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Existing revenue management solutions employed by legacy carriers, which are based on allocating capacity

to pre-defined fare classes, are increasingly inadequate to compete against low-cost carriers that impose few or

no fare restrictions and make their fares widely available through the Internet. To avoid revenue erosion due

to inadequate solutions, legacy carriers need to develop systems that take into account consumer purchasing

behavior which itself depends on the fares available at the time of purchase. This requires a choice-based,

multi-player, game theoretic formulation of dynamically pricing perishable capacities over finite horizons.

Here we present such a formulation as a stochastic game in continuous time. Since this problem is generally

intractable, we provide sufficient conditions for the existence of open-loop and closed-loop Nash equilibria

of the corresponding differential game resulting from an affine functional approximation approach to the

stochastic problem. We show that efficiently-computable pricing heuristics based on these open-loop and

closed-loop policies are asymptotic equilibria in an appropriate sense for the stochastic game under various

information assumptions.
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1. Introduction

1.1. Motivation

Current revenue management (RM) practice, in spite of its success and popularity, is based on

assumptions that may no longer hold true in real world situations. One of the critical flaws is
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that current RM (or yield management) models are designed under the assumption that demands

for different fare classes are independent random variables with a pricing team designing fares

and another team allocating capacity to fare classes. This flaw is exacerbated by low cost carriers

offering fares with few or no restrictions and by Internet-enabled price transparency (Cooper et al.

2006). Most of the literature in RM deals with the issue of capacity allocation. Pricing decisions

are kept at a more strategic level but to our knowledge there is little science behind current pricing

practices. Pricing and capacity allocation decisions might likely be separated because of difficulties

collecting competitors’ prices and the complexity of analyzing competitive models.

While carriers and solution providers agree that new solutions are needed to stem revenue erosion,

there is no agreement as to what needs to be done. Some solution providers have proposed an

incremental approach that keeps pricing and capacity allocation separate, acknowledging that

demand among fares are dependent random variables with most of the demand going to the lowest

open fare. This line of research will likely provide some respite and extend the life of traditional

RM models. The success of such systems will depend on the extent to which the pricing team is

able to select the right prices in a competitive environment and the extent to which the demand

forecasts are sensitive to competitive pricing.

At the other end of the spectrum, RM researchers and practitioners are trying to integrate pricing

and capacity allocation into a single system that takes into account pricing and quality attributes

of the products available to customers at the time of purchase. The challenge, of course, is the

availability of data and the complexity of solving such systems. Recent development of search engine

technology makes competitors’ prices instantaneously available to consumers, and can also be fed

into competitive pricing models as input data. Indeed, online travel sites such as Expedia, Hotwire,

Orbitz, Priceline, Kayak and Travelocity gather information and list flight, hotel, car rental and

cruise fares almost in real time among competitors across the travel industries. Moreover, price

search engines such as Google Product provide real-time product prices both online and in local

stores. On the technical side there have been advances in demand modeling that take into account

customer choice behavior (see Talluri and van Ryzin 2004 for the single leg case and Gallego et al.
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2004, van Ryzin and Liu 2008 for the network case). While these demand models can be readily

extended to competitive settings, the problem of finding optimal or near-optimal controls under

competition is far from trivial.

1.2. Contribution

We formulate a non-zero-sum non-cooperative dynamic pricing game and address the problem

of integrating pricing and capacity allocation into a single framework where multiple capacity

providers compete to sell their own fixed initial capacities of differentiated perishable items over

the same finite sales horizon without replenishment opportunities. The arrival rate of customers

is time-varying; demand for each firm is modeled as a non-homogeneous Poisson process with

rate dependent on the arrival rate and prices offered by all firms. This stochastic game can be

viewed as extending the static Bertrand-Edgeworth-Chamberlin competition (price competition of

differentiated products with capacity constraints, see Vives 1999, Section 6.5) with zero costs to a

more general environment with intertemporal pricing flexibility and demand uncertainty.

Previous work in RM on demand choice models without competition assumes that prices of

available products are given exogenously. This is consistent with current RM practice of separating

pricing decisions from capacity allocation decisions. Presumably, one of the reasons to separate

these two decisions is that the group responsible for pricing is looking into competitive issues in

determining fares. These fares are then passed to the capacity allocation group. While it is possible

to analyze capacity allocation with fare restriction under competition, the computational burden

of solving the resulting problem is daunting even for the single leg problem. Moreover, this does

not resolve the problem of setting prices. Our model, in contrast, integrates pricing and capacity

allocation and makes it easier to analyze the competition even in a network setting. In practice,

pricing teams can take our solution a step further and design a menu of fares that span and

synthesize solutions to our competitive model under different instances of the demand model.

We show that the stochastic game reduces to a deterministic differential game if each firm

approximates its value function by a quasi-static affine function. We fully characterize the open-loop
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Nash equilibria (OLNE) to the differential game. We demonstrate that if revenue rate functions

have a supermodular nature the best-response tatônnement scheme is efficient in computing a

fixed-pricing OLNE. This implies that firms can be divided into two categories, those with ample

capacity and those with scarce capacity. Firms with ample capacity use a pricing policy to maximize

their revenue rates and firms with limited capacity use their relatively higher market clearing

prices. We show that the open-loop policy cannot benefit from feedback in the differential game,

and that it is in fact a closed-loop Nash equilibrium (CLNE) of the differential game. We discuss

how the open-loop policy can be used as a heuristic for the stochastic game with asymptotically

good properties. In practice, we expect firms to apply the open-loop heuristic in a rolling horizon

fashion, and this will result in time-varying prices as capacities will evolve stochastically and will

be almost surely different from those predicted by the differential game.

1.3. Literature Review

There is a growing body of literature on RM in the context of competition. Depending

on the chosen decision variables, RM is categorized as either quantity-based or price-based.

Netessine and Shumsky (2005) examine one-shot quantity-based games of booking limit control

under both horizontal competition and vertical competition. Talluri (2003) studies a dynamic

quantity-based RM model in a duopoly where each firm sells differentiated products and makes an

available offer set from a pre-determined fare menu. Oligopoly pricing, common in the economics

and marketing literature, is gaining traction within the RM community. Granot et al. (2007) ana-

lyze a multi-period duopoly pricing game where homogeneous perishable goods are sold to impa-

tient consumers who visit only one of the retailers in each period. Levin et al. (2009) present a

unified stochastic dynamic pricing game of multiple firms where differentiated goods are sold to

finite segments of strategic customers who may time their purchases. Though we do not consider

consumer strategic behavior, we allow for more general demand structures.

Our paper formulates the competitive dynamic pricing game of selling perishable assets as

an intensity control game with demands modeled as non-homogeneous Poisson processes. This
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approach complements previous works on revenue management and oligopoly pricing. In the ter-

minology of game theory, Perakis and Sood (2006) consider a finite-horizon discrete-time stochas-

tic game; Bernstein and Federgruen (2004) consider an infinite-horizon discrete-time stochastic

game. With regard to modeling demand uncertainty in periodic-review models, Perakis and Sood

(2006) assume that an uncertainty factor contained within an uncertainty set is associated with

the demand; Bernstein and Federgruen (2004) assume that the demand for each period is of a

multiplicative form; Federgruen and Heching (1999) assume an additive form of demand in their

numerical study.

From the perspective of methodology, there appears to be at least two research streams in pric-

ing under competition. One stream characterizes the market equilibrium by the methodology of

quasi-variational inequalities (QVI). Perakis and Sood (2006) address a multi-period discrete-time

competitive dynamic pricing model of a single asset with demand uncertainty, and use ideas from

robust optimization and variational inequalities. Nguyen and Perakis (2005) extend the single-

asset model to a multi-product competitive pricing game. Mookherjee and Friesz (2008) consider

a combined pricing, resource allocation, overbooking RM problem over networks as well as under

competition. This line of research deals with a periodic review formulation and aims to design effi-

cient algorithms to compute market equilibirium prices arising from the joint variational inequality.

The other line of research falls under the framework of the supermodular game (Topkis 1979,

Milgrom and Roberts 1990). This line of research derives sufficient conditions of equilibrium’s exis-

tence and uniqueness by verifying supermodularity and “diagonal dominance” conditions, respec-

tively. Bernstein and Federgruen (2003, 2004, 2005) have a series of papers studying games of joint

pricing and inventory control in the interface of RM and supply chain management. Gallego et al.

(2006) study an oligopolistic price competition game with general attraction demand functions

and convex costs, and prove a linear convergence to the equilibrium of a simultaneous discrete

tatônnement scheme.

Two papers related to our setting are Lin and Sibdari (2009) and Xu and Hopp (2006). The first

authors prove the existence of a pure-strategy Nash equilibrium in a discrete-time stochastic game.
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This model can be viewed as the discrete-time counterpart to the continuous-time stochastic game

considered in this paper. The main difference, apart from the choice of how to model time, is that we

focus on the near-optimality of simple heuristics derived from the corresponding differential game in

light of the fact that the stochastic game is intractable. Similar to our paper in a continuous-review

setting, the latter authors study a dynamic pricing problem under oligopolistic competition with

one-shot initial inventory replenishment. The authors establish a weak perfect Bayesian equilibrium

of the price and inventory replenishment game. There are several significant differences between

the present paper and that of Xu and Hopp. Most significantly, the authors formulate a stochastic

differential game with a continuous state space and obtain a cooperative fixed-pricing equilibrium

strategy. We formulate a stochastic game with a discrete state space and solve its corresponding

deterministic differential game for simple feedback-type heuristics. Second, the authors assume a

correlated demand structure in which customers are modeled as an atomic flow according to a

geometric Brownian motion with a quasilinear utility function. We consider a demand structure

in which customers arrive according to a non-homogeneous Poisson process with a more general

utility function though demand correlation is not considered. Third, the authors assume perfect

competition with homogeneous products (Vives 1999, Chapter 5) while we consider imperfect

competition with differentiated products (Vives 1999, Chapter 6).

We characterize equilibria to the differential game and study their asymptotic behavior in the

stochastic game. The deterministic differential game theory has been successfully applied to mar-

keting and economics, especially in the area of dynamic pricing. Eliashberg and Jeuland (1986)

characterize the nature of the dynamic equilibrium prices that prevail during the competitive

period in which a monopolist encounters a new firm entry. Gaimon (1989) derives both OLNE and

CLNE for a differential game where two competing firms choose prices and production capacity

when new technology reduces firms’ operating costs. Mukhopadhyay and Kouvelis (1997) propose

a differential game formulation to analyze a duopoly with firms competing on quality and price,

and derive an OLNE and CLNE under a linear feedback law.
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The remainder of this paper is organized as follows. Section 2 describes our modeling assumptions

and formulations of the stochastic game and its differential counterpart. Section 3 studies the

OLNE and CLNE for the differential game. Section 4 provides links between the stochastic and

differential game, and proves the asymptotic equilibrium behavior of feedback-type heuristics.

Section 5 considers commonly-used demand structures as examples and illustrates with numerical

experiments. Section 6 offers concluding remarks and points out directions of future research. Most

proofs are relegated to the appendix.

2. The Model

2.1. Notation and Assumptions

I :� t1,2, . . . ,mu denotes the set of firms (players) in the market. Any entry in all vectors

is assumed to be in R� :� r0,�8q. xi denotes the ith component of vector ~x, and ~x�i :�px1, . . . , xi�1, xi�1, . . . , xmq is the vector of components other than i. ~ei denotes a vector with the

ith element 1 and all other elements 0’s. AzB denotes the set difference between the sets A and

B. LHS and RHS are shorthand for left-hand side and right-hand side, respectively. A function is

said to be increasing (decreasing) when it is nondecreasing (nonincreasing).

We consider a market of firms competing in selling substitutable perishable assets, where demand

is influenced by prices across the market. At time t� 0, each firm i has an initial capacity of ci PN

units. Let X :��
i
r0, cis. All firms have the same sales horizon of length T ¡ 0. We count the time

forwards. We use t for the elapsed time and s :� T � t for the remaining time.

At any time 0¤ t¤ T , the vector of demand intensities ~ξptq is determined as a multiple of the

current customer arrival rate λptq and a consumer choice probability function ~dp~pptqq P r0,1s that

is influenced by the current market price vector ~pptq, namely, the demand intensity function can

be written as

~ξ p~pptqq :� λptq~dp~pptqq.
We denote the cumulative customer arrival by Λptq :� » t

0

λpvqdv and the revenue rate function

for any firm i by rip~pq :� pidip~pq. We assume that all firms perceive the same demand intensity
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function. At this stage, we make minimal assumptions regarding the shape of the demand intensity

function for any firm i.

Assumption 1 (Differentiability). dip~pq is continuously differentiable in ~p.

Assumption 2 (Downward-Sloping).
Bdip~pqBpi

  0.

Assumption 3 (Substitutes).
Bdip~pqBpj

¥ 0, � j � i.

Assumptions 2-3 are fairly standard in the oligopoly pricing literature. Assumption 2 expresses

the usual assumption of strict downward-sloping. Assumption 3 states that assets provided by

firms are substitutes. Under Assumptions 1-3, we have the following immediate result by equivalent

properties of quasi-convexity for a single-variable function (Boyd and Vandenberghe 2004, Section

3.4).

Lemma 1 (Quasi-Linearity of Demand). dip~pq is quasi-linear in pj for all j.

Assumption 4 (Pseudo-Concavity of Revenue). rip~pq is pseudo-concave in pi.

As a reminder, a function f is pseudo-convex on a non-empty open set X if for any x, y PX,py� xqT∇xfpxq ¥ 0ñ fpyq ¥ fpxq, where ∇x is the gradient operator. f is pseudo-concave if and

only if �f is pseudo-convex. By Mangasarian (1987), the Karush-Kuhn-Tucker (KKT) conditions

for a nonlinear maximization problem are sufficient for optimality when the objective function

is pseudo-concave and the LHS ’s of non-positive constraints are quasi-convex. Assumption 4 is

satisfied by most commonly-used demand functions such as the MultiNomial Logit (MNL) and

linear demand functions (see Examples 1 and 2).

We further make the following assumptions on each firm’s strategy space.

Assumption 5 (Compact Strategy Space in Differential Game). pi is chosen from a

closed interval Pi :� r0, pmax
i s �R� when firm i has positive on-hand inventory.

Assumption 6 (Slater’s Condition). There exists ~p PP :��
i
Pi such that ~0  ~dp~pq  ~c.
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Assumption 6 is the Slater constraint qualification that is needed to ensure the KKT differential

conditions for nonlinear optimization problems with constraints ~0 ¤ ~dp~pq ¤ ~c are necessary for

optimality. Assumption 6 can be ensured if ~p max is chosen high enough.

In the literature of dynamic pricing, a null price is commonly assumed to exist as a convenient

mechanism to shut down stochastic demand when inventory reaches zero. We assume

Assumption 7 (Null Price Option in Stochastic Game). A null price option pnull
i p~p�iq

dependent on competitors’ price ~p�i is available to any firm i when its inventory drops to zero.

Moreover, we assume for any set S � I of firms with positive inventory, there exists a continuous

demand intensity function ~dSp~pq : R
|S|� ÞÑR

|S|� among them.

Finally, without loss of generality, we assume that the salvage value of the asset at the end of

horizon is zero and that all other costs are sunk. We can always transform a problem with positive

salvage cost qi for firm i to a zero-salvage-cost case by changing variables pi � pi�qi in the demand

intensity function.

2.2. Formulation of the Continuous-Time Stochastic Game

We consider a finite-horizon, multi-player, non-zero-sum, non-cooperative stochastic game. This

formulation can be viewed as a game version of the optimal dynamic pricing problem considered in

Gallego and van Ryzin (1994). The firms control the demand intensity by adjusting price. In the

stochastic game, the demand intensity is stochastic. More specifically, demand for the product is

assumed to be a non-homogeneous Poisson process with Markovian intensities. At time 0¤ t¤ T ,

firm i applies its own non-anticipating price piptq. Let Niptq denote the number of items sold

up to time t for firm i. Mathematically, Niptq is a controlled point process with instantaneous

intensity ξiptq to be a function of the joint price vector ~pptq. A demand for any firm i is realized

at time t if dNiptq � 1. We denote the joint Markovian allowable pricing policy space by U , where

any joint allowable pricing policy ~u �  
~ppt,~nptqq,0¤ t¤ T | pipt,~nptqq PPiYtpnull

i p~p�iqu for all i
(

satisfies that

» T

0

dNiptq ¤ ci almost sure (a.s.) for all i. By the Markovian property of U , we mean
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that the price policy ui offered by firm i is a function of the elapsed time and current joint inventory

level; that is, ~ppt,~nptqq � ~p pt,C1�N1ptq,C2�N2ptq, . . . ,Cm�Nmptqq ,0¤ t¤ T. In terms of game

theory, we want to analyze feedback strategies. This requires that we have a somehow restrictive

information structure:

Definition 1 (Strong Information Structure). All firms have perfect knowledge about

each other’s inventory levels at any time.

This assumption used to be unrealistic but now inventory information in real time is revealed in

some way as almost all online travel agencies and major airlines offer a feature of previewing seat

availability from their websites. We also consider two weaker information structures:

Definition 2 (Weak Information Structure). All firms only know the initial joint inven-

tory level.

Definition 3 (Weak Information Structure with Observable Prices). All firms know

the initial joint inventory level and can observe competitors’ pricing instantaneously at any time.

Given pricing policy ~u P U , we denote the expected profit for any firm i by

Jip~uq �E

�» T

0

piptqdNiptq� .

The goal of any firm i is to maximize its total expected profit over the sales horizon. A joint pricing

policy ~u� PU constitutes a Nash equilibrium if, whenever any firm modifies its policy away from the

equilibrium, its own payoff will not increase. More precisely, ~u� is called a Markovian equilibrium

strategy if Ji

�
ui,~u

��i

�¤ Ji p~u�q for all i and pui,~u
��iq P U . By extending Brémaud (1980, Theorem

VII.T1) to the context of a stochastic game, one can rigorously justify that the following set of

Hamilton-Jacobi-Bellman (HJB) equations is a sufficient condition for the Markovian equilibrium

strategy.

Proposition 1 (Stochastic Game). If functions Vips,~nq : r0, T s�Z
mXX ÞÑR� for all i satisfy

the following set of HJB equations simultaneously� BVipT � t,~nqBt � λptqmax
pi

!
rip~pq� ~dp~pqT∇~VipT � t,~nq) , (1)
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where ∇~Vips,~nq :� p∆Vi,1ps,~nq,∆Vi,2ps,~nq, . . . ,∆Vi,mps,~nqq and ∆Vi,jps,~nq :� Vips,~nq � Vips,~n �
~ejq, with boundary conditions for all i, Vip0,~nq � 0 and Vips,~nq � 0 if ni � 0 for all s P r0, T s, then

VipT � t,~nq for all i are the equilibrium value-to-go functions of a Markovian equilibrium strategy

~u� � t~p�pt,~nq, pt,~nq P r0, T s � Z
m X X u P U such that p�i pt,~nq achieves the maximum in the HJB

equation (1) for any firm i at any pt,~nq.
Little is known about the existence of Nash equilibrium in a general stochastic game and the

best one may hope for is an ǫ-Nash equilibrium. Vieille (2000) proves that two-player non-zero-

sum stochastic games with a finite number of states always have approximate equilibria (ǫ-Nash

equilibrium for all ǫ¡ 0); nevertheless, the general existence problem remains an open question.

For a discrete-time version of our stochastic game, Lin and Sibdari (2009, Theorem 3.1) prove

the existence of Nash equilibrium by backwards induction using a theorem by Debreu (Vives

1999, Theorem 2.1; Debreu 1952). In this paper we focus on the asymptotically optimal heuristics

suggested by solving the corresponding differential game, which is formulated in the next section.

2.3. Formulation of the Deterministic Differential Game

We formulate the following deterministic version of our stochastic game, where the demand is a

deterministic fluid. We consider both weak and strong information structure in the differential

game, which correspond to two different solution schemes: open-loop strategies and closed-loop

strategies. Let us denote by ~xptq the joint inventory level at time t, which is a continuous quantity

in the differential game.

Definition 4 (Open-Loop Strategy). An open-loop strategy for firm i is a time path piptq,
0¤ t¤ T such that given the initial joint inventory level, it assigns a control for every time t. The

set of all joint allowable open-loop strategies is denoted by Uo.

Definition 5 (Closed-Loop Strategy). A closed-loop memoryless (closed-loop, hereafter)

strategy for firm i is a decision rule pi pt,~xptqq, 0¤ t¤ T such that given the initial joint inventory

level, it observes the current joint inventory level ~xptq and assigns a control for every time t. The

set of all joint allowable closed-loop strategies is denoted by U c.
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In an open-loop strategy, firms make an irreversible commitment to a future course of action. The

formulation of the open-loop strategy has taken into account the future competitive environment

but remains unaltered once the game starts. Alternatively, closed-loop strategies capture the feed-

back reaction of competitors to the firm’s chosen course of action. An open-loop strategy only

needs the weak information structure while a closed-loop strategy requires the strong information

structure. The strong information structure and weak information structure with observable prices

are equivalent for the differential game since in the deterministic model, any firm can accurately

compute the instant capacities of other firms by monitoring competitors’ prices.

Given pricing policy ~u P Uo (U c), we denote the total profit for any firm i by

Jd
i p~uq � » T

0

λptq rip~pptqqdt.

The vector of capacities evolves according to a kinematic equation: for any i,9xiptq ��λptqdip~pptqq, 0¤ t¤ T, xip0q � ci,

with the nonnegative state constraint

xjptq � cj � » t

0

λpsqdjp~ppsqqds¥ 0, � j, 0¤ t¤ T. (2)

Lemma 2 (Nonnegativity of State). The set of constraints txiptq ¥ 0, 0¤ t¤ T u on nonneg-

ative state at any time is equivalent to the single constraint xipT q ¥ 0 on nonnegative state at the

end of the horizon.

By Lemma 2, our differential game with constraints on state variables reduces to a differential

game with inequality constraints on the terminal state only.

Each firm’s problem is to maximize its own total revenue. The definitions of Nash equilibrium

for open-loop and closed-loop strategies follow immediately, such that OLNE (resp. CLNE) is an

m-tuple of open-loop (resp. closed-loop) strategies ~u� PUo (U c) satisfying Jd
i

�
ui,~u

��i

�¤ Jd
i p~u�q for

all i and pui,~u
��iq P Uo (U c). Since the set of all possible decision rules pipt,~xptqq contains all of the
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open-loop strategies piptq, we can conclude that Uo � U c. As shown in Fershtman (1987, Lemma

2.1), an OLNE is a special case of CLNE in a differential game.

Notice that both OLNE and CLNE are initial-condition pT,~cq dependent in general. Open-loop

and closed-loop strategies (even in terms of control time paths) are generally different in a non-

zero-sum differential game. We will show, however, that we can write fixed-pricing OLNE to our

differential game in feedback form; they are indeed non-degenerate CLNE that generate the same

equilibrium state trajectory and control path as their open-loop counterparts. This exception is

due to the special structure of our differential game that the objective functions and the RHS ’s of

kinematic equations are state-independent.

3. Nash Equilibrium of the Differential Game

3.1. Open-Loop Nash Equilibrium (OLNE)

Introducing absolutely continuous costate variable ~µiptq, 0 ¤ t ¤ T , we define for all firm i the

Hamiltonians Hi : r0, T s�X �R
m�R

m ÞÑR by

Hi pt,~x, ~pptq, ~µiptqq � λptqrrip~pptqq�
j̧

µijptqdjp~pptqqs, 0¤ t¤ T. (3)

With some regularity condition (Assumption 6), any OLNE ~pptq � ~p�ptq,0¤ t¤ T , its correspond-

ing costate trajectory ~µiptq,0¤ t¤ T for all i and equilibrium state trajectory ~xptq,0¤ t¤ T need

to satisfy the following set of necessary conditions (namely, the Pontryagin Maximum Principle,

see Dockner et al. 2000, Theorem 4.2 and Sethi and Thompson 2005, Section 3.1):

piptq maximizes piptqPPiYtpnull

i
p~p�iptqquHi, for almost all 0¤ t¤ T and all i, (4)� BµijptqBt � BHiBxj

, for almost all 0¤ t¤ T and all i, j, (5)9xiptq ��λptqdip~pptqq, 0¤ t¤ T, xip0q � ci, for all i, (6)

µijpT qxjpT q � 0, µijpT q, xjpT q ¥ 0, for all i, j. (7)

By Lemma 2, we have the constrained end-point xipT q ¥ 0 for all i, resulting in the last condition.

As the transversality condition, condition (7) essentially is the KKT complementary slackness
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condition for the end-point: If xjpT q ¡ 0 at equilibrium, then xjptq ¡ 0 for all 0¤ t¤ T and thus

the condition µijptq � 0 applies for all 0¤ t¤ T and any i; if µijpT q ¡ 0 for some i at equilibrium,

then we have xjpT q � 0.

Since the Hamiltonians do not explicitly depend on the state dynamics, condition (5) reduces to�BµijptqBt � 0, for almost all 0¤ t¤ T and all i, j.

By Royden (1988, Lemma 5.13), all absolutely continuous costate trajectories µijptq for all i, j with

derivative equal to zero almost everywhere must be constant.

Lemma 3 (Constant Costate Trajectory). For any OLNE, its corresponding costate trajec-

tories must be constant.

Hence we drop the time argument and denote the costate variable by µij for all i, j, which has the

interpretation of the shadow value of player j’s state variable xj to player i. Though the shadow

values µij, for all i, j are independent of time along the state trajectory of equilibrium, they may

be dependent on the initial state ~c.

By Assumption 4 and Lemma 1, a Pontryagin point, namely a solution satisfying the set of

necessary conditions (4)-(7), is in fact a maximum point. This follows because a Pontryagin point is

a KKT point of each firm’s control problem when expressed as a nonlinear programming problem

(Craven 1998, Section 5.10 and Mangasarian 1965). Thus the set of conditions (4)-(7) is also a

sufficient condition for an OLNE. By Lemma 3 and rewriting conditions (6) and (7), we have the

following characterization of an OLNE.

Proposition 2 (Open-Loop Nash Equilibrium). The open-loop policy t~pptq : 0¤ t¤ T u is an

OLNE if and only if there exists a set of costate variables tµiju such that ~dp~pptqq ¥~0 for all 0¤ t¤ T

and the following set of conditions is satisfied:

piptq maximizes piptqPPiYtpnull

i
p~p�iptqqu#rip~pptqq�

j̧

µijdjp~pptqq+ , for almost all 0¤ t¤ T and all i,

(8)

µij

�
cj � » T

0

λptqdjp~pptqqdt

�� 0, for all i, j. (9)
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We shall consider a special kind of OLNE, a fixed-pricing policy ~pptq � ~p� for all 0 ¤ t ¤ T ,

that can be guaranteed under fairly general assumptions. By Proposition 2, if there exists ~p� ~p�
together with a set of co-state variables tµiju satisfying ~dp~pq ¥~0 and the set of conditions

pi maximizes piPPi

#
rip~pq�

j̧

µijdjp~pq+ , for all i, (10)

µij rcj �ΛpT qdjp~pqs � 0, for all i, j, (11)

we obtain ~pptq � ~p�,0¤ t¤ T as an OLNE. Restricted within the domain of a fixed-pricing policy,

it is not optimal for any firm to use a null price all the time. Hence we can ignore the option

of null price in (10) and confine the joint fixed-pricing policy ~p within the compact set P when

searching for the desired fixed-pricing OLNE. The set of conditions (10)-(11) can be viewed as

the KKT conditions (a necessary and sufficient condition for equilibrium by Assumptions 2-4) for

the following one-shot Bertrand-Edgeworth-Chamberlin game (P0) with zero marginal cost: given

competitors’ prices ~p�i, each player i is to simultaneously solvepP0iq max
piPPi

rip~pq
s.t. 0¤ djp~pq ¤ cj{ΛpT q, for all j.

The following result follows immediately.

Lemma 4 (Constrained Static Game). Any equilibrium to game (P0) is a fixed-pricing OLNE

to the differential game.

Next we take two approaches to analyze game (P0) and identify fixed-pricing OLNE for the

differential game.

3.1.1. Generalized Nash Game Approach Game (P0) is a generalized Nash game (Ichiishi

1983, Rosen 1965), where each player’s strategy set is dependent on the competitors’ strategies, in

contrast to a Nash game where the joint strategy set is full Cartesian products of individual strategy

sets. A set of strategies within the constrained joint strategy set is a generalized Nash equilibrium

if no player can do better by unilaterally changing his or her strategy to one that maintains the
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joint constraints satisfied. We have the following result on the existence of a generalized Nash

equilibrium to game (P0), and equivalently that of the OLNE in the differential game by Lemma

4.

Theorem 1 (Existence of OLNE via Concavity). There exists an OLNE in the differential

game.

Proof of Theorem 1. By Lemma 1, the set tpip~p�iq | 0 ¤ djp~pq ¤ cj{ΛpT qu is convex for all j.

By Assumptions 5 and 6, the strategy set tpip~p�iq | ~0 ¤ ~dp~pq ¤ ~c{ΛpT qu X Pi for any firm i given

competitors’ strategy ~p�i is nonempty, compact and convex. By Assumption 4, the existence result

for game (P0) thus for the differential game follows by Ichiishi (1983, Theorem 4.3.1). �
The equilibrium existence result of the generalized Nash game (P0) can be obtained under

general assumptions on the demand structure and strategy space, though computing a generalized

Nash equilibrium remains a challenging task up to date. However, with one additional assumption

on the strategy space we can obtain even richer existence results and more effective computation

mechanism by focusing on an unconstrained Nash game that provides a subset of Nash equilibria

for game (P0).

3.1.2. Nash Game Approach We can relate the problem of solving for a generalized Nash

equilibrium of game (P0) to the following game (P1) with relaxed constraints: given competitors’

prices ~p�i, each player i is to simultaneously solvepP1iq max
piPPi

rip~pq
s.t. 0¤ dip~pq ¤ ci{ΛpT q.

In contrast with game (P0), the firms in game (P1) have bounded rationality and ignore the

capacity constraints of competitors in their best responses. From the perspective of dual variables,

game (P1) is to set µij � 0 for j � i and all i in the KKT conditions (10)-(11) of game (P0).

Lemma 5 (Constrained Static Game of Bounded Rationality). Any generalized Nash

equilibrium to game (P1) is one to game (P0).
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We want to impose one more fairly reasonable assumption on the joint strategy set P which

is the Cartesian products of each firm’s strategy set Pi. This assumption allows us to relax the

generalized Nash game (P1) to an auxiliary Nash game (P2) with the strategy space as a compact

lattice, which provides a subset of equilibria for the original generalized Nash game (P0). We

can then resort to the existing framework of quasi-concave or supermodular game for equilibrium

analysis and computation. As a technical treatment, we fix a small 0  ǫ  1.

Assumption 8 (Achievable Market-Clearing Price). For any ps,~xq P p0, T s��
i
rǫ, cis and

any ~p�i PP�i, there exists

p0
i ps,xi, ~p�iq :� inftpi ¥ 0 | dip~pq ¤ xi{Λpsqu

and p0
i pT, ǫ, ~p max�i q ¤ pmax

i . Furthermore, ~dp~pq ¥~0 for any ~p PP.

By Assumptions 2 and 3, we have the following result with the proof relegated to the appendix.

Lemma 6 (Monotonicity of Market-Clearing Price). p0
i ps,xi, ~p�iq is increasing in ~p�i

and decreasing in xi{Λpsq.
Remark 1. Combining Lemma 6 and Assumption 8, we have p0

i ps,xi, ~p�iq ¤ p0
i pT, ǫ, ~p max�i q ¤ pmax

i

for any ps,~xq P p0, T s ��
i
rǫ, cis and any ~p�i P P�i. This basically says that there exists some

price within each firm’s compact feasible price interval such that it can sell no more than its

capacity regardless of prices the other firms choose. Assumption 8 is not overly restrictive. In

reality, no matter how high competitors’ prices are, there always exists a finite price for a firm such

that the demand can be almost turned off. Technically, suppose ~p max is a solution to the system

dip~pq � ǫ{ΛpT q for all i; we have Assumption 8 hold since p0
i pT, ǫ, ~p max�i q � pmax

i for all i. Therefore

to make the assumption as general as possible, we can select ~p max as any reasonably large solution

to the system dip~pq � ǫ{ΛpT q for all i. As an another technical remark, the reason we bound the

initial inventory away from zero is that when the inventory as a continuous quantity approaches

to zero it is possible that we may lose compactness needed in equilibrium analysis for the set P

satisfying Assumption 8. This technical treatment is not overly restrictive since in the stochastic
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game inventory levels are non-negative integers; in the differential game, we will see that along

the equilibrium trajectory, the ratios of inventories to the remaining time never approach to zero.

Furthermore, to ensure the demand is always well-defined, we assume that ~dp~pq ¥~0 for any ~p PP.

For example, if the demand function is in a linear form as ~dp~pq � ~a�B~p, where ~a¡ ~0 and B is

a diagonally dominant matrix with diagonal entries positive and off-diagonal entries non-positive;

for such a system, if ~p max is selected as a solution to the system dip~pq � ǫ{ΛpT q ¡ 0 for all i, ~dp~pq
is always non-negative for all ~p PP.

Now let us define the following unconstrained auxiliary pricing game (P2): given competitors’

prices ~p�i PP�i, each player i is to simultaneously solvepP2iq max
piPPi

πip~pq :�max
piPPi

mintrip~pq, pici{ΛpT qu.
Lemma 7 (Unconstrained Static Game). Under the additional Assumption 8, game (P2) is

equivalent to game (P1).

By Lemma 4, 5 and 7, we can focus on the auxiliary Nash game (P2) for the existence of

Nash equilibrium in the original differential game. Before we resort to the existing framework of

analyzing a Nash game, we show the following structural properties shared between the revenue

rate functions and the objective functions in game (P2).

Lemma 8 (Structural Equivalence). (i) rip~pq is quasi-concave in pi � πip~pq is quasi-concave

in pi for all ci; (ii) rip~pq is (log-)supermodular in ~p � πip~pq is (log-)supermodular in ~p for all ci.

Having Lemma 8, by Vives (1999, Theorem 2.1 (Debreu) and Theorem 2.5 (Topkis)) we can

establish the existence result for the OLNE in the differential game, under general assumptions

on the revenue rate functions which are satisfied by most commonly-used demand structures (see

Examples 1 and 2).

Theorem 2 (Existence of OLNE via Supermodularity). Under the additional Assump-

tion 8, that rip~pq is (log-)supermodular in ~p for all i can replace Assumption 4 to guarantee there

exists an OLNE in the differential game.
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We can further ensure the uniqueness of Nash equilibrium to game (P2) by some “diagonal

dominance” condition (Vives 1999, Section 2.5) under the framework of either quasi-concave game

or supermodular game. The supermodular framework provides additional advantage in computing

the equilibrium by the tatônnement best-response scheme.

3.1.3. Open-Loop Nash Equilibrium as a Function of the Initial Condition In order

to write an OLNE in feedback form, we want to establish a one-to-one mapping between an initial

condition and its corresponding OLNE. If we have the uniqueness result for game (P2), there

naturally exists such a one-to-one correspondence. Then we can write the fixed-pricing OLNE ~p�
for a game (P2) with the remaining sales horizon s� T � t and initial joint capacity ~x as a function

of the initial condition ps,~xq P p0, T s ��
i
rǫ, cis and denote the mapping by ~pops,~xq. There are

other ways to specify the mapping ~pops,~xq even if the equilibrium to game (P2) is not unique.

For example, suppose the revenue rate functions are (log-)supermodular, then there exists a lattice

of equilibria in game (P2). By Assumption 3, πip~pq is increasing in ~p�i, thus the firms all prefer

the largest equilibrium in the lattice (Bernstein and Federgruen 2005, Theorem 2), so we can still

establish the one-to-one correspondence by designating the mapping as to the largest equilibrium in

such a supermodular game. The mapping can also be made for any fixed-pricing OLNE suggested

by game (P0) as long as we are consistent in selecting the set of co-state variables for each initial

condition and in designating the mapping if there are multiple equilibria for the same set of co-state

variables. The following proposition summarizes structural results of this mapping.

Proposition 3 (Open-Loop Mapping). (i) For any ps,~xq, ps1,~x1q such that ~x{Λpsq � ~x1{Λps1q,
we have ~pops,~xq � ~pops1,~x1q;
(ii) If dip~pq is twice continuously differentiable for all i, then ~pops,~xq is continuous almost every-

where;

(iii) If rip~pq is (log-)supermodular in ~p for all i, then ~pops,~xq is decreasing in ~x{Λpsq.
Part (i) of Proposition 3 essentially argues that an initial condition ps,~cq plays a role in deter-

mining the equilibrium outcome only in terms of the run-out rates tci{Λpsq, i P Iu. Part (ii) implies
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the robustness of an equilibrium in the sense that small perturbations of the initial condition due

to possible data inaccuracy do not significantly change the equilibrium. Part (iii) shows that the

equilibrium prices of all firms move downward as the initial capacity of some firm increases and/or

the sales horizon shortens ceteris paribus. In light of part (iii), we observe that the increasing

monotonicity of value functions in inventory, ingrained in folklore in monopoly RM models, may

break down for oligopoly RM models: if rip~pq is locally increasing in pi, together with Assumption

3, we have rip~pq is locally increasing in ~p. Combining two monotone functions, profit functions

πip~pops,~xqq � rip~pops,~xqq for all i in the differential game under the fixed-pricing OLNE ~pops,~xq
are possible to be locally decreasing in ~x.

Recall that ~popT,~cq is a solution to conditions (10)-(11) that characterize the fixed-pricing OLNE

when the initial condition is pT,~cq. Realizing that condition (11) can be written as

µij rpcj �Λptqdjp~pqq�ΛpT � tqdjp~pqs � 0, for all i, j,

we see ~popT,~cq is also a solution to conditions (10)-(11) when the initial condition is�
T � t,~c�Λptq~dp~popT,~cqq	 for all 0¤ t¤ T . The the following result follows immediately.

Proposition 4 (Trajectory of OLNE). ~popT,~cq � ~po

�
T � t,~c�Λptq~dp~popT,~cqq	 for all 0 ¤

t¤ T .

3.2. Closed-Loop Nash Equilibrium (CLNE)

Though the CLNE under the strong information structure is generally hard to solve for the differ-

ential game, we observe that the fixed-pricing OLNE ~p�ptq � ~popT,~cq for 0¤ t¤ T specified in the

previous section can also be described in a feedback form as:

~p cpt,~xq �$&% ~popT � t,~xq, for pt,~xq P p0, T s��
i
rǫ, cis,

~popT � t,~ǫq, for pt,~xq P p0, T s��
i
r0, ǫq. (12)

The separate treatment for pt,~xq P p0, T s ��
i
r0, ǫq is consistent with Remark 1 to ensure ~p cpt,~xq

is well-defined within the compact set P. By Proposition 4, the equilibrium state trajectory of
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the differential game under the closed-loop strategy ~p cpt,~xq self-enforcingly evolves according to

~xptq � ~c � Λptq~dp~popT,~cqq for all t while yielding ~p cpt,~xptqq � ~popT,~cq for all t along the state

trajectory. Therefore the specified closed-loop strategy generates identical equilibrium trajectory

of control and state as the fixed pricing open-loop strategy. Furthermore, it is indeed a CLNE.

Proposition 5 (Existence of CLNE via Construction). The closed-loop strategy ~p cpt,~xq
is a CLNE of the differential game.

Proof of Proposition 5. Under the guaranteed constraint qualification, the necessary condition

for the CLNE is the set of conditions (4)-(7) with condition (5) replaced by� BµijBt � BHiBxj

�
ķ�i

BHiBpk

Bp�kBxj

, 0¤ t¤ T, for all i, j. (13)

Along the equilibrium state trajectory ~xptq �~c�Λptq~dp~popT,~cqq, the equilibrium price path ~p�ptq �
~popT,~cq,0¤ t¤ T is state-invariant. Thus Bp�k{Bxj � 0 for all k, j. Recall that the OLNE ~popT,~cq
together with its costate trajectory ~µiptq � ~µi for all i and state trajectory ~xptq �~c�Λptq~dp~popT,~cqq
satisfy conditions (4)-(7). We see that the closed-loop strategy ~p cpt,~xq,0¤ t¤ T together with the

same trajectory of costate variables and state as the OLNE indeed satisfies the set of necessary

conditions for the CLNE – conditions (4)-(7) with condition (5) replaced by condition (13). By

Assumption 4 and Lemma 1, we obtain the desired result since the set of necessary conditions is

also sufficient: by extending Sethi and Thompson (2005, Theorem 3.1) to our game and realizing

that Hipt,~x, ~p, ~µiq � λptqrrip~pq �°
j
µijdjp~pqs is state-independent with rip~pq pseudo-concave in pi,

djp~pq, � j, quasi-convex in pi and the LHS function of terminal constraint ~xpT q ¥ 0 linear (thus

quasi-concave) in ~x. �
As a minimum requirement, the CLNE ~p cpt,~xq with any fixed 0   ǫ   1 is time consistent

(Dockner et al. 2000, Theorem 4.3). Furthermore, if we can strengthen Assumption 8 such that

it is satisfied for ǫ� 0 then the CLNE ~p cpt,~xq with ǫ� 0 will be indeed subgame perfect so that

the strategy represents optimal behavior not only along the equilibrium state trajectory but also

anywhere off this trajectory (Dockner et al. 2000, Section 4.3).
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4. Links to the Stochastic Game

4.1. The Differential Game as an Affine Functional Approximation

It is well known that the HJB equation can be equivalently stated as an optimization problem (see

Adelman 2007 for an application in discrete-time RM). The equivalent problem for the set of HJB

equations (1) of the continuous-time stochastic game is that any firm i simultaneously solves its

own optimization problem given competitors’ strategy ~p�ipt,~nq:
min
Vip�,�q VipT,~cq
s.t. � BVipT � t,~nqBt ¥ λptq!rip~ppt,~nqq� ~dp~ppt,~nqqT∇~VipT � t,~nq) ,�pipt,~nq PPiYtpnull

i p~p�ipt,~nqqu, pt,~nq P r0, T s�Z
mXX .

We now approximate the value functions Vips,~nq for all i by the following quasistatic affine func-

tions:

Vips,~nq⋍ Wips,~nq :� » T

T�s

θiptqdt�~nT ~wi, ~wi ¥~0. (14)

Realizing that �BWipT � t,~nq{Bt � θiptq and ∇ ~WipT � t,~nq � ~wi, we can approximate the mini-

mization problem for any firm i as the following continuous-time nonlinear programming problem:pDiq min
θiptq,tPr0,T s, ~wi¥~0

» T

0

θiptqdt�~cT ~wi

s.t. θiptq ¥ λptq!rip~pptqq� ~dp~pptqqT ~wi

)
, �piptq PPiYtpnull

i p~p�iptqqu, t P r0, T s.
Since pDiq is a minimization problem, it is optimal to set

θiptq � λptq max
piptqPPiYtpnull

i
p~p�iptqqutrip~pptqq� ~dp~pptqqT ~wiu

for all t P r0, T s in the objective function. Then the objective of any firm i becomes

min
~wi¥~0

#
max

piptqPPiYtpnull

i
p~p�iptqqu,tPr0,T s» T

0

λptqrip~pptqqdt��
~c� » T

0

λptq~dp~pptqqdt


T

~wi

+
,

which is the maximization problem with capacity constraints (2) in the differential game dualized

by the vector ~wi. Strong duality holds here since this continuous-time maximization primal problem

has pseudo-concave objective function and quasi-convex constraints, and both primal and dual are

feasible (Zalmai 1985).
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Proposition 6 (Approximation to Stochastic Game). The stochastic game reduces to the

deterministic differential game when each firm uses a quasistatic affine function (14) to approxi-

mate its own value function.

When the above strong duality holds, first-order approximated capacity values ~wi (dual variables)

of all firms to any firm i are exactly equal to constant costate variables (shadow prices) ~µi in

the differential game when an OLNE is considered (see conditions (8) and (9)). The capacity

value of any competitor to the firm itself is nonnegative due to the substitutability between the

differentiated products: intuitively, when a firm has limited capacity compared to ample capacity,

it has incentive to increase its own price; in the competitive market of strategic complements this

pressure of lifting price is passed to all competitors in reaching an equilibrium.

4.2. Closed-Loop Heuristics as Asymptotic Equilibrium

The differential game can be analyzed for suggesting tractable heuristics to the original non-zero-

sum stochastic game. In this section, we demonstrate three heuristics under three information

structures and show that they are asymptotic equilibrium for the stochastic game in an appropriate

sense.

4.2.1. Weak Information Structure Under the weak information structure, only initial

joint inventory level is public information. Given such limited source of information, the OLNE

that does not require observing the evolving state sustains as an ǫ-Nash equilibrium in a relative

sense asymptotically when supply and demand are proportionally scaled up, in particular, when

the initial capacities ~c and the cumulative customer arrival ΛpT q are scaled up but with their ratios

~c{ΛpT q fixed.

Definition 6 (ǫ-Nash Equilibrium). For any ǫ ¡ 0, ~u� P U is called an ǫ-Nash equilibrium of

the stochastic game if Ji

�
ui,~u

��i

�{Ji p~u�q ¤ 1� ǫ for all ui P Ui and all i.

Remark 2. Similar to the concept considered in Bernstein and Federgruen (2003), ǫ here refers

to a relative amount by which a firm’s profit can be improved by a unilateral deviation from the

equilibrium.
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When m� 1, there is no competition but monopoly. Let us first review bounds on the perfor-

mance of the fixed-pricing policy suggested by the differential problem in the monopolist stochastic

pricing problem, then proceed to use it to prove our asymptotic optimality result in the oligopoly

case. In the monopolist stochastic problem, given a pricing policy p PU , an initial stock n¡ 0 and a

sales horizon s¡ 0, we denote the expected revenue by Jpps,nq :�E

�» s

0

pv dNv

�
, where Jpp0, nq � 0

for �n PNYt0u and Jpps,0q � 0 for � s PR�. The optimal total expected revenue generated over the

selling horizon for the stochastic problem is denoted by Jsps,nq, i.e., Jsps,nq :� suppPU Jpps,nq. The

maximal total revenue generated over the selling horizon in the deterministic differential problem

is denoted by Jdps,nq. Let Jf ps,nq denote the total expected revenue for the stochastic problem

under the fixed-pricing heuristic suggested by solving the differential problem.

Lemma 9 (Bounds in Monopoly RM Problem).

Jdps,nq�1� 1

2
a

mintn,Λpsqdpp�qu�¤ Jfps,nq ¤ Jsps,nq ¤ Jdps,nq . (15)

Summarizing performance bounds from Gallego and van Ryzin (1994), Lemma 9 suggests that

the simple fixed-pricing heuristic p� results in revenues that are at least proportional to the upper

bound. Moreover, the proportional factor approaches one as both the supply and the demand

increase. The asymptotic optimality of the fixed-pricing heuristic for the monopolistic problem is

not hard to obtain by noting that when mintn,Λpsqdpp�qu is large enough, Jfps,nq and Jsps,nq
are sufficiently close. For the oligopolist stochastic game, the problem for an individual firm to

maximize its own expected total revenue while all other firms use a fixed-pricing policy is nothing

but a monopolist optimal dynamic pricing problem since the demand intensity function for this

firm is time invariant. Realizing this, we are ready to extend asymptotic optimality of the fixed-

pricing policy in the monopolistic problem to ǫ-Nash equilibrium of the fixed-pricing policy in the

multi-player stochastic game.

Theorem 3 (OPNE as ǫ-Nash Equilibrium). Consider the stochastic game. For any ǫ ¡ 0,

the fixed-pricing equilibrium ~popT,~cq is an ǫ-Nash equilibrium of the stochastic game if the initial

condition satisfies maxtci,ΛpT qdi p~popT,~cqqu ¥ pp1� ǫq{2ǫq2 for all i.
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4.2.2. Strong Information Structure Under the strong information structure, the inven-

tory level of any firm in real time is public information. The closed-loop strategy ~p cpt,~xq in the

differential game provides a heuristic in feedback form. By extending Maglaras and Meissner (2006)

to the game context, we will show that this heuristic is a Nash equilibrium asymptotically in a

limiting regime as demand and supply grow proportionally large. Specifically, using k as an index,

we consider a sequence of stochastic games with customer arrival λkptq � kλptq, � t P r0, T s and

initial joint inventory ~ck � k~c, and let k increase to infinity; hereafter, a superscript k denotes

quantities that scale with k.

Definition 7 (Asymptotic Nash Equilibrium). ~u� P U is called an asymptotic Nash equilib-

rium of the stochastic game if ~u� is a Nash equilibrium of the limiting game as k increases to

infinity.

In this section and the following one, we need to make an assumption on the continuity of the

mapping ~popt,~xq, which Proposition 3 part (ii) provides a sufficient condition to guarantee.

Assumption 9 (Continuity of Open-Loop Mapping). ~popt,~xq (thus ~p cpt,~xq) is continuous

almost everywhere.

The cumulative demand for firm i up to time t is NipAk
i ptqq, where Ak

i ptq � » t

0

k λpvqdipvqdv,

where dipvq � dip~p cpv, ~Xkpvq{kqq, and Xk
i pvq � kci�NipAk

i pvqq for all i denotes the remaining inven-

tory for firm i under the heuristic. Note that Ak
i p0q � 0, Ak

i ptq is nondecreasing and Ak
i ptq�Ak

i pvq ¤pΛptq �Λpvqqkdmax
i , where dmax

i :�max~pPP dip~pq. This implies that the family of process tAk
i ptq{ku

for all i is equicontinuous, and therefore relatively compact. By the Ascoli-Arzelá Theorem, the

sequence tAk
i ptq{ku has a converging subsequence, say tkmu, such that Akm

i ptq{km Ñ Āiptq for all

i: for i � 1, there exists a converging subsequence tk1u, such that A
k1

1 ptq{k1 Ñ Ā1ptq; for i � 2,

along sequence tk1u, there exists a converging subsequence of tk2u, such that A
k2

1 ptq{k2 Ñ Ā1ptq
and A

k2

2 ptq{k2 Ñ Ā2ptq; we can repeat the process until we have a subsequence tkmu satisfying the

desired property. Recall that the functional strong law of large numbers for the Poisson process

asserts that Nipktq{kÑ t, a.s. uniformly in t P r0, T s as kÑ8. Along the subsequence tkmu we get
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that NipAk
i ptqq{k converges to Āiptq for all i, and therefore that X̄k

i ptq :�Xk
i ptq{k converges to a

limit x̄iptq for all i; the two converging results hold a.s. uniformly in t P r0, T s. Using the continuity

of ~dp~pq and ~p cpt,~xq, by Dai and Williams (1995, Lemma 2.4), we get that as km Ñ8, for all i,

1

km

Akm

i ptq � » t

0

λpvqdi

�
~p c

�
v,

~Xkmpvq
km

��
dvÑ » t

0

λpvqdi

�
~p c

�
v, ~̄xpvq�� dv, a.s. uniformly in t P r0, T s.

Thus we get that as km Ñ8, for all i,

X̄km

i ptq � ci� 1

km

NipAkm

i ptqq Ñ ci� » t

0

λpvqdi

�
~p c

�
v, ~̄xpvq�� dv� ci�Λptqdip~popT,~cqq,

a.s. uniformly in t P r0, T s, which shows that the limiting trajectories do not depend on the selection

of the converging subsequence tkmu. By Assumption 9, we have as km Ñ8,

~p cpt, ~̄Xkmptqq Ñ ~p c
�
t,~c�Λptq~dp~popT,~cqq	� ~popT,~cq, a.s. uniformly in t P r0, T s.

Again by Dai and Williams (1995, Lemma 2.4), the revenue extracted under the closed-loop strat-

egy ~p cpt,~xq after normalization is, for all i, as km Ñ8,

1

km

Ji

�
~p cpt, ~̄Xkmptqq,0¤ t¤ T

	� 1

km

» T

0

pc
i pt, ~̄XkmptqqdNipAkm

i ptqq ÑΛpT qrip~popT,~cqq, a.s.

For any closed-loop strategy ~p1pt,~xq,0¤ t¤ T that firms decide to follow in the stochastic game,

~p1pt, ~Xkptq{kq,0¤ t¤ T is implemented in the scaled system. By the same argument, we can show

that ~̄Xptq � ~Xkptq{k converges to a limit ~̄x1ptq a.s. uniformly in t P r0, T s; hence ~p1pt, ~̄Xptqq converges

to ~p1pt, ~̄x1ptqq a.s. uniformly in t P r0, T s, which is exactly the control path generated by the same

closed-loop strategy ~p1pt,~xq in the differential game. Realizing this correspondence, we see that

by applying a CLNE suggested by the differential game in the stochastic game, such a strategy

sustains as a Nash equilibrium in the limiting regime of the scaled stochastic games.

Proposition 7 (CLNE as Asymptotic Nash Equilibrium). Suppose that demand and

capacity of the stochastic game are scaled according to λkptq � kλptq, � t P r0, T s and ~ck � k~c.

Under the additional Assumption 9, the heuristic ~p cpt,~xq is an asymptotic Nash equilibrium in the

limiting regime of the sequence of scaled stochastic games as kÑ8.
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4.2.3. Weak Information Structure with Observable Price Strong information struc-

ture is needed when analyzing closed-loop strategies. In reality, the weak information structure with

observable price history can be a more reasonable assumption (Xu and Hopp 2006). We assume

all firms know the initial inventory levels and can observe the instantaneous prices of competitors,

so that every firm can estimate the remaining inventory levels of its competitors. We define the

market price history up to time t as Hptq � σt~ppvq,0¤ v¤ tu and hptq as a realization of Hptq. We

propose the following feedback-type heuristic: for all i,

ph
i pt, xi, hptqq � p c

i

�
t, xi,~c�i� » t

0

λpvq~d�i p~ppvqq dv



, 0¤ t¤ T. (16)

Since the information structure considered in this section may be the closest to the reality, we

believe the proposed heuristic and its asymptotic optimal behavior are of particular interest to the

practice.

Similarly to the analysis in the previous section, we can show that the family of cumulative

demand-rate process tAk
i ptq{ku for all i under the heuristic ~ph has a converging subsequence tkh

mu
on which the mean state process with demand uncertainty ~̄Xhptq converges almost sure to a deter-

ministic state process ~̄xhptq uniformly in t P r0, T s. Along the deterministic limiting trajectory ~̄xhptq,
xh

j ptq � cj � » t

0

λpvqdjp~ppvqqdv for all j � i, in other words, the price history accurately reveals the

competitors’ inventory information. It is easy to see the heuristic ~ph is equivalent to the heuristic

~p c in the fluid-scale limiting regime in that they generate the same trajectory of control and state.

Similar arguments to the previous section lead to the following result.

Proposition 8 (Closed-Loop Heuristic as Asymptotic Nash Equilibrium). Suppose

that demand and capacity of the stochastic game are scaled according to λkptq � kλptq, � t P r0, T s
and ~ck � k~c. Under the additional Assumption 9, the heuristic ~phpt,~x,hptqq � �

ph
i pt, xi, hptqq�i

is

an asymptotic Nash equilibrium in the limiting regime of the sequence of scaled stochastic games

as kÑ8.
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5. Examples

5.1. Demand Structures

We consider several of the most frequently-used classes of demand functions and demonstrate

conditions for the existence of the OLNE to the differential game.

Example 1 (General Attraction Models). In the attraction models, customers choose each

firm with probability proportional to its attraction value. Specifically, we have the following cus-

tomer choice probability functions: for all i,

dip~pq � aippiq°m

j�0
ajppjq , (17)

where aippiq ¡ 0 is the attraction value for firm i and a0 � a0pp0q ¥ 0 is interpreted as the fixed

value of the no-purchase option.

Lemma 10 (Sufficient Condition of Pseudo-Convexity). If a twice continuously differen-

tiable function f : RÑR satisfies f 1pxq � 0ñ f 2pxq ¡ 0, then f is pseudo-convex, i.e., for any x1

and x2, px1�x2qf 1px2q ¥ 0ñ fpx1q ¥ fpx2q.
We have the following structural results on the general attraction demand functions. For sim-

plicity, let ai :� aippiq, a1i :�Baippiq{Bpi and a2i :� B2aippiq{Bpi
2. We assume ai is twice continuously

differentiable.

Proposition 9 (Structures of Attraction Models). (i) if a1i ¤ 0 for all i, dip~pq is quasi-

linear in pj for all j;

(ii) if 2a1i� aia
2
i {a1i ¡ presp. q0, rip~pq is pseudo-convex (resp. pseudo-concave) in pi.

The MNL model assumes aippiq � βi expt�αipiu, αi, βi ¡ 0 for all i. As an immediate result, we

have the following corollary.

Corollary 1. For the MNL model, dip~pq is quasi-linear in pj for all j and rip~pq is pseudo-concave

in pi.
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Thus by Theorem 1, there exists an OLNE in the differential game for the MNL model. We can

also obtain the equilibrium existence result for the general attraction models by the Nash game

approach and the framework of supermodular game.

Proposition 10 (Existence of OLNE for Attraction Models). For any initial condi-

tion,

(i) if a1i ¤ 0 for all i, there exists an OLNE;

(ii) furthermore, if ai is log-concave in pi and for any ~p PP and all i,

ai°
j�i

aj

¤ a1i°
j�i

a1j , (18)

there exists a unique Nash equilibrium to game (P2).

Remark 3. Note that a weaker condition

ai°
j
aj

  a1i°
j�i

a1j
as Equation (11) provided in Bernstein and Federgruen (2004) is not sufficient to guarantee the

uniqueness of a Nash equilibrium to game (P2). Condition (18) is satisfied by the MNL model with

constant price sensitivity αi � α¡ 0, � i, βi ¡ 0,� i and a0 ¥ 0.

Example 2 (The Linear Model). The customer choice probability function has the form of

dip~pq � ai � bipi �°
j�i

cijpj, ai, bi ¡ 0, cij ¥ 0, j � i for all i. Then it is easy to check that dip~pq
is quasi-linear in pj for all j, rip~pq is strictly concave in pi and supermodular in ~p. Under the

additional condition of diagonal dominance that bi ¡°
j�i

cij for all i, there exists a unique Nash

equilibrium to game (P2) and a unique generalized Nash equilibrium to game (P1) for any set of

costate variables.

5.2. Numerical Examples

Using the tatônnement scheme as a computational tool for the fixed-pricing OLNE, we are empow-

ered to study the convergence rate of the scheme, the effects of irrationality of competitors and

the performance of proposed heuristics for the stochastic game.
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Example 3 (OLNE for MNL). We consider price competition among m � 5 firms and use a

tatônnement scheme for the MNL model. Table 1 summarizes the equilibrium price vector ~p�
and demand vector ~dp~p�q under different initial conditions from all firms with abundant invento-

ries to all firms with limited inventories, provided no-purchase value a0 � 0.25, pα1, α2, � � � , α5q �p.5, .75,1,1.25,1.5q, pβ1, β2, � � � , β5q � p.5, .75,1,1.25,1.5q. Notice that for this example when ci{ΛpT q
decreases for some firm i while the initial conditions are fixed for other firms, the market equilib-

rium ~p� moves up. This is consistent with the supermodularity; firm i tends to price higher with

relatively less inventories and other firms in the market react by increasing their prices accordingly

to stay at equilibrium.

Figure 1 illustrates the linear convergence of tatônnement scheme for the MNL model with

various no-purchase value a0, provided the initial condition ~c{ΛpT q � p0.09,0.5,0.17,0.5,0.24q and

starting point ~p0 � p4,3,3,3,3q. We see that with a larger no-purchase value, the linear convergence

is faster. �
~c{ΛpT q ~p� ~dp~p�q

(.50,.50,.50,.50,.50) (2.21,1.55,1.21,1.01,.87) (.10,.14,.17,.21,.24)
(.09,.50,.50,.50,.50) (2.38,1.55,1.21,1.01,.88) (.09,.14,.18,.21,.24)
(.09,.13,.50,.50,.50) (2.41,1.66,1.22,1.01,.88) (.09,.13,.18,.21,.24)
(.09,.13,.17,.50,.50) (2.44,1.68,1.28,1.02,.88) (.09,.13,.17,.21,.24)
(.09,.13,.17,.21,.50) (2.46,1.69,1.29,1.04,.88) (.09,.13,.17,.21,.25)
(.09,.13,.17,.21,.24) (2.54,1.74,1.33,1.07,.92) (.09,.13,.17,.21,.24)

Table 1 Open-Loop Equilibrium for the MNL with Various Initial Conditions

Example 4 (Irrationality). An important question in games is what happens if some firm

deviates from the equilibrium. To address this question we focus on the differential game and define

rational firms as those who always use their best response functions. Irrational firms are those who

use less sophisticated strategies such as price matching, pricing to maximize revenue rates (even

when capacities are low) or use market clearing prices (even when capacities are high). Rational

firms can still reach a Nash equilibrium among themselves that is a best response to all other

firms, including irrational firms. Following the competitive setting of Example 3, we numerically
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Figure 1 Linear Convergence of Tatônnement for the MNL with Various No-Purchase Values

investigate the effects that irrational firms have on their own revenues as well as those of other

firms. We use the same parameters for the MNL model as in Example 3.

Table 2 specifies various scenarios with irrational firms that ignore the capacity effect and always

try to maximize their revenue rates. There is a severe loss for any irrational firm, compared to the

revenue it could make by using best-response strategy. The extent of the loss is roughly proportional

to the capacity level; with less capacity, the firm suffers more by pricing irrationally. When irrational

firms with limited capacities keep their prices low, they have two effects on their competitors:

first, before irrational firms run out of stock, their relatively low prices hurt competitors with

more price-sensitive competitors taking larger losses; second, after irrational firms run out of stock,

competitors can increase prices and improve profits. Price increase after some irrational firm runs

out of capacity is consistent with the supermodularity since the firm is forced to increase its price

to a null price. The combined effect of the two depends on which one is dominant. Low revenue-

rate maximizing prices of irrational firms can mislead their competitors into thinking that they

have abundant capacities. In spite of the second effect, rational firms with limited capacities suffer

more than rational firms with abundant capacities because when they can increase prices after

some irrational firms run out of capacity, they likely have already consumed most of their limited

capacities at a relatively low price due to the misleading information.
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Table 3 shows that there is a loss for both irrational firms and their rational competitors when

irrational firms use the market clearing price when they have abundant capacities. In Table 4, we

consider a situation where an irrational firm selects a price uniformly between the revenue-rate

maximizing price and the market clearing price, and we demonstrate by simulation the phenomenon

that rational firms may come ahead after some irrational firms run out of capacity before the end of

selling horizon. We use an initial condition ~c{ΛpT q � p.20, .20, .17, .20, .23q for this simulation, where

firms 3, 4 and 5 have limited capacities. The table suggests that using a randomized policy results

in loss for the irrational firms and may cause gains for strategic competitors using best-response

pricing.

Not surprisingly, irrational firms consistently lose revenues relative to playing with their equi-

librium strategies. More interestingly, the losses incurred by irrational firms themselves are con-

sistently larger than the losses inflicted on other firms. We find that rational firms with more

price-sensitive demands suffer larger losses when irrational firms with limited capacities maximize

their revenue rates instead of using their (higher) optimal market clearing prices. However, by

pricing low, irrational firms run out of capacity before the end of the horizon, allowing rational

firms to respond with higher prices afterwards. In some cases, rational firms may come out ahead

as a result of irrational firms’ pricing low relative to their capacities. When irrational firms with

abundant capacities use their market clearing prices instead of their (higher) optimal revenue-

rate maximizing prices, all rational firms suffer with those who have more price-sensitive demands

suffering the most. In this case, irrational firms do not run out of capacity until the end of the

horizon so rational firms have no chance of recovering from the inflicted losses. The negative effect

on rational firms is larger when irrational firms have abundant capacities but use market clearing

prices instead of their optimal revenue-rate maximizing prices. When irrational firms have limited

capacities but use revenue-rate maximizing prices instead of optimal market clearing prices, the

losses to rational firms are much smaller and can in fact be negative. When irrational firms select

random prices between their market clearing and revenue-rate maximizing prices, the effect on

rational firms can be either positive or negative. Rational firms with price-sensitive demands are
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more likely to suffer, but rational firms with higher capacity have more chances to recover and

come out ahead after some irrational firms run out of capacity. �
Irrational Set ~c{ΛpT q Jd{ΛpT q Run-out SetH (.05,.50,.50,.50,.50) (.1831,.2267,.2246,.2223,.2196) t1ut1u (.05,.50,.50,.50,.50) (60%,100%,100%,100%,100%) HH (.05,.06,.50,.50,.50) (.1961,.1748,.2544,.2510,.2474) t1,2ut1u (.05,.06,.50,.50,.50) (57%,100%,100%,100%,100%) t2ut2u (.05,.06,.50,.50,.50) (100%,54%,100%,100%,100%) t1ut1,2u (.05,.06,.50,.50,.50) (53%,53%,101%,101%,101%) HH (.05,.06,.08,.50,.50) (.2181,.1924,.1924,.3072,.3011) t1,2,3ut1u (.05,.06,.08,.50,.50) (52%,100%,100%,100%,100%) t2,3ut2u (.05,.06,.08,.50,.50) (100%,50%,100%,100%,100%) t1,3ut3u (.05,.06,.08,.50,.50) (100%,100%,52%,100%,100%) t1,2ut1,2u (.05,.06,.08,.50,.50) (49%,49%,81%,104%,104%) t3ut1,3u (.05,.06,.08,.50,.50) (49%,80%,51%,103%,103%) t2ut2,3u (.05,.06,.08,.50,.50) (81%,49%,50%,103%,103%) t1ut1,2,3u (.05,.06,.08,.50,.50) (47%,48%,49%,102%,102%) H

Table 2 Effects on Payoffs if Irrational Firms Maximize Their Revenue Rates

Irrational Set ~c{ΛpT q Jd{ΛpT q Run-out SettHu (.11,.15,.19,.22,.25) (.2144,.2131,.2114,.2093,.2071) tHut1u (.11,.15,.19,.22,.25) (99%,98%,98%,98%,98%) t1ut1,2u (.11,.15,.19,.22,.25) (96%,97%,96%,96%,96%) t1,2ut1,2,3u (.11,.15,.19,.22,.25) (91%,93%,93%,92%,92%) t1,2,3ut1,2,3,4u (.11,.15,.19,.22,.25) (82%,84%,85%,86%,84%) t1,2,3,4ut1,2,3,4,5u (.11,.15,.19,.22,.25) (39%,44%,47%,50%,53%) t1,2,3,4,5u
Table 3 Effects on Payoffs if Irrational Firms Use Market Clearing Prices

Irrational Set Distributions of Price EpJd{ΛpT qqH N/A (.2259,.2244,.2194,.2162,.2137)t4u p4 �Unifp.8,1.5q (120%,109%,96%,88%,96%)t5u p5 �Unifp.8,1.5q (121%,113%,103%,102%,93%)

Table 4 Effects on Payoffs if Irrational Firms Use Randomly Selected Prices

Example 5 (Performance of Heuristics in Stochastic Game). We use the same MNL

parameters as in Example 3. In Table 5, we numerically verify the asymptotic optimality of the

three heuristics discussed in Section 4.2.
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In light of Theorem 3, given any initial condition pT,~cq, the relative difference in perfor-

mance between the fixed-pricing heuristic and the equilibrium for any firm is no more than

1{p2amaxtci,ΛpT qd�i p~p��iqu � 1q, which is very small for reasonable size of sales horizon and ini-

tial capacities. When T � 100, ~n ¡ 30~e, λptq � 1, the relative difference in performance of the

fixed-pricing heuristic, based on a simulation with 100,000 sample paths, is within 1% of the deter-

ministic upper bound, and thus within 1% of the stochastic Nash equilibrium. We notice that less

price-sensitive firm becomes nearly optimal for smaller initial capacity; when ~c¡ 17~e, the relative

difference in performance of the fixed-pricing heuristic for firm 1 is within 1% of its value at the

stochastic Nash equilibrium. These results suggest that even for problems of moderate size, the

fixed-pricing heuristic performs quite well. They also suggest that if demand functions are public

information and prices can be set freely, then one should not see great benefits from the highly

dynamic pricing practices for moderate to large sized problems.

To test the performance of feedback-type heuristics ~p c under the strong information structure

and ~ph under the weak information structure with observable price history, we solve for a discrete-

time version of the stochastic game by backward induction (Lin and Sibdari 2009) as a benchmark.

We observe that when T � 100, ~n¡ 40~e, λptq � 1, the relative difference in performance of any of

the two heuristics to the equilibrium, based on a simulation with 100,000 sample paths, is within

9% of each firm’s equilibrium payoff. We further notice that neither one of the two heuristics

outperforms the other, which indicates that both of the following two aspects on information under

competition play a role: 1) obscure signaling of price information about inventories may soften

direct competition and 2) accurate information about competitors’ inventory levels can help firms

sharpen their best-responses. �
6. Conclusions

We believe that appropriately applied dynamic pricing can “ration” capacity more profitably than

by limiting supply in a fare-menu-based RM system. This is due to the following two facts. First,

dynamic pricing takes into account competitors’ prices in real time, resulting in more accurate
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~c ~p�pT,~cq Jf pT,~cq{JdpT,~cq
1~e (10.49,7.54,5.94,4.93,4.23) (63.2%,63.4%,63.2%,63.3%,63.2%)
5~e (6.80,5.08,4.09,3.45,3.00) (82.3%,82.6%,82.6%,82.4%,82.4%)
10~e (4.61,3.61,3.00,2.58,2.27) (87.5%,87.5%,87.5%,87.4%,87.6%)
15~e (2.41,2.15,1.90,1.70,1.54) (89.7%,89.9%,89.8%,89.7%,89.8%)
20~e (2.23,1.57,1.23,1.11,1.05) (99.8%,98.7%,93.7%,91.2%,91.1%)
25~e (2.21,1.55,1.21,1.01,0.87) (100%,99.9%,99.5%,97.8%,94.2%)
30~e (2.21,1.55,1.21,1.01,0.87) (100%,100%,100%,99.8%,99.0%)
37~e (2.21,1.55,1.21,1.01,0.87) (100%, 100%, 100%, 100%, 100%)

Table 5 Asymptotic Optimality of the Fixed-Pricing Heuristic, where T � 100, ~e� p1,1,1,1,1q
sales forecasts. Second, dynamic pricing is not limited to a pre-specified menu of fares. By basing

prices on current competitors’ prices and by having more liberty to price a product, dynamic

pricing has the potential to be more effective than capacity allocation with a given fare structure.

We have shown how a range of capacity pricing problems under competition can be formulated

as intensity control games and analyzed by considering the corresponding differential game. It is

encouraging that the existence of the OLNE in feedback form can be established for most of the

commonly-used demand intensity functions under natural assumptions on the parameters. Not

only is the equilibrium easy to compute by adaptive learning algorithms, but the use of heuristics

suggested by the feedback-type solutions for the stochastic game is provably asymptotically optimal

and appears to work well in our numerical experiments. We strongly believe that this class of

competitive capacity pricing models should be a topic of intense interest to managers in a wide

range of industries.

On the methodological level, this paper relates the stochastic game to its deterministic coun-

terpart. First, we show that a quasi-static affine approximation approach to the stochastic game

results in the deterministic differential game. Second, we identify OLNE and CLNE for the differ-

ential game, which are asymptotic equilibria in the stochastic game. No doubt other variants of

the competitive RM problem can be attacked using the same approach.

Many authors prefer a discrete-time formulation because it keeps the problem in the realm of

stochastic dynamic programming rather than stochastic optimal control; the techniques of the for-

mer are better known than those of the latter. Researchers may also argue that for computational
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purposes, one needs to discretize time and therefore it is better to do it before formulating the

problem rather than after. While some of these concerns are valid, we have strong arguments to

support the continuous-time formulation. First, the formulation is more natural since the customer

arrival process occurs in continuous time. Second, some results and insights become clear in the

continuous-time formulation and are hard to see in the discrete-time formulation. For example,

the fixed-pricing heuristic derives naturally from the continuous-time formulation but it is not at

all obvious from the discrete-time formulation. Third, the solution to the continuous-time formu-

lation consists of the smooth pasting of solutions to differential equations whereas the solution to

the discrete-time problem requires an optimization step at each time period. Because of this, the

discrete-time formulation requires a smaller mesh than the continuous-time formulation to achieve

the same level of accuracy (Feng and Gallego 2000). Moreover, the mesh of the discrete-time for-

mulation also requires that the probability of more than one event happening is negligible.

We show that under the assumption that all firms agree on the same time-homogeneous choice

probability function, the specified CLNE has a fixed pricing trajectory for each firm in the differ-

ential game. This result contradicts neither the basic concept of dynamic pricing nor the common

perception of changing prices in the market for the following reasons. The solution to the stochastic

game does not generate a fixed-pricing policy. The closed-loop heuristic suggested by the differential

game is an asymptotic equilibrium for the stochastic game. This policy is sensitive to the demand

model, to the inventory information and to the rationality of competitors. In practice our model

suggests firms should price according to their best-response functions that are calibrated to their

best knowledge and information in a rolling horizon fashion. The firms are supposed to constantly

re-solve their best-response problems after updating their information about joint inventory level,

market prices and the demand function. The resulting pricing strategy is most likely to be time-

varying as 1) market joint capacities might not decrease linearly due to stochasticity neglected

in the deterministic problem; 2) competitors change their prices; and 3) the demand function is

updated over time. Moreover, we emphasize that the closed-loop heuristics that come out of the

paper is the result of an equilibrium analysis of best-response correspondences. In practice, airline
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companies rely too much on price matching policies which can result in very poor performance

compared to best responses or even heuristics that approximate best responses to price changes.
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Appendix. Proofs.

Proof of Lemma 2. Suppose xiptq ¥ 0, 0 ¤ t ¤ T , then in particular at the end of the sales

horizon, we should be left with nonnegative inventory, i.e., xipT q ¥ 0. On the contrary, suppose

xipT q ¥ 0. By the demand nonnegativity, it must be the case that for all 0 ¤ t¤ T , xiptq � ci �» t

0

λpvqdip~ppvqqdv ¥ ci� » T

0

λpvqdip~ppvqqdv� xipT q ¥ 0. �
Proof of Lemma 5. Suppose ~p� is a Nash equilibrium of game (P1), namely, given ~p��i for all

i, p�i maximizes rippi, ~p
��iq subject to 0 ¤ dippi, ~p

��iq ¤ ci{ΛpT q. Thus we must have 0 ¤ djp~p�q ¤
cj{ΛpT q for all j. Therefore given ~p��i for all i, p�i also maximizes rippi, ~p

��iq subject to 0 ¤
djppi, ~p

��iq ¤ cj{ΛpT q for all j, namely, ~p� is a generalized Nash equilibrium of game (P0). �
Proof of Lemma 6. Suppose for some firm i, p0

i ps,xi, ~p
1�iq   p0

i ps,xi, ~p
2�iq for some ~p1�i ¥ ~p2�i.

This leads to xi{Λpsq � dipp0
i p~p1�iq, ~p1�iq ¥ dipp0

i p~p1�iq, ~p2�iq ¡ dipp0
i p~p2�iq, ~p2�iq � xi{Λpsq, which is a

contradiction. The first inequality is due to Assumption 3 and the second inequality is due to

Assumption 2. �
Proof of Lemma 7. For any given ~p�i PP�i, let us consider firm i’s problem pP2iq. By Assump-

tion 8, p0
i pT, ci, ~p�iq exists and 0¤ p0

i pT, ci, ~p�iq ¤ pmax
i . If p0

i pT, ci, ~p�iq ¡ 0, by Assumption 2, for

any 0¤ pi ¤ p0
i pT, ci, ~p�iq, we have dip~pq ¥ ci{ΛpT q so the objective function of pP2iq is cipi which

is increasing in pi; otherwise p0
i pT, ci, ~p�iq � 0, the objective function of pP2iq is zero for for any

0 ¤ pi ¤ p0
i pT, ci, ~p�iq. In either case, it is never optimal for firm i to choose any price below

p0
i pT, ci, ~p�iq: due to the continuous strategy set of each firm and continuity of the demand function,
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it is at least better to choose the price at p0
i pT, ci, ~p�iq than a price below. Thus we can restrict the

strategy set of firm i to an interval rp0
i pT, ci, ~p�iq, pmax

i s, where capacity constraint ΛpT qdip~pq ¤ ci

is satisfied by Assumptions 2 and 8. For any pi ¥ p0
i pT, ci, ~p�iq, the objective function of pP2iq is

rip~pqT . Hence, for any given ~p�i PP�i, firm i’s problem pP2iq is equivalent to pP1iq. �
Proof of Lemma 8. Without loss of generality, we can assume ΛpT q � 1. The ð direction for

both parts is trivial: we can select c̄i such that dip~pq ¤ c̄i for all ~p PP, then the results immediately

follow by realizing πip~pq �mintrip~pq, c̄ipiu � rip~pq.
Let us consider the ñ direction. (i) The result follows immediately by realizing that quasi-

concavity is preserved under minimization. (ii) Suppose rip~pq is supermodular or log-supermodular

in ~p. We want to show that πip~pq is supermodular or log-supermodular in ~p, respectively. By the

definition of supermodularity, we need to show that πipp1i, ~p�iq�πippi, ~p�iq ¤ πipp1i, ~p1�iq�πippi, ~p1�iq
or logπipp1i, ~p�iq � logπippi, ~p�iq ¤ logπipp1i, ~p1�iq � logπippi, ~p1�iq respectively for any fixed pi ¤
p1i and ~p�i ¤ ~p1�i. For notational ease, we drop subindices and denote pi, p1i, ~p�i and ~p1�i by

p, p1, ~q and ~q1 respectively. Let us define Dip~pq � log pmintdip~pq, ciuq. Realizing log pi and logp1i
are modular terms, we show case by case πipp1, ~qq � πipp,~qq ¤ πipp1, ~q1q � πipp, ~q1q or Dipp1, ~qq �
Dipp,~qq ¤Dipp1, ~q1q �Dipp, ~q1q respectively conditional on whether demands are capacitated. The

monotonicity of the demand function dip�, �q in the joint strategy space can be illustrated in Figure

2: by Assumption 2, dipp,~qq ¥ dipp1, ~qq and dipp, ~q1q ¥ dipp1, ~q1q; by Assumption 3, dipp,~qq ¤ dipp, ~q1q
and dipp1, ~qq ¤ dipp1, ~q1q. Hence, the relationship between demands and the capacity ci reduces to

the following 6 cases.

Case 1. dipp1, ~qq ¥ ci. We have dipp, ~q1q ¥ dipp,~qq ¥ dipp1, ~qq ¥ ci and dipp1, ~q1q ¥ dipp1, ~qq ¥ ci. Then

πipp1, ~qq � πipp,~qq � pp1 � pq � ci � πipp1, ~q1q � πipp, ~q1q, or Dipp1, ~qq � Dipp,~qq � logpciq � logpciq �
Dipp1, ~q1q�Dipp, ~q1q, respectively.

Case 2. dipp, ~q1q ¤ ci. We have dipp1, ~qq ¤ dipp,~qq ¤ dipp, ~q1q ¤ ci and dipp1, ~q1q ¤ dipp, ~q1q ¤ ci. Then

by the (log-)supermodularity of rip�, �q, we have πipp1, ~qq � πipp,~qq � ripp1, ~qq � ripp,~qq ¤ ripp1, ~q1q �
ripp, ~q1q � πipp1, ~q1q � πipp, ~q1q, or Dipp1, ~qq � Dipp,~qq � logdipp1, ~qq � log dipp,~qq ¤ log dipp1, ~q1q �
log dipp, ~q1q �Dipp1, ~q1q�Dipp, ~q1q, respectively.
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Figure 2 Monotonicity of the demand function on the lattice

Case 3. dipp1, ~qq   ci, dipp, ~q1q ¡ ci.

Case 3.1. dipp,~qq ¤ ci, dipp1, ~q1q ¤ ci. Then πipp1, ~qq � πipp,~qq � ripp1, ~qq � ripp,~qq ¤ ripp1, ~q1q �
ripp, ~q1q � ripp1, ~q1q � p � dipp, ~q1q ¤ ripp1, ~q1q � p � ci � πipp1, ~q1q � πipp, ~q1q, or Dipp1, ~qq � Dipp,~qq �
log dipp1, ~qq � log dipp,~qq ¤ logdipp1, ~q1q � log dipp, ~q1q ¤ log dipp1, ~q1q � log ci � Dipp1, ~q1q � Dipp, ~q1q,
respectively, where the first inequality in each case is due to the (log-)supermodularity of rip�, �q.

Case 3.2. dipp,~qq ¤ ci, dipp1, ~q1q ¡ ci. Then dipp1, ~qq� ci ¤ dipp,~qq� ci   0. Hence, p1 � rdipp1, ~qq�
cis ¤ p � rdipp,~qq � cis, which justifies the following inequality πipp1, ~qq � πipp,~qq � p1 � dipp1, ~qq � p �
dipp,~qq ¤ p1 � ci � p � ci � πipp1, ~q1q � πipp, ~q1q, or Dipp1, ~qq �Dipp,~qq � log dipp1, ~qq � logdipp,~qq ¤ 0�
logpciq� logpciq �Dipp1, ~q1q�Dipp, ~q1q, respectively.

Case 3.3. dipp,~qq ¡ ci, dipp1, ~q1q ¤ ci. Then πipp1, ~qq�πipp,~qq � p1 �dipp1, ~qq�p �ci ¤ p1 �dipp1, ~q1q�
p � ci � πipp1, ~q1q � πipp, ~q1q, or Dipp1, ~qq �Dipp,~qq � logdipp1, ~qq � logpciq ¤ log dipp1, ~q1q � logpciq �
Dipp1, ~q1q�Dipp, ~q1q, respectively.

Case 3.4. dipp,~qq ¡ ci, dipp1, ~q1q ¡ ci. Then πipp1, ~qq�πipp,~qq � p1 �dipp1, ~qq�p �ci ¤ p1 �ci�p �ci �
πipp1, ~q1q � πipp, ~q1q, or Dipp1, ~qq �Dipp,~qq � logdipp1, ~qq � logpciq ¤ logpciq � logpciq � Dipp1, ~q1q �
Dipp, ~q1q, respectively. �

Proof of Proposition 3. (i) From the objective functions πip~pq for all i, it is easy to see only

ci{ΛpT q for all i matters for the equilibrium.

(ii) Since the demand function dip~pq (hence rip~pq) for all i is twice continuously differentiable,

p�i p~p�iq that maximizes revenue rate rip~pq for all i is differentiable. Thus mintp�i p~p�iq, pmax
i u for all i
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is differentiable almost everywhere. Under the stipulations, there exists a unique Nash equilibrium

for game (P2) that can be characterized by the following set of equations: for some set S � I,#
dip~pq � xi{Λpsq, i P S,

pi �mintp�i p~p�iq, pmax
i u, i P IzS.

(19)

According to elements in set S, the initial condition space p0, T s��
i
rǫ, cis of ps,~xq can be at most

divided into 2m subspaces. By the Inverse Function Theorem, the solution ~pops,~xq to the system

of equations (19) is differentiable almost everywhere within the interior of each subspace, and is

continuous almost everywhere on the boundary of any two subspaces.

(iii) The convergence of the tatônnement scheme guaranteed by the stipulations under the

framework of supermodular game provides an intuitive way of proving the monotone property

of the OLNE in its initial condition. Due to the uniqueness of a Nash equilibrium given its ini-

tial condition, the tatônnement scheme is globally stable by Vives (1999, Corollary to Theorem

2.10): from any starting point the best-response tatônnement scheme converges. Without loss of

generality, we consider two initial conditions ps,~xq and ps1,~x1q such that xi{Λpsq   x1
i{Λps1q for

some i and xj{Λpsq � x1
j{Λps1q for all j � i. Starting from the equilibrium price vector ~pops,~xq

under the initial condition ps,~xq, we can use the tatônnement scheme to compute the equilib-

rium price vector ~pops1,~x1q under the initial condition ps1,~x1q. By the definition of equilibrium,

we have po
i ps,~xq �maxtp0

i ps,xi, ~p
o�ips,~xqq,mintp�i p~po�ips,~xqq, pmax

i uu for all i. Since p0
i ps,xi, ~p�iq is

decreasing in xi{Λpsq, po
i ps,~xq ¥maxtp0

i ps1, x1
i, ~p

o�ips,~xqq,mintp�i p~po�ips,~xqq, pmax
i quu for all i. Thus

the tatônnement scheme starting at ~pops,~xq for the game with initial condition ps1,~x1q would con-

verge monotonically downwards to ~pops1,~x1q. �
Proof of Theorem 3. With competitors using fixed-pricing policy in the stochastic game,

any firm just faces the monopolist stochastic dynamic pricing problem discussed in

Gallego and van Ryzin (1994). Since ~p� is the OLNE of the differential game, for firm i, p�i is the

fixed-pricing heuristic suggested by the monopolist differential pricing problem given competitors’

strategies as ~p��i. By Lemma 9, we have for an initial condition ps,~nq,
Jd

i p~p�q�1� 1

2
a

mintci,Λpsqd�i p~p��iqu�¤ Jip~p�q ¤ J�
i p~p��iq ¤ Jd

i p~p�q , (20)
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where J�
i p~p��iq � supppi,~p

��i
qPU Jippi, ~p

��iq is the maximal revenue for firm i in the stochastic

game given competitors’ strategy ~p��i. For any ǫ1 � ǫ{p1 � ǫq, if the initial condition satisfies

maxtci,Λpsqd�i p~p��iqu ¥ 1{p4ǫ1
2q, � i, by inequality (20), Jip~p�q ¥ Jd

i p~p�q p1� ǫ1q ¥ J�
i p~p��iqp1� ǫ1q.

Thus the result follows. �
Proof of Lemma 10. For each x0 with f 1px0q � 0, we have f 2px0q ¡ 0. This means that whenever

the function f 1 reaches the value 0, it is strictly increasing. Therefore it can reach the value 0 at

most once. If f 1 does not reach the value 0 at all, then f is either strictly decreasing or strictly

increasing, and therefore pseudo-convex: if f is strictly decreasing, then px1�x2qf 1px2q ¥ 0ñ x1 ¤
x2 ñ fpx1q ¥ fpx2q; if f is strictly increasing, then px1� x2qf 1px2q ¥ 0ñ x1 ¥ x2 ñ fpx1q ¥ fpx2q.
Otherwise f 1 must reach the value 0 exactly once, say at x0. Since f 2px0q ¡ 0, it follows that f 1pxq  
0 for x   x0, and f 1pxq ¡ 0 for x ¡ x0. Therefore f is pseudo-convex: if x2 � x0, we always have

fpx1q ¥ fpx2q � fpx0q for any x1; if x2   x0, then px1 � x2qf 1px2q ¥ 0ñ x1 ¤ x2 ñ fpx1q ¥ fpx2q;
and if x2 ¡ x0, then px1�x2qf 1px2q ¥ 0ñ x1 ¥ x2 ñ fpx1q ¥ fpx2q. �

Proof of Proposition 9. (i) Taking the first order derivative of dip~pq with respect to pi,BdiBpi

� a1i°j�i
ajp°

j
ajq2 ¤ 0.

Taking the first order derivative of dip~pq with respect to pj,BdiBpj

�� aia
1
jp°

j
ajq2 ¥ 0.

The result follows by Lemma 1.

(ii) Taking the first order derivative of rip~pq with respect to pi,BriBpi

� di� pi

BdiBpi

� ai°
j
aj

� pi

a1i°j�i
ajp°

j
ajq2 .

Taking the second order derivative of rip~pq with respect to pi,B2riBpi
2
� 2

BdiBpi

� pi

B2diBpi
2
� 2

a1i °j�i
ajp°

j
ajq2 � pi

a1i °j�i
ajp°

j
ajq2 �

a2i
a1i � 2a1i°

j
aj

�
.



Gallego and Hu: Dynamic Pricing of Perishable Assets under Competition
42 Article submitted to Operations Research; manuscript no. OPRE-2006-10-394.R2

Whenever Bri{Bpi � 0, pia
1
i

°
j�i aj{p°j ajq2 ��ai{°j aj, thusB2riBpi

2
� 2

a1i°j�i
ajp°

j
ajq2 � ai°

j
aj

�
a2i
a1i � 2a1i°

j
aj

�� 2a1i� aia
2
i {a1i°

j
aj

¡ p q0,

since 2a1i � aia
2
i {a1i ¡ presp. q0. By Lemma 10, rip~pq is pseudo-convex (resp. pseudo-concave) in

pi. �
Proof of Proposition 10. (a) We want to show that the revenue rate functions rip~pq, for all

i are log-supermodular in ~p. Since r̃ip~pq :� log rip~pq � log pi � logdip~pq � logpi � d̃ip~pq and rip~pq
is twice continuous differentiable, we only need to check B2r̃ip~pq{BpiBpj � B2d̃ip~pq{BpiBpj ¥ 0. By

Bernstein and Federgruen (2004, Lemma 2), we have Bd̃i{Bpi � p1{diqpBdi{Bpiq � pBãi{Bpiqp1 �
diq, thus by Bai{Bpi ¤ 0, B2d̃i{BpiBpj � pBãi{BpiqpBãj{Bpjqdidj ¥ 0. Therefore game (P2) is log-

supermodular, hence there exists a Nash equilibrium. (b) We want to verify the diagonal dominance

condition. Since Br̃i{Bpi � 1{pi�Bd̃i{Bpi,B2r̃iBpi
2
�� 1

pi
2
� B2ãiBpi

2
p1� diq� pBãiBpi

q2dip1� diq  �pBãiBpi

q2dip1� diq , (21)

since ãi is concave in pi. By (18), we havep1� diqBãiBpi

� p1� diqa1i
ai

  p1� diq°j�i a
1
j°

j�i aj

� °
j�i aj°
j aj

°
j�i a

1
j°

j�i aj

�
j̧�i

BãjBpj

dj . (22)

Hence, combining inequalities (21) and (22), we get�B2r̃iBpi
2
¡ pBãiBpi

q2dip1� diq ¡ BãiBpi

di

j̧�i

BãjBpj

dj �
j̧�i

B2d̃iBpiBpj

�
j̧�i

B2r̃iBpiBpj

, � i .

The result follows. By taking a close look at inequalities (21) and (22), we can relax “ ” in

assumption (18) to “¤” and the result still holds if inequality (21) holds strictly. �
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Brémaud, P. 1980. Point Processes and Queues, Martingale Dynamics. Springer-Verlag, New York.

Cooper, W., T. Homem de Mello, A. J. Kleywegt. 2006. Models of the spiral-down effect in revenue man-

agement. Oper. Res. 54(5) 968–987.

Craven, B. D. 1998. Control and optimization. 1st ed. Chapman & Hall/CRC.

Dai, J. G., R. J. Williams. 1995. Existence and uniqueness of semimartingale reflecting brownian motions

in convex. Theory Probab. Appl. 40(1) 1–40.

Debreu, G. 1952. A social equilibrium existence theorem. Proceedings of the National Academy of Sciences

38 886–893.

Dockner, E., S. Jorgensen, N. Van Long, G. Sorger. 2000. Differential Games in Economics and Management

Science. Cambridge University Press, New York.

Eliashberg, J., A. P. Jeuland. 1986. The impact of competitive entry in a developing market upon dynamic

pricing strategies. Marketing Sci. 5(1) 20–36.

Federgruen, A., A. Heching. 1999. Combined pricing and inventory control under uncertainty. Oper. Res.

47(3) 454–475.

Feng, Y., G. Gallego. 2000. Perishable asset revenue management with markovian time dependent demand

intensities. Management Sci. 46(7) 941–956.

Fershtman, C. 1987. Identification of classes of differential games for which the open loop is a degenerate

feedback nash equilibrium. J. Optim. Theory Appl. 55(2) 217–231.

Gaimon, C. 1989. Dynamic game results of the acquisition of new technology. Oper. Res. 37(3) 410–425.

Gallego, G., W. T. Huh, W. Kang, R. Phillips. 2006. Price competition with the attraction demand model:

Existence of unique equilibrium and its stability. Manufacturing Service Oper. Management 8(4) 359–

375.

Gallego, G., G. Iyengar, R. Phillips, A. Dubey. 2004. Managing flexible products on a network. Tech. Rep.

CORC TR-2004-01, Columbia University.



Gallego and Hu: Dynamic Pricing of Perishable Assets under Competition
44 Article submitted to Operations Research; manuscript no. OPRE-2006-10-394.R2

Gallego, G., G. van Ryzin. 1994. Optimal dynamic pricing of inventories with stochastic demand over finite

horizons. Management Sci. 40(8) 999–1020.

Granot, D., F. Granot, B. Mantin. 2007. A dynamic pricing model under duopoly competition. Working

paper, Sauder School of Business, UBC, Canada.

Ichiishi, T. 1983. Game Theory for Economic Analysis. Academic Press, New York.

Levin, Y., J. McGill, M. Nediak. 2009. Dynamic pricing in the presence of strategic consumers and oligopolis-

tic competition. Management Sci. 55(1) 32–46.

Lin, K. Y., S. Sibdari. 2009. Dynamic price competition with discrete customer choices. Eur. J. Oper. Res.

197(3) 969–980.

Maglaras, C., J. Meissner. 2006. Dynamic pricing strategies for multiproduct revenue management problems.

Manufacturing Service Oper. Management 8(2) 136–148.

Mangasarian, O. L. 1965. Pseudo-convex functions. J. Soc. Indus. and Appl. Math. Ser. A 3(2) 281–290.

Mangasarian, O. L. 1987. Nonlinear Programming. Society for Industrial Mathematics.

Milgrom, P., J. Roberts. 1990. Rationalizability, learning, and equilibrium in games with strategic comple-

mentarities. Econometrica 58(6) 1255–1277.

Mookherjee, R., T. L. Friesz. 2008. Pricing, allocation and overbooking in dynamic service network compe-

tition when demand is uncertain. Production and Oper. Management 17(4) 1–20.

Mukhopadhyay, S. K., P. Kouvelis. 1997. A differential game theoretic model for duopolistic competition on

design quality. Oper. Res. 45(6) 886–893.

Netessine, S., R. A. Shumsky. 2005. Revenue management games: Horizontal and vertical competition.

Management Sci. 51(5) 813–831.

Nguyen, T., G. Perakis. 2005. Robust competitive multi-period pricing for multiple products with fixed

capacity. Working paper, MIT, Cambridge, MA.

Perakis, G., A. Sood. 2006. Competitive multi-period pricing for perishable products: A robust optimization

approach. Math. Programming 107(1-2) 295–335.

Rosen, J. B. 1965. Existence and uniqueness of equilibrium points for concave n-person games. Econometrica

33(3) 520–534.



Gallego and Hu: Dynamic Pricing of Perishable Assets under Competition
Article submitted to Operations Research; manuscript no. OPRE-2006-10-394.R2 45

Royden, H. L. 1988. Real Analysis . 3rd ed. Prentice Hall.

Sethi, S. P., G. L. Thompson. 2005. Optimal Control Theory: Applications to Management Science and

Economics . 2nd ed. Springer.

Talluri, K. 2003. On equilibria in duopolies with finite strategy spaces. Tech. Report WP-701, Universitat

Pompeu Fabra.

Talluri, K., G. van Ryzin. 2004. Revenue management unde a discrete choice model of consumer behavior.

Management Sci. 50(1) 15–33.

Topkis, D. M. 1979. Equilibrium points in nonzero-sum n-person submodular games. SIAM J. Control

Optim. 17(6) 773–787.

van Ryzin, G., Q. Liu. 2008. On the choice-based linear programming model for network revenue manage-

ment. Manufacturing Service Oper. Management 10(2) 288–310.

Vieille, N. 2000. Two-player stochastic games i: A reduction; two-player stochastic games ii: The case of

recursive games; small perturbations and stochastic games. Israel J. of Math. 119(1) 55–91;92–126;127–

142.

Vives, X. 1999. Oligopoly Pricing: Old Ideas and New Tools. MIT Press, Cambridge, MA.

Xu, X., W. J. Hopp. 2006. A monopolistic and oligopolistic stochastic flow revenue management model.

Oper. Res. 54(6) 1098–1109.

Zalmai, G. J. 1985. Sufficient optimality conditions in continuous-time nonlinear programming. J. Math.

Anal. Applic. 111(1) 130–147.


	Introduction
	Motivation
	Contribution
	Literature Review

	The Model
	Notation and Assumptions
	Formulation of the Continuous-Time Stochastic Game
	Formulation of the Deterministic Differential Game

	Nash Equilibrium of the Differential Game
	Open-Loop Nash Equilibrium (OLNE)
	Generalized Nash Game Approach
	Nash Game Approach
	Open-Loop Nash Equilibrium as a Function of the Initial Condition

	Closed-Loop Nash Equilibrium (CLNE)

	Links to the Stochastic Game
	The Differential Game as an Affine Functional Approximation
	Closed-Loop Heuristics as Asymptotic Equilibrium
	Weak Information Structure
	Strong Information Structure
	Weak Information Structure with Observable Price


	Examples
	Demand Structures
	Numerical Examples

	Conclusions

