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Abstract
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1 Introduction

It has long been recognized that the informational content of stock prices ("price efficiency")

relies crucially on the willingness of traders to acquire costly information (see e.g., Grossman and

Stiglitz, 1980; Verrecchia, 1982). Similarly, it has been recognized that the profitability of firms’

capital investment decisions ("real efficiency") depends on the quality of their private information

and their ability to select optimal projects (see e.g., Lambert, 1986; Harris and Raviv, 1996). Amore

recent literature argues that there might be a connection between these two efficiency concepts

because some of the information in prices might be useful for firms and can help them to invest

more efficiently. This "feedback effect" (Bond et al., 2012) has received significant support from the

recent empirical literature (see e.g., Luo, 2005; Chen et al., 2007; Foucault and Frésard, 2012).1

While existing theoretical work has focused on the information acquisition decision of either

traders or firms in separation, our model allows both types to acquire information simultaneously.

In particular, we show that the information acquisition decision of one type generates spill-overs

for the other type. On the one hand, traders’ acquisition of private information renders the

equilibrium stock pricemore informative and allows the firm to extract valuable information about

its investment opportunities. On the other hand, the firm’s acquisition of private information is

reflected in a more efficient investment decision, which affects the firm’s future value and thus the

traders’ payoffs.

We study this joint information acquisition problem in a setting with multiple sources of

uncertainty. More specifically, a firm can invest in a risky growth opportunity whose return is

determined by two fundamentals (or "shocks"). All agents, traders and the firm, are ex ante

uninformed about these shocks and not sure whether it is worthwhile to invest in the project.

Both types can acquire private signals about these two shocks but it is too costly for them collect

perfect information along both dimensions. Thus, all traders and the firm have to decide how

to spend their limited resources most efficiently and what type of uncertainty they would like to

reduce through learning. Importantly, each type has a comparative advantage with respect to one
1See also Edmans et al. (2012), Foucault and Frésard (2014), Edmans et al. (2017), and Dessaint et al. (2019) for empirical evidence of
market feedback.
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of the two shocks. Traders can learn more efficiently about one dimension of uncertainty (like e.g.

product demand), while the firm can learn more efficiently about the other dimension (like e.g. its

production cost).

Our first major insight is that this two-way interaction between the firm and tradersmight entail

a fundamental tension of incentives. On the one hand, the firm can most efficiently learn from

the stock price if all traders acquire private information about the shock it is not acquiring private

information about itself. This way the firm can rely on price information regarding one shock and

on private information for the other shock. The traders’ strategic incentive, on the other hand, is

more nuanced. In particular, the incentive depends crucially on the project’s ex ante net present

value (NPV). If the NPV is negative, and the project is less likely to be implemented, traders want

to acquire information that differs from the information collected by the firm. If however the NPV

is positive, the incentive is reversed and traders want to acquire the same information as the firm.

This intricate relationship between the incentives to acquire information leads to a very nuanced

information choice equilibrium. We show that the traders’ and the firm’s information choice

depends on the project’s NPV and the firm’s signal precisions along both dimensions. More

specifically, the firm is able to specialize along one dimension only for moderately negative NPV

projects. In this case, traders want to acquire different information such that the resulting price

signal allows the firm to learn information about the other dimension. In other cases, however,

we find that the firm also has to acquire information about the shock for which traders have a

comparative advantage. In particular, for extremely lowNPV projects, the firm is forced to acquire

information along both dimensions even if the underlying signal becomes almost pure noise.

Our model abstracts from any agency conflicts and assumes that the firm only invests in the

project if its expected return is positive. In particular, the firm’s expectation comprises two types of

signals. First, private signals about the two fundamental shocks that determine the project return.

Second, an endogenous feedback signal based on its stock price. Importantly, we assume that the

firm cannot acquire a perfect signal about both shocks, such that it has to rely on price information

in some circumstances.
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The firm’s equilibrium stock price is an increasing step function of total order flow, i.e. the sum

of informed traders’ demand and that of liquidity traders. A competitive market maker observes

total order flow and sets the stock price equal to the expected firm value. The market maker can

more easily interpret variation in total order flow, if all traders acquire information about the same

shock. In this case, particularly high values reveal a "high" shock value and vice versa for low

values. If, however, traders acquire information about both shocks, order flow is affected by both

fundamentals and it is not clear whether a slightly above-average observation is the result of a

"high" fundamental for shock one and a "low" fundamental for shock two, or vice versa. Thus, the

composition of traders has a direct effect on the informational content of total order flow and the

equilibrium stock price.

Our main research question is whether the different agents acquire information in a way that

leads to efficient real investment decisions. To answer this question, we introduce the concept

of real efficiency, which is defined as the firm’s expected long-term value. Perhaps surprisingly,

we find that real efficiency could be decreasing in the firm’s signal precision. This result arises

through the indirect effect of the signal precision on the composition of informed trading. In

particular, a higher precision about one shock can encourage traders to acquire more information

along this dimension. This, in turn, reduces the informational content of the stock price along the

other dimension, which is particularly valuable for the firm. We show that the net effect might be

negative. In this case a better-informed firm will have a lower long-term value.

As a second efficiency measure, we consider price efficiency, which is defined as the reduction in

payoff variance that can be achieved by conditioning on the stock price. This measure captures the

degree to which asset prices predict future payoffs and is widely used in the empirical literature to

gauge the informational content of stock prices. The conventional view is that price efficiency is a

good proxy for real efficiency because a higher price-payoff correlation is expected to indicate that

prices reveal more information to real-decision makers. We find that this conventional wisdom is

generally incorrect when the underlying information environment is endogenized. For instance,

we show that lower NPV projects generally have higher price efficiency but lower real efficiency.
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For negative NPV projects, the firm’s and the traders’ information choice incentives are aligned.

Thismeans that both agentswant to acquire information that differs from the information acquired

by the other party. While this scenario might lead to a very efficient outcome with specialization,

it can also lead to multiple equilibria. More specifically, there can be another (stable) information

choice equilibrium inwhich the firm and traders acquire information about the shock forwhich the

other partywould bemore qualified. In this scenario, we show that independent of the equilibrium

that the agents’ coordinate on, small shifts inmodel parameters can lead to discontinuous jumps in

stock prices and our two efficiency measures. For instance, a small increase in the firm’s precision

or the project’s NPV can lead to a discrete drop in real efficiency. Quite interestingly, the source

of multiple equilibria in our model is the incentive of traders and the firm to acquire different

information. This channel distinguishes our mechanism from the existing literature (see e.g.,

Barlevy and Veronesi, 2000; Garcia and Strobl, 2011; Goldstein et al., 2014; Mele and Sangiorgi,

2015) in which learning complementarities among traders lead to multiple equilibria.

The fundamental insight that the type of information in stock pricesmatters formarket feedback

is not new. Following Bond et al. (2012), who differentiate between forecasting price efficiency and

revelatory price efficiency, several empirical papers have tried to separate the two concepts (see

e.g., Bai et al., 2016; Edmans et al., 2017). Our contribution is to provide a formal framework that

emphasizes the potential misalignment of incentives behind the information acquisition decisions

that give rise to these efficiency measures.

The model makes three important assumptions. First, we consider a firm affected by multiple

shocks that govern the return on its investment opportunity. Potential examples of these different

dimensions of uncertainty aremultinational firms that are exposed todifferent country-level shocks

or conglomerates that are exposed to different industry-level shocks.2 Second, we allow the firm

and traders to acquire private information about the same set of fundamental shocks. Therefore,

we do not preclude traders from certain types of shocks and consider all of them learnable. We

do, however, assume that traders are relatively more skilled to learn about one dimension of

uncertainty, while the firm is more skilled along the other dimension. Our third assumption is
2Goldstein and Yang (2015) discuss the importance of studying different dimensions of uncertainty in amodel withoutmarket feedback.
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that neither the firm nor informed traders have sufficient resources to collect perfect information

about all shocks. This assumption is important for two reasons. First, it implies that the firm

can learn additional information from the stock price. Second, it also creates a trade-off for the

two types and renders the information acquisition decision non-trivial. The existing literature has

highlighted several frictions that might lead to such a constraint (see e.g., Aghion and Stein, 2008;

Mondria, 2010; Kacperczyk et al., 2016, among others).

Our paper contributes to two strands of the literature. First, it is related to the literature

studying the real effects of financial markets, where trading and prices affect the firms’ investment

decisions, which in turn affect the firms’ cash flows. This is known as the "feedback effect" and

Bond et al. (2012) provide a review of this literature. The first theoretical contributions take the

agents’ information endowment as given and study market feedback with respect to a single

fundamental.3 Building on these models, Gao and Liang (2013) and Dow et al. (2017) endogenize

the traders’ signal precision in a single-shock setting, while Goldstein and Yang (2019) consider

a setting with fixed information endowments but two sources of uncertainty. In contrast to these

papers, we endogenize the information endowment of the firm and traders. As a result, we get

several novel predictions relative to the existing work. In particular, our framework leads to an

endogenous degree of information overlap, which in turn affects price efficiency and real efficiency.

In related work, Benhabib et al. (2019) also study a feedback model with mutual learning by firms

and traders. However, in contrast to our work, they assume that both types acquire information

about different shocks. As a result, they do not focus on the strategic coordination between the

firm and traders and the efficiency implications of this interaction, which lies at the core of our

paper.

Second, our paper is also related to the economics and finance literature studying strategic

information acquisition with multiple sources of uncertainty. Goldstein and Yang (2015) study a

trading model in the spirit of Grossman and Stiglitz (1980) and show that the presence of multiple

sources of uncertainty gives rise to strategic complementarities. VanNieuwerburgh andVeldkamp
3See e.g., Dow and Gorton (1997), Subrahmanyam and Titman (2001), Goldstein and Guembel (2008), Goldstein et al. (2013), and
Edmans et al. (2015).
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(2009), VanNieuwerburgh andVeldkamp (2010), andKacperczyk et al. (2016) study tradingmodels

with multiple pieces of uncertainty and traders with limited attention capacity. Goldman (2004)

and Goldman (2005) study a setting featuring a multi-division firm and endogenous information

acquisition by traders. Our contribution relative to this literature is twofold. First, we allow for

a real effect of the information collected by traders because of the feedback effect. Second, we

also study the simultaneous information acquisition on the real side and its repercussions to the

financial market. As a result, non of these papers addresses the potential firm-trader coordination

problem and its efficiency implications.

The remainder of the paper is organized as follows. In Section 2 we provide the description

of the model. Section 3 characterizes the equilibrium outcomes and Section 4 discusses model

implications. Section 5 concludes and all proofs are contained in Appendix A.

2 Model Setup

The model considers three dates, C ∈ {0, 1, 2}, and a single firm. The firm’s stock is traded

in a secondary financial market and a benevolent manager can increase the firm’s value through

investment in a growth opportunity (or "project"). The financial market is populated by informed

traders, uninformed noise traders, and a competitive market maker. At C = 0, informed traders

and the firm’s manager acquire private signals about individual components of the return on

the growth opportunity. At C = 1, trading in the financial market occurs and subsequently the

manager decides whether to invest in the growth opportunity. This decision may be influenced

by the realization of the stock price % which creates a feedback effect (Bond et al., 2012). At C = 2,

the firm’s terminal value + is realized and paid out as a liquidating dividend. Figure 1 provides a

timeline for the key events of the model.

2.1 The Firm’s Decision

The firm is operated by a benevolent manager who maximizes the firm’s expected long-term

value + .4 The firm has access to a growth opportunity with return, or net present value (NPV),
4For simplicity, we simply use "firm" instead of "firm manager" throughout.

6



t = 0 t = 1 t = 2

traders and firm manager
acquire private information
simultaneously

1. traders submit market orders H8
2. market maker sets stock price %
3. firm manager chooses investment  

firm value + realized

Figure 1: Timeline for the main model.

equal to G�" + G�� , which is exposed to two dimensions of uncertainty represented by 9 ∈ {", �}.5

The firm can decide to invest in this growth opportunity by choosing  ∈ {0, 1}. The return on

the growth opportunity depends on the two independent random variables �" and ��, which

take on values "high" (�) and "low" (!) with equal probability.6 We define the realization of each

component by G� ≡ 1
2
(
� + �

)
and G! ≡ 1

2
(
� − �

)
and make the following assumption regarding

the return on the growth opportunity.7

Assumption 1 (Return on growth opportunity) The return on the growth opportunity satisfies the

following condition: G! ≤ 0 < G� such that � ∈ (−�, �], with � > 0.

Assumption 1 ensures that the firm’s investment problem is non-trivial. If � > � (� ≤ −�), the

return on the growth opportunity would be always positive (negative) such that the firm would

always (never) invest and there would be no role for learning about �9 , which is the focus of this

paper. The ex ante NPV of the growth opportunity, E
[
G�" + G��

]
= � ∈ (−�, �], can be negative or

positive andwewill show below that � plays a crucial role in our model. Intuitively, a higher value

of � indicates that the growth opportunity is more profitable and could be interpreted as "good

times" in which the firm has access to better investment opportunities. In the limit � → −�, the

growth opportunity never generates a positive NPV, ex post, and the firm never invests. Vice versa,

if �→ �, the NPV is always positive, ex post, and it is always profitable to invest. The constant �

determines the variance of the return on the growth opportunity, Var
(
G�" + G��

)
= 1

2�
2. We will

5Previous papers in the finance literature with a similar assumption include Kondor (2012), Goldstein and Yang (2015), and Goldstein
and Yang (2019).

6Note that the more general assumption P
(
�9 = �

)
= �� ∈ (0, 1) is isomorphic to adjusting � because the firm’s investment decision is

only affected by the expected NPV.
7We draw �" and �� independently from the same distribution to avoid any baked-in asymmetries between the two dimensions of
uncertainty.
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oftentimes also refer to the risk-adjusted ex ante expected return, � ≡ �
� ∈ (−1, 1].

The firm’s terminal value is given by:

+ = +0 +  
(
G�" + G��

)
. (1)

The constant +0 represents the return on the firm’s assets in place,  ∈ {0, 1} the firm’s invest-

ment choice, and G�" + G�� the return on the growth opportunity. To ease the exposition, we set

+0 = 0 in the following. Including the assets in place explicitly will not affect our results.

The firm’s investment decision is made to maximize the firm’s expected value. As a result, the

firm invests ( = 1) if its conditional expectation of G�" + G�� is positive and does not invest ( = 0)

otherwise.8

Next, we describe the two signal types that influence the firm’s investment decision in more

detail. The first signal type is an endogenous feedback signal from the financial market based

on the stock price %. The informational content of this signal depends on the traders’ aggregate

information choice, as we will show below.

The second type comprises private signals about the two components that affect the return

on the growth opportunity. We assume that the firm manager automatically observes a private

signal B1 ∈ {�� , ∅} with precision $ ≡ P (B1 = ��) ∈ (0, 1]. This signal can be interpreted as private

information that the manager obtains as a result of running the firm. In addition to this signal, the

firm can acquire another signal about either �� or �" . We denote the firm’s information choice

by 0 ∈ {0, 1} with 0 = 1 corresponding to the choice of �−information and 0 = 0 to the choice of

"−information. We write the firm’s private signal as B2(0) ∈ {�, !, ∅}, which is given as:

B2(0) =



�� w.p. 0

�" w.p. (1 − 0) × �$

∅ otherwise.

(2)

If the firm chooses 0 = 1, it receives a perfect signal about ��. If it chooses to learn about

�" (0 = 0), it receives a perfect signal about �" with probability �$.9 The constant � ∈ (0, 1]
8Without loss of generality, we assume that the firm does not invest when indifferent.
9See, among others, Foucault and Frésard (2012), Foucault and Frésard (2014), or Dugast and Foucault (2018) for papers with a similar
signal structure.
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(inversely) captures the firm’s comparative advantage with respect to �−information. If �→ 0, the

firm cannot obtain an informative signal about �" , while � → 1 implies that it can learn equally

well about both shocks. Note that if the firm chooses 0 = 0, it will also observe a signal about ��

through B1.

The firm chooses whether to acquire information about �� or �" to maximize the expected

firm value: max0∈{0,1} E[+], where + is defined in equation (1). It is important to note that the

firm’s terminal value depends on the optimal investment decision  . As we will show below,

receiving informative signals allows the firm to invest more efficiently, which, in turn, raises the

firm’s expected value.

2.2 The Financial Market

Trading at C = 1 is modeled in the spirit of Kyle (1985). The financial market consists of the

following three types of traders who trade claims to the firm’s liquidating dividend + at a price

%. First, a unit continuum of risk-neutral informed traders, indexed by 8 ∈ [0, 1]. Each trader

can either buy up to one unit, sell up to one unit, or not trade at all, i.e. H8 ∈ [−1, 1].10 Because

traders do not have price impact and are risk-neutral, they will always trade up to the limits if they

decide to trade.11 In addition to informed traders, noise traders collectively demand I ∼ *[−1, 1],

which generates non-fundamental variation in total order flow and leads to a noisy price signal.

Lastly, a risk-neutral, competitive market maker sets the stock price based on aggregate order flow

. ≡
∫1

0 H838 + I to break even in expectation:

% = E[+ |.]. (3)

Informed traders face the same information choice problem as the firm. Each individual trader

8 ∈ [0, 1] has to decide whether to acquire a private signal �8 ∈ {�, !, ∅} about �" or ��. We denote

this decision by 18 ∈ {0, 1} with 18 = 1 corresponding to the choice of"−information and 18 = 0 to
10A potential justification for this position limit are borrowing or short-sell constraints. See also Goldstein et al. (2013) and Goldstein
and Yang (2019) for feedback models with the same assumption.

11Following the existing literature, we assume that traders do not trade if they are indifferent.
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the choice of �−information.12 We can thus write the private signal for trader 8 as:

�8(18) =



�" w.p. 18�

�� w.p. (1 − 18)�

∅ otherwise.

(4)

We assume that traders can acquire equally-precise signals about�" and��.13 Expost, however,

they specialize in one of the two shocks as in Goldstein and Yang (2015). To ease the exposition

and to highlight the impact of � and $, we set �, the precision of the traders’ private signal, to

unity for the rest of the paper. Hence, traders can receive a perfect signal about either �" or ��.

The crucial difference between traders and the firm is that traders can learn equally well

about �" and ��, while the firm has a comparative advantage with respect to information about

��. It follows that traders have a relative advantage with respect to information about �" . We

can therefore interpret �" as external information such as overall economic conditions or the

firm’s product demand. The other dimension of uncertainty (��) can be interpreted as internal

information such as the firm’s production cost, which also affects the asset payoff+ . The parameter

� captures the degree of ex ante information asymmetry between the firm and traders.

Trader 8 chooses whether to acquire information about �" or �� to maximize ex ante trading

profits: max18∈{0,1} E[Π8] where Π8 ≡ H8 (+ − %) and 18 determines the trader’s private signal type

in equation (4). It is worth noting that the expected trading profits also depend on the firm’s real

investment and information acquisition decision, which impact + . Thus, the traders’ objective is

not only affected by their own information choice but also by the firm’s choice. We will elaborate

more on this interaction below.

2.3 Equilibrium

Our equilibrium concept is Perfect Bayesian Equilibrium ("PBE"). We allow for a (symmetric)

mixed-strategy information choice equilibrium such that each trader chooses 18 = 1 with proba-
12Thus ex ante identical traders might end upwith different types of signals ex post, as in Grossman and Stiglitz (1980) or, more recently,
Brunnermeier et al. (2020).

13In a previous version of the paper, we allowed for different signal precisions across the two shocks. Assuming equal precisions
significantly simplifies the analytic expressions and does not change the main results significantly.
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bility " ∈ [0, 1]. Since traders’ private signals are conditionally independent, the mass of traders

with a perfect signal about �" and �� is given by " and (1 − "), respectively. Similarly, the firm

chooses 0 = 1 with probability @ ∈ [0, 1]. Hence, the firm receives a perfect signal about �� with

probability @. With probability 1 − @, it observes an imperfect signal about �� (with precision $)

and an imperfect signal about �" (with precision �$).

Definition 1 (Perfect Bayesian Equilibrium) A PBE consists of the following two sub-equilibria.

1. Trading and investment equilibrium at C = 1:

• informed traders choose their asset demands, given their private signal, to maximize expected

trading profits;

• the market maker sets the price conditional on total order flow to break even in expectation;

• the firm chooses capital investment, given its private signals and the stock price, to maximize its

expected value.

2. Information choice equilibrium at C = 0:

• traders acquire information to maximize expected profits anticipating the equilibrium at C = 1;

• the firm acquires information to maximize its expected value anticipating the equilibrium at C = 1.

We assume that all agents have rational expectations in that each player’s belief about the other players’

strategies is correct in equilibrium.

3 Model Solution

In this section, we characterize the different equilibria in themainmodel. In Section 3.1, we first

discuss the trading and investment equilibrium at C = 1. Subsequently, in Section 3.2, we analyze

the information choice equilibrium at C = 0.

3.1 Trading and Investment Equilibrium

As a first step, we take the firm’s and the traders’ information choices as given. Therefore, each

individual trader receives a perfect signal about �" with probability " and a perfect signal about
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�� with probability 1 − ". Similarly, the firm receives a perfect signal about �� with probability

@ and an imperfect signal about �� and �" with probability 1 − @. Based on these signals, each

trader has to decide whether to trade and, if yes, whether to buy or sell the asset. Furthermore,

the market maker sets the equilibrium stock price based on the observed order flow and the firm

decides whether to invest in the growth opportunity, given its private signals and the equilibrium

stock price. We formally derive the trading and investment equilibrium at C = 1 next.

Proposition 1 (Trading and investment equilibrium) For given mixing probabilities (@, ") ∈ [0, 1]2,

there is a trading and investment equilibrium in which:

1. Each trader buys on a "high" signal (�8 = �) and sells on a "low" signal (�8 = !);

2. The firm’s stock price is an increasing step function of total order flow, % = ?(.) ≥ 0;

3. The firm’s investment decision satisfies:

(a) If � ≤ 0, the firm invests if B1 ∈ {∅, �}, B2 ∈ {∅, �}, and % ∈ P;

(b) If � > 0, the firm invests if B1 = � or if B2 = � or if B1 ∈ {∅, !}, B2 ∈ {∅, !}, and % ∈ P.

We provide the explicit expressions for ?(.) and P in the Appendix.

Proof: See Appendix A.1.1.

Proposition 1 shows that each trader optimally buys (sells) on positive (negative) private infor-

mation about the firm’s fundamentals in anticipation of a higher (lower) payoff + . It follows that

total order flow . depends on the informed traders’ private signals and therefore the two funda-

mentals �" and ��. We show in Appendix A.1.1 that there are six distinct intervals for . which

reveal different signals about the fundamentals to the market maker. For instance, a particularly

high order flow indicates that �" and �� are "high" because it must be the result of buy orders

from "−informed and �−informed traders. In this case, the market maker sets the equilibrium

stock price equal to E [ |�" = �, �� = �]
(
� + �

)
. As a result, % inherits the informational content

of . and the firmmanager can learn additional information about the two fundamentals from this

feedback signal.
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The firm’s investment decision depends on the private signal about �� and/or �" and the

price signal, which can reveal additional information about �" or �� (or both). If the project’s ex

ante NPV is negative (� ≤ 0), the firm will never invest after a "low" private signal because the ex

post project NPV is negative even if the price signal reveals that the other fundamental is "high."

However, if the private signal is "high" or if the firm did not receive an informative signal, the firm

invests based on a sufficiently high price realization.

If the project’s ex ante NPV is positive (� > 0), the firm will always invest based on a positive

private signal (B = �), independent of %, because the ex post project NPV is positive even if the

price reveals that the other shock is "low." If the private signal is "low" (B = !) or if the firm did

not receive a private signal (B = ∅), it will invest based on a sufficiently high price realization. The

explicit range of price realizations that trigger investment depends on the firm’s signal types and

realizations (0 and B = (B1 , B2)), the informational content of the price ("), and the project’s ex ante

risk-adjusted NPV (� = �
� ). We fully characterize P in Appendix A.1.1.

3.2 Information Choice Equilibrium

Next, we analyze the optimal information acquisition decisions at the initial date C = 0. To this

end, we compute the firm’s expected value and the traders’ expected trading profits to find the

optimal mixing probabilities @∗ and "∗ from the intersection of the best-response functions @(")

and "(@). For the firm, we use the optimal investment policy in Proposition 1 together with the

definition of + in equation (1) to compute the expected firm value, E[+]. The firm then chooses

@ ∈ [0, 1] to maximize E[+] which leads to a best-response function for a given mixing probability

" ∈ [0, 1] for each individual trader.

Lemma 1 (Best-Response Function: Firm) Given the trading and investment equilibrium in Proposi-

tion 1, the firm’s best-response function to a given " ∈ [0, 1] is given by:

@(")



= 0 if " < "(�, �, $)

∈ [0, 1] if " = "(�, �, $)

= 1 if " > "(�, �, $);

13



with � = �
� ∈ (−1, 1]. We provide the explicit expression for "(�, �, $) in the Appendix.

Proof: See Appendix A.1.2.

Lemma 1 formalizes the firm’s best-response function. If traders are sufficiently likely to learn

"−information, i.e. if " is sufficiently large, the firm always specializes in �−information and

chooses @(") = 1. This result is very intuitive: a higher value of " renders the stock price more

informative about �" and the firmwants to avoid overlap in the information conveyed by the price

signal and its private signal. Thus, the firm is better off acquiring a private signal about �� if the

price signal is already more informative about �" . If, however, traders are more likely to learn ��,

the firmmight acquire imperfect signals about �� and �" . Overall, Lemma 1 shows that the firm’s

best-response @ is an increasing step-function of ". Hence, if traders are more likely to learn about

�" , the firm becomes (weakly) more likely to learn only about ��: @′(") ≥ 0.

Next, we solve for the traders’ best-response to a given mixing probability @. To this end,

we compute the expected trading profits for an individual trader with a private signal about

�" , E[Π8 |18 = 1], and for an individual trader with a private signal about ��, E[Π8 |18 = 0], using

Π8 = H8(+−%) and the results in Proposition 1. We showbelow that the traders’ best response to any

@ ∈ [0, 1] is a "(@) strictly between the two boundaries 0 and 1. Therefore, we can find the trader’s

best-response from the indifference condition, E[Π8 |18 = 1; " = "(@)] = E[Π8 |18 = 0; " = "(@)].

Lemma 2 (Best-Response Function: Trader) Given the trading and investment equilibrium in Propo-

sition 1, the trader’s best-response function to a given @ ∈ [0, 1] is given by:

1. If � ∈ (−1, 0]: "(@) ∈ (0, 1) and "′(@) ≥ 0;

2. If � ∈ (0, 1]: "(@) ∈ (0, 1) and "′(@) ≤ 0.

The exact expressions for "(@) are given in the Appendix.

Proof: See Appendix A.1.3.

Lemma 2 characterizes the traders’ best-response function to the firm’s information choice

@ ∈ [0, 1]. In general, traders know that choosing a low (high) mixing probability " when the firm

chooses a high (low) mixing probability @, makes it more likely that they buy (sell) when the firm

14



has received a "high" ("low") private signal about one of the two fundamentals. In other words, the

information overlap (with regards to �� or �") between the firm and traders is maximized at either

{" = 0, @ = 1} or {" = 1, @ = 0}. In the former case, the firm and all traders learn �� perfectly. In

the latter case, traders learn �" perfectly, while the firm ismost likely to learn �" (with probability

�$). While it might appear that traders should always try to align their information choices with

that of the firm, the results in Lemma 2 show that this intuition does not always hold in our setting.

If the project’s ex ante NPV is negative (� ≤ 0), " is increasing in @. As a result, traders are more

(less) likely to learn about �" , if the firm is more (less) likely to specialize in ��. The intuition for

the traders’ incentive to acquire different information from the firm is as follows. Suppose a trader

has received a "low" signal (�8 = !) and (optimally) sold the firm’s asset as shown in Proposition 1.

If the firm learns about the same shock, it will optimally choose not to invest and the asset’s payoff

would be zero. If, however, the firm learns about the other shock, it might receive a "high" signal

and set  = 1 if % ∈ P. In this case, the asset’s payoff is equal to 1 × � ≤ 0, which is preferable for

the trader who sold the asset. Alternatively, suppose a trader has received a "high" signal (�8 = �)

and bought the asset. The trader wants the firm to invest, but only if both components are "high"

because the payoff would again be equal to �, and thus negative, otherwise. It follows that it is

again preferable for the trader if the firm acquires information about the other shock because the

firm will never invest after a "low" private signal.

Perhaps surprisingly, the traders’ incentives to acquire information are reversed for positive

NPV projects (� > 0). In this case, traders are more (less) likely to learn about "−information,

if the firm becomes less (more) likely to specialize in �−information. The reason traders want to

align their information choice with the firm is as follows. As before, suppose a trader has received

a low signal �8 = ! and sold the asset anticipating a low payoff. Now, the trader is worse off if

the firm acquires information about the other shock because the firmmight receive a "high" signal

about the other shock and invest. The resulting payoffwould be equal to 1×� > 0 and thus greater

than the payoff if the firm did not invest. Similarly, if the trader receives a "high" signal and buys,

he wants the firm to also receive a high signal to make sure the firm will invest such that the asset
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Figure 2: Best-response functions for the firm (solid, red) and an individual trader (dashed, blue). Parameters: $ = 1
2 and � = 1.

payoff is positive.

Figure 2 plots the firm’s and the traders’ best-response functions for a set of parameter values.

The solid, red line corresponds to the firm and the dashed, blue line to an individual trader. In

both panels, the firm’s best-response is an increasing step-function of ": up to a threshold value

", the firm sets @ = 0, at the threshold value the firm is indifferent, and for " > ", the firm sets

@ = 1. The traders’ best-response, however, differs fundamentally across the two panels. In Panel

(a), for � ≤ 0, the traders’ best-response is increasing in @. As a result, there might be two stable

equilibria in this case: @∗ = 0 and @∗ = 1.14 Panel (b) corresponds to � > 0 and shows that the the

traders’ best-response is decreasing in @ in this range. Hence, there will be a unique information

choice equilibrium for positive NPV projects. In the particular example in Figure 2 the unique

equilibrium is @∗ = 0.

Next, we will use these best-response functions to solve for the agents’ equilibrium information

choices @∗ and "∗.

Proposition 2 (Information Choice Equilibrium) The firm’s and the traders’ equilibrium information

choices are given by:

1. If � ∈
(
−1,− 1

2
]
, there is a unique equilibrium with "∗ = 1

2 and @∗ = 0;

2. If � ∈
(
−1

2 , 0
]
, there is either a unique equilibrium or two equilibria with "∗ ∈

[ 1
2 , 1

)
and @∗ ∈ {0, 1};

14Note that the interior equilibrium is not stable: any small perturbation around @∗(0, 1) would imply a convergence to one of the two
corner equilibria. In the following, we will focus on stable equilibria. Section 4.2 discusses equilibrium multiplicity in more detail.
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3. If � ∈
(
0, 1

2
]
, there is a unique equilibrium with "∗ ∈

(
0, 1

2
)
and @∗ ∈ [0, 1];

4. If � ∈
( 1

2 , 1
]
, there is a unique equilibrium with "∗ = 1

2 and @∗ = 1;

We provide the explicit expressions for "∗ and @∗ in the Appendix.

Proof: See Appendix A.1.4.

Proposition 2 characterizes the firm’s and the traders’ optimal information choices, @∗ and "∗.

We can see that there are four distinct regions for the project’s ex ante NPV �. First, if � is very

small, the firm is forced to privately learn about �� and �" , i.e. to choose @∗ = 0. If the firm

specialized in �−information, traders would not have an incentive to trade because there would

be no information rents. Intuitively, @∗ = 1 would imply that the firm does not receive a private

signal about �" . As a result, it will only invest in the project after observing a price signal that

reveals �" = �. However, in this case"−informed traders make zero profits because either  = 0,

which implies that + = 0, or  = 1, but their private information is perfectly priced-in by the

market maker. In equilibrium, traders split evenly between the two shocks: half of them become

"−informed and the other half �−informed. This result is quite striking because it implies that the

firm is willing to sacrifice a perfect signal about �� for noisy signals about both shocks independent

of their signal precision, i.e. for all (�, $) ∈ (0, 1]2.

Second, if the project’s NPV is very large, we obtain the exact opposite outcome. In this case,

the firm can afford to specialize in �−information because traders are incentivized to produce

"−information in any case. Intuitively, the high project NPV implies that the firm will invest

even without learning "−information from the price signal. Consequently, "−informed traders

make positive trading profits and the firm can learn about �" from the stock price. In equilibrium

traders again acquire information about both shocks evenly because they obtain an equally-precise

signal along both dimensions.

If the NPV is moderately negative, the best-response functions for the firm and for traders

are increasing, which can lead to multiple equilibria. In particular, the firm will always end

up at a corner solution with @∗ = 0 or @∗ = 1, while the majority of traders becomes informed

about "−information, i.e. "∗ > 1
2 . As shown in Lemma 2, traders want to acquire different
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information from the firm in this case, which is thus compatible with the firm’s preference for

different information (Lemma 1). At both equilibria @∗ = 0 and @∗ = 1, the firm acquires more

precise information about ��, because � ≤ 1. Hence, it is more profitable for traders to tilt their

information acquisition towards �" .

Finally, if the NPV is moderately positive, the two best-response functions have a unique

intersection. In this case, there is a conflict between the strategic incentives of the firm and traders.

Traders want to acquire similar information, while the firmwants to acquire different information.

This mismatch leads to a unique equilibrium and, more specifically, to the possibility of an interior

equilibrium for @∗. For all @, traders tilt their information choice towards �� such that "∗ < 1
2 .

Corollary 1 (The impact of �) The equilibrium information choices satisfy:

1. If @∗ = 1, "∗ does not depend on �;

2. If @∗ = 0, "∗ is decreasing in � if � ≤ 0 and increasing in � if � > 0;

3. If @∗ ∈ (0, 1), "∗ is increasing in � and @∗ is decreasing in �.

Proof: See Appendix A.1.5.

Corollary 1 characterizes the dependence of "∗ and @∗ on �, which captures the firm’s ability

to learn "−information. An increase in � indicates that the firm can obtain a more precise signal

about �" . In the pure-strategy equilibrium with @∗ = 1, the firm learns �� perfectly such that "∗

does not depend on �. In the other pure-strategy equilibrium with @∗ = 0, "∗ can either increase

or decrease with �. More specifically, it decreases with � if the project’s ex ante NPV is negative

and it increases with it otherwise. Intuitively, an increase in � increases the firm’s overall signal

precision with regards to "−information. As shown before, traders want to acquire different

information for � ≤ 0 such that this increase is translated into a smaller share of "−informed

traders. Vice versa, for � > 0 traders want to acquire similar information such that an increase in �

is accompanied by an increase in "∗. The same intuition applies to the mixed-strategy equilibrium,

which only occurs for positive NPV projects.
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Figure 3: Equilibrium mixing probability for traders as a function of �. Parameters: $ = 3
4 . Solid red line: @∗ = 1; Dashed blue line:

@∗ = 0; Dotted black line: @∗ ∈ (0, 1).

Figure 3 plots "∗, the equilibrium share of"−informed traders, against �. Panel (a) corresponds

to a negative ex ante NPV project with � = − 2
5 and Panel (b) to a positive ex ante NPV project with

� = 2
5 . In both cases, the solid red line represents equilibria with @∗ = 1, the dashed blue line those

with @∗ = 0, and the dotted black line interior equilibria with @∗ ∈ (0, 1). Panel (a) confirms the

weakly negative relationship between "∗ and � for negative NPV projects. It also emphasizes the

possibility of multiple equilibria in this scenario. In Panel (b), there is a unique equilibrium and

"∗ is weakly increasing in �. For small values of �, the unique equilibrium is @∗ = 1. Then, any

increase in � leads to a decrease in @∗. This figure also emphasizes the result in Proposition 2 that

a majority (minority) of traders acquires "−information if the ex ante NPV is negative (positive).

Corollary 2 (The impact of $) The equilibrium information choices satisfy:

1. If @∗ = 1, "∗ does not depend on $;

2. If @∗ = 0, "∗ is increasing in $ if � ≤ 0 and decreasing in $ if � > 0;

3. If @∗ ∈ (0, 1), "∗ is increasing in $ and @∗ is decreasing in $.

Proof: See Appendix A.1.6.

In Corollary 2, we investigate the impact of $, the precision of the firm’s exogenous signal about

��. As before, "∗ does not depend on $ in the pure-strategy equilibrium with @∗ = 1 because the

firmacquires a perfect signal about��. If @∗ = 0, an increase in$ leads tomore"−informed traders
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Figure 4: Equilibrium mixing probability for traders as a function of $. Parameters: � = 3
4 . Solid red line: @∗ = 1; Dashed blue line:

@∗ = 0; Dotted black line: @∗ ∈ (0, 1).

for negative NPV projects because traders have an incentive to acquire different information. It

leads to less "−informed traders for positive NPV projects, because traders want to mimic the

firm’s information choice. In this specific case, an increase in $ lowers the informational content of

the stock price with regards to"−information, which is particularly valuable for the firm because

its private signal along this dimension is less precise. We will show below that this indirect effect

mitigates, and in some cases even overturns, the positive impact of $ on the firm’s expected value.

Figure 4 evaluates the relationship between $ and "∗ numerically.

4 Model Implications

4.1 Efficiency Implications

Next, we analyze the efficiency implications of the agents’ information acquisition decisions.

We focus on two widely used efficiency measures, real efficiency and price efficiency. Both measures

are formally defined next.

Definition 2 (Efficiency) We define the following two measures of efficiency.

1. Real efficiency is defined as the ex ante expected firm value:

'� ≡ E[+].

2. Price efficiency is defined as the relative reduction in payoff uncertainty that can be achieved by
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conditioning on the price:

%� ≡ 1 − E[Var(+ |%)]
Var(+) .

First, we define real efficiency ('�) as the ex ante expectation of the firm’s realized long-term

value + as in Goldstein et al. (2013) and Goldstein and Yang (2019). This measure captures the

extent to which the firm correctly invests in the growth opportunity, i.e. it chooses  = 1 when the

ex-post NPV, G�" + G�� , is positive.

Second, our definition of price efficiency (%�) captures the informational content of the price. It

is equal to the proportion of the unconditional payoff variance that can be reduced by conditioning

on the equilibrium stock price %.15 Note that in our setting the conditional variance is a random

variable that depends on the specific price realization. For example, if the price takes on its highest

possible value Var (+ |%) = 0 because the price reveals �" = �� = � perfectly. Thismeasure of price

efficiency has been often used in the existing literature as a proxy for the information content of

the stock price (see e.g., Peress, 2010; Edmans et al., 2016). Price efficiency is maximized at %� = 1,

if the price always reveals the future payoff perfectly, and minimized at %� = 0, if observing the

price does not add any information. Next, we will derive these two efficiency measures based on

the equilibria in Proposition 1 and Proposition 2.

To compute real efficiency as a function of model parameters, we use the definition of the firm’s

terminal value + =  
(
G�" + G��

)
, plug in the optimal investment policy derived in Proposition 1

together with the optimal information choices derived in Proposition 2, and take an unconditional

expectation over the independent random variables (�" , �� , I).

Proposition 3 (Equilibrium '�) Equilibrium real efficiency has the following properties:

1. If @∗ = 1, real efficiency is increasing in �; it does not depend on � and $;

2. If @∗ = 0, real efficiency is increasing in � and �; it is either increasing or decreasing in $;

3. If @∗ ∈ (0, 1), real efficiency is increasing in �, �, and $.
15Banerjee et al. (2018) and Frenkel et al. (2020) use a similar measure and define price efficiency as the absolute reduction in payoff
variance. Our main results are robust to this alternative specification. In recent empirical work, Dávila and Parlatore (2018) and
Dávila and Parlatore (2019) use price volatility and regression R-squareds to identify price efficiency.
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Figure 5: Real Efficiency as a function of � and $. Parameters: � = 1 and � = 1
2 . Solid red line: @∗ = 1; Dashed blue line: @∗ = 0.

We provide the explicit expressions for '� in the Appendix.

Proof: See Appendix A.1.7.

Proposition 3 describes the dependency of real efficiency on the model parameters �, �, and $

in the three different types of equilibria. For all three types, real efficiency is increasing in � and

�, while it might be decreasing in $. Intuitively, an increase in � = �
� increases the ex ante NPV of

the project and, as expected, translates into a higher ex ante firm value. It is worth noting, that this

positive direct effect could bemitigated by the indirect effect through "∗. For instance, in equilibria

with @∗ = 0, "∗ is always decreasing in �, while E[+] is generally increasing in ". Similarly, � and

$ have both a (positive) direct effect and a potentially negative indirect effect on E[+]. On the one

hand, an increase in both parameters increases the precision of the firm’s private signals. On the

other hand, it can lead to a reduction in "∗, which in turn might lower real efficiency. For � the

positive direct effect always dominates, while for $ the negative indirect effect might dominate. In

the latter case, real efficiency is decreasing in $. Figure 5 plots real efficiency against � and $ for

a fixed set of model parameters.

Proposition 4 (Equilibrium %�) Consider � → 1, equilibrium price efficiency has the following proper-

ties:

1. If @∗ = 1, price efficiency is decreasing in �; it does not depend on $;

2. If @∗ = 0, price efficiency is decreasing in �; it can be increasing or decreasing in $;
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Figure 6: Price Efficiency as a function of � and $. Parameters: � = 1 and � = 1
2 . Solid red line: @∗ = 1; Dashed blue line: @∗ = 0.

3. If @∗ ∈ (0, 1), price efficiency can be increasing or decreasing in � and $.

We provide the explicit expressions for %� in the Appendix.

Proof: See Appendix A.1.8.

In Proposition 4, we analyze the ramifications for price efficiency.16 First, we show that price

efficiency is decreasing in � in the pure-strategy equilibriawith either @∗ = 0 or @∗ = 1, which creates

a stark mismatch between price efficiency and real efficiency because the latter was increasing in

� (see Proposition 3). The same is true, to some extent, for $. In the equilibrium with @∗ ∈ (0, 1),

$ has an ambiguous impact on price efficiency, while it had a positive impact on real efficiency.

Figure 6 plots price efficiency against � and $. The figure confirms the negative relationship

between %� and �, and the ambiguous relationship between %� and $.

4.2 Multiplicity and Jumps

An interesting implication of our setting is the possibility of multiple information choice equi-

libria for negative NPV projects (see Proposition 2). In this case, the firm and traders want to

acquire information that differs from that acquired by the other party. Next, we analyze the two

stable equilibria in this scenario more thoroughly.

Proposition 5 (EquilibriumMultiplicity) If (�, �, $) ∈ ℛmult, where ℛmult is formally defined in the
16To obtain analytical results, we consider the limit �→ 1. However, this assumption is not crucial as shown in the numerical example
in Figure 6.
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Appendix, there will be two stable information choice equilibria (@∗1 = 0, "∗1) and (@∗2 = 1, "∗2) with 1
2 < "∗1 <

"∗2 < 1. In this case, we obtain:

1. Expected trading profits are higher if (@∗2 = 1, "∗2);

2. Real efficiency can be higher in either stable equilibrium;

3. Price efficiency can be higher in either stable equilibrium.

Proof: See Appendix A.1.9.

Proposition 5 formally characterizes the parameter space that leads to two stable equilibria. We

know from the results in Proposition 2 that this scenario only arises for negative NPV projects with

� ≤ 0 because the best-response functions for traders and the firm are jointly increasing. Moreover,

the firm either chooses @∗ = 0 or @∗ = 1 and traders focus primarily on "−information, i.e. "∗ > 1
2 .

Traders’ expected profits are always higher if @∗ = 1, i.e. if the firm fully specializes in

�−information and acquires a perfect signal about ��. However, real efficiency and price effi-

ciency could be higher in the equilibrium with @∗ = 0. The two latter results can also be seen in

Figure 5 and Figure 6. In both figures, the solid red line corresponds to @∗ = 1 and the dashed blue

line to @∗ = 0. For instance in Panel (a) of Figure 5, real efficiency is higher for @∗ = 1, while it is

higher for @∗ = 0 in Panel (b). Figure 6 shows a similar result for price efficiency.

These two figures also emphasize the possibility for jumps in price efficiency and real efficiency.

Consider for instance Panel (b) in Figure 5. In this example, we obtain two stable equilibria

for values of $ between ≈ 0.67 and ≈ 0.8. Independent of the equilibrium that traders and

the firm coordinate on, a marginal shift in the model parameter $ will eventually lead to a

discontinuous drop in real efficiency. A similar result arises for an increase in the project’s NPV �

andFigure 6 illustrates the same effect for price efficiency. Quite interestingly, the source ofmultiple

equilibria in our model is the incentive of traders and the firm to acquire different information. This

channel distinguishes our mechanism from the existing literature (see e.g., Barlevy and Veronesi,

2000; Garcia and Strobl, 2011; Goldstein et al., 2014; Mele and Sangiorgi, 2015) in which learning

complementarities among traders lead to multiple equilibria.
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5 Conclusion

We consider a model in which a real-decision maker (the firm) and traders in a financial market

are allowed to collect information simultaneously. The resulting information choice equilibrium

highlights a potential coordination problem. For positive NPV projects, the firm wants traders

to acquire information that differs from its own choice, while traders want to collect the same

information. For negative NPV projects, the incentives are aligned, which can lead to multiple

equilibria. We also show that the simultaneous choice of information by both parties can lead to a

mismatch between price efficiency and real efficiency.
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A Appendix

A.1 Proofs

A.1.1 Proof of Proposition 1

We proceed as follows. We first take the traders’ and the firm’s information choice as given. It

follows that a mass " of traders receives a perfect signal about �" and a mass (1 − ") receives a

perfect signal about ��. The firm observes a perfect signal about �� with probability @ + (1 − @)$

or a perfect signal about �" with probability (1 − @)�$, and no signal otherwise. Moreover, we

conjecture that each trader’s optimal trading policy is to buy after a "high" signal and to sell after

a "low" signal.

Given that noise traders trade a random amount I ∼ *[−1, 1], we get the following four

possibilities for total order flow .:

1. if �" = � and �� = �: . = -�� + I with -�� ≡ 1;

2. if �" = � and �� = !: . = -�! + I with -�! ≡ 2" − 1;

3. if �" = ! and �� = �: . = -!� + I with -!� ≡ 1 − 2";

4. if �" = ! and �� = !: . = -!! + I with -!! ≡ −1.

Themarketmaker observes total order flow. and sets the price equal to the expected firm value

E[+ |.]. Next, we distinguish between " ≥ 1
2 and " < 1

2 . In the first case, . is more informative

about �" , in the the second case it is more informative about ��. It follows from I ∼ *[−1, 1] that

the market maker learns the following information about �" and �� from .:

1. If " ≥ 1
2 :

(a) . > -�! + 1: (�" = �, �� = �);

(b) -�! + 1 > . > -!� + 1: (�" = �, �� = �) or (�" = �, �� = !);

(c) -!� + 1 > . > 0: (�" = �, �� = �), (�" = �, �� = !), or (�" = !, �� = �);

(d) 0 > . > -�! − 1: (�" = �, �� = !), (�" = !, �� = �), or (�" = !, �� = !);
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(e) -�! − 1 > . > -!� − 1: (�" = !, �� = !) or (�" = !, �� = �);

(f) -!� − 1 > .: (�" = !, �� = !).

2. If " < 1
2 :

(a) . > -!� + 1: (�" = �, �� = �);

(b) -!� + 1 > . > -�! + 1: (�" = �, �� = �) or (�" = !, �� = �);

(c) -�! + 1 > . > 0: (�" = �, �� = �), (�" = �, �� = !), or (�" = !, �� = �);

(d) 0 > . > -!� − 1: (�" = �, �� = !), (�" = !, �� = �), or (�" = !, �� = !);

(e) -!� − 1 > . > -�! − 1: (�" = !, �� = !) or (�" = �, �� = !);

(f) -�! − 1 > .: (�" = !, �� = !).

Next,wederive thefirm’s optimal investmentdecisionand the equilibriumstockprice. Through-

out, we will first derive the equilibrium stock price based on the conjectured investment policy. In

a second step, we will verify the conjecture.

1. If � ∈
(
−1,− 1

2
]
:

(a) " ≥ 1
2 : if 0 = 1, the firm invests if B2 = � and ? ∈ {?1 , ?2}; if 0 = 0, the firm invests if

B1 = B2 = � or if ? = ?1 or if B1 = � and ? = ?2. The equilibrium stock price is given by

% = ?(.) with:

?(.) =



?1 = � + � if . > -�! + 1

?2 = 1
2
(
@ + (1 − @)$

)
(� + �) if -�! + 1 > . > -!� + 1

?3 = 1
3 (1 − @)�$2(� + �) if -!� + 1 > . > 0

0 if . < 0.

If % = ?1, the firm knows that �" = �� = � such that the expected NPV is equal to

� + � > 0. If % = ?2, the firm learns that �" = � and invests only if it also learns that

�� = � from the private signal. If % = ?3, the firm learns no additional information and

only invests if both private signals B1 and B2 are high, if 0 = 0.
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(b) " < 1
2 : if 0 = 1, the firm invests if B2 = � and ? = ?1; if 0 = 0, the firm invests if B1 = B2 = �

or if ? = ?1 or if B2 = � and ? = ?2. The equilibrium stock price is given by % = ?(.) with:

?(.) =



?1 = � + � if . > -!� + 1

?2 = 1
2 (1 − @)�$(� + �) if -!� + 1 > . > -�! + 1

?3 = 1
3 (1 − @)�$2(� + �) if -�! + 1 > . > 0

0 if . < 0.

If % = ?1, the firm knows that �" = �� = � such that the expected NPV is equal to

� + � > 0. If % = ?2, the firm learns that �" = � and invests only if it also learns that

�" = � from the private signal. If % = ?3, the firm learns no additional information and

only invests if both private signals B1 and B2 are high, if 0 = 0.

2. If � ∈
(
− 1

2 ,− 1
3
]
:

(a) " ≥ 1
2 : if 0 = 1, the firm invests if B2 = � and ? ∈ {?1 , ?2 , ?3}; if 0 = 0, the firm invests if

B1 = B2 = � or if ? = ?1 or if B1 6= ! and ? = ?2 or if ? = ?3 and either B1 = � and B2 = ∅ or
B2 = � and B1 = ∅. The equilibrium stock price is given by % = ?(.) with:

?(.) =


?1 = � + � if . > -�! + 1

?2 = 1
2 (� + �) + 1

2 (1 − @)(1 − $)� if -�! + 1 > . > -!� + 1

?3 = 1
3
(
�(@ − 1)$2(3� + �) − (� + 1)(@ − 1)$(2� + �) + @(2� + �)

)
if -!� + 1 > . > 0

0 if . < 0.

If % = ?1, the firm knows that �" = �� = � such that the expected NPV is equal to

� + � > 0. If % = ?2, the firm learns that �" = � and invests as long as it does not learn

that �� = !. If % = ?3, the firm learns no additional information and only invests if either

private signal is high and the other one is uninformative or high.
(b) " < 1

2 : if 0 = 1, the firm invests if B2 = � and ? ∈ {?1 , ?2 , ?3}; if 0 = 0, the firm invests if
B1 = B2 = � or if ? = ?1 or if B2 6= ! and ? = ?2 or if ? = ?3 and either B1 = � or B2 = �.
The equilibrium stock price is given by % = ?(.) with:

?(.) =


?1 = � + � if . > -�! + 1

?2 = 1
2 (�(�(@ − 1)$ + 2) + �) if -�! + 1 > . > -!� + 1

?3 = 1
3
(
�(@ − 1)$2(3� + �) − (� + 1)(@ − 1)$(2� + �) + @(2� + �)

)
if -!� + 1 > . > 0

0 if . < 0.

If % = ?1, the firm knows that �" = �� = � such that the expected NPV is equal to

� + � > 0. If % = ?2, the firm learns that �� = � and invests as long as it does not learn
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that �" = !. If % = ?3, the firm learns no additional information and only invests if either

private signal is high and the other one is uninformative or high.

3. If � ∈
(
− 1

3 , 0
]
:

(a) " ≥ 1
2 : if 0 = 1, the firm invests if B2 = � and ? ∈ {?1 , ?2 , ?3}; if 0 = 0, the firm invests if

B1 = B2 = � or if ? = ?1 or if B1 6= ! and ? = ?2 or if ? = ?3 and either B1 = � or B2 = � or

B1 = B2 = ∅. The equilibrium stock price is given by % = ?(.) with:

?(.) =



?1 = � + � if . > -�! + 1

?2 = 1
2 (� + �) + 1

2 (1 − @)(1 − $)� if -�! + 1 > . > -!� + 1

?3 = 1
3 (�((� + 1)(@ − 1)$ − @ + 3) + �) if -!� + 1 > . > 0

0 if . < 0.

If % = ?1, the firm knows that �" = �� = � such that the expected NPV is equal to

� + � > 0. If % = ?2, the firm learns that �" = � and invests as long as it does not learn

that �� = !. If % = ?3, the firm learns no additional information and only invests if it

does not learn that one shock is low.

(b) " < 1
2 : if 0 = 1, the firm invests if B2 = � and ? ∈ {?1 , ?2 , ?3}; if 0 = 0, the firm invests if

B1 = B2 = � or if ? = ?1 or if B2 6= ! and ? = ?2 or if ? = ?3 and either B1 = � or B2 = � or

B1 = B2 = ∅. The equilibrium stock price is given by % = ?(.) with:

?(.) =



?1 = � + � if . > -�! + 1

?2 = 1
2 (�(�(@ − 1)$ + 2) + �) if -�! + 1 > . > -!� + 1

?3 = 1
3 (�((� + 1)(@ − 1)$ − @ + 3) + �) if -!� + 1 > . > 0

0 if . < 0.

If % = ?1, the firm knows that �" = �� = � such that the expected NPV is equal to

� + � > 0. If % = ?2, the firm learns that �� = � and invests as long as it does not learn

that �" = !. If % = ?3, the firm learns no additional information and only invests if it

does not learn that one shock is low.
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4. If � ∈
(
0, 1

3
]
:

(a) " ≥ 1
2 : the firm always invest if at least one private signal is equal to �; it also invests if

? ∈ {?1 , ?2 , ?3};

?(.) =



?1 = � + � if . > -�! + 1

?2 = � + �
2 if -�! + 1 > . > -!� + 1

?3 = � + �
3 if -!� + 1 > . > 0

?4 = 1
3�(@ − (� + 1)(@ − 1)$) if 0 > . > -�! − 1

?5 = 1
2�(@(−$) + @ + $) if -�! − 1 > . > -!� − 1

?6 = 0 if -!� − 1 > .

If one private signal is �, the expected project NPV cannot be negative. Similarly, ? > ?4

rules out the possibility that both shocks are low.

(b) " < 1
2 : " ≥ 1

2 : the firm always invest if at least one private signal is equal to �; it also

invests if ? ∈ {?1 , ?2 , ?3};

?(.) =



?1 = � + � if . > -!� + 1

?2 = � + �
2 if -!� + 1 > . > -�! + 1

?3 = � + �
3 if -�! + 1 > . > 0

?4 = 1
3�(@ − (� + 1)(@ − 1)$) if 0 > . > -!� − 1

?5 = − 1
2��(@ − 1)$ if -!� − 1 > . > -�! − 1

?6 = 0 if -�! − 1 > .

If one private signal is �, the expected project NPV cannot be negative. Similarly, ? > ?4

rules out the possibility that both shocks are low.

5. If � ∈
( 1

3 ,
1
2
]
:

(a) " ≥ 1
2 : the firm always invest if at least one private signal is equal to �; it also invests

if ? ∈ {?1 , ?2 , ?3}; if ? = ?4 the firm invests as long as it does not receive a low private
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signal.

?(.) =



?1 = � + � if . > -�! + 1

?2 = � + �
2 if -�! + 1 > . > -!� + 1

?3 = � + �
3 if -!� + 1 > . > 0

?4 = 1
3
(
�

(
−3�(@ − 1)$2 + 2(� + 1)(@ − 1)$ − 2@ + 3

)
+ (@ − 1)�($ − 1)(�$ − 1)

)
if 0 > . > -�! − 1

?5 = 1
2�(@(−$) + @ + $) if -�! − 1 > . > -!� − 1

?6 = 0 if -!� − 1 > .

If one private signal is �, the expected project NPV cannot be negative. Similarly, ? > ?4

rules out the possibility that both shocks are low. If ? = ?4, the possibilities are {�, !},

{!, �}, and {!, !} such that the NPV is positive if there is no low private signal.
(b) " < 1

2 : the firm always invest if at least one private signal is equal to �; it also invests
if ? ∈ {?1 , ?2 , ?3}; if ? = ?4 the firm invests as long as it does not receive a low private
signal.

?(.) =



?1 = � + � if . > -!� + 1

?2 = � + �
2 if -!� + 1 > . > -�! + 1

?3 = � + �
3 if -�! + 1 > . > 0

?4 = 1
3
(
�

(
−3�(@ − 1)$2 + 2(� + 1)(@ − 1)$ − 2@ + 3

)
+ (@ − 1)�($ − 1)(�$ − 1)

)
if 0 > . > -!� − 1

?5 = − 1
2 ��(@ − 1)$ if -!� − 1 > . > -�! − 1

?6 = 0 if -�! − 1 > .

If one private signal is �, the expected project NPV cannot be negative. Similarly, ? > ?4

rules out the possibility that both shocks are low. If ? = ?4, the possibilities are {�, !},

{!, �}, and {!, !} such that the NPV is positive if there is no low private signal.

6. If � ∈
( 1

2 , 1
]
: the firm invests as long as it does not learn that both shocks are low.

(a) " ≥ 1
2 :

?(.) =



?1 = � + � if . > -�! + 1

?2 = � + �
2 if -�! + 1 > . > -!� + 1

?3 = � + �
3 if -!� + 1 > . > 0

?4 = 1
3
(
2� + (@ − 1)

(
�$2 − 1

)
(� − �)

)
if 0 > . > -�! − 1

?5 = 1
2 (� + (@ − 1)($ − 1)(� − �)) if -�! − 1 > . > -!� − 1

?6 = 0 if -!� − 1 > .

35



The only prices consistent with {!, !} are ?4, ?5, and ?6. If ? = ?4, it requires two negative

private signals to choose  = 0. If ? = ?5, it requires a low signal about �� not to invest

and if ? = ?6 the only possibility is that both shocks are low.

(b) " < 1
2 : the firm invests as long as it does not learn that both shocks are low.

?(.) =



?1 = � + � if . > -!� + 1

?2 = � + �
2 if -!� + 1 > . > -�! + 1

?3 = � + �
3 if -�! + 1 > . > 0

?4 = 1
3
(
2� + (@ − 1)

(
�$2 − 1

)
(� − �)

)
if 0 > . > -!� − 1

?5 = 1
2 (� + (� − �)(�(@ − 1)$ + 1)) if -!� − 1 > . > -�! − 1

?6 = 0 if -�! − 1 > .

The only prices consistent with {!, !} are ?4, ?5, and ?6. If ? = ?4, it requires two negative

private signals to choose  = 0. If ? = ?5, it requires a low signal about �" not to invest

and if ? = ?6 the only possibility is that both shocks are low.

Finally, we have to verify the conjectured trading policy. To this end, we first compute the

expected stock price and firm value for the four different combinations of �" and ��. For the

expected stock price, we can use the pricing function derived above together with the distribution

of .. For the expected firm value, we can use the conjectured pricing function and investment

policy.

1. � ∈
(
−1,−1

2
]
:

(a) " ≥ 1
2 :

i. �" = �, �� = �:

E[% |��] = 1
6(�+�)

(
2�(@−1)("−1)$2−3(@−1)(2"−1)$+ @(6"−3)−6"+6

)
and

E[+ |��] = (� + �)
(
�(@ − 1)(" − 1)$2 + (2" − 1)(@(−$) + @ + $) − " + 1

)
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ii. �" = �, �� = !:

E[% |�!] = 1
6(� + �)

(
2�(@ − 1)(" − 1)$2 − 3(@ − 1)(2" − 1)$ + 3@(2" − 1)

)
and

E[+ |�!] = 0

iii. �" = !, �� = �:

E[% |!�] = 1
3�(@ − 1)(" − 1)$2(� + �)

and
E[+ |!�] = 0

iv. �" = !, �� = !:
E[% |!!] = 0

and
E[+ |!!] = 0

(b) " < 1
2 :

i. �" = �, �� = �:
E[% |��] =

and
E[+ |��] = (� + �)(�(−(@ − 1))"($ − 2)$ − �(@ − 1)$ + ")

ii. �" = �, �� = !:

E[% |�!] = −1
3�(@ − 1)"$2(� + �)

and
E[+ |�!] = 0

iii. �" = !, �� = �:

E[% |!�] = −1
6�(@ − 1)$(� + �)(2"($ − 3) + 3)

and
E[+ |!�] = 0

iv. �" = !, �� = !:
E[% |!!] = 0

and
E[+ |!!] = 0
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2. � ∈
(
− 1

2 ,− 1
3
]
:

(a) " ≥ 1
2 :

i. �" = �, �� = �:

E[% |��] = 1
12

(
12�" − 4�(@ − 1)(" − 1)$2(3� + �)

+ (@ − 1)$(2�(4�(" − 1) + 10" − 7) + 4(� + 1)�(" − 1))
− 20�@" + 14�@ − 4@�" + 4@� + 6�

)
and

E[+ |��] = (� + �)((1 − ")((@ − 1)$(�($ − 1) − 1) + @) + ")

ii. �" = �, �� = !:

E[% |�!] = 1
6

(
12�" − 6� − 2�(@ − 1)(" − 1)$2(3� + �)

+ (@ − 1)$(�(4�(" − 1) + 10" − 7) + 2(� + 1)�(" − 1))
− 10�@" + 7�@ − 2@�" + 2@� + 6�" − 3�

)
and

E[+ |�!] = �(−(@ − 1))($ − 1)(�(" − 1)$ − 2" + 1)

iii. �" = !, �� = �:

E[% |!�] = 1
3("−1)

(
�(−(@−1))$2(3�+�)+ (�+1)(@−1)$(2�+�)− @(2�+�)

)
and

E[+ |!�] = �(1 − ")((@ − 1)$(�$ − 1) + @)

iv. �" = !, �� = !:
E[% |!!] = 0

and
E[+ |!!] = 0

(b) " < 1
2 :

i. �" = �, �� = �:

E[% |��] = 1
6

(
2�(@ − 1)"$2(3� + �)

− (@ − 1)$(2"(5�� + �� + 2� + �)− 3��) + �((4@ − 6)" + 6) + 2@�" + 3�
)

and
E[+ |��] = (� + �)((@ − 1)"($ − 1)(�$ − 1) + 1)
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ii. �" = �, �� = !:

E[% |�!] = 1
3"

(
�(@ − 1)$2(3� + �) − (� + 1)(@ − 1)$(2� + �) + @(2� + �)

)
and

E[+ |�!] = ��(@ − 1)"($ − 1)$

iii. �" = !, �� = �:

E[% |!�] = 1
6

(
2�(@ − 1)"$2(3� + �)

− (@ − 1)$(2"(5�� + �� + 2� + �) − 3��) + (2� + �)(2(@ − 3)" + 3)
)

and
E[+ |!�] = �("((@ − 1)$(�$ − 1) + @) − (2" − 1)(�(@ − 1)$ + 1))

iv. �" = !, �� = !:
E[% |!!] = 0

and
E[+ |!!] = 0

3. � ∈
(
− 1

3 , 0
]
:

(a) " ≥ 1
2 :

i. �" = �, �� = �:

E[% |��] = 1
6(�(−(@ − 1)$(2�(" − 1) − 4" + 1) − 4@" + @ + 6) + �(5 − 2"))

and
E[+ |��] = � + �

ii. �" = �, �� = !:

E[% |�!] = 1
6(6�" − �(@ − 1)$(2�(" − 1)− 4" + 1)− 4�@" + �@ + 4�" − �)

and
E[+ |�!] = �(@ − 1)"($ − 1)

iii. �" = !, �� = �:

E[% |!�] = 1
3(" − 1)(�(−(� + 1)(@ − 1)$ + @ − 3) − �)

and
E[+ |!�] = −�(" − 1)(�(@ − 1)$ + 1)
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iv. �" = !, �� = !:
E[% |!!] = 0

and
E[+ |!!] = 0

(b) " < 1
2 :

i. �" = �, �� = �:

E[% |��] = 1
6(6� − �(@ − 1)$(�(4" − 3) − 2") − 2�@" + 2�" + 3�)

and
E[+ |��] = � + �

ii. �" = �, �� = !:

E[% |�!] = 1
3"(�((� + 1)(@ − 1)$ − @ + 3) + �)

and
E[+ |�!] = �(@ − 1)"($ − 1)

iii. �" = !, �� = �:

E[% |!�] = 1
6(�(−2"((2� − 1)(@ − 1)$ + @ + 3) + 3�(@ − 1)$ + 6) + �(3− 4"))

and
E[+ |!�] = −�(" − 1)(�(@ − 1)$ + 1)

iv. �" = !, �� = !:
E[% |!!] = 0

and
E[+ |!!] = 0

4. � ∈
(
0, 1

3
]
:

(a) " ≥ 1
2 :

i. �" = �, �� = �:
E[% |��] = � + 1

6�(5 − 2")

and
E[+ |��] = � + �
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ii. �" = �, �� = !:

E[% |�!] = 1
6(6�" + 2(� + 1)�(@ − 1)(" − 1)$ − 2�@" + 2�@ + 4�" − �)

and
E[+ |�!] = �(�(@ − 1)(" − 1)$ + ")

iii. �" = !, �� = �:

E[% |!�] = 1
6(�((@ − 1)$(2�(" − 1)− 4" + 1) + 4@" − @ − 6" + 6)− 2�(" − 1))

and
E[+ |!�] = � + �"(@(−$) + @ + $ − 1)

iv. �" = !, �� = !:

E[% |!!] = 1
6(�(@ − 1)$(2�(" − 1) − 4" + 1) + �@(4" − 1))

and
E[+ |!!] = 0

(b) " < 1
2 :

i. �" = �, �� = �:
E[% |��] = � + 1

6�(2" + 3)

and
E[+ |��] = � + �

ii. �" = �, �� = !:

E[% |�!] = 1
6(�(@ − 1)$(�(4" − 3) − 2") + 2"(�(@ + 3) + �))

and
E[+ |�!] = �(�(@ − 1)(" − 1)$ + ")

iii. �" = !, �� = �:

E[% |!�] = 1
6(2�("(−(� + 1)(@ − 1)$ + @ − 3) + 3) + �(3 − 4"))

and
E[+ |!�] = � + �"(@(−$) + @ + $ − 1)

iv. �" = !, �� = !:

E[% |!!] = 1
6(�(@ − 1)$(�(4" − 3) − 2") + 2�@")

and
E[+ |!!] = 0
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5. � ∈
( 1

3 ,
1
2
]
:

(a) " ≥ 1
2 :

i. �" = �, �� = �:
E[% |��] = � + 1

6�(5 − 2")

and
E[+ |��] = � + �

ii. �" = �, �� = !:

E[% |�!] = 1
3

(
3� + �(@ − 1)(" − 1)$2(3� − �)

− (� + 1)(@ − 1)(" − 1)$(2� − �) + 2�@" − 2�@ − @�" + @� + 3�"
)
− �

2

and
E[+ |�!] = �(−(" − 1)$(�$ − 1) + @(" − 1)($(�$ − 1) + 1) + 1)

iii. �" = !, �� = �:

E[% |!�] = 1
6

(
�

(
6�(@−1)("−1)$2−(@−1)$(4�("−1)+10"−7)+10@"−7@−12"+12

)
+ 2�(" − 1)(−($ − 1)(�(@ − 1)$ − @) − $)

)
and

E[+ |!�] = � + �(@ − 1)($ − 1)(�(" − 1)$ − 2" + 1)

iv. �" = !, �� = !:

E[% |!!] = 1
6

(
�

(
6�(@−1)("−1)$2−(@−1)$(4�("−1)+10"−7)+10@"−7@−6"+6

)
− 2(@ − 1)�(" − 1)($ − 1)(�$ − 1)

)
and

E[+ |!!] = (@ − 1)(" − 1)($ − 1)(�$ − 1)(� − �)

(b) " < 1
2 :

i. �" = �, �� = �:
E[% |��] = � + 1

6�(2" + 3)

and
E[+ |��] = � + �
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ii. �" = �, �� = !:

E[% |�!] = 1
6

(
−2�(@ − 1)"$2(3� − �)

+ (@ − 1)$(2(5� + 2)�" − 3�� − 2(� + 1)�") + 2"(@� − 2�(@ − 3))
)

and
E[+ |�!] = �(−(@ − 1)"($(�$ − 1) + 1) + �(@ − 1)(2" − 1)$ + ")

iii. �" = !, �� = �:

E[% |!�] = 1
12

(
12� + 4�(@ − 1)"$2(� − 3�)

+ 4(� + 1)(@ − 1)"$(2� − �) − 8�@" + 4@�" − 12�" + 6�
)

and
E[+ |!�] = � + ��"$(@(−$) + @ + $ − 1)

iv. �" = !, �� = !:

E[% |!!] = 1
6

(
�

(
−6�(@ − 1)"$2 + (@ − 1)$(�(10" − 3) + 4") + (6 − 4@)"

)
+ 2(@ − 1)�"($ − 1)(�$ − 1)

)
and

E[+ |!!] = −(@ − 1)"($ − 1)(�$ − 1)(� − �)

6. � ∈
( 1

2 , 1
]
:

(a) " ≥ 1
2 :

i. �" = �, �� = �:
E[% |��] = � + 1

6�(5 − 2")

and
E[+ |��] = � + �

ii. �" = �, �� = !:

E[% |�!] = 1
6

(
6�−2�(@−1)("−1)$2(�−�)+2�@"−2�@−2@�"+2@�+6�"−3�

)
and

E[+ |�!] = �
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iii. �" = !, �� = �:

E[% |!�] = 1
6

(
6� − 2�(@ − 1)(" − 1)$2(� − �)

+ 3(@ − 1)(2" − 1)$(� − �) − 4�@" + �@ + 4@�" − @� − 6�" + 3�
)

and
E[+ |!�] = �

iv. �" = !, �� = !:

E[% |!!] = 1
6

(
6�" − 2�(@ − 1)(" − 1)$2(� − �)

+ 3(@ − 1)(2" − 1)$(� − �) − 4�@" + �@ + 4@�" − @� − 4�" + �
)

and
E[+ |!!] = −(@ − 1)(� − �)

(
�(" − 1)$2 − 2"$ + " + $

)
(b) " < 1

2 :

i. �" = �, �� = �:
E[% |��] = � + 1

6�(2" + 3)

and
E[+ |��] = � + �

ii. �" = �, �� = !:

E[% |�!] = 1
6

(
2�(@ − 1)"$2(� − �)

− 3�(@ − 1)(2" − 1)$(� − �) + �(6 − 2@") + 2(@ + 3)�" − 3�
)

and
E[+ |�!] = �

iii. �" = !, �� = �:

E[% |!�] = 1
6

(
6� + 2�(@ − 1)"$2(� − �) − 2�@" + 2@�" − 6�" + 3�

)
and

E[+ |!�] = �

iv. �" = !, �� = !:

E[% |!!] = 1
6

(
6� + 2�(@ − 1)"$2(� − �)

− 3�(@ − 1)(2" − 1)$(� − �) − 2�(@ + 3)" + 2(@ + 2)�" − 3�
)

and
E[+ |!!] = (� − �)("(−�($ − 2)$ + @(�($ − 2)$ − 1) − 1) + �(@ − 1)$ + 1)
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Next, we compute trading profits for "−informed and �−informed traders.

1. � ∈
(
−1,− 1

2
]
:

(a) " ≥ 1
2 :

E[Π|18 = 1] = 1
6�(@ − 1)(" − 1)$2(� + �)

and

E[Π|18 = 0] = 1
12(� + �)

(
2�(@ − 1)(" − 1)$2 − 3(@ − 1)(2" − 1)$ + @(6" − 3)

)
(b) " < 1

2 :

E[Π|18 = 1] = − 1
12�(@ − 1)$(� + �)(2"($ − 3) + 3)

and
E[Π|18 = 0] = −1

6�(@ − 1)"$2(� + �)

2. � ∈
(
− 1

2 ,− 1
3
]
:

(a) " ≥ 1
2 :

E[Π|18 = 1] = 1
6(" − 1)

(
(@ − 1)$(2�� + �� − � + �) + �(−(@ − 1))�$2 + @(� − �)

)
and

E[Π|18 = 0] = 1
12

(
−(@ − 1)$(2(� + 1)�" − 2�� − 2(� + 1)�(" − 1) + �)

− 2�(@ − 1)�(" − 1)$2 + 2�@" + �@ − 2@�" + 2@� + 6�" − 3�
)

(b) " < 1
2 :

E[Π|18 = 1] = 1
12(�(@ − 1)$(2(� + 1)" − 3�)

+ �(2"(($ − 1)(�(@ − 1)$ − @) + $ − 3) + 3) − 2�@")

and

E[Π|18 = 0] = 1
6"

(
(@ − 1)$((� − 2)� − (� + 1)�) + �(@ − 1)�$2 + @(2� + �)

)
3. � ∈

(
− 1

3 , 0
]
:
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(a) " ≥ 1
2 :

E[Π|18 = 1] = 1
6(" − 1)((2� − 1)�(@ − 1)$ + �@ − �)

and

E[Π|18 = 0] = 1
12(−�(@ − 1)$(2�(" − 1) + 2" + 1) + 2�@" + �@ + 4�" − �)

(b) " < 1
2 :

E[Π|18 = 1] = 1
12(�(@ − 1)$(2(� + 1)" − 3�) − 2�@" + �(3 − 4"))

and
E[Π|18 = 0] = 1

6"((� − 2)�(@ − 1)$ + 2�@ + �)

4. � ∈
(
0, 1

3
]
:

(a) " ≥ 1
2 :

E[Π|18 = 1] = 1
6(" − 1)((2� − 1)�(@ − 1)$ + �@ − �)

and

E[Π|18 = 0] = 1
12(−�(@ − 1)$(2�(" − 1) + 2" + 1) + 2�@" + �@ + 4�" − �)

(b) " < 1
2 :

E[Π|18 = 1] = 1
12(�(@ − 1)$(2(� + 1)" − 3�) − 2�@" + �(3 − 4"))

and
E[Π|18 = 0] = 1

6"((� − 2)�(@ − 1)$ + 2�@ + �)

5. � ∈
( 1

3 ,
1
2
]
:

(a) " ≥ 1
2 :

E[Π|18 = 1] = 1
6(" − 1)

(
−(@ − 1)$(−2��+ �� +�+ �) + �(@ − 1)�$2 +�@ + @� − 2�

)
and

E[Π|18 = 0] = 1
12

(
−(@ − 1)$(2��(" − 1) + 2(� + 1)�(" − 1) + 2�" + �)

+ 2�(@ − 1)�(" − 1)$2 + 2�@" + �@ + 2@�" − 2@� + 2�" + �
)
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(b) " < 1
2 :

E[Π|18 = 1] = 1
12

(
(@ − 1)$(2(� + 1)"(� + �) − 3��)

− 2�(@ − 1)�"$2 − 2�@" − 2@�" − 2�" + 3�
)

and

E[Π|18 = 0] = 1
6"

(
(@ − 1)$((� − 2)� + �� + �) + �(−(@ − 1))�$2 + 2�@ − @� + 2�

)
6. � ∈

( 1
2 , 1

]
:

(a) " ≥ 1
2 :

E[Π|18 = 1] = 1
6(" − 1)

(
(� − �)

(
�(@ − 1)$2 − @

)
− 2�

)
and

E[Π|18 = 0] = 1
12

(
2�(@ − 1)(" − 1)$2(� − �)

− 3(@ − 1)(2" − 1)$(� − �) + (4" − 1)(@(� − �) + 2�)
)

(b) " < 1
2 :

E[Π|18 = 1] = 1
12

(
2�(@−1)"$2(�−�)+3�(@−1)(2"−1)$(�−�)+2�@"−2(@+4)�"+6�

)
and

E[Π|18 = 0] = 1
6"

(
(� − �)

(
@ − �(@ − 1)$2) + 2�

)
We can show that the expected trading profits are positive such that it is optimal for traders to

buy on �8 = � and sell on �8 = !. It is easy to show that the traders’ profits from the opposite

strategy are negative.

A.1.2 Proof of Lemma 1

To solve for the firm’s best-response function, we rely on the expressions for E[+] derived in the

Proof of Proposition 1. We then take the derivative of E[+] with respect to @ and show below that

this derivative does not depend on @. Hence, we can check whether %E[+]
%@ is (i) strictly positive, (ii)

strictly negative, or (iii) equal to zero. In case (i) we can conclude that @ = 1, in case (ii) that @ = 0,

and in case (iii) that @ ∈ [0, 1].
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1. � ∈
(
−1,−1

2
]
: in this case %E[+]

%@ is strictly positive if and only if " > 1 − 1−$
2−$(2−�$) .

2. � ∈
(
− 1

2 ,− 1
3
]
: in this case %E[+]

%@ is strictly positive if and only if " > �($−1)
�(3�+1)$2−$(2(�+2)�+�+1)+4�+1 +

1, if the conjectured equilibrium is " ≥ 1
2 and if " > − ��$

�($(�(3$−4)−2)+2)+($−1)(�$−1) , if the

conjectured equilibrium is " < 1
2 .

3. � ∈
(
− 1

3 , 0
]
: in this case %E[+]

%@ is strictly positive if and only if " > �$
1−(1−�)$ .

4. � ∈
(
0, 1

3
]
: in this case %E[+]

%@ is strictly positive if and only if " > �$
1−(1−�)$ .

5. � ∈
( 1

3 ,
1
2
]
: in this case %E[+]

%@ is strictly positive if and only if " > �($−1)
�(3�−1)$2−2(�+2)�$+�$+4�+$−1 +

1, if the conjectured equilibrium is " ≥ 1
2 , and if " > − ��$

�($(�(3$−4)−2)+2)−($−1)(�$−1) , if the

conjectured equilibrium is " < 1
2 .

6. � ∈
( 1

2 , 1
]
: in this case %E[+]

%@ is strictly positive if and only if " > − �$
�($−2)$−1 .

It follows that the firm chooses @ = 0 if the mass of "−informed traders is sufficiently low and

@ = 1 if it is sufficiently large. At the cutoff, the firm is indifferent between any @ ∈ [0, 1].

A.1.3 Proof of Lemma 2

To solve for the traders’ best-response functions, we use the expressions for expected trad-

ing profits that are derived in the Proof of Proposition 1. We then equate trading profits for

"−informed and �−informed traders, and solve for ".

1. � ∈
(
−1,− 1

2
]
: in this case "(@) = 1

2 for all @ ∈ [0, 1].

2. � ∈
(
− 1

2 ,− 1
3
]
: in this case, "(@) = (2�−1)�(@−1)$+�@−1

2��(@−1)$−2 ∈
( 1

2 , 1
)
, which is increasing in @.

3. � ∈
(
− 1

3 , 0
]
: in this case, "(@) = (2�−1)�(@−1)$+�@−1

2��(@−1)$−2 , which is increasing in @.

4. � ∈
(
0, 1

3
]
: in this case, "(@) = ��(@−1)$−1

−2�$+2�@($−1)−2 , which is decreasing in @.

5. � ∈
( 1

3 ,
1
2
]
: in this case, "(@) = ��(@−1)$−1

−2�$+2�@($−1)−2 , which is decreasing in @.

6. � ∈
( 1

2 , 1
]
: in this case "(@) = 1

2 for all @ ∈ [0, 1].

48



A.1.4 Proof of Proposition 2

For this proof, we rely on the results derived in Lemma 1 and Lemma 2.

1. � ∈
(
−1,− 1

2
]
: in this case, we have shown before that "∗ = 1

2 . Hence, @∗ = @( 1
2 ) = 0.

2. � ∈
(
− 1

2 ,− 1
3
]
: in this case, we know from the slope of the best-response functions that the

optimal @ is either @∗ = 0 or @∗ = 1. In particular @∗ = 0 is an equilibrium if $ > 2�+1
2�+
√
−�(2�+1)+1

and � > ($−1)(�(4�$+$+2)+1)
$(�(�(3$2−2)+$($+2)−2)+$−1) . In this case, "∗ = (2�−1)�$+1

2��$+2 . Moreover, @∗ = 1 is an

equilibrium if either (i) $ ≤ 3�(�+1)−
√
−�(�(�+1)(3�+4)+1)+1
(�+1)(3�+1) or if (ii) $ >

3�(�+1)−
√
−�(�(�+1)(3�+4)+1)+1
(�+1)(3�+1)

and � < (�(4�+3)+1)($−1)
(�+1)$(�(3$−2)+$−1) . In this case, "∗ = 1−�

2 .

3. � ∈
(
− 1

3 , 0
]
: in this case, we know from the slope of the best-response functions that the

optimal @ is either @∗ = 0 or @∗ = 1. In particular, @∗ = 0 is an equilibrium, if $ > 1
2

and � > ($−1)(�$−1)
�(3$−2)$+$ . In this case, "∗ = (2�−1)�$+1

2��$+2 . Moreover, @∗ = 0 is an equilibrium if

$ < 1−�
(�−1)�+�+1 . In this case, "∗ = 1−�

2 .

4. � ∈
(
0, 1

3
]
: in this case, we obtain a unique equilibrium. If $ > 2

�(−�)+
√
�(�(�−6)�+�+10�+2)+1+�+1

the equilibrium is @∗ = 0 and "∗ = ��$+1
2�$+2 . If 1

2��+�+1 < $ < 2
�(−�)+

√
�(�(�−6)�+�+10�+2)+1+�+1

, the

equilibrium is @∗ = $(�((�−3)�$+�−1)−1)+1
��$((�−3)$+3) and "∗ = �$

(�−1)$+1 . Otherwise, the equilibrium is @∗ = 1

and "∗ = 1
2�+2 .

5. � ∈
( 1

3 ,
1
2
]
: in this case, we obtain a unique equilibrium. If $ is less than the cutoff:

�(−2(� − 1)� − 1) +
√

(2�(� − 1)� + �)2 − 2�(2�(�(2� + 3) − 3) + 1) + (1 − 2�)2 + 2� − 1
2�(3� − 1)

the equilibrium is @∗ = 1 and "∗ = 1
2�+2 . If $ is greater than this cutoff but less than the

positive, real root of the following cubic equation in F:

F3 (
3�2�2 − �2�

)
+ F2 (

−4�2�2 + �2� + 4�� − �
)

+ F
(
2��2 − 3�� + � − 2� + 1

)
+ 2� − 1

the equilibrium is @∗ = 1−2�
��$ + 6�($−1)−2$+4

$(�(3�−1)$−4��+�+1)−1 + 1 and "∗ = − ��$
�($(�(3$−4)−2)+2)−($−1)(�$−1) .

Otherwise, the equilibrium is @∗ = 0 and "∗ = ��$+1
2�$+2 .

6. � ∈
( 1

2 , 1
]
: in this case, we have shown before that "∗ = 1

2 . Hence, @∗ = @( 1
2 ) = 1.
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A.1.5 Proof of Corollary 1

These results follow directly from the expressions for "∗ and @∗ derived in Proposition 2.

A.1.6 Proof of Corollary 2

These results follow directly from the expressions for "∗ and @∗ derived in Proposition 2.

A.1.7 Proof of Proposition 3

To derive the expressions for real efficiency, we use the expressions for E[+] (for fixed infor-

mation choices) in Proposition 1 and plug in the equilibrium values for "∗ and @∗ in Proposition

2.

1. � ∈
(
−1,− 1

2
]
:

'� = 1
8(� + 1)�

(
�$2 + 1

)
2. � ∈

(
− 1

2 ,− 1
3
]
: if @∗ = 1,

'� = 1
8(� + 1)(� + 2)�

and if @∗ = 0,

'� =
�

(
�2$

(
�
(
4 − 3$2) + 4$ − 3

)
+ �$(�(−$)($ + 2) + 4� + $ + 1) + $(�(−$) + � + 1) + � + 1

)
8��$ + 8

3. � ∈
(
− 1

3 , 0
]
: if @∗ = 1,

'� = 1
8(� + 1)(� + 2)�

and if @∗ = 0,

'� =
�(�($(��(4 − 3$) + � + �$ − 1) + 4) + 2)

8��$ + 8

4. � ∈
(
0, 1

3
]
: if @∗ = 1,

'� =
(�(4� + 7) + 2)�

8(� + 1)

and if @∗ = 0,

'� =
�(�($(−(� − 3)��$ + � + 4� + 3) + 4) + 2)

8�$ + 8

and if @∗ ∈ (0, 1):

'� =
�($(3�� + � − 2� − 1) + 2� + 1)

4(� − 1)$ + 4
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5. � ∈
( 1

3 ,
1
2
]
: if @∗ = 1,

'� =
(�(4� + 7) + 2)�

8(� + 1)

and if @∗ = 0,

'� =
�

(
�2$(�(�$(3$ − 4) + 3) + 4) + �(�$($(�(−$) + � + 4) − 3) + 7) + $(�(−$) + � + 1) + 1

)
8�$ + 8

and if @∗ ∈ (0, 1):

'� = 1
4�

(
�

(
2 − ��$

�($(3�$ − 4� − 2) + 2) − ($ − 1)(�$ − 1)

)
+ 1

)
6. � ∈

( 1
2 , 1

]
:

'� = 1
4(3�� + �)

A.1.8 Proof of Proposition 4

It follows from thedefinition of%� and% = E[+ |.] thatwe can equivalentlywrite%� = 1− Var(%)
Var(+) .

Below, we provide the expressions for Var(%) and Var(+) for a fixed " and @. Plugging in the

equilibrium values for " and @ yields to the equilibrium value of price efficiency.

1. � ∈
(
−1,−1

2
]
:

Var(%) = 1
48(� + 1)2�2

(
−4(@ − 1)2(" − 1)$4

− 3
(
@
(
"(($ − 2)$ + 2) − $2 + $ − 1

)
− "($ − 1)2 + $($ − 1) + 1

)2

+ 6(2" − 1)(@(−$) + @ + $)2 − 12(" − 1)
)

Var(+) = 1
16(�+ 1)2�2

(
4(@−1)("−1)$2−

(
(@−1)("−1)$2 + (2"−1)(@(−$) + @ +$)−"+ 1

)2

− 4(@ − 1)(2" − 1)$ + 4@(2" − 1) − 4" + 4
)

2. � ∈
(
− 1

2 ,− 1
3
]
:

Var(%) = 1
48

(
−12(" − 1)(�� + �)2 − 3�2 (

3�" − � + (3� + 1)(−(@ − 1))(" − 1)$2

+ (@ − 1)$(6�" − 5� + 2" − 2) − 4�@" + 3�@ − @" + @ + "
)2

+ 4(1 − ")
(
(@ − 1)$2(3�� + �) − 2(@ − 1)$(2�� + �) + @(2�� + �)

)2

+ 6(2" − 1)(��(@($ − 1) − $ + 2) + �)2
)
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Var(+) = 1
16�

2
(
4
(
3�2" − �2 + 2�" − 4�2@" + 3�2@ − (�(3� + 2) + 1)(@ − 1)(" − 1)$2

+ (@ − 1)$(�(6�" − 5� + 4" − 4) + 2(" − 1))− 2�@" + 2�@ − @" + @ + "
)
−

(
3�" − �

+(3�+1)(−(@−1))("−1)$2 +(@−1)$(6�"−5�+2"−2)−4�@"+3�@−@"+@+"
)2

)
3. � ∈

(
− 1

3 , 0
]
:

Var(%) = 1
48

(
−12(" − 1)(�� + �)2 − 3�2(�(@(" − $) + $ − 2) − 1)2

+ 6(2" − 1)(��(@($ − 1) − $ + 2) + �)2 + 4(1 − ")(��(2(@ − 1)$ − @ + 3) + �)2)
Var(+) = 1

16�
2(3 − �(@(" − $) + $ + 2)(�(@(" − $) + $ − 2) − 2))

4. � ∈
(
0, 1

3
]
:

Var(%) = 1
48

(
2�2 (

�
(
�

(
2@2" + (@ − 1)2(2" + 3)$2 − 8(@ − 1)@"$ + 12

)
+ 12

)
+ 2" + 3

)
− 3(��(@(" − $) + $ + 2) + �)2)

Var(+) = 1
16�

2(3 − �(@(" − $) + $ − 2)(�(@(" − $) + $ + 2) + 2))

5. � ∈
( 1

3 ,
1
2
]
:

Var(%) = 1
48

(
12"(�� + �)2 + 4"(3�� + �)2 − 6(2" − 1)(2�� + �)2 + 6�2(@ − 1)2�2(1 − 2")$2

− 3�2 (
�

(
@"(−3($ − 2)$ − 2) − @$ + 3"($ − 1)2 + $ + 2

)
+ (@ − 1)"($ − 1)2 + 1

)2

+ 4"
(
��(@((4 − 3$)$ − 2) + $(3$ − 4) + 3) + (@ − 1)�($ − 1)2)2

)
Var(+) = 1

4
(
(�� + �)2 + �2�2 (

"
(
−@(($ − 3)$ + 1) + $2 − 3$ + 2

)
− @$ + $

)
− �2�2((@ − 1)"($ − 1)$ − 1) + (� − 1)2(−(@ − 1))�2"($ − 1)2)

− 1
16�

2 (
�

(
@"(−3($ − 2)$ − 2)− @$ + 3"($ − 1)2 + $ + 2

)
+ (@ − 1)"($ − 1)2 + 1

)2

6. � ∈
( 1

2 , 1
]
:

Var(%) = 1
48

(
12"(�� + �)2 + 4"(3�� + �)2 − 6(2" − 1)(2�� + �)2

− 3�2 (
−�" + 4� + (� − 1)(@ − 1)"$2 − (� − 1)(@ − 1)(2" − 1)$ − �@" + @" + "

)2

+ 6�2(1 − 2")(� + (� − 1)((@ − 1)$ + 1))2 + 4"
(
2�� + (� − 1)(@ − 1)�

(
$2 − 1

) )2
)

Var(+) = 1
4

(
(�� + �)2 + �2�2 (

"
(
−@(($ − 3)$ + 1) + $2 − 3$ + 2

)
− @$ + $

)
− �2�2((@ − 1)"($ − 1)$ − 1) + (� − 1)2(−(@ − 1))�2"($ − 1)2)

− 1
16

(
3�� + (� − 1)�

(
@"(($ − 2)$ − 1) + (@ − 1)$ − "($ − 1)2 + 1

)
+ �

)2
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A.1.9 Proof of Proposition 5

1. If � ∈
(
− 1

2 ,− 1
3
]
: we obtain multiple equilibria if $ ∈

(
$, $

)
where $ is the solution to the

following polynomial:

$3 (
3��2 + ��

)
+ $2 (

2�� + � − 4�2 − �
)

+ $
(
−2��2 − 2�� − � + 4�2 − � − 1

)
+ 2� + 1 = 0

and

$ = 1
2
©­«
√
�2(� + 1)2(2� + 1)2 − 2�(� + 1)(4� + 1)(�(4� + 3) + 1) + (�(4� + 3) + 1)2

�2(� + 1)2(3� + 1)2

+
2(� + 2)�2 + 3(� + 1)� + � + 1

�(� + 1)(3� + 1)
ª®¬

We can show that 0 < $ < $ < 1 for � ∈ (0, 1].

2. If � ∈
(
−1

3 , 0
]
: we obtain multiple equilibria if either 1

2 < $ ≤ 1−�
2 and ($−1)(�$−1)

�(3$−2)$+$ < � < 1 or

1−�
2 < $ < 1 and ($−1)(�$−1)

�(3$−2)$+$ < � < (�−1)($−1)
(�+1)$ .

Based on the results in Proposition 1 and Proposition 2, we can show that the traders’ expected

profits are always higher if @∗ = 1. For real efficiency and price efficiency the relationship is

ambiguous, which can be seen in the two figures provided in the main text.
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