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Abstract 
 

This paper considers the role of the asking price in housing transactions both theoretically and empirically. 

Significant fractions of housing transactions involve sales prices that are either below or above asking price, 

which might suggest that asking price has limited relevance. However, many housing transactions involve 

a sales price exactly equal to asking price (a fact that has previously drawn little notice), strongly suggesting 

that asking price does matter. The paper develops a model where asking price is neither a binding 

commitment nor a ceiling, yet still directs buyer search and impacts sales price. Using novel survey data, 

the paper provides empirical evidence consistent with asking price playing a directing role in buyer search. 

Consistent with theory, this effect is stronger for more atypical houses and in bust markets.  



1 

 

I. Introduction 

  When a house is put on the market, its seller lists an asking price. There are two reasons that this 

asking price is quite different from list prices for ordinary retail goods. First, buyers may be unwilling to 

pay the asking price, leading them to negotiate the price down. Although there are exceptions, this usually 

does not occur in retail markets with posted prices. Second, buyers may compete with each other with 

sufficient vigor that the sales price is pushed beyond the posted list price. Again, although there are 

exceptions, this also does not usually occur in posted price markets. It is tempting to conclude from this 

that a house’s asking price is of limited relevance. Whether or not this is true is clearly of great importance. 

A house is typically the largest single asset in a household’s portfolio, and housing as a whole is a significant 

fraction of aggregate wealth (Tracy and Schneider, 2001). The marketing of housing is thus highly 

significant to households and to the macro-economy.   

This paper considers the role of the asking price in housing transactions both theoretically and 

empirically. It is motivated by three key stylized facts. First, as noted above, a house’s ultimate sales price 

is frequently below asking price. Merlo and Ortalo-Magne (2004) find that the average ratio of sales price 

to asking price is 96% in a sample of UK sales from the mid-1990s. In US data from the National 

Association of Realtors, Han and Strange (2014) show that the ratio is also 96% for the same period. Not 

surprisingly, this means that a very significant fraction of sales are below the asking price (Case and Shiller, 

1988 and 2003).1 Liu et al (2014) show that this ratio is pro-cyclical using Phoenix data. Taken together, 

these descriptive statistics show that asking price is certainly not a posted price. 

Second, in recent years, sales price is frequently greater than asking price. This was once rare. In 

Merlo and Ortalo-Magne’s mid 1990s sample, only four percent of sales were at prices greater than the 

asking price. Han and Strange (2014) find a similar percentage at the same time in NAR data. Recent years, 

however, have seen more numerous bidding wars, where price is driven above asking price. The national 

share of above-list sales rose to around 15% during the 2000s boom. In some markets, the share rose to 

more than 30%. After the bust, this share fell, but at close to 10%, it remains much higher than its typical 

historical levels.2 It is worth pointing out that the emergence of bidding wars did not simply replace the old 

negotiate-down approach. Even at the peak of the boom in 2005, the national average ratio of sales price to 

asking price was 98%, and the share of below-list sales was 54%. In this situation, the asking price is not a 

posted price. Neither is it a ceiling nor a floor. 

                                                 
1Case and Shiller (1988, 2003) report 1988 fractions of sales below list well above 50% for the cities of Boston, Los 

Angeles, Milwaukee, and San Francisco.  While the fractions of below list sales are considerably smaller during the 

boom, their 2003 surveys continue to report significant fractions of sales at prices below list. Carrillo (2013) reports 

73% of sales below asking price in a sample of Virginia house transactions.   
2Case and Shiller (2003) also report growth in the fraction of sales above-list in the four cities that they survey. 
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Does this mean that the asking price has no impact on a house’s sales price? One might suspect, 

given the frequency of above- and below-list sales, that housing transactions are simply some sort of 

auction, with the asking price a largely meaningless initiation to the process. In an English auction, price 

will be the realization of the second highest buyer valuation. In a Dutch auction, price will depend on the 

expectation of the second highest buyer valuation. In either case, with a continuous and atomless 

distribution generating the valuations, there is zero probability of asking price equaling sales price. The 

only role of asking price in this situation would be to “steer” buyers to particular market segments.   

The third key stylized fact – one that has not previously been emphasized– contradicts this 

irrelevance result: it is common for many housing sales to involve the acceptance of the asking price. Case 

and Shiller (1998, 2003) report high levels of acceptance in both years of their survey. The four city average 

for 1988 was 27.9%. In 2003, it was 48.4%. They do not, however, comment on this phenomenon in the 

text of either paper. In a recent survey of homebuyers in a large North American metropolitan area 

(Genesove and Han, 2012b), one sees a lower share of purchases with sales price equal to asking price, but 

the fraction continues to be nontrivial, an average of 7.9%. That a finite share of buyers pay the asking price 

strongly suggests that asking price matters. But the question remains: why does it matter? 

This paper’s empirical work builds on a model of a home seller’s problem where asking price plays 

an important role. It does so by acting as a ceiling only in some situations. The above discussion makes 

clear that a house is not like other goods in the sense that its posted price does not have the take-it-or-leave-

it commitment force of a typical price posting. In fact, an asking price does have some meaningful 

commitment. Although there is not (to the best of our knowledge) a legal requirement in any jurisdiction 

that a seller must accept an offer equal to the asking price, the listing contract with a real estate agent creates 

a partial commitment of a similar nature by requiring the seller to pay the agent’s commission if the seller 

rejects an unrestricted offer equal to or greater than the asking price. Furthermore, there may be behavioral 

reasons why a seller may feel committed to the asking price. So it is not unreasonable to believe that there 

is some commitment in the asking price.3 

Most models of this commitment treat the asking price as a binding ceiling. In Chen and Rosenthal 

(1996a,b), the seller sets such a ceiling. Buyers make decisions of whether or not to incur the search costs 

associated with visiting a house and thus learning whether or not it is a good match. In the simplest version 

of the model, the seller makes a take-it-or-leave-it offer after the visit with knowledge of the buyer’s match 

value. This allows the extraction of the entire surplus. The commitment to a ceiling price is a way that the 

seller can commit to limit such extraction, strengthening buyer search incentives. By setting a lower asking 

                                                 
3 This explanation of why there is a mass point of sales prices is obviously very different than explanations of mass 

points in housing consumption that rely on a kinked budget constraint, as in Hoyt and Rosenthal’s (1990, 1992) 

analysis of the impact of capital gains taxation on housing consumption.   
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price, the seller encourages more buyers to visit, increasing the match quality and willingness to pay of the 

buyer who is keenest ex post. This result extends to a setting when the seller does not have all the bargaining 

power. Thus, in this analysis, the role of asking price is to encourage visits.  See also Green and Vandell 

(1998) and Arnold (1999) who also treat the asking price as a ceiling.   

Our paper’s model of commitment and search, in contrast, does not treat asking price as a ceiling. 

It is, thus, consistent with all three stylized facts discussed above. The model establishes that the 

commitment role of asking price remains, even when it is no longer always a binding ceiling. In the state 

of the world where the buyer accepts the asking price, the buyer enjoys more surplus than under the 

alternative regime of negotiating with the seller, which allows the asking price to direct search. 

The primary difference between our model and Chen and Rosenthal is that it allows for bidding 

wars as well as accepting the asking price or negotiating down from it. The effect of asking price on visitor 

utility is different in this case than in Chen and Rosenthal in that buyer utility no longer rises monotonically 

as asking price is reduced. A decrease in asking price increases the likelihood of a bidding war, so eventually 

a lower asking price provides visitors with less rather than more probability of encountering a binding 

ceiling. This translates directly into buyer visit behavior. A seller can encourage more visits by reducing 

the asking price from the maximum of the support of the buyer value distribution. At some point, however, 

a reduction in asking price does not encourage more visits because the asking price reduction increases the 

likelihood of a buyer with a high valuation facing strong competition.     

In addition to modeling the role of asking price, the paper carries out an empirical analysis of asking 

price by considering these and other predictions of the model. This sort of empirical analysis of directed 

search is completely new to the housing search literature, since data on actual search activity is very rare. 

This has forced prior researchers to consider the relationship between asking price and outcomes such as 

time-on-market, rather than search itself.   

In order to carry out our empirical analysis, we make use of survey data collected by Genesove and 

Han (2012b) from a large North American metropolitan are. These data are unique in including the number 

of bidders on a house, which we use as a proxy for the number of buyers who have a serious interest in 

purchasing the house. The number of serious bidders is, of course, itself a subset of the number of visitors, 

and so it captures only part of aggregate buyer search activity. Consistent with the model, we find that a 

lower asking price increases the number of bidders. Moreover, the negative relationship between asking 

price and number of bidders is stronger in a bust market than in a boom market. In addition, the asking 

price also has a stronger effect for an atypical house, as the model predicts. The latter two results come 

directly from the theory. Finally, we find that in a boom there are fewer below list sales and more 

transactions with sales price equal to and above asking price.   
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The paper contributes to the growing literature on housing market microstructure. See Han and 

Strange (2015) for a recent survey. Our partial equilibrium model of a home seller’s problem builds on a 

long tradition of models of this sort, including Stull (1978), Salant (1991), Green and Vandell (1998), and 

Arnold (1999). As with Chen and Rosenthal (1996a,b), these papers all deal with the fundamental tradeoff 

where a reduction in asking price increases visits to the house or the probability of sale. In this context, it 

has been shown that booms impact housing search (e.g., Novy-Marx, 2009), the negotiation over sales price 

(e.g., Carrillo, 2013), and future home price appreciation (Carrillo et al, 2015). It has also been shown that 

the seller of an atypical house is likely to have a longer time-on-market (Haurin, 1988). While these random 

matching models motivate both our theory and empirical work, there is no role for asking price in the search 

process. None of these papers deals with the possibility of a price above asking price.  

The important recent general equilibrium model of Albrecht et al (2014) is a notable exception. It 

presents a directed search model in housing where the asking price is also not a ceiling, and the sales price 

can be above, below, or equal to the asking price. Unlike the partial equilibrium models described above, 

Albrecht et al allows for competition among sellers to attract visitors. In the case where sellers differ in 

motivation, they show that there is signaling associated with asking price, implying a particular sort of 

competition among houses. In Albrecht et al, a lower asking price attracts more visitors, as it also does in 

the partial equilibrium models.  

Empirical work on directed search is much less common. This is because data sources used in 

empirical research nearly always provide data on outcomes, such as time-on-market or price, rather than on 

the search process itself.  See, for instance, Zuehlke (1987), Sass (1988), Yavas and Yang (1995), Genesove 

and Mayer (1997, 2001), Knight (2002), Anglin et al (2003), Merlo and Ortalo-Magne (2004), and Haurin 

et al (2010).  These papers conclusively establish the existence of a positive relationship between asking 

price and time-on-market.  Only a few empirical papers have dealt with search activity directly. Carrillo 

(2012) estimates a structural model of search, which is employed to estimate the effects of increases in the 

information contained in listings. In the Genesove and Han (2012b) analysis of search, the focus on the 

dispersion in buyers’ valuations for the same house rather than on the directing role of asking price, as in 

this paper. Merlo et al (2015) make use of data on offers made by buyers and seller revisions of asking price 

to model the negotiation process. Our empirical analysis is similar in being based on data on actual search 

activity, although we adopt a reduced-form approach. Our results on the directing role of price and the role 

of market conditions and atypicality are unique to this paper.  

The remainder of the paper is organized as follows. Section II documents the stylized facts of asking 

price as a way to motivate the paper’s theory. Section III presents the model, while Sections IV and V solve 

for its equilibrium. Section VI then takes the predictions of the model to housing market data. Section VII 

concludes. 
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II. The stylized facts of asking price 

 As noted previously, Case and Shiller (1988) provide some rare early evidence on the fractions of 

house sales where price is above-, below-, or equal to the list price. We reproduce the Case and Shiller 

evidence in Table 1. The four-city average shows that all three types of sales take place in nontrivial 

fractions, with 4.9% of sales above list, 27.9% of sales at list, and 67.1% below list.  There is notable 

variation among markets. For above-list sales, the fractions in Los Angeles and San Francisco were 6.3% 

and 9.8%, respectively. The fractions were lower in Boston and Milwaukee at 0.5% and 3.3%. For our 

purposes, we care particularly about the share of transactions where sales price equals list price. These 

shares are 38.0% for Los Angeles, 26.8% for San Francisco, 23.5% for Boston, and 22.7% for Milwaukee.   

 Case and Shiller (2003) revisit these cities and present evidence of how the nature of housing 

transactions had changed by the time of the great boom that took place in the first part of the 2000s. This 

evidence is also reproduced in Table 1. The shares of above-list and at-list sales are both considerably 

greater, with a four-city average equal to 25.5% and 48.4%.   

 The significant shares of above-list and at-list sales documented by Case and Shiller (1988, 2003) 

are roughly consistent with the evidence from a more systematic buyer and seller survey conducted by the 

National Association of Realtors (NAR).4 Table 2 presents the NAR-reported shares of below- and at-list 

sales over the period 2003-2010. We report results of three subsamples: a sample of recent homebuyers, a 

sample of recent home sellers, and an aggregate sample that includes both buyer and seller responses.5  Over 

the 2003-2006 period when the housing market was in a boom, the table’s aggregate sample results (which 

contain responses from both buyers and sellers) show that the share of below-list sales was about 57%, 

while the share of acceptance sales was close to 30%. Turning to the 2007-2010 bust, the share of below-

list sales increased to about 74%, while the share of acceptance sales reduced by almost a half. The buyer 

and seller samples exhibit similar patterns. This boom and bust variation in the below-list and acceptance 

sales are consistent with the Case-Shiller surveys.  

 Together, these two tables motivate our theory. In understanding the role of asking price, it is 

necessary to have a model that allows the possibility of below-, above-, and equal-to-list price sales. The 

model will show that asking price retains the ability to direct housing search despite this. As discussed in 

the Introduction, this ability comes from asking price representing a commitment from the seller in certain 

circumstances and thus rewarding and encouraging buyer search. The model will have predictions about 

                                                 
4A detailed description of the NAR survey is provided in Genesove and Han (2012a) and Han and Strange (2014). 
The NAR surveys are biannual from 1987-2003. They are annual starting in 2003.  We have reported results only for 

the latter period.  The earlier NAR surveys have shares of below-list, above-list, and at-list sales that are similar to 

those reported in the Case-Shiller (1988) four city survey.    
5The survey targets only buyers, but buyers are asked if they have recently sold a home.  If so, they are asked about 

their sale as well as about their purchase. This creates the seller sample.   
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the patterns of the asking-price-search relationship and the nature of housing transactions in booms and 

busts. Testing these predictions requires data on buyer search activity. Such data are not present in either 

the Case-Shiller surveys or the NAR survey or any other standard housing market data source.  In Section 

VI, we will introduce a novel data source, the Genesove-Han (2012b) survey, a dataset that contains detailed 

information on both house characteristics and search activity. This will permit an empirical test of the 

predictions generated from the model laid out in the next section.   

 

III. Model 

 This section specifies a partial equilibrium model of housing market microstructure that allows us 

to establish the commitment role of asking price when it is neither a posted price nor a floor nor a ceiling. 

We work with a one period model where the seller initially sets an asking price, buyers subsequently make 

choices of whether or not to visit, and the house is ultimately sold as a process of negotiation. We have 

chosen this specification because it allows for both the possibility of traditional negotiations between one 

buyer and a seller and also the more current practice of having multiple simultaneous offers on a house. A 

standard arrival model would preclude the latter possibility. 

 The model captures the decisions made by an individual home seller, as in Stull (1978), Salant 

(1991), and especially Chen and Rosenthal (1996a,b). The seller has a reservation price of xL. There exists 

a heterogeneous pool of potential buyers for the house. Each buyer’s reservation price for the house, x, is a 

draw from the set {xL,xH}. The probability that x = xH is . The probability that x = xL is (1- ). A buyer’s 

reservation price should be interpreted as the idiosyncratic value of the particular house to the buyer who 

has visited it. We suppose that x is revealed to both buyer and seller only after the buyer visits the house.6 

There are two costs associated with a buyer’s visit to a house. A visit has cost c to the buyer and cost s to 

the seller. Buyer search costs include the time and money costs of inspecting the house. Seller search costs 

include the time and money costs of preparing the house for a buyer’s visit and of absenting oneself during 

it.7 These are incurred prior to learning whether or not the house is a good match. We suppose that all agents 

– both buyers and sellers – are risk neutral.  

 After search, the sales price is determined. Suppose for now that there is no asking price.  In this 

case, the seller and one or more buyers will negotiate over the price. In the case where there are two or 

more buyers who are high type, then the price will give all the surplus to the seller regardless of asking 

price, and p = xH.  In the case where there are no buyers who are high type, then there is no surplus to split, 

                                                 
6 This assumption makes the analysis of bargaining between buyer and seller much more transparent. 
7 The seller’s costs are incurred when the buyer chooses to visit. The seller will be able to select the number of visits 

through the asking price, as described below.  Since the visits are frequently spread out in time, we have assumed that 

each visit has a positive marginal cost to the seller. 
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and p = xL. In the case where the seller negotiates with exactly one high type buyer and one or more low 

type buyers, then the price depends on the relative bargaining power of the participants in the transaction. 

Let  [0, 1] denote the seller’s bargaining power. In this case, a negotiation between a seller and one high 

type will result in a price of p = xH + (1-)xL. This outcome does not depend on the presence of low-type 

buyers. This conception of bargaining is an important and, we believe, empirically grounded feature of our 

model. In our one-period model, bargaining captures, at least to a degree, the different options that market 

participants can expect if a transaction is not consummated.  

 In order for asking price to matter, two conditions must hold. First, the asking price must be low 

enough. Let a  ≡  xH + (1-)xL. The critical level a is the maximum asking price that would be as good as 

negotiation.  It is in this case that the asking price is relevant since the good-match buyer would prefer to 

accept the asking price rather than negotiate. Whether this condition holds will be determined by the seller. 

Second, the asking price must entail some sort of commitment. As noted elsewhere in the literature, there 

is usually not a legal requirement that a seller transmits a house to a buyer who makes an offer at or equal 

to the asking price. However, sales agreements with listing agents typically require a seller to pay the 

agent’s commission in the event of rejecting an at-or-above list offer without restrictions. So a seller may 

incur costs for rejecting an offer that is at or above the asking price. Furthermore, the rejection of an offer 

equal to or above asking price clearly fails to conform to standard notions of good faith bargaining.8 A 

seller might assign costs to such behavior. In addition, it is easy to see how the seller or the seller’s agent 

would be viewed cautiously by other buyers and buyer agents. However, if multiple buyers offer more than 

the asking price, there is no peril for the seller agent’s commission and there is no clear bad faith on the 

part of the seller or the agent. We therefore suppose that the asking price is a commitment as long as there 

are not multiple buyers willing to pay more for the house.   

 The timing of decisions and events is as follows. First, seller sets asking price taking s as given. 

Second, the buyers sequentially choose whether to visit knowing only a, c, and the distribution from which 

x is drawn. Let n be the number of visitors. Third, the x values are revealed to both buyers and sellers. 

Fourth, the price is determined by bargaining or by the acceptance of the asking price, as above. 

 

IV. How asking price directs search 

A. Pricing:  when does a price ceiling bind? 

 This section will show how asking price can direct search, despite being neither a posted price nor 

a ceiling nor a floor. The first step in doing so is to consider the determination of price after a number of 

                                                 
8 See, for instance, Frey and Pommerehne (1993) who show that price increases unrelated to cost increases are very 

commonly perceived as unfair.   
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buyers have visited the house. Suppose initially that n =1, so there is one visitor. Suppose for now that a  

(xL,xH). We will consider the possibility of asking prices equal to xL and xH below. If x = xL, then p = xL. If 

x = xH, then the high type sole visitor would accept the asking price if and only if a ≤ a = xH + (1-)xL. 

This illustrates an important point made by Chen and Rosenthal:  the asking price is valuable to buyers as 

a commitment only if their bargaining power does not already enable them to command a lower price. Put 

another way, the asking price must be low relatively to the price that a buyer’s bargaining power would 

already allow to be realized.   

 Suppose now that there are n ≥ 2 visitors. There are three relevant cases at the price determination 

stage. In the first case, all values of x are less than or equal to a.  Since a  (xL,xH), this requires x = xL for 

all the visitors. Since p = xL and whichever visitor who buys the house has a valuation of xL, in this case, 

buyer utility equals zero, as does seller profit.9 We will call this the traditional case, since it corresponds to 

the setting of a high asking price and then negotiating down, as was the common practice in housing sales 

in most markets through the 1990s. Let  denote the probability of traditional case outcome of sales price 

being strictly below asking price. By construction, we have  = (1-)n.   

 Obviously, this is an extreme version of the traditional case. With a continuous support for buyer 

valuations, the price – and thus the utility of the winning bidder and the profit of the seller -- would depend 

on the distance between the first and second order statistics of x.  We have adopted the discrete specification 

because it clarifies the role of asking price. The results of a continuous specification are similar, if less 

clear. They are discussed below, with details presented in the online Appendix A. 

 In the second case, multiple visitors draw match values in excess of the asking price.   This requires 

that at least two buyers have valuations equal to xH. In this bidding war case, as in the traditional case 

above, there is no surplus for buyers. As noted above, p = xH, giving buyer utility of zero and seller profit 

of xH – xL. The bidding war is qualitatively similar to the traditional case in that only the seller enjoys a 

positive surplus. The commitment in the asking price does not bind when multiple bidders take the price 

above the asking price. As above, that a bidding war gives zero surplus is a consequence of the discrete 

specification.   

 In the final case, only one buyer draws a match value above the asking price. In this acceptance 

case, the commitment binds for a high type buyer when bargaining power is not too great and xH + (1-)xL 

≥ a. If the commitment does bind, the utility of a high type buyer is xH  - a, while the seller’s profit is a – 

xL. The probability of acceptance is the probability that exactly one buyer is willing to pay more than the 

asking price, while all the others draw lower values. The probability of the acceptance case, denoted by , 

                                                 
9 It is natural to suppose that with n buyers willing to pay xL for the house, one of them is randomly selected as the 

winner. Of course, the structure of the pricing process means that both the winning buyer who ends up with the house 

and the losing buyers have zero utility. 
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is therefore equal to n(1-n-1. This implies that the probability of the bidding war case, denoted by 

,equals 1- (1-n - n(1-n-1.   

 This situation is summarized in the following: 

 

Proposition 1.   When a  (xL,xH) and n ≥ 2, there are positive probabilities of below-, above-, 

and at-list price sales.   

Proof:  See the probabilities above. 

 

As long as there are some visitors and the asking price is between the value of good and bad matches, the 

model allows for all three of the possibilities illustrated empirically in Section II. It is possible that sales 

price exceeds asking price. Or sales price may be above asking price. Or a buyer may accept asking price 

and thus sales price will exactly equal asking price. All three of these possibilities are clearly empirically 

relevant, so any model of housing market microstructure should allow for all the cases. Despite the 

possibility that sales price might be above or below asking price in equilibrium, we will show below that 

asking price continues to matter as a commitment that binds in some situations.10 

 We have thus far considered the case where a  (xL,xH). Suppose instead that a ≥ xH.  Since a< xH, 

any asking price at or above xH will have the same outcome that would come from an asking price equal to 

a. There is, thus, nothing gained from setting such a high asking price, and we can ignore them. Suppose 

now that a  xL. In this case, if two or more buyers draw x = xH we will still have p = xH as above. If instead 

all the buyers draw x = xL, we will still have p = xL, again as above. The only difference is if exactly one 

buyer draws x = xH. With a  xL we no longer have the situation above where only one buyer wanted to 

accept the asking price which we argued made it a commitment. We now have both low and high type 

buyers who would be at least weakly willing to accept the asking price. In this case, we suppose that the 

house goes to the high bidder at p = xL. We believe that this technical assumption is reasonable in the sense 

that the house goes to the high valuation buyer at a price beyond which other buyers will not bid. With this 

and an additional assumption introduced later, it will be shown below that setting an asking price equal to 

or below xL is dominated for the seller. This is why we focus on a  (xL,xH).  

 The expected sales price of the house equals a + xH + xL. It is thus possible for asking price to 

directly impact the ultimate sales price since it enters directly into the first term of the price equation. This 

is not the only potential impact of asking price. In the next section, we will show how the seller’s choice of 

asking price will impact buyer search and therefore indirectly affect the expected sales price. 

                                                 
10 It is worth observing that in this setup there is zero probability of a house failing to sell.  It would be easy to 

change the model in a way that would generate illiquidity by supposing that xL > 0 and that there is a positive 

probability of a visitor drawing x = 0. This modification would not change any of the model’s other properties. 
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B. Visiting 

 A buyer visits when the expected utility of search exceeds the cost, taking as given the search 

choices of the other buyers. The equilibrium number of visits must give visitor n expected utility greater 

than or equal to search cost and visitor n+1 expected utility less than search cost. We are assuming here 

that buyers are aware of the interest of other buyers. We believe that this is realistic; real estate agents 

assisting buyers and sellers routinely inform their clients of the market’s interest in particular properties.  

 As noted above, buyer bargaining power allows them to retain some of the value created by search. 

The greater is buyer bargaining power, the greater is the incentive for search and the lower must be the 

asking price in order to give an additional search incentive. Suppose that asking price is irrelevant, with a 

≥  a. The first buyer who searches a given house has positive ex post utility only when she is high type 

(probability ).  This means that expected utility, , is given by 

 

  = [xH - xH - (1-)xL] = (1-)[ xH  - xL] (IV.1) 

 

This equals the probability that a buyer is high type times the negotiated share of surplus.   

 If expected utility when only one buyer visits is less than search cost c, then there will be no visits 

at all, and the house will not sell. Setting expected utility equal to search cost thus gives a necessary 

condition for a positive number of visitors: 

 

 (1-)[xH - xL] ≥ c.  (IV.2) 

 

Our goal is to focus on the role of asking price. Chen and Rosenthal simplified their base model with the 

strong assumption that the seller had complete bargaining power,  = 1. In this case, the only way to get a 

buyer to search is to use the asking price as a ceiling.11 In a similar spirit, we will employ (IV.2) to specify 

an assumption on bargaining power that gives a minimum level of so that at least one buyer will search. 

Formally, we suppose: 

 

 Assumption 1 (weak buyer bargaining power):   ≥ 1 - c/[[xH - xL]]   

 

Assumption 1 implies that the seller is forced to employ the asking price to encourage search since 

otherwise no buyers are willing given their weak bargaining power.    

                                                 
11 They later show that their analysis follows with some modification under weaker bargaining assumptions.  
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 To understand the role of asking price in this setup, we begin by considering the first buyer’s search. 

The first buyer who searches would obtain expected utility equal to  

 

 1 = [xH - a],   (IV.3) 

 

since the probability (1-)event of a low realization of house value is associated with zero surplus. Setting 

expected utility from (IV.3) equal to search cost defines the maximum level of asking price that would 

encourage one buyer to visit: 

 

 a1 = xH – c/.   (IV.4) 

 

 Moving on to the case of n ≥ 2 visitors, there is zero expected utility in both the traditional case 

(where both the price and valuation are xL) and the bidding war case (where price and valuation are xH). 

This means that the probability that some buyer gets positive expected utility is the probability of the 

acceptance case. The probability that a given buyer gets positive expected utility is (1/n) times the 

probability of the acceptance case. Thus, expected utility with n visitors is 

 

 n = (1-)n-1 [xH - a].  (IV.5) 

 

Setting this equal to c defines the maximum asking price such that n buyers visit: 

 

 an = xH –c/[(1-)n-1].  (IV.6) 

 

 (IV.6) defines the inverse “demand” schedule that a homeowner faces as the sequence of asking 

prices A = {an | n=1,2,…,N}. The demand schedule is drawn in Figure 1. For a  (a1,xH), the asking price 

is high enough that no buyers visit. For  a  (an+1,an], n buyers visit. In order for search to be attractive at 

all, set the utility for the buyer with n = 1 from (IV.4) equal to search costs. This gives a relationship between 

the probability of a good match and the surplus from a good match and search costs:  [xH - a] ≥ c/. For 

reasons discussed above, we only need to consider asking prices a  (xL,xH). The lowest possible value for 

asking price a is thus, xL. This gives a condition that makes it possible for one buyer to benefit from search:   

 

 Assumption 2 (potentially valuable search):  [xH - xL] ≥ c/.  
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In this case, it is possible to set an asking price that encourages at least one buyer to visit. We suppose that 

Assumption 2 holds.    

 The key aspect of the demand schedule is that it captures how an asking price that is not a posted 

price, ceiling, or floor can direct the search process. The first and most important implication is that a lower 

asking price is required in order to encourage more visits. This can be seen from taking the derivative of 

(IV.6) with respect to a: 

 

 n/a =  [1/ ln(1-δ)] [1/(xH –a))] < 0. (IV.7) 

 

This result extends the Chen-Rosenthal (1996a,b) price ceiling result. In our model, asking price directs 

search even though it is not a rigid price ceiling.    

   A second noteworthy property of the demand schedule is that the amount of search that can be 

provoked by reducing the asking price is bounded. Formally, the maximum number of visits that can be 

encouraged, N, is defined by  

 

 [xH - xL] = c/[(1-)N-1].   (IV.8) 

 

This contrasts with the Chen-Rosenthal model of a price ceiling. There, a reduction in asking price always 

increases the payoff to investigating a house and thus increases expected search activity.  In our model, in 

contrast, asking price is not a ceiling. This means that reducing asking price below xL has no effect on 

surplus. If there are multiple buyers willing to pay xH or there are multiple buyers willing to pay xL, both of 

which result in bidding wars with the successful buyer obtaining zero surplus. What all of this means is that 

when asking price is not a ceiling, reducing asking price beyond a certain point does not encourage more 

visits since there is sure to be a bidding war, rendering the asking price irrelevant in such a case.  

 These properties of the demand schedule are summarized in the following: 

 

Proposition 2:  For a  (xL,xH), the number of visits weakly increases as asking price falls until 

reaching a bound beyond which further decreases of asking price do not encourage more visits. 

Proof:  See above. 

  

 Proposition 2 characterizes the downward sloping demand schedule faced by a home seller. It is 

similar to prior results from partial equilibrium models where a lower asking price also encourages more 

visits. The extension here is that our model does not treat asking price as a ceiling. The general equilibrium 

model of Albrecht et al (2014) also allows for the possibility of sales prices being higher than asking price 
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and obtains the result that visits can be encouraged by a reduction in asking price. In the Albrecht et al 

model, a reduction in asking price can encourage visits when it signals seller motivation. In equilibrium, a 

low asking price can lead buyers to believe that the seller has a lower reservation price.  This encourages 

visits because potential visitors anticipate a larger expected value from a possible match with a seller who 

has a low reservation price. As with our model, a lower asking price encourages more visits by raising 

expected match value, although the link between asking price and expected match value is different.12  

 The comparative static properties of the demand schedule are also worthy of discussion.  First, the 

elements of the demand schedule, an, decrease in c. This is immediate from differentiating (IV.6). Higher 

search costs require even lower asking prices to encourage a given number of visits. Second, the elements 

an increase in xH. When a good match is worth more, then there is greater search for any level of asking 

price. Since both of these variables are associated with greater demand for any given house (more search), 

they will be useful below in considering how asking price operates in boom and bust markets. Third, the 

maximum possible number of visits, N, is decreasing in buyer search cost c and increasing in good match 

quality xH by (IV.8). 

 In contrast, the effects of , the probability that any particular buyer obtains a good match, are 

ambiguous. For n =1, (IV.4) implies that if equals zero, there will be no visits since there is never positive 

buyer surplus for any asking price. An increase in allows a larger asking price since the buyer’s surplus 

has increased. For n ≥ 2, (IV.6) there is an ambiguous relationship. As n becomes large, the relationship 

eventually becomes negative. This is because the probability of a buyer competing in a bidding war with 

other well-matched buyers rises with . We will return to this issue below when we consider the relationship 

between housing market conditions – boom or bust – and the asking price.   

 Continuing with comparative statics, a further investigation of equation (IV.7) shows that  

 

 2n/axH =  - [1/ ln(1-δ)][1/(xH –a)2] > 0 (IV.9) 

 

and 

 

 2n/aδ = [1/(1-δ)][1/ln(1-δ)]2[1/(xH –a)] > 0. (IV.10) 

 

                                                 
12 Signaling takes place only when sellers are heterogeneous in an unobserved way. In the case where 

sellers are homogeneous sellers, Albrecht et al obtain the sharply different result that visits are unrelated 

to asking price in equilibrium as long as asking price is above seller reservation price. In this setting, 

asking price is indeterminate, as long as it exceeds reservation price.    
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(IV.9) indicates that the greater is the value of a good match, the weaker is the negative effect of the asking 

price on the number of bidders. (IV.10) shows that the larger fraction is the high type buyers, the weaker is 

the negative effect on the number of bidders.13   

 These comparative static results are summarized in the following: 

 

Proposition 3:  The critical level of asking price needed to attract n visitors decreases as search cost 

rises and as the value of a good match falls. The responsiveness of the number of visitors to a 

decrease in asking price rises as the value of a good match rises and as the probability of a good 

match rises. 

Proof:  See above. 

 

 The results on the marginal effect of asking price on search are helpful in analyzing directed search 

in booms and busts. An increase in xH is a very natural way to conceive of a boom:  the value of good 

matches has increased. Likewise, an increase in δ is also a natural way to conceive of a boom:  the 

probability of a good match increases. Proposition 3 means that in boom, asking price has a smaller role in 

directing search. The intuition is that in a boom, the surplus that a buyer anticipates from visiting is large, 

and this reduces the necessity of using the asking price to attract visitors. Thus, search direction is stronger 

in a bust than it is in a boom. 

 The comparative statics in Proposition 3 are also important for the light they shed on the 

heterogeneity of housing. That housing is a highly differentiated product is well understood. Some houses, 

however, are more heterogeneous than others. Condominiums and mass-produced tract housing are 

relatively homogeneous. Single-family houses and other customized housing are relatively heterogeneous. 

An understanding of the housing market requires an understanding of how these different market segments 

transact. The standard approach to considering this issue is suggested by Haurin (1988), who defines a 

house’s atypicality based on the differentiation of its attributes from other houses. 

 There are two ways that our model can capture atypicality. One is that less typical houses are less 

likely to be good matches for a household that visits them. Formally, δ is lower. In this conception, atypical 

houses will exhibit a stronger relationship between asking price and the number of visits. Alternatively, less 

typical houses can be conceived as having greater dispersion in match value. Formally, δ is lower and xH is 

greater (holding xL fixed). In this conception, less typical houses will have an ambiguous relationship to the 

number of visits. 

                                                 
13 See the online Appendix B for a numerical example of the demand schedule, including these comparative static 

properties. 
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 These findings on the variation in search direction are important for a number of reasons. First, 

they are important to housing economists interested in directed search because the results on atypicality and 

booms and busts extend previous research on the role of the asking price. This research showed a robust 

relationship between market conditions and time-on-market. It also demonstrated a relationship between 

atypicality and time-on-market. Atypical houses are less liquid, and there is less liquidity in a bust. Houses 

with high asking prices relative to their characteristics are also likely to experience a longer time-on-market. 

The results here offer a significant and novel extension by showing how the importance of asking price 

varies in the context of a micro-founded model of asking price. Second, the results are relevant to the 

marketing of houses. Home sellers are often advised to set “competitive” asking prices.14 The results here 

show that this approach will have a greater payoff in busts than in booms. This is clearly relevant to 

marketing houses. Similarly, the analysis here shows that atypical houses may also face different 

environments that impact their marketing. The relationship is ambiguous in theory, however, and 

understanding it will require empirical analysis. We will consider this empirical relationship below, as well 

as the relationship between booms and busts and the directing role of asking price. Before coming to these 

topics, however, we need to consider the seller’s choice of asking price.  

 

V. The house seller’s choice of asking price 

 The seller sets asking price to maximize expected surplus taking the relationship between n and a 

as given. Suppose that the seller chooses an asking price that leads to n = 1. In this case, expected profit is 

 

 1 = [a – xL] - s.   (V.1) 

 

With n = 1, the seller would set a = a1 from (IV.4). Substituting this into (V.1) and simplifying gives a 

condition on both buyer and seller search costs that must be required in order for a seller  

to able to profit from listing the house 

 

 Assumption 3 (potentially valuable transaction):  [xH - xL] ≥ (c+s)/.  

 

To rule out this uninteresting case, suppose that Assumption 3 is met. This ensures that at least one visit is 

profitable from the seller’s perspective   

 For an asking price that leads to n ≥ 2, expected profit is 

 

                                                 
14 See Barta (2003) at http://www.wsj.com/articles/SB121380010708384369 for an example of this sort of advice. 

http://www.wsj.com/articles/SB121380010708384369
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 n = n(1-)n-1[an – xL] + (1-(1-)n - n(1-)n-1)[xH-xL] -ns.  (V.2) 

 

The first term is the probability of acceptance times the payoff to the seller. The second is the probability 

of the bidding war times the payoff. Substitution of the asking price from (IV.6) and rearranging gives 

profit as 

 

  n = (1-(1-)n)[xH-xL] - (c+s)n. (V.3) 

  

It is straightforward to see that the seller will choose from the demand schedule A. Choosing any other 

asking price gives the same number of visits as an element of A but has lower expected profits by (V.1) and 

(V.3).     

 Let the sequence of expected profits be given by  = {n | an  A}. The seller thus chooses an 

element of the asking price sequence A to obtain the maximum of .  Since   is a finite set, it has a 

maximum element. In characterizing this optimal asking price, the difference between profit at n and profit 

at n-1 will be crucial: 

 

 n = n - n-1 = ((1-)n-1) [xH-xL]  - c - s. (V.4)  

 

We have already noted that 1> 0 by Assumption 3. This implies n > 0. Denote the first term of (V.4) 

by  

 

  = ((1-)n-1) [xH-xL].    (V.5) 

 

It is straightforward to establish that /n < 0. Furthermore, at the maximal number of visits, N, we have 

- c= 0 by (IV.7). This means that for s > 0 the maximizing asking price is associated with a number of 

visits n  N. The maximizing asking price an* will satisfy n > 0  and n+1 > 0. 

 We previously asserted that a seller would not want to set an extreme asking prices at either xL or 

xH. It is now possible to confirm this. First, an asking price equal to xH leads to zero visitors by (IV.4). It 

thus is dominated by any asking prices that elicits positive numbers of visits. Second, an asking price equal 

to xL is dominated unless xL = aN for the maximum possible number of visits, N. It is thus au knife edge 

case where a = xL fails to be dominated.  We will thus suppose aN > xL.    

 Since the seller’s optimal asking price is on the interior of (xL,xH), the probabilities of the 

traditional, bidding war, and acceptance cases are all positive. This model thus shows that asking price can 
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have a commitment role, encouraging search, even when the asking price is clearly neither a posted price 

nor a strict price ceiling:    

 

Proposition 4:  Under Assumptions 1, 2, and 3 (weak buyer bargaining power, potentially 

valuable search, and potentially valuable transaction), the seller’s optimum asking price 

encourages a positive amount of buyer search (number of visitors). 

Proof:  see above.   

 

Proposition 4 describes a situation where there is a unique optimal asking price that directs search, even 

though sales price can be above-, below-, or at- the asking price.15  

 This leads to the question of how these three types of sales are impacted by market conditions and 

by house characteristics. In a bust, asking price has a stronger directing effect on search. Similarly, a 

reduction in asking price leads to a greater increase in visits for an atypical house. How do these 

circumstances impact whether a house sells above-, below-, or at-the asking price? 

 The probability of a below-list traditional sale has been defined as  = (1-)n. It is well-established 

that a boom features lower time-on-market. This is consistent in our model with a greater number of visits. 

An increase in xH, for instance, will lead the seller to reduce asking price, leading to a larger n by (V.4). 

This suggests that one should expect a boom to lead to a reduced share of below-list sales. Similarly, the 

probability of a bidding war, 1- (1-n - n(1-n-1, will be greater with a larger n.  The probability of 

acceptance,  = n(1-n-1, has an ambiguous relationship to the number of visitors. We empirically assess 

the effects of booms and busts on housing transaction types in Section VI.16 

 Atypicality also has the potential to impact transaction type. Haurin (1988) shows that atypical 

houses experience longer times-on-market. Interpreting this, as above, as a decrease in the number of visits 

suggests that an atypical house would be more likely to sell in a traditional below-list transaction. It would 

be less likely to sell in a bidding war. The likelihood of an acceptance is, has an ambiguous relationship to 

the number of visits and to atypicality. We also empirically assess these predictions in Section VI.    

 Before turning to the empirics of asking price in the next section, there are several points that should 

be made about the asking price model. The first concerns the model’s discrete specification. The 

                                                 
15In Albrecht et al (2014), asking price also directs search, in this case by signaling the motivation of sellers. Within 

any group of equally motivated sellers, there are multiple equilibria in Albrecht et al, in contrast to our model.   
16 It is worth noting that there are other forces at work that link the state of the housing market to the choice of 

asking price and the transaction type. Genesove and Mayer (1997) show that sellers with high loan-to-value ratios 

set high asking prices and experience longer time-to-sell. Genesove and Mayer (2001) show that sellers who have 

experienced nominal losses also set high asking prices and have long times-on-market. Since busts are characterized 

by both low seller equity and sellers who have suffered losses, both of these forces will lead to higher asking prices 

in busts.   
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specification’s most important consequence is that any visitor will be either a good or bad match with the 

seller’s house. We have adopted this specification because it allows us to obtain analytical solutions for 

most (although not all) of the aspects of the housing transaction in which we are interested. If we instead 

had supposed the match quality x to be drawn from a continuous probability density, then the most 

important results would continue to hold. Details are presented in the online Appendix A. In the continuous 

case, there would continue to be three possible types of house sale, all of which occurring with positive 

probability as long as there are n ≥ 2 visitors. The asking price would continue to have a directing role in 

the search process despite not being a fixed price or even a ceiling. The most important difference  is that 

the bidding war phenomenon renders the demand relationship non-monotonic even on the interior of [xL, 

xH]. For a low enough asking price, the primary effect of a further reduction is to increase the probability 

of a bidding war, and this fails to encourage additional visits under the assumption of weak bargaining 

power.   

 Second, we have thus far assumed buyers to have weak bargaining power (Assumption 1) in order 

that we might focus on how asking price can direct search. As noted above, buyer bargaining power and 

asking prices are substitutes in their role in search. It is worth exploring how relaxing Assumption 1 would 

impact the analysis. Beginning with the most extreme failure of Assumption 1 to hold, suppose that buyers 

have complete bargaining power,  = 0. In this case, the price will never exceed xL, and asking price has no 

effect at all on search. As buyer bargaining power rises, arises. If a  (ai+1,ai), then there will be at least 

i visitors regardless of asking price. The seller can encourage further visits by lowering asking price to ai+1 

or lower. At this point, we turn to the empirics of directed search in housing markets. 

  

VI. The empirics of asking price.  

A. Data 

 The NAR surveys have the advantage of covering a large number of markets over a long period of 

time. However, they are not well-suited to testing the key predictions of the model about search. This is 

because they do not include variables that measure the amount of search targeted towards a particular house 

and also because the NAR data set includes only coarse controls for house quality, which can create 

problems for the estimation of the relationship between asking price and search activity. We will therefore 

work with an alternate data source in this section. 

 Our primary data are based on a survey of recent buyers in a large North American metropolitan 

area, conducted by Genesove and Han (2012b). To conduct surveys in this metropolitan area, Genesove 

and Han take the addresses of buyers from transaction records of single-family homes available at the local 

Multiple Listing Service (MLS), covering one-third of the area. Names of these buyers are purchased from 

the deeds office. From the universe of transaction records, mail samples of 4,021 were drawn at random for 
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2006, 4,580 for 2007, 6,909 for 2008, and 3,279 for the first three quarters of 2009. The overall mailing list 

contains 18,789 addresses, out of which 1,816 addresses are invalid for survey purposes. Among these 

invalid addresses are some who bought land only, some as institutional buyers, etc. With these excluded, 

the total number of questionnaires we sent out in the first round is 16,973.  A total of 351 surveys were 

returned “households-moved” or “address unknown” by the Post Office.  In total, 3,193 valid interviews 

have been conducted, among which 1,722 by mail and 1,467 by phone interviews conducted by our research 

assistants. The overall response rate so far is 19.2%.  

 To the best of our knowledge, this survey is the only dataset that provides information on home 

search, bargaining and bidding behavior. Although the response rate of 19.2% seems low, it is quite 

comparable to the average response rates of surveys conducted by the National Association of Realtors, 

which have been the basis of almost all other surveys of buyers. In particular, the NAR response rate never 

exceeded 29% and fell as low as 6% in some years. In total, we collect 3,193 returned questionnaires, which 

gives us a much larger sample than the well-known Case-Shiller surveys.17  

 Of course, whether or not the response rate of 19.2% leads to self-selection bias depends on the 

pattern of survey response. One possibility is that the propensity to respond to the survey is correlated with 

the subject’s economic and demographic characteristics. For example, high-income people have higher 

opportunity costs of time, making them less likely to respond to the surveys. Higher opportunity cost also 

implies higher search cost, which strengthens the directing role of the asking price on buyers’ search 

process. To see this, consider an extreme case where there is no search cost. In this case, buyers will visit 

all houses of interest, which leaves no directing role for the asking price. In this regard, by omitting the 

high-cost buyers from the sample, our estimate actually underestimates the true responsiveness of potential 

buyers to the asking price.  

 In this market, sellers initiate the search process by listing the property. The Realtor version of the 

MLS listing usually indicates that offers will be accepted beginning on a particular date, usually 5-7 days 

after listing. Most houses are purchased at a later point in time. While there are occasionally “bully” offers 

made earlier, buyer agents will typically “present” legal offers on the date specified in the listing. There 

may be multiple rounds of offers. Bidders do not meet with each other, and they also do not meet with the 

seller directly. Potential buyers will consult with their agents prior to bidding, discussing among other things 

the competition that they are likely to face from other bidders. In this environment, bidders usually register 

their intent to bid prior the quasi-auction, so bidders will frequently know the exact number of competing 

bidders. In some cases, only one bidder emerges, and price is negotiated. In others, there are multiple 

bidders. In both cases, asking price directs search activity. This sort of institutional practice is captured in 

                                                 
17 For example, the Case and Shiller (2003) survey collected 797 questionnaires in four metropolitan areas.  
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the model developed above. Although there are differences in the specifics of implementation, we believe 

that the key features of this process are common across markets.    

 Although the institutions are broadly similar across markets, different markets have, of course, 

experienced the recent boom and bust quite differently. For instance, Han and Strange (2014) show that 

many markets have seen growth in the fraction of bidding war sales, but not all. More generally, markets 

differed in how they experienced the great boom and bust of the 2000s. In the taxonomy of Abel and Dietz 

(2010), some markets had substantial booms followed by substantial busts, some had one but not the other, 

and some had neither. Ours was a market with a substantial boom, but not a persistent bust.  The market 

declined sharply around the period of 2008’s financial crisis, but it recovered fairly quickly.  As with some 

but not all markets in this group, there was not a wave of foreclosures in our market. Since foreclosures 

have such important impacts (see Gerardi et al, 2015, and Lambie-Hanson, 2015), the soft landing that our 

market experienced means that some of our results on the directing role of asking price in a bust might be 

stronger in other markets where the negative shock was deeper and more persistent.   

 Returning to the survey itself, two particularly relevant questions are “Were there other people 

actively bidding on the home when you submitted your first offer?” and “If yes, about how many other 

bidders were there?” The resulting responses provide information about the number of competing bidders 

and hence permit an empirical investigation of role of the asking price in directing search. To the best of 

our knowledge, this information has never been collected previously. Figure 2 shows a histogram of the 

number of bidders. In two-thirds of sales, there is one bidder. In one-sixth, there are two bidders, and in 

somewhat less than half of that, there are three bidders. There are more than three bidders in nine percent 

of the observations. It is clear that this distribution is over-dispersed relative to the Poisson distribution. 

 The survey data were complemented with publicly available information from the local MLS, 

which covers 89,891 transactions that occurred in the survey area between 2006 and 2009. Properties are 

identified in the MLS data by district, MLS number, address, unit number (if applicable). The housing 

attribute variables include number of bedrooms, number of washrooms, lot front, lot depth, the length and 

width of the primary room, dummy variables for basement, garage space and occupancy. Inspection of the 

MLS data reveals that about 2% of observations have more than 5 bedrooms or washrooms. To minimize 

the impact of these larger houses on the empirical analysis, we drop these observations. Table 3 presents 

summary statistics of the variable of interest for the merged MLS/survey sample. 

 Tables 4a and 4b present descriptive patterns for sales price, list price, the number of bidders, and 

other key outcomes. Three related findings emerge. First, there is a notable fraction of the below-, at-, and 

above-list sales. This is consistent with the Case-Shiller and NAR Surveys, especially the mass point of at-

list sales. Although the acceptance rates in the Genesove-Han Survey are substantially lower, the cyclical 

variation in the acceptance rates and in the traditional (below list) sales is highly in line with Case-Shiller 
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and NAR.18 In particular, there is a higher fraction of at-list sales (about 10%) in 2006 when the housing 

market was in a boom than in 2008 (about 5.5%) when the market slowed down. Second, unlike the Case-

Shiller and NAR Surveys, the Genesove-Han Survey presents explicit evidence for the presence of multiple 

bidders who are interested in the same home. As shown in the last two columns of Table 4a, over one third 

of buyers we surveyed reported facing competing bidders when purchasing a home. This justifies the 

bidding war possibility that was modeled in this paper but not in the previous asking price literature.  Third, 

the patterns of bidding behavior are clearly related to the relationship between sales and asking price.  Table 

4b shows that the number of bidders and the presence of multiple bidders is greater for above-list sales than 

for at-list acceptances and greater for at-list acceptances than for traditional below list sales. It shows a 

similar pattern for time-on-market, which is longest for traditional sales. We return to this finding below. 

 

B. Empirical results:  The directing role of asking price 

 The key implication of the model is that a lower asking price encourages more visits. As noted in 

the Introduction, prior research on asking price has considered outcomes, such as time-on-market, rather 

than considering search directly. This paper is the first in the literature that provides direct evidence of the 

effect of asking price on search activity. Specifically, we present a log-linear specification that regresses 

the number of bidders on the asking price. That is, we estimate the following equation: 

 

    lnNijt = α + βlnPijt + γXijt + ηt +τj  + εijt                                                      (VI.1) 

 

where Nijt indicates the number of bidders for house i in district j at period t; Pijt indicates the corresponding 

asking price; Xijt indicates corresponding house attributes;19 ηt  is the year*month fixed effect; τj is the 

district fixed effect. Throughout the paper, we cluster the standard errors at the district level to allow for 

the spatial and temporal dependence within MLS districts. 

 The top panel of Table 5 reports the results. Column 1 presents a bivariate regression. The 

coefficient on the list price is 0.08, positive and significant. Adding transaction period dummies, as shown 

in Column 2, increases the coefficient to 0.09 but makes it less significant. In Column 3, we add housing 

                                                 
18The smaller magnitude of the acceptance rates in our survey could reflect the growing practice in the market under 

investigation of designating a particular time in a specific day to receive offers. This practice increases the probability 

of receiving the multiple offers in the same time. It also suggests a lower likelihood of downward revisions in offers, 

which Merlo and Ortalo-Magne (2004) show to be common, making it somewhat less likely that buyers will report 

having paid exactly the asking price. Nevertheless, the fraction of acceptance is large enough that it calls for a model 

to explain the forces at work. 
19 The housing attributes we control for include dummies for the number of bedrooms interacted with dummies for 

the number of washrooms, lot front, lot depth, the length and width of the primary room, dummy variables for 

basement, garage space and occupancy. 
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attributes which increases the coefficient further to 0.14. The positive relationship between the number of 

bidders and the asking price that we have found so far is hard to interpret in the context of our model. 

However, this is mostly due to the lack of control on house location. Once we include dummies for the 

district in which properties are located, the coefficient on the asking price becomes negative and significant, 

consistent with what we expected. In Column 4, we control for the district dummies only, and the coefficient 

on the asking price becomes -0.14 and highly significant. Adding transaction period dummies, as shown in 

Column 5, changes the coefficient to -0.12. Adding housing attributes, as shown in Column 6, further 

changes the coefficient to -0.22, indicating that lowering the asking price by 10% increases the number of 

bidders by 2.2%. Together, these results are consistent with the model’s key prediction about the role of the 

asking price in directing homebuyers’ search. 

 The estimated effect of the asking price on search intensity, although qualitatively consistent with 

the model’s predictions, seems small in magnitude. This estimate should be treated as a lower bound for 

the true directing effect of the asking price for several reasons. First, we use the number of bidders to proxy 

for the number of visitors. In our stylized model, all visitors bid, but in reality we believe that the large 

majority of visitors do not bid. This could be captured in the model by supposing that there is a positive 

probability that x = 0. These poorly matched buyers would then not participate in the auction. Since the 

number of bidders provides a lower bound for the number of visitors, this introduces a downward bias in 

our estimated responsiveness of the buyers to the asking price, suggesting that the actual directing role of 

the asking price is even stronger.20 Second, it is possible that the number of bidders is misreported by 

homeowners. In this case, the coefficient on the number of bidders will also be biased downwards in 

magnitude. Third, while the data permit us to control for a rich set of differences in housing attributes and 

locations, the econometrician is unlikely to observe all housing characteristics that are observed by buyers 

and sellers. To the extent that houses with nice but unobserved features are both listed at a higher price and 

attract more bidders, this will introduce a bias into the estimated effect of the asking price. However, as 

shown by a structural analysis in Genesove and Han (2012b), the OLS estimator in this case would be 

biased downwards in magnitude in the manner of an error-in-variable bias. In other words, the actual role 

of the asking price in directing buyers’ search should be even stronger.  

 To test whether unobserved housing characteristics indeed cause downward bias, we re-estimate 

our main specifications by including the tax assessment for the year of, or the year prior to listing. Taxes 

are a constant percentage of assessed value, and therefore serve as a perfect proxy for assessed value. 

Assessed value is typically based not only on housing attributes reported in the MLS database, but also on 

                                                 
20 It is worth noting that there is a range of other sorts of search activity such as repeated visits to a house, home 

inspections, and time spent gathering and processing relevant information. It is not possible to consider these 

activities given available data. 
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the assessor’s actual visit of the house and the neighborhood. Thus, assessed value contains more 

information about the house than is found in MLS data. For this reason, we add the property tax assessment 

value, along with dummies for the year of assessment, to control for part of unobserved house 

characteristics. Some observations lack tax information, and we drop them from the analysis. 

 The bottom panel of Table 5 presents the results of models with controls for taxes and tax years. 

Given the importance of home locations, we focus our discussion on the three columns where the district 

dummies are controlled for. Across these columns, the coefficient on the asking price remains significantly 

negative and becomes much larger in magnitude when taxes are included. In Column 6 where all the control 

variables are included, adding taxes almost doubles the magnitude of the directing effect of the asking price 

– lowering the asking price by 10% increases the number of bidders by 4%. In addition, the coefficient’s 

precision is increased even further. Since taxes are used to control for part of unobserved housing 

characteristics, these results are consistent with what we expected from errors-in-variable bias as discussed 

earlier. Moreover, they suggest that our main results hold even after accounting for the spurious correlation 

between the asking price and the number of bidders induced by unobserved housing attributes. Note that 

since taxes cannot control for all unobserved housing attributes, we should treat the negative effect we 

found here as a lower bound for the true directing effect of the asking price. 

 It is well-known that home sellers sometimes revise their asking price. To consider this, in column 

7, we repeat the specifications in column 6 but use the original asking price instead. We find that the effect 

of the original asking price on the number of bidders remains negative and statistically significant, although 

smaller than the effect of the final asking price. This is as expected, since what matters for buyer search is 

the asking price at the time of the visit and bidding decisions, not the original asking price. We will hereafter 

only use final asking price in the empirical specifications.  

 

C. Alternate specifications 

 The discreteness of the number of bidders suggests that we can further explore the variation in 

relationship between the asking price and the bidding intensity. To this end, we begin by estimating a 

standard Probit model on the occurrence of multi-bidder sales, controlling for transaction period, district 

and housing attributes. In this model, the dependent variable is assigned a value of 1 if there are multiple 

bidders and 0 if there is one bidder. Table 6 reports the marginal effects of asking price. Other things being 

equal, reducing the asking price by 1 percent increases the probability of having multiple bidders by 1.23 

percentage points.  We then estimate an ordered Probit model where the number of bidders is regressed on 

the log of the asking price with usual controls. As shown in the bottom panel of Table 6, else equal, reducing 

the asking price by 1 percent increases the chance of having two bidders by 3.24 percentage points, the 

chance of having three bidders by 2.13 percentage points, the chance of having four bidders by 1.65 
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percentage points, and the chance of having five or more bidders by 1.99 percentage points. All estimates 

are statistically significant. While lowering asking price helps attract multiple bidders, attracting one 

additional bidder would require further reductions in the asking price. This is consistent with expectations. 

 The number of bidders is not only discrete but also over-dispersed, as shown in Figure 2. A 

legitimate concern is that the log-linear model, used in our main specifications, may fail to control for the 

over-dispersion in the number of bidders and therefore generate biased estimates. To address this concern, 

we estimate a negative binomial model where the number of bidders is again regressed on the log of asking 

price with a set of usual controls. The results are reported in Table 7. In column 1, we control for only 

transaction district and period. The coefficient on ln(Asking Price) is -0.27. In column 2, we add house 

attributes, and the magnitude of the coefficient almost doubles. In columns 3 and 4, we repeat the estimation 

in columns 1 and 2, but further include tax assessment as a control for the unobservable house attributes, 

the coefficient on ln(Asking Price) increases to -0.72 and -0.89 respectively. The estimates are statistically 

significant at the 1% level in all specifications.  To interpret these coefficients, we further compute their 

incidence rates, which are reported in the bottom row. Take the estimates in column 4 as an example. For 

hedonically identical homes, increasing the asking price by 1 percent reduces the arrival rate of the potential 

bidders by 0.58 percentage points. These estimates provide strong evidence for the directing role of the 

asking price, even after accounting for the over-dispersion in the number of bidders. Note that the dispersion 

parameter is significantly positive in all specifications, suggesting that there is indeed more variation than 

if the process were Poisson. 

  

D. Variation in the directing role of asking price 

 Another key prediction of our model is that the strength of the directing role of asking price varies 

depending on the state of the housing market and the degree of atypicality of houses. For example, in busts 

when there are fewer high-type buyers and when high-type buyers value a given house less, the directing 

effect of the asking price on buyers is stronger. In contrast, in booms when there are more high type buyers 

and higher type buyers valuing a given house more, a greater reduction in asking price is required to induce 

a given number of visits. On the other hand, the theoretical result on the atypicality effect is less clear. More 

atypical houses may strengthen the directing role of asking price, as buyers are less likely to find such 

houses as a good match and hence are less motivated to search. However, conditional on being matched 

with an atypical house in a good state, a buyer with particular taste might derive greater value from such a 

house. This would weaken the role of asking price as a commitment device. The net effect of atypicality on 

the directing role of asking price, thus, depends on which effect empirically dominates. 

 To test the model’s implications regarding directed search in a bust, we consider the September, 

2008– December, 2008 as a period of financial crisis, and use it as an empirical proxy for the bust period. 
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The sample period we analyze started with a boom market in 2006, followed by a slow and uncertain market 

trigged by the global financial crisis that began in September 2008. By early 2009, the housing market 

started rising again. To see this, we use the monthly median house price and monthly sales reported by the 

local real estate board and compute the year-to-year growth in deflated median house price and in sales for 

each month in the sample period.21 As shown in Figure 3, the number of sales has been generally stable 

throughout 2006 and 2007. Then the sales started dropping in February 2008 (relative to the same month 

in the previous year) and continued to be around 20-25% off the previous year’s through August 2008.  In 

September 2008 the sales were about 6% less the previous year’s, but then October’s sales were about 63% 

of the previous year’s. This continued until March 2009, after that the sales started increasing again. Turning 

to the median price, we find the real price stalled in September 2008 and then fell 11% in October 2008 

(again compared to the same month in the previous year). The year-to-year price depreciation continued 

until June 2009, although at a much smaller magnitude. Together, the figure makes it clear that housing 

market in the sample metropolitan area was strong until 2007, followed by a significant bust triggered by 

the global financial crisis in Sept. 2008, and then a recovery in 2009. This justifies our choice of using 

September – December in 2008 “crisis” period  to proxy for the housing market bust. It is worth noting, 

however, that the soft landing that this market experienced may mean that the results we obtain are weaker 

than they would be in a market that had a hard landing.  

 To test the effects of atypicality, we follow Haurin (1988) and Glower, Haurin, and Hendershott 

(1998). We create Haurin’s atypicality measure in the following way.  

 

 ATYPijt = k |exp(a+bkhik)- exp(a+bkhjk
*)|/SPijt                                                    (VI.2) 

 

where ATYPijt and SPijt are the atypicality index and sales price for house i in district j at time t; hik is the 

kth physical attribute of house i; hk
* is the mean value of the kth attribute of houses in district j in the year 

of transaction; a and bk are the intercept and slope estimates from a hedonic regression using the overall 

market sample in the year when the property is transacted. This index should be interpreted as the aggregate 

value of deviation of a property's characteristics from the sample mean, weighted by the hedonic price of 

that characteristic.22   

 In Table 8, we expand the regressions in Table 5 by separately including the interaction of the 

asking price and the crisis period dummy as well as the interaction of the asking price with the atypicality 

                                                 
21 In other words, the current month’s data point is compared with the data point from the same month in the prior 

year. The growth rate is then calculated to get a comparative measure for how fast real price or the sales rose or fell 

over the 12-month period. This method reduces seasonal fluctuations and reveals the changes in market conditions. 
22See Bar-Isaac et al (2015) for another application of Haurin’s atypicality index. 
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index. Given that the atypicality index is constructed from a separate regression, the estimates of the 

asymptotic covariance matrix are corrected using the bootstrap strategy. Beginning with the top panel, the 

coefficient on asking price alone is positive when the district dummies are not included (Columns 1), but it 

becomes significantly negative once the district dummies are included (Columns 2-4). This is the same 

pattern that appeared in Table 4. More importantly, in Columns 2-4, the coefficients on the interaction 

variables are all negative and statistically significant, suggesting that there is significant variation in the 

directing role of asking price across different market segments and different house types.   

 In particular, in Column 4, where transaction period dummies, district dummies and housing 

attributes are all controlled for, the coefficient on the asking price is -0.24 (significant at the 1% level) and 

the coefficient on the interaction between asking price and the crisis dummy is -0.16 (significant at the 5% 

level). Together, these results indicate that lowering asking price by 10% would increase the number of 

bidders by 2.4% in normal times and by 4% in busts. These findings are consistent with cyclical variation 

in the directing role of the asking price predicted by the model.23   

 In the same column, we also find that the coefficient on the interaction between asking price and 

the atypicality index is -0.018 (significant at 1% level). This means that the effectiveness of the asking price 

in directing search strictly increases with the degree of house atypicality. In particular, lowing asking price 

10% would increase the number of bidders by 7.8% for a house that is at the 10th percentile of 

the atypicality index (ATYP = 0.03); and 69% for a house that is at the 90the percentile of the atypicality 

index (ATYP = 0.37). This suggests that the marketing strategy of lowering asking price to attract bidders 

is much more effective for houses with more unusual features.  

 Turning to the bottom panel of Table 8, we find that our main results are again robust to the 

inclusion of taxes. In particular, the effect of the asking price alone on the number of bidders almost doubles 

in magnitude. Moreover, consistent with what we found before, this effect is strengthened in the housing 

market bust and for houses with more atypical features.  

 

E. Empirical results:  Transaction types  

 The model also has predictions about how housing transaction types – traditional, bidding war, or 

acceptance – will vary across the real estate cycle. An increase in the quality of a good match or a decrease 

in search costs will result in fewer traditional below-list sales and more bidding war sales. The model is 

                                                 
23 Table C-1 in the online Appendix C provides a set of robustness checks where we interact the asking price with 

the year-to-year real house price appreciation and year-to-year changes in sales (both at the market level) rather than 

using the 2008 financial crisis period to proxy the bust. We find that an increase in the median real price or in the 

number of sales reduces the negative effect of the asking price on the number of bidders. The estimated relationship 

is strong and statistically significant. This provides reassuring evidence that the directing role of the asking price is 

strengthened in the housing market bust.  
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ambiguous in its predictions regarding the fraction of sales that involve the acceptance of the asking price, 

as discussed above. It is real estate agent folk wisdom that more sales above list are seen in a boom. While 

one would expect this outcome in a world where real estate booms and busts arose as unanticipated shocks, 

it is not completely obvious that this should be the case. The asking price is, after all, endogenous. The 

model’s predictions are, nonetheless, consistent with the folk wisdom, and so when we test the former we 

are also assessing the latter. With regard to acceptance, we are not testing the model here but attempting to 

determine which of the theoretical possibilities is consistent with observation. 

 With that in mind, Columns 1-3 of Table 9 present results from regressing a set of dummy variables 

that indicate the incidence of traditional/bidding/acceptance-sales on the crisis proxy, an atypicality index, 

and a variety of control variables. Following the theoretical framework, we measure the instance of bidding 

by the fraction of above-list sales. In all specifications, we control for property characteristics, 

neighborhood conditions, and transaction period dummies. For traditional (below-list) sales, the coefficient 

on the financial crisis indicator is 1.90 and significant at the 1% level, indicating that for two hypothetically 

identical houses with average conditions, the predicted probability that a transaction occurs with a below-

list price is 45% greater during the bust than in more normal circumstances. Turning to the above-list sales, 

the coefficient on the financial crisis indicator is -0.78 and significant at the 10% level, indicating that the 

predicted probability that a house ends up with an above-list price is 14% lower during a bust.24 Together, 

these results are consistent with the model’s predictions about the cyclical variations in the frequency of 

the traditional and bidding war sales, providing additional support for the directing role of the asking price 

in home sales.25   

 The model’s predictions about the cyclical variations in acceptance rates are ambiguous. The 

middle column of Table 9 shows that the occurrence of acceptance sales is less likely in a bust than in a 

boom, although the relationship is statistically insignificant. Nevertheless, the pattern here is consistent 

with the descriptive evidence from the various surveys discussed above.  

 Finally, we find that the coefficients on the atypicality index are qualitatively similar to the 

estimates on the crisis dummy, although they are statistically insignificant in the case of traditional sales 

and acceptance sales. We previously discussed two ways that atypicality might impact transaction type. 

One was that atypical houses simply have fewer satisfactory matches (lower ). The other was that atypical 

houses might also be better matches for households for which the house is a good fit (higher xH). The results 

seem to suggest that the former effect is stronger. An atypical house experiences a market similar to an 

                                                 
24These results become slight stronger both economically and statistically in a Probit model regressing a dummy for 

sales with multiple bidders on our control variables.    
25The results are also consistent with the wealth effects documented in Genesove and Mayer (1997) and the loss 

aversion behavior as emphasized in Genesove and Mayer (2001). 
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ordinary house in a bust in this regard. There are fewer bidding wars. This result is related to the finding of 

Liu et al (2014) that there were fewer above-list sales in Phoenix for the largest houses since these large 

houses are atypical by the Haurin measure.   

 

VII. Conclusions 

 This paper has considered, both theoretically and empirically, the role of the asking price in housing 

transactions. The motivation is that houses sell for less than asking price and for more than asking price. 

This suggests that asking price might not matter. However, a nontrivial share of housing transactions also 

involve a price equal to asking price, which would not be likely if housing transactions were simply 

auctions, with asking price simply serving as an empty description of the house.    

 To resolve this puzzle, the paper proposes a search model where asking price is a commitment 

when at most one buyer has a match value that is equal to or greater. The model shows how asking price 

can direct search. A lower asking price encourages more potential buyers to visit, but only up to a point. 

Past this bound, a lower asking price leads to more bidding wars, and buyer recognition of this means that 

more cannot be encouraged to search. This means that although asking price can be a useful strategic 

instrument for home sellers, there is a limit to the search that can be encouraged. 

 The paper carries out a number of empirical tests of the model’s predictions. We show that there 

are nontrivial fractions of sales that are below-list, above-list, and at-list, as the model predicts. We show 

that asking price is negatively related to the number of bidders, a proxy for buyer search activity. We also 

show that this relationship is stronger in a bust than in a boom and also stronger for an atypical house. 

Finally, we show that the share of below-list sales falls in a boom, while the shares of at-list and above-list 

sales rise. The latter results are consistent with real estate agent folk wisdom.   

 It goes without saying that there are other aspects of asking price that the paper has not considered. 

Behavioral aspects of housing transactions are perhaps the most important of these.  First, an asking price 

is one of the first pieces of information that a homebuyer obtains about a house. Bucchianeri and Minson 

(2013) present evidence consistent with a “framing” role for asking price, where setting a high asking price 

impact buyer evaluations of match quality. Second, especially in boom markets, housing transactions can 

become heated, and it is not difficult to believe that emotion plays a role. Piazzesi and Schneider (2009) 

show that in a search market, a small number of optimistic investors can have large effects on house prices 

even if they buy only a small fraction of houses. In a setting of online auctions, Lee and Malmendier (2010) 

have shown that bidders sometimes pay more in a competitive auction than a price at for which the object 

is offered in an ordinary sale on the same webpage. This seems to suggest that housing transactions have 

the potential for the same sort of emotional bidding. To the extent that asking price encourages search, it is 

possible that it may create such a situation, to the benefit of the seller. Third, Genesove and Mayer (2001) 
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present evidence consistent with loss aversion in housing markets. This will impact a seller’s entire 

marketing strategy, including the setting of asking price. While we see these behavioral phenomena as being 

worth consideration, we also believe that it is important to see how far a conventional microeconomic model 

can go in explaining observed data. We believe that this paper’s demonstration that asking price can direct 

search when it is neither ceiling nor posted price is a useful step in doing so. 
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Table 1: Below-, At-, and Above-List Sales in Four Cities: 

Evidence from Case and Shiller (1988, 2003) 

 
 Los Angeles San Francisco Boston Milwaukee Average 

 
 1988 2003 1988 2003 1988 2003 1988 2003 1988 200

3 

Sale Price < List Price 6.3 19.9 9.8 45.8 10.5 21.3 3.3 17.5 4.9 25.5 

Sale Price = List Price 38.0 50.4 26.8 27.5 23.5 59.1 22.7 52.4 27.9 48.4 

Sale Price > List Price 55.7 29.7 63.4 26.7 76.0 28.6 74.0 31.1 67.1 29.1 

# responses 237 141 194 153 200 203 242 183 873 680 

 
Note: This table reproduces the statistics from Case and Shiller (1988, 2003).  

 

 

 

 

 

 

 

 

 

  

Table 2: Below-, At-, and Above-List Sales:  NAR Evidence 

 
 Aggregate 

Sample 

 Buyer 

Sample 

 Seller 

Sample 

 
 Average 

Sale/List 

Ratio 

Fraction 

of Below 

List Sales 

Fraction 

of Sales at 

List Price 

 Average 

Sale/List 

Ratio 

Fraction 

of Below 

List Sales 

Fraction 

of Sales at 

List Price 

 Average 

Sale/List 

Ratio 

Fraction 

of Below 

List Sales 

Fraction 

of Sales at 

List Price 

 
2003-

2006 

97.76% 

(33,188) 

57.08% 

(33,188) 

29.43% 

(33,188) 

 97.79% 

(23,585) 

54.88% 

(23,585) 

31.29% 

(23,585) 

 97.71% 

(9,603) 

62.47% 

(9,603) 

24.86% 

(9,603) 

2007-

2010 

94.82% 

(40,288) 

74.29% 

(40,288) 

17.48% 

(40,288) 

 94.93% 

(31,547) 

72.81% 

(31,547) 

18.29% 

(31,547) 

 94.42% 

(8,741) 

79.61% 

(8,741) 

14.55% 

(8,741) 

 
Note: The data source is the National Association of Realtors homebuyer and seller surveys (2003-2010). The sample excludes 

properties sold through foreclosures. Number of observations is reported in parentheses. 
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Table 3: Descriptive Statistics  

 

Variables Mean S.D. 

 

Number of bidders 1.73 

 

1.75 

Sale price  $ 416,154.2 

 

$ 208,774.2 

Final Asking Price  $ 422,742.2 

 

$ 210,894.7  

Original Asking price $ 425,764.6 $ 212,076.1 

 # of bedrooms 3.31 

 

0.67 

# of washrooms 2.80 

 

0.92 

Lot front (feet) 41.75 

 

68.51 

Lot depth (feet) 120.59  112.56 

 Primary Room length (feet) 15.49 

 

6.11 

 Primary Room width (feet) 11.73 

 

18.90 

 Garage space 1.26 

 

0.77 

 Property Tax Assessment $3,154.36  $1,508.22 

 Period covered Jan. 2006-Dec. 2009 

 

Note: This table reports summary statistics of the raw variables. Number of bidders is reported by buyers  

who responded to the survey, and other variables are reported by the local MLS. Sale price and asking 

price are measured in 2000 dollars.  
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Table 4a: Below-, At-, and Above-List Sales By Year 

 
 Sales/List 

Ratio 

Below 

List (%) 

At List 

(%) 

Above 

List (%)  

# Responses Mean 

Price 

(MLS) 

Sales 

Volume 

(MLS) 

% Multiple 

Bidders 

# of Bidder 

responses 

 
2006 97.88% 75.90% 9.92% 14.19% 585 384,10

0.4 

23,204 35.45% 663 

2007 98.22% 72.39% 7.82% 19.78% 652 411,44

4.2 

25,751 38.24% 740 

2008 97.45% 83.61% 5.46% 10.93% 1025 417,33

7.6 

19,562 29.55% 1154 

2009 97.03% 81.02% 8.37% 10.61% 490 426,96

1.7   

 23,367 37.21% 524 

 
Note: The statistics are computed based on the Genesove-Han Survey. 

 

 

 

 
Table 4b: Bidding Statistics for Below-, At-, and Above-List Sales  

 
 Days On Market Number of Bidders % Multiple Bidders 

 Mean S.D. Mean S.D. Mean S.D. 

 
Sales Price 

< List Price  

30.46 29.10 1.38 0.99 21.61% 41.17% 

       

Sales Price 

= List Price 

19.87 20.34 1.84 1.31 47.57% 50.08% 

       

Sales Price 

> List Price 

11.03 11.81 3.80 3.28 88.55% 31.88% 

 
Note: The statistics are computed based on the Genesove-Han Survey. List price refers to final asking 

price that is posted to attract visitors.  
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Table 5: Bidder Response to Asking Price 

 
Dependent Variable Ln(Number of Bidders) 

 
Variables (1) (2) (3) (4) (5) (6) (7) 

 
 Without controls for property tax assessment  

ln(Final Ask Price) 0.08 

(1.85) 

0.09 

(1.97) 

0.14 

(2.98) 

-0.14 

(-4.21) 

-0.12 

(-4.00) 

-0.22 

(-4.44) 

 

ln(Original Ask Price)       -0.17 

(-3.59) 

Period No 44 44 No 44 44 44 

district No No No 25 25 25 25 

House Attributes No No Yes No No Yes Yes 

Property Tax 

Assessment 

No No No No No No No 

Obs. 2947 2947 2891 2947 2947 2891 2891 

 

 With controls for property tax assessment 

ln(Final Ask Price) 0.20 

(4.20) 

0.20 

(4.23) 

0.12 

(2.34) 

-0.36 

(-4.48) 

-0.33 

(-4.14) 

-0.40 

(-5.19) 

 

ln(Original Ask Price)       -0.23 

(-2.38) 

Period No 44 44 No 44 44 44 

district No No No 25 25 25 25 

House Attributes No No Yes No No Yes Yes 

Property Tax 

Assessment 

Yes Yes Yes Yes Yes Yes Yes 

Obs. 2708 2708 2667 2708 2708 2667 2667 

 
Note:  This table reports estimates from the log-linear regressions of the number of bidders on the list price, with 

a variety of controls. Standard errors are clustered at the district level. T-statistics are reported in parentheses. The 

number of bidders is reported by buyers, and other variables are reported by the MLS. The top panel excludes 

property tax and dummy indicators for tax assessment year, while the bottom panel includes them. The asking 

price is measured by the final asking price in columns 1-6, and by the original ask price in column 7. House 

attributes include dummies for the number of bedrooms interacted with dummies for the number of washrooms, 

lot front, lot depth, the length and width of the primary room, dummy variables for basement, garage space and 

occupancy. 
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Table 6: Marginal Effects from Probit Models 

 
Standard Probit  

 
 dPr(N>1)/dln(Final Asking Price) t-stat 

 
N > 1 -0.123 -4.16 

 
Ordered Probit 

 
# Bidders dN/dln(Final Asking Price) t-stat 

 
N = 2 -0.0324 -3.52 

N = 3 -0.0213 -3.55 

ie = 4 -0.0165 -3.39 

N ≥ 5 -0.0199 -3.75 

 
Note: The dependent variable is a dummy variable that indicates multiple bidders (N>1) in 

the top panel, and the number of bidders (N) in the bottom panel. In both cases, the key 

variable of interest is the log of final asking price (ln(Asking Price)). Controls include 

transaction period, district, as well as housing attributes as described in the note to Table 5. 

Standard errors are clustered at the district level. For the ease of interpretation, the estimates 

reported here are marginal effects computed based on the raw Probit coefficients. 

 

Table 7: A Negative Binomial Model  

 
Dependent Number of Bidders 

Variables (1) (2) (3) (4) 

 
Ln(Final Asking Price) -0.2733 

 

-0.4986 

 

-0.7208 

 

-0.8851  

  (-4.30) (-4.02) (-4.13) (-4.47) 

Dispersion  0.0810 0.0728 0.0781 0.0694 

 (2.67) (2.69) (2.77) (2.75) 

Period 44 44 44 44 

district 25 25 25 25 

House Attributes No Yes Yes No 

Property Tax Assessment 

Assessment 

No No Yes Yes 

Obs. 2947 2891 2708 2667 

 
IRR of ln(Final Asking Price) 0.7609 0.6074 0.4866 0.4127 

 
Note: This table reports estimates from the negative binomial regressions of the number of bidders on the log of 

asking price, with a variety of controls. Standard errors are clustered at the district level.  T-stats are reported in 

parentheses. The incidence rate ratio (IRR) of ln(Final Asking Price) is reported at the bottom row. House attributes 
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are described in the note to Table 5. Property tax assessment controls include both property taxes and dummy 

indicators for the year of tax assessment.  

 

Table 8: Variation in Bidder Response to Asking Price: Bust and Atypicality 

 

 
Dependent Ln(Number of Bidders) 

Variable (1) (2) (3) (4) 

 
 Without controls for property tax assessment 

Ln(Asking Price) 0.08 

(3.09) 

   -0.137 

(-3.61) 

-0.109 

(-2.56) 

-0.24 

(-4.22) 

Ln(Asking Price)*Atypicality  -0.008 

(-1.43) 

   -0.011 

(-2.16) 

-0.011 

(-1.77) 

-0.018 

(-3.22) 

Ln(Asking Price)*Crisis  -0.009 

(-4.13) 

 

   -0.009 

  (-4.23) 

-0.14 

(-2.25) 

-0.16 

(-2.54) 

Period No No 44 44 

district No 25 25 25 

House Attributes No No No Yes 

Property Tax Assessment No No No No 

Obs. 2891 2891 2891 2891 

 
 Without controls for property tax assessment 

Ln(Asking Price) 0.20 

(5.85) 

 

-0.38 

(-4.20) 

-0.33 

(-4.78) 

-0.40 

(-4.95) 

Ln(Asking Price)*Atypicality  -0.010 

(-2.00) 

 

-0.011 

(-2.22) 

-0.011 

(-2.01) 

-0.016 

(-3.24) 

Ln(Asking Price)*Crisis  -0.008 

(-3.37) 

 

-0.008 

(-3.49) 

-0.10 

(-1.71) 

-0.12 

(-1.65) 

Period No No 44 44 

district No 25 25 25 

House Attributes No No No Yes 

Property Tax Assessment Yes Yes Yes Yes 

Obs. 2667 2667 2667 2667 

 
Note: This table reports estimates from the log-linear regressions of the number of bidders on the asking 

price, with a variety of controls. Asking price here refers to the final asking price. Standard errors are 

bootstrapped. T-statistics are reported in parentheses. The number of bidders is reported by buyers, and 

other variables are reported by the MLS. The atypicality index is constructed to measure the degree of 

unusual features of a property based on Haurin (1988).  Crisis is a dummy variable that equals 1 if 

transaction occurs during September, 2008– December, 2008. The top panel excludes property tax and 

dummy indicators for the tax assessment year, while the bottom panel includes them. 
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Table 9: Variation in the Nature of Sales:  Bust and Atypicality 

 
Dependent 

Variable 

Traditional Sales 

Indicator 

(Sale Price < List Price) 

Acceptance Sales 

Indicator 

(Sale Price = List Price) 

Above-Listing 

Sales Indicator 

(Sale Price > List Price)  

 
Crisis 1.89 

(5.85) 

 

-1.68 

(-1.26) 

 

-0.78 

(-1.93) 

Atypicality 0.20 

(0.45) 

 

0.12 

(0.52) 

 

-0.39 

(-2.35) 

Period 44 44 44 

District 25 

 

25 

 

25 

 House 

Attributes 

Yes 

 

Yes Yes 

 

Obs. 2505 2505 2505 

 
Note: This table reports estimates from the Probit regressions of transaction type on market crisis 

indicator and property atypicality index, with a variety of controls. The atypicality index is constructed to 

measure the degree of unusual features of a property based on Haurin (1988).  Crisis is a dummy variable 

that equals 1 if transaction occurs during September, 2008– December, 2008. Standard errors are 

bootstrapped. T-statistics are reported in parentheses. The indicators of below-, at-, and above-list sales 

are based on buyers' reports, and other variables are reported by the MLS. House attributes are described 

in the note to Table 5.  
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Figure 1.  Asking price and search 

 

 

 

 

 

 

Note:  the figure shows how asking prices between xL and xH impact the number of visitors to a house.  

When a > a1, no buyer visits.  Above a2 up to a1, 1 buyer visits, and so on.   

 

 

 

 

Figure 2: Histogram of the Number of Bidders 

 

 
Data source: Homebuyer survey conducted by Han and Genesove (2012b).  
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Figure 3: Year-to-Year Changes in Sales and Median Price 

 

 
 

Note: We use the monthly median house price and number of sales reported by the local real estate board 

and compute the year-to-year growth in deflated median price and sales for each month in the sample 

metropolitan area.  
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Online Appendix A.  Continuous Model  

 

 This Appendix considers an alternate model of the role of asking price.  The specification is as in 

the paper with one difference.  Instead of buyer valuations being binomial draws from the two point support 

{xL,xH}, we now suppose that the valuation after the visit is a draw from a continuous probability 

distribution on [xL,xH].   Let f(x) and F(x) denote, respectively, the ordinary pdf. and cdf.  This Appendix 

will show that key results from the discrete model continue to hold and that there are some additional forces 

at work that this alternate model allows us to explore.   

 To begin considering this setup, suppose that n = 1, so there is only one visitor and suppose that a 

 (xL,xH).  As in the paper, price is given by a bargain between seller and buyer, with  

 

 p = x + (1-)xL.  (A.1) 

 

Again, as in the paper, if p ≥ a, then the buyer would choose to accept since this gives a lower price than 

does negotiation.  Otherwise, the sale will be traditional with sales price less than asking price.    

 These two cases are illustrated in the two panels of Figure A1.   Panel (a) shows how different 

draws of buyer valuation x correspond to different transaction types taking asking price as given.   The one 

visitor would accept the asking price only if the valuation is large enough that the negotiated price would 

be greater than asking price.  Using (A.1), the critical value is xa = 1/(a – (1-)xL).  For x ≤ xa, the sale 

would proceed as a traditional below-list sale.  Panel (b) tells a similar story with a focus on asking price 

taking x as given.   For a given valuation, asking price must be low enough that accepting it is preferred by 

the buyer to negotiation.   For given x, the critical asking price is given by a = x + (1-)xL. 

  With n = 1, the expected utility of the visitor is 

 

 1 =   
xa

xL
dx)x(f)x(px +   

xH

xa
dx)x(fax - c  

     =  E(x) – c - a – (1-)[E(x|x<xa)+(1-)xL] (A.2) 

 

In order to consider search in this situation, we require assumptions that are parallel to Assumptions 1-3 

from the body of the paper. (weak bargaining power, potentially valuable search, and potentially valuable 

transaction).  There is weak bargaining power if 

 

 Assumption 1:  (1-)(E(x)-xL)    ≤  c (A.3) 
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We suppose that Assumption 1 holds, ensuring that at a = xH, n = 0.   There is potentially valuable search 

if  

 

 Assumption 2:  E(x) – c - xL ≥ 0. (A.4) 

 

We suppose that Assumption 2 holds also.   In this setup, at a = xL, we have  

 

 1 = E(x) – c - xL ≥ 0,   (A.5) 

 

by potentially valuable search.   Since 1 ≤ 0 at a = xH and 1 is monotonically decreasing in asking price 

for fixed n, there exists a unique a1 such that 1 = 0.  There is a potentially valuable transaction if  

 

 Assumption 3:  E(x) – c – s  - xL ≥ 0 (A.6) 

 

We suppose Assumption 3 holds.   

 Seller expected profit with n = 1 is given by  

 

 1 = 
xa

xL
dx)x(f)x(p + 

xH

xa
dx)x(af -  xL – s  

                =  (1-)[E(x|x<xa)+(1-)xL] + a - xL – s. (A.7) 

 

At a = a1,  

 

 1 =E(x) – c – s  - xL  ≥ 0 (A.8) 

 

by the potentially valuable transaction assumption.    

 All of this together means that with weak bargaining power, potentially valuable search, and 

potentially valuable transactions, the seller has an incentive to use asking price to direct search.   Setting an 

asking price at a1 < xH and attracting one visitor gives positive profit and so dominates setting a = xH.   

 Now, suppose that there are  n ≥ 2 visitors.  In this case, further notation is required.  Let x(i) denote 

the ith order statistic of a sample of n draws from this distribution, with x(1) denoting the largest value.  Let 

h(x(1), x(2),…,x(n)) and  H(x(1), x(2),…,x(n)) denote the associated joint pdf and cdf of the order statistics.  Let 

h(i)(x(i)) and H(i)(x(i)) denote the pdf of the ith order statistic, while h(ij)(x(i), x(j)) and H(ij)(x(i), x(j)) denote the 

joint pdf and cdf of the ith and jth order statistics, with i < j.  We will make most use of h(12)(x(1), x(2)) and 



A-3 

 

H(12)(x(1), x(2)), the joint pdf and cdf of the first and second order statistics.    

  With n ≥ 2, there are now three possibilities for transaction type:  acceptance, traditional, and now 

bidding war.  In this case, in the absence of an asking price, with highest and second highest valuations 

given by x(1) and x(2), negotiation produces a sales price of  

 

 p =  x(1) + (1-)x(2).  (A.9) 

 

Suppose that p ≤ a.   In this case, asking price is irrelevant.   When asking price is high relative to the sales 

price that would have emerged from negotiation, then asking price plays no role in the transaction.   This is 

the traditional case.    Suppose instead that p ≥ a.  In this case, it is possible but not certain that asking price 

matters.  If x(2) < a, only the highest valuation buyer with match value equal to x(1) is willing to pay the 

asking price.  This is the acceptance case, with sales price equal to asking price.   If instead x(2) ≥  a, there 

are two or more buyers willing to buy the house at the asking price.  In this case, there will be a bidding 

war and sales price will equal p.    

 The three types of transaction are  illustrated in Figures A2.  Panel (a) shows how transaction type 

depends on x(2) for fixed a and x(1).  In this panel, we show only the case where a > x(1), since a < x(1)  removes 

the possibility of a bidding war.  In the panel, if x(2) is small, less than  

 

 x(2),a =(1/(1-))(a-x(1)),   (A.10) 

 

then the transaction takes the traditional form.  For intermediate values of x(2), between x(2),a and a,  the 

transaction involves acceptance.  For high values, x(2) > a, the transaction takes the form of a bidding war.  

Panel (b) shows how transaction type depends on asking price for given realizations of x(1) and x(2).  A low 

asking price leads to a bidding war, while a high asking price, greater than a = x(1) + (1-)x(2) produces a 

traditional sale.  An intermediate asking price, between x(2) and a, gives acceptance. 

 Transaction type thus depends on asking price and the realization of the highest and second-highest 

valuations as depicted in Figure A3.  The probabilities of the three cases depend on the distribution of the 

order statistics.  A traditional sale occurs when (x(1),x(2))   = {(x(1),x(2))|  x(1) + (1-)x(2) ≤ a}.   An 

acceptance occurs when (x(1),x(2))   = {(x(1),x(2))| x(2) ≤ a and  x(1) + (1-)x(2) ≥ a}.  A bidding war occurs 

when (x(1),x(2))   = {(x(1),x(2))| x(2)≥a}.  The probabilities of these are, respectively, = ∫∫h(12)(x(1), 

x(2))dx(1)dx(2), = ∫∫h(12)(x(1), x(2))dx(1)dx(2), and = ∫∫h(12)(x(1), x(2))dx(1)dx(2) = ∫a
xHh(2)(x(2))dx(2), where h(2)(-

) is the marginal pdf of the second order statistic.   

 Even when x has a convenient distribution such as the uniform, order statistics are  intractable for 
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general n, but they do allow computation of numerical solutions.   In the case of a uniform x, the order 

statistics are from the family of beta distributions.  For n ≥ 2, the first order statistic x(1) – the highest value 

in our notation -- has the pdf 

 

 h(1)(x(1)) = n [(x(1)-xL)/(xH-xL)]n-1[1/(xH-xL)],  (A.11) 

 

while the second order statistic has pdf 

 

 h(2)(x(2)) = n(n-1) [(x(2)-xL)/(xH-xL)]n-2[(xH-x(2))/(xH-xL)][1/(xH-xL)]. (A.12) 

 

The joint pdf of the first and second order statistics is 

 

 h(12)(x(1), x(2)) = n(n-1) [(x(2)-xL)/(xH-xL)]n-2[1/(xH-xL)]2 (A.13) 

 

These can be used to generate probabilities and expected payoffs for numerical computation. 

 Despite the intractability, one can show that the key results from the discrete case continue to hold.  

The existence of three types of housing sale (Proposition 1) has already been established.  It has also been 

established that the seller will use asking price to direct search at least by setting it below xH and 

encouraging one visitor.  We now consider the possibility of having more than one visitor. 

 Beginning with one visitor, there are two possible cases, acceptance and traditional.   These two 

cases can be seen in Panel (a) of  Figure 1 or along the horizontal axis in Figure 3.  Adding another visitor 

moves us to a two dimensional case, as in the entirety of Figure 3.  The effect on expected utility depends 

on the specific realizations of x for the two visitors.  Suppose that x2 < x1.  Suppose that x1 is large but x2 is 

small as in region z1.  In this case, the payoff to the highest-value visitor does not depend at all on the 

additional low-value visitor.  In every other case, the payoff to the highest-value visitor falls.  In region z2 

(high x1 and x2), there is now a bidding war, which by construction gives lower payoff.  In region z3 

(moderate x1 and x2), there is also a bidding war, which is worse for visitor-1 than in the absence of the 

second visit.  In region z4 (moderate x1 and somewhat lower x2), the high-value visitor now accepts when 

he/she would not have in the absence of the other visitor.  In regions z5 and z6, the high-value visitor is 

worse off since the presence of the second visitor results in a higher price under the traditional regime.  In 

sum, adding a visitor reduces utility even if the second visitor has lower valuation.  And adding a visitor 

also introduces the ex ante possibility that one is not the highest type, further reducing utility.  This means 

that at a1, where expected utility is exactly equal to zero with one visitor, expected utility is strictly negative 

with two visitors.  This means that an asking price low enough to induce two visitors to search, a2,  if it 
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exists must be lower than a1.A similar argument can be used to show that an+1, if it exists, is lower than an.  

This gives something resembling the monotonic search-directing relationship between asking price and 

search that we obtained in the discrete model. 

 There is an important difference in this continuous model.  In the discrete model, a very low asking 

price made search attractive  even with multiple searchers, since it is possible that one visitor draws xH and 

the rest draw xL.  In the continuous model, this is not the case.  Setting a = xL induces only one visitor.  If, 

in contrast, n =2, there is a bidding war for sure, which means that the expected utility of the second search 

is negative.  By continuity, there exists an asking price a2 such that when asking price equals a2, the 

expected utility of the second search is exactly zero.  Similarly, for a3, and so on.  This means that the 

demand relationship in the continuous model is non-monotonic, a consequence of the possibility of bidding 

wars.  Beyond a critical level of asking price, reductions no longer encourage visits.  A similar result 

obtained in the discrete model, with the difference being that the critical level is in the interior of [xL, xH] 

in the continuous model.   
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Figure A1.  Acceptance and traditional cases with n=1 

 Panel (a):  As a function of valuation. 

 

 

 

 

 

 

 Panel (b):  As  a function of asking price. 

 

 

 

 

 

 

Note:  This figure shows how asking price and valuation interact to determine transaction type when there 

is one visitor.   Taking asking price as given, panel (a) maps values of x into the two possible sales cases, 

traditional below list sale and acceptance of the asking price.  Taking x as given, panel (b) maps values of 

asking price into the same two possible sales cases. 

 

 

xH xL xa   a 

acceptance traditional 

xH xL  x   a 

acceptance traditional 

x 

a 
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Figure A2.  Transaction type with n=2. 

 

 Panel (a):  As a function of second highest valuation, x(2), when x(1) > a.   

 

 

 

 

 

 Panel (b):  As a function of asking price, a. 

 

 

 

 

 

 

Note:  This figure shows how asking price and valuation interact to determine transaction type with more 

than one visitor.   Taking asking price and x(1) as given, panel (a) maps values of x(2) into the three 

possible sales cases, traditional below list sale, acceptance of the asking price, and above list bidding war.  

It considers the case where x(1) > a, since otherwise a bidding war is not possible.  Taking x(1) and x(2) as 

given, panel (b) maps values of asking price into the same three possible sales cases.   

 

 

xH xL x(1)   a 

acceptance bidding war 

x(2) 
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xH xL x(1)   a 
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traditional 
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Figure A3.  Acceptance, bidding war, and traditional cases with n=2 as they relate to x(1) and x(2).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:  For the continuous model, the figure maps values of x(1) and x(2) into the three possible cases.  
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Figure A4.  The effect of adding another visitor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:  For the continuous model, the figure maps values of x(1) and x(2) into the three possible cases.   
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Online Appendix B.  Simulations  

 

 This Appendix presents some numerical simulations that illuminate some of the key features of the 

paper’s model of asking price. Table B-1 presents the demand schedule for various conceptions of boom 

and bust. The first column gives a base case example. In it, we normalize xL = 0 and xH = 1.  The other 

parameter values are  = 0.1 and c = 0.03.  The last column gives a boom case example, where xH and  are 

increased by 10% to 1.10 and 0.11, while c is reduced by 10% to 0.027. The other columns present results 

for the base case parameters with only one other variable changed to its boom level.  The results for xH and 

c are straightforward.  The asking price schedule shifts up and the maximum search increases.  The 10% 

increase in  from a small level shifts the demand schedule up for low n. When n becomes higher, the 

demand schedule shifts down. This is because of the increased likelihood of the bidding war case. The table 

also illustrates the boundedness of demand;  the possibility of a bidding war caps the number of visitors 

who can be attracted.      

 Table B-2 presents a parallel analysis for house atypicality. The first column repeats the base case 

analysis above. As noted in the text, one way to conceive of atypical houses is that they are less likely to 

be well-matched to visitors. The second column of Table B-2 presents this case, with  = 0.9.  The 

simulations show that the demand schedule shifts down. The third column presents results for an alternate 

conception of atypicality, one where a smaller probability of a good match,  = 0.9, and a larger value of 

the good match such that xH remains constant. In the simulations reported in Table B-2, the demand 

schedule shifts up. 

 Finally, Table B-3 present results that relate to the sensitivity of demand to changes in  asking 

price on search in busts and for atypical houses. The table reports the reduction in asking price required to 

encourage one additional visit for various levels of visits.  The first column reports the base case values. 

The second reports the values for a bust or atypical house, where   = 0.09, and nothing else changes. The 

third reports the alternative atypicality approach, where  = 0.09 and xH remains constant. Comparing the 

first and second columns shows that visits to atypical houses are more sensitive to asking price for high 

asking prices, but the relationship is reversed for high asking prices.  The relationship is ambiguous, as 

noted in the text.  Comparing the second and third columns, one sees that sensitivity is the same between 

the two conceptions of inequality for any level of visits other than n = 1 and n =13.  This is a consequence 

of the functional form of an in (IV.9) in the text.   
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Table B-1.  Booms and Demand 

n base delta+10% delta+20% xH+10% c-10% all + 10% 

1 0.700 0.727 0.750 0.800 0.730 0.855 

2 0.667 0.694 0.716 0.767 0.700 0.824 

3 0.630 0.656 0.677 0.730 0.667 0.790 

4 0.588 0.613 0.633 0.688 0.630 0.752 

5 0.543 0.565 0.583 0.643 0.588 0.709 

6 0.492 0.512 0.526 0.592 0.543 0.660 

7 0.435 0.451 0.462 0.535 0.492 0.606 

8 0.373 0.383 0.388 0.473 0.435 0.545 

9 0.303 0.307 0.305 0.403 0.373 0.476 

10 0.226 0.222 0.210 0.326 0.303 0.399 

11 0.140 0.125 0.102 0.240 0.226 0.313 

12 0.044 0.017 - 0.144 0.140 0.216 

13 - - - 0.038 0.044 0.106 

 

Note: This table presents the demand schedule (i.e., asking price for a given number of visitors) for 

various parameter values. In the base case, we normalize xL= 0; xH = 1; δ = 0.1 and c = 0.03. In the boom 

case, we set xL= 0; xH = 1.1; δ = 0.11 and c = 0.027. In other cases, we present the results for the base case 

parameters with only one parameter changed to its boom level. Cells with “-“ indicate that there is no 

asking price that would encourage the corresponding level of visits. 

 

Table B-2 Atypicality and Demand 

n base delta-10% 

delta-10%; 

xH+10% 

1 0.700 0.667 0.778 

2 0.667 0.634 0.745 

3 0.630 0.597 0.709 

4 0.588 0.558 0.669 

5 0.543 0.514 0.625 

6 0.492 0.466 0.577 

7 0.435 0.413 0.524 

8 0.373 0.355 0.466 

9 0.303 0.291 0.402 

10 0.226 0.221 0.332 

11 0.140 0.144 0.255 

12 0.044 0.059 0.170 

13 - - 0.077 

 

Note: This table presents the demand schedule (i.e., asking price for a given number of visitors) for 

various parameter values. In the base case, we normalize xL= 0; xH = 1; δ = 0.1 and c = 0.03. For 

Atypicality, we reduce the probability of a good match to δ = 0.09 in the second column and reduce δ = 

0.09 while keeping δxH constant in the third column. Cells with “-“ indicate that there is no asking price 

that would encourage the corresponding level of visits. 
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Table B-3. Busts, Atypicality, and the Sensitivity of Demand 

 

n base delta-10% 

delta-10%; 

xH+10% 

1 0.500 0.333 0.222 

2 0.056 0.033 0.033 

3 0.062 0.036 0.036 

4 0.069 0.040 0.040 

5 0.076 0.044 0.044 

6 0.085 0.048 0.048 

7 0.094 0.053 0.053 

8 0.105 0.058 0.058 

9 0.116 0.064 0.064 

10 0.129 0.070 0.070 

11 0.143 0.077 0.077 

12 0.159 0.085 0.085 

13 - - 0.093 

 

 

Note: This table presents the sensitivity demand schedule (i.e., the amount that asking price must be 

reduced to obtain the nth visitor) for various parameter values. In the base case, we normalize xL= 0; xH = 

1; δ = 0.1 and c = 0.03.  The second column reports results for a reduction in the probability of a good 

match to δ = 0.09.  The third column reports results for the alternate atypicality calculation where we 

reduce δ = 0.09 while keeping δxH  constant.  For the first row, the reduction is relative to an asking price 

equal to 1. For the others, the reduction equals a(n+1) – a(n).   
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Online Appendix C.  Additional Estimates  

 

 This Appendix presents additional estimates that serve to establish the robustness of the paper’s 

key results. Table C-1 presents results employing an alternate characterization of the boom/bust state of the 

housing market. Specifically, instead of employing a bust dummy as in the preferred models – an approach 

that fits the sample market well – the percent changes in median market price and sales are employed as 

controls. The interacted coefficients are positive and significant, meaning that a decrease in asking price 

has a smaller effect in a boom. The table thus shows clearly that the paper’s result on the stronger directing 

role of asking price in a bust continues to hold.   
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Table C-1: Bidder Response to Asking Price: Market Changes and Atypicality 

 

 
Dependent Ln(Number of Bidders) 

Variable (1) (4) (5) (6) 

 
Ln(Ask Price) -0.14 

(-4.03) 

-0.25 

(-2.87) 

-0.12 

(-2.95) 

-0.22 

(-3.49) 

Ln(Ask Price)*Atypicality  -0.01 

(-1.97) 

-0.02 

(-3.02) 

-0.01 

(-2.08) 

-0.02 

(-4.65) 

Ln(Ask Price)* Changes in Market Price (%) 0.93 

(1.72) 

0.92 

(4.23) 

  

Ln(Ask Price)*Changes in Sales (%)   0.25 

(2.40) 

0.24 

(1.75) 

Period Yes No Yes Yes 

District Yes Yes Yes Yes 

House Attributes No Yes No Yes 

Property Tax Assessment  No No No No 

Obs. 2891 2891 2891 2891 

 
Ln(Ask Price) -0.36 

(-4.18) 

-0.40 

(-13.47) 

-0.33 

(-4.26) 

-0.38 

(-2.72) 

Ln(Ask Price)*Atypicality -0.01 

(-1.69) 

-0.02 

(-4.67) 

-0.01 

(-2.35) 

-0.02 

(-2.05) 

Ln(Ask Price)* Changes in Market Price (%) 0.80 

(1.60) 

0.80 

(3.26) 

  

Ln(Ask Price)* Changes in Sales (%)   0.21 

(1.64) 

0.21 

(4.08) 

Period Yes Yes Yes Yes 

district Yes Yes Yes Yes 

House Attributes No Yes No Yes 

Property Tax Assessment Yes Yes Yes Yes 

Obs. 2667 2667 2667 2667 

 
Note: This table reports estimates from the log-linear regressions of the number of bidders on the asking 

price, with a variety of controls. Standard errors are bootstrapped. T-statistics are reported in brackets. 

The number of bidders is reported by buyers, and other variables are reported by the MLS. The atypicality 

index is constructed to measure the degree of unusual features of a property based on Haurin (1988).  The 

top panel excludes tax values and tax year dummies, while the bottom panel includes them. 

 


