Higher social class predicts increased unethical behavior

Paul K. Piff1, Daniel M. Stancato2, Stéphane Côté1, Rodolfo Mendoza-Denton3, and Dacher Keltner4

1Department of Psychology, University of California, Berkeley, CA 94720; and 2Rotman School of Management, University of Toronto, Toronto, ON, Canada M5S 3E6

Edited by Richard E. Nisbett, University of Michigan, Ann Arbor, MI, and approved January 26, 2012 (received for review November 8, 2011)

Seven studies using experimental and naturalistic methods reveal that upper-class individuals behave more unethically than lower-class individuals. In studies 1 and 2, upper-class individuals were more likely to break the law while driving, relative to lower-class individuals. In follow-up laboratory studies, upper-class individuals were more likely to exhibit unethical decision-making tendencies (study 3), take valued goods from others (study 4), lie in a negotiation (study 5), cheat to increase their chances of winning a prize (study 6), and endorse unethical behavior at work (study 7) than were lower-class individuals. Mediator and moderator data demonstrated that upper-class individuals’ unethical tendencies are accounted for, in part, by their more favorable attitudes toward greed.

Results

Studies 1 and 2. Our first two studies were naturalistic field studies, and examined whether upper-class individuals behave...
more unethically than lower-class individuals while driving. In study 1, we investigated whether upper-class drivers were more likely to cut off other vehicles at a busy four-way intersection with stop signs on all sides. As vehicles are reliable indicators of a person’s social rank and wealth (15), we used observers’ codes of vehicle status (make, age, and appearance) to index drivers’ social class. Observers stood near the intersection, coded the status of approaching vehicles, and recorded whether the driver cut off other vehicles by crossing the intersection before waiting for the pedestrian’s signal. In the present study, 12.4% of drivers cut in front of other vehicles. A binary logistic regression indicated that upper-class drivers were the most likely to cut off other vehicles at the intersection, even when controlling for time of day, driver’s perceived sex and age, and amount of traffic, $b = 0.36$, $SE_b = 0.18$, $P < 0.05$. Percentages of cars that cut off other vehicles as a function of vehicle status are shown in Fig. 1A.

In study 2, we tested whether upper-class drivers are more likely to cut off pedestrians at a crosswalk. An observer positioned himself or herself out of plain sight at a marked crosswalk, coded the status of a vehicle, and recorded whether the driver cut off a pedestrian (a confederate of the study) attempting to cross the intersection. Cutting off a pedestrian violates California Vehicle Code. In this study, 34.9% of drivers failed to yield to the pedestrian. A binary logistic regression with time of day, driver’s perceived age and sex, and confederate sex entered as covariates indicated that upper-class drivers were significantly more likely to drive through the crosswalk without yielding to the waiting pedestrian, $b = 0.39$, $SE_b = 0.19$, $P < 0.05$. Percentages of cars that cut off the pedestrian as a function of vehicle status are shown in Fig. 1B.

Study 3. Study 3 extended these findings by using a more direct measure of social class and assessing tendencies toward a variety of unethical decisions. Participants read eight different scenarios that implicated an actor in unrightfully taking or benefiting from something, and reported the likelihood that they would engage in the behavior described (16). Participants also reported their social class using the MacArthur scale of subjective SES (2). This measure parallels objective, resource-based measures of social class in its relationship to health (2), social cognition (4), and interpersonal behavior (7). As hypothesized, social class positively predicted unethical decision-making tendencies, even after controlling for ethnicity, sex, and age, $b = 0.13$, $SE_b = 0.06$, $t(103) = 2.05$, $P < 0.04$. These results suggest that upper-class individuals are more likely to exhibit tendencies to act unethically compared with lower-class individuals.

Study 4. Study 4 sought to provide experimental evidence that the experience of higher social class has a causal effect on unethical decision-making and behavior. We adopted a paradigm used in past research to activate higher or lower social-class mindsets and examine their effects on behavior (5, 7). Participants experienced either a low or high relative social-class rank by comparing themselves to people with the most (least) money, most (least) education, and most (least) respected jobs. Participants also rated their position in the socioeconomic hierarchy relative to people at the very top or bottom. This induction primes subjective perceptions of relatively high or low social-class rank. In this prior research, as expected, manipulations of perceived social-class rank influenced generosity (7) and the ability to identify others’ emotions (5). Participants completed a series of filler measures, which included the measure of unethical decision-making tendencies used in study 3 (16). Our main dependent variable was a behavioral measure of unethical tendencies. Specifically, at the end of the study, the experimenter presented participants with a jar of individually wrapped candies, ostensibly for children in a nearby laboratory, but informed them that they could take some if they wanted. This task was adapted from prior research on entitlement (17) and served as our measure of unethical behavior because taking candy would reduce the amount that would otherwise be given to children. Participants completed unrelated tasks and then reported the number of candies they had taken.

The manipulation of social-class rank was successful; Participants in the upper-class rank condition ($M = 6.96$) reported a social-class rank significantly above participants in the lower-class rank condition ($M = 6.00$), $t(127) = 3.51$, $P < 0.01$, $d = 0.62$. Central to our hypothesis, participants in the upper-class rank condition took more candy that would otherwise go to children ($M = 1.17$) than did those in the lower-rank condition ($M = 0.60$), $t(124) = 3.18$, $P < 0.01$, $d = 0.57$. Furthermore, replicating the findings from study 3, those in the upper-rank condition also reported increased unethical decision-making tendencies ($M = 4.29$) than participants in the lower-rank condition ($M = 3.90$), $t(125) = 2.31$, $P < 0.03$, $d = 0.41$. These results extend the findings of studies 1–3 by suggesting that the experience of higher social class has a causal relationship to unethical decision-making and behavior.

Study 5. Study 5 focused on positive attitudes toward greed as one mediating mechanism to explain why people from upper-class backgrounds behave in a more unethical fashion. Participants took part in a hypothetical negotiation, assuming the role of an employer tasked with negotiating a salary with a job candidate seeking long-term employment (14). Participants were given several pieces of information, including the fact that the job would soon be eliminated. Participants reported the percentage chance they would tell the job candidate the truth about job stability. Participants also reported their social class using the MacArthur scale (2) and completed a measure of the extent to which they believed it is justified and moral to be greedy (18).

We first tested the associations between social class, attitudes toward greed, and probability of telling the job candidate the truth, while accounting for participant age, sex, and ethnicity, as well as religiosity and political orientation, variables that can
influence unethical behavior (19). Social class negatively predicted probability of telling the truth, $b = -4.55$, $SE_b = 1.90$, $t(103) = -2.39$, $P < 0.02$, and positively predicted favorable attitudes toward greed, $b = 0.16$, $SE_b = 0.04$, $t(103) = 3.54$, $P < 0.01$. In addition, favorable attitudes toward greed negatively predicted probability of telling the truth, $b = -12.29$, $SE_b = 3.93$, $t(100) = -3.12$, $P < 0.01$. Testing our mediational model, when social class and attitudes toward greed were entered into a linear regression model predicting probability of telling the job candidate the truth, social class was no longer significant, $b = -2.43$, $SE_b = 1.87$, $t(101) = -1.30$, $P = 0.20$, whereas attitudes toward greed were a significant predictor, $b = -11.41$, $SE_b = 3.81$, $t(101) = -3.00$, $P < 0.01$. Using the bootstrapping method (with 10,000 iterations) recommended by Preacher and Hayes (20), we tested the significance of the indirect effect of social class on probability of telling the truth through attitudes toward greed. The 95% confidence interval for the indirect effect did not include zero (range: −3.7356 to −0.6405), suggesting that upper-class individuals are prone to deception in part because they view greed in a more positive light.

Study 6. Study 6 extended these findings to actual cheating behavior. Participants played a “game of chance,” in which the computer presented them with one side of a six-sided die, ostensibly randomly, on five separate rolls. Participants were told that higher rolls would increase their chances of winning a cash prize and were asked to report their total score at the end of the game. In fact, die rolls were predetermined to sum up to 12. The extent to which participants reported a total exceeding 12 served as a direct behavioral measure of cheating. Participants also completed the measures of social class (2) and attitudes toward greed (18) that we used in study 5.

Controlling for participant age, sex, ethnicity, religiosity, and political orientation, social class positively predicted cheating, $b = 0.22$, $SE_b = 0.11$, $t(181) = 1.98$, $P < 0.05$, and more favorable attitudes toward greed, $b = 0.06$, $SE_b = 0.03$, $t(186) = 2.22$, $P < 0.03$. In addition, attitudes toward greed predicted cheating behavior, $b = 0.61$, $SE_b = 0.29$, $t(180) = 2.36$, $P < 0.02$. When social class and attitudes toward greed were entered into a linear-regression model predicting cheating behavior, social class was no longer a significant predictor, $b = 0.16$, $SE_b = 0.11$, $t(185) = 1.50$, $P = 0.14$, whereas attitudes toward greed significantly predicted cheating, $b = 0.68$, $SE_b = 0.27$, $t(185) = 2.50$, $P < 0.02$. The Preacher and Hayes (20) bootstrapping technique (with 10,000 iterations) produced a 95% confidence interval for the indirect effect that did not include zero (range: 0.0005–0.3821). These results further suggest that more favorable attitudes toward greed among members of the upper class explain, in part, their unethical tendencies.

Study 7. To further understand why upper-class individuals act more unethically, study 7 examined whether encouraging positive attitudes toward greed increases the unethical tendencies of lower-class individuals to match those of their upper-class counterparts. When the benefits of greed were not mentioned, we expected that upper-class individuals would display increased unethical tendencies compared with lower-class individuals, as in the previous studies. However, when the benefits of greed were emphasized, we expected lower-class individuals to be as prone to unethical behavior as upper-class individuals. These findings would reveal that one reason why lower-class individuals tend to act more ethically is that they hold relatively unfavorable attitudes toward greed (and, conversely, that one reason why upper-class individuals tend to act more unethically is that they hold relatively favorable attitudes toward greed).

Participants listed either three things about their day (neutral prime) or three benefits of greed (greed-is-good prime). Participants then responded to a manipulation check assessing their attitudes toward greed before completing a measure of their propensity to engage in unethical behaviors at work, such as stealing cash, receiving bribes, and overcharging customers (21). Participants also reported their social class using the previously described MacArthur measure (2).

As expected, participants primed with positive features of greed expressed more favorable attitudes toward greed ($M = 3.12$) compared with participants in the neutral-prime condition ($M = 2.42$), $t(87) = 2.72$, $P < 0.01$, $d = 0.58$. Our central prediction was that the manipulation of attitudes toward greed would moderate the relationship between social class and unethical behavior. To test this theory, we regressed the measure of unethical behavior on social class, the greed manipulation, and their interaction, while controlling for age, ethnicity, sex, religiosity, and political orientation. Results yielded a significant effect for social class, such that upper-class participants reported more unethical behavior than lower-class participants, $b = 0.13$, $SE_b = 0.07$, $t(84) = 2.00$, $P < 0.05$, and a significant effect for the greed manipulation, such that participants primed with positive features of greed reported more unethical behavior than neutral-primed participants, $b = 0.38$, $SE_b = 0.18$, $t(84) = 2.18$, $P < 0.04$. These effects were qualified by the predicted significant interaction between social class and the greed manipulation, $b = -0.24$, $SE_b = 0.18$, $t(84) = -2.34$, $P < 0.03$. As shown in Fig. 2, in the neutral-prime condition, upper-class participants reported significantly more unethical behavior relative to lower-class participants, $t(45) = 2.04$, $P < 0.05$. However, when participants were primed with positive aspects of greed, lower-class participants exhibited high levels of unethical behavior comparable to their upper-class counterparts, $t(38) = -1.42$, $P = 0.17$.

Together, the findings we observed in study 7 indicate that priming the positive features of greed moderates class-based differences in unethical behavior. Importantly, lower-class individuals were as unethical as upper-class individuals when instructed to think of greed’s benefits, suggesting that upper- and lower-class individuals do not necessarily differ in terms of their capacity for unethical behavior but rather in terms of their default tendencies toward it.

Discussion

The results of these seven studies provide an answer to the question that initiated this investigation: Is society’s nobility in fact its most noble actors? Relative to lower-class individuals, individuals from upper-class backgrounds behaved more unethically in both naturalistic and laboratory settings. Our confidence in these findings is bolstered by their consistency across operationalizations of social class, including a material symbol of social class identity (one’s vehicle), assessments of subjective SES, and a manipulation of relative social-class rank, results that

![Fig. 2. The relationship between social class and propensity for unethical behavior, moderated by the greed-is-good prime (from study 7).](image-url)
point to a psychological dimension to higher social class that gives rise to unethical action. Moreover, findings generalized across self-report and objective assessments of unethical behavior and in both university and nationwide samples.

Why are upper-class individuals more prone to unethical behavior, from violating traffic codes to taking public goods to lying? This finding is likely to be a multiply determined effect involving both structural and psychological factors. Upper-class individuals’ relative independence from others and increased privacy in their professions (3) may provide fewer structural constraints and decreased perceptions of risk associated with committing unethical acts (8). The availability of resources to deal with the downstream costs of unethical behavior may increase the likelihood of such acts among the upper class. In addition, independent self-construals among the upper class (22) may shape feelings of entitlement and inattention to the consequences of one’s actions on others (23). A reduced concern for others’ evaluations (24) and increased goal-focus (25) could further instigate unethical tendencies among upper-class individuals. Together, these factors may give rise to a set of culturally shared norms among upper-class individuals that facilitates unethical behavior.

In the present research we focused on a values account, documenting how upper-class individuals’ more favorable attitudes toward greed can help explain their propensity toward unethical behavior. Such attitudes among the upper class are likely to be themselves multiply determined as well. Our prior work shows that increased resources and reduced dependency on others shape self-focused social-cognitive tendencies (3, 5–7), which may give rise to social values that emphasize greed as positive. Furthermore, economics education, with its focus on self-interest, may give rise to social values that emphasize greed as positive. Economics education, with its focus on self-interest, may give rise to social values that emphasize greed as positive. Economics education, with its focus on self-interest, may give rise to social values that emphasize greed as positive. Economics education, with its focus on self-interest, may give rise to social values that emphasize greed as positive.

Methods

Study 1. Participants. The behavior of 274 drivers of vehicles at a busy four-way intersection in the San Francisco Bay Area yielded the data for study 1.

Procedure. Coding of driving behavior took place at a four-way intersection, with stop signs on all sides, on two consecutive Fridays in June 2011, from 3:00 PM to 6:00 PM. Two separate teams of two coders (blind to the hypotheses of the study) stationed themselves out of drivers’ sight at opposite corners of the intersection. From their respective highways, each coding team selected an approaching vehicle in a quasirandom fashion and coded the characteristics of the vehicle and driver before it reached the stop sign (a photo of the intersection is presented in Fig. 3). Coders rated each vehicle’s status (1 = low status, 5 = high status) by taking into account its make (e.g., Mercedes, Toyota), age, and physical appearance (M = 3.16, SD = 1.07). A breakdown of the vehicles in the current study by vehicle status is presented in Table S1. Coders also noted the vehicle driver’s perceived sex (0 = male, 1 = female; 175 female, 99 male) and age (1 = 16–35 y, 2 = 36–55 y, 3 = 56 y and up; M = 1.70, SD = 0.59), the time of day (M = 3:40 PM, SD = 38 min), and—to index the amount of traffic—the number of highways in the intersection with vehicles already stopped in them when the target vehicle arrived at the intersection. A maximum of three other highways could be coded as having cars in them (M = 2.69, SD = 0.50). Procedures for assessing the reliability of codes are presented in SI Text. Once the target vehicle came to a complete stop, coders observed whether or not the vehicle’s driver cut in front of other vehicles at the intersection (0 = no cut, 1 = cut). California Vehicle Code states that vehicles approaching an intersection should yield the right-of-way to any vehicle that has already arrived at the intersection from a different highway (30). To reduce coding demands, each team produced one set of agreed-upon codes. The number of vehicles that did and did not cut off other vehicles as a function of vehicle status is presented in the left hand columns of Table S1. Zero-order and partial correlations between vehicle status and cutting off other vehicles are shown in Table S2.

Study 2. Participants. The behavior of 152 drivers of vehicles that approached a pedestrian crosswalk of a busy throughway in the San Francisco Bay Area provided the data for study 2.

Procedure. Coding took place from ∼2:00 PM to 5:00 PM on three weekdays in June 2011, at an unprotected but marked crosswalk of a busy one-way road. A coder (blind to the hypotheses of the study) positioned him- or herself near the crosswalk, beyond drivers’ direct line of sight, and recorded whether an approaching vehicle yielded for a pedestrian—a confederate of the study—who was waiting to cross (a photo series depicting the procedure is presented in Fig. 4). Sex of the confederate was alternated. Paralleling study 1, the coder rated the perceived status of an approaching vehicle using its make, age, and physical appearance (1 = low status, 5 = high status; M = 3.22, SD = 0.96). A breakdown of the vehicles in the current study by vehicle status is presented in Table S1. Coders also noted the vehicle driver’s sex.
informed consent and completed a survey in the laboratory in exchange for course credit. Of these, 37 participants selected European American as comprising their ethnic background, 4 selected African American, 15 selected Latino, 50 selected Asian American, 2 selected Native American, and 11 selected Other. The sum of these values exceeds 105 because participants could select multiple categories (this was also true in studies 4–7). Given that European Americans were the largest represented ethnic category in the majority of the current studies (studies 5–7), and to parallel precedent in prior social-class research (4, 7), in study 3, as in subsequent studies, ethnicity was coded as 1 = European-American and 0 = non-European American. We repeated the analyses with two different coding schemes, one contrasting Asians to non-Asians (1 = Asian and 0 = non-Asian), and one with a dummy code for each ethnic category represented (with European-American as the comparison category); the results in study 3 and subsequent studies were virtually the same.

Procedure. Participants accessed the study via a private computer terminal and completed filler measures and the measure of unethical decision-making tendencies (16). Participants were presented with eight hypothetical scenarios describing an unethical behavior and rated how likely they would be to engage in the behavior described (1 = not at all likely, 7 = highly likely; M = 4.39, SD = 1.08, α = 0.68). The items and information regarding the validity of this measure is presented in SI Text. Participants also completed demographics, including the measure of social class: the MacArthur Scale of subjective SES (2, 7). In this measure, participants are presented with a figure of a ladder containing 10 rungs representing people with different levels of education, income, and occupational prestige. Participants are asked to think of people at the top of the ladder as “those who are the best off, have the most money, most education, and best jobs,” whereas the people at the bottom of the ladder are “those who are the worst off, have the least money, least education, and worst jobs or no job.” Participants then select a rung that represents where they perceive they stand relative to others (M = 6.30, SD = 1.72). This measure predicts patterns in health (2), social cognition (4), and interpersonal behavior (7), consistent with objective, resource-based measures of social class (e.g., wealth, educational attainment). Zero-order and partial correlations between social class and unethical decision making are shown in Table S4.

Study 4. Participants. One-hundred twenty-nine University of California at Berkeley undergraduates (85 female; age 18–27, M = 20.07, SD = 1.67) completed a study in the laboratory in exchange for course credit. Of these, 34 participants selected European American as comprising their ethnic background, four selected African American, 16 selected Latino, 73 selected Asian American, 1 selected Native American, and 12 selected Other (one unreported).

Procedure. Participants accessed the survey via a private computer terminal and completed the manipulation of social-class rank. Participants were shown an image of a ladder with 10 rungs representing where people stand socioeconomically in the United States. Participants were then randomly assigned to compare themselves to those at the very bottom or top of the ladder by indicating where they stand economically relative to these people, and to write a brief description of how an interaction with one of these individuals might go (for complete instructions see SI Text). After the manipulation, participants completed a filler task, which was followed by the measure of unethical decision-making tendencies used in study 3 (M = 4.11, SD = 0.97, α = 0.66) (16). Participants then completed demographics before notifying the experimenter. The experimenter (blind to condition) asked the participants to wait in the hall as the experimenter purportedly set up the second part of the study. At this time, the experimenter presented participants with a jar of individually wrapped candies that, participants were told, were intended for children participating in studies in a nearby laboratory (17). The experimenter told participants that they could take some if they wanted. The jar contained ∼40 pieces of candy and was labeled with a note stating that it was to be taken to a specific child-research laboratory. The experimenter then left the participants alone with the candy jar for ∼30 s to set up the second part of the study. Participants then reentered the laboratory and completed some unrelated tasks on the computer before reporting how many pieces of candy they had taken (M = 0.91, SD = 1.05).

Study 5. Participants. One-hundred eight adults (61 female, 1 unreported; age 18–82, M = 35.87, SD = 13.62) completed an online study via Amazon’s Mechanical Turk (MTurk), a Web site that features a nationwide participant pool for online data collection. Of these, 80 participants selected European American as comprising their ethnic background, 6 selected African American, 9 selected Latino, 14 selected Asian American, 6 selected Native American, and 4 selected Other.

Fig. 4. Photo series depicting crosswalk from study 2 with confederate posing as a pedestrian approaching (Top) and standing at crosswalk (Middle) as target vehicle fails to yield (Bottom).

(0 = male, 1 = female; 72 female, 80 male) and age (1 = 16–35 y, 2 = 36–55 y, 3 = 56 y and up; M = 1.66, SD = 0.69); the time of day (M = 3:12 PM, SD = 49 min); whether the driver indicated having seen the pedestrian by directing his or her gaze toward the pedestrian or briefly decelerating (all drivers were coded as having seen the pedestrian); and the sex of the confederate (0 = male, 1 = female; 49 female, 103 male). Finally, coders observed whether the driver yielded the right-of-way or cut off the pedestrian (0 = yield, 1 = cut). According to California Vehicle Code, a driver must yield the right-of-way to a pedestrian crossing the roadway within any marked crosswalk (30). We also held constant several factors that might otherwise confound the results. First, we only coded vehicles in the lane closest to the pedestrian. Second, only vehicles that approached the crosswalk when the confederate was the sole pedestrian were coded. Third, only after a vehicle crossed a designated point on the road ∼15 m from the crosswalk did the pedestrian enter the beginning of the crosswalk and look toward the oncoming vehicle, thereby signaling his or her intent to cross. Fourth, a vehicle was only coded if there were no other vehicles in front of it when it passed the designated point on the road. The number of vehicles that did and did not yield for the pedestrian as a function of vehicle status is presented in the right hand columns of Table S1. Zero-order and partial correlations between vehicle status and cutting off the pedestrian are shown in Table S3.

Study 3. Participants. One-hundred five University of California at Berkeley undergraduates (43 female; age 18–36 y, M = 20.33, SD = 2.52) provided
Procedure. Participants accessed the study via a survey link and were presented with instructions for a hypothetical negotiation (14). Participants were asked to imagine that they were an employer tasked with negotiating a low salary with a job candidate. Participants were told that the position was certain to be eliminated in 6 mo but that the candidate, who desired to maintain the job for at least 2 y, was not aware of this (complete instructions are presented in SI Text). Participants were then asked, “What is the percentage chance that you will tell the job candidate that the position is certain to be eliminated in 6 months if she/he specifically asks about job security?” (14). Participants responded by clicking and dragging a slider to a value between 0% and 100% (M = 62.30, SD = 31.03). Next, participants completed demographics, including measures of religiosity (1 = not at all religious, 7 = deeply religious; M = 3.45, SD = 2.09) and political orientation (1 = extremely liberal, 7 = extremely conservative; M = 3.36, SD = 1.65). Finally, participants rated their agreement with seven items that assessed the extent to which they endorsed beliefs that greed is justified, beneficial, and moral (1 = disagree, 7 = agree; M = 2.67, SD = 0.80, α = 0.61). The complete list of items is presented in SI Text. Zero-order and partial correlations between social class, attitudes toward greed, and probability of telling the truth are shown in Table S5.

Study 6. Participants: One-hundred ninety-five adults (129 female, 6 unreported; age 18–72, M = 33.82, SD = 13.26) responded to an advertisement on Craigslist, an online community forum, and received an invitation to participate in an online study via Amazon's Mechanical Turk (MTurk). Seventy participants selected European American as comprising their ethnic background, five selected African American, three selected Latino, seven selected Asian American, six selected Native American, and six selected Other. Procedure. Participants were randomly assigned to one of two priming conditions. In the greed-is-good priming condition, participants were instructed to think about and list three ways in which greed could be beneficial. In the neutral-prime condition, participants were instructed to think about and list three activities they did during an average day (complete instructions for the manipulation are shown in SI Text). Participants then answered five items assessing their positive beliefs about greed (1 = strongly disagree, 7 = strongly agree; M = 2.74, SD = 1.26, α = 0.92; the list of items is shown in SI Text). Participants then responded to a 12-item subset of the Propensity to Engage in Unethical Behavior scale (21), indicating how likely they would be to engage in a variety of unethical behaviors at work (1 = very unlikely, 7 = very likely; M = 2.26, SD = 0.97, α = 0.89; all items are presented in SI Text). Participants then completed demographics, including measures of religiosity (1 = not at all religious, 7 = deeply religious; M = 3.56, SD = 1.09) and political orientation (1 = extremely liberal, 7 = extremely conservative; M = 3.48, SD = 1.73), and the MacArthur scale of subjective SES to index social class (M = 5.40, SD = 1.77).

ACKNOWLEDGMENTS. We thank Pia Dietze, Nicholas Durant, Mikhaella Hodges, Sharon Hou, Nadine Lueras-Tramma, Matthew Lupoli, and Stacy Zhong for their help with data collection. P.K.P. was supported by a National Science Foundation Graduate Research Fellowship.
Supporting Information

Piff et al. 10.1073/pnas.1118373109

SI Text

Study 1. Reliability of coding vehicle status and driver sex and age. To verify that the coding of vehicle status and drivers’ perceived sex and age was consistent and reliable, coders independently coded a set of 24 vehicles at a separate time and location from the main study. While coding each vehicle, the coders stood within proximity of one another but at a distance that prevented each coder’s codes from being visible to the other coders. There was high agreement among the four coders for vehicle status ($\alpha = 0.95$), driver sex ($\alpha = 0.98$), and driver age ($\alpha = 0.87$).

Study 2. Reliability of coding vehicle status and driver sex and age. The coders used in study 2 were the same as those in study 1. Details concerning the procedures used to establish reliability in coding of vehicle status and driver sex and age are presented above.

Study 3. Measure of unethical decision-making. For the measure of unethical decision-making (1), each participant read the following instructions: “For the next task, you will read several short descriptions of different situations. For each situation, please imagine as vividly as you can that you are in this situation. So, imagine for every situation that you act out the behaviors described. For each situation, you have to indicate how likely is it that you would engage in the behaviors described. It is very important to be able to picture yourself in a certain situation. When you are able to imagine that you are in a certain situation, you are also able to predict what you would do and what you would not do if you were in such a situation. Being able to make such predictions for yourself is very important. Now, try to imagine that you are in the situations that will be described, and indicate for each situation how likely it is that you would behave in that way.” Participants then responded to each item on a scale ranging from 1 (not likely) to 7 (highly likely). These items were:

1. You work in a fast-food restaurant in downtown Berkeley. It’s against policy to eat food without paying for it. You came straight from classes and are therefore hungry. Your supervisor isn’t around, so you make something for yourself and eat it without paying.
2. You work as an office assistant for a department at UC Berkeley. You’re alone in the office making copies and realize you’re out of copy paper at home. You therefore slip a ream of paper into your backpack.
3. You’re preparing for the final examination in a class where the professor uses the same examination in both sections. Some of your friends somehow get a copy of the examination before the first section. They are now trying to memorize the right answers. You don’t look at the examination, but just ask them what topics you should focus your studying on.
4. You’ve waited in line for 10 min to buy a coffee and muffin at Starbucks. When you’re a couple of blocks away, you realize that the clerk gave you change for $20 rather than for the $10 you gave him. You savor your coffee, muffin and free $10.
5. You get the final examination back from your professor and you notice that he’s marked correct three answers that you got wrong. Revealing this error would mean the difference between an A and a B. You say nothing.
6. Your accounting course requires you to purchase a software package that sells for $50. Your friend, who is also in the class, has already bought the software and offers to lend it to you. You take it and load it onto your computer.
7. Your boss at your summer job asks you to get confidential information about a competitor’s product. You therefore pose as a student doing a research project on the competitor’s company and ask for the information.
8. You are assigned a team project in one of your courses. Your team waits until the last minute to begin working. Several team members suggest using an old project out of their fraternity/sorority files. You go along with this plan.

Validation of measure of unethical decision-making. This measure of unethical decision-making tendencies has been validated in several ways in past research (1). First, business ethics experts agreed that the behaviors described in the eight scenarios violated ethical principles. Second, scores on the measure were correlated with reports of having actually engaged in several other unethical behaviors, such as exaggerating accomplishments and taking money from others. Finally, in a separate validation study, individuals with higher scores on the measure were more likely to keep $8 that they were mailed, ostensibly by mistake, for completing a survey that they had not completed, relative to those with lower scores.

Study 4. Manipulation of social-class rank. For the manipulation of social-class rank (2), participants were presented with an image of a ladder with 10 rungs and given the following instructions: “Think of the ladder as representing where people stand in the United States. These are people who are the worst (best) off—those who have the least (most) money, least (most) education, and the least (most) respected jobs. In particular, we’d like you to think about how YOU ARE DIFFERENT FROM THESE PEOPLE in terms of your own income, educational history, and job status. Where would you place yourself on this ladder relative to these people at the very bottom (top)? Please place a large X on the rung where you think you stand.” After indicating where they feel they stood relative to those at the very bottom or very top of the ladder, participants received the following directions: “Now imagine yourself in a getting acquainted interaction with one of the people you just thought about from the ladder above. Think about how the DIFFERENCES BETWEEN YOU might impact what you would talk about, how the interaction is likely to go, and what you and the other person might say to each other. Please write a brief description about how you think this interaction would go.”

Measure of unethical decision-making. The measure used to assess unethical decision-making (1) was the same as in study 3.

Study 5. Hypothetical negotiation task instructions. For the hypothetical negotiation task (3), participants read the following instructions: “For the next part of the study, imagine that you are an employer for a company in a salary negotiation with a job candidate. The president of the company has instructed you to negotiate as LOW a salary as possible for this individual. Below, you will be given several pieces of information to keep in mind as you enter this negotiation scenario:

1. The job the candidate is applying for will be eliminated in 6 mo due to an organizational restructuring. The candidate DOES NOT have this information.
2. The candidate strongly desires to remain in the same job for at least 2 y and will accept a lower starting salary in return for a verbal commitment of job stability.
3. There are no other qualified candidates being considered at the present time. The candidate is unaware of the lack of other qualified candidates.

4. A failure to fill the position quickly with a qualified applicant would negatively impact your yearly performance review. Furthermore, if you are able to negotiate a salary below a certain amount, you will receive an end-of-year bonus.”

Measure of attitudes toward greed. For the measure of attitudes toward greed (4), participants indicated their agreement with each of the following items on a scale ranging from 1 (strongly disagree) to 7 (strongly agree). These items were:

1. To be a successful person in this society, it is important to make use of every opportunity.

2. It is not morally bad to think first of one’s own benefit and not other people’s.

3. One should be concerned with the benefit to the group as a whole rather than with one’s own benefit. (Reverse-scored)

4. An individual’s pursuit of self-interest should be allowed only insofar as it will not jeopardize the public welfare. (Reverse-scored)

5. I like competition.

6. It is very disgusting to exploit other people to further one’s own self-interest. (Reverse-scored)

7. There should be more emphasis in school on the kind of education which helps students to be more concerned with the welfare of the society or groups rather than their own personal benefit. (Reverse-scored)

Study 6. Measure of attitudes toward greed. The measure used to assess attitudes toward greed (4) was the same as in study 5.

Study 7. Manipulation of attitudes toward greed. For the greed-is-good prime, participants received the following instructions: “Please take a few minutes to think of ways in which acting greedily and pursuing your self-interest can be good. For example, being greedy, or prioritizing self-interest, may allow you to be successful and achieve your professional goals. Please think of three additional ways in which greed can be good and write them in the boxes below.” For the neutral prime, participants received the following instructions: “Please take a few minutes to think about the things you do in an average day. For example, one might go to work or spend time at the gym. Please think of three things that you do in an average day and write them in the boxes below.” All participants were presented with three text boxes in which to type their answers.

Manipulation check items. Participants indicated their agreement with five items assessing their positive beliefs about greed, adapted from prior research (5). Participants rated their agreement on a scale ranging from 1 (strongly disagree) to 7 (strongly agree). The specific items were:

1. Overall, greed is good.

2. Overall, greed is moral.

3. I should pursue my own self-interest.

4. I should be greedy.

5. It is good to be greedy.

Propensity to engage in unethical behavior items. To assess individual propensities to engage in unethical behavior (6), participants were instructed to indicate how likely they would be to engage in each of the listed behaviors on a scale ranging from 1 (very unlikely) to 7 (very likely). These behaviors were:

1. Use office supplies, Xerox machine, and stamps for personal purposes.

2. Make personal long-distance phone calls at work.

4. Borrow $20 from a cash register overnight without asking.

5. Take merchandise and/or cash home.

6. Give merchandise away for free to personal friends.

7. Abuse the company expense accounts and falsify accounting records.

8. Receive gifts, money, and loans (bribery) from others due to one’s position and power.

9. Lay off 500 employees to save the company money and increase one’s personal bonus.

10. Overcharge customers to increase sales and earn a higher bonus.

11. Give customers “discounts” first and then secretly charge them more money later (bait and switch).

12. Make more money by deliberately not letting clients know about their benefits.

6. Chen YJ, Tang TLP (2006) Attitude toward and propensity to engage in unethical behavior (6), participants were instructed to indicate how likely they would be to engage in each of the listed behaviors on a scale ranging from 1 (very unlikely) to 7 (very likely). These behaviors were:

Table S1. Proportion of cars that cut in front of other vehicles at a four-way intersection (from study 1) or cut off a pedestrian waiting at a crosswalk (from study 2) as a function of vehicle status

<table>
<thead>
<tr>
<th>Vehicle status</th>
<th>Study 1: Cutting at four-way intersection</th>
<th>Study 2: Yielding for pedestrian at crosswalk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yielded for vehicles</td>
<td>Cut off vehicles</td>
</tr>
<tr>
<td>1 (lowest)</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>31</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>99</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>67</td>
<td>7</td>
</tr>
<tr>
<td>5 (highest)</td>
<td>19</td>
<td>8</td>
</tr>
</tbody>
</table>
Table S2. Zero-order correlations (above the diagonal) and partial correlations (below the diagonal) between vehicle status and cutting in front of other vehicles at a four-way intersection, controlling for time of day, driver’s sex and age, and amount of traffic, in study 1

<table>
<thead>
<tr>
<th>Variable</th>
<th>Vehicle status</th>
<th>Cut off vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle status</td>
<td>—</td>
<td>0.12*</td>
</tr>
<tr>
<td>Cut off vehicles</td>
<td>0.12*</td>
<td>—</td>
</tr>
</tbody>
</table>

*P < 0.05.

Table S3. Zero-order correlations (above the diagonal) and partial correlations (below the diagonal) between vehicle status and cutting off a pedestrian waiting at a crosswalk, controlling for time of day, driver’s age and sex, and pedestrian sex, in study 2

<table>
<thead>
<tr>
<th>Variable</th>
<th>Vehicle status</th>
<th>Cut off pedestrian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle status</td>
<td>—</td>
<td>0.17*</td>
</tr>
<tr>
<td>Cut off pedestrians</td>
<td>0.18*</td>
<td>—</td>
</tr>
</tbody>
</table>

*P < 0.05.

Table S4. Zero-order correlations (above the diagonal) and partial correlations (below the diagonal) between social class and unethical decision-making, controlling for age, sex, and ethnicity, in study 3

<table>
<thead>
<tr>
<th>Variable</th>
<th>Social class</th>
<th>Unethical decision-making</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social class</td>
<td>—</td>
<td>0.23*</td>
</tr>
<tr>
<td>Unethical decision-making</td>
<td>0.20*</td>
<td>—</td>
</tr>
</tbody>
</table>

*P < 0.05.

Table S5. Zero-order correlations (above the diagonal) and partial correlations (below the diagonal) between social class, attitudes toward greed, and probability of telling the job candidate the truth, controlling for participant sex, age, ethnicity, religiosity, and political orientation, in study 5

<table>
<thead>
<tr>
<th>Variable</th>
<th>Social class</th>
<th>Attitudes toward greed</th>
<th>Probability of telling the truth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social class</td>
<td>—</td>
<td>0.36**</td>
<td>−0.24*</td>
</tr>
<tr>
<td>Attitudes toward greed</td>
<td>0.36**</td>
<td>—</td>
<td>−0.35**</td>
</tr>
<tr>
<td>Probability of telling the truth</td>
<td>−0.25*</td>
<td>−0.34**</td>
<td>—</td>
</tr>
</tbody>
</table>

Higher scores on the attitudes toward the greed variable indicate more favorable attitudes toward greed. *P < 0.05, **P < 0.01.

Table S6. Zero-order correlations (above the diagonal) and partial correlations (below the diagonal) between social class, attitudes toward greed, and cheating behavior, controlling for participant sex, age, ethnicity, religiosity, and political orientation, in study 6

<table>
<thead>
<tr>
<th>Variable</th>
<th>Social class</th>
<th>Attitudes toward greed</th>
<th>Cheating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social class</td>
<td>—</td>
<td>0.17*</td>
<td>0.14†</td>
</tr>
<tr>
<td>Attitudes toward greed</td>
<td>0.16*</td>
<td>—</td>
<td>0.20**</td>
</tr>
<tr>
<td>Cheating</td>
<td>0.15*</td>
<td>0.18*</td>
<td>—</td>
</tr>
</tbody>
</table>

Higher scores on the attitudes toward the greed variable indicate more favorable attitudes toward greed. †P = 0.05, *P < 0.05, **P < 0.01.