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Two factors that their influence on the demand has been investigated in many papers are (i) the shelf space allocated to a
product and to its complement or supplement products and (ii) the instantaneous inventory level seen by customers.

Here we analyze the joint shelf space allocation and inventory decisions for multiple items with demand that depends on
both factors. The traditional approach to solve inventory models with a state-dependent demand rate uses a time domain
approach. However, this approach often does not lead to closed-form expressions for the profit rate with both dependencies.
We analyze the problem in the inventory domain via level crossing theory. This approach leads to closed-form expressions for
a large set of demand rate functions exhibiting both dependencies. These closed-form expressions substantially simplify the
search for optimal solutions; thus we use them to solve the joint inventory control and shelf space allocation problem. We
consider examples with two products to investigate the significance of capturing both demand dependencies. We show that
in some settings it is important to capture both dependencies. We consider two heuristics, each one of them ignores one of the
two dependencies. Using these heuristics it seems that ignoring the dependency on the shelf space might be less harmful than
ignoring the dependency on the inventory level, which, based on computational results, can lead to profit losses of more than
6%. We demonstrate that retailers should use their operational control, e.g., reorder point, to promote higher demand products.
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1. Introduction
Improving profitability in many businesses is tied to wise
demand management. One of the critical factors that influ-
ence the demand is the pricing policy. Thus, in recent years,
the use of revenue management tools, namely, the control
of demand via pricing, has attracted a great deal of
attention from both practitioners and academics. How-
ever, demand often depends on additional factors.
Two such factors that their significance has been dis-
cussed in the literature are: (i) the shelf space allocated
to a product and to its complement or supplement
products; and (ii) the instantaneous inventory level
seen by customers. However, most of the literature
considered only one of the factors above in its analysis.
In this paper, we consider the joint shelf space alloca-
tion and inventory control problems when demand
depends on both factors.

The effect of shelf space allocation on demand was
first discussed in Lee (1961). Since then shelf space
allocation has attracted a great deal of research. This
research is both empirical, trying to characterize the
dependency of demand on the shelf space (e.g., Des-
met and Renaudin 1998) and theoretical, aiming at
optimally choosing products’ assortments (e.g., Akcay

and Tan 2008, Aydin and Hausman 2009, Zhaolin
2007), and their shelf space allocation (e.g., Corstjens
and Doyle 1981). Corstjens and Doyle (1981) also
discuss how to estimate the parameters in their de-
mand model that has been used in much of the
subsequent work. For example, Bultez and Naert
(1988) used it to develop a shelf space allocation
model and implement it in European supermarket
chains. Another optimization model and case study
is presented in Borin et al. (1994). Bookbinder and
Zarour (2001) introduced a non-linear programming
approach to solve a two-product example. A large-
scale optimization model for shelf space allocation
was developed by Lim et al. (2004) and Hwang et al.
(2005) extended the Corstjens and Doyle’s (1981)
model to consider demand that depends also on the
visibility of shelves. Recently, Martinez-de-Albeniz
and Roels (2010) used the same model to analyze
supply chain coordination.

Another optimization model for shelf space alloca-
tion was developed in van Nierop et al. (2008). They
used a hierarchical Bayesian model to capture the de-
pendency of the demand on the shelf space and its
allocation and then used a lengthy simulation to
optimize the shelf allocation of canned soup in a
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supermarket chain in Chicago. One of their findings is
that in addition to the shelf space itself the exact lo-
cation on the shelf, e.g., shelf height and shelf location
within the aisle, often affect the demand. This is in
line with the results reported in Lim et al. (2004) and
Hwang et al. (2005).

There are two important takeaways from these pa-
pers. First, in all the empirical studies, the price
fluctuation of the products was not considered a part
of the control of the shelf allocation. One reason for
this is that the pricing and shelf allocation decisions
are taken by different levels within the organization
(i.e., pricing is typically decided at the chain level
whereas the allocation is often made at the store
level). Another reason is that the number of changes
in pricing for many common items is not sufficiently
frequent to measure its effect with a significant sta-
tistical level. Therefore, we focus on a demand that is
independent of price. Still, our methodology and re-
sults are easily extended to include a price-dependent
demand component, for example, as in Smith and
Achabal (1998).

A second takeaway from these papers is that the
total shelf space is not the only factor observed by the
customer that influences the demand. While the em-
pirical component of this literature considered some
additional factors (e.g., distance from the center of the
aisle), it ignored others because collecting data on
them is hard and incorporating them into an optimi-
zation module leads to an intractable formulation. For
example, van Nierop et al. (2008) state that for these
reasons they ignore the demand dependency on the
shelves’ layout. One additional factor that influences
the demand and is ignored by the shelf space liter-
ature, possibly for the above reasons, is the level of
inventory seen by customers. In the rest of the paper,
when using the term inventory level we mean the in-
ventory observed by customers.

The earliest references we are aware of discussing
the dependency of demand on the inventory level is
Whitin (1957). Wolfe (1968) provides empirical evi-
dence for such dependency. The comprehensive
survey by Urban (2005) that lists 60 papers on inven-
tory-dependent demand rates shows the growing
interest in such models. Balakrishnan et al. (2004,
2005) develop and implement a theoretical model that
considers optimal inventory decisions in the presence
of such dependency. They also cite further references
on the impact of inventory level on demand. The
combined influence of pricing and the inventory level
on demand was investigated by Smith and Achabal
(1998), and supply chain coordination when such de-
pendency exists was studied in Wang and Gerchak
(2001). Periodic review models with demand that de-
pends on the initial inventory level was studied by
Gerchak and Wang (1994).

Most of the papers that discuss shelf space ignore
inventory-related cost and the influence of the inven-
tory level on the demand. An exception that considers
the inventory cost is Hwang et al. (2005) who confine
the shelf space to equal the reorder point plus the
order quantity. To the best of our knowledge, the only
paper that considers both demand dependencies is
Hariga et al. (2007). They focused on formulating a
detailed optimization model. We, in contrast, focus on
the implication of the joint dependency and provide
managerial insights on its importance. Furthermore,
we consider a substantially more general demand
model than theirs. For example, their demand rate
model includes no intercept, constraining the demand
at zero inventory level to equal zero. However, in
many stores there is a base demand that is indepen-
dent of the inventory level. For example, on page 971,
Datta and Pal (1990) write ‘‘. . . customers arrive to
purchase goods owing to such factors as goodwill,
good quality . . . .’’ Thus, as noted by Balakrishnan
et al. (2004), imposing zero demand at zero inventory
level is often unrealistic.

An empirical evidence for the joint dependency of
demand on the shelf space and the inventory level has
been demonstrated in Parker and Lehmann (2009). They
supported and extended the empirical work of van
Herpen et al. (2009) on the bandwagon effect. This effect
suggests that products with lower inventory level, i.e.,
partially empty shelf space, may present higher demand
than if the shelf is full. Specifically, Parker and Lehmann
(2009) tested the joint influence of the shelf space allo-
cated and the inventory level on the demand. In their
Experiment 3a (Parker and Lehmann 2009), they ex-
posed participants to shelves with two brands of wine,
with several different levels of inventory depletion and
with one brand having higher allocated shelf space.
They concluded that ‘‘the wine given more shelf space
was significantly more preferred when it was the scarcer
alternative.’’ This observation implies that it is impor-
tant to consider both the allocated shelf space and the
inventory level when estimating the demand. In such
cases our model is useful. While the empirical tests in
both van Herpen et al. (2009) and Parker and Lehmann
(2009) considered demand for wines, additional exam-
ples where a joint dependency is probably observed in
practice are easy to come up with, including the canned
soup category that the dependence of its demand on the
shelf space allocation has been addressed before, e.g.,
van Nierop et al. (2008) and references within. More
recently, additional empirical evidence for the influence
of inventory level and shelf space on demand is given
by Ton and Raman (2010) who focus on the influence of
total sales of products that are only available in the back
room (rather than on the shelf).

One of the main objectives of this paper is to in-
vestigate whether there is a practical importance in
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capturing the demand dependency on both the inven-
tory level and the shelf space allocation. For this, we
analyze the shelf space allocation and inventory deci-
sions for multiple items when demand exhibits both
dependencies. We develop a closed-form expression for
the profit rate of a retailer selling several products com-
peting over shelf space when each product’s demand
depends on both its inventory level and the shelf space
allocated to all products. Using this closed form, we can
solve the joint inventory control (reorder points and or-
der quantities) and the shelf space allocation problems
to maximize the expected profit rate of retailers. We
consider examples with two products competing over
shelf space. We conclude that, in some settings, it is
important to capture both demand dependencies. We
find that ignoring the dependency on the inventory
level might be more harmful than ignoring the depen-
dency on the shelf space and can lead to profit losses of
more than 6%. We demonstrate that ignoring the inter-
cepts in the demand model might be very costly. We
also investigate how do the optimal decision variables
and profit change with different parameters of the de-
mand. Our main conclusion is that in the presence of
the demand dependency on the shelf space and the in-
ventory level retailers should use their operational
controls in order to promote higher demand products.

The traditional approach for solving the inventory-
dependent models uses the time domain to generate a
differential equation that expresses the inventory level
during the cycle, e.g., Baker and Urban (1988). How-
ever, solving the differential equation is possible only
for very limited demand rate functions, e.g., the
power function (Urban 2005). Moreover, we will show
in section 2.2 that this differential equation may not be
solved when dependency on the shelf space is added.
Thus, the time domain methodology leads to tractable
models only in restricted settings. It is important to
note that the traditional approach fails to provide
closed-form expressions even when the dependency
on the shelf space is ignored for demand rates that
include an intercept. This shows the weakness of the
traditional approach.

Our methodology for the analysis of inventory-
dependent demand rate is different and is another
contribution. Rather than analyzing the model via the
time domain—the horizontal axis, we transform the
model to the inventory domain—the vertical axis in
the traditional approach. To establish this methodol-
ogy we use level crossing theory (e.g., Cohen 1977).
We show that the inventory domain approach leads to
closed-form expressions and that it is superior to the
time domain approach in many settings. It is impor-
tant to note that the methodology of the inventory
domain approach may be applicable in other settings
where the time domain approach fails. This can be an
interesting future research direction.

Obtaining a closed-form expression for the profit
rate is important because, in addition to enabling a
substantial reduction in the effort and computation
time of our optimization model, they allow for sen-
sitivity analysis of various parameters and an inves-
tigation of the asymptotic behavior of the solution.
These can lead to important managerial implications.
For example, in section 4.1, using sensitivity analysis,
we show that order quantities and allocated shelf
space are independent of the markup and that the
reorder points are increasing with it. In the same sec-
tion, we provide the asymptotic behavior of the profit
when the shelf space increases. We emphasize that
without the closed-form expressions, obtained using
the time domain approach, deriving such results
would be extremely difficult.

The paper is organized as follows: In section 2, we
introduce a general model and demonstrate the fail-
ure of the time domain approach for a specific
demand rate function. Then, in section 3, we use level
crossing theory to transform the problem to the in-
ventory domain. We then demonstrate the use of these
results for a single item model assuming some com-
mon demand dependencies. In section 4, we discuss
several heuristics, present numerical study of two
items competing over shelf space, and derive some
useful managerial insights. Conclusions and sugges-
tions for future research are given in section 5.

2. The Model
In this section, we present models for inventory man-
agement aiming at profit maximization when demand
depends on both the inventory level and the shelf
space. We demonstrate the difficulty in using the tra-
ditional time domain approach for maximizing the
profit in a simple example. In section 3, we analyze
the same example, showing that using the inventory
domain approach it is tractable.

Table of Frequently Used Notation

N 5 Number of products

ST 5 Shelf space available

Si 5 Shelf space allocated to product i,
i 5 1, 2, . . ., N ð~S ¼ ðS1; S2; . . . ; SNÞÞ

t 5 Time

Iiðt;~SÞ 5 The inventory level of product i at time t

riðIiðt;~SÞ;~SÞ5 The demand rate for product i

ci 5 Unit cost for product i

pi 5 Markup of product i

ai 5 Re-order point for product i

qi 5 Order quantity for product i

Ti 5 Cycle length for product i

Ki 5 Set-up cost for product i
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hiðIiðt;~SÞÞdt 5 The infinitesimal holding cost function
for product i

Hi 5 Total holding cost per cycle for product i

cSi
5 The difference per time unit between the

cost of stocking product i on the shelf
and the payment received for this space

f(I) 5 Probability density function of the in-
ventory level

2.1. The Inventory and Demand Rates Modeled
Consider a retailer that manages inventory and shelf
allocation of N products over a total shelf space, ST.
We let ~S be the vector of shelf space allocation with
Si � 0 being the shelf space allocated to product
i 5 1, . . . , N; thus,

PN
i¼1 Si � ST. The demand for item i

depends on the entire shelf space allocation. This is
true not only because all products share a restricted
shelf space, but also because there might be some
cross shelf space relations between the demands for
different items. We allow the demand rate for product
i at time t to depend on both the shelf space vector, ~S,
and the inventory level of this product at time t, Iiðt;~SÞ
(observe that the inventory level at time t also de-
pends on ~S). We denote this demand rate by
riðIiðt;~SÞ;~SÞ. To simplify the notation we use Iiðt;~SÞ ¼
Ii when no confusion exists.

We assume that the demand rates, riðIi;~SÞ, for each
i 5 1, . . . , N are continuous deterministic functions
0 � riðIi;~SÞo1, 8~S � 0 such that

PN
i¼1 Si � ST . Then

if riðIi;~SÞ40 for any I1
i � Ii � I2

i such that 0 � I1
i �

I2
i o1 we have

0o
Z I2

i

I1
i

1

riðIi;~SÞ
dIio1 8~S � 0; such that

XN

i¼1

Si � ST;

ð1Þ

representing the time required for the inventory level
of item i to move from state I2

i down to state I1
i with no

orders arriving in between. We consider an infinite
horizon inventory model. Let the unit cost of product i
be ci and its sale price be cipi, where pi is the markup
(of course we allow ci and pi to differ across products).
Thus, ignoring the operational costs, the profit per
unit of product i that is sold is ci(pi� 1) 5 cipi� ci. We
assume that each product i can be ordered with its
own reorder point, ai, and order quantity, qi. We de-
scribe the model assuming a zero lead time (extending
the analysis to a positive deterministic lead time is
possible) as follows: For each product i, whenever the
inventory level Iiðt;~SÞ drops to a level ai � 0, an order
of size qi40 is placed so that Si � ai1qi. For simplicity,
we assume that, when the inventory level is higher
than the shelf space, Si, the excess inventory is used to

instantaneously replenish the shelf. This has been also
assumed by Hwang et al. (2005) and Hariga et al.
(2007). (The analysis when the shelf space is not in-
stantaneously filled requires specific assumptions on
the restocking process, but is similar.) Thus, as long as
Ii � Si the inventory level seen by customers is Si. As a
result, during each cycle the demand rate has two
parts, the first depends only on the shelf space allo-
cation vector (whenever the inventory level is above
Si), and the second depends on both the shelf space
allocated to other products and the inventory level
(when the latter is between ai and Si).

As a mathematical trick we assume, for the time
being, that, when ordering qi products, only Yqi of
them are good, where Yqi is a random variable with
a cumulative distribution FYqi

ðyqi
Þ, e.g., Henig and

Gerchak (1988). Eventually, the results are specialized
to the more relevant case where Yqi

¼ q.
For all ai1qi and ~S, the inventory level process Iiðt;

~SÞ is a regenerative process where the time between
arrival of orders is the cycle length, Ti. This is true
because we assumed that the dependency of product
i’s demand on the other products is captured only
through the shelf space allocated to them and not
through their actual inventory levels. In principle, de-
mand for an item might also depend on the inventory
levels of other items. (An alternative formulation as-
suring that the inventory level processes are
regenerative is to restrict all cycle lengths to be iden-
tical. We do not follow this alternative.) However, for
tractability purposes and because in many cases the
shelves are full, we only allow cross items demand
dependencies via the shelf size. The same assumption
is also made by Hariga et al. (2007).

For a reorder point ai and a yield Yqi
, the length of a

cycle Ti, is Z aiþYqi

ai

1

riðIi;~SÞ
dIi: ð2Þ

Thus,

EðTiÞ � E Tiðai; qi;~SÞ
� �

¼ E

Z aiþYqi

ai

1

rðIi;~SÞ
dIi

 !
ð3Þ

is the expected length of a cycle. We assume that
shortages are not allowed and whenever a new order
is placed a set-up cost of Ki is incurred.

Let hiðIiðt;~SÞÞdt40 be the infinitesimal holding cost
function for product i and let Hi denote the total hold-
ing cost per cycle for this product. Then, letting t 5 0 at
the beginning of the cycle, the expectation of Hi is

EðHiÞ ¼ E

Z Tiðai;qi;~SÞ

0

hiðIiðt;~SÞÞIiðt;~SÞdt

 !
ð4Þ
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(for notational convenience we omit the dependency
of E(Hi) on~S, ai, and qi). Note that (4) assumes that the
holding costs of items in the backroom (when the total
inventory of product i held by the retailer is larger
than Si) and on the shelves are identical, as is typical in
retailer environments. A simple modification is pos-
sible when these holding costs differ.

To simplify the exposition, we model the difference
between the cost for stocking product i on the shelf
and the payment received for this space from the
wholesaler in a linear fashion. We denote this differ-
ence per time unit by csi

(note that we do not restrict
the sign of csi

). Note that ciðpi � 1ÞEðYqi
Þ is the ex-

pected proceeds obtained from sales over a cycle.
Thus, the long-run profit rate, Riðai; qi;~SÞ, is

Riðai; qi;~SÞ ¼
ciðpi � 1ÞEðYqi

Þ � EðHiÞ � Ki

EðTiÞ
þ csi

Si: ð5Þ

Thus, the retailer faces the following optimization
problem

max
~a;~q;~S

XN

i¼1

Ri ai; qi;~S
� �

; ð6Þ

XN

i¼1

Si � ST

0 � ai � Si � ai þ qi 8i ¼ 1; . . . ;N:

ð7Þ

We note that if csi
� 0 and ST 51, there is no reason

to limit the shelf space allocated for products. Thus,
Si 5 ai1qi. We further note that constraints on the
minimal or maximal shelf space or order quantity per
item, as was used in Corstjens and Doyle (1981), can
also be incorporated in this optimization problem.
However, for simplicity of the exposition, we ignore
them. Finally, due to the high value of shelf space in
practice, we assume that it is never optimal to have
Si4ai1qi; however, this constraint is not essential.

2.2. Specific Demand Rate Forms
The most widely used demand rate model that de-
pends on shelf space is the one due to Corstjens and
Doyle (1981). Letting dið~SÞ denote the total demand
over a cycle, given shelf space allocation~S, they model

dið~SÞ ¼ âi Sbi
i P

N
j¼1
j6¼i

S
dij

j ; ð8Þ

where âi40 is a scaling constant, bi is the direct elas-
ticity with respect to a unit of shelf space, and dij are
the cross space elasticities between products i and j.

If the cycle length for the ith item is Ti, from (8) we
have the following demand rate:

r̂i
~S
� �

¼
âiS

bi
i P

N
j¼1
j6¼i

S
dij

j

Ti
:

However, by letting ai ¼ âi=Ti without loss of gen-
erality, the demand rate is

ri
~S
� �

¼ aiS
bi
i P

N
j¼1
j6¼i

S
dij

j : ð9Þ

Then, by (2) Ti is given by

Ti ¼
Z aiþYqi

ai

dx

ri
~S
� � :

Corstjens and Doyle’s (1981) model ignores the de-
mand dependency on the inventory level and the
inventory-related cost. The survey of Urban (2005)
lists a few demand rate functions that capture such
dependency. In that literature the focus was on a sin-
gle item and the most common demand rate is the
multiplicative (e.g., Baker and Urban (1988):

ri Iið Þ ¼ aIbi ; ð10Þ

where a40 and bA[0, 1). As pointed out in Balakrish-
nan et al. (2004) with this demand rate function the
demand is zero when the inventory is zero, which is
restrictive in many cases. A natural way to extend (10)
to include a positive demand rate when no inventory
is held is by adding an intercept a0

ri Iið Þ ¼ a0 þ a2Ibi : ð11Þ

The standard approach to treat inventory problems
with inventory-dependent demand rate such as (10)
and (11) uses the time domain. However, as we show
next, this approach fails to express the profit rate
R(a, q, S) in a closed form even for a single product in
many settings. The example of the failure of time do-
main approach below includes the case when r(I) is
given by (11).

EXAMPLE 1. Power Demand Rate—Failure of the Time
Domain Approach: To demonstrate the time domain
approach and why it fails in more general settings, we
consider the power demand rate

r I; Sð Þ ¼ a0 þ a1Sb1 þ a2Sb2 I � S

a0 þ a1Sb1 þ a2Ib2 0 � IoS;

(
ð12Þ

with a0, a1, a2 � 0 and where b1A[0, 1) captures the
demand rate dependency on the shelf space and
b2A[0, 1) captures the demand rate dependency on the
inventory level.

The time domain approach for solving the problem
requires the solution of two differential equations to
be able to calculate E(T) and E(H). The differential
equation for the inventory at time t, I(t)A(a, S) is

IðtÞ ¼ S�
Z t

0

a0 þ a1Sb1 þ a2IðvÞb2 dv: ð13Þ
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However, we could not solve (13) in a closed form.
This is in agreement with Urban (2005) who mentions
this difficulty in solving the differential equation for
I(t). It should be noted that even when a1 5 0 as in (11),
i.e., the demand rate is independent of the shelf space,
there is no solution to (13) and thus the classical
approach to solve the problem cannot be carried out
(when both a0 5 a1 5 0, as in Hariga et al. (2007), (13)
can be solved; thus the time domain approach is
tractable in that case).

To summarize, this example demonstrates the
difficulty of the time domain approach in obtaining
E(H) and E(T) that are required for optimization
purposes. While (13) may be solved numerically, it is
not easily amenable for optimization. In theory, an
optimization program that searches for optimal
reorder point, quantity to order, and shelf space level
could pursue an exhaustive search over different
combinations of these parameters while solving (13)
numerically for different parameter combinations.
However, once the number of items increase and so
does the number of decision variables, such an
exhaustive search is not practical. We suspect that
this limitation prevents researchers from considering
(11), (12), and other demand rate functions.

Our purpose is to allow the demand rate to depend
on both the shelf space and the observed inventory
level. More importantly, we investigate whether it is
desirable to accurately capture this joint dependency.
To achieve this we consider a demand rate combining
both the shelf space dependence, as in (9), with the
inventory level dependence, as in (11). To represent
the demand rate for the ith product, we add a
subscript i to the parameters in (12); we also let
d1ij,A(� 1, 1) capture the dependency between pro-
ducts i and j as they affect the ith product’s shelf
space; and d2ij,A(� 1, 1) j 6¼i, capture the dependency
between products i and j as they affect the ith item’s
inventory level1:

ri Ii;~S
� �

¼

a0i þ a1iS
b1i
i Pj 6¼iS

d1ij

j þ a2iS
b2i
i Pj6¼iS

d2ij

j Ii � Si

a0i þ a1iS
b1i
i Pj 6¼iS

d1ij

j þ a2iI
b2i
i Pj6¼iS

d2ij

j 0 � IioSi:

8><
>:

ð14Þ

Note that, in accordance with our assumption that
the shelf space is instantaneously filled whenever
Ii4Si, the demand rate function (14) has two parts.
The first is for Ii � Si, where both the observed in-
ventory equals the shelf space and their effect is
captured only by Si, and the second is for IioSi, where
the inventory level dependency is affected by Ii and
the shelf space dependency is affected by Si.

Notice that when a1i 5 a2i 5 0, riðIi;~SÞ is just the
demand rate in the standard EOQ model, when
a0i 5 a1i 5 d2ij 5 0, r(Ii, S) is the power demand rate
given in (10), and when a0i 5 a2i 5 0 the demand rate
depends only on the shelf space as in (9).

As the demand rate function in (14) is a general-
ization of the one in (12) that as shown above is not
tractable using the time domain approach, we next
develop the profit function in an alternate manner via
the inventory theory domain approach.

3. The Inventory Domain—Analysis
Using Level Crossing

To analyze the long-run average costs in the inventory
domain, we focus on the profit generated by a single
product, thus in this section we suppress the sub-
scripts when no confusion occurs. We use level
crossing theory (e.g., Cohen 1977). Using level cross-
ing theory is possible because the inventory process is
regenerative. Observe that, when time is measured
from the beginning of a cycle, knowing the jump size
at t 5 0 results in a deterministic demand rate. There-
fore, the inventory level within a cycle is a monotone
function and knowing t reveals the inventory level I
and vice versa. This simplifies the analysis of the
problem using the inventory domain approach.

To further motivate the inventory domain approach
we observe that if a continuous probability density
function for the inventory level, f(I), exists, the hold-
ing cost rate would be

R1
a h Ið ÞIfðIÞdI. Level crossing

theory shows how to obtain this distribution and that
it exists when the model is not deterministic. If the
model is completely deterministic, f(I) has the mean-
ing of time average. Below, we provide an intuitive
explanation of this approach.

To express f(I), we equate the rate of upcrossings
and downcrossings of each inventory level I. Observe
that the inventory level can only decrease below I
after the inventory level jumped above I, due to a
replenishment, and vice versa. Therefore, in each cy-
cle the inventory level upcrosses and downcrosses
level IA(a, a1q) at most once. In fact, each I will be
upcrossed in a cycle if the delivered quantity, Yq, is
larger than I� a. Thus, the expected number of up-
crossings I in a cycle is 1� FYqðI � aÞ. To calculate the
expected number of downcrossings, we can view f(I)
as the proportion of time that inventory level at time t,
I(t)AdI during a single time unit. Therefore, in a cycle
whose expected length is E(T) the average time I(t)AdI
is E(T)f(I). By Little’s law, we have

Eðnumber of downcrossings of I in a cycleÞ
¼ E Tð ÞfðIÞrðI;~SÞ;

because rðI;~SÞ is the demand rate. Because the num-
ber of upcrossings and downcrossings are equal, we
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obtain EðTÞfðIÞrðI;~SÞ ¼ 1� FYqðI � aÞ so that

fðIÞ ¼
1�FYq ðI�aÞ
rðI;~SÞEðTÞ for I � a

0 otherwise:

(
ð15Þ

Note that (15) is a simple generalization of Theorem
1 in Berman and Perry (2006). They did not consider
dependency of the demand on the shelf space. Ob-
serve that to ensure that (15) is a proper probability
density function we must have

EðTÞ ¼
Z 1

a

1� FYqðI � aÞ
rðI;~SÞ

dI; ð16Þ

giving an alternative representation for E(T) in (3).
Therefore, in cases that f(I) exists (or when it rep-

resents the time average) the holding cost rate is

EðHÞ
EðTÞ ¼

Z 1
a

hðIÞIfðIÞdI: ð17Þ

Thus substituting (16) and (17) into (5), we obtain for
the ith item.

THEOREM 1. For continuous demand rates satisfying (1) the
profit rate for the ith item is given by

Rðai; qi;~SÞ ¼
ciðpi�1ÞE Yqi

� �
�Ki�

R1
ai

hiðIÞI
1�FYqi

ðI�aiÞ
riðI;~SÞ

dIR1
ai

1�FYqi
ðI�aiÞ

riðI;~SÞ
dI

þ csi
Si:

ð18Þ

The rigorous proof of Theorem 1 is given in Ap-
pendix A using level crossing theory. We note that this
proof carries forward even when adding a multipli-
cative dependency in price, as in Smith and Achabal
(1998).

OBSERVATION 1. When Yqi
¼ qi, i.e., when setting FYqi

ðIÞ ¼
0 for each Ioqi and FYqi

ðIÞ ¼ 1 for each I � qi, for each i,
we obtain

Rðai; qi;~SÞ ¼
ciðpi � 1Þqi � Ki �

R aiþqi

ai
hiðIÞI 1

riðI;~SÞ
dIR aiþqi

ai

1
riðI;~SÞ

dI

þ csi
Si: ð19Þ

Thus, from a practical point of view, our solution
approach substantially reduces the optimization time
and effort when closed-form expressions for the inte-
grals in (19) exist. We next give one such example.

EXAMPLE 2. (Continuation of Example 1) Power De-
mand Rate—Success of the Inventory Domain
Approach: To demonstrate the solution method dis-
cussed above, we consider a single item case with the
power demand rate function from (12). This empha-

sizes the advantage of the inventory domain approach
over the time domain approach; as shown in section
2.2, the latter leads to an intractable model in this case.
While in this single product case, there is essentially
no competition on the shelf space, we give the de-
tailed analysis to demonstrate the inventory domain
approach. The development for several items is
similar and leads to similar closed-form expressions.

We first rewrite (16) (assuming that we always re-
ceive the full order):

EðTÞ ¼
Z min S;aþqf g

a

dI

a0 þ a1Sb1 þ a2Ib2

þ
Z max S;aþqf g

S

dI

a0 þ a1Sb1 þ a2Sb2
:

For example, if a1q � S, as required by (7), we have

EðTÞ ¼ aþ q� S

a0 þ a1Sb1 þ a2Sb2

þ
S LerchPhi �a2

Sb2

a0þa1Sb1
; 1; 1

b2

� �
� a LerchPhi �ab2 a2

a0þa1Sb1
; 1; 1

b2

� �
a0 þ a1Sb1ð Þb2

ð20Þ

where LerchPhiðz; f ; rÞ �
P1

k¼0
zk

ðrþkÞf
(see, e.g., http://

mathworld.wolfram.com/LerchTranscent.html) and
is implemented in common mathematical software.
For the same example, we obtain the holding cost per
cycle E(H), from (17), to be

EðHÞE Tð Þ ¼ 1

2
h
ðaþ qÞ2 � S2

a0 þ a1Sb1 þ a2Sb2

þ h
S2LerchPhi �a2

Sb2

a0þa1Sb1
; 1; 2

b2

� �
� a2LerchPhi �a2

ab2

a0þa1Sb1
; 1; 2

b2

� �
a0 þ a1Sb1ð Þb2

ð21Þ

Substituting (20) and (21) in (18) gives R(a, q, S).

4. Items Competing for Shelf Space
We now return to the problem in (6). Using the de-
velopment in sections 3 and 2.2, the expressions
required to evaluate the profit in (6) can be found in
closed form. This closed form can be used in con-
junction with any non-linear optimization package to
find the optimal shelf space allocation, reorder points,
and order quantities. This is in contrast to the dis-
cussion following Example 1. Thus, our inventory
domain approach considerably simplifies the optimi-
zation problem faced by the decision problem.

There are a few questions we wish to investigate.
First, how do the optimal decision variables and profit
change with different parameters of the demand
function? Second, is there any importance in captur-
ing both demand dependencies? Finally, is including
an intercept in the demand model relevant?
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In the next subsection, we describe the numerical
experiments designed to answer these questions and
their results for cases of two products competing over
shelf space.

4.1. Sensitivity of Optimal Decisions to Different
Settings
To simplify the investigation in this section, we fo-
cused a special case of (14) where a1i 5 a2i, b1i 5 b2i,
d1ij 5 d2ij and we denote these coefficients by ai, bi, and
dij, respectively:

riðIi;~SÞ ¼
a0i þ aiPj 6¼iS

dij

j Sbi
i þ Sbi

i

� �
Ii � Si

a0i þ aiPj 6¼iS
dij

j S
bi
i þ I

bi
i

� �
0 � IioSi:

8><
>:

ð22Þ

This reduces the number of parameters needed to be
considered.

For our numerical examples c1 5 c2 5 1, K1 5 K2 5

10, h1 5 h2 5 0.05, cs1
¼ cs2

¼ 0. We let a01 5 a02 5 1,
a1 515, and a2 5 10, so that product 1 is the product
with the higher demand. We consider three types of
shelf space and inventory influence: high, where
b1 5 b2 5 0.7 and d12 5 d21 5 0.2; medium, where b1 5

b2 5 0.5 and d12 5 d21 5 0.1; and low, where b1 5 b2 5

0.3 and d12 5 d21 5 0.05. We name these types the
high-, medium-, and low-influence types, respectively.
In all these types we choose the markup p1 5 p2 5 1.3.
We note that these values for b’s and d’s agree with
Bultez and Naert (1988) and Desmet and Renaudin
(1998) stating that the influence of other products’
shelf space is lower than that of the product’s shelf
space and that similar b values are found in practice.

In Table 1, we present the ratio of the profit, reorder
points, order quantities, and shelf space allocated
when ST is increasing, from 50 to 1000. For example,
for the low-, medium-, and high-influence types, the
profit increases by 2.96, 6.8, and 16.73, while the
optimal shelf space allocated for each product
increases by about 20 times. As expected, the increase
in total shelf space is more beneficial when the
demand influence is higher.

In Tables 2–4, we present, for the high-, medium-,
and low-influence types, the total allowed shelf space,
ST, and the optimal profit; reorder points, a1 and a2;
order quantities, q1 and q2; and shelf space allocated
to products, S1 and S2. We varied the shelf space

between 50 and 10,000 in different intervals. For
the medium- and high-influence types, we present
the results for 10 values of the total shelf space
STAf50, 75, 100, 150, 200, 350, 500, 1000, 5000, 10,000g. For
the low-influence type, it turns out that a total shelf
space of 2497 maximizes the profit. Thus, for this type
we present 11 values of STAf50, 75, 100, 150, 200, 350,
500, 1000, 1500, 2000, 2497g. From these tables we find:

1. As expected, for all three types the profit, order
quantities, and shelf space allocated to items are
increasing with the total shelf space. Other
observations are that ratios a1/a2, S1/S2, and q1/
q2 are all larger than 1. Thus, the retailer gains an
operational benefit by using her controls to
promote the higher demand product. In addition,

(a) For the high- and medium-influence types,
we observed that

� the reorder points are increasing with the
shelf space. Thus, the higher demand rate
implied by the higher allocated shelf space
induces the retailer to carry more items
during the whole cycle. This means that for

Table 1 Ratios of Optimal Profits and Controls as ST is Increasing from
50 to 1000

Profit a1 a2 q1 q2 S1 S2

Low influence 2.96 31.65 308.1 2.75 2.65 19.53 20.69

Medium influence 6.80 42.86 69.86 2.73 2.81 19.79 20.32

High influence 16.73 29.41 37.94 3.41 3.46 19.89 20.15

Table 2 Sensitivity to Different Total Shelf Space: High-Influence Type

ST Profit a1 a2 q1 q2 S1 S2

50 230.02 17.63 9.74 527.66 402.57 28.97 21.03

75 341.19 29.83 18.48 579.89 448.53 43.39 31.61

100 449.56 42.50 27.47 632.84 486.95 57.83 42.17

150 660.74 67.49 44.73 760.07 585.87 86.67 63.33

200 866.39 90.37 60.60 893.06 685.59 115.45 84.55

350 1461.01 169.30 115.98 1165.31 901.57 201.94 148.06

500 2033.19 249.67 174.87 1308.97 1014.19 288.31 211.69

1000 3848.53 518.55 369.61 1800.80 1393.44 576.15 423.85

5000 16,701.06 2734.98 1978.70 3900.88 2966.25 2879.87 2120.13

10,000 31,296.53 5545.62 4055.47 5336.26 4060.17 5758.45 4241.55

Table 3 Sensitivity to Different Total Shelf Space: Medium-Influence Type

ST Profit a1 a2 q1 q2 S1 S2

50 77.29 8.57 3.00 308.47 232.48 29.84 20.16

75 101.79 15.45 6.20 348.25 264.96 44.65 30.35

100 123.30 22.87 9.89 381.44 291.17 59.46 40.54

150 160.83 38.79 18.24 435.57 332.43 89.06 60.94

200 193.64 56.09 27.89 474.59 362.00 118.68 81.32

350 276.10 110.08 57.78 576.84 444.86 207.22 142.78

500 344.72 167.14 90.90 654.02 504.26 295.75 204.25

1000 525.85 367.42 209.75 842.59 653.66 590.39 409.61

5000 1332.74 2044.96 1221.66 1733.04 1395.13 2937.29 2062.71

10,000 1935.84 4011.63 2331.14 2721.46 2305.89 5850.21 4149.79
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high demand rate, the higher revenue rate
more than offsets the extra holding cost
resulting from carrying the additional in-
ventory.

� The percentage of total space that should be
allocated to each product, Si/ST, is relatively
independent of the total shelf space and S1/
ST is decreasing in a mild fashion when ST is
increasing. Also, the ratio a1/a2 is decreasing
with ST showing that the operational benefit
given to the product with the higher
demand is slowly decreasing with the total
shelf space allowed.

� the ratio q1/q2 shows no clear pattern.

(b) In the low-influence type, the relations are not
as clear, because at some STA[500, 1000] the
constraints Si � ai1qi become active. We
observe:

� For low ST, the reorder points are increasing.
For high ST, above 1000, the reorder points
are decreasing.

� The ratio S1/ST is decreasing in a mild fashion
until STA[500, 1000] and increasing from
there. The ratio a1/a2 is decreasing for
STA[50, 500] and increasing for higher ST.
Thus, as the constraints Si � ai1qi become
active, the operational benefit given to the
product with the higher demand is increasing.

To investigate the influence of the markup, we
varied the markup for the two items, p1 5 p2 5 p from
1.3 to 1.4 in steps of 0.02. We considered the three
influence types and ST 5 50 and 200. The results for
the medium-influence type and ST 5 50 are reported
in Table 5 and are typical. We notice that the order
quantities and the shelf space allocation are relatively
independent of the markup. However, the reorder

points are increasing with the markup and so does the
profit. This is explained by the fact that the higher
markup induces the retailer to end the inventory
cycles earlier, reducing the period with relatively low
demand rate. Again, the higher revenues generated at
higher demand rate offset the increase in holding cost
resulting from carrying higher inventory levels during
the whole cycle. Another observation is that, when the
markup price increases from 30% to 40%, the increase
in profit is 44%. In the computation not shown here,
this increase ranges between 36% and 53%.

In another set of experiment, not shown here, we
let a01 5 2, and a02 5 1, with a1 5 a2 5 10, so that
product 1 is the product with the higher demand due
to a higher intercept rather than dependency on the
shelf space and inventory level. We fixed the markup
p1 5 p2 5 1.3 and consider the low-, medium-, and
high-influence types, as before. The observations from
this set of experiments is similar to the ones reported
above. Specifically, S1/S2 and q1/q2 are both larger than
1 indicating that the seller should use its operational
controls to push the higher demand product. Both
these ratios decrease toward one as the shelf space
increases, indicating that as the constraint imposed by
the shelf space is constrained there is less benefit in
promoting the higher demand product. While here a1/
a2 was often smaller than 1—the demand of the high
demand product at the optimal reorder point is still
higher than the demand of product 2, further
supporting the above conclusion. We note that for
the low sensitivity type, the most profitable total shelf
space was 1812 units, and this size was higher than
10,000 for the other two sensitivity types.

4.2. Is Capturing Both Dependencies Important?
To analyze the importance of capturing both demand
dependencies, we considered two heuristics: Heur-
istic 1 that ignores the inventory dependence and
Heuristic 2 that ignores the shelf space dependence.
Heuristic 1 is in line with the literature stream
focusing on shelf space allocation that ignores the
dependency of demand on the inventory level; and
Heuristic 2 is in line with the literature focusing on the
inventory-dependent demand rate.

Table 4 Sensitivity to Different Total Shelf Space: Low-Influence Type

ST Profit a1 a2 q1 q2 S1 S2

50 28.90 0.49 0.01 204.96 158.00 29.67 20.33

75 34.33 1.08 0.06 223.70 171.83 44.34 30.66

100 38.64 1.79 0.14 239.06 183.08 58.94 41.06

150 45.37 3.37 0.41 264.42 201.96 88.00 62.00

200 50.62 5.04 0.73 286.16 217.31 116.98 83.02

350 61.88 9.43 1.71 342.28 257.70 203.21 146.79

500 69.67 12.60 2.49 392.31 291.91 289.11 210.89

1000 85.50 15.46 2.86 563.89 417.78 579.35 420.65

1500 93.13 9.78 1.11 861.59 627.51 871.38 628.63

2000 96.51 3.81 0.11 1161.26 834.83 1165.06 834.94

2497 97.43 0.79 0.00 1456.57 1039.65 1457.35 1039.65

Table 5 Changing the Markup for the Medium-Influence Type When
ST = 50

p1 5 p2 Profit a1 a2 q1 q2 S1 S2

1.3 77.29 8.57 3.00 308.47 232.48 29.84 20.16

1.32 84.22 9.28 3.78 308.45 232.48 29.80 20.20

1.34 91.15 10.24 4.41 308.41 232.48 29.79 20.21

1.36 98.08 11.08 4.96 308.37 232.47 29.77 20.23

1.38 105.03 11.84 5.50 308.32 232.46 29.76 20.24

1.4 111.97 12.55 6.02 308.25 232.44 29.74 20.26
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Heuristic 1 assumes that the demand rate is of the
form

r1
i ð~SÞ ¼ a1

0i þ a1
i Pj 6¼iS

d1
ij

j S
b1

i
i

� �
0 � Ii:

As seen above, we denote parameters related to this
heuristic with a superscript 1. Heuristic 2, denoted
with a superscript 2, assumes that the demand rate is
of the form

r2
i ðIi;~SÞ ¼

a2
0i þ a2

i S
b2

i
i Ii � Si

a2
0i þ a2

i I
bi
i 0 � IioSi:

8<
:

In practice, users considering different demand
structures will have to estimate different parameters.
For discussion on estimating such parameters, see
Desmet and Renaudin (1998), Urban (2005), and
Balakrishnan et al. (2004).

However, obtaining empirical data to estimate the
different parameters of the heuristics is outside the
scope of this paper. Still, we wish to obtain some
insight about the limitation of the different heuristics.
To do so, we search for the best possible parameter
choices of the heuristics. We define this best choice as
the one that leads to the lowest losses in comparison
to the ‘‘real’’ model, given in (22).

Mathematically, we let ~g1 ¼ a1
01; a

1
1; d

1
12; b

1
1; a

1
02;

�
a1

2;
d1

21; b
1
2Þ denote the vector of parameters for Heuristic

1. Then, for a given ~g1, Heuristic 1 maximizes the
long-run profit rate (recall that in the absence of
inventory dependence, a1 5 a2 5 0)

max
~q;~S

X2

i¼1

R1
i ðqi;~S;~g1Þ;

X2

i¼1

Si � ST

0 � Si � qI 8i ¼ 1; 2

ð23Þ

where with EðT1
i Þ ¼ qi=r1

i ð~SÞ and EðH1
i Þ=EðT1

i Þ ¼ hiqi=2
we have

R1
i ðqi;~S;~g1Þ ¼

ciðpi � 1Þqi � EðH1
i Þ � Ki

EðT1
i Þ

þ csi
Si:

For a given ~g1, we denote the optimal decisions rec-
ommended by Heuristic 1 by q�11 ð~g1Þ, q�12 ð~g1Þ, S�11 ð~g1Þ,
and S�12 ð~g1Þ. With this choice of control variables, the

profit realized in the real model would be R�1ð~g1Þ �P2
i¼1 Ri 0; q�1i ð~g1Þ;~S

�1ð~g1Þ
� �

where Rið0; qi;~SÞ is given
in (5).

Let R� denote the optimal profit in the real model.
Then, for Heuristic 1 and any given ST we look for the
parameters vector~g1 that solves

arg min
~g1

R� � R�1 ~g1ð Þ ¼ arg max
~g1

R�1ð~g1Þ:

The ratio L1 � R� �max~g1
R�1ð~g1Þ

� �
=R� provides a

lower bound on the losses of a retailer that ignores
the demand dependency on the inventory level, i.e.,
uses Heuristic 1 rather than the real model.

We follow a similar procedure to provide L2,
a lower bound for a retailer that uses Heuristic 2.
Observe that finding both L1 and L2 involves solving
infinite many optimization problems similar to (23).
Thus, the computation effort to estimate these bounds
might be very demanding.

Luckily, for Heuristic 2, we show:

PROPOSITION 2. L2 5 0

PROOF. Consider the ‘‘real world’s’’ demand rate given
in (14) and any optimal choice ~S

�
. Then, for Heuristic

2 one can choose

a2
0i ¼a0i þ a1i S�i

� �b1i S�j

� �d1ij

;

b2
2i ¼b2i;

a2
i ¼a2i S�j

� �d2ij

;

which causes this heuristic to estimate a demand rate
that is identical to the ‘‘real world’s’’ one. This will
give rise to optimal decisions. &

Note that the value of the ‘‘optimal’’ a0s parameters
chosen in Proposition 2 is substantially different than
the ‘‘real world’’ ones. Thus, it might not be realistic to
assume that this value will be found in practice. Still,
this proposition prevents us from concluding any
negative results on the cost of assuming that demand
is independent of the shelf space when it actually
does.

Thus, we only search for L1. For this we assume
that the real demand rate for the item is given in
(22). We considered the medium-influence type and
present the results for the predicted profit of Heuristic
1, H1�ð~g1Þ, L1, and max~g1

R�1 ~g1ð Þ as a function of
STAf50, 75, 100, 150, 200, 350, 500, 1000, 5000, 10,000g in
Table 6.

We searched for the~g1 that minimizes L1 as follows:
We initialized the search with~g1 values a1

01 ¼ a1
02 ¼ 1,

b1
1 ¼ b1

2 ¼ 0:5, d1
12 ¼ d1

21 ¼ 0:1, as in the real model,
and a1

1 ¼ 30, a1
2 ¼ 20, i.e., letting a1

1 and a1
2 be twice the

value of the real model if the inventory never drops
below the shelf space level. This initial point overes-
timates the real demand whenever the inventory level
is below the allocated shelf space for the product. We
then ran an exhaustive search around this point until
we could find no improvement or when we identified
a run with L1o0.1%. We set the step sizes for this
search to 1 for a1

01, a
1
02, a1

1, and a1
2, and to 0.05 for b1

1, b
1
2,

d1
12, and d1

21.
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From Table 6, we notice that the profits realized
using the controls recommended by the heuristic are
lower than the profits it predicts and that the relative
error of Heuristic 1 in profits from the optimal policy
is increasing with ST from less than 1% for low ST to
about 6% for high ST. We thus conclude that, when the
total shelf space is very limited, it might be safe to
ignore the demand dependency on the inventory
level. However, ignoring this dependency when the
shelf space is not as limited is likely to cause signifi-
cant losses.

This observation can be explained by that when ST

is very limited, the relative duration of time when the
inventory level is below the shelf space is shorter and
thus it is less risky to ignore it.

From a comparison of the losses for the same ST

values for the low and high demand influence types
(not reported here), we see, as expected, that ignoring
the demand dependency on the inventory level is
more costly when the demand is more sensitive to this
dependency.

Both demand dependencies on shelf space and on
the inventory level have won plenty of attention in
leading academic journals. The results of this subsec-
tion, that L2 5 0 and L1 might be larger than 6%,
suggest that models that consider only the depen-
dency on the inventory level might perform better in
practice (than models that consider only the depen-
dency on shelf space). Moreover, models that consider
only the dependence on shelf space may result in sub-
optimal decisions, especially when the shelf space is
high as in Home Depot, e.g., Balakrishnan et al. (2004).

4.3. On Ignoring the Intercept
To demonstrate the importance of including the in-
tercept in modeling the demand rate, we present an
example. We consider the medium influence demand
rate from our examples above with ST 5 50. We solved
for the optimal decisions of a model that assumes that

the demand rate has no intercept, i.e., it is of the form

r3
i ðIi;~SÞ ¼

a3
i Pj 6¼iS

d3
ij

j S
b3

i
i þ S

b3
i

i

� �
Ii � Si

a3
i Pj 6¼iS

d3
ij

j S
b3

i
i þ I

b3
i

i

� �
0 � IioSi:

8>>><
>>>:

As seen above, we denote parameters related to this
model with a superscript 3.

As in the subsection above, we looked for a lower
bound on the losses of a retailer that ignores the
intercepts. We define L3 similar to the definition of
L1 and L2. A similar exhaustive search over the
parameters of this model leads to L3 5 80.72% with
an actual profit of US$14.90 rather than US$77.29 in
the real model. Similar to what we observed when
investigating L2 the profit predicted by the model was
much higher (US$298.03).

Note that the intercept for both products in our
example are a01 5 a02 5 1, which are an order of
magnitude smaller than a1 515 and a2 5 10. Thus,
we expect that for relatively larger intercepts L3 would
be even higher. This example emphasizes the
importance of including the intercepts in the demand
rate model. It also supports our inventory domain
approach that enables including intercepts in the
demand rates.

5. Conclusion and Future Research
In this paper, we investigated the joint shelf space
allocation and inventory control problem for multiple
products with demand that depends on both the
inventory level seen by customers and on the shelf
space allocated to the product and to its complement
or supplement products. We analyze the problem in
the inventory domain via level crossing theory. This
allowed us to obtain closed-form expressions for the
profit rate for a large family of demand rate functions
exhibiting both dependencies. We showed that using
these expressions one can solve the joint control
problem. Using an extensive numerical study with
two products, we analyzed the sensitivity of optimal
decision variables and profit to different parameters
of the demand. We derived several interesting
managerial insights. They include (a) that in some
settings it is important to capture both demand
dependencies and that ignoring the dependency on
the shelf space might be less harmful than ignoring
the dependency on the inventory level. The latter can
lead to profit losses of more than 6%; (b) that ignoring
the intercepts in the demand model might be very
costly; and (c) that retailers should use their op-
erational controls (e.g., reorder point) to promote
higher demand products.

It is important to note that the inventory domain
methodology may be used to investigate additional

Table 6 The Predicted Profit, the Lower Bound, and Actual Profit of
Heuristic 1 When ST Varies for the Medium-Influence Type

ST H�1ð~g�1Þ L1 in %
max
~g1

R�1ð~g1Þ

50 88.37 0.396 77.29

75 127.31 0.617 101.79

100 161.38 0.869 123.30

150 246.69 1.244 160.83

200 328.91 1.593 193.64

350 614.42 2.413 276.10

500 949.68 3.011 344.72

1000 2361.43 4.230 525.85

5000 24,851.94 6.058 1332.74

10,000 72,250.97 5.694 1935.84
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settings where the time domain approach fails. This
can be an interesting future research direction.
Another important extension of this work would be
to estimate the demand rates for products using
empirical data. This might also help to investigate the
actual performance of the heuristics ignoring either
one of the dependencies rather than using a lower
bound on their performance. Finally, there might be a
need to develop efficient algorithms for solving
similar joint optimization problems in the presence
of many items, such as in Lim et al. (2004).
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Appendix A. Proof of Theorem 1
When yield is random and the amount ordered is q,
the amount supplied is the random variable Yq. For
every I40 we define UI(t) and DI(t) as the number of
up- and downcrossings of level I until t by I(t, S),
respectively. Observe that for every t40, we have
jDIðtÞ �UIðtÞj � 1 no matter what the starting point is
(see the intuitive explanation above). Therefore,
limt!1ð1=tÞjDIðtÞ �UIðtÞj ¼ 0. The latter argument
simply says that the long-run average number of
downcrossings dI � limt!1(1/t)DI(t) must equal the
long-run average number of upcrossings uI �
limt!1(1/t)UI(t) for any level I � a40. Thus, dI 5 uI.
Furthermore, given the regenerative structure of the
inventory level and assuming that at time t 5 0 a
regeneration cycle starts,

DIðTÞ ¼ UIðTÞ ¼ 1fI2 a;aþYqð Þg;

where T is the cycle length and 1f�g is the indicator
function. Also, by the Renewal Reward Theorem

dI ¼
E½DIðTÞ	

E Tð Þ ¼
E½UIðTÞ	

E Tð Þ ¼ uI: ðA1Þ

We observe that the time the content level process
I(t, S) stays in (I, I1DI] during a cycle T for small DI is

DIDIðTÞ
rðI; SÞ 


Z T

0

1fIoIðt;SÞ�IþDIgdt:

Moreover, because DI(T) is either 0 or 1 we can take the
limit as DI! 0 (by dominated convergence) to obtain

DIðTÞ ¼ rðI; SÞ lim
DI!0

R T
0 1fIoI t;Sð Þ�IþDIgdt

DI

� rðI; SÞ d

dI

Z T

0

1fI t;Sð Þ�Igdt:

ðA2Þ

Taking expectation in (A2) we obtain for each I � a1q

E DIðTÞð Þ ¼ rðI; SÞE d

dI

Z T

0

1fIðt;SÞ�Igdt

� �

¼ rðI; SÞEðTÞ d

dI

E
R T

0 1fIðt;SÞ�Igdt
� �

EðTÞ ;

ðA3Þ

where the second equality follows dominated conver-
gence.

Let F(I) be the steady-state distribution of I(t, S). If
F(I) is an absolutely continuous distribution, f(I)DI
represents approximately the long-run average pro-
portion of time the inventory level process stays at the
neighborhood of I and f(I) represents the steady-state
density. Moreover, this is the exact interpretation for
the element in the derivative in (A3). We then obtain

E DIðTÞð Þ ¼ rðI; SÞEðTÞfðIÞ: ðA4Þ

We further observe that the content level process dur-
ing a cycle is bounded between a and a1Yq implying
that the expected number of upcrossings of level I
during a cycle is

E UIðTÞð Þ ¼ E 1fYq4I�ag

� �
¼ PðYq4I � aÞ

� 1� FYqðI � aÞ:
ðA5Þ

Finally, (A1) implies that the left-hand sides of (A5)
and (A4) are equal. Thus, so are their right-hand sides
and, when ordering at a � 0, we obtain (15). The ex-
pressions for (16) and (18) follow immediately,
completing the proof.

We note that when F(I) is not an absolutely contin-
uous distribution the derivative d

dI1fI t;Sð Þ�Ig
� �

exists
only at points of continuity of F(I). More precisely, as
1fI t;Sð Þ�Ig � 1 both the limit from the left and the limit
from the right limDI!0E 1fIoI t;sð Þ�IþDIg

� �
=DI exist, but

might be different such that f(I1) 6¼f(I� ). Observe that
f(I� )DI ! 0 as DI ! 0. Thus, we use arbitrarily the
criterion f(I) 5 f(I1) for all I � a and (17) is valid even
when F(I) is not an absolutely continuous distribution.
Also, because the sample path of I(t, S) decreases
during a cycle (between jumps of delivery), when FYq

Ið Þ is absolutely continuous so is F(I).

Note

1As in Balakrishnan et al. (2004), we can treat a more general
demand by further defining f1i, f1ij, j6¼i, and f2i, f2ij, j6¼i, to
represent a base shelf space for the shelf space dependen-
cies’ effects on item i measured via its allocated shelf space,
and inventory level, respectively. Then the demand rate
function would be
riðIi;~SÞ

¼
a0i þ a1iðSi þ f1iÞ

b1iPj 6¼i Sj þ f1ij

� �d1ij

þa2iS
b2
i Pj 6¼i Sj þ f2ij

� �d2ij

Ii � Si

a0i þ a1i Si þ f1ið Þb1iPj 6¼i Sj þ f1ij

� �d1ij

þa2iI
b2
i Pj 6¼i Sj þ f2ij

� �d2ij

0 � IioSi:

8>><
>>:

:

We believe the extension in (14) should suffice in most cases.
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