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Abstract

This paper presents a life-cycle model of housing demand with uncertain house prices and lumpy transaction costs. The paper extends the (S, s)
methodology to a non-stationary discrete time framework with multivariate stochastic price processes. This allows the characterization of a self-
hedging mechanism in an incomplete housing market: households use earlier accumulated housing wealth to hedge against future housing cost
risk. As a result, the direction of the effect of price uncertainty on housing demand depends critically on households’ future housing consumption
plans. When price uncertainty increases, households consume (and thereby invest in) less housing if they plan to realize the housing wealth gain.
However, they will instead take a larger housing position if they plan to move to a bigger home in a correlated housing market in the future.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

This paper examines the effects of house price uncertainty on housing demand in a life-cycle framework. The study is motivated
by the following considerations. First, for most households in the United States, housing is not only an important consumption
good, but also the dominant financial asset in their portfolio. Second, like other financial assets, housing has substantial price risk.
For example, as shown by Glaeser and Gyourko (2006), the standard deviation of three-year real changes in the average American
metropolitan area house prices is $26,354 (in 2000 dollars), about one fifth of the median price level. Yet, unlike the markets for
other financial assets, the housing market is highly incomplete (Englund et al., 2002). In addition, housing transactions involve large
lumpy transaction costs (Haurin and Gill, 2002), which make it costly for households to adjust their housing positions in response
to price risk. This paper asks how households make home purchase decisions in the presence of lumpy transaction costs, and how
house price uncertainty affects their home purchase decisions and welfare.

To answer these questions, the paper presents a life-cycle housing demand model with stochastic house prices and lumpy trans-
action costs. The model follows the traditional (S, s) framework in which at each point in time households choose whether to
transact and how much to purchase if transacting. The traditional (S, s) rule, as applied to durable goods by Grossman and Laroque
(1990), requires an assumption that the optimization problem can be reduced to a problem with a single state variable. Although this
assumption is convenient and useful in many (S, s) applications, it rules out interesting cases like models with multiple stochastic
price processes. For example, households could benefit by recognizing the positive correlation between sequential home purchases
and increasing housing demand to self-hedge against house price risk. This paper extends the traditional (S, s) approach by con-
sidering a finite horizon discrete time framework and by modeling multivariate house price process. In particular, house prices are
correlated both over time and across markets. This allows us to confirm the hedging intuition in an intertemporal setting and to
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model the important role of households’ expected future housing consumption plans when explaining the effects of house price
uncertainty on housing demand.

To illustrate the sort of hedging, suppose a young couple plans to purchase a condominium now and to move into a single family
house later. In a volatile housing market, both the condominium price and the single family house price are uncertain. According
to classical economic theory, uncertainty adds to the risk associated with future housing capital gains. It therefore discourages their
investment in the condominium. Thus, the risk averse couple would either delay the condominium purchase or purchase a smaller
condominium. This is referred to as the effect of housing wealth risk.1 However, the empirical observation indicates that the average
within-metropolitan-area correlation between condo condominium prices and single family house prices is 0.9195.2 The positive
correlation between the condominium price and the single family house price implies that the ability to hold a condominium now
and sell it in the future to finance a single family house has positive economic value. This value is often referred to as a real hedge.
Like a financial hedge that allows one to purchase a security whose return is positively correlated with the cost of other future
desired assets, a real hedge provides high returns when the future price of the single family house is high, and vice versa. House
price uncertainty increases the value of hedging. As a result, the young couple may find it optimal to make an earlier and bigger
condominium purchase even when the condominium price is volatile.

To formalize this intuition, the model in this paper incorporates two features. First, housing is illiquid. When prices are volatile,
the presence of lumpy transaction costs can lead to a higher housing risk premium than would be required otherwise. This risk
premium may fall sharply, however, once the second feature of the model is introduced: the possibility of a positive correlation
between the price process of an earlier home and the price process of a home that the household plans to purchase later. This allows
households to use earlier accumulated housing to hedge against the risk associated with future housing costs. This self-hedging
mechanism is particularly important in the housing markets, given that conventional financial instruments cannot help households
to insure against future housing cost risk.3

The key implication of this model is that the net effect of house price uncertainty on housing demand depends on the strength of
the hedging incentive. This, in turn, depends on households’ future housing consumption plans. For households who plan to move
up the housing ladder and move to a correlated housing market, the hedging effect dominates the housing wealth risk effect. As
a result, price uncertainty increases their housing investment (and thereby consumption). For households who plan to move down
the housing ladder or to move to an uncorrelated housing market, the incentive to hedge diminishes and hence price uncertainty
suppresses housing demand. Thus, our model predicts that the direction and magnitude of the effects of house price uncertainty on
housing demand change across households, depending on their inter-market mobility, and vary across the stages of the life cycle,
depending on whether households plan to move up or down the housing ladder.

Turning to welfare implications, our numerical exercise shows that the magnitude of the welfare cost under house price uncer-
tainty is reduced when households have stronger hedging incentives. Thus, while families in an incomplete housing market are
not able to access formal insurance financial instruments to diversify or insure against the house price risk, they do rely on private
informal coping mechanisms to smooth housing consumption over the life cycle. If this is the case, the social insurance instruments
proposed by Case et al. (1993) may be less efficient than prior studies suggest, as such insurance would serve partly to crowd out
the self-hedging mechanism taken by certain households.

In addition to these economic implications, the analysis in this paper carries a small methodological lesson. By extending the
traditional (S, s) methodology into the discrete time framework with multiple state variables, the paper provides an explicit charac-
terization of the hedging incentive. Such an approach may be valuable when modeling the financial decisions for households who
face uncertainties on multiple economic conditions. Furthermore, the optimal home purchase decision rules derived in this paper
have an additional advantage of enabling us to learn about complex home purchase dynamics and hence providing theoretically
sound instruments for testing the model in a repeat home purchase market in the future work.

The remainder of the paper is structured as follows. Section 2 briefly reviews the literature. Section 3 describes a life-cycle model
of housing demand and Section 4 drives the optimal home purchase decision rules. Section 5 carries out a number of comparative
static exercises by simulating and solving the model numerically. Section 6 discusses the welfare costs imposed by house price
uncertainty. Section 7 concludes.

2. Literature review

This paper relates to two strands of the literature on economic dynamics. First, the paper builds on recent literature showing that
homeownership can provide a hedge against fluctuations in future rent payments. The notion that housing provides a hedge against

1 Henderson and Ioannides (1983) discuss this type of risk by showing that house price uncertainty makes home ownership less attractive, since risk averse
households may otherwise invest in a safe asset whose fixed return may offset the renter’s negative externality. Davidoff (2006) shows that labor income uncertainty
can amplify housing risk because of a positive covariance between labor income and house price.

2 Author’s calculation, based on data from the National Association of Realtors Existing-Home Sales Series (http://www.realtor.org/Research.nsf/Pages/EHSdata).
3 Flavin and Yamashita (2002) find a low correlation between housing and other financial assets, which provides evidence that housing markets are highly

incomplete.
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future housing cost risk was first laid out in Berkovec and Fullerton (1992). Sinai and Souleles (2005) formalize this intuition in a
multi-stage model of housing tenure choices. They show that owning is more desirable when rental price risk is greater. They go
on to estimate an empirical model based on the MSA-level price data, and the findings are consistent with their hedging theory.
Ortalo-Magne and Rady (2002) develop an extended model that looks at the effects of rent uncertainty and income risk on housing
tenure choices. Using the household level data from the US and UK, Banks et al. (2004) provide further empirical evidence on
hedging. The focus of these studies is how the incentive to hedge could affect households’ choice between renting and owning,
which is most relevant for first time home buyers. In contrast, this paper restricts its attention to repeat home buyers. In particular,
it endogenizes the decisions of the timing and size of housing consumption. By incorporating both transaction cost frictions and
life-cycle considerations into a housing demand model, this paper generates testable predictions about how the price uncertainty
affects housing demand by existing home owners.

A second strand of the literature relating to this paper is the theory of lumpy and infrequent adjustment. Within these models,
discrete investment choices are typically driven by the presence of nonconvexities, and an (S, s) policy characterizes optimal
investment behavior. See, for example, Grossman and Laroque (1990). The literature has almost exclusively focused on only one
direction of the relationship: the implications of individual behavior on the aggregate investment. Largely ignored has been the other
direction: the influence of market variables on individual behavior.4 Taking house prices as exogenously given, this paper presents
a formal characterization of the effects of market price uncertainty on individual behavior and welfare.5

3. Life-cycle model

3.1. Assumptions and notation

In this model, time is discrete. Households live for T + 1 periods. In each period t , households consume two consumption
goods, namely housing services (Ht ) and a non-durable good (Ct ).6 To change their consumption of housing services, households
must sell their current houses and buy new ones. Each transaction generates lump-sum transaction costs, which consist of a fixed
component (F ) and a part proportional to the value of the sold house (δ).

Housing is modeled as continuous amount of housing services obtained in a specific period at a specific location. Households
take location decisions as given. Each transaction requires a move from one location to another location. Locations differ only in
their house prices. That is, when transaction occurs, households sell the existing house at one price and purchase a new house at
another price.

House prices are exogenous. Let P ≡ (p0, . . . ,pT) be a first order Markov house price process with conditional density
φ(pt|pt−1). We denote pt as the J -tuple (p1

t , p
2
t , . . . , p

J
t ), where p

j
t denotes the unit price corresponding to the house at loca-

tion j in period t (J � T ).7 House prices vary across locations and change over time, reflecting the time-varying market condition
tied to local amenities. At the beginning of period t , households observe the existing housing stock inherited from period t − 1 at
location j − 1 and decide whether to make a transaction in period t . If a transaction occurs in period t , households sell the old
house at price p

j−1
t and buy a new house at price p

j
t , anticipating that the next house will be bought at p

j+1
t ′ at some point t ′ > t .

Conditional on transacting in period t , households’ decisions on the home purchase size depend on a set of conditional expectation
terms: Et(p

j

t+1), Vart (p
j

t+1) and Covt (p
j

t+1,p
j+1
t+1 ).

With these assumptions about house price processes, we capture—in an admittedly stylized way—two realistic features: (i) time
variation in house prices and (ii) heterogeneity in these prices at any point in time. It is the second feature that is new to the standard
(S, s) type models. It will be apparent that this slight modification gives us an important degree of flexibility when characterizing
the hedging incentive. In particular, the term Covt (p

j

t+1,p
j+1
t+1 ) measures the dependency between the return on the current house

and the cost of future housing consumption. When p
j

t+1 coincides with p
j+1
t+1 , the model reduces to a standard housing demand

model with a univariate house price process.
The markets for housing are incomplete in that there exists no financial asset whose return is correlated with the return on the

housing asset. In each period t � 1, the household may borrow and lend between time t − 1 and time t at interest rate rt , which
is assumed to be fixed and positive. In addition, we assume that households receive a deterministic income stream (y1, y2, . . . , yT )

and have a deterministic housing taste profile (θ1, θ2, . . . , θT ).

4 As noted by Caplin and Leahy (1997), “One of the most limiting aspects of these models is that they focus exclusively on the impact that microeconomic inertial
has on aggregate dynamics. They ignore the feedback from aggregate onto individual behavior.”

5 Using an intertemporal housing demand framework, Goodman (1990) and Haurin and Chung (1998) explicitly model lumpy transaction costs but do not consider
house price risk.

6 For ease of notation, we drop the household-specific subscript i.
7 Here and in what follows, we will use the subscript to denote time and the superscript to denote location for housing stock H and house price p.



Author's personal copy

L. Han / Journal of Urban Economics 64 (2008) 270–287 273

The period utility function consists of two components: a stochastic component ũ(Ht ,Ct ; θt ), where θt is the housing taste in
period t , and a stochastic utility shifter st.

u(Ht ,Ct ; θt , st) =
{

ũ(Ht ,Ct ; θt ) + sT
t , where Ht = H

j
t if dt = 1

ũ(Ht ,Ct ; θt ) + sN
t , where Ht = H

j−1
t−1 if dt = 0

(1)

The deterministic component ũ(Ht ,Ct ; θt ) gives the period utility derived from consuming (Ht ,Ct ) for given housing taste θt .
The stochastic component st ≡ [sT

t , SN
t ] is a utility shifter, which is unobserved prior to period t . The superscripts T and N indicate

the choice the household makes: to transact (dt = 1) or not to transact (dt = 0). As it will become clear in the next section, the
stochastic utility shifter is a key element that allows us to derive an analytical solution to this complex intertemporal housing
demand model.

We impose the following restrictions on the utility function.

Assumption 1. The function ũ :R+ × R+ → R is bounded, additively separable, strictly increasing and strictly concave, twice
continuously differentiable. It satisfies the Inada condition at the origin. In addition, ũCCC = 0 and ũHHH = 0.8

Assumption 2. The vector st is independent across households and over time. In particular, sT
t and sN

t are identically and indepen-
dently distributed as type-I extreme value distribution g(sT

t , sN
t ).9

Households have a finite horizon. In the last period, they sell the house and derive utility from terminal wealth WT +1.10 At the
beginning of period t prior to the last period, households observe the existing housing stock at location j − 1 inherited from the
previous period H

j−1
t−1 , the accumulated financial wealth Wt−1, house prices up to time t (p0, . . . ,pt), and the current utility shifters

(sT
t , sN

t ). They then choose non-durable consumption (Ct ), whether to transact (dt ), and the optimal size of the current house if

transacting (Hj
t ) in order to maximize the expected discounted remaining life time utility, before observing the next period’s house

prices and utility shifters.

Max
(Ct ,dt ,H

j
t )

Et

T∑
τ=t

βτ−t u(Hτ ,Cτ ; θτ , sτ ) + βT +1 W
1−γ

T +1

1 − γ

subject to:

Wt = yt + (1 + rt )Wt−1 + dt

(
(1 − δ)p

j−1
t H

j−1
t−1 − p

j
t H

j
t − F

) − Ct for t < T + 1 (2)

WT +1 = (1 − δ)pJ
T +1H

J
t + (1 + rT +1)WT − F � 0 (3)

Eq. (2) is the household’s budget constraint in period t prior to the last period. Expression (3) imposes a constraint on terminal
wealth, where J indicates the location of the last house bought in the life cycle. It specifies that the house must be sold in the last
period. The inequality rules out the possibility that households can leave with debt. The expectation Et(·) indicates the expectation
over future house prices and utility shifters conditional on information available in period t .

3.2. The Bellman equation

To establish the results that follow, it is convenient to work with the value functions of future discounted utility. For a household
starting in period t with accumulated wealth Wt−1 and housing stock H

j−1
t−1 , we first define:

V N
t

(
Wt−1,H

j−1
t−1 ; sN

t ,pt
) = Max

(Ct )
u
(
H

j−1
t−1 ,Ct ; θt , s

N
t

) + βEtVt+1
(
WN

t ,H
j−1
t−1 ; st+1,pt+1

)
(4)

subject to:

WN
t = yt + (1 + rt )Wt−1 − Ct

8 The strict inequalities on ũCC and ũHH reflect aversion to housing and non-housing consumption risks. The boundedness of ũ(H,C), together with its sepa-
rability, implies that an optimum exists. The Inada condition states that a household must consume housing and non-housing consumption each period. Finally, the
restrictions on the third derivatives are not necessary but help to simplify the technical proofs below.

9 By allowing a two-state utility shifter, the model captures the empirical feature that certain households may gain additional utility from moving up the housing
ladder because it signals an improvement in social status or represents the added convenience of proximity to work. Like the vector of unobserved state variables in
structural demand models (see Rust, 1987), the vector of the utility shifter in this model must have at least as many components as the number of alternative choices.
The assumption on type-I extreme distribution ensures that an analytical solution exists.
10 This can also be interpreted as the bequest motive.
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to denote the expected utility of households that decide to stay with the previous house, choose optimal non-durable consumption
Ct and save the rest for the next period. The superscript N indicates that households do not make a transaction in period t . Next,
define:

V T
t

(
Wt−1,H

j−1
t−1 ; sT

t ,pt
) = Max

(H
j
t ,Ct )

u
(
H

j
t ,Ct ; θt , s

T
t

) + βEtVt+1
(
WT

t ,H
j
t ; st+1,pt+1

)
(5)

subject to:

WT
t = yt + (1 + rt )Wt−1 + [

(1 − δ)p
j−1
t H

j−1
t−1 − p

j
t H

j
t − F

] − Ct

to denote the expected utility of households transacting in period t , i.e., those that collect revenue p
j−1
t H

j−1
t−1 (1 − δ) from selling

their old house, acquire a new house H
j
t at price p

j
t , and pay for fixed costs F . The superscript T indicates that households make

a transaction in period t .
The finite horizon makes the value function inherently non-stationary. I solve the model backwards. In period T + 1, households

sell the house they own and collect the capital gains. Prior to the last period, the expected value function is written as:

Vt

(
Wt−1,H

j−1
t−1 ; st,pt

) = Max
(dt ,H

j
t ,Ct )

{
V T

t

(
Wt−1,H

j−1
t−1 ; sT

t ,pt
)
,V N

t

(
Wt−1,H

j−1
t−1 ; sN

t ,pt
)}

(6)

All the relevant information in period t is captured by a set of state variables (Wt−1,H
j−1
t−1 , θt , yt , rt ,pt , st). Given the distributions

of future house prices and utility shifters, the expected future utility term is defined as:

EtVt+1(Wt ,Ht ; st+1,pt+1) =
∫ ∫

Vt+1(Wt ,Ht )g(st+1)dst+1φ(pt+1|pt)d(pt+1|pt) (7)

where the expectation is taken over future utility shifters and house prices. Households choose to transact if the benefit from
transacting exceeds the cost associated with transacting. The optimal decision about whether to transact in period t depends on the
differences in the current and expected utility associated with the two choices. Specifically, it takes the following form:

dt =
{

1 if (sN
t − sT

t ) � Γ (Wt−1,H
j−1
t−1 ,pt)

0 if (sN
t − sT

t ) > Γ (Wt−1,H
j−1
t−1 ,pt)

(8)

with

Γ
(
Wt−1,H

j−1
t−1 ,pt

) ≡ [
ũ
(
H

j
t ,Ct

) − ũ
(
H

j−1
t−1 ,Ct

)] + βEt

[
Vt+1

(
WT

t ,H
j
t ; sT

t+1,pt+1
) − Vt+1

(
WN

t ,H
j−1
t−1 ; sN

t+1,pt+1
)]

.

4. Solving the model

4.1. Optimal purchase size

To date, most of research on the infrequent home purchase model has relied on numerical solutions. The biggest challenge in
solving the model analytically is the presence of lumpy transaction costs, which result in a kinked Bellman equation. In this section,
I show that introducing the utility shifter term allows one to smooth the conditional value function without altering the mixed nature
of the decision process. This yields an interior solution for the optimal housing demand even when lumpy transaction costs are
taken into account.

Consider the value function conditional on transacting, as specified in Eqs. (5) and (7). The Bellman equation adds the current
utility to the expected future discounted utility conditional on the current choices, under the presumption that future decisions are
made optimally. The term u(H

j
t ,Ct ; θt , s

T
t ) captures households’ current utility from choosing (H

j
t ,Ct ) for given housing taste θt

and utility shifter sT
t . The Max operator implicit in the second term represents the households’ choice between transacting and not

transacting in period t + 1. It is worth noting that without the stochastic utility shifters, conditional on knowing all the variables
that affect the next period’s home purchase decisions, households could have deduced at each point whether they would make a
transaction during the next period. The resulting Bellman equation would remain kinked and could not be solved directly. With
stochastic utility shifters, in each period t , conditional on the decision to transact, we can reduce this complex intertemporal model
to a standard optimization problem.11

To show this, I first define the period-t probability of waiting (i.e., not transacting) in period t + 1, Qt(Wt ,H
j
t ;pt+1). By

definition, this is equivalent to Prt (dt+1 = 0 | dt = 1). Conditional on transacting in period t and on knowing pt+1, provided that

11 The role of the stochastic utility shifter in this model is very similar to the role of an unobserved state variable in estimating dynamics optimization models (see,
for example, Hotz and Miller, 1993). Note that in order to make the problem analytically solvable, one must assume that utility shifter enters the utility function
additively. Thus, one cannot simply replace the stochastic utility shifter by imposing similar assumptions on the taste parameter or house price processes.
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the distribution of utility shifters (sT
t+1, s

N
t+1) has a continuous and positive density, Qt(Wt ,H

j
t ;pt+1) can be written as a smooth

hazard function:

Qt

(
Wt,H

j
t ;pt+1

) = 1 −
Γ (Wt ,H

j
t ,pt+1)∫

−∞

(
sT
t+1 − sN

t+1

)
dg

(
sT
t+1, s

N
t+1

)
(9)

Following Hotz and Miller (1993), there exists a mapping f : [0,1] → R that allows us to express the conditional choice proba-
bility as a function of the difference between the conditional value functions:

Qt

(
Wt,H

j
t ;pt+1

) = 1 − f
(
V N

t+1 − V T
t+1

)
(10)

where f (·) is a real valued, invertible function such that V N
t+1 − V T

t+1 = f −1(1 − Qt). Under Assumption 2, this leads to:

V N
t+1

(
Wt,H

j
t ;pt+1

) − V T
t+1

(
Wt,H

j
t ;pt+1

) = f −1(1 − Qt

(
Wt,H

j
t ;pt+1

)) = ξqt

(
Wt,H

j
t ;pt+1

)
(11)

where qt (Wt ,H
j
t ;pt+1) = log[ Qt (Wt ,H

j
t ;pt+1)

1−Qt (Wt ,H
j
t ;pt+1)

] and ξ is a constant of proportionality. Conditional on period-t information on

house prices, the expected option value of waiting (i.e., no-transaction) in period t + 1 is:

Πt+1
(
Wt,H

j
t ;pt+1

) = Qt

(
Wt,H

j
t ;pt+1

)(
V N

t+1

(
Wt,H

j
t ;pt+1

) − V T
t+1

(
Wt,H

j
t ;pt+1

))
(12)

Πt+1 embodies all the opportunity costs the household expects from transacting (i.e. being aggressive) in period t + 1. Note that it
is the presence of lumpy transaction costs that gives rise to the option value of waiting. If transactions could occur at no cost, then
waiting in the next period has no value, households would expect to transact each period.

Now the second term in Eq. (5) can be rewritten as the following smooth function:

EtVt+1
(
Wt,H

j
t ;pt+1

) =
∫ {

V T
t+1

(
Wt,H

j
t ;pt+1

) + Πt+1
(
Wt,H

j
t ;pt+1

)}
φ(pt|pt+1)d(pt|pt+1) (13)

where the expectation is taken over future prices only. Substituting Eq. (13) into the Bellman equation (5), we obtain a continuous
optimization problem. In the absence of transaction costs, Πt+1 vanishes. When lumpy transaction costs are present, the term Πt+1
adjusts for the possibility of no transaction in the future. The Euler equation can now be derived in a standard way.

Proposition 4.1 (Euler Equation). Under Assumptions 1 and 2, conditional on transacting in period t , the optimal conditional
housing demand H

j
t is determined by the Euler equation:

∂ũt

∂H
j
t

+ β
∂Π̄t+1

∂H
j
t

∂ũt

∂Ct

= (
p

j
t − mt+1(1 − δ)Etp

j

t+1

) + γt+1
(
(1 − δ)2H

j
t Vart

(
p

j

t+1

) − (1 − δ)H
j+1
t+1 Covt

(
p

j

t+1,p
j+1
t+1

))
(14)

where mt+1 ≡
β∂ũt+1
∂Ct+1

∂ũt
∂Ct

is the stochastic discount factor and

γt+1 = −
∂2V T

t+1

∂W 2
t+1

+ ∂2Πt+1

∂W 2
t+1

∂V T
t+1

∂Wt+1
+ ∂Πt+1

∂Wt+1

is a risk aversion factor of the value function. V T
t+1 and Πt+1 are evaluated at the conditional mean of future house prices.

Eq. (14) implicitly defines the optimal housing purchase size, conditional on transacting in period t . It says that the marginal
substitution rate between housing and non-housing consumption at optimal (H

j
t ,Ct ) should be equal to the expected user cost of

housing services at the time of home purchase. This result is consistent with the previous housing literature but brings additional
dynamics. On the left-hand side, the marginal benefit from consuming one additional unit of housing services reflects the utility from
both the current period and possible future periods. On the right-hand side, rather than using a static user cost, it presents a concept
of user cost (UCt ) that combines transaction costs, price uncertainty, and households’ risk attitude. The first term represents the
traditional sense of housing user cost, i.e., the expected cost of purchasing a home in period t and selling it in period t + 1 adjusting
for transaction costs.

The last bracketed term in (14) reflects the cost of house price uncertainty, measured by the increase in the housing cost that
a household is willing to accept in exchange for price certainty. It indicates two simultaneous and offsetting effects of price un-
certainty: a housing wealth risk effect and a hedging effect. On the one hand, high resale price uncertainty (Vart (p

j

t+1)) increases
the risk associated with expected future housing wealth and hence reduces current housing demand. On the other hand, a positive
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correlation across houses (Covt (p
j

t+1,p
j+1
t+1 )) effectively reduces the cost of risk and generates positive hedging demand for hous-

ing. The bigger the expected size of the future desired house (Hj+1
t+1 ), the bigger the hedging effect. This is a somewhat surprising

result for the housing market. It says that price uncertainty itself does not necessarily discourage housing demand. By explicitly
incorporating the correlation between the currently owned house and the future desired house, this model provides a mechanism
that produces positive feedback from housing market uncertainty to the demand for housing.

In the next section, we numerically simulate the net effect of price uncertainty. However, some of the insights about the effects
of price uncertainty can be obtained by looking at the risk component of the user cost. To do this, we first define the right-hand side

of Eq. (14) as user cost UCt . We then define the hedging incentive index HIt ≡ H
j+1
t+1

H
j
t

ρ
j,j+1
t+1 , with ρ

j,j+1
t+1 indicating the correlation

between p
j

t+1 and p
j+1
t+1 . Intuitively, a positive correlation between the house price processes leads to a positive hedging incentive.

The bigger the future desired house relative to the current house, the stronger the incentive to hedge.

Proposition 4.2 (Effects of House Price Uncertainty). Under Assumptions 1 and 2,

∂UCt

∂Vart (p
j+1
t+1 )

< 0 if HIt < 2(1 − δ)

√√√√ Vart (p
j

t+1)

Vart (p
j+1
t+1 )

(15)

∂UCt

∂Vart (p
j+1
t+1 )

� 0 if HIt � 2(1 − δ)

√√√√ Vart (p
j

t+1)

Vart (p
j+1
t+1 )

(16)

Proposition 4.2 emphasizes that a thorough understanding of how uncertainty in house prices affects housing choices should
take into account the dynamics of the intertemporal aspects of the housing choices made over the life cycle. The function HIt

embodies two important aspects: (i) a relationship between the size of the currently desired house and that of the future desired
house and (ii) a correlation between these two houses’ price processes. By defining a threshold value for the hedging incentive HIt ,
Proposition 4.2 provides conditions under which the hedging effect dominates the housing wealth gain effect.

The micro-level framework that was laid out in this paper also allows me to discuss the concept of the housing risk premium. In
Appendix A.3, I show that the basic asset pricing framework for financial assets also holds for housing. The risk premium on any
risky asset depends on the expected covariance between its returns and the stochastic discount factor. This is true even if housing is
treated as a durable consumption good and featured as an argument in the utility function. As with other risky assets, the housing
risk premium depends on whether housing provides returns in periods when they are mostly needed.

4.2. Optimal purchase timing

In the presence of lumpy transaction costs, households decide whether to transact by comparing the present discounted value
of costs incurred by remaining in the current dwelling with the costs of transacting. The optimal decision rule takes the form of
expression (8), which is consistent with a generalized (S, s) rule in the investment literature.

Let η̃t = p
j−1
t H

j−1
t−1 − p

j
t H

j
t indicate the time-t market value of this housing stock imbalance. Using the method discussed in

Section 4.1, I derive two boundary functions that represent the maximum and minimum values of the housing value imbalance for
which a household with a η̃t within the region chooses not to transact. For any η̃t outside the region, the household transacts fully.

Proposition 4.3 (Generalized (S, s) rule). Under Assumption 1 and Assumption 2, there exists an optimal housing adjustment
policy: households transact if and only if the value-adjusted housing stock imbalance η̃t < η̃A

t or η̃t > η̃B
t where η̃A

t and η̃B
t are

solutions to the following equation:

−1

2

∂2ũt

∂C2
t

η̃2
t − ∂2ũt

∂C2
t

(
CN

t − CT
t − T Ct

)
η̃t + λt = 0 (17)

where

λt = −1

2

∂2ũt

∂C2
t

(
T Ct − 2

(
CN

t − CT
t

)
T Ct

) + ∂ũt

∂Ct

((
p

j
t − p

j−1
t

)
H

j−1
t−1 + T Ct

) + 1

2

∂2ũt

∂Ct∂Ht

p
j
t

(
H

j−1
t−1 − H

j
t

)2 + (
sN
t − sT

t

)
and T Ct ≡ δp

j−1
t H

j−1
t−1 + F .

Eq. (17) defines the levels of η̃t that leave a household indifferent between transacting and not transacting (i.e., simply staying
in the current home). For the market values of the housing stock imbalance that fall within the region (η̃A

t , η̃B
t ), households stay

with their current house. Once the market value of the housing stock imbalance falls outside the inaction region, households sell the
current home and purchase the desired amount of home.
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So far, I have shown that conditioning on current utility shifters information, the optimal policy resembles an (S, s)-band rule
where the state variable η̃t takes into account both the quantity and the value of the stock imbalance. Once removing the conditioning
on the current utility shifters, that is, prior to period t when uncertainty over time-t utility shifters has not been resolved yet, this
model yields a probabilistic (S, s) rule where the distribution of the bands depends on the distribution of (sT

t − sN
t ).

5. Numerical analysis

In this section, I construct artificial economies with ex ante identical households facing different realizations of house price and
compute their optimal housing demand and the associated welfare costs. The purpose is to confirm the predictions derived from the
analytical solutions in Section 4.12

More specifically, I compare the optimal housing demand and associated welfare for two groups of households. They differ in
whether households self-insure against future housing cost uncertainty. This is shown by considering two observable dimensions
along which the degree of hedging incentive might be expected to vary. The first is variation in households’ housing consumption
plans during the life cycle. Given the model parameterization specified below, younger households move up the housing ladder
while older households move down the housing ladder. This means that the hedging effect is more important at the earlier stage of
the life cycle.

A second important source of variation is the underlying house price process. If the price of a household’s current house is
positively correlated with the price of the house that the household may buy in the future, then the household is able to use the
current home purchase to hedge against future housing risk. In contrast, once the correlation parameter falls to or below zero, then
the self-hedge mechanism is not in effect.

5.1. Simulation strategy

To make the simulation tractable, I assume all moves occur between two locations, i.e, there are only two price processes
((j, j ′) = {(1,2), (2,1)}). In each transaction, households sell the existing house at one price and buy a different house at another
price. The price vector follows a first order Markov process13:(

p1
t

p2
t

)
= μ + A

(
p1

t−1

p2
t−1

)
+ et

where et ∼ N
((0

0

)
,
(

σ 2 0
0 σ 2

))
, μ is a 2×1 vector and A is a 2×2 matrix

( q ρ
ρ q

)
.

The distribution of prices is summarized by four sets of parameters: ρ, q , σ , and μ. The parameter ρ defines the extent to which
housing prices are correlated across the current and future desired houses. The parameter q is a persistence parameter governing the
relative importance of permanent and transitory components of the housing price. In addition, σ indicates the standard deviation of
innovations in price processes and μ indicates the constant part of price processes.

To highlight the effect of an increase in house price uncertainty, I simulate two types of economies where σ = 1% corresponds
to a relative stable market and σ = 10% corresponds to a highly volatile market.14 For each type of economy, I simulate two types
of households: households with strong hedging incentives and households with weak hedging incentives. In practice, it is hard for
both researchers and households to know the exact correlation between the price process of the current house and that of future
desired house. However, one can reasonably assume that households know whether they will move within the same housing market
in the future, where a housing market could be defined as a local neighborhood, or more broadly, a metropolitan area. If households
plan to move within the same market, then the current house and the future house are highly correlated. If households plan to move
out of the current market but cannot predict which market to move to, then the current market and the future market are assumed

12 A simple numerical exercise gives freedom in generating the model predictions. In particular, the parameters on the age-varying taste profile and house price
processes are chosen to derive the comparative statics regarding the effects of price risk and housing consumption plan. This cannot be easily done in a formal
calibration exercise.
13 It is probably more realistic to consider a more general price vector. However, the introduction of additional state variables would not be computationally
tractable. For example, if an n-point grid is used for one price process, then an nm grid is required for price vector of length m. Computational time increases
exponentially.
14 σ refers to the 1-year-ahead forecast of standard deviation in housing return. To understand the magnitude of σ , I generate time series estimates of expected
return and risk based on movements in the metropolitan-level quarterly house price appreciation rates in 1978–2004 reported by the Office of Federal Housing
Enterprise Oversight (OFHEO). For each metropolitan area in the sample, I fit a GARCH-M model and use the resulting estimates to derive the 1-year-ahead
forecasts of housing return and risk in each year. That is, households are assumed to make their housing decisions at time t based on their forecasts of the risk and
return over the coming year, where the risk is measured by the forecasted standard deviation σ . The resulting statistics show that the estimated σ has a mean of 3%
with a standard deviation of 7%. In our comparative static exercise, σ = 1% corresponds to the 25%th percentile in the distribution of σ and σ = 10% corresponds
to the 95%th percentile. Since the model’s focus is on the effect of changes in price uncertainty, the values of the μ and q are chosen to first guarantee that AR(1)
process is stationary and second, to ensure that the unconditional mean of the return process is the same across different specifications of ρ.
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to be uncorrelated by expectation. In our numerical example, we use ρ = 0.9 to illustrates the first case and ρ = 0 to illustrates the
second case.15

Finally, I assume that households consider a 30-year housing planning horizon starting from age 30. For computational con-
venience, income and taste are assumed to evolve deterministically with age. For example, households are assumed to have an
increasing taste profile up to age 45 and then a declining taste profile after that. Intuitively, this describes a typical family’s life-
cycle pattern: young families have a preference for bigger houses as they anticipate getting married and having children, while
middle-aged families are likely to plan on downsizing as they may anticipate children growing up and leaving for college. In
addition, the stochastic utility shifters are set to zero.16

Given the finite nature of the problem, a solution exists. The model can be solved backwards by standard numerical methods.17

I examine an average household’s average life-cycle housing behavior through simulation. To do so, I first simulate 500 households
that enter the economy at age 30 with an existing home and exit at age 60. For each household, I simulate a time series of age-
dependent tastes and a time series of house prices according to their respective governing stochastic processes. I then solve their
optimal housing decisions at all ages. Finally, average life-cycle housing behavior is generated by taking the average of the optimal
solutions in these 500 simulations.

5.2. Effects of price uncertainty on conditional housing demand

The main prediction of the model is that the hedging incentive offsets the negative effect of house price risk on housing demand.
To confirm this, this section restricts the attention on the household’s conditional housing demand if a household were to transact at
a given age. That is, conditional on transacting in a given period, how does an anticipated increase in price uncertainty change the
average home purchase size?18 It would be interesting to examine the implication of the hedging incentive for the timing of home
purchase. However, since the model does not generate clear prediction for this, I explore the issue in separate empirical research.

Figs. 1–3 plot the life-cycle path of optimal conditional housing demand under different parameterizations. Given the taste-
age profile specified above, it is not surprising that the optimal life-cycle consumption path attains a pronounced hump shape.
The theoretical discussion in the previous section provides a basis for understanding the concept of the hedging incentive. More
formally, hedging demand is defined as the additional amount of housing services households will purchase attributed to the positive
correlation (versus zero) between prices of the current property and the next property.

I first fix σ at 10%. Fig. 1 plots the levels of optimal conditional purchase size for different values of ρ: ρ = 0 and ρ = 0.9.
When ρ = 0, future housing cost is independent of current housing return. Hence σ translates fully into housing wealth risk. When
ρ = 0.9, the current purchase is positively correlated with the future purchase. In this case, the same source of price uncertainty
not only implies the wealth risk but also determines the extent to which the current property can serve as a hedge against future
housing cost fluctuations. In addition, Fig. 1 shows that the hedging effect is more dominant in the first half of the life cycle, when
households anticipate upgrading.

Figs. 2–3 explore the effects of an anticipated increase in price uncertainty under different hedging incentives. In Fig. 2, the
assumption ρ = 0 implies the absence of any hedging incentive. Optimal conditional housing demand is simulated for low and high
levels of σ (σ = 1% and σ = 10% respectively). Not surprisingly, high uncertainty in this case represents large housing wealth risk
and leads to lower housing demand. The resulting difference between the housing demand in Fig. 2 reveals the following message:
housing wealth risk crowds out housing investment.

To investigate the interaction effects of hedging incentive and price uncertainty, Fig. 3 fixes ρ = 0.9 and repeats the same exercise
as in Fig. 2. Comparing Fig. 3 with Fig. 2, the positive correlation (versus zero correlation) makes an important difference in the
region where households plan on upgrading. In particular, at the early stages of the life cycle, under strong hedging incentive, high
price uncertainty actually increases the level of housing demand. In contrast, the hedging incentive is much weaker in the later
stages of the life cycle. This is because when households start to move down the housing ladder, the value of the existing house is
sufficient to offset future housing cost risk, hence there is no need to buy additional housing to hedge. The simulation result delivers
the second message: the negative effect of housing wealth risk decreases as the strength of the hedging incentive increases.

This result is not surprising. Consider a household that prepares to roll over in the future and has the option between holding
a risk-free bond and investing in housing. Housing investment, although more risky in its returns, offers a hedge against future

15 In reality, even the cross-market mobility may not be perfectly known in advance. To the extent that households over-predict or under-predict ρ, our model could
overstate or understate the amount of the hedging demand for housing. For example, an unexpected job reallocation may cause a household to have over-predicted
its hedging incentive and hence to have over-invested in housing when making earlier home purchase decisions.
16 As noted earlier, the stochastic utility shifters are necessary for solving the model analytically. Since the numerical solution does not rely on the analytical
approach, I set the utility shifters to zero to simplify the computation.
17 Additional details on the model parameters and the solution method are provided in Appendix A.5.
18 This is different from the case in which households optimally choose to transact each period, as in the no-lumpy transaction-cost case. In particular, the model
endogenizes the decision of whether to transact. Hence the derived conditional demand takes explicitly into account the alternative choice the household faces in the
future as a consequence of lumpy transaction costs.
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Fig. 1. Housing demand at low and high levels of correlation (σ = 10). Fig. 2. Housing demand at low and high levels of price volatility (ρ = 0).

Fig. 3. Housing demand at low and high levels of volatility (ρ = 0.9).

housing cost variations. In this sense, housing investment is actually a “safer” strategy than bond investment. The higher the is the
level of house price uncertainty, the more attractive is the insurance role of current home purchase.

While the simulation exercise confirms the predictions from the model, some care must be taken when interpreting the magnitude
of the results. In particular, three points should be noted to ensure proper understanding of the results. First, given that the parameters
in the simulation exercise are not calibrated from the real economy, the simulated difference in housing demand for households with
and without hedging incentives should not be taken as quantitative evidence. To have an idea about the fraction of households with
positive hedging incentives, one can apply the concept of the hedging incentive to the Panel Study of Income Dynamics (PSID).
Among all the households that have bought a house in the PSID sample (1968–1997), 62% of them traded up later by buying a
more expensive house in real terms. Among households that traded up, 71.3% of them moved within the same metropolitan area.
If houses within the same metropolitan area are considered as highly positive correlated, then at least 28.7% of homeowners in the
PSID have strong positive hedging incentives as defined in our simulation exercise.19

Second, the simulation analysis has exclusively focused on the effect of house price uncertainty on housing demand. In doing
so, I have assumed away the uncertainties in future income. In reality, households may also face risk in their future income.

19 Note that the PSID sample may significantly under-represent the true proportion of households that trade up and over-represent the true proportion of households
that move within the local neighborhood. This is attribute to the fact that households that move out of the current residence are difficult to track continuously in a
longitudinal data set.
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Depending on whether their future income moves together with future house prices, the fluctuations in house prices may provide
additional hedge against future income risk (Davidoff, 2006). In particular, for households belonging to occupations or sectors in
which earnings are negatively correlated with future housing price, current home purchase provides a hedge not only against future
housing cost risk but also against future income risk. In this case, hedging demand for housing in under-predicted by our model.
In contrast, for households that are likely to experience negative shocks to labor income and house prices at the same time, current
home purchase adds to the wealth risk. In this case, the amount of hedging demand for housing is over-predicted by our model.

Finally, the model has assumed away the impact of housing capital gains tax on home purchase behavior. The taxation of
housing capital gains is important for home purchase decisions (Hoyt and Rosenthal, 1990) and may distort the hedging incentive
in our model. Prior to 1997, rollover previsions in the US tax code discouraged households from buying down in nominal terms.
In addition, homeowners above age 55 or older qualified for a one-time exclusion of $125,000 in calculating taxable gains. After
1997, under the Taxpayer Relief Act of 1997 (TRA97), all homeowners qualified for capital gains exclusion. On the one hand, by
eliminating the differential treatment of housing capital gains for all households, TRA97 significantly improved the mobility to
trade down for households under age 55 (Cunningham and Engelhardt, in press), leading to a weaker hedging incentive on average.
On the other hand, the tax code prior to 1997 could have had a negative effect on the housing demand for young homeowners,
as these households might have invested less in housing to avoid trading down in the future. By eliminating the tax incentive to
avoid trading down, TRA97 potentially increased the average housing demand for households in the earlier stages of their housing
ladders. The net effect of TRA97 on hedging demand is not immediately clear.

Bearing these caveats in mind, a natural extension of this research would be to empirically investigate the quantitative importance
of the hedging incentive for home purchase decisions in a volatile market. While this approach is not explored here, it is worth noting
that the model presented above generates several testable empirical implications.

The most robust prediction of the model is that, absent the hedging incentive, an exogenous rise in price uncertainty decreases
housing demand. The magnitude of such an effect decreases as hedging incentives rise. The strength of the hedging incentive is
governed by two key factors in a household’s future housing consumption plan: (1) the size of the future desired house relative to
the current house and (2), the spatial correlation in prices across the current and future desired houses. Since most surveys used
for housing demand analysis report both current home value and previous home value, it should be possible to control for whether
a household trades up by buying a more expensive house or by moving from an area with low house prices to an area with high
house prices. While the spatial correlation across the current and future houses can rarely be perfectly predicted, one could infer the
relative strength of the correlation by comparing households with different levels of geographical mobility: those moving within the
same neighborhood; those moving across neighborhoods but within the same city; those moving across cities but within the same
state; those moving across states but within the same country; and those moving out of the country. Given these two key measures
of the hedging incentive, our model predicts that the more likely a household is to move up the housing ladder, and the lower the
household’s geographical mobility, the stronger its hedging incentive is, and the less negative the impact of house price risk on the
current housing demand. In addition, one could further examine the impact of housing capital gains taxation on hedging demand for
housing by comparing home purchase behavior before and after the TRA97. These issues are interesting and are currently explored
in a related research project.

6. Welfare analysis

In this section, I study the potential welfare costs from increasing price uncertainty and examine how sensitive these costs are
to the presence of the self-hedging mechanism. The economic experiment performed in this paper involves the comparison of the
welfare cost of price uncertainty in an economy in which self-hedging is not permitted to the welfare cost of price uncertainty in
a counterpart economy in which self-hedging is permitted. For each economy, the welfare cost of price uncertainty is computed
as the proportional increase in average annual housing asset holdings to compensate households for the loss of expected lifetime
utility due to increasing price uncertainty. This is similar to the welfare cost measure adopted in Li and Yao (2007).

The issue, then, is what to use as a benchmark to provide an economy without self-hedging. I provide two different cases: (i) an
economy in which the price correlation between the two alternative housing markets is 0 and (ii) an economy in which the price
correlation between the two alternative housing markets is 0.9. The self-hedging mechanism is made available by increasing the
price correlation from 0 to 0.9.

6.1. Welfare measure

To obtain an informative measure of welfare costs, we ask the following question: how much more housing and non-housing
consumption, as well as bequeathed wealth, would a household facing high price uncertainty (σ = 10%) need to have to be as happy
as it would be in a low uncertainty environment (σ = 1%)? In other words, how much would ptHt , Ct , and WT +1 have to increase
in percentages to compensate households for the loss of expected remaining lifetime utility due to increasing price uncertainty?

Expected lifetime utility is computed by employing the same simulation framework as described in Section 5. Specifically, using
the parameterized model described in Section 5, I simulate 500 households with each simulation generating a time series of first
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order Markov housing price processes. For each household, I compute its value functions when it enters the economy at age 30 and
average these values over 500 simulations. The value function is specified as follows:

V j = 1

500

500∑
i=1

E0

{
T∑

τ=0

βτu(Hτ ,Cτ )(pτ )
θτ (1−γ ) + βT +1 W

1−γ

T +1

1 − γ

}
(18)

where j indicates the state of housing price uncertainty and i is the index for the simulated household in state j , with j ∈ {low,high}
where low refers to the state of low price uncertainty when σ = 1% and high refers to the state of high price uncertainty when
σ = 10%. The utility cost measure can then be calculated as:

Ω =
(

V low

V high

) 1
1−γ − 1 (19)

where Ω is interpreted as the proportional increase in annual consumption (housing and non-housing) and end-of-life bequest. The
proof is given in Appendix A.6.

6.2. Findings

Table 1 summarizes the welfare cost estimates for various values of ρ and γ . ρ is the correlation between the return on the
current home and that on the future home. Everything else held equal, ρ reflects the strength of hedging incentives. γ indicates
households’ risk aversion. Below, I start with the case where γ = 3, which is a standard assumption from the literature.

For the case where ρ = 0, in an economy with uncorrelated housing price processes, reducing price uncertainty from σ = 10%
to σ = 1% is equivalent in utility terms to increasing average consumption by 0.3 percent. Households are better off with less price
uncertainty because there are no positive self-hedging effects to counter the negative housing wealth risk effect when housing prices
are uncorrelated. According to the Economic Report of the President, in 2005, housing expenditures, including the imputed rent
of owner-occupied houses, were $1114.6 billion. The expenditures on non-durable goods consumption, including food, clothing,
shoes, gasoline, oil, fuel and coal, were $2539.3 billion. This implies an annual cost of $11.5 billion for the US economy, which is
$3.9 billion in housing expenditures and $7.6 billion in non-durable consumption.

The potential welfare effects of self-hedging benefits are determined by comparing the welfare cost derived above with the
welfare cost when the self-hedging mechanism becomes available (ρ > 0). With ρ = 0.9, an increase in average housing and non-
housing consumption of 0.07 percent is needed to compensate for households in the high price uncertainty situation. This implies
a cost of $2.69 billion for the economy per year. This cost estimate is four times smaller than the one in an economy without the
self-hedging mechanism operating.

As already noted, when ρ becomes positive, the fact that households take greater advantage of the self-hedging mechanism in
the earlier stages of the life cycle causes welfare to be less sensitive to price changes. Yet even when ρ is equal to 0.9, the welfare
cost still remains positive. This is because earlier home asset, although almost perfectly correlated with future housing cost, serves
at best as an incomplete hedge for households on the upgrading housing ladder. The optimal self-hedging motivated mechanism is
not able to make agents as well off as under the situation where there is little price uncertainty.

To illustrate how these results would change with higher risk aversion, I report results for γ = 10 in Table 1. I use this value
since it is taken to be close to an upper bound for an empirically plausible degree of risk aversion. The results are not surprising: as
households become more risk averse, price uncertainty leads to greater welfare loss. The important result, however, is that in a more
risk-averse economy, these potential benefits generated from self-hedging are more substantial and may be realized for relatively
lower values of ρ.

6.3. Caveats

The welfare results presented so far are computed under the assumption that the housing market is incomplete. Compared with
stock market risk, house price risk has a much bigger impact on most households’ financial portfolio. In light of this, economists

Table 1
Welfare cost of price uncertainty as a percentage of consumption

Risk aversion
parameter

For economies with uncorrelated
housing price processes

For economies with highly correlated
price processes

γ = 3 0.3 0.07
γ = 10 3.8 1.8

The cost estimates reported here are computed as Ω = ( V low

V high )
1

1−γ − 1, where high refers to the state σ = 10 and

low refers to the state σ = 1. All estimates are percentages.
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have been proposing different housing-related financial products to improve the completeness of the housing market. For example,
Case et al. (1993) propose a market in which futures contracts are tied to regional house price indexes, allowing households to
hedge by taking short positions in these derivatives contracts.20 However, mitigating house price risk could be costly. As suggested
by Englund et al. (2002), the attractiveness of a derivatives market in price index futures depends on the quality and integrity of the
indexes. Furthermore, for most homeowners, housing is the largest component of their wealth. A typical homeowner cannot be well
diversified across asset classes such as equities, bonds, and property. In other words, the lumpiness of housing would substantially
reduce the diversification or hedging benefits of financial instruments even if the market were complete.

More recently, a home equity insurance program based on the ideas of Shiller and Weiss (1999) has been offered as an exper-
iment in certain neighborhoods in Chicago and Syracuse. Such insurance is valuable not only for local community but also for
homeowners. On the one hand, it helps to stabilize and revitalize the local community by mitigating self-reinforcing downward
spirals in which homeowners pull out of a community in fear of declining prices. On the other hand, it provides a unique oppor-
tunity to protect homeowners against possible future house price declines. However, the extent to which individual homeowners
are benefited from such program depends on the strength of their hedging incentives. For households that plan to trade up within
the same local housing market, a public housing insurance program could simply serve to crowd out the housing demand through
self-hedging mechanism.

7. Conclusion

This paper aims to better understand the extent to which house price uncertainty affects households’ home purchase behavior.
To this end, I have built and solved a theoretical model of an individual household’s home purchase decision problem over its life
cycle.

The theoretical model has the following ingredients: risk-averse households, a life-cycle framework, stochastic multivariate price
processes, lumpy transaction costs, and incomplete markets. There are several benefits from using such a theoretical framework.
First, this rich model allows us to characterize optimal decisions about both the timing and the size of home purchase in a market
featuring lumpy transaction costs. Second, the life-cycle framework makes it clear that the future housing consumption plan needs
to be taken into account when examining the effect of house price uncertainty on housing demand. Third, the assumptions on the
multivariate house prices and incomplete markets enable us to distinguish between the two incentives under price uncertainty: an
incentive to avoid the risk associated with housing wealth and an incentive to self-hedge against future housing cost risk.

The optimal home purchase behavior derived from this model supports the basic implications of the (S, s) type models: lumpy
and infrequent housing transactions and a threshold decision rule in the presence of lumpy transaction costs. Unlike the standard
(S, s) literature, the model in this paper explicitly accounts for stochastic multivariate house price processes and a non-stationary
framework. The resulting decision rule requires less restrictive assumptions.

Treating housing as not only a consumption but also an investment, the model predicts that, under house price uncertainty, the
risk associated with housing wealth reduces housing demand. This negative effect can be mitigated by the incentive to self-hedge
against future house price uncertainty. The net effect of price uncertainty on housing demand depends critically on a household’s
expected future housing path, which is characterized by the correlation between the household’s current and future desired houses
and by the probability of moving up the housing ladder. The more likely the household is to move up the housing ladder within the
same housing market, the stronger the hedging effect.

Consistent with these findings, the paper shows that the incentive to hedge also reduces the welfare cost imposed by house price
uncertainty. This result suggests that ignoring the role of future housing consumption plans may lead us to overestimate the negative
impact of house price uncertainty on households’ home purchase decisions and to underestimate the proportion of housing wealth
accumulated under hedging incentives. The test of empirical implications generated from this model is left for future research.
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Appendix A

A.1. Proof of Proposition 4.1

Substituting Eq. (13) into the Bellman equation (5), I obtain a continuous optimization problem. To highlight the role of price
uncertainty, I approximate the expectation by applying the second order Taylor expansion.

V T
t
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j−1
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T
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j
t ;Wt+1). Note that Wt+1 indicates the end-of-period wealth in

period t + 1. Given the conditional distribution of house prices (the time-t expectation is summarized by the following terms:
Et(p

j

t+1), Vart (p
j
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The first order condition can be taken in a standard way.
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Applying the Envelop Theorem,
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Updating Eq. (A-3) one period, we obtain
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Updating Eq. (A-1) one period, we obtain

∂ũt+1

∂Ct+1
= β

(
∂V T

t+2

∂Wt+1
+ ∂Πt+2

∂Wt+1

)
(A-5)

It follows from the budget constraint that
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Combining Eqs. (A-1)–(A-8), we have
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(A-9)

where mt+1 ≡
β∂ũt+1
∂Ct+1

∂ũt
∂Ct

is the stochastic discount factor and
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is a risk aversion factor of the value function.
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A.2. Proof of Proposition 4.2

Define time-t expected user cost as
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Define hedging incentive index HIt+1 ≡ H
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H
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ρ
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A.3. Derivation of housing risk premium

Define the one-period return on the j th house between time t + 1 and time t as R
j

t+1 ≡ p
j
t+1−p

j
t

p
j
t

. Then Et {(1 − δ)(1 + R
j

t+1) −
(1 + rf )} indicates the expected housing risk premium, conditional on time-t information and adjusted for the transaction costs.

Proposition 7.1 (The Consumption-Based Housing Risk Premium). Under Assumption 1, the housing market risk premium is
determined by two factors: (i) the covariance between the stochastic discount factor and the expected housing return and (ii) the
expected consumption value of future housing service.
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Proof. Taking the first order conditions with respect to Ct and H
j
t yields:

∂ut

∂Ct

= βEt

(
∂V T

t+1

∂WT
t

+ ∂ΠT
t+1

∂WT
t

)
(A-14)

∂ut

∂H
j
t

= −βEt

{(
∂V T

t+1

∂H
j
t

+ ∂ΠT
t+1

∂H
j
t

)
+

(
∂V T

t+1

∂WT
t

+ ∂ΠT
t+1

∂WT
t

)
∂WT

t

∂H
j
t

}
(A-15)

Applying envelop theorem and updating one period yields:
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Combining first order conditions and equation above yields
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Expanding this equation gives

Etmt+1Et

{
(1 − δ)

(
1 + R

j

t+1

)} + Covt

(
mt+1, (1 − δ)

(
1 + R

j

t+1

)) = 1 −
∂ut

∂H
j
t

+ βEt
∂Πt+1

∂H
j
t

p
j
t

∂ut

∂Ct

(A-19)

The gross return on a risk free rate satisfies(
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The housing market risk premium can then be written as
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A.4. Proof of Proposition 4.3

Households choose to transact if the benefit from transacting exceeds the cost associated transacting. The optimal decision on
whether to transact in period t depends on the differences in the current and expected utility associated with the two alternative
choices. Specifically, it takes the following form:
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∂2ũt

∂C2

∣∣∣∣
C=CT

t

(
CN

t − CT
t

)2

+ β

(
∂EtV

T
t+1

∂W
+ ∂EtΠt+1

∂W

)∣∣∣∣
W=WT

t

(
WN

t − WT
t

)

+ 1

2
β

(
∂2EtV

T
t+1

∂W 2
+ ∂2EtΠt+1

∂W 2

)∣∣∣∣
W=WT

t

(
WN

t − WT
t

)2 + (
sN
t − sT

t

)

= 1

2

∂2ũt
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where the last equality has used the fact that CN
t − CT

t = −(W t
t − WN

t ) − (ηt − T Ct ). Note that ηt ≡ p
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Conditional on transacting, the first order conditions are:
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∂Ct∂Ht

p
j
t

Substituting Eqs. (A-24)–(A-24) into Eq. (A-23), we get
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A.5. Numerical method

The Bellman equation for this problem is written as:

Vt

(
Wt−1,Ht−1,p

1
t , p

2
t

) = (H
θτ
τ C

1−θτ
τ )1−γ

1 − γ
+ βEtVt+1

(
Wt,Ht ,p

2
t , p

1
t

)
t = 1, . . . , T

The control variables are {Ht,Ct }Tt=1. The state variables are {t,Wt−1,Ht−1,p
1
t , p

2
t }.

The numerical solution follows the standard approach from Judd (1998). In practice, the additional dimensionality of stochastic
price processes poses difficult computational problems. For computational ease, I assume two price processes. At each transaction,
households sell the old house at one price and buy the new house at another price. Following Tauchen and Hussey (1991), I
replace the continuous price processes by a discrete approximation. That is, I form a first order Markov process, giving transition
probabilities from pt−1 to pt , which mimics the underlying continuous AR(1) process. Wealth, previous housing stock and optimal
housing stock are also discretized, with the range of the grid chosen such that no extrapolation is used. The numerical solution is
found explicitly at a finite set of modes in the state space. In solving for the optimal solution, it is necessary to calculate conditional
expectation over each stochastic variable. When the stochastic variable is discretized, the transition probabilities are explicitly given.

I then optimize over the different choices using the grid search. This gives the optimal level of housing consumption and non-
housing consumption for each age with each possible combination of state variables.

Parameterization:

• β = 0.9 γ = 3 δ = 0.1 F = 1000 t = 30 · · ·60
• Taste-age profile: θt = 1

400 (250 − (t − 45)2)

• Price process:

(
p1

t

p2
t

)
= μ + A

(
p1

t−1

p2
t−1

)
+ et where et ∼ N

((
0

0

)
,

(
σ 2 0
0 σ 2

))
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Hedging incentive Small volatility Large volatility

σ = 1% σ = 10%

weak (ρ = 0) μ =
(

19.92
19.96

)
A =

(
0.8977 0

0 0.8977

)

strong (ρ = 0.9) μ =
(

10
11

)
A =

(
0.5 0.4733

0.4733 0.5

)

The choice of parameter values guarantees that (1) the AR(1) process is stationary and (2), for the given value of σ , the uncon-
ditional mean of the price processes is the same across the specifications on ρ.

A.6. Proof of Eq. (19)

Let j = (low,high), where low refers to “low price uncertainty” (σ = 1) and high refers to “high price uncertainty” (σ = 10).
Combine Eqs. (18) and (19)

V low = V high(1 + Ω)1−γ

= E0

{
T∑

τ=0

βτu(Hτ ,Cτ )(pτ )
θτ (1−γ ) + βT +1 W

1−γ

T +1

1 − γ

}
(1 + Ω)1−γ

= E0

{
T∑

τ=0

βτ [[(pτHτ )(1 + Ω)]θτ [Cτ (1 + Ω)]1−θτ ]1−γ

1 − γ
+ βT +1 (WT +1(1 + Ω))1−γ

1 − γ

}

Therefore, Ω can be interpreted as the compensation in terms of proportional increase in housing consumption, non-housing
consumption and bequest for the remaining life time periods that are necessary to bring the household’s expected lifetime utility to
the mean utility of households experiencing no price uncertainty.
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