers arrive to a visible
FIFO queue of an expert who controls the service
time. Under certain conditions, the expert may benefit
from increasing the service time and charge customers
per hour.

3.2. Distinguishable RA Customer Types
In this section, we show that charging based on real-
ized lead times has positive value in the case of RA
customers, unlike in the RN case. We also address
the second question posed in the introduction: What
are the properties of the optimal lead-time-dependent
pricing scheme? We consider the case of distinguish-
able customer types in this section and that of indis-
tinguishable types in §3.3. Whether the provider can
distinguish among types depends on the character-
istics of its customer base and its services/products.
For example, a firm may be able to distinguish among
types based on their location or if they are identifiable
as residential versus business versus government cus-
tomers. Firms may also be able to distinguish among
types if their preferences are correlated with prod-
uct attributes; for example, a firm that sells lower-
and higher-value products may know that customers
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who buy higher-value products are more time sensi-
tive and risk averse with respect to shipping delays.

Proposition 2 characterizes the optimal lead-time-
dependent pricing scheme for distinguishable cus-
tomer types. We also say first-best to mean optimal
in this case. The case of distinguishable types sub-
sumes the special case of a single type and serves
as a benchmark for that of indistinguishable types.
From the provider’s perspective, the key benefit of
being able to distinguish among types is that she
can limit each type to a single, targeted price-service
class. Proposition 2 therefore identifies the tariff struc-
ture that is optimal in the absence of customer choice
among classes.

Proposition 2. Suppose that the provider sells ser-
vice to N distinguishable customer types, serving all
customers of the same type with the same price-service
class. Given the provider’s scheduling policy, let Ë∗ =

4�∗
11�

∗
21 0 0 0 1�

∗
N 5 be a revenue-maximizing demand vector

if all customer types were RN and distinguishable, i.e.,
Ë∗ ∈ arg maxË

∑N
i=1 �i · 4vi4�i5− E6Ci4Wi4Ë5575.

1. The optimal type i tariff P ∗
i charges a fixed (lead-time-

independent) up-front fee, equal to that type’s marginal
valuation, minus a lead-time-dependent discount, equal to
its delay cost:

P ∗

i 4Wi5= vi4�
∗

i 5−Ci4Wi50 (5)

If type i is RA, then this optimal price function is unique.
2. Under the optimal price functions (5), all types’

arrival rates and expected payments, and the provider’s
maximum expected revenue rate, are the same as if all types
were RN.

When customers are risk averse, it is optimal for the
firm to charge based on realized performance. Under
the optimal tariff in (5), the provider internalizes the
delay cost of customers, which eliminates their payoff
risk. The first-best tariffs for RA customers are there-
fore independent of risk-aversion levels and yield the
same optimal arrival rates and revenue as if cus-
tomers were RN.

The optimal tariff structure in (5), with a fixed up-
front fee and a lead-time-sensitive refund schedule
that matches the structure of customer delay costs, is
invariant to the number of types and the operational
characteristics of the system. These properties only
affect the revenue-maximizing demand vector Ë∗, and
the resulting up-front fees and lead-time distribu-
tions. Since delay costs increase in lead times, a cus-
tomer’s payment under the optimal tariff decreases in
her realized lead time. For example, for the deadline
delay cost structure C4W5 = c · I8W > w̄9, the optimal
tariff refunds the amount c for late delivery, similar
to the simplest delay refund policies in practice.

Table 1 compares, for a single type, the mean and
standard deviation of payments and full prices under

Table 1 Optimal Payments and Full Prices: RN vs. RA Customers
(One Type, �∗ = Ë∗, v ∗ 2= v ∗4�∗5, W ∗ 2=W4�∗5)

Payment P 4W 5 Full price P 4W 5+C4W5

Customers RN RA RN RA

Amount v ∗ − E6C4W ∗57 v ∗ −C4W ∗5 v ∗ − E6C4W ∗57+C4W ∗5 v ∗

Mean v ∗ − E6C4W ∗57 v ∗ − E6C4W ∗57 v ∗ v ∗

Std. dev. 0 stdev6C4W ∗57 stdev6C4W ∗57 0

optimal flat-rate pricing for RN customers and opti-
mal lead-time-dependent pricing for RA customers.
The delay cost variability is borne by customers
when they are RN but by the provider when cus-
tomers are RA. As a result, under the optimal tariff
in (5), all customers have nonnegative ex post utility,
but the provider has (potentially unlimited) liability
for delays.

3.3. Two Indistinguishable RA Customer Types
The model with distinguishable RN types is a natural
benchmark since the first-best revenue is independent
of risk aversion. The first-best revenue is generally
not attainable if the provider cannot distinguish types.
In this section, we study the effect of this informa-
tion constraint on the optimal lead-time-dependent
pricing scheme. We focus on a system with uniform
service (e.g., FIFO) and consider two indistinguish-
able types with CARA utility and linear delay costs,
assuming without loss of generality that c1 > c2; that
is, type 1 customers are more impatient. We start with
uniform pricing, that is, a single tariff, and then con-
sider differentiated pricing through a menu of tariffs.

3.3.1. Uniform Pricing: One Linear Tariff. For
simplicity, the provider may offer a single lead-time-
dependent tariff. Proposition 3 characterizes the opti-
mal tariff with a linear delay refund.

Proposition 3. Consider a system with uniform ser-
vice for two indistinguishable RA customer types, with lin-
ear delay costs c1 > c2 and CARA utility functions. Suppose
the provider offers a single linear tariff P4W5 = �−�W
and it is optimal to serve some, but not all, customers of
each type. Let �∗ and �∗ be the optimal tariff parameters
and v∗

i the resulting marginal type i valuation.
1. If r1, r2 > 0, the up-front fee exceeds the marginal

valuation of the patient type and is lower than that of the
impatient type, v∗

2 <�∗ < v∗
11 and the delay discount rate

exceeds the delay cost rate of the patient type and is lower
than that of the impatient type, c2 <�∗ < c1.

2. If ri > rj = 0, it is optimal to eliminate the RA type’s
delay cost risk: �∗ = v∗

i and �∗ = ci.

Uniform pricing leaves customers with some delay
cost risk. If both types are RA (part 1 of Proposition 3),
the presence of type j with different delay sensitiv-
ity cj 6= ci pulls � closer to cj . Setting � outside the
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interval 4c21 c15 is suboptimal because it reduces the
expected payment that both types are willing to pay.
Under the optimal tariff with �∗ ∈ 4c21 c15, the impa-
tient type 1 customers have positive utility for instant
service, but their full price increases and their utility
decreases in lead time. By contrast, every patient cus-
tomer’s utility increases and her full price decreases
in lead time; those with valuation larger than the up-
front fee �∗ have positive utility for every lead time,
whereas the utility of those with lower valuation is
negative for instant service and positive only at suffi-
ciently long lead times. If one type is RN, as in part 2
of Proposition 3, its expected payment is invariant
to �, so it is optimal to eliminate the delay cost risk
of the other, RA type.
3.3.2. Differentiated Pricing: Incentive-Compati-

bility of the First-Best Tariff Set. Charging a sin-
gle linear tariff is appealing for simplicity, but
differentiated pricing through a menu of tariffs may
generate more revenue. The first-best tariff set gen-
erates the maximum revenue among all tariff menus,
which raises the question: Can the first-best tariff set
be incentive-compatible (IC), and if so, under what
conditions? It is well known that under uniform ser-
vice the answer is generally negative for RN cus-
tomers; that is, all tariffs that are selected by some
customers must have the same expected payment. We
show that the answer is positive for RA customers,
and we shed light on the relationship to the RN case.
We first characterize the optimality conditions of the
first-best problem and then the conditions for the first-
best solution to be IC.

Optimality Conditions of the First-Best Solution. By
Proposition 2, for distinguishable customer types with
linear delay costs, the optimal tariff set satisfies
P ∗
i 4W5 = �∗

i − �∗
iW for i = 1121 where �∗

i = ci, �∗
i =

vi4�
∗
i 5, and �∗

i is the first-best arrival rate of type i
customers. The first-best demand vector Ë∗ is the
solution of

max
Ë

∑

i=112

�i

(

vi4�i5− ci E6W4�57
)

(6)

s.t. 0 ≤ �i ≤åi1 i = 1121 (7)

�1 +�2 <�1 (8)

where �= �1 +�2.
For simplicity, we assume that it is optimal to serve

some, but not all, customers of each type. Since it can-
not be optimal to operate at capacity and the objective
function is strictly concave, the following first-order
conditions (FOC) for the first-best demand vector are
necessary and sufficient:

v14�
∗

15− c1 E6W4�∗57+�∗

1v
′

14�
∗

15

= v24�
∗

25− c2 E6W4�∗57+�∗

2v
′

24�
∗

25

=
∑

i=112

�∗

i ci
dE6W4�∗57

d�
0 (9)

Incentive-Compatibility of the First-Best Tariff Set. Sup-
pose that the provider announces a menu of two
linear tariffs Pi4W5 = �i − �iW for i = 112, and a
distribution of W that is consistent with the lead-time
distribution given the resulting arrival rates. Then,
customers of each type purchase the service at the
tariff targeted to their type, if and only if

�i = vi4�i5−
L4�1 ri4ci −�i55

ri
1 i = 1123 (10)

that is, the demand relationship (4) holds for each tar-
iff (which ensures individual rationality), and

�i +
L4�1 ri4ci −�i55

ri
≤ �j +

L4�1 ri4ci −�j55

ri
1

i 6= j ∈ 811291 (11)

which ensure incentive-compatibility. By (11), a type i
customer prefers the type i tariff 4�i1�i5 only if her CE
of the full price under this tariff (the left-hand side)
does not exceed her CE of the full price for the type j
tariff (the right-hand side). Substituting for �1 and �2
from (10) into (11) yields the incentive-compatibility
constraints in a form that depends only on Ë and the
delay discount rates:

L4�1 r14c1 −�155

r1
−

L4�1 r24c2 −�155

r2

≤ v14�15− v24�25

≤
L4�1 r14c1 −�255

r1
−

L4�1 r24c2 −�255

r2
0 (12)

The types’ marginal valuation difference is bounded
by the difference in the CEs of their net delay costs
under the type 1 tariff (the left-hand side) and under
the type 2 tariff (the right-hand side). The first-best
tariff set is IC if and only if the demand vector Ë∗ that
solves (9) satisfies (12) for �1 = c1 and �2 = c2.

In the standard model with RN customers, differ-
entiated pricing has no value under uniform service
because any two IC price functions yield the same
expected payment. For RN customers, the CE of the
net delay cost of any tariff equals its mean:

lim
ri→0

L4�1 ri4ci −�j55

ri
= 4ci −�j5E6W4�571 for all i1 j

(see part 3 of Lemma 1 in the online supplement).
This implies from (10) that the expected payment of
the tariff chosen by type i must equal its expected
marginal net value

�i −�i E6W4�57= vi4�i5− ci E6W4�571

and from (12), the types’ marginal valuation differ-
ence equals their expected delay cost difference:

v14�15− v24�25= 4c1 − c25E6W4�570
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As a result, both tariffs must yield the same mean
payment: �1 −�1E4W4�55= �2 −�2E4W4�55.

Proposition 4 proves that, unlike in the standard
model, with RA customers differentiated pricing can
have positive value even under uniform service.
In fact, the provider may be able to implement the
differentiated first-best tariff set. Furthermore, when
customer types are indistinguishable, risk aversion
allows the provider to extract more revenue than with
RN customers.

Proposition 4. Consider a system with uniform ser-
vice for two indistinguishable RA customer types with lin-
ear delay costs c1 > c2 and CARA utility with r1, r2. Let
Ë∗ = 4�∗

11�
∗
25 be the first-best demand vector and suppose

that �∗
i ∈ 401åi5. By Proposition 2 the first-best tariff set

is P ∗
i 4W5 = �∗

i − �∗
iW , with �∗

i = vi4�
∗
i 5 and �∗

i = ci, for
i = 112. Let p∗

i 2= �∗
i −�∗

i E6W4�∗57, i = 112.
1. If �∗

1 ≤ �∗
2, the first-best tariff set is not IC for any

risk-aversion levels.
2. If p∗

1 = p∗
2 , the first-best tariff set is IC for all risk-

aversion levels.
3. If �∗

1 > �∗
2 and p∗

1 6= p∗
2 , the first-best tariff set is IC

if and only if the type with the higher mean payment is
sufficiently risk averse: If p∗

i > p∗
j , there is r ∈ 401�5 such

that type i chooses tariff i if and only if ri ≥ r ; type j
chooses tariff j regardless of her risk preference.

Proposition 4 implies that, even in cases where the
first-best tariff set is not IC, offering a menu of two
linear lead-time-dependent tariffs may yield strictly
higher revenue than the single linear tariff charac-
terized in Proposition 3. The results of Proposition 4
have the following intuition.

In part 1, if �∗
1 ≤ �∗

2, the tariff targeted to the impa-
tient type 1 customers both charges the lower up-
front fee and refunds the higher delay discount rate
since �∗

1 = c1 > �∗
2 = c2. The patient type 2 customers

therefore prefer the type 1 tariff regardless of their
risk-aversion level, so the first-best tariff cannot be IC.
By inspection of the FOC (9), part 1 may apply, for
example, if congestion effects are minor; that is, the
terms involving ci are small. For illustration, if both
types have uniform valuations on 601 v̄i7, then vi4�i5=

v̄i41−�i/åi5. If congestion effects are minor and there
is enough capacity, then the FOC (9) imply

vi4�
∗

i 5+�∗

i v
′

i4�
∗

i 5= v̄i41 − 2�∗

i /åi5≈ 01 i = 11 21

so that it is optimal to serve roughly the top half of
each type, i.e., �∗

i ≈ åi/2 and vi4�
∗
i 5 ≈ v̄i/20 When-

ever the impatient type 1 customers have the lower
maximum valuation, i.e., v̄1 < v̄2, we have �∗

1 < a∗
2,

and the first-best solution is not IC for any risk-
aversion levels.

In part 2, in the exceptional case where p∗
1 = p∗

2 ,
the first-best tariff set is clearly IC for RN customers

because they are indifferent between any two tariffs
with the same mean payment. Uniform pricing with
a single flat rate also attains the first-best revenue for
RN customers, but flat-rate pricing is suboptimal for
RA customers as established in this paper. Attaining
the first-best revenue for RA customers requires the
differentiated first-best tariff set; to see why it is IC for
all risk-aversion levels, consider a type 1 customer’s
choice. Her CE of the type 1 tariff full price equals
the up-front fee �∗

1 regardless of her risk aversion,
because this tariff eliminates type 1 customers’ delay
cost risk. By contrast, her CE of the type 2 tariff full
price increases in her risk aversion. Type 1 customers
are therefore indifferent between the tariffs if they are
RN but otherwise prefer the type 1 tariff:

�∗

1 = �∗

2 + 4c1 − c25E6W4�∗57≤ �∗

2 +
L4�∗1 r14c1 − c255

r1
1

where the equation follows since p∗
1 = p∗

2 and the
inequality is strict if and only if r1 > 0. Similar reason-
ing explains why type 2 customers prefer their tar-
geted tariff regardless of their risk attitude.

From (9), p∗
1 = p∗

2 holds if and only if �∗
1v

′
14�

∗
15 =

�∗
2v

′
24�

∗
25. This means that at the first-best arrival rates,

both types have the same ratio of marginal valuation
to elasticity, where the elasticity function of the type i
marginal value function is �i4�i5 = −vi4�i5/4�iv

′
i4�i55.

For example, consider exponential valuations with
c.d.f. Fi4v5 = 1 − exp4−kiv5 for v ≥ 0, where ki > 0.
The marginal valuation function vi4�i5 = ln4åi/�i5/ki
and �iv

′
i4�i5= −1/ki, so p∗

1 = p∗
2 if and only if k1 = k2.

In part 3, suppose that �∗
1 > �∗

2 and p∗
1 < p∗

2 . Then
type 1 customers choose their targeted tariff because

�∗

1 <�∗

2 + 4c1 − c25E6W4�∗57≤ �∗

2 +
L4�∗1 r14c1 − c255

r1
0

If type 2 customers are RN, they clearly prefer the
type 1 tariff because it yields the lower mean pay-
ment. The type 1 tariff charges the higher up-front
fee but also refunds the larger discount. The more
risk averse type 2 customers are, the less they value
the larger discount. If they are sufficiently risk averse,
they prefer the type 2 tariff because it eliminates all
delay cost risk. Similar intuition applies if �∗

1 > �∗
2

and p∗
1 > p∗

2 .

4. The Value of Optimal Lead-Time-
Dependent Pricing

By Propositions 1 and 2, flat-rate pricing is optimal
if and only if customers are RN. Flat-rate pricing is
also practically appealing because of its simplicity and
because it frees the provider of liability for delays.
Providers that serve RA customers must weigh these
practical benefits of flat-rate pricing against the rev-
enue gains of optimal lead-time-dependent pricing.
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This raises the third question posed in the intro-
duction: What is the value of optimal lead-time-
dependent pricing? In this section, we study this
question for two settings. In §4.1 we compare the per-
formance of a system with fixed capacity under the
optimal lead-time-dependent tariff against its perfor-
mance under optimal flat-rate pricing and under the
simplest practical delay refund policy, which we call
the simple refund policy. In §4.2 we consider the inter-
play between pricing and operations by comparing
the optimal capacity and performance under optimal
lead-time-dependent versus optimal flat-rate pricing.
We focus on a system with uniform service (e.g.,
FIFO) that serves a single RA type with CARA utility
and linear delay cost.

4.1. Performance vs. Flat-Rate and
Simple Refund Policies: Fixed Capacity

By Proposition 2, for a linear delay cost C4W5 =

cW , the optimal lead-time-dependent tariff is given
by P ∗4W5 = v4�∗5 − cW , where �∗ is the revenue-
maximizing demand rate for RN customers. For com-
parison with flat-rate pricing, consider linear tariffs of
the form P4W5 = �− �W . For the optimal lead-time-
dependent tariff, �= c. For flat-rate pricing, �= 0 and
the provider chooses only �. The simple refund pol-
icy charges � for on-time delivery by a threshold lead
time w̄ and issues a full refund for late delivery, i.e.,
P4W5 = � − � · I8W > w̄9, and the provider chooses
� and w̄.

We compare lead-time-dependent versus flat-rate
pricing analytically, show that the revenues of these
tariffs bound the revenue of the simple refund policy,
and compare the three tariffs numerically.

4.1.1. Optimal Flat-Rate Pricing. By (4), the de-
mand relationship for P4W5= �−�W is

�= v4�5−
L4�1 r4c−�55

r
0 (13)

Let ç4�5 be the revenue function under the optimal
lead-time-dependent tariff. For this tariff �= c, so by
(13) the expected payment as a function of � is � −

�E6W4�57= v4�5− cE6W4�57. The provider solves

max
�

ç4�5= �
(

v4�5− cE6W4�57
)

0 (14)

Let çf 4�3 r5 be the revenue function under flat-rate
pricing, where r expresses the dependence on risk
aversion. In this case �= 0, so by (13) the flat rate as a
function of � is v4�5−L4�1 rc5/r . The provider solves

max
�

çf 4�3 r5= �

(

v4�5−
L4�1 rc5

r

)

0 (15)

Let �∗ 2= arg max�ç4�5 denote the optimal arrival
rate under optimal pricing, ç∗ 2= ç4�∗5 the opti-
mal revenue, and P ∗4W5 2= �∗ − cW the optimal

price function, where �∗ 2= v4�∗5. Because the opti-
mal price function eliminates customers’ payoff risk,
these quantities are independent of r . Let �f 4r5 2=
arg max�ç

f 4�3 r5 denote the optimal arrival rate
under flat-rate pricing and çf 4r5 2= çf 4�f 4r53 r5 the
corresponding optimal revenue. The optimal flat
rate is

�f 4r5 2= v4�f 4r55−
L4�f 4r51 rc5

r
0 (16)

For analytical convenience, we make the following
mild technical assumptions. (We write gx and gxy for
the first- and second-order partial derivatives of a
bivariate function g4x1y5.)

Assumption A1. ç′405 > 0 > lim�→min4�1å5ç
′4�5.

This ensures an interior solution under optimal pricing.

Assumption A2. The functions ç4�5 and çf 4�3 r5 are
strictly concave in �.

Assumption A3. L�4�1 s5/s increases in s, which
ensures that çf

�r 4�3 r5 < 0.

The online supplement details sufficient conditions
for Assumptions A2 and A3.

Proposition 5. Suppose that the provider only charges
a flat rate, and there is a single RA customer type with
CARA utility and linear delay costs C4W5= cW .

1. For r > 01 the arrival rate and the revenue under
the optimal flat rate �f 4r5 are lower than under the opti-
mal price function P ∗4W5 = v4�∗5− cW : �f 4r5 < �∗ and
çf 4r5 < ç∗. Moreover, limr→0 �

f 4r5 = �∗, limr→0 ç
f 4r5

=ç∗1 and limr→0 �
f 4r5 < �∗.

2. The arrival rate �f 4r5 and the revenue çf 4r5 under
the optimal flat rate are strictly positive and decreasing in r
if r < r̄ , and they equal zero if r ≥ r̄ , where

0 < r̄ = arg
{

r ≥ 02
L401 rc5

r
= v405

}

and

r̄ <� if v405 <�0 (17)

3. The optimal flat rate �f 4r5 need not be monotone in r
and satisfies limr→r̄ �

f 4r5= 0.

By Proposition 2, the optimal lead-time-dependent
tariff eliminates customers’ full price risk. In contrast,
under flat-rate pricing, customers face some full price
risk, so at every congestion level the flat rate is lower
than the mean payment under the optimal lead-time-
dependent tariff. Flat-rate pricing therefore yields a
lower optimal utilization and revenue. Without the
flexibility to offer a delay refund, the provider can
lower full price variability only indirectly, by lowering
delay cost variability, that is, decreasing utilization.
At the extreme, for RA levels above the threshold r̄ ,
customers are not willing to pay a positive flat fee at
any utilization, so it is unprofitable to operate the sys-
tem under flat-rate pricing, even though the system is
profitable under the optimal tariff.
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4.1.2. Simple Refund Policy. Under the simplest
lead-time-dependent tariff found in practice, cus-
tomers receive a full refund if their actual lead time
exceeds the quoted threshold. By Proposition 2, for
RA customers this delay refund structure is optimal
only if it mirrors their delay cost structure. If customer
delay costs have a different structure, for example, lin-
ear as in this section, this policy is suboptimal because
it insures only some of their delay cost risk. How-
ever, even in such cases this refund policy is prac-
tically appealing. For one, it is simple to implement
because the firm only sets two controls: the price �
and the lead-time threshold w̄. Moreover, this policy
limits providers’ liability for delays while giving them
the flexibility to insure delay cost risk at least partially.

Let çs4�1 w̄3 r5 be the revenue under the simple
refund policy as a function of the arrival rate � and
the lead-time quote w̄ for a given RA parameter r .
Let �s4�1 w̄3 r5 denote the price as a function of �
and w̄, which is determined from the demand rela-
tionship (3). The provider solves

max
�1 w̄

çs4�1 w̄3 r5= ��s4�1 w̄3 r5Pr8W4�5≤ w̄91 (18)

where Pr8W4�5 ≤ w̄9 is the on-time probability. The
expected payment equals that under the flat-rate pol-
icy as w̄ → �, i.e., limw̄→� �s4�1 w̄3 r5Pr8W4�5 ≤ w̄9 =

v4�5 − L4�1 rc5/r . The revenues under the optimal
lead-time-dependent tariff, the simple refund policy,
and flat-rate pricing satisfy

ç4�5≥çs
(

�1 w̄∗4�3 r53 r
)

≥çf 4�3 r51 (19)

where w̄∗4�3 r5 maximizes the expected payment
�s4�1 w̄3 r5Pr8W4�5≤ w̄9 for fixed �. The first inequal-
ity in (19) holds by Proposition 2; the second holds
because the simple refund policy generalizes the flat-
rate contract. The revenue ranking in (19) is intu-
itive: For given utilization and lead-time variability,
the expected payment is higher the more the provider
shares customers’ delay cost risk.

4.1.3. Numerical Comparison. We illustrate Pro-
position 5 and the simple refund policy with a numer-
ical example. Specifically, we compare the perfor-
mance of the optimal lead-time-dependent tariff with
that of optimal flat-rate pricing and the optimal sim-
ple refund policy.

Example 1. Consider an M/M/1 queue with
capacity � = 5 and market size å= 10. The value
distribution is uniform on 60157, and the delay
cost rate is c = 1. Recall from Proposition 2 that
the optimal lead-time-dependent tariff is indepen-
dent of the RA parameter r . The optimal arrival
rate �∗ = 303 solves (14), where E6W4�57= 1/4�−�5
for the M/M/1 queue, the optimal tariff is

P ∗4W5= v∗ − cW = 3035 −W , and the optimal profit
ç∗ = 901. Under flat-rate pricing, the optimal
arrival rate solves (15), where L4�1 rc5 = ln44�−�5/
4�−�− rc55 for the M/M/1 queue, and the RA
threshold in (17) is r̄ ≈ 5, where r̄ < �/c. Under the
simple refund policy the optimal arrival rate and
lead-time quote solve (18), where for the M/M/1
queue

�s4�1w̄3r5

=
1
r

ln
(

exp4r v4�55/W̃ 4�1rc5−exp8−w̄4�−�−rc59

1−exp8−w̄4�−�−rc59

)

(20)

from (3),

W̃ 4�1 rc5=
�−�

�−�− rc
1 and

Pr8W4�5≤ w̄9= 1 − exp4−w̄4�−�550

By Proposition 5 the utilization and revenue under
the optimal flat rate are lower than under the opti-
mal lead-time-dependent tariff, and they decrease in
the risk-aversion level. We observe these losses also
under the optimal simple refund policy, but because
it partially insures delay cost risk, they are not as
large as under flat-rate pricing. Figure 1 shows for r ∈

60127 the percentage gains in revenue and utilization
under the optimal lead-time-dependent tariff, relative
to the optimal flat-rate and simple refund policies.
Two observations stand out. First, these gains increase
considerably in risk aversion, particularly relative to
flat-rate pricing. (As we show in §4.2, even modest
revenue gains when capacity is fixed can translate
into significantly larger profit gains under capacity
optimization.) Second, the simple refund policy per-
forms well relative to optimal lead-time-dependent

Figure 1 Percentage Gains in Revenue and Utilization Under the
Optimal Lead-Time-Dependent Tariff, Relative to Optimal
Flat-Rate Pricing and the Optimal Simple Refund Policy,
as Functions of RA Parameter r
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Risk-aversion parameter r

Gain in utilization (vs. flat-rate pricing)
Gain in revenue (vs. flat-rate pricing)
Gain in revenue (vs. simple refund policy)
Gain in utilization (vs. simple refund policy)

Note. M/M/1 queue with �= 5, å= 10, CARA utility, linear delay cost rate
c = 1, and valuations∼ U60157.
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Figure 2 Price Metrics Under the Optimal Lead-Time-Dependent
Tariff, the Optimal Simple Refund Policy, and the Optimal
Flat Rate, as Functions of RA Parameter r
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Risk-aversion parameter r

Up-front fee (optimal tariff)
Up-front fee (optimal simple refund)
Optimal flat rate
Mean payment (optimal tariff)
Mean payment (optimal simple refund)

Note. M/M/1 queue with �= 5, å= 10, CARA utility, linear delay cost rate
c = 1, and valuations∼ U60157.

pricing and significantly better than flat-rate pric-
ing. Given its practical benefits, the simple refund
policy may therefore be the most attractive of the
three tariffs.

The differences in utilization among the tariffs
imply only minor lead-time performance differences.
Specifically, the optimal lead-time quotes of the sim-
ple refund policy yield on-time probabilities of 94% or
higher. Relative to these lead-time quotes, service lev-
els are similar under the optimal flat rate (up to 2.8%
higher) and the optimal lead-time-dependent tariff
(up to 3.4% lower).

Figure 2 shows the price metrics for the three tar-
iffs, for r ∈ 60127. The two lead-time-dependent tariffs
yield lower average and more variable payments,
compared with flat-rate pricing. For r < 102, their up-
front fees exceed the optimal flat rate. Increasing risk
aversion has two countervailing effects on the opti-
mal flat rate and the mean payment for the optimal
simple refund policy. It yields a lower utilization,
which increases these prices, but it also reduces the
willingness to pay at any given utilization, which
decreases these prices. Under flat-rate pricing the
reduced-utilization effect dominates and the optimal
flat rate increases in r ∈ 60127, but by part 3 of Propo-
sition 5, it eventually drops to zero as r → r̄ . Under
the simple refund policy, the mean payment initially
decreases in r because the utilization loss is only sig-
nificant at higher RA levels (see Figure 1).

4.2. Performance vs. Flat-Rate Pricing Under
Capacity Optimization

The analysis has so far focused on pricing for a given
capacity level. In this case, the provider reduces cus-
tomers’ payoff risk directly through the tariff struc-
ture, but the provider controls their delay cost risk
from lead-time variability only indirectly by reduc-
ing demand and utilization. In this section, we dis-
cuss joint pricing and capacity decision. We compare
the optimal capacity level and performance under the

optimal lead-time-dependent tariff with these mea-
sures under the optimal flat rate.

For convenience, we consider a single-server queue
and denote its capacity by �. The results for the
multiple-server case are similar. Let ç∗4�5 and çf ∗4�5
be, respectively, the maximum revenue as a function
of capacity under the optimal lead-time-dependent
tariff and the optimal flat rate. Recall that ç∗4�5
is independent of the RA parameter r (Proposi-
tion 2), whereas çf ∗4�5 depends on r (Proposition 5).
Let �∗4b5 2= arg max�≥04ç

∗4�5 − b�5 and �f ∗4b5 2=

arg max�≥04ç
f ∗4�5−b�5, where b� is the capacity cost

per unit time and b > 0.

Proposition 6. Consider a single-server system with
linear capacity cost rate b� and a single RA customer type
with CARA utility and linear delay costs C4W5= cW . Let
v405 <�.

1. Under the optimal lead-time-dependent tariff, the fol-
lowing holds:

(a) There is a threshold � > 0 such that ç∗4�5 = 0
for �≤ �. Furthermore,

lim
�→�

ç∗4�5 = max
�∈601å7

�v4�5 and

lim
�→�

ç∗′4�5 = 0 = lim
�→�

ç∗′4�50

(b) There is a threshold b̄ ∈ 401�5 such that
max�≥04ç

∗4�5− b�5 > 0 if and only if b < b̄. The optimal
capacity decreases in b, �∗4b5 > � for b < b̄, and �∗4b5= 0
for b > b̄.

2. Under the optimal flat rate, the following holds for
any r > 0:

(a) There is a threshold �f > � such that çf ∗4�5= 0
for �≤ �f . Furthermore,

lim
�→�

çf ∗4�5 = lim
�→�

ç∗4�5 and

lim
�→�f

çf ∗′4�5 = 0 = lim
�→�

çf ∗′4�50

(b) There is a threshold b̄f ∈ 401 b̄5 such that
max�≥04ç

f ∗4�5− b�5 > 0 if and only if b < b̄f . The opti-
mal capacity decreases in b, �f ∗4b5 > �f for b < b̄f , and
�f ∗4b5= 0 for b > b̄f .

Optimal lead-time-dependent pricing naturally
yields a higher profit compared with optimal flat-rate
pricing. By Proposition 6, the capacity cost at which
the system just breaks even is higher (b̄f < b̄). With
either tariff the system exhibits scale economies and
negative profits at small capacity levels. However,
Proposition 6 suggests that these scale economies
are weaker under optimal lead-time-dependent ver-
sus flat-rate pricing. Specifically, the system requires
less capacity to generate positive revenue (� < �f )
and profit, and the revenue gain vanishes for ample
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capacity. As a result, the marginal value of capac-
ity under optimal lead-time-dependent versus flat-
rate pricing is larger initially, at lower capacity levels,
but lower eventually, at larger capacity levels (since
lim�→� çf ∗4�5 = lim�→� ç∗4�5). Intuitively, offering
delay refunds and reducing delay cost variability are
substitutable means to reduce customers’ full price
risk. Under flat-rate pricing, the provider can reduce
this risk only by lowering the delay cost variability,
that is, increasing capacity. Indeed, as discussed in
Example 2, we find that optimal lead-time-dependent
pricing yields a higher return on a lower optimal
capacity investment compared with optimal flat-rate
pricing.

The performance differences identified in Proposi-
tion 6 increase in risk aversion; that is, under opti-
mal flat-rate pricing, the minimum capacity threshold
�f for positive revenue increases in r , and the cost
threshold b̄f for profitable operation decreases in r , as
does the optimal profit. Proposition 6 generalizes in
a natural way for any increasing and convex capacity
cost function.

Example 2. We illustrate Proposition 6 numerically
for an M/M/1 queue with å = 10, uniformly dis-
tributed valuations on 60157, and c = 1 (as in Exam-
ple 1). These parameters yield b̄ = 2 for the break-even
capacity cost under optimal lead-time-dependent
pricing (part 1(b) of Proposition 6). For b ∈ 40127,
we compute the jointly optimal pricing and capac-
ity controls under the optimal lead-time-dependent
tariff (which is independent of r by Proposition 2)
and under optimal flat-rate pricing for risk-aversion
levels r = 002, 1, 2. We find that flat-rate pricing
yields a slightly higher arrival rate and revenue in
some cases, but these differences are insignificant—
the two tariffs yield approximately identical arrival
rates, (expected) payments, and revenues, in contrast
to the fixed capacity case (part 1 of Proposition 5).
The key observation is that optimal lead-time-dependent
pricing results in a lower optimal capacity level compared
with flat-rate pricing, which implies a higher utilization
and return on capacity investment (ROI) and a lower
service level, that is, longer lead times. Specifically,
as noted above, at the capacity �∗4b5, which is opti-
mal under lead-time-dependent pricing, the marginal
value of capacity under flat-rate pricing exceeds the
marginal capacity cost. (Numerically, we find that
çf ∗′4�5 >ç∗′4�5 for all � where çf ∗4�5 is concave.)

Figure 3 shows these profit and utilization gains
for r = 002 and b ∈ 61127, and the ROI for each tar-
iff as a scale-free reference point of profitability. As b
drops below 1, the ROI and optimal capacity lev-
els grow excessively large and the difference between
the tariffs vanishes. (For example, for b = 0051 the

Figure 3 ROI, and Percentage Gains in Profit and Utilization Under
the Optimal Lead-Time-Dependent Tariff Relative to
Optimal Flat-Rate Pricing, as Functions of the Capacity
Cost Parameter b
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Note. M/M/1 queue with å = 10, CARA utility with r = 002, linear delay
cost rate c = 1, and valuations∼ U60157.

ROI ≈ 200 for both tariffs and the profit gain of lead-
time-dependent pricing ≈ 007%. As b → 0, both tariffs
operate with ample capacity and identical profits.)
The key observation from Figure 3 is that the profit
gain from optimal lead-time-dependent pricing can be
quite significant for a small percentage gain in utiliza-
tion. The larger the capacity cost, the tighter capacity
and the higher this profit gain. For r = 002 , the break-
even threshold b̄f = 1094 under optimal flat-rate pric-
ing (part 2(b) of Proposition 6). Finally, these profit
gains increase in risk aversion; for example, for capac-
ity cost b = 1, the profit gains are 2.5%, 1502%, and
3906%, for r = 002, r = 1, and r = 2, respectively. (The
threshold b̄f equals 1071 and 1049 for r = 1 and r = 2,
respectively.)

5. Concluding Remarks
We show that if customers face lead-time variability
and are risk averse with respect to delay cost and pay-
ment variability, tariffs that depend on realized lead
times outperform the flat-rate pricing schemes that
are standard throughout the lead-time pricing litera-
ture. Our model and results provide some theoretical
support for the use of such lead-time-dependent tar-
iffs in practice, and they suggest that their benefits
can be significant, particularly under joint pricing and
capacity optimization. We provide novel insights on
how to structure such tariffs; refer to §1 for a sum-
mary. These results are general in that they hold for
any system with lead-time variability.

Our findings also suggest that it is critical for
providers to understand customer preferences with
respect to delay cost and payment variability. As such,
this paper points to the value of empirical research on
customer risk preferences in queueing settings. Both
the degree of risk aversion and the specific form of
risk preferences are ultimately empirical questions.
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Our results raise further questions involving pric-
ing, operational, and information controls.

In terms of pricing, more work is needed on tariff
design under important practical constraints.

For example, to limit complexity and provider lia-
bility there may be constraints on monetary trans-
fers between providers and customers. The simple
refund policy studied in §4.1 represents the sim-
plest lead-time-dependent tariff with limited liabil-
ity. For this pricing policy, Example 1 illustrates for
a single tariff how transfer constraints reduce perfor-
mance because they leave customers exposed to delay
cost risk, although the simple refund policy performs
well relative to the optimal lead-time-dependent tariff
(with unlimited provider liability) and considerably
better than flat-rate pricing. Similar analyses are of
interest for different kinds of transfer constraints; for
example, each payment must exceed an exogenous
minimum amount or a percentage of the up-front fee.
Another important issue is the impact of transfer con-
straints on a menu of tariffs. For example, FedEx faces
this issue. Quite likely, the simple refund tariffs it
offers do not exactly match customer delay costs, and
FedEx does not know individual customers’ prefer-
ences. Proposition 4 shows that the first-best menu of
tariffs may be IC in the absence of transfer constraints.
Under what types of transfer constraints does this
result still hold? More generally, how do such con-
straints affect the first-best menu and the distortion
and performance loss under the second-best menu?

A related issue is to consider constraints on cus-
tomers’ ex post utility. It is important to highlight that
under the first-best tariffs (Propositions 2 and 4) all
customers have nonnegative ex post utility, in contrast
to the standard model with flat-rate pricing. Lead-
time-dependent tariffs that insure delay costs only
imperfectly (e.g., the simple refund policy, or uniform
pricing for two types as in Proposition 3) leave cus-
tomers exposed to some risk of negative ex post utility
(although this risk is smaller compared with flat-rate
pricing), which raises the question: How should tar-
iffs be modified if customers can cancel their orders
to ensure nonnegative ex post utility?

Limits on the rationality and enforcement abilities
of the contracting parties may also constrain tariff
design. On the one hand, the simple refund policy dis-
cussed in §4.1 exemplifies a common tariff that alle-
viates these implementation issues through simplic-
ity, without sacrificing much performance relative to
the optimal tariff. On the other hand, as discussed in
§2.3.3, the increasing availability of detailed lead-time
forecasts and the proliferation of third-party services
make it possible to manage and enforce increasingly
sophisticated contracts. Nevertheless, customers may
not be able to accurately forecast their expected util-
ity, for example, due to insufficient lead-time informa-
tion or due to their bounded rationality. The design of

tariffs under such constraints is an important emerg-
ing research issue. Huang et al. (2013) are the first
to model bounded rationality in a queueing system;
they assume RN customers, flat-rate pricing, and lin-
ear delay costs.

Another interesting research direction is to con-
sider tariff design for other demand models, for exam-
ple, by considering bivariate utility functions of lead
times and payments that may capture different risk
attitudes toward lead-time variability and payment
variability.

Proposition 6 and Example 2 show that capacity
and lead-time-dependent pricing can be viewed as
substitutes. There are more opportunities for research
on the interplay between operations and pricing.
For example, suppose that a firm charges flat rates
to risk-averse customers. Which strategy yields the
larger improvement in profitability and under what
conditions: switching from flat rates to performance-
sensitive tariffs or offering differentiated flat rates and
priority service?

Our analysis also raises questions on the inter-
play between pricing and the delay information avail-
able to customers. We assume that customers do not
have real-time delay information. Giving customers
such information reduces the coefficient of variation
of their conditional lead-time distribution. For exam-
ple, in the observable M/M/1 queue, the coefficient of
variation of the waiting time when the queue length
is n equals 1/

√
n, so the significance of lead-time vari-

ability decreases in the queue length. This suggests
that for RA customers with real-time delay informa-
tion, the provider may benefit from dynamic pricing
policies with a workload-dependent tariff structure,
for example, by charging flat rates for longer queues
and based on realized lead times for shorter queues.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287/msom.2013.0434.
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