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I n this research, we apply robust optimization (RO) to the problem of locating facilities in a network facing uncertain
demand over multiple periods. We consider a multi-period fixed-charge network location problem for which we find (1)

the number of facilities, their location and capacities, (2) the production in each period, and (3) allocation of demand to
facilities. Using the RO approach we formulate the problem to include alternate levels of uncertainty over the periods. We
consider two models of demand uncertainty: demand within a bounded and symmetric multi-dimensional box, and demand
within a multi-dimensional ellipsoid. We evaluate the potential benefits of applying the RO approach in our setting using an
extensive numerical study. We show that the alternate models of uncertainty lead to very different solution network
topologies, with the model with box uncertainty set opening fewer, larger facilities. Through sample path testing, we show
that both the box and ellipsoidal uncertainty cases can provide small but significant improvements over the solution to the
problem when demand is deterministic and set at its nominal value. For changes in several environmental parameters, we
explore the effects on the solution performance.
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1. Introduction
Facility location problems are often strategic in nature
and entail long-term decisions, exposing firms to
many uncertainties during the operational lifetime of
a facility. When solving such problems, a firm may
have to determine the number of facilities to open,
their locations, and their capacities. Because of the
high fixed costs incurred in changing a network of
facilities, a firm may be limited in the frequency
in which it reexamines these strategic decisions. After
determining its facility network, the firm is often
relegated to making operational decisions such as de-
termining production quantities, service levels, and
allocation of supply to demand. Thus, facility location
problems often have a two-stage approach to solving
them, location followed by evaluation. They are thus
amenable to solution using various techniques of
decision making under uncertainty.

There are alternate approaches to solve such prob-
lems. In general, as discussed below in our literature
review, one may either assume some stochastic infor-
mation about the possible outcomes or assume that
uncertain information lies within some mathematical
structure with no distributional information about it.
In the former case, one would then optimize some
expectation of the cost or profit of a system. In the
latter case, one often solves for a solution that is

robust to the uncertainty in the problem statement.
We take this approach.

This paper considers a facility location problem us-
ing a robust optimization (RO) modeling approach
where demand is uncertain and no probability distri-
bution is assumed. We consider the problem where a
firm must establish fixed facilities at a charge in
an initial period. Further, with a linear cost per unit,
the firm must establish the maximum production
capacity for each facility. In subsequent periods, the
firm observes demand from several nodes and must
determine the allocation of demand and production at
open facilities. We allow for production costs at the
facilities and delivery charges (assumed based on dis-
tance to the demand nodes). The production of each
facility in each period is bounded by the maximum
production capacity initially established. As a result,
we allow for lost demand.

To tackle this problem, we apply the RO approach
that differs from previous work on robust facility loca-
tion as discussed in the literature review. This approach
was independently developed by El-Ghaoui and Lebert
(1997) and Ben-Tal and Nemirovsky (1998). The key is-
sue in RO is how to model the uncertainty. Typically,
the uncertainty is confined to a specific mathematical
structure in order to ensure model tractability. The RO
approach has been applied in recent years in opera-
tional, engineering, and financial contexts, e.g., pricing,
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inventory, truss-design, portfolio selection, and sched-
uling. We give a brief tutorial on RO in section 2.

This paper contributes to the literature by formu-
lating robust models for a facility location problem,
and by providing insights into the solution structure.
We consider a profit-maximizing objective where the
firm must trade off establishing sufficient capacity
with uncertain (and possibly low) revenue in the
future. The mathematical program developed finds
solutions that simultaneously address these alterna-
tives. We present a tractable formulation that can be
tested in a consistent manner against an approach
where uncertainty is ignored. We study the problem
through extensive numerical testing and provide a
road map to understanding how RO improves system
performance. In these tests we consider a semi-realistic
problem with 15 nodes and up to 20 periods of de-
mand. While realistic problems may be larger than this,
alternate approaches, such as stochastic programming,
cannot efficiently solve even this limited-size problem.
We indicate environmental parameters that have great-
er influence on the performance. To the best of
our knowledge, this work is the first to apply the RO
approach in the context of facility location problems.

The paper is organized as follows: In section 2, we
review some of the relevant literature and present the
principles of RO. In section 3, we describe the setting,
model the problem, and discuss our assumptions. In
section 4, we compare the performance of alternate
RO models and that of the nominal model in order to
demonstrate the expected potential benefits of apply-
ing the RO approach to facility location. Finally, in
section 5, we highlight the insights gained in this
study and propose several future research directions.

2. Literature Review
In this section, we briefly review some of the relevant
studies in two streams of research that are related to
our problem: facility location and RO. The problem of
facility location is an important strategic one and
many models have been developed to approach it. For
texts on the subject, we refer the reader to Mirchan-
dani and Francis (1990), Daskin (1995), and Drezner
and Hamacher (2002). In this paper, we consider a
variant of the capacitated fixed-charge multi-period
facility location problem where the production capac-
ity of each facility must be determined before
observing demand during the horizon. That is, we
consider the problem under uncertainty.

There is a considerable body of literature on facility
location under uncertainty. The recent review article
by Snyder (2007) describes two types of problems:
stochastic location problems and robust location prob-
lems. For the former, as in general stochastic optimi-
zation problems, the solution concept is to optimize the

expected value of the objective function. Objective func-
tions studied include minimizing the expected travel
cost such as in stochastic versions of the p-median
problem (Mirchandani et al. 1985, Weaver and Church
1983) and maximizing the expected profit of a capaci-
tated p-median problem or the profit of an inventory–
location model (Daskin et al. 2002, Snyder et al. 2007).
The closest model in structure to our problem is that of
Louveaux (1986), who studies a capacitated fixed-
charge location problem with stochastic information
on demands, prices, and costs. By including a budget
constraint, the author makes the problem equivalent to
a capacitated p-median problem. Researchers have also
studied versions of these problems that balance mean
and variance of performance (see, e.g., Verter and
Dincer 1992). Stochastic optimization approaches also
include attempts to maximize the probability that an
event such as the total distance from a location is within
a limit (see, e.g., Berman and Wang 2006).

In contrast, robust location problems seek to deter-
mine locations that are in some sense robust to
uncertainty in problem parameters. Often this takes
the form of a worst-case performance over a set of
possible scenarios or intervals of uncertainty. For
these problems, minimax-regret and minimax-cost
are applied. For example, Averbakh and Berman
(1997) consider a minimax-regret formulation of the
weighted p-center problem on a network with uncer-
tain weights lying in known intervals, establishing
that it may be solved by solving n11 deterministic
p-center problems. Subsequently, Averbakh and
Berman (2000a) consider the minimax-regret 1-center
problem with uncertain node weights and edge lengths,
both restricted to known intervals. They establish
a polynomial-time algorithm for the case of a tree
network and an e-optimal solution for general net-
works. Similarly, Averbakh and Berman (2000b)
consider the minimax-regret 1-median problem with
interval uncertainty of the nodal demands and present
a polynomial-time algorithm for the general problem.

Alternate definitions of robustness are also applied
to location problems. For example, Carrizosa and
Nickel (2003) propose a robust positioning of a facility
on the plane, where robustness is defined as the
minimal change in the uncertain parameters such that
a solution location becomes inadmissible with respect
to a total cost constraint. Kouvelis et al. (1992) con-
sider finding solutions where the relative regret under
any scenario is limited to be less than some percent-
age. This measure is also applied in Gutierrez and
Kouvelis (1995) to the problem of selecting suppliers
when considering exchange rate uncertainty. Snyder
and Daskin (2006) apply this measure (they refer to
it as p-robustness) to the p-median problem and the
uncapacitated facility location problem. They solve for
the minimum expected cost solution that is p-robust.
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The RO approach was developed independently by
El-Ghaoui and Lebert (1997), El-Ghaoui et al. (1998),
and Ben-Tal and Nemirovsky (1998, 1999). A recent
textbook compiling the research is Ben-Tal et al.
(2009). The approach provides less conservative
solutions than earlier worst-case solutions provided
by robust mathematical programming approaches
(e.g., Soyster 1973) by trading off some of the
conservatism with improvement in the objective
function by bounding the set of values uncertain
parameters could achieve. A key feature of the
RO approach is its tractability, which depends on
the structure of the uncertainty set. Ben-Tal and
Nemirovsky (1998, 1999) have shown that, if the
uncertainty set is described as a box or an ellipsoid,
then the robust formulation of the problem is tract-
able. (Here a box is defined by a set of linear
inequalities while an ellipsoid is given by a quadratic
relation among the uncertain parameters.) Bertsimas
and Sim (2006) discuss the tractability of different
types of robust problems. Bertsimas et al. (2004)
explore the robust counterpart of a problem with
an uncertainty set that is described by an arbitrary
norm.

RO has been used in various areas such as port-
folio management, e.g., Ben-Tal et al. (2000), dynamic
pricing, e.g., Adida and Perakis (2006), contracts in the
supply chain, e.g., Ben-Tal et al. (2005), project man-
agement, e.g., Cohen et al. (2007), and inventory
management, e.g., Bertsimas and Thiele (2006).

The closest work to ours in applying robustness
concepts to facility location is Daskin et al. (1997) and
Chen et al. (2006). Daskin et al. (1997) define a concept
of a-reliability. For a given 0oao1, they find
the solution to the p-median problem that minimizes
the maximum regret, subject to a constraint that
the scenarios used in defining the regret have a total
probability of occurring of at least a. This notion of
a is similar to the ellipsoid uncertainty set considered
in RO in the sense that unlikely scenarios may
be excluded while some total amount of uncertainty
is included in the problem. Chen et al. (2006) intro-
duce the concept of mean-excess regret, in comparison
with the minimax-regret presented in Daskin et al.
(1997). They show that the mean-excess regret
model is more tractable, computationally speaking,
thus much more appealing to real-world problems.
While in the minimax-regret approach the a-quantile
of regret is minimized, with the a-reliable mean-
excess regret approach, the authors seek to minimize the
expected weighted regret of all scenarios in the a-set.

2.1. RO—A Short Tutorial
In this section, we provide a quick reference to the
principles of RO. For further details, we refer the
reader to Ben-Tal et al. (2009) and references therein.

Readers who are familiar with this approach can
safely skip this section. Consider the following linear
program (LP):

ðLPÞ min
x2X

cTx;

s:t: Ax � b;
ð1Þ

where x 2 X � <n is the vector of decision variables, b 2
<m is the right-hand side parameter vector, c 2 <n is the
vector of objective function coefficients, and A 2 <m�n,
with elements aij, is the constraint coefficient matrix.

In a typical problem like (LP), we assume that c, A,
and b are deterministic and we solve the problem and
obtain an optimal solution. The RO approach considers
some of the data parameters as uncertain, yet lying
within a set that expresses limits on the uncertainty.
That uncertainty set then defines the limits on uncer-
tainty that a solution will be immunized against. That
is, the solution x will address any possible uncertainty
lying within the set. In the RO approach the (LP) is
transformed into a robust counterpart by replacing each
constraint that has uncertain coefficients with a con-
straint that reflects the incorporation of the uncertainty
set. In the following description, we focus on uncer-
tainty in row i in the constraint matrix; uncertainty in
the objective coefficients can be accommodated as well.
Let ~aij denote an uncertain entry in the matrix. We con-
sider two types of uncertainty sets, a box uncertainty set
and an ellipsoidal uncertainty set.

2.1.1. Box Uncertainty. Under box uncertainty,
~a ¼ f~aijgi¼1;...;m; j¼1;...;n is unknown but bounded in
a box of the form UB ¼ f~aij 2 R : j~aij��aij j � eGij :
i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; ng, where �aij is the mean
or nominal value of ~aij, Gij represents the uncertainty
scale particular to the given entry, and e is the
uncertainty level common across all the entries
(Ben-Tal et al. 2005). The specific case where Gij ¼ �aij

corresponds to the case where the relative deviation
from the nominal is at most e. That is, for each i and j,
~aij lies in the interval ½�aij�ej�aijj;�aijþej�aij j�. Below, we
adopt this case as we focus on the relative uncertainty
around positive demand values in our network.

For a constraint i,
P

j ~aij xj � bi, we only need to
augment the left-hand side (LHS) of the equation
to reflect the uncertainty set in the formulation. For-
mally, in the augmented constraint we require, for a
given solution x, that

min
~a2UB

Xn

j¼1

~aij xj

8<
:

9=
; � bi or

min
~aij:j~aij ��aij j�ej�aij j

Xn

j¼1

~aij xj

8<
:

9=
; � bi:

Baron, Milner, and Naseraldin: Facility Location and Robust Optimization
774 Production and Operations Management 20(5), pp. 772–785, r 2010 Production and Operations Management Society



Given the structure of UB, the optimal solution of
the optimization on the LHS is

Xn

j¼1

�aij xj � e
Xn

j¼1

j�aij jjxjj � bi; ð2Þ

which can be reformulated as

Xn

j¼1

�aij xj � e
Xn

j¼1

j�aij jyj � bi; ð3Þ

�yj � xj � yj for all j: ð4Þ

The constraints (1) are now replaced by (3) and (4),
the robust counterpart constraints, and the robust LP is
solved.

The box uncertainty set provides a tighter constraint
and is thus more conservative than the original (LP).
To see this, assume that in problem (LP) aij ¼ �aij for all
i, j (the coefficients are at their nominal values). Then
the LHS of each constraint (3) is smaller than its coun-
terpart in (LP).

2.1.2. Ellipsoidal Uncertainty. Under ellipsoidal
uncertainty, ~aij is chosen from a set that expresses a
measure of the uncertainty spread. As argued in Ben-
Tal and Nemirovsky (1998, 1999), the box uncertainty
set may lead to conservative solutions, as it allows all
the uncertain parameters to take on their worst values
at the same time. Consider constraint i, ~aT

i x � bi, where
~ai ¼ f~ai1; . . . ;~aing, i 5 1, 2, . . ., m. As an alternative to the
box uncertainty set, the uncertain parameters can be
characterized by both a nominal vector, �ai, and a
positive definite matrix, CiARn�n, that expresses the
relationship between alternate dimensions of the
uncertainty set. Consider the set

UE
i ¼ fai 2 Rn : ðai � �aiÞTC�1

i ðai � �aiÞ � O2
i g;

where Oi is a safety parameter indicating the amount of
uncertainty, with respect to constraint i, to be covered
by the robust solution. Because C is positive definite,
the set Ui

E is an ellipsoid.
For a candidate solution vector xARn, if we restrict

uncertain parameters, ~ai, to be in the ellipsoid Ui
E, we

have the augmented constraint

min
~a2UE

i

~aT
i x � bi: ð5Þ

The LHS of (5) can be solved using the Karush–
Kuhn–Tucker conditions to find

~ai ¼ �ai�
Oiffiffiffiffiffiffiffiffiffiffiffiffi
xTCix

p Cix:

Then analogous to the transformation of (2) into
(3) and (4), the robust counterpart to the constraint

~aT
i x � bi implied by (5) is

�aT
i x� Oi

ffiffiffiffiffiffiffiffiffiffiffiffi
xTCix

p
� bi: ð6Þ

If one were to assign stochastic uncertainty to the
coefficients of matrix A, the solution in (6) suggests
that �ai and Ci would represent the expected values,
E½~ai�, and the covariance matrix, E½ð~ai��aiÞð~ai��aiÞT�,
respectively, and thus, for a given solution vector, x,
one can consider ~aT

i x to be a random variable with
expected value mx ¼ �aT

i x and standard deviation

sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½~aT

i x� mx�2
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xTE½ð~ai��aiÞð~ai��aiÞT�x

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
xTCix

p
:

In this case, (6) implies that the constraint holds
with Oi standard deviations of slack.

In summary, by using an ellipsoid set, we restrict all
of the parameters from obtaining their worst-case val-
ues simultaneously. Moreover, if we are to interpret
the ellipsoid as representing the mean and covariance
structure of the uncertain parameters with a Gaussian
distribution, then in the ellipsoidal uncertainty case,
the constraints are stochastically guaranteed to a given
level through an appropriate choice of O.

3. A Multi-Period Facility Location
Problem

In this paper, we consider the application of RO to a
capacitated multi-period fixed-charge facility location
problem. A firm seeks to locate facilities on a connected
graph and establish the maximum capacity of these fa-
cilities. These decisions are made once at the start of a
time horizon and constitute the strategic level decisions
of the firm. Then, in each period, the firm observes
demand from nodes in the network and must deter-
mine how much demand to satisfy and from which
facilities. These operational-level decisions are made
subject to the strategic decisions; demand can only be
served from open facilities and the total demand served
from a facility must be less than its maximum capacity.
The firm incurs costs for opening facilities, establishing
capacity, producing in a period at a facility, and ship-
ping from a facility to demand nodes. It receives a
revenue for each satisfied unit of demand. The objective
is to maximize the total system profit.

We assume that the capacity is infinitely divisible and
cannot be adjusted during the horizon, though produc-
tion can be adjusted without cost from period to period.
Demand that is fulfilled is done so by direct shipment
from a production facility or several facilities to the de-
mand node (i.e., we do not solve for delivery tours). We
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assume that inventory cannot be carried from period to
period. This may be plausible in a service or make-to-
order firm, as well as in a high volume JIT production
environment. However, it is a limitation of the model in
an environment where inventory may be built up, e.g.,
to address seasonal demand.

3.1. Nominal Problem Formulation
We formulate the nominal problem assuming that all
data in the problem are deterministic and known, in-
cluding future demand. Let G(N, A) be a connected
graph with jNj nodes and arc set A. Let dij be the
distance, and, without loss of generality, the cost of
shipping units, between nodes i and j for each i, jAN.
We assume dij is symmetric and dii 5 0 for all iAN. Let
T be the length of the horizon and Dit, iAN, t 5 1, . . ., T
be the demand in period t at node i.

Let Ki be the cost of opening a facility at node i. Let
Ci0 be the cost per unit of capacity established at the
beginning of the horizon and let cit be the cost per unit
of production at node i in period t. Fulfilled demand
generates a revenue of Z40 per unit. Unsatisfied de-
mand is lost. We do not include a discount factor for
value over time; one may be readily included.

We define the following decision variables: Let
Ii 5 1 if a facility is opened at node i; Ii 5 0 otherwise.
Let Zi0 be the (maximum) capacity of an open facility
at node i. Let Xijt be the proportion of demand at node
j in period t that is satisfied by an open facility at node
i (0 � Xijt � 1). For expositional ease, we also intro-
duce the decision variable Zit, the production at node i
in period t. Finally, let t be the profit over the horizon.
The problem is formulated as follows:

ðP0Þ max
X;Z;I;Z0;t

t;

s:t:

XN

i¼1

XN

j¼1

XT

t¼1

ðZ� dijÞDjtXijt �
XN

i¼1

XT

t¼1

citZit

�
XN

i¼1

Ci0Zi0 þ KiIið Þ � t;

ð7aÞ

XN

j¼1

DjtXijt � Zit for all i; t; ð7bÞ

XN

i¼1

Xijt � 1 for all j; t; ð7cÞ

Zi0 �MIi for all i; ð7dÞ

Zit � Zi0 for all i; t; ð7eÞ

Xijt � 0; Ii 2 f0; 1g for all i; j; t: ð7fÞ

Constraint (7a) represents the objective, which is
placed in the constraint set to aid the RO formulation
below. The first term expresses the revenue less de-
livery costs; the second term, the production costs; the
third, the capacity and facility location cost. Con-
straint (7b) guarantees the demand satisfied by a
facility is less than its production. Constraint (7c) im-
plies at most 100% of the demand at a node is fulfilled.
Constraint (7d) ensures that capacity is only available
at open facilities. Constraint (7e) implies the produc-
tion at a facility in each period is less than the
established maximum capacity.

If the values of all the parameters were known,
problem (P0) could be solved as a mixed integer linear
program (MILP) for the optimal strategic decisions and
operational decisions. However, if the problem data
were uncertain, that solution would not necessarily be
optimal. Let ~Djt, jAN, t 5 1, . . ., T be the uncertain de-
mand at node j in period t. (For simplicity, we consider
only demand uncertainty. Other uncertainties such as
price, shipping cost, or production cost uncertainty can
readily be included.) Using the RO approach, we now
reformulate P0 to reflect the allowed uncertainty and
solve for both the strategic decisions (location and ca-
pacity) and the operational decisions (production and
allocation).

3.2. The Robust Problem—Box Uncertainty
For the case of box uncertainty, we assume that de-
mand in each period is unknown and bounded on a
symmetric interval around a known nominal value.
That is, let ~Djt be the uncertain demand from node j in
period t and let �Djt be its nominal value, i.e., the center
point of the interval. Then we assume �Djtð1� etÞ �
~Djt � �Djtð1þ etÞ for 0 � et � 1 for all t, where et mea-
sures the uncertainty size in period t. We let
UB

jt ¼ ½�Djtð1� etÞ; �Djtð1þ etÞ�, �U
B
t ¼ UB

1t � . . .�UB
Nt,

and UB ¼ �U
B
1 � . . .� �U

B
T. We now transform problem

(P0) into a new problem expressing uncertainty by
substituting ~Djt for Djt in constraints (7a) and (7b) and
then augmenting it with the constraint ~Djt 2 UB for all
jAN and t 5 1, 2, . . ., T.

The augmented constraint for (7a) is

min
~Djt2UB

XN

i¼1

XN

j¼1

XT

t¼1

~DjtðZ� dijÞXijt

8<
:

9=
;�

XN

i¼1

XT

t¼1

citZit

�
XN

i¼1

ðCi0Zi0 þ KiIiÞ � t: ð8Þ

For a given candidate solution X � 0, the optimal
solution to the optimization problem on the LHS of (8)
is �Djtð1� etÞ if (Z� dij) � 0, and �Djtð1þ etÞ if
(Z� dij)o0. However, if (Z� dij)o0, then Xijt 5 0 in
the optimal solution to (P0) with (7a) replaced by (8).
Thus, we can ignore the second case and find the
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robust counterpart of constraint (7a) to be

XN

i¼1

XN

j¼1

XT

t¼1

ðZ� dijÞ �Djtð1� etÞXijt �
XN

i¼1

XT

t¼1

citZit

�
XN

i¼1

ðCi0Zi0 þ KiIiÞ � t:

ð9Þ

Next, consider constraint (7b) for a given i and t.
Noting that the inequality is now ‘‘ � ,’’ we augment
the constraint by solving for the maximum of the LHS
over the uncertainty set, leading to

max
~Djt2UB

XN

j¼1

~Djt Xijt

8<
:

9=
; � Zit:

Noting ~Djt � 0, the constraint implies

XN

j¼1

�Djtð1þ etÞXijt � Zit for all i; t: ð10Þ

Therefore, the robust counterpart of problem (P0)
with uncertainty set UB is given by

ðRCBoxÞ max
X;Z;I;Z0;t

t

subject to constraints (7c)–(7f), (9), and (10).
We let M ¼ maxt

PN
j¼1

�Djtð1þ etÞ
n o

be an appropri-
ately large number in (7d). Problem (RCBox) is an
MILP that can be solved effectively using off-the-shelf
software.

3.3. The Robust Problem—Ellipsoidal Uncertainty
Consider the case where the uncertain data are con-
tained in an ellipsoid. As discussed in section 2.1 such
an ellipsoidal uncertainty set can also be characterized
by a mean/variance approach. That is, one can re-
place the uncertain parameters by their means plus or
minus a given number of standard deviations ex-
pressing the decision maker’s preferences. We define
the uncertainty set and then reformulate the robust
counterpart of each constraint with uncertain ele-
ments in (P0).

As before, let ~Djt be the uncertain demand at node j
in period t. For notational ease, let ~Dt ¼ f~Djtgj¼1...N 2
<N and ~D ¼ f~Dtgt¼1...T 2 <NT be vectors of the de-
mand. Let �Djt be the nominal value and let S of size
(NT�NT) denote the covariance matrix of ~D. (As we
assume independence of demands over time and loca-
tion for our test below, S is diagonal with entries sij

2.)
Recall in our discussion of the box uncertainty case,

the multi-dimensional unit box was given by the ab-
solute, normalized deviations, i.e.,

UB ¼ ~D 2 <NTj � 1 �
~Djt� �Djt

et
�Djt

� 1 for all j; t

( )
:

To construct the ellipsoid set, we consider the total-
normalized-squared deviations. Therefore, for the con-
straint (7a), we define the following uncertainty set:

UE
1 ¼ ~D 2 <NTj

XN

j¼1

XT

t¼1

~Djt� �Djt

et
�Djt

" #2

� O2
1

8<
:

9=
;; ð11Þ

where O1 is the safety parameter applied to constraint
(7a) in (P0). Observe that if we set O1 51 in (11), U1

E is
the largest ellipsoid contained in UB, and if we set
O1 ¼

ffiffiffiffiffiffiffi
NT
p

, U1
E is the smallest ellipsoid containing UB.

Letting sjt ¼ et
�Djt and defining S to be the NT�NT

diagonal matrix with non-zero entries sjt
2, then

UE
1 ¼ ~D 2 <NTjð~D� �DÞTS�1ð~D� �DÞ � O2

1

n o
:

We now consider the augmented constraint

min
~D2UE

1

XN

i¼1

XN

j¼1

XT

t¼1

ðZ� dijÞ ~Djt Xijt

8<
:

9=
;

�
XN

i¼1

XT

t¼1

citZit �
XN

i¼1

ðCi0Zi0 þ KiIiÞ � t:

Let Vjt ¼
PN

i¼1 ðZ� dijÞXijt. Similar to (6) we arrive at
the robust counterpart constraint

XN

j¼1

XT

t¼1

�Djt Vjt � O1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1

XT

t¼1

s2
jtV

2
jt

vuut

�
XN

i¼1

XT

t¼1

citZit �
XN

i¼1

ðCi0Zi0 þ KiIiÞ � t:

ð12Þ

Next, we linearize (12) by considering a decision va-

riable, W, with W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

j¼1

PT
t¼1 s2

jtV
2
jt

q
. This facilitates

solution by standard conic optimization (subject to a
transformation detailed below). Then the set of constraints

XN

j¼1

XT

t¼1

�Djt Vjt � O1W �
XN

i¼1

XT

t¼1

citZit

�
XN

i¼1

ðCi0Zi0 þ KiIiÞ � t;

ð13aÞ

Vjt ¼
XN

i¼1

ðZ� dijÞXijt; ð13bÞ

W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1

XT

t¼1

s2
jtV

2
jt

vuut ð13cÞ

form the robust counterpart constraint for constraint (7a)
in case of uncertainty set U1

E.
Under the assumption that UE

1 � <NTþ (the positive
orthant), and given the objective of maximizing t, we
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can relax (13b) to

Vjt �
XN

i¼1

ðZ� dijÞXijt: ð13b0Þ

Similarly we can relax (13c) to

W �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1

XT

t¼1

s2
jtV

2
jt:

vuut ð13c0Þ

For each of the constraints (7b), we can also formu-
late robust counterpart constraints under ellipsoidal
uncertainty. Let

UE
2t ¼ ~D 2 <NTj

XN

j¼1

~Djt� �Djt

et
�Djt

" #2

� O2
2t

8<
:

9=
;:

Here O2t is the safety parameter associated with the
uncertainty in period t. Again we let sjt ¼ et

�Djt for
each t, and let Ct be the N�N diagonal matrix with
non-zero entries sjt

2. The augmented constraint for (7b)
for a given i and t is

max
~Djt2UE

2t

XN

j¼1

~Djt Xijt

2
4

3
5 � Zit for all i; t:

We use a similar approach as in (6) to find the ro-
bust counterpart constraint:

XN

j¼1

�Djt Xijt þ O2t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1

s2
jtX

2
ijt

vuut � Zit for all i; t:

Note that we now add in O2t multiples of the un-
certainty to reflect the changed direction of the
inequality ( � ) in (7b). Similar to above, we let

Qit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

j¼1 s2
jtX

2
ijt

q
. Noting that cit40 in the objective

function, so that Zit is to be minimized, we can express
Qit as an inequality, so that the robust counterpart
constraints for constraints (7b) are

XN

j¼1

�Djt Xijt þ O2tQit � Zit for all i; t; ð14Þ

Qit �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1

s2
jtX

2
ijt

vuut for all i; t: ð15Þ

Observe that (13c 0) and (15) express conic quadratic
constraints. This follows because the variables in their
respective vectors [fVjtgj, t, W] and [fXijtgj, Qit] are
elements of Lorentz cones, i.e., [fVjtgj, t, W]ALNT11

and [fXijtgj, Qit]ALit
N11, where Ly is the Lorentz cone

of dimension y. Note, however, that variable Xijt ap-
pears in Lit

N11 and, because of (13b), also in LNT11.
This proves problematic in solving the resulting conic

optimization problem. Therefore, we define njt � sjtVjt

for all j and t, and wijt � sjtXijt for all i, j, and t. We then

replace (13c 0) by W �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

j¼1

PT
t¼1 n2

jt

q
and (15) by

Qit �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

j¼1 w2
ijt

q
. The complete robust counterpart of

(P0) is

ðRCEllÞ max t

XN

j¼1

XT

t¼1

�Djt Vjt � O1W �
XN

i¼1

XT

t¼1

citZit

�
XN

i¼1

ðCi0Zi0 þ KiIiÞ � t;

ð16aÞ

XN

j¼1

�Djt Xijt þ O2tQit � Zit for all i; t; ð16bÞ

Vjt �
XN

i¼1

ðZ� dijÞXijt for all j; t; ð16cÞ

njt � sjtVjt for all j; t; ð16dÞ

wijt � sjtXijt for all i; j; t; ð16eÞ

W �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1

XT

t¼1

n2
jt

vuut ð16fÞ

Qit �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1

w2
ijt

vuut for all i; t; ð16gÞ

and constraints (7c)–(7f).
Here we let M in (7d) be sufficiently large, e.g.,

M 5 N maxj,t[DjtAUE].
In this formulation when we consider the demand

revenues in (16a), the uncertainty expresses the pos-
sible downside of lower than expected revenues. In
doing so, we limit the overall uncertainty in all pe-
riods under consideration through the summation in
(16f). In comparison, when considering the produc-
tion required in (16b), the uncertainty expresses the
alternate downside of high requirements for capacity.
In this case we limit the demand required to be served
in each period separately through (16g). The effect of
these is similar to the box uncertainty case—we re-
quire sufficient capacity in each period to serve the
demand expected, but assume lower revenues in
finding our profits than would be implied by these
high demands.

Problem (RCEll) is a conic quadratic program.
There are several software programs that efficiently
solve conic quadratic programs, e.g., the MOSEK
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optimization tools—http://www.mosek.com. We
note that problem (RCBox) has N2T1N(T12)11 vari-
ables, of which N are binary, and N(3T11)11
constraints. Problem (RCEll) has 2N2T1N(4T12)12
variables, of which N are binary, and
N2T1N(6T11)12 constraints, of which NT11 are
conic quadratic constraints. This increase in the num-
ber of variables and constraints heavily impacts the
size of the mixed-integer problems that can be solved.
We turn next to solving examples of these programs to
evaluate how the alternate robust models affect the
objective value and the solutions.

4. Numerical Study
In this section, we conduct numerical experiments to
understand how the solutions provided by the nom-
inal problem and the RO models, using either box or
ellipsoidal uncertainty sets, differ. We consider how
they differ in the number of facilities opened, their
capacities, and the network topology determined by
the solution. In addition, we study the expected profit
under each model as given by a simulation of demand
sample paths. Before presentation of the results, we
describe the test environment in detail.

4.1. Test Environment
We randomly generate N nodes on a unit square, rep-
resenting the demand points and potential facility
locations. The nominal demand at each demand point
in each period, �Djt, is independent of all others and is
assumed constant over the T periods. We let N 5 15
and T 5 20. The nominal demand at each location
is drawn from the uniform distribution, Uniform
[17,500, 22,500].

We use the revenue and cost parameters summa-
rized in Table 1 for the base case. The revenue is set at
Z5 1. The delivery cost, dij, equals the Euclidean dis-
tance between nodes i and j. The expected distance
between any two nodes is approximately 0.5 and the
expected maximum distance is approximately 1 (see,
e.g., Larson and Odoni 2007). We let Ci0 5 0.1, cit 5 0.1
(8 i, t) and K 5 50,000. Using these values, the ex-
pected margin per unit per period is approximately
0.3 if one location is opened and 0.9 if all N locations
are opened. The cost of opening a facility to serve the

average demand is approximately between 3 and 10
periods of demand.

The initial uncertainty sets are generated as follows.
In the base case we let g5 0.15 be the initial (first
period) uncertainty in the demand, and let et 5

g1(1� g)et� 1 with e0 5 0. For the box uncertainty set
we assume UB

jt ¼ �Djt½1� et�. Because et is a concave,
increasing function in t, Ujt

B is increasing in t. In Figure
1, the solid lines depict the boundaries of Ujt

B. The
marked points depict a sample path that might occur
(described below). For the ellipsoidal uncertainty set
we let the safety parameters O1 and O2t for t 5 1, . . ., T
equal 1. This creates the largest ellipsoid contained in
the box UB (the inscribed ellipsoid).

We compare the solutions of the nominal problem
to those of the box and ellipsoidal uncertainty prob-
lems. We do so by first considering the topology of the
solutions (number of facilities established, number of
edges utilized, etc.). Second, we compare the profit of
the solutions found.

4.2. Comparing the Topology of the Solutions
We compare the number of facilities opened, the ca-
pacity of the facilities, and the connectivity of the graph
for the three models. To do so, we generate 250 random
graphs by choosing node locations uniformly over the
unit square. For each graph we solve the nominal, box
uncertainty, and ellipsoidal uncertainty models. For
each graph we generate 10 sample paths for the de-
mand for a total of 2500 sample paths. The sample
paths are generated by sampling over the box uncer-
tainty set for each time period t (the area between the
curves in Figure 1). Sampling is conducted using either
a bell-shaped beta(2, 2) distribution, uniform distribu-
tion, or U-shaped beta(1/2, 1/2) distribution.

In Figure 2, we present typical solutions of the
models. In the figures, a star denotes an open facility

Table 1 Parameter Values in Base Case

g 1

N 15

T 20

cit 0.1

Ci0 0.1

K 50,000

Dj 	U[17500, 22500]
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Figure 1 Box Uncertainty Set given by c = 15% and an Instance of a
Sample Path in the Box
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(co-located with a demand node), a circle represents a
demand node, and a line indicates that in at least one
period the facility is used to satisfy demand at the
node. The size of the stars is proportional to the ca-

pacity of the facility. In Table 2, we present the mean
number of facilities, mean capacity, and mean number
of connections per open facility. The last is defined as

P
j

P
i If
P

t Xijt40gP
j Ij

;

where Ifg is the indicator function. We also present
the percentage of the demand covered by each of the
three solutions. Results are given for the case of Z5 1,
3, and 6.

We make several observations. First, compared with
the nominal model, both robust models with the box
and ellipsoidal uncertainty sets open fewer facilities
with larger capacities, with the box model opening far
fewer. Because the box uncertainty set contains the
ellipsoid set, the degree of uncertainty is greater in the
former. Therefore, it must respond simultaneously to
both higher potential demand (resulting in larger
capacity) and lower potential revenue (resulting in
fewer facilities, lowering the fixed cost). As such, we
find the strategic cost (the initial cost of establishing
the facilities and their capacities) for the box uncer-
tainty model to be 40% of the cost in the nominal
model. In comparison, the ellipsoidal model strategic
cost is 90% of that of the nominal model. Second, the
ellipsoidal uncertainty model establishes more edges
per open facility than the nominal model. Importantly,
it allows more than one facility to serve the same de-
mand node, expressing flexibility in the service to
increase robustness to demand uncertainty. This
stands in contrast to both the nominal and box un-
certainty models that almost always serve each
demand node from a unique facility. Finally, we ob-
serve that on the sample paths, the two robust models
cover 100% of the demand compared with 95% for the
nominal model. This indicates the robust models are
performing as expected in terms of their ability to
address uncertainty.

4.3. Comparing the Profit of the Solutions
In this subsection, we compare the profit of the robust
models to that of the nominal model as we change
various parameters of the model. For each of the
models, we solve the associated mathematical pro-
grams for Ii, Zi0 (the strategic decisions of location and
capacity), and for Zit, and Xijt (the operational deci-
sions of production and allocation). In practice,
however, while the firm cannot change the strategic
decisions under our assumptions, it will, upon obser-
vation of demand, determine the active operational
decisions, say Ẑit and X̂ijt. That is, given a solution, I
i
and Z
i0, for each period t, we assume the firm ob-
serves realized demand D̂it and solves the following
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Figure 2 Network Representations of the Solution to an Instance of (a) the
Nominal Model, (b) Box Uncertainty Case, (c) Ellipsoidal Uncer-
tainty Case
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operational problem for the operational profit, Pt:

ðPoprÞ Pt ¼ max
X̂;Ẑ

XN

i¼1

XN

j¼1

ðZ� dijÞ D̂jt X̂ijt�
XN

i¼1

cit Ẑit;

s:t:

XN

j¼1

D̂jt X̂ijt � Ẑit for all i;

XN

i¼1

X̂ijt � 1 for all j; t;

Ẑit � Z
i0 for all i; t;

X̂ijt � 0 for all i; j; t:

We compare the performance of the strategic solu-
tions with respect to sample paths fD̂itgi for the
uncertain demand. To do so, we generate sample
paths for the demand at the demand nodes and then
optimize (Popr) for the operational decisions Ẑit and
X̂ijt for each of the models using the bell-shaped, uni-
form, and U-shaped distributions. This allows us to
estimate the operating costs associated with the stra-
tegic solution. Throughout these tests, we consider a
single-network topology (the location of facilities).
The nominal demand for the base case in the tests is
20,000 units per period for each node (as opposed to
sampled from the range [17,500, 22,500]). All other
parameters are as given in Table 1. For each of the
distributions, we generate 1000 sample paths.

First, we consider how the base case box and ellip-
soidal uncertainty robust models perform as the
nominal demand grows for the various demand dis-
tributions. Second, we consider the trade-off between
robustness of the solution and performance vs. the
nominal solution. Third, we vary the horizon length.
Finally, we vary the fixed charge.

4.3.1. Profit vs. Demand Growth and Uncer-
tainty. In Table 3, we present the percentage
increase (or decrease) in the profit for the base case
box and ellipsoidal uncertainty models relative to the
nominal model. We do so for the case with constant
nominal demand and two cases where the nominal
demand increases: demand growing by 500 units per
period (a 2.5% growth rate) and demand growing at
1000 units per period (a 5% growth rate). We also
present the standard deviation of the increase in
profits. In addition, for each sample path, we solve for
the optimal solution of the nominal problem, (P), with
the demand determined by the realized sample path.
Doing so provides an upper bound on the possible
profit achieved. We present the percentage of the
difference between the upper bound and the nominal
solution given by the solution value (UB). That is,

Table 2 Comparing the Solution Topology of the Three Models

Model Mean # of open facilities Mean capacity Mean # edges/facility

% of demand covered

Uniform Bell-shape U-shape

Z5 1 Nominal 10.74 28,221 0.42 96.99 94.99 94.58

Box 3.48 140,350 3.91 100 100 100

Inscribed ellipsoid 8.68 59,737 14.36 100 100 100

Z5 3 Nominal 10.74 28,221 0.42 96.74 95.08 94.62

Box 4.24 136,425 3.25 100 100 100

Inscribed ellipsoid 8.66 59,822 14.34 100 100 100

Z5 6 Nominal 10.74 28,221 0.42 96.74 95.08 94.62

Box 4.44 134,485 2.94 100 100 100

Inscribed ellipsoid 8.66 59,759 14 100 100 100

Table 3 Percentage Increase in Profit over the Nominal Model, Associated
Standard Deviations and Implied Percentage of Upper Bound
Achieved for the Base Case Box and Inscribed Ellipsoidal
Uncertainty Models

Case

Box uncertainty Inscribed ellipsoidal uncertainty

Bell Uniform U-shape Bell Uniform U-shape

Base case

Mean % � 0.48 1.65 3.77 6.12 8.28 10.34

Standard deviation 0.98 1.20 1.61 1.16 1.43 1.89

% of upper bound o0 17.29 34.69 93.03 95.59 96.47

Growth 1500�t

Mean % � 5.18 � 3.71 � 2.16 2.15 3.72 5.49

Standard deviation 0.67 0.78 0.95 0.80 1.03 1.35

% of upper bound o0 o0 o0 66.86 78.12 85.15

Growth 11000�t

Mean % � 7.41 � 6.44 � 5.39 1.43 2.85 4.42

Standard deviation 0.41 0.51 0.62 0.74 1.00 1.26

% of upper bound o0 o0 o0 54.19 72.03 81.33
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(solution value�nominal)/(upper bound�nominal).
For example, in the box uncertainty case when demand
is uniformly distributed over the uncertainty set, we
observe a 1.65% increase in average profit, which
corresponds to achieving 17.29% of the possible
increase in the profit. Alternately, if the demand was
drawn from a bell-shaped distribution, there is a
decrease of 0.48% in the average profit and thus does
not correspond to any percentage increase.

We observe that the (inscribed) ellipsoidal uncer-
tainty case provides significantly better solutions to
the operational problem faced than that of the nom-
inal or box uncertainty cases. This result is not
surprising as it emphasizes the difference in the na-
ture of the solutions between the two robust models.
The box is defined to immunize the solution against
any possible outcome within the assumed uncertainty
set, whereas the inscribed ellipsoid does not immu-
nize the solution against realizations in the corners of
the box. For the demand distributions, we test under
the assumption of independent sampling; the in-
scribed ellipsoid immunizes the solution against
realizations more likely to happen. Thus, the box
model adopts a very conservative approach, estab-
lishing centralized facilities that can be deployed to
meet any demand. However, the ellipsoidal model
establishes multiple, flexible facilities, close to those
given by the nominal solution, but sized to address
potential uncertainty. From a sample path standpoint,
such a model appears to have better performance. On
average, the ellipsoidal model captures 80.3% of the
benefit possible as given by the upper bound.

We observe that the best performance for each case
(both in mean profit and percentage of upper bound)
is when expected demand is constant over time. When
there is a trend in the growth over the period (either at
500 or 1000 per period), the benefit of both RO models
diminishes. In the box uncertainty model, in each of
the demand growth cases, the performance is worse
than the nominal model, though that of the ellipsoidal
model is still positive. Further, as would be expected,
both RO models perform better as the likelihood of
more extreme demand increases, i.e., as the sampling
distribution changes from a bell-shaped to uniform to
U-shaped distribution.

4.3.2. Robustness–Performance Trade-Off. As we
observe above, the model with the ellipsoidal
uncertainty set finds a solution that performs better
than the model with the box uncertainty set that cir-
cumscribes it, even when the actual demand is drawn
from a distribution with support over the entire box.
Again, this is not surprising as the solution for the
ellipsoid case does not immunize the solution against
all of the uncertainty contained in the box. Next, we
investigate how by assuming a smaller uncertainty set

(either for the box or the ellipsoid models) one can
find a better performing solution. That is, we will
immunize the solution against a smaller uncertainty
set; however, in testing we continue to sample from
the base case box uncertainty set.

Consider first the box model. In the base case, we
assumed the box was defined by an initial uncertainty
g5 0.15, and then defined et for t 5 1, . . ., i. Suppose that
we vary the value of g, and therefore et, to define a new
box uncertainty set. Let r be the ratio of the volume of
the box uncertainty set to the volume of the base case
box, i.e., r5 100% in the base case. For each value of r,
we can also generate an ellipsoid that is equal in volume
to that specific box. To do so, as above, we let sjt ¼ et

�Djt

as et varies. Then, rather than using the inscribed ellip-
soid, by properly scaling the safety parameters O1 and
O2t we equate the multi-dimensional volumes of the box
and ellipsoid. For the base case with N 5 15 nodes and
T 5 20 periods, we find O1 5 8.4784 and O2t 5 2.1327
(see chapter 2 of Ben-Tal et al. 2009 for details on such
scaling). Observe this ellipsoid is larger than the in-
scribed ellipsoid defined by O1 5O2t 5 1.

In Figure 3, we plot the percentage increase (rel-
ative to the nominal model) in the robust solution
profit as we vary r from 0.1% to 150% assuming the
demand is sampled uniformly over the base case box
uncertainty set. We observe that the box model’s
maximum improvement is approximately 8.18% at
approximately r5 0.35, and the ellipsoid model’s is
approximately 8.28% at r5 0.15. The ‘‘best’’ ellipsoid
captures infrequent, but potentially important, de-
mand observations toward the edges of its volume.
Intuitively, for the box to do the same it would need
to be larger; thus, the larger volume of the ‘‘best’’
box. For smaller r, the robust models do not immu-
nize the solution against much uncertainty and
therefore perform close to the nominal model. For
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larger values of r, the performance decreases as the
models increasingly immunize the solution against
uncertainties that are unlikely to occur. In particular,
we observe an expected profit loss for the box case
for r4100%, i.e., for boxes larger than the base case
from which demand is sampled, there is no longer a
trade-off; greater robustness only results in lowered
profits. The results indicate that for small r both
models can balance robustness with profits.

In Table 4, we present the results for the box and
ellipsoid models for r5 0.15 and r5 0.35, corre-
sponding roughly to the best performance for each
model. We note the similarity of the ellipsoid model
at r5 0.15 to the box model at r5 0.35 (shown in the
shaded regions in the table). Also note the similarity
to the ellipsoid inscribed in base case box, given in
Table 3. That is, the inscribed ellipsoid performs very
nearly as well as the best possible ellipsoid, at least
for the test case. As above, the performance for each
model increases as the demand spreads away from
the mean (U-shaped vs. bell-shaped), and decreases
as the rate of demand growth over time increases.
We note that in all these cases the ellipsoid performs
slightly better than the box model.

4.3.3. Varying Horizon Length, T. We investigate
how the robust solutions compare with the nominal

solution as the length of the horizon changes. Results
are reported in Table 5. We present the box and
ellipsoid models for rA[0.1, 0.4], the base case
(r5 1.0), and the inscribed ellipsoid for the base
case. Increase in profit is reported vs. the nominal
with uniform sampling over the base case box. We
observe that for a given r, as the number of periods
increases, the profit increases vs. the nominal for both
the box and ellipsoidal cases (with the exception of
r5 1). This result is similar to that of Bertsimas and
Thiele (2006). In the table, we emphasize the best
performance for each horizon length for the two
models. We observe that as the horizon increases, a
larger box uncertainty set is required to achieve better
performance, while an ellipsoid with r5 0.15 is
almost always the best value. Further, we observe
that for the higher number of periods, the ellipsoidal
model performs better than the box at their respective
maxima. The flexibility provided by the ellipsoidal
uncertainty model at r5 0.15 allows the firm to find
solutions that can better accommodate greater
variation in the demand found over a longer
horizon, whereas the box size must increase.

4.3.4. Varying Fixed Cost, K. We explore the effect
of changing the fixed cost K in Table 6. We highlight
the best performance for the various values of r for

Table 4 Percentage Increase in Profits over the Nominal Model and Implied
Percentage of Upper Bound Achieved for the q = 0.15 and
q = 0.35 Cases

r Case

Equal volume

Box uncertainty Ellipsoidal uncertainty

Bell Uniform U-shape Bell Uniform U-shape

0.15 Base case

Mean % 5.88 7.50 8.81 6.19 8.29 10.22

% of upper bound 89.53 86.23 82.12 94.17 95.78 95.55

Growth 1500�t

Mean % 2.59 3.81 5.07 2.67 4.21 5.92

% of upper bound 82.22 82.03 78.37 84.16 88.94 91.86

Growth 11000�t

Mean % 1.87 2.97 4.08 1.54 2.94 4.45

% of upper bound 72.78 76.65 75.80 59.04 74.55 82.14

0.35 Base case

Mean % 6.12 8.18 10.05 4.28 6.44 8.54

% of upper bound 93.00 94.48 93.26 65.31 73.47 79.32

Growth 1500�t

Mean % 2.19 3.73 5.40 2.05 3.63 5.41

% of upper bound 67.58 78.17 83.51 62.78 75.67 83.92

Growth 11000�t

Mean % 1.50 2.88 4.35 0.80 2.22 3.79

% of upper bound 57.34 72.81 80.26 33.26 55.89 68.36

Cases with shading indicate comparable results.

Table 5 Percentage Increase in Profit for Box and Ellipsoidal Uncertainty
Sets when Varying T

Number

of periods

r

0.1 0.15 0.2 0.25 0.3 0.35 0.4 Base case

Box

1 � 0.09 � 0.24 � 0.46 � 0.72 � 1.00 � 1.30 � 1.60 � 5.25

2 0.38 0.35 0.26 0.14 � 0.01 � 0.16 � 0.31 � 2.11

3 1.09 1.04 0.97 0.87 0.75 0.63 0.50 � 0.29

4 1.35 1.53 1.57 1.55 1.49 1.40 1.31 0.20

5 1.94 2.19 2.27 2.26 2.21 2.14 2.06 0.01

10 4.20 4.69 4.98 4.66 4.66 4.65 4.64 3.21

15 5.46 6.18 6.55 6.33 5.85 5.90 5.20 2.02

20 6.88 7.49 7.83 8.01 8.11 8.17 7.35 1.65

Inscribed

Ellipsoid

1 0.00 � 0.05 � 0.11 � 0.20 � 0.30 � 0.42 � 0.56 � 0.76

2 0.36 0.38 0.35 0.28 0.19 0.08 � 0.03 � 0.15

3 1.01 1.06 1.04 0.98 0.91 0.09 0.01 � 0.04

4 0.72 1.53 1.59 1.58 1.53 1.45 1.37 1.35

5 1.49 2.29 2.32 2.28 2.20 2.11 2.01 2.03

10 4.77 5.27 4.85 4.80 4.73 4.68 4.61 4.72

15 6.68 7.05 6.64 6.03 5.98 5.20 5.15 6.59

20 8.02 8.28 8.27 8.22 8.17 6.42 6.40 8.26

Maximum profit increase for each T is shaded.
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each model. For smaller fixed costs, the box model’s
results are better for larger r. As in Table 5, the ellipsoid
model best performance is generally close to r5 0.15,
which is also similar to the performance of the inscribed
ellipsoid for r5 1. Observe that as the value of K
increases, the number of facilities opened decreases. For
comparison purposes, we present the number of
facilities opened in the nominal, base case box (r5 1),
and inscribed ellipsoids in the table. As in section 4.2,
the base case box opens fewer (and larger) facilities
than the robust model with the inscribed ellipsoid. We
find that only a limited amount of uncertainty should
be addressed, roughly comparable to that of the
inscribed ellipsoid. As before, we find the value of
r5 0.15 robust in doing so for the ellipsoid. For the box,
by reducing the uncertainty set, more facilities are
opened and the benefits of flexibility are gained.

5. Discussion
The objective of this paper is to investigate potential
means by which RO techniques could be used to solve
facility location problems. Previous work on RO has
not considered such problems, particularly our ap-
proach to profit maximization. The results of the work
reemphasize the need to evaluate the nature of the
uncertainty allowed. We show that the alternate mod-
els of uncertainty lead to very different solution

network topologies with the box uncertainty case
opening fewer, larger facilities. We then generate sam-
ple paths in order to test how the alternate solutions to
the strategic problem would perform in practice. For
each sample path, we solve the resulting operational
problem of determining production and allocation.
We find that the robust model with the box uncer-
tainty performs poorly with respect to balancing
robustness with profit. In contrast, the model with
the inscribed ellipsoid provides small but significant
improvements in the average profit. We show, how-
ever, similarly good results are obtained by varying
the size of the box or ellipsoid used to immunize the
solution against uncertainty. Importantly, we find that
a single ellipsoid is able to provide good solutions
over a wide range of parameter choices.

The problem we solve is difficult as it is a mixed-
integer conic program. Within our problem formula-
tion, demand appears in two places: first, as a
multiplier for the revenues determining the objective
function value, and second as a multiplier for the
production capacity for each of the nodes. As such,
these lead to alternate requirements of the solution;
namely, the ability to address large demands, while at
the same time observing low revenues. The resulting
conic quadratic program for the ellipsoidal case is
large by the standards of conic programming (up to 20
periods and 15 nodes). While such a problem may be

Table 6 Number of Open Facilities and Percentage Increase in Profit for Box and Ellipsoidal Uncertainty Sets Varying K

% increase in profit over nominal

Number of facilities r

Case K Nominal Base case 0.1 0.15 0.2 0.25 0.3 0.35 0.4 1.0 (base case)

Box 0 15 15 6.38 7.19 7.62 7.86 8.00 8.08 8.11 8.10

10,000 15 11 6.57 7.40 7.84 8.09 8.23 8.32 8.35 6.23

20,000 15 8 6.76 7.62 8.07 8.33 8.27 8.35 8.38 4.49

40,000 15 8 7.00 7.65 8.02 8.22 6.28 7.99 6.31 4.49

80,000 9 2 6.62 7.12 5.79 5.86 5.10 6.30 5.04 � 5.16

150,000 9 2 6.08 6.27 5.08 5.06 5.02 3.73 2.80 � 5.90

200,000 4 1 5.18 4.12 2.94 2.94 2.90 4.04 � 0.33 � 18.52

250,000 3 1 4.59 4.77 3.35 1.33 1.31 2.07 1.30 � 16.32

(Inscribed)

Ellipsoid 0 15 15 7.89 8.13 8.15 8.12 8.09 8.06 8.04 8.13

10,000 15 15 8.11 8.37 8.39 7.35 8.32 7.89 7.35 8.37

20,000 15 11 8.35 8.42 8.09 6.56 7.18 6.58 6.56 7.25

40,000 15 11 8.26 8.51 8.09 6.21 6.27 7.96 6.21 7.25

80,000 9 6 7.53 7.34 6.46 4.96 5.35 6.27 4.96 7.32

150,000 9 7 6.21 6.33 5.09 4.91 4.99 6.17 4.91 7.49

200,000 4 4 5.32 4.14 2.86 2.84 2.91 4.05 2.84 5.42

250,000 3 3 4.59 4.79 3.36 1.28 3.32 2.08 1.28 4.08

Maximum profit increase for each T is shaded.
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considered to be of only semi-realistic size, we em-
phasize that other methods, particularly stochastic
programming, would have great difficulty in solving
problems of such size.

We find the solutions given by the robust model
with ellipsoidal uncertainty set address the need for
robustness directly by considering alternate links be-
tween facilities and nodes to accommodate the
uncertain demand. Future work may consider addi-
tional uncertainty sets such as a polyhedra, e.g., an
intersection of box with an L1 norm. These may prove
to provide solutions to larger problems while restrict-
ing the uncertainty away from worst-case scenarios.
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