Fluctuating Attention to News and Financial Contagion: Theory and Evidence *

Michael Hasler† Chayawat Ornthanalai‡

Abstract

Financial contagion occurs when return and volatility transmit between fundamentally unrelated sectors. We develop an equilibrium model showing that contagion arises because investors pay fluctuating attention to news. As a negative shock hits one sector, investors pay more attention to it. This raises the volatility of equilibrium discount rates resulting in simultaneous spikes in cross-sector correlations and volatilities. We test the economic mechanism of our model on large U.S. industries by decomposing their returns into discount-rate and cash-flow components. Consistent with the model’s predictions, we find that fluctuating attention generates return and volatility spillovers between the discount-rate components of industry returns.

Keywords: Learning, Attention to News, Contagion, Return and Volatility Spillovers

†University of Toronto, 105 St. George Street, Toronto, ON, M5S 3E6, e-mail: Michael.Hasler@rotman.utoronto.ca, webpage: www.rotman.utoronto.ca/Faculty/Hasler.aspx.

‡University of Toronto, 105 St. George Street, Toronto, ON, M5S 3E6, e-mail: chay.ornthanalai@rotman.utoronto.ca, webpage: www.rotman.utoronto.ca/Faculty/Ornthanalai.aspx.

*We would like to thank Daniel Andrei, Tony Berrada, Harjoat Bhamra, Pierre Collin-Dufresne, Julien Cujean, Giuliano Curatola, Jerome Detemple, Bernard Dumas, Michal Dzielinski, Rüdiger Fahlenbrach, Damir Filipovic, Hoang Ngoc Giang, Harrison Hong, Julien Hugonnier, Alexandre Jeanneret, Jan Kulak, John Leahy (BER Behavioral/Macro discussant), Kai Li (CICF discussant), Semyon Malamud, Loriano Mancini, Erwan Morellec, Rémy Praz, Michael Rockinger, Michael Weber (EFA discussant), Wei Xiong, Qunzi Zhang, and conference/seminar participants at Boston University, CICF 2015, EFA 2015, EPFL Workshop in Lausanne, HEC Paris, HEC Montreal/McGill Winter Finance Conference 2015, INSEAD, McGill, NBER Behavioral/Macro 2015, NCCR workshop in Gerzensee, Ohio State University, University of Geneva, University of Maryland, University of North Carolina, University of Rochester, University of Toronto, and the University of Zürich for their comments. Financial support from the Swiss Finance Institute, NCCR FINRISK of the Swiss National Science Foundation, the Social Sciences and Humanities Research Council (SSHRC) of Canada is gratefully acknowledged.
1 Introduction

Contagion in financial markets has been extensively documented in the empirical literature (e.g., Hamao, Masulis, and Ng, 1990; Lin, Engle, and Ito, 1994). Indeed, there is ample evidence of return and volatility spillovers between two fundamentally unrelated securities. Such phenomena have become increasingly important in light of the recent subprime and sovereign debt crises. This is because simultaneous spikes in return volatilities and cross-return correlations significantly alter risk management strategies, optimal portfolio choices, and the trading of derivatives.

In this paper, we provide theoretical and empirical evidence that investors’ fluctuating attention to news is an important channel through which contagion arises in financial markets. We show that when investors’ attention to a particular sector increases, risk-adjusted discount rates become more volatile. As a result, return volatilities and cross-return correlations increase simultaneously in the entire market, despite the fact that cash-flows and news associated to each sector are independent from one another.

We consider a pure-exchange economy à la Lucas (1978) with two risky assets—sectors—that are claims to two exogenous and independent dividend streams. The economy is populated by a representative investor who needs to estimate both unobservable expected dividend growth rates (henceforth fundamentals). The investor has two different types of relevant information at hand: information provided by the observation of dividends, and information provided by the observation of news. The key innovation here is that the investor pays fluctuating attention to news, which is supported by recent empirical evidence in Sicherman, Loewenstein, Seppi, and Utkus (2015). In other words, there are periods when she is well focused and capable of processing many news sources, and periods when she is not. Motivated by the empirical findings of Andrei and Hasler (2015), investor’s attention to a given sector depends on the past performance of that sector’s dividend growth. Importantly, we emphasize that attention to one sector is independent from attention to the other because dividends are independent from each other.

The main prediction of our model is that fluctuating attention implies return and volatility spillover effects among fundamentally unrelated sectors. The intuition is as follows. As a negative shock hits one sector, more attention is paid to news on that sector. Since the content of news is used to estimate the economic fundamental, a rise in attention implies

\(^2\)See also Da, Engelberg, and Gao (2011) and Vlastakis and Markellos (2012).
a faster transmission of news, thereby increasing the volatility of that sector’s estimated fundamental. In equilibrium, a more volatile estimated fundamental endogenously generates more volatile equilibrium discount rates. This in turn implies increases in the volatility of the sector hit by the shock, the volatility of the sector that is unrelated to it, and the cross-sector return correlation. The key mechanism of how shocks propagate from one sector to another is therefore through attention and discount rates.

The model reduces to a simple two-tree model with learning when the fluctuating attention feature is shut down. In this case, dividend shares are the main drivers of return volatilities and cross-return correlation. Since an increase in the dividend share of one sector mechanically decreases that of the other, return volatilities move in opposite directions and a simultaneous increase in return volatilities and cross-return correlation is inconceivable. Therefore, fluctuating investor’s attention to news offers an explanation for the observed return and volatility spillover effects between unrelated sectors in financial markets.

We put our model to the test by examining contagion between sixteen large U.S. industries from 1985 through 2014. In our model, contagion between sectors with unrelated dividend streams (i.e., cash flows) arises due to shocks to the equilibrium discount rates. We therefore decompose quarterly industry expected returns into two components reflecting the change in future discount rates (discount-rate return) and the change in future dividends (cash-flow return). Following Campbell (1991) and Campbell and Ammer (1993) among others, we estimate a vector autoregression (VAR) from a large panel of industries and apply the return-decomposition. We then focus our empirical analysis on financial contagion between the discount-rate component of industry returns. This helps mitigate the impact of shocks to fundamentals (i.e., cash-flow news) that may cause returns and the volatilities of different industries to move in the same direction. Although we cannot rule out the effect of cash-flow news due to the potential correlation between discount-rate and cash-flow returns, our return-decomposition results show that this correlation is economically small and statistically insignificant. This finding is consistent with Vuolteenaho (2002) and Campbell and Vuolteenaho (2004) who find statistically insignificant correlation between discount-rate and cash-flow returns for large stocks and the market index.

We build a measure of quarterly change in investor attention to each industry based on the trading volume, the number of institutional owners, the number of analyst followings, and the number of analysts’ forecast revisions. We choose these four variables because prior studies have associated them with changes in investor attention and their firm-level data
are available over a long time period. Each variable is first calculated at the firm level over each quarter and then value-weighted averaged across firms in the industry to yield the industry-level variable. The time series of these four variables are positively correlated and their values should collectively be increasing with investor attention. To make these four variables comparable in magnitude, we normalize them after correcting for their time-trend and seasonality effects. We then combine them into a single measure and remove its persistence using an autoregressive model. We refer to the resulting time series as the attention measure Φ_t, where its level represents an unexpected change in investor attention to the industry over each quarter.

We test the impact of fluctuating attention on time-varying volatilities and correlations of discount-rate returns between sixteen large industries. We use a panel-regression framework consisting of 120 cross sections each corresponding to a unique industry pair. We include various fixed effects and a host of control variables. Time-varying discount-rate volatilities and discount-rate-return correlations are calculated using two approaches. The first is an exponentially-weighted moving-average model, while the second approach simply uses their realized values, i.e., realized volatility and covariation. In both approaches, we find clear evidence supporting the model’s predictions.

The model predicts that fluctuating investor attention generates time-varying volatility co-movements (volatility spillover) and time-varying return correlations (return spillover) between two unrelated sectors through the discount-rate channel. We confirm these empirical predictions. Examining the co-movement in volatilities, we find that a positive shock in attention to one industry is followed by an increase in its discount-rate volatility and those of other industries. As for cross-sector return correlations, we find that discount-rate returns from two industries are more positively correlated when investor attention to each of the two industries, or both, increases.

This paper contributes to two strands of literature. The first is the asset pricing literature examining how contagion arises in financial markets. It is generally difficult to explain both return and volatility spillover effects in a unified general equilibrium framework. For instance, in Cochrane, Longstaff, and Santa-Clara (2008) market volatilities and cross-market correlations are driven by dividend shares. An increase in the dividend share of one market mechanically decreases that of another causing volatilities to move in opposite directions.

3Fisher, Martineau, and Sheng (2016) find that aggregate trading volume is highly correlated with media attention to macro-fundamentals. Boone and White (2015) show that firms owned by more institutional investors elicits more public information production. Womack (1996), among others, shows that analysts’ recommendations and earnings forecasts significantly influence investor attention to the firm. Jacob, Lys, and Neale (1999) argues that the frequency of forecast revisions proxies for an analyst’s effort in paying attention to the latest information on the firm that she covers.
Therefore, the model cannot generate simultaneous increases in market volatilities and cross-market correlations. We show that such simultaneous increases are observed when investors pay fluctuating attention to news.

Yuan (2005) shows that asymmetric information and financial constraints lead to contagion. In Pasquariello (2007), contagion is implied by asymmetric information and systemic risk. In these studies, contagion is defined as the correlation in excess of a benchmark model. Such definition differs slightly from ours in that we require return volatilities and cross-return correlations of fundamentally unrelated sectors to increase simultaneously. Using the same definition of contagion as ours, Kyle and Xiong (2001) show that contagion is implied by wealth effects. Our paper is complementary because it shows both theoretically and empirically that investors’ fluctuating attention to news is a key determinant of contagion in financial markets.

This paper also contributes to the growing literature examining how investor attention affects asset prices. Huberman and Regev (2001) provide evidence that new information can only influence prices if investors pay attention to it. More recently, Dellavigna and Pollet (2009) find the post-earnings announcement drift on stock returns is stronger subsequent to earnings announced on Friday relative to other weekdays, suggesting that inattention associated with Friday announcements delays information from being reflected in stock prices. Da, Engelberg, and Gao (2011) proxy investors’ attention using Google search frequencies on companies’ names and uncover that attention predicts short-term stock returns. Garcia (2013) finds that news recorded from the New York Times explain market returns better in recessions than in expansions, suggesting that investors’ attention to news concentrates in down markets. Andrei and Hasler (2015) find that stock-return volatility and risk premia increase with both investors’ attention and uncertainty. In a limited information processing capacity framework (Sims, 2003), Peng and Xiong (2006) show that investors optimally choose to gather market and industry-specific information and not firm-specific information.\(^4\) Our results add to this growing literature by showing the effect of fluctuating attention on the cross-section of returns and volatilities, generating a new and complementary contribution.

The remainder of the paper is organized as follows. Section 2 describes the model and derives the equilibrium variables. Section 3 exposes the model’s predictions. Section 4 discusses our empirical tests and results. Section 5 concludes. Derivations and computational considerations are provided in Appendix A.

\(^4\)In a similar framework, van Nieuwerburgh and Veldkamp (2010) show that limited information processing capacity leads to under-diversification, whereas Mondria and Quintana-Domeque (2013) show that high cashflow volatility in one market attracts investors’ attention and therefore implies a low asset price in the other market.
2 The Economy

In this section, we describe the economic environment as well as the learning and optimization problems faced by a representative investor who pays fluctuating attention to news. We then solve the learning and optimization problems and characterize the corresponding equilibrium asset prices.

We consider an infinite horizon economy populated by a representative investor who consumes the sum of two output streams (henceforth the dividends) with unobservable expected growth rates (henceforth the fundamentals). All quantities are expressed in units of a single perishable good with price equal to unity. The set of securities available for investment consists in one riskless asset in zero net supply and two risky assets (stocks) in positive supply of one unit. The riskless asset is locally deterministic and pays a riskless rate r to be determined in equilibrium. The two stocks are claims to the exogenous dividends δ_1 and δ_2 and have prices P_1 and P_2, respectively. Dividends dynamics are written as

$$\frac{d\delta_i}{\delta_i} = f_{it}dt + \sigma_{\delta}dW^{\delta}_{it}, \quad i \in \{1, 2\}$$

where $(W^{\delta}_1, W^{\delta}_2)^\top$ is a standard Brownian motion.

Although the investor does not observe fundamentals f_1 and f_2, she knows that these processes follow

$$df_{it} = \lambda(\bar{f} - f_{it})dt + \sigma_f dW^f_{it}, \quad i \in \{1, 2\}$$

where $(W^f_1, W^f_2)^\top$ is a standard Brownian motion. Hence fundamentals mean-revert to their long-term means \bar{f} at speed λ.

The investor has four pieces of information available to estimate the value of the fundamentals. The first two pieces consist in the dividend growth rates $\frac{df_1}{\delta_1}$ and $\frac{df_2}{\delta_2}$. Because fundamentals drive dividends, observing dividend growth rates provides valuable information about the level of fundamentals.

The remaining two pieces of information are signals denoted by s_1 and s_2. Their dynamics are

$$ds_{it} = \Phi_{it}dW^f_{it} + \sqrt{1 - \Phi^2_{it}}dW^s_{it}, \quad i \in \{1, 2\}$$

where $\Phi_1, \Phi_2 \in (0, 1)$ represent the fluctuating accuracies of the signals. Since the 6-dimensional vector $(W^{\delta}_1, W^{\delta}_2, W^f_1, W^f_2, W^s_1, W^s_2)^\top$ is a standard Brownian motion, markets are perfectly symmetric and fundamentally unrelated. This assumption allows us to precisely
determine the mechanism leading to contagion.

The dynamics of the information signals in Equation (3) are motivated as follows. Assume the investor collects $m_{it}, \ i \in \{1, 2\}$ signals $s_{it}^j, \ j = 1, \ldots, m_{it}$ at time t. s_{it}^j is the j-th noisy signal providing information on fundamental i. These publicly available sources of information represent, for instance, CNN Money, Financial Times, Bloomberg, Wall Street Journal, etc. For simplicity, let us assume that the accuracies of these individual signals are the same. That is, $ds_{it}^j = adW_{it}^f + \sqrt{1 - a^2}dW_{it}^s$, where $0 < a < 1$ is the accuracy of the individual signals and all Brownian motions are uncorrelated. By aggregating, the investor can summarize these m_i sources of information into two signals s_i whose dynamics are

$$ds_{it} = \Phi_{it}dW_{it}^f + \sqrt{1 - \Phi_{it}^2}dW_{it}^s,$$

(4)

where $\Phi_{it} = a \sqrt{\frac{1}{m_{it}(1 + (m_{it} - 1)a^2)}}$. Comparing (3) and (4) shows that both specifications are equivalent. That is, the investor can change the accuracy of information Φ_i by choosing the number of signals m_i she acquires. When the investor is very attentive to news, the number of individual signals collected is large and leads to high accuracy. When the investor is inattentive to news, the number of signals acquired is small and leads to low accuracy. For this reason, we call Φ_i the attention to news associated to stock i.

Our specification for the information signal in (3) follows that in Scheinkman and Xiong (2003), Dumas, Kurshev, and Uppal (2009), and Xiong and Yan (2010). It shows that signals, s_1 and s_2, provide information on the unexpected shocks driving fundamentals and not on their levels, as in Detemple and Kihlstrom (1987) and Veronesi (2000) among others. Although we adopt the former specification, our results also hold under the alternative.

2.1 Definition of Fluctuating Attention

Following Andrei and Hasler (2015), attention to stock i is observable because defined as follows:

$$\Phi_{it} = \frac{\Psi}{\Psi + (1 - \Psi)e^{\Lambda \pi_{it}}}, \ i \in \{1, 2\}$$

(5)

$$\pi_{it} = \int_0^t e^{-\omega(t-u)} \left(\frac{d\delta_{iu}}{\delta_{iu}} - \hat{f}_{iu}du \right),$$

(6)

where $\Psi > 0, \ \omega > 0, \ \Psi > 0$, and $\Lambda \in \mathbb{R}$.

The parameter Ψ is the long-run level of attention paid to each stock. Attention paid to stock i depends on the process π_i, which measures the performance of dividend i’s past
growth relative to the investor’s estimate of the fundamental, \hat{f}_i. For this reason, we refer to π_i as dividend i’s performance index. In order to map the level of the performance index, $\pi_i \in \mathbb{R}$, to the level of attention, $\Phi_i \in (0, 1)$, we use the logistic transformation described in (5).

The coefficient Λ indicates how the level of attention Φ_i changes in relation to the dividend performance index π_i. If Λ is positive, a positive shock to π_i, i.e., a positive dividend growth surprise, decreases the level of attention. That is, attention decreases when the investor underestimates the dividend growth rate (when $\hat{f}_i < d\delta_i/\delta_i$). If Λ is negative, a positive shock to π_i increases Φ_i, implying that attention increases when the investor underestimates the growth rate. The magnitude of Λ determines the range of attention. If Λ is large, attention effectively belongs to the entire interval $(0, 1)$. If instead Λ is relatively small, the range of attention is narrow. If Λ is zero, attention is constant and equal to the long-run level Ψ.

The parameter ω in (6) controls the importance of past dividend growth surprises relative to the current dividend growth surprise. If ω is small, past dividend surprises matter in the determination of the current performance index. If instead ω is large, past realizations of dividend surprises do not significantly alter the value of the performance index. Applying Itô’s lemma to (6) yields the following dynamics for the performance indices

$$d\pi_{it} = -\omega\pi_{it}dt + \sigma_\delta dW_{it}, \quad i \in \{1, 2\}, \quad (7)$$

where $dW_{it} = \frac{1}{\sigma_\delta} \left(\frac{d\delta_i}{\delta_i} - \hat{f}_idt \right)$ is dividend i’s scaled surprise at time t. The dynamics of the performance indices in (7) show that π_i reverts to 0 at speed ω.

Evidence of how attention fluctuates in relation to the dividend performance index is provided in Andrei and Hasler (2015). In their study, the parameters driving the attention dynamics are estimated using U.S. GDP data from 1969 to 2012. Table 1 reports their parameters estimated using the Generalized Method of Moments. The parameter Λ is positive, suggesting that the investor is more attentive to news when the dividend performance index is low than when it is high. That is, attention is high when the investor tends to overestimate (when $\hat{f}_i > d\delta_i/\delta_i$) the dividend growth rate, and low when the investor tends to underestimate it (when $\hat{f}_i < d\delta_i/\delta_i$). Furthermore, the parameter Λ is large, which implies that the range of attention is wide.

Since (5) and (6) provide a one-to-one mapping between attention and dividend performance indices, attention is observable and therefore the vector of state variables is condi-

5The dividend performance index is inspired by Koijen, Rodriguez, and Sbuelz (2009) who assume that expected stock returns depend on the past performance of realized returns.

6The investor’s estimate of the fundamental, \hat{f}_i, will be described in details in Section 2.2.
tionally Gaussian. This implies that standard Bayesian filtering techniques can be applied to our model, a task that we undertake in the next section.

2.2 Filtered State Variables

The investor learns about the fundamental f_i, $i \in \{1, 2\}$ by observing two different sources of information: the dividend δ_i and the signal s_i. Proposition 1 describes the dynamics of the state variables inferred using these two sources of information.

Proposition 1. Following Liptser and Shiryaev (2001), the dynamics of the state variables inferred by the investor satisfy

\[
\frac{d\delta_{it}}{\delta_{it}} = \hat{f}_{it}dt + \sigma_\delta dW_{it}, \quad (8)
\]

\[
d\hat{f}_{it} = \lambda(\bar{f} - \hat{f}_{it})dt + \gamma_{it}dW_{it} + \sigma_f \Phi_{it}dW_{i+2,t}, \quad (9)
\]

\[
d\pi_{it} = -\omega \pi_{it}dt + \sigma_\delta dW_{it}, \quad (10)
\]

\[
d\gamma_{it} = \left(-\frac{\gamma_{it}^2}{\sigma_\delta^2} - 2\lambda \gamma_{it} + \sigma_f^2 (1 - \Phi_{it}^2)\right)dt, \quad i \in \{1, 2\}. \quad (11)
\]

The 4-dimensional innovation process W is a standard Brownian motion defined by

\[
dW_t \equiv \left(dW_{1t} \ dW_{2t} \ dW_{3t} \ dW_{4t}\right)^\top = \left(\frac{1}{\sigma_\delta} \left(\frac{d\delta_{1t}}{\delta_{1t}} - \hat{f}_{1t}dt\right) \ \frac{1}{\sigma_\delta} \left(\frac{d\delta_{2t}}{\delta_{2t}} - \hat{f}_{2t}dt\right) \ d\pi_{1t} \ d\pi_{2t}\right)^\top. \quad (12)
\]

The dynamics of the dividend process in (8) follow closely those in (1), but with the filtered fundamental \hat{f}_i replacing the true fundamental f_i. The dynamics of the filtered fundamentals, however, differ from those in (2). When the investor is able to learn about the fundamental by observing the dividend and the signal, the dynamics in (9) show that the volatility of the filtered fundamental is stochastic and driven by two components. The first, $\gamma_{it} \equiv \mathbb{E}\left((f_{it} - \hat{f}_{it})^2|O_t\right)$, is the uncertainty about the current value of the fundamental given the investor’s current observation filtration. The second is attention Φ_i.

From (9) and (12), we see that uncertainty loads on the dividend innovation while attention loads on the news signal innovation. As attention increases, the investor perceives the news source as more important relative to the dividend source. Conversely, reduced

\footnote{Note that the dividend performance index π_i, or equivalently the attention process Φ_i, does not provide more information than the dividend δ_i and is therefore not part of the filtering problem.}
attention pushes the investor to weight the information content of the dividend performance more than that of the news signal. This naturally implies that an increase (decrease) in attention weakens (strengthens) the correlation between dividends and fundamentals.

The dynamics in (11) show that attention also impacts the level of uncertainty. As attention increases, the investor gathers more accurate information. Therefore, the learning procedure becomes more efficient and uncertainty decreases. Conversely, as attention drops investors acquire less accurate information and uncertainty rises. For sufficiently high (low) attention level, the third component in (11) decreases (increase) enough to generate lower (higher) uncertainty. Interestingly, there is a lag between a change in attention and a change in uncertainty because uncertainty is locally deterministic. That is, high attention implies low future uncertainty, whereas low attention is followed by high uncertainty.

Table 1: Calibration.
This table reports the parameters determining the dynamics of dividends and fundamentals. The parameters are borrowed from Andrei and Hasler (2015) who calibrate a fluctuating attention model with a single dividend and fundamental to match several moments of the U.S. GDP growth rate and its corresponding forecast from 1969 to 2012. The last two parameters are the investor’s relative risk aversion \(\alpha \) and subjective discount rate \(\Delta \). Those are chosen and not estimated.

<table>
<thead>
<tr>
<th>(\sigma_\delta)</th>
<th>(\hat{f})</th>
<th>(\lambda)</th>
<th>(\sigma_f)</th>
<th>(\omega)</th>
<th>(\Lambda)</th>
<th>(\Psi)</th>
<th>(\alpha)</th>
<th>(\Delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4%</td>
<td>2.8%</td>
<td>0.42</td>
<td>2.9%</td>
<td>4.74</td>
<td>286</td>
<td>0.368</td>
<td>5</td>
<td>1%</td>
</tr>
</tbody>
</table>

Table 2: Initial state values.
This table reports the initial values of the state variables that we use to generate the model implications. Initial dividends are set to unity, i.e., \(\zeta_i \equiv \log \delta_i = 0 \). Therefore, \(Q \equiv \log (\delta_1/(\delta_1 + \delta_2)) = \log 0.5 \). The other variables are set to their long-term levels. Long-term levels of the fundamentals and the performance indices are derived in Appendix A.1. Long-term uncertainty, \(\gamma_{ss} \), is defined and derived in Appendix A.2.

<table>
<thead>
<tr>
<th>(\zeta_1)</th>
<th>(Q)</th>
<th>(\hat{f})</th>
<th>(\hat{f}_1 = \hat{f}_2)</th>
<th>(\pi_1 = \pi_2)</th>
<th>(\gamma_1 = \gamma_2)</th>
<th>(\gamma_{ss})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\log (0.5))</td>
<td>(\bar{f})</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.3 Equilibrium
The representative investor has CRRA utility over consumption. Since the investment horizon is assumed to be infinite, the investor maximizes her expected lifetime utility of con-
sumption subject to a budget constraint

\[
\sup_{C,h} \mathbb{E}_t \left(\int_t^\infty e^{-\Delta(s-t)} \frac{C_s^{1-\alpha}}{1-\alpha} ds \right)
\]

s.t \(dV_t = (r_t V_t + h_t \text{diag}(P_t) (\mu_t - r_t I_{2 \times 1}) - C_t) dt + h_t \text{diag}(P_t) D_t dW_t, \)

where \(C \) is consumption, \(V \) is wealth, \(\mu \) is the 2 \(\times \) 1 vector of expected stock returns, \(h \) is the 1 \(\times \) 2 vector of risky asset holdings, \(D \) is the 2 \(\times \) 4 matrix of stock return diffusion, \(\Delta \) is the subjective discount rate, and \(\alpha \) is the coefficient of relative risk aversion. The risk-free rate \(r \) and the 2 \(\times \) 1 vector of stock prices \(P \) are determined in equilibrium.

Solving the optimization problem and clearing markets yields the following state-price density

\[
\xi_t = e^{-\Delta t} \left(\frac{C_t}{C_0} \right)^{-\alpha} = e^{-\Delta t} \left(\frac{\delta_{1t} + \delta_{2t}}{\delta_{1o} + \delta_{2o}} \right)^{-\alpha}.
\] (13)

Equation (13) shows that the state-price density depends on dividend 1 and dividend 2. As either fundamental 1 or fundamental 2 increases, the expected value of discount factors decreases or, in other words, the expected discount rates increase. As will be explained further, the interactions between fundamentals and discount rates implied by fluctuating attention to news are key determinants of the contagion phenomenon.

Since the state-price density \(\xi \) prices future cash-flows, the price \(P_T^i \) of a security paying a single-dividend \(\delta_{iT} \) at time \(T \) is defined by

\[
P_T^i = e^{-\Delta(T-t)} \mathbb{E}_t \left(\left(\frac{\delta_{1T} + \delta_{2T}}{\delta_{1o} + \delta_{2o}} \right)^{-\alpha} \right).
\]

Proposition 2 characterizes the price of the single-dividend paying securities.

Proposition 2. At time \(t \), the prices \(P_T^{1t} \) and \(P_T^{2t} \) of the securities paying the single-dividends \(\delta_{1T} \) and \(\delta_{2T} \) at time \(T \) satisfy

\[
P_T^{1t} = e^{-\Delta(T-t)} \mathbb{E}_t \left(e^{(1-\alpha)\xi_{1T} + \alpha Q_T} \right)
\]

\[
P_T^{2t} = e^{-\Delta(T-t)} \mathbb{E}_t \left(e^{(1-\alpha)\xi_{1T} + (\alpha-1) Q_T} \right) - P_T^{1t},
\]

where \(\xi_i \equiv \log \delta_i \) is the log-dividend, and \(Q = \log \frac{\delta_1}{\delta_{1o} + \delta_{2o}} \) the log-dividend share.

Proof. See Appendix A.3.

The stock price \(P_{it}, i \in \{1, 2\} \) at current time \(t \) is defined as the sum of the single-dividend
paying securities P_{it}^T over maturities T

$$P_{it} = \int_t^\infty P_{it}^T dT. \quad (16)$$

Equations (14) and (15) show that the single-dividend paying securities are determined by moment-generating functions (henceforth transforms) of the vector $(\zeta, Q)^\top$. Computing these transforms is challenging, as the vector of state variables is not affine-quadratic. Appendix A.4 exposes a simple methodology that allows us to accurately approximate them.

3 Model Implications

In this section, we investigate the implications of fluctuating attention on the dynamics of return volatilities and cross-return correlation of two fundamentally unrelated stocks. We show that increased attention to one stock raises return volatilities on both stocks, as well as their cross-return correlation. That is, fluctuating attention implies return and volatility spillover effects among fundamentally unrelated stocks.

3.1 Volatility Spillovers

In order to understand the mechanism leading to contagion, let us first characterize the components of the stock-return diffusion. Since the innovation process (12) driving the filtered state variables consists of four components, applying Itô’s lemma to stock prices in (16) yields the following stock-return diffusion matrix D

$$D = \begin{pmatrix} D_{11} & D_{12} & D_{13} & D_{14} \\ D_{21} & D_{22} & D_{23} & D_{24} \end{pmatrix},$$

where D_{ij} is the j-th component of the return diffusion of stock i. The components of the diffusion matrix D are provided in Proposition 3 below.

Proposition 3. The diffusion components of stock i satisfy

$$D_{i1} = \frac{P_{i\hat{f}_1}}{P_i} \sigma_1 \gamma_1 + \sigma_\delta \left(1 + \frac{P_{i\pi_1}}{P_i} + \frac{P_i Q}{P_i} (1 - e^{Q})\right), \quad D_{i2} = \frac{P_{i\hat{f}_2}}{P_i} \sigma_2 \gamma_2 + \sigma_\delta \left(\frac{P_{i\pi_2}}{P_i} + \frac{P_i Q}{P_i} (e^{Q} - 1)\right),$$

$$D_{i3} = \frac{P_{i\hat{f}_1}}{P_i} \sigma_f \Phi_1, \quad D_{i4} = \frac{P_{i\hat{f}_2}}{P_i} \sigma_f \Phi_2,$$

where P_{iy} stands for the derivative of stock i with respect to the state variable y.

For brevity, we drop the time t notation when writing the stock price P_i and its partial derivative P_{iy} with respect to state y. Nevertheless, we note that all notations regarding the stock price should be referenced against the current time t.

Definition 1. The return variance of stock i, σ_i^2, satisfies

$$\sigma_i^2 = \sum_{j=1}^{4} D_{ij}^2,$$

where the component of the stock-return diffusion D_{ij} is provided in Proposition 3.

Proposition 3 and Definition 1 show that a change in attention to stock 1 impacts the return volatility of both stock 1 and stock 2 through the stock-return diffusion component D_{i3}. The significance of the impact is determined by the sensitivity of stock prices P_1 and P_2 to a shock in the filtered fundamental \hat{f}_1. The properties of the sensitivity, $P_i \hat{f}_1$, are discussed below.

A positive shock in the filtered fundamental \hat{f}_1 has two opposite effects on stock 1. First, dividend δ_1 is expected to increase. This is the *direct channel*. Second, discount rates rise (see Equation (13)), which represent the *indirect channel*. The direct channel pushes stock price P_1 up, while the indirect channel pushes stock price P_1 down. As explained in Veronesi (2000), the discounting effect is stronger than the dividend effect as long as risk aversion is sufficiently large. An increase in expected future consumption increases current consumption because the investor smooths consumption over time. Hence savings (investments) decrease, as do the demands for stock 1, stock 2, and the riskless asset i.e. stock prices decline and the risk-free rate rises. The decline in stock price P_2, however, can be more pronounced than the decline in stock price P_1 because stock 2 is only impacted by the discounting effect.

Note that if the representative agent had either a risk aversion smaller than one or recursive utility (Epstein and Zin, 1989) with an elasticity of intertemporal substitution larger than one, then stock 1 would be more sensitive to a change in fundamental 1 than stock 2.

In order to see the effect of attention on volatilities visually, Figure 1 plots the relationship between attention to stock 1 and return volatilities of both stocks. The model parameters and the initial values of the state variables that we use are reported in Tables 1 and 2, respectively.

Panels A and B of Figure 1 plot the impact of increasing attention on volatilities of stock 1 and stock 2, holding all other variables constant. We see that an increase in attention to stock 1 increases both return volatilities. That is, fluctuating attention implies volatility spillover effects. The volatility of stock 2 increases more than that of stock 1 because stock 2 is influenced by the indirect discounting channel only. Regarding stock 1, the direct channel
of dividend δ_1 dampens the indirect discounting channel and therefore implies a weaker increase in its volatility. Symmetrically, the volatility of stock 1 increases more than that of stock 2 as attention to stock 2 increases.

The joint effect of increasing attention paid to each stock 1 and stock 2, are illustrated in Panels C and D of Figure 1. The results show that an increase in attention to any stock, i.e., either Φ_1 and Φ_2, will increase both stock-return volatilities. Importantly, increasing
attention to both stock 1 and stock 2 appear to work together by pushing stock-return volatilities higher. In other words, when total attention, i.e., $\Phi_1 + \Phi_2$, paid to the stocks increases, the volatility spillover effects become most evident. Overall, Figure 1 shows that an increase in attention to any stock leads to contagion in the form of increased stock-return volatilities in the entire market. However, the effect is largest when the total attention paid to the whole market increases.

While Figure 1 describes the static relationship between attention and volatilities, we next examine how stock-return volatilities change relative to attention in a dynamic setting. Such analysis is useful for understanding the economic relevance of fluctuating attention on volatilities under the presence of noises generated by other state variables. We simulate the model at the monthly frequency for 20 years, using the parameters and initial variables reported in Tables 1 and 2. Figure 2 depicts the dependence of stock-return volatilities on aggregate attention paid to stocks 1 and 2. Consistent with our previous results showing that stock-return volatilities increase with attention to stocks 1 and 2 separately, there is a strong positive relationship between the volatilities of both stocks and the aggregate attention. This shows that the dynamics of the other state variables have very little influence on the dynamics of stock-return volatilities, and consequently that aggregate attention is the main
driver of return volatilities.

To compare the dynamics of volatilities in a fluctuating attention model to those in an otherwise equivalent constant attention model, we depict in Figure 3 a 20-year simulation of volatilities in both models. To obtain the constant attention model, we turn off the fluctuating attention feature by setting $\Lambda = 0$ in Equation (5). Figure 3 shows that the volatility dynamics significantly differ between the fluctuating and constant attention models. In the fluctuating attention model (Panel A), volatilities swing rapidly from month-to-month and simultaneous spikes in volatilities of stock 1 and stock 2 are often observed. On the other hand, results from the constant attention model (Panel B) show that volatilities of the two stocks move smoothly and, on average, in opposite directions. In order to quantify the average correlation between volatilities of stocks 1 and 2, we repeat this simulation study 10,000 times. We find that the volatility of volatility in the fluctuating attention model is about 1.8% for both stocks, while the correlation between the volatilities of stock 1 and stock 2 is around 0.65. In the constant attention model, however, volatility of volatility falls to 0.4%, while the correlation between volatilities of stock 1 and stock 2 is -0.35.

The economic intuition for the significantly different dynamics of volatilities obtained in the fluctuating and constant attention models is as follows. When attention is constant, volatilities are principally driven by dividend shares (Cochrane, Longstaff, and Santa-Clara, 2008). As the dividend share of stock 1 increases, the dividend share of stock 2 mechanically decreases. As a result, volatilities move in opposite directions. On the other hand, in our fluctuating attention model, variations in dividend shares are outweighed by variations in aggregate attention and therefore have little influence on volatilities (see Figure 2). This implies an amplification of the fluctuations in stock-return volatilities and a positive co-movement between them. To summarize, a standard model with learning (e.g. the constant attention model) does not help understand the dynamics of stock-return volatilities in the cross-section. However, a model in which the investor learns by paying fluctuating attention to news does. In this case, volatilities among fundamentally unrelated sectors fluctuate strongly and co-vary positively, consistent with empirical findings in Fleming, Kirby, and Ostdiek (1998).

3.2 Return Spillovers

We now turn to the relationship between attention and the co-movement of stock returns. The covariance and correlation between returns of stock 1 and stock 2 are described Definition 2 below.
Figure 3: Stock-return Volatility and Attention: A Simulation Study
We plot time-series results of monthly volatilities from a 20-year simulation of the economy introduced in Section 2. Monthly volatilities are calculated following Definition 1, and reported in annualized terms. Panel A plots monthly volatilities of stock 1 and stock 2 for an economy with fluctuating investor attention. In Panel B, we turn off the fluctuating attention feature of the model by setting $\Lambda = 0$ in Equation (5), and plot the monthly volatilities for an economy with constant investor attention ($\Phi_1 = \Phi_2 = 0.368$). In each panel, the blue line indicates volatilities of stock 1, while the dashed black line indicates volatilities of stock 2. The model parameters and the initial values of the state variables used to generate the results are reported in Tables 1 and 2, respectively.

Definition 2. The cross-return covariance, σ_{12}, and the cross-return correlation, ρ_{12}, satisfy

$$\sigma_{12} = \sum_{j=1}^{4} D_{1j} D_{2j},$$

$$\rho_{12} = \frac{\sigma_{12}}{\sigma_1 \sigma_2} = \frac{\sum_{j=1}^{4} D_{1j} D_{2j}}{\sqrt{\sum_{j=1}^{4} D_{1j}^2} \sqrt{\sum_{j=1}^{4} D_{2j}^2}},$$
where the component of the stock-return diffusion D_{ij} is provided in Proposition 3.

We plot the static relationship between the level of attention paid to stock 1 and the cross-return correlation in Panel A of Figure 4. We note that by symmetry, the relationship between Φ_2 and ρ_{12} would look identical. Panel A shows that the cross-return correlation between stock 1 and stock 2 is positive and increases with attention even though dividends, fundamentals, and signals are uncorrelated. Panel B shows the static joint impact of attentions Φ_1 and Φ_2 on the cross-return correlation ρ_{12}. Similar to our results for volatilities, we find that an increase in attention to stock 1 and stock 2, together, further strengthens the return spillover effects. Thus, contagion arises most prominently when attention paid to the whole market increases.

We now discuss the economic mechanism leading to a positive cross-return correlation in our model. We first explain how a non-zero cross-return correlation can arise in a standard equilibrium model with learning and unrelated fundamentals, and then discuss how the fluctuating attention feature produces the positive cross-return correlation observed in our model. Following the exposition in Cochrane, Longstaff, and Santa-Clara (2008), the cross-return correlation between stock 1 and stock 2 can arise due to co-movements in one of the following four relationship pairs. The first is the co-movement between price-dividend ratio
The second is the co-movement between price-dividend ratio P_δ^2 and dividend δ_1. The third is the co-movement between price-dividend ratios P_δ^1 and P_δ^2. Finally, the fourth, is the co-movement between dividends δ_1 and δ_2. Because our model assumes that dividend δ_1 and dividend δ_2 are uncorrelated, the fourth relationship source can be eliminated.

In our model, the positive correlation between returns of stock 1 and stock 2 arises through discount rates. To understand the economic mechanism, let us consider a negative shock in the dividend of stock 1, i.e., the shock dW_1t in (8) is negative. This shock decreases the performance of dividend 1, thereby raising the attention paid to stock 1 (see Equations (10) and (5)). In the meantime, the negative shock also pushes the investor to decrease her estimation of the fundamental \hat{f}_1 (see Equation (9)). This decrease in the expectation of future dividend growth causes discount rates to fall and triggers an increase in price-dividend ratio P_δ^2. As for stock 1, because risk aversion is sufficiently large, the discounting channel outweighs the dividend channel and implies an increase in price-dividend ratio P_δ^1. The end result is a positive co-movement between price-dividend ratios P_δ^1 and P_δ^2, while the co-movement between δ_1 and P_δ^2 is negative. The former effect dominates the latter and implies a positive cross-return correlation because the discounting channel is the strongest.

In the previous paragraph we explain how, given a sufficiently large risk aversion, returns of two fundamentally unrelated stocks co-move positively due to the the discount rate channel. However, an important result from our model is that the magnitude of cross-return correlation depends on the level of investor attention (see Figure 4). This result can also be directly seen from Proposition 3, which shows that when attention paid to stock 1 increases, the cross-return correlation rises because the diffusion components D_{13} and D_{23} increase (in absolute value). The intuition to why attention impacts the magnitude of return spillover effects is discussed below.

Recall that the diffusion of the filtered fundamentals reflects two pieces of information: dividend innovations (dW_{1t}, dW_{2t}) and signal innovations (dW_{3t}, dW_{4t}). It follows from (9) that the uncertainty γ_i loads on dividend innovations, while attention Φ_i loads on signal innovations. As a negative shock hits dividend 1, attention to stock 1 increases but uncertainty γ_1 remains currently unchanged because it is locally deterministic. In other words, the weight assigned to signal innovations rises while the weight assigned to dividend innovations remains unchanged. Consequently, the variance of the filtered fundamental increases while the covariance between the dividend growth and the filtered fundamental, i.e., $\text{cov}_t \left[d\delta_{1t}, d\hat{f}_{1t} \right]$, remains constant. This means that an increase in attention disconnects the dividend from the filtered fundamental. Since the filtered fundamental drives discount rates, the correlation between discount rates and dividend 1 is reduced in absolute terms. This implies that
the negative co-movement between price-dividend ratio 2 and dividend 1 is less pronounced when attention to stock 1 is high, and therefore that the cross-return correlation is larger.

This mechanism explains why the cross-return correlation increases with attention to stock 1, and by symmetry, with attention to stock 2. As a result, the cross-return correlation rises, exactly like stock-return volatilities, with aggregate attention. Panel A of Figure 5 plots monthly cross-return volatilities against aggregate attention obtained from a 20-year simulation. We observe a strong positive relationship between correlation ρ_{12} and aggregate attention $\Phi_1 + \Phi_2$, similar to the finding for volatilities. This result shows that aggregate attention is the main driver of the variation in cross-return correlation, and that the other state variables have a minor impact on it.

Panel B of Figure 5 plots the monthly time series of cross-return correlations for the fluctuating attention model, as well as for the constant attention model. The correlation in the constant attention model is positive, consistent with the prediction that correlations between asset returns naturally arise due to the discount rate channel. However, monthly cross-return correlations for the constant attention model do not fluctuate significantly from month-to-month, suggesting that fluctuations in dividend shares alone cannot generate sudden cross-return spikes that are distinctive of financial contagion. In the fluctuating attention model, monthly cross-return correlations swing more intensely. This finding suggests that fluctuating attention is an important feature for generating the return spillover effects observed in financial markets.

Performing 10,000 simulations of our economy over 20 years, we find that fluctuating attention significantly amplifies the variations in cross-return correlation compared to an economy in which the investor pays constant attention. Simulation results show that correlation ranges from 0.38 to 0.47 in the constant attention model, and from 0.30 to 0.65 in the fluctuating attention model. In addition, volatilities and correlation co-move positively in the fluctuating attention model because those quantities are mainly driven by aggregate attention. This result, however, does not hold when attention is constant because, in that case, the dividend share is the main driver of volatility and correlation.

4 Empirical Evidence

In this section, we empirically test the model’s predictions using U.S. industry sectors. In the model, the mechanism of how time-varying attention generates contagion between sectors with independent dividend streams (i.e., fundamentally-unrelated sectors) is through the equilibrium discount rates. We therefore examine the volatility- and return-spillover effects on the discount-rate-news component of industry returns and show that they are related to
Figure 5: Cross-return Correlation and Attention: A Simulation Study
We plot cross-return correlations results generated from a 20-year simulation. Panel A plots the dynamic relationship between correlation and aggregate attention \(\Phi_1 + \Phi_2 \). In Panel B, we plot the time-series of monthly return correlations between stock 1 and stock 2 for an economy with fluctuating attention (blue line) and constant attention (dashed black line). Monthly return correlations are calculated following Definition 2. The model parameters and the initial values of the state variables used to generate the results are reported in Tables 1 and 2, respectively.

changes in investor attention to the industries.

Our empirical strategy builds on insights drawn from the return-decomposition framework of Campbell and Shiller (1988) and Campbell (1991). Following their work, we decompose industry returns into two components corresponding to changes in future cash flows (i.e., dividends), and changes in future discount rates (i.e., expected returns). We then focus on the discount-rate return. Specifically, we show that fluctuating attention to one industry sector affects its discount-rate return volatility, discount-rate return volatilities of other industries, as well as correlations between discount-rate returns.

We first describe the data and the method used to decompose quarterly industry returns into two components reflecting the cash-flow change and the discount-rate change. We then discuss the estimation of time-varying investor attention, industry return volatilities, and cross-industry return correlations. After, we outline testable hypotheses based on the model’s predictions and discuss their empirical findings.

4.1 Data and Sample

Our sample consists of U.S. incorporated firms that are traded on the NYSE/AMEX and NASDAQ. We require that firms have information available on both CRSP and COMPU-
STAT databases. We group firms into different industries following the Fama-French’s 38 industry portfolio definitions. We choose the 38-industry classification because each industry’s size is sufficiently large to capture shocks to its sector, and because it is more refined than the Fama-French’s 12 and 17 portfolio definitions. We exclude financial industry from the sample. We further drop five industries from our analysis because they have missing observations.\(^8\) We measure changes in quarterly investor attention from various sources namely CRSP, I/B/E/S, and Thomson Reuters 13F institutional ownership. The sample period for our main empirical tests is from 1985 to 2014. The main empirical analysis begins in 1985 due to data availability in I/B/E/S.

The general equilibrium model that we introduced in Section 2 provides predictions of contagion between two sectors with similar market share. In order to keep our empirical design comparable to the model’s assumption, we require that industries in our sample are sufficiently large. Using firm-level information from COMPUSTAT, we measure industry size based on three dimensions: market equity value, book equity value, and annual dividend payout. We use a simple filter requiring that each industry in the final sample contributes 1% or more to the aggregate market in all the three size dimensions. Time-series means of each industry are used in this filter. There are 16 industries that meet our size requirement. Together, they make up about 90% of the total market capitalization. Table 3 presents the 16 industry portfolios in our final sample. For each industry, we report its time-series median values for the number of firms, market equity value, book equity value, and annual dividend payout.

4.2 Decomposing the Industry Return

By definition, a firm’s stock return is driven by shocks to expected cash flows and/or shocks to discount rates.\(^9\) Campbell and Shiller (1988) and Campbell (1991) show that a stock return \(r_t\) can be decomposed using the following log-linear approximation:

\[
\begin{align*}
 r_t - E_{t-1}[r_t] &= \Delta E_t \sum_{j=0}^{\infty} \rho^j \Delta d_{t+j} - \Delta E_t \sum_{j=1}^{\infty} \rho^j r_{t+j} \\
 &= Ncf_t - Ndr_t,
\end{align*}
\]

\(^8\)Following Hong, Torous, and Valkanov (2007) who study Fama-French 38 industry portfolios, we exclude GARBAGE (sanitary services), STEAM (steam supply), WATER (irrigation systems), GOVT (public administration), and OTHER (everything else).

\(^9\)There is a substantial body of research that studies the decomposition of aggregate market returns (e.g., see Campbell and Ammer (1993), and Campbell and Vuolteenaho (2004)) and individual stock returns (see Vuolteenaho (2002)).
where \(d_t \) is the log dividend paid by the stock. We denote by \(\Delta E_t = E_t(\cdot) - E_{t-1}(\cdot) \) the change in expectations from \(t - 1 \) to \(t \), and \(\rho \) is the discount factor. Equation (17) shows that an unexpected change in return is associated with changes in expectation of future cash flows (i.e., dividends) or with changes in expectation of future discount rates (i.e., expected returns). We can write the return-decomposition more compactly as shown in Equation (18) by defining \(N_{cf} \) and \(N_{dr} \) as the cash-flow news and discount-rate news components of the return, respectively.

The variance of unexpected return can be decomposed into three components as follows:

\[
\text{var} \left(r_t - E_{t-1} \right) = \text{var}(N_{cf_t}) + \text{var}(N_{dr_t}) - 2 \text{cov}(N_{dr_t}, N_{cf_t}).
\]

(19)

For our empirical analysis, we focus on financial contagion between the discount-rate component (\(N_{dr} \)) of industry returns. This helps mitigate the likelihood of fundamental-based contagion (i.e., dividend shocks) from driving the results. Although we cannot rule out the effect of cash-flow news due to the potential correlation between \(N_{dr} \) and \(N_{cf} \), our estimate based on large U.S. industries shows that it is small and is statistically insignificant. This finding is consistent with Vuolteenaho (2002) and Campbell and Vuolteenaho (2004) who find statistically insignificant correlation between \(N_{dr} \) and \(N_{cf} \) for both large stocks and the market index.

Following Campbell (1991) among others, we use a vector autoregressive (VAR) model to estimate \(N_{dr} \) time series. The estimation frequency is quarterly because some industry-level variables that we use are calculated using COMPUSTAT data. We obtain monthly industry portfolio returns data from Kenneth French’s website and compound them over each quarter to obtain quarterly returns for each industry.\(^{10}\)

The VAR methodology assumes that expected returns of industry \(i \) can be estimated and that the data are generated by a first-order VAR model:

\[
Z_{i,t} = A + \Gamma Z_{i,t-1} + u_{i,t}, \quad \Sigma = E \left[u_{i,t} u'_{i,t} \right],
\]

where \(Z_{i,t} \) is an \(m \)-by-1 state vector with log industry excess return over 3-month Treasury rate, \(r_{i,t} \), as its first element. The remaining elements in \(Z_{i,t} \) contain industry-level and macro variables that can predict quarterly industry returns. \(A \) and \(\Gamma \) are \(m \)-by-1 vector and \(m \)-by-\(m \) matrix \(u_{i,t} \) is an \(m \)-by-1 vector of i.i.d. shocks with a covariance matrix \(\Sigma \).

We use five forecasting variables for the industry return, which include industry-specific variables and macro variables. Our variable choice is motivated by previous studies, as well as parsimony. For industry-specific variables, we use the industry excess return (one and

\(^{10}\)The findings are virtually unaffected when using industry returns calculated by ourselves.
two lags), the log dividend-price ratio, and the log return on equity. The macro variables that we use are the term yield spread defined as the difference between 10-year and 3-month Treasury rates, and the log excess return of CRSP value-weighted index, i.e., log market excess return. We include the dividend-price ratio following Campbell (1991), which is the firm’s past 12-month dividend payout over its last quarter equity price. We include return on equity following Vuolteenaho (2002); it is calculated as the firm’s past 12-month earnings over its last quarter book equity. Industry-level dividend-price ratio and return on equity are calculated as their value-weighted averages across firms in the industry. Portfolio weights are updated once per year using the firm’s market capitalization from the most recent June. We explain the implementation in greater details in Appendix A.5.

Estimation results and variance decomposition of industry returns are reported in Appendix Table A1. We find that all forecasting variables that we use significantly predict the next-quarter industry return with an adjusted R^2 of 2.2%. Variance decomposition following Equation (19) shows that the industry return is mostly explained by shocks to its future dividends (i.e., cash-flow news). The ratios of discount-rate-news variance and cash-flow-news variance to total-unexpected-return variance are about 25% and 79%, respectively. This finding is highly consistent with Vuolteenaho (2002) who applies the return-decomposition framework to individual stock returns and finds that stock returns are mainly driven by cash-flow news. In line with the literature, we find that cash-flow news (Ncf) and discount-rate news (Ndr) are positively correlated. Its estimate is about 3.9% and is statistically insignificant.\footnote{Vuolteenaho (2002) finds that the correlation between Ncf and Ndr depends on firm size; it is weak and statistically insignificant among big firms. Our industry-level results can be compared against his results for very large firms.} This weak correlation implies that shocks to cash-flow news have an economically small impact on discount-rate news, and vice versa. Our main empirical tests for the financial contagion focus on the discount-rate-news return and volatility. This approach helps mitigate the impact of shocks to fundamentals (i.e., cash-flow news) that may cause the return and the volatility of different sectors to move in the same direction.

4.3 Measuring Investor Attention

We construct the quarterly measure of investor attention from the following four variables: the trading volume, the number of institutional owners, the number of analyst followings, and the number of analysts’ forecast revisions. We choose these four variables because they have been associated with changes in investor attention and their data are available over a sufficiently long time period. Each variable is first calculated at the firm level over each quarter and then value-weighted averaged across firms in the industry to yield the industry-
level variable.

We use trading volume because it is easily measurable and as argued by Hou, Xiong, and Peng (2009), it should be highly correlated with attention because investors cannot actively trade a stock if they do not pay attention to it. Similarly, Fisher, Martineau, and Sheng (2016) study time-varying media attention to macroeconomic fundamentals and find that it is linked to variations in aggregate trading volume. We use the number of institutional owners because it directly measures the number of sophisticated investors trading on the firm. As shown by Boone and White (2015), firms owned by more institutional investors elicits more public information production produced by the firms’ management, media, and analysts. We use the number of analysts following the firm as it has been shown in an extensive literature that their recommendations and earnings forecasts significantly influence investor to trade and pay attention to the firm.\footnote{For instance, Womack (1996) and Irvine (2004) documents significant abnormal trading volume following analysts’ recommendations and forecasts.} Finally, we use the average number of analyst forecasts’ revisions. This variable measures how frequently an analyst revises her estimate on the firm’s quarterly earnings. Jacob, Lys, and Neale (1999) argues that the frequency of forecast revisions proxies for an analyst’s effort in paying attention to the latest information on the firm that she covers. In all four variables described above, their higher value should proxy for an increasing investor attention to the firm.

We find that the industry-level time series of trading volume, number of institutional owners, number of analyst followings, and number of forecast revisions are persistent and exhibit a time trend. To circumvent this issue, we log transform each time series and adjust for its time-trend and seasonality effects using a regression model. We retain the regression residuals and normalize them using its time-series mean and standard deviation. These procedures produce four time series of normalized industry variables that are stationary and comparable in magnitude per each industry. Table 4 presents sample descriptives of the four normalized industry variables. Panel A reports their summary statistics from January 1985 to December 2014. There are a total of 1920 industry-quarter observations making up of sixteen industries over 120 quarters. As expected, the mean and the standard deviation of each time-series means are approximately 0 and 1, respectively. Panel B reports correlations of the four normalized industry variables. We first calculate correlations of the four time series for each industry, and then report their cross-industry averages. Clearly, we find that the four industry variables are positively correlated with their correlation estimates fallen between 15 and 65%.

For each industry, we construct the measure of quarterly time-varying investor attention as follows. First, we combine information from the four normalized industry variables by
calculating their cross-sectional equally-averaged values. The last row in Panel A reports
time-series properties of the quarterly averaged industry variable. We find that by averaging
across the four industry variables, the resulting time series is significantly less dispersed with
the minimum value of \(-2.02\) and the maximum value of 1.90. Finally, we apply a first-
order autoregressive model to the averaged time series and use the residuals as our quarterly
attention measure \(\Phi_t\). This step ensures that the attention measure is stationary, and its
level represents an *unexpected change* in investor attention over each quarter.\(^{13}\) Panel C of
Table 4 presents time-series statistics of \(\Phi_t\) across all industries. The mean and the standard
deviation of the time series are 0.02 and 0.33, respectively. Industry-by-industry summary
statistics of the attention measure are reported in the Appendix Table A2. We find that the
distributions of \(\Phi_t\) are fairly comparable across industries.

4.4 Time-varying Volatilities and Correlations

We calculate time-varying volatilities of discount-rate returns using two approaches. The first
is the exponentially weighted moving average (EWMA) model, where the current-quarter
variance of the \(i\)th industry, \(\sigma^2_{i,t}\), is a moving-average value of past squared discount-rate
returns with exponentially-decaying weights. We prefer the EWMA model for volatilities
because it is simple and requires no further estimation. An alternative approach is a GARCH
model for volatility modeling, but this is not feasible for our short time-series data with
120 quarterly observations. The EWMA variance is updated using a recursive relation:
\[
\sigma^2_{i,t} = \lambda \text{Ndr}^2_{i,t-1} + (1 - \lambda) \sigma^2_{i,t-1},
\]
where \(\text{Ndr}^2_{i,t-1}\) is the squared of discount-rate return from
the previous quarter, and \(\lambda\) is the weight. The EWMA weight is set to 0.20, which we find
provides the best one-period ahead volatility forecast.\(^{14}\) The second approach for calculating
time-varying volatilities is the absolute value of discount-rate return, i.e., \(|\text{Ndr}_{t}|\). We refer
to the quarterly volatility calculated using this simple method as the realized volatility.

Appendix Table A2 presents time-series statistics of discount-rate-news returns and their
annualized volatility calculated using the EWMA model for each industry. We multiply
quarterly volatilities by \(\sqrt{4}\) to convert them to annualized terms. The standard deviations
of \(\text{Ndr}\) are roughly around 0.5 across industries; they range between 0.38 and 0.67. Phone
(Telephone and Communication) is the most volatile industry, while TV (Radio and Televi-
sion Broadcasting) is the least volatile. The means of annualized volatilities across industries
are roughly 10%, which is consistent with the standard deviations of quarterly discount-rate

\(^{13}\) Although the four normalized industry variables that we use in the cross-sectional averaging are sta-
tionary, their combined time series can be persistent due to potential co-integration. We apply unit-root
tests to verify that all time series of \(\Phi_t\) are stationary.

\(^{14}\) Our conclusions are very robust to a reasonably large range of \(\lambda\).
returns that we report.

Similar to volatilities, we use two approaches to calculate time-varying correlations of discount-rate returns between industry pairs. There are 120 unique industry pairs between the sixteen industries. The first approach we use is based on the EWMA model. We calculate time-varying covariances $\sigma_{ij,t}$ between industries i and j using a recursive relation:

$$\sigma_{ij,t} = \lambda (\text{Ndr}_{i,t-1}\text{Ndr}_{j,t-1}) + (1 - \lambda) \sigma_{ij,t-1},$$

where $\text{Ndr}_{i,t-1}\text{Ndr}_{j,t-1}$ is the product of discount-rate returns of the two industries from a previous quarter.\(^{15}\) The correlation of discount-rate returns are then calculated as $\rho_{ij,t} = \sigma_{ij,t} / (\sigma_{i,t} \sigma_{j,t})$, where $\sigma_{i,t}$ and $\sigma_{j,t}$ are EWMA volatilities that we calculated previously. The correlations are trimmed to be between -1 and 1 to remove erroneous outliers. Appendix Table A3 presents summary statistics of cross-industry correlations for the 120 industry pairs. For each correlation time series, we report the mean, the standard deviation, the minimum, and the maximum. Correlations of discount-rate returns are all positive. Importantly, we find that there are substantial fluctuations in the correlation time series.

The second approach that we use for time-varying correlations is the simple realized correlation. It is calculated by dividing the product of discount-rate returns $\text{Ndr}_{i,t}\text{Ndr}_{j,t}$ by the product of their absolute values, $|\text{Ndr}_{i,t}\text{Ndr}_{j,t}|$. The benefit of this approach is that it is very simple. However, it measures correlations as a binary variable of either -1 or 1, which can by very noisy.

4.5 Hypotheses and Empirical Findings

This section outlines four hypotheses based on the model’s predictions that we test and discuss.

The **first hypothesis** that we test is how unexpected changes in attention to one industry increase its discount-rate-news volatilities and those of other industries. As illustrated in Figure 1, the model predicts that an increase in the volatility of one industry is related to an increase in investor attention to that industry, as well as an increase in attention to other industries. To test this, we estimate the following panel-regression model on 120 unique industry pairs:

$$\sigma_{i,t+1} = \alpha_{ij} + \beta_1 \Phi_{i,t} + \beta_2 \Phi_{j,t} + \sum_{j=1}^{p} \gamma_j' X_{t-j} + \varepsilon_{i,t+1},$$

(20)

where the dependent variable $\sigma_{i,t+1}$ is the annualized discount-rate-news volatility of industry i in quarter $t + 1$, and $\varepsilon_{i,t+1}$ is the regression residual. Our independent variable of interests are $\Phi_{i,t}$ and $\Phi_{j,t}$, representing unexpected changes in attention to industries i and j in quarter t, respectively. The results are reported in Columns (1) and (3) of Table 5. We include a

\(^{15}\)The EWMA weight for covariance is set to 0.3, which provides the best one-period covariance forecast.
number of fixed effects in the regression model. We allow for industry-pair fixed effects, α_{ij}, as well as quarter-fixed effects to control for seasonality. Besides fixed effects, we control for a host of time-varying lagged variables represented by $\sum_{j=1}^{p} \gamma_{j}'X_{t-j}$ in Equation (20). We include one lag of attention variables, $\Phi_{i,t-1}$ and $\Phi_{j,t-1}$, and four lags (i.e., one year) of discount-rate-news volatilities on industries i and j. We adjust for heteroskedasticity in the coefficient estimates using White’s (1980) standard errors.

Columns (1) and (3) report regression results obtained using EWMA volatilities and realized volatilities, respectively. In both columns, we find that the coefficients on attention measures $\Phi_{i,t}$ and $\Phi_{j,t}$ are positive and statistically significant. This finding supports the model’s prediction that we show in Figure 1. Table 5 shows that the adjusted-R^2 is much higher (about 79%) when we use EWMA volatilities, while it is only about 6% when we use realized volatilities. This finding is expected because EWMA volatilities are moving averages of past discount-rate volatilities, and these lagged volatilities are included in our list of time-varying control variables. Interestingly, we do not find that lagged attention measures significantly affect discount-rate volatilities. The coefficients on $\Phi_{i,t-1}$ and $\Phi_{j,t-1}$ are positive but not statistically significant, suggesting the effect of fluctuating investor attention is not persistent. In other words, shocks to investor attention are reflected on discount-rate-news volatilities within one quarter.

The second hypothesis that we test is how unexpected changes in total attention to both industries increase their discount-rate-news volatilities. As illustrated in Figure 2, we expect a positive shock to aggregate attention of both industries to increase their discount-rate volatilities. We test this hypothesis by running the following panel-regression model on the 120 industry pairs:

$$
\sigma_{i,t+1} = \alpha_{ij} + \beta (\Phi_{i,t} + \Phi_{j,t}) + \sum_{j=1}^{p} \gamma_{j}'X_{t-j} + \varepsilon_{i,t+1}.
$$

The above regression model is very similar to that shown in Equation (20). However, our independent variable of interest here is the total unexpected change in attention $\Phi_{i,t} + \Phi_{j,t}$ to industries i and j. The lagged time-varying control variables are also adjusted accordingly to include the one-period lagged total attention measure. Columns (2) and (4) of Table 5 report the results. We find that the coefficients on $\Phi_{i,t} + \Phi_{j,t}$ are positive and strongly significant in both columns, confirming the prediction of our model. The magnitude of coefficient on the total attention measure reflects the average effect of the two attention measures separately on discount-rate volatilities. For instance, comparing estimates in Column (4) to those in Column (3), the estimate on $\Phi_{i,t} + \Phi_{j,t}$ is 0.012, which is roughly the average value of
coefficient estimates 0.016 and 0.008 on $\Phi_{i,t}$ and $\Phi_{j,t}$, respectively.\footnote{We observe the exact same finding when using EWMA volatilities, even though the rounding of significant digits in Panel A of Table 5 makes it difficult to see.}

We verify the robustness of our results in Table 5 using an alternative regression model. Recall that our theoretical model assumes that the economy consists of two fundamentally unrelated sectors. We therefore focus on the volatility spill-over effect that are due to fluctuating investor attention to one industry and to the remaining economy, i.e., the other fifteen industries combined. In this case, we estimate a panel-regression model based on sixteen cross sections, one per industry. We report the results in Appendix Table A4. Here, we are interested in the effect of unexpected change in attention $\Phi_{i,t}$ to industry i, and the average unexpected change in attention to the remaining fifteen industries denoted by $\overline{\Phi}_{-i,t}$. We find that our conclusions regarding the first and second hypotheses are unaffected by this alternative regression specification.

The third hypothesis that we test is how an unexpected change in investor attention to each of the two industries affect the correlation of their discount-rate returns. As illustrated in Figure 4, the model predicts that the correlation between two unrelated industries is increasing with changes in investor attention to each of the two industries. We test this prediction using the following panel-regression model on 120 unique industry pairs:

$$
\rho_{ij,t+1} = \alpha_{ij} + \beta_1 \Phi_{i,t} + \beta_2 \Phi_{j,t} + \sum_{j=1}^{p} \gamma_j' X_{t-j} + \varepsilon_{i,t+1}. \tag{21}
$$

The dependent variable in Equation (21) is the correlation between discount-rate returns of industry i and j in quarter $t+1$. Our independent variable of interests are unexpected changes in attention to the two industries in quarter t. Table 6 reports the results. Column (1) reports results obtained using EWMA correlations, while Column (3) reports results obtained using realized correlations. Industry-pair fixed-effects (i.e., $\alpha_{i,j}$) and quarterly seasonality effects are included. Time-varying control variables include one lag of the attention measures, four lags of the dependent variable, and four lags of discount-rate-news volatilities from the two industries.

Consistent with the model’s prediction, results in Column (1) show that the coefficients on $\Phi_{i,t}$ and $\Phi_{j,t}$ are positive and statistically significant. The adjusted R^2 is about 48.4%, which is relatively large reflecting the fact that EWMA correlations are filtered and smoothed using past information. Turning to the results in Column (3), we find that our coefficient estimates on the attention measures are positive, but the estimate on $\Phi_{j,t}$ is not statistically significant at the conventional level; its t-statistic is 1.49. We believe that the weaker results found in Column (3) is due to the noisiness of the realized correlation measure, which is a binary variable of +1 or −1. In fact, the adjusted R^2 in Column (3) is only 1.75%,
indicating a relatively low explanatory power on the realized correlation measure. Similar to the results we find for the volatility spill-over effect in Table 5, the coefficients on lagged attention measures from quarter $t-1$ are not significant. This suggests that shocks to investor attention do not have a persistent effect on the time-varying correlation between discount-rate returns.

Finally, the fourth hypothesis that we test is how changes in aggregate investor attention to two industries affect the correlation of their discount-rate returns. As shown in Figure 5, the model predicts that an increase in total attention to the two industries should increase their return correlations. We estimate the following pair-wise panel-regression model:

$$\rho_{i,t+1} = \alpha_{ij} + \beta (\Phi_{i,t} + \Phi_{j,t}) + \sum_{j=1}^{p} \gamma_{j}^t X_{t-j} + \varepsilon_{i,t+1}.$$

We report the results in Columns (2) and (4) of Table 6. Consistent with the model’s prediction, we find a positive and significant coefficient on $\Phi_{i,t} + \Phi_{j,t}$ in both Columns (2) and (3). We conclude that these findings provide the evidence in support of our fourth hypothesis.

5 Conclusion

Recent empirical studies shed light on how investors focus on public information. These studies document that attention to news is fluctuating. This paper shows both theoretically and empirically that fluctuating attention implies return and volatility spillover effects among fundamentally unrelated sectors. Indeed, a negative shock affecting one sector propagates to other sectors through an increase in investor attention, which simultaneously raises each sector’s volatility and cross-sector correlation. The model predicts that the shock propagates from one sector to another through discount rates. We empirically test the key mechanism of our model on sixteen large U.S. industries. We apply Campbell’s (1991) framework to decompose quarterly industry returns from 1985–2015 into two components reflecting changes to the discount-rate news and changes to the cash-flow news. We then focus on the discount-rate-return component. Using a panel regression, we find that shocks propagate from one industry to another through the effect of time-varying attention on the discount-rate component of industry returns.

Our paper contributes to the existing literature by offering an explanation for financial contagion through the well-documented observation that investors pay fluctuating attention to news. Possible extensions of our work include incorporating more flexible investor preferences, as well as allowing for jumps in the dividend dynamics.
References

Table 3: Industry Descriptions

This table summarizes the 16 industry portfolios that we study. For each industry, we report its time-series median values for the number of firms, the total market equity value (in millions $), the total book equity value (in millions $), and the total annual dividend payout (in millions $). The sample consists of U.S. firms in the CRSP database from 1985 through 2014 with non-missing information in COMPUSTAT. See text in Section 4.2 for additional filters applied to the data. We classify firms into different industry portfolios following the Fama-French 38-industry classifications. We drop the following industries from our analysis: Government, Money, Water, Steam, Garbage, and Other. Additionally, we only keep large industries for our empirical analysis. We exclude industries that contribute less than 1% to the total market level in at least one of the following dimensions: market equity value, book equity value, and annual dividend payout. The remaining 16 industries that we keep in the sample make up for about 90% of the total market capitalization.

<table>
<thead>
<tr>
<th>Industry code</th>
<th>Descriptions</th>
<th>Number of firms</th>
<th>Market equity value (mils)</th>
<th>Book equity value (mils)</th>
<th>Annual dividend payout (mils)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cars</td>
<td>Transportation Equipment</td>
<td>58</td>
<td>250,651</td>
<td>124,179</td>
<td>51.62</td>
</tr>
<tr>
<td>Chems</td>
<td>Chemicals and Allied Products</td>
<td>195</td>
<td>1,210,968</td>
<td>196,991</td>
<td>92.66</td>
</tr>
<tr>
<td>Elecr</td>
<td>Electrical and Electronic Equipment</td>
<td>167</td>
<td>434,758</td>
<td>143,352</td>
<td>32.58</td>
</tr>
<tr>
<td>Food</td>
<td>Food and Kindred Products</td>
<td>52</td>
<td>341,791</td>
<td>79,890</td>
<td>30.74</td>
</tr>
<tr>
<td>Instr</td>
<td>Instruments and Related Products</td>
<td>138</td>
<td>210,579</td>
<td>57,756</td>
<td>27.77</td>
</tr>
<tr>
<td>Machn</td>
<td>Machinery, Except Electrical</td>
<td>148</td>
<td>260,256</td>
<td>102,109</td>
<td>38.30</td>
</tr>
<tr>
<td>Oil</td>
<td>Oil and Gas Extraction</td>
<td>77</td>
<td>105,466</td>
<td>47,110</td>
<td>18.02</td>
</tr>
<tr>
<td>Phone</td>
<td>Telephone and Communication</td>
<td>38</td>
<td>346,063</td>
<td>152,728</td>
<td>35.68</td>
</tr>
<tr>
<td>Print</td>
<td>Printing and Publishing</td>
<td>44</td>
<td>591,21</td>
<td>29,531</td>
<td>28.39</td>
</tr>
<tr>
<td>Ptrelm</td>
<td>Petroleum and Coal Products</td>
<td>21</td>
<td>395,290</td>
<td>169,605</td>
<td>28.69</td>
</tr>
<tr>
<td>Rtail</td>
<td>Retail stores</td>
<td>103</td>
<td>180,236</td>
<td>509,38</td>
<td>21.65</td>
</tr>
<tr>
<td>Srvc</td>
<td>Services</td>
<td>369</td>
<td>983,598</td>
<td>228,055</td>
<td>68.42</td>
</tr>
<tr>
<td>TV</td>
<td>Radio and Television Broadcasting</td>
<td>38</td>
<td>156,044</td>
<td>84,250</td>
<td>9.10</td>
</tr>
<tr>
<td>Trans</td>
<td>Transportation</td>
<td>75</td>
<td>127,192</td>
<td>84,321</td>
<td>26.08</td>
</tr>
<tr>
<td>Utils</td>
<td>Electric, Gas, and Water Supply</td>
<td>141</td>
<td>331,409</td>
<td>314,136</td>
<td>565.43</td>
</tr>
<tr>
<td>Whlsl</td>
<td>Wholesale</td>
<td>84</td>
<td>101,106</td>
<td>45,965</td>
<td>26.67</td>
</tr>
</tbody>
</table>
Table 4: Measuring Investor Attention: Sample Descriptives

This table presents summary statistics of quarterly industry-level variables associated with investor attention on the 16 industries (see Table 3) from 1985 to 2014. Panel A reports the four normalized industry variables that we use to calculate the attention measure. Panel B reports the average cross-correlation matrix of the four normalized industry variables. Panel C reports the aggregate investor attention measure Φ calculated from the four industry variables. The industry variables that we use are the total trading volume, the number of institutional owners, the number of analyst followings, and the number of analyst forecast revisions over each quarter; they are calculated as value-weighted averages across firms in the industry. We de-trend each industry variable using a log-linear model adjusting for the time-trend and seasonality effects. After, we normalize each de-trended industry variable using its time-series mean and standard deviation. For each industry, we equally average the normalized industry variables to calculate the aggregate measure of investor attention. We apply an AR(1) model to reduce the time-series persistence in the aggregate attention measure and use the model’s residual as our proxy for time-varying investor attention Φ. In Panels A and C, the summary statistics that we report are mean, standard deviation, minimum, 25th percentile, median, 75th percentile, and maximum values.

Panel A. Normalized Industry Variables: Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>Nobs</th>
<th>Mean</th>
<th>Stdev</th>
<th>Minimum</th>
<th>P25</th>
<th>P50</th>
<th>P75</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trading volume</td>
<td>1920</td>
<td>0.00</td>
<td>0.99</td>
<td>-2.89</td>
<td>-0.70</td>
<td>-0.01</td>
<td>0.70</td>
<td>3.34</td>
</tr>
<tr>
<td>Num institutional owners</td>
<td>1920</td>
<td>0.00</td>
<td>0.99</td>
<td>-3.34</td>
<td>-0.67</td>
<td>0.03</td>
<td>0.70</td>
<td>3.99</td>
</tr>
<tr>
<td>Num analyst followings</td>
<td>1920</td>
<td>0.00</td>
<td>0.98</td>
<td>-5.71</td>
<td>-0.62</td>
<td>0.06</td>
<td>0.69</td>
<td>2.46</td>
</tr>
<tr>
<td>Num forecast revisions</td>
<td>1920</td>
<td>0.00</td>
<td>0.98</td>
<td>-5.04</td>
<td>-0.64</td>
<td>0.02</td>
<td>0.64</td>
<td>3.17</td>
</tr>
<tr>
<td>Average value</td>
<td>1920</td>
<td>0.02</td>
<td>0.65</td>
<td>-2.02</td>
<td>-0.43</td>
<td>0.02</td>
<td>0.52</td>
<td>1.90</td>
</tr>
</tbody>
</table>

Panel B. Normalize Industry Variables: Pearson Correlations

<table>
<thead>
<tr>
<th></th>
<th>Trading Volume</th>
<th>Num institutional owners</th>
<th>Num analyst followings</th>
<th>Num forecast revisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trading volume</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Num institutional owners</td>
<td>0.401</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Num analyst followings</td>
<td>0.155</td>
<td>0.371</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Num forecast revisions</td>
<td>0.152</td>
<td>0.258</td>
<td>0.654</td>
<td>1</td>
</tr>
</tbody>
</table>

Panel C. Attention Measures: Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>Nobs</th>
<th>Mean</th>
<th>Stdev</th>
<th>Minimum</th>
<th>P25</th>
<th>P50</th>
<th>P75</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attention measure Φ</td>
<td>1920</td>
<td>0.02</td>
<td>0.33</td>
<td>-2.20</td>
<td>-0.17</td>
<td>0.02</td>
<td>0.21</td>
<td>1.42</td>
</tr>
</tbody>
</table>
Table 5: Time-varying Attentions and Cross-industry Volatility Spill-over

This table reports quarterly panel-regression results for the effect of time-varying attentions on discount-rate news volatility. The panel consists of 120 cross sections, each representing a unique industry-pair combinations from the 16 industry portfolios. The sample period is from 1985 through 2014. The dependent variable in each column is the quarterly discount-rate news volatility $\sigma_{i,t+1}$ at time $t+1$ for industry i. The general regression model is:

$$\sigma_{i,t+1} = \alpha_{ij} + \beta_1 \Phi_{i,t} + \beta_2 \Phi_{j,t} + \sum_{j=1}^{p} \gamma_j' X_{t-j} + \varepsilon_{i,t+1},$$

for $i = 1, \ldots, 16$, and $j < i$. In the above regression, $\Phi_{i,t}$ and $\Phi_{j,t}$ are unexpected changes in attention to industry i and industry j, respectively, at time t. Panel A reports results where the discount-rate news volatility is estimated using the EWMA model. In Panel B, the volatility is the absolute value of the discount-rate news component, i.e., realized volatility. Columns (1) and (3) report baseline regression results examining the impact of shocks to $\Phi_{i,t}$ and $\Phi_{j,t}$ separately on the volatility of industry i. Columns (2) and (4) examine the impact of unexpected change in total attention to the two industries, $\Phi_{i,t} + \Phi_{j,t}$, which is accomplished by restricting $\beta_1 = \beta_2$ in the above regression model. We include a number of lagged time-series variables as controls in the regression, represented by $\sum_{j=1}^{p} \gamma_j' X_{t-j}$. This includes one-period lag of the attention variables, four lags of the dependent variable. For brevity, only estimates on lagged attention variables are reported. Industry pair- and quarter-fixed effects are included.

<table>
<thead>
<tr>
<th>Discount-rate Volatility $\sigma_{i,t+1}$</th>
<th>Panel A. EWMA Volatility</th>
<th>Panel B. Realized Volatility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Time-varying Attentions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Phi_{i,t}$</td>
<td>0.003***</td>
<td>0.016***</td>
</tr>
<tr>
<td></td>
<td>(6.15)</td>
<td>(9.00)</td>
</tr>
<tr>
<td>$\Phi_{j,t}$</td>
<td>0.002***</td>
<td>0.008***</td>
</tr>
<tr>
<td></td>
<td>(4.32)</td>
<td>(5.14)</td>
</tr>
<tr>
<td>$\Phi_{i,t} + \Phi_{j,t}$</td>
<td>0.002***</td>
<td>0.012***</td>
</tr>
<tr>
<td></td>
<td>(10.10)</td>
<td>(12.74)</td>
</tr>
<tr>
<td>Lagged Attentions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Phi_{i,t-1}$</td>
<td>0.000</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(0.29)</td>
<td>(1.09)</td>
</tr>
<tr>
<td>$\Phi_{j,t-1}$</td>
<td>0.000</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(0.89)</td>
<td>(1.06)</td>
</tr>
<tr>
<td>$\Phi_{i,t-1} + \Phi_{j,t-1}$</td>
<td>0.000</td>
<td>0.002*</td>
</tr>
<tr>
<td></td>
<td>(0.26)</td>
<td>(1.70)</td>
</tr>
<tr>
<td>Industry pair-fixed effect</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Quarter-fixed effect</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Lagged control vars</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>79.1%</td>
<td>79.1%</td>
</tr>
<tr>
<td>No. of cross sections</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Time-series length</td>
<td>120</td>
<td>120</td>
</tr>
</tbody>
</table>
Table 6: Time-varying Attentions and Cross-industry Return Correlations

This table reports quarterly panel-regression results for the effect of time-varying attentions on the correlation of discount-rate returns of two industries. The panel consists of 120 cross sections, each representing a unique industry-pair combinations from the 16 industry portfolios. The sample period is from 1985 through 2014. The dependent variable in each column is the correlation between discount-rate-news component in the returns of industry i and j, i.e., $\rho_{ij,t+1}$, at time $t + 1$. The general regression model is:

$$\rho_{ij,t+1} = \alpha_{ij} + \beta_1 \Phi_{i,t} + \beta_2 \Phi_{j,t} + \sum_{j=1}^{p} \gamma_j' X_{t-j} + \epsilon_{i,t+1},$$

for $i = 1, ..., 16$, and $j < i$. In the above regression, $\Phi_{i,t}$ and $\Phi_{j,t}$ are unexpected changes in attention to industry i and industry j, respectively, at time t. Panel A reports results where the cross-industry discount-rate return correlation is calculated from the EWMA model. In Panel B, the discount-rate return correlation is the realized signed correlation, which takes the value of +1 or −1. Columns (1) and (3) report baseline regression results examining the impact of shocks to $\Phi_{i,t}$ and $\Phi_{j,t}$ separately on the cross-industry discount-rate return correlation. Columns (2) and (4) examines the impact of unexpected change in total attention to the two industries, $\Phi_{i,t} + \Phi_{j,t}$, which is accomplished by restricting $\beta_1 = \beta_2$ in the above regression model. We include a number of lagged time-series variables as controls in the regression, represented by $\sum_{j=1}^{p} \gamma_j' X_{t-j}$. This includes one-period lag of the attention variables, four lags of the dependent variable, and four lags of discount-rate news volatilities for industries i and j. For brevity, only estimates on lagged attention variables are reported. Industry pair- and quarter-fixed effects are included. Time-series length reports the number of observations in each cross section. T-statistic adjusted for Heteroscedasticity (White, 1980) is shown in parentheses below each estimate. ***, ** and * indicate statistical significance at the 1, 5 and 10 percent levels, respectively.

<table>
<thead>
<tr>
<th>Discount-rate Return Correlations $\rho_{ij,t+1}$</th>
<th>Panel A. EWMA correlation</th>
<th>Panel B. Realized Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time-varying Attentions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Phi_{i,t}$</td>
<td>0.022***</td>
<td>0.061**</td>
</tr>
<tr>
<td></td>
<td>(4.24)</td>
<td>(2.51)</td>
</tr>
<tr>
<td>$\Phi_{j,t}$</td>
<td>0.020**</td>
<td>0.043</td>
</tr>
<tr>
<td></td>
<td>(2.31)</td>
<td>(1.49)</td>
</tr>
<tr>
<td>$\Phi_{i,t} + \Phi_{j,t}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.021***</td>
<td>0.042***</td>
</tr>
<tr>
<td></td>
<td>(5.39)</td>
<td>(2.75)</td>
</tr>
<tr>
<td>Lagged Attentions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Phi_{i,t-1}$</td>
<td>0.006</td>
<td>0.039</td>
</tr>
<tr>
<td></td>
<td>(1.04)</td>
<td>(1.56)</td>
</tr>
<tr>
<td>$\Phi_{j,t-1}$</td>
<td>-0.005</td>
<td>-0.012</td>
</tr>
<tr>
<td></td>
<td>(-0.86)</td>
<td>(-0.49)</td>
</tr>
<tr>
<td>$\Phi_{i,t-1} + \Phi_{j,t-1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td>(0.26)</td>
<td>(1.63)</td>
</tr>
<tr>
<td>Industry pair-fixed effect</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Quarter-fixed effect</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Lagged control vars</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>48.4%</td>
<td>1.75%</td>
</tr>
<tr>
<td>No. of cross sections</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Time-series length</td>
<td>120</td>
<td>120</td>
</tr>
</tbody>
</table>
A Appendix

A.1 Long-term Means and Variances

Let us consider the 4-dimensional vector \(Y = \left(\hat{f}_1 \ \hat{f}_2 \ \pi_1 \ \pi_2 \right)^\top \). The dynamics of \(Y \) in vector notation is

\[
dY_t = (A - BY_t) dt + CdW_t
\]

where

\[
A = \begin{pmatrix}
\lambda \bar{f} & \lambda \bar{f} & 0 & 0 \\
\lambda & 0 & 0 & 0 \\
0 & \lambda & 0 & 0 \\
0 & 0 & \omega & 0 \\
0 & 0 & 0 & \omega
\end{pmatrix}
\]

\[
B = \begin{pmatrix}
\frac{\gamma_1 t}{\sigma_d} & 0 & \sigma_f \Phi_{1t} & 0 \\
0 & \frac{\gamma_2 t}{\sigma_d} & 0 & \sigma_f \Phi_{2t} \\
\sigma_d & 0 & 0 & 0 \\
0 & \sigma_d & 0 & 0
\end{pmatrix}
\]

\[
C = \begin{pmatrix}
\frac{\gamma_1 t}{\sigma_d} & 0 & \sigma_f \Phi_{1t} & 0 \\
0 & \frac{\gamma_2 t}{\sigma_d} & 0 & \sigma_f \Phi_{2t} \\
\sigma_d & 0 & 0 & 0 \\
0 & \sigma_d & 0 & 0
\end{pmatrix}
\]

Applying Itô’s lemma on \(F \equiv e^{BY} \) yields

\[
dF = \begin{pmatrix}
e^{\lambda t} \left(\frac{\sigma_d \gamma_1 t dW_{1t} + \sigma_f \Phi_{1t} dW_{3t}}{\sigma_d} \right) \\
e^{\lambda t} \left(\frac{\sigma_d \gamma_2 t dW_{2t} + \sigma_f \Phi_{2t} dW_{4t}}{\sigma_d} \right) \\
e^{\omega t} \sigma_d dW_{1t} \\
e^{\omega t} \sigma_d dW_{2t}
\end{pmatrix}
\]

Integrating from 0 to \(t \) and taking expectation yields

\[
\begin{pmatrix}
e^{\lambda t} \mathbb{E} \left(\hat{f}_1 \right) - \hat{f}_{10} \\
e^{\lambda t} \mathbb{E} \left(\hat{f}_2 \right) - \hat{f}_{20} \\
e^{\omega t} \mathbb{E} \left(\pi_{1t} \right) - \pi_{10} \\
e^{\omega t} \mathbb{E} \left(\pi_{2t} \right) - \pi_{20}
\end{pmatrix} = \begin{pmatrix}
(e^{\lambda t} - 1) \bar{f} \\
(e^{\lambda t} - 1) \bar{f} \\
0 \\
0
\end{pmatrix}
\]
Therefore, the long-term means satisfy
\[
\lim_{t \to +\infty} \begin{pmatrix}
\mathbb{E}(\hat{f}_{1t}) \\
\mathbb{E}(\hat{f}_{2t}) \\
\mathbb{E}(\pi_{1t}) \\
\mathbb{E}(\pi_{2t})
\end{pmatrix} = \begin{pmatrix}
\bar{f} \\
\bar{f} \\
0 \\
0
\end{pmatrix}.
\]

Similar computations yield the long-term variances
\[
\lim_{t \to +\infty} \begin{pmatrix}
\text{Var}(\hat{f}_{1t}) \\
\text{Var}(\hat{f}_{2t}) \\
\text{Var}(\pi_{1t}) \\
\text{Var}(\pi_{2t})
\end{pmatrix} = \begin{pmatrix}
\sigma_f^2 / \lambda^2 \\
\sigma_f^2 / \lambda^2 \\
\sigma^2 / \lambda \\
\sigma^2 / \lambda
\end{pmatrix}.
\]

A.2 Long-term Uncertainty

The dynamics of the uncertainty \(\gamma_i \) conditional on \(\pi_i = 0 \) is
\[
d\gamma_{it} = \left(-\frac{\gamma_{it}^2}{\sigma_\delta^2} - 2\lambda \gamma_{it} + \sigma_f^2 (1 - \Psi^2) \right) dt.
\]

The dynamics of the uncertainty at the “steady-state” is
\[
\frac{d\gamma_{ss}}{dt} = 0.
\]

Solving yields
\[
\gamma_{ss} = \sigma_\delta \sqrt{\sigma_f^2 (1 - \Psi^2) + \lambda^2 \sigma^2 - \lambda \sigma_\delta^2}.
\]

A.3 Proof of Proposition 2

The price of the single-dividend paying securities \(S^T_1 \) is defined by
\[
P_{1t}^T = \mathbb{E}_t \left(\frac{\xi_T}{\xi_t} \delta_{1T} \right).
\]
Substituting Equation (13) in Equation (22) yields

\[P_{1t}^T = e^{-\Delta(T-t)}(\delta_{1t} + \delta_{2t})^\alpha \mathbb{E}_t \left(\delta_{1T} \left(\frac{1}{\delta_{1T} + \delta_{2T}} \right)^\alpha \right) \]

\[= e^{-\Delta(T-t)}(\delta_{1t} + \delta_{2t})^\alpha \mathbb{E}_t \left(\delta_{1T} \left(\frac{1}{\delta_{1T} + \delta_{2T}} \right)^\alpha \right) \]

\[= e^{-\Delta(T-t)} e^{\alpha(\zeta_{1t} - Q_t)} \mathbb{E}_t \left(e^{(1-\alpha)\zeta_{1T} + \alpha Q_T} \right) \]

where \(\zeta_i \equiv \log \delta_i \) is the log-dividend and \(Q = \log \frac{\delta_1}{\delta_1 + \delta_2} \) the log-dividend share. Similarly, the price of the single-dividend paying security \(P_{2t}^T \) satisfies

\[P_{2t}^T = \mathbb{E}_t \left(\frac{\xi_T}{\xi_t} \delta_{2T} \right) \]

\[= e^{-\Delta(T-t)}(\delta_{1t} + \delta_{2t})^\alpha \mathbb{E}_t \left(\delta_{2T} \left(\frac{1}{\delta_{1T} + \delta_{2T}} \right)^\alpha \right) \]

\[= e^{-\Delta(T-t)} e^{\alpha(\zeta_{1t} - Q_t)} \mathbb{E}_t \left(e^{\alpha(1-\alpha)\zeta_{1T} + \alpha Q_T} \right) \]

\[= e^{-\Delta(T-t)} e^{\alpha(\zeta_{1t} - Q_t)} \mathbb{E}_t \left(e^{\alpha(1-\alpha)\zeta_{1T} + \alpha Q_T} - P_{1t}^T \right) \]

\[\square \]

A.4 Approximation of the Transforms

The idea consists in approximating the dynamics of the state-vector, and then computing the transforms appearing in Equations (14) and (15) by applying the theory on affine processes (e.g., Duffie, Pan, and Singleton, 2000). An accurate approximation of the dynamics includes second-order terms. Consequently, before approximating we augment the state-vector by these second order terms (Cheng and Scaillet, 2007). Then, we compute the drift and variance-covariance matrix of the augmented state-vector. Finally, we approximate the augmented drift and variance-covariance matrix by performing a Taylor expansion.

Because the dividend share belongs to the interval \((0, 1)\), the log-dividend share \(Q \) belongs to \((-\infty, 0)\). Therefore, the dynamics of \(Q \) cannot be accurately approximated by performing
Taylor expansions. To overcome this problem we perform the following change of variable\(^\text{17}\)

\[\tilde{Q} \equiv \log \left(1 + \frac{\delta_1}{\delta_1 + \delta_2}\right) = \log (1 + e^Q)\]

where \(\tilde{Q} \in [0, \log(2)]\). The dynamics of \(\tilde{Q}\) are

\[
d\tilde{Q}_t = e^{-2\tilde{Q}_t} \left(e^{\tilde{Q}_t - 2} \left(e^{2\tilde{Q}_t} - 2\right) \sigma_\delta^2 + e^{\tilde{Q}_t} \left(\tilde{f}_{t-} - \tilde{f}_t\right)\right) dt
\]

\[+ \left(\sigma_\delta \left(3 - 2e^{-\tilde{Q}_t} - e^{\tilde{Q}_t}\right) \sigma_\delta \left(-3 + 2e^{-\tilde{Q}_t} + e^{\tilde{Q}_t}\right) 0 0\right) dW_t.
\]

Proposition 4. Under the change of variable stated above and the assumption that the coefficient of relative risk aversion \(\alpha\) is an integer, the single-dividend paying securities appearing in Equations (14) and (15) satisfy

\[
P_T^{1t} = e^{-\Delta(T-t)} \left(\frac{\tilde{e}^{\tilde{Q}_t - 2}}{e^{\tilde{Q}_t} - 1}\right) \sum_{j=0}^{\alpha} \left(\frac{\alpha}{j}\right) (-1)^{\alpha-j} \mathbb{E}_t \left(e^{(1-\alpha)\tilde{Q}_t + j\tilde{Q}_T}\right)
\]

\[
P_T^{2t} = e^{-\Delta(T-t)} \left(\frac{\tilde{e}^{\tilde{Q}_t - 2}}{e^{\tilde{Q}_t} - 1}\right) \sum_{j=0}^{\alpha-1} \left(\frac{\alpha-1}{j}\right) (-1)^{\alpha-1-j} \mathbb{E}_t \left(e^{(1-\alpha)\tilde{Q}_t + j\tilde{Q}_T}\right) - S_{1t}^T.
\]

Proof. The single-dividend paying securities price \(P_T^{1t}\) satisfies

\[
P_T^{1t} = e^{-\Delta(T-t)} e^{\alpha(\tilde{Q}_t - Q_t)} \mathbb{E}_t \left(e^{(1-\alpha)\tilde{Q}_t + \alpha Q_T}\right)
\]

\[= e^{-\Delta(T-t)} \left(\frac{\tilde{e}^{\tilde{Q}_t - 2}}{e^{\tilde{Q}_t} - 1}\right) \mathbb{E}_t \left(e^{(1-\alpha)\tilde{Q}_t} \left(e^{\tilde{Q}_T} - 1\right)^{\alpha}\right)
\]

\[= e^{-\Delta(T-t)} \left(\frac{\tilde{e}^{\tilde{Q}_t - 2}}{e^{\tilde{Q}_t} - 1}\right) \mathbb{E}_t \left(e^{(1-\alpha)\tilde{Q}_t} \sum_{j=0}^{\alpha} \left(\frac{\alpha}{j}\right) (-1)^{\alpha-j} e^{j\tilde{Q}_T}\right)
\]

\[= e^{-\Delta(T-t)} \left(\frac{\tilde{e}^{\tilde{Q}_t - 2}}{e^{\tilde{Q}_t} - 1}\right) \sum_{j=0}^{\alpha} \left(\frac{\alpha}{j}\right) (-1)^{\alpha-j} \mathbb{E}_t \left(e^{(1-\alpha)\tilde{Q}_t + j\tilde{Q}_T}\right).
\]

\(^{17}\)Note that this change of variable could be omitted. If it was, then the approximation of the transforms would be slightly less accurate.
Similarly, P^T_2 satisfies

$$P^T_{2t} = e^{-\Delta(T-t)} e^{\alpha(\zeta_{1t} - Q_t)} \mathbb{E}_t \left(e^{(1-\alpha)\zeta_{1T} + (\alpha-1)Q_T} - P^T_{1t} \right)$$

$$= e^{-\Delta(T-t)} \left(\frac{e^{\hat{Q}_t}}{e^{\hat{Q}_t} - 1} \right)^{\alpha} \mathbb{E}_t \left(e^{(1-\alpha)\zeta_{1T} - (\alpha-1)Q_T} - P^T_{1t} \right)$$

$$= e^{-\Delta(T-t)} \left(\frac{e^{\hat{Q}_t}}{e^{\hat{Q}_t} - 1} \right)^{\alpha} \sum_{j=0}^{\alpha-1} \left(\frac{\alpha-1}{j} \right) (-1)^{\alpha-1-j} \mathbb{E}_t \left(e^{(1-\alpha)\zeta_{1T} + j\hat{Q}_T} - P^T_{1t} \right). \quad (26)$$

□

We now proceed with the approximation method that allows us to compute the transforms appearing in Equations (25) and (26). Let the state-vector x be defined by

$$x \equiv (x_i)_{i=1}^8 = \begin{pmatrix} \zeta_1 & \hat{Q} & \hat{f}_1 & \pi_1 & \pi_2 & \gamma_1 & \gamma_2 \end{pmatrix}^\top,$$

with the dynamic

$$dx_t \equiv \mu(x_t) + \sigma(x_t)dW_t. \quad (27)$$

In Equation (27), the state-vector x has a non-affine dynamic with a non-affine drift $\mu(x)$ and a non-affine variance-covariance matrix $\sigma(x)\sigma(x)^\top$. Given the structure of $\mu(x)$ and $\sigma(x)\sigma(x)^\top$, the augmented state-vector X is chosen to be

$$X \equiv (X_i)_{i=1}^{17} = \begin{pmatrix} \zeta_1 & \hat{Q} & \hat{f}_1 & \pi_1 & \pi_2 & \gamma_1 & \gamma_2 & \ldots & \hat{Q}^2 & \hat{Q}\hat{f}_1 & \hat{Q}\hat{f}_2 & \hat{Q}\gamma_1 & \hat{Q}\gamma_2 & \pi_1^2 & \pi_2^2 & \gamma_1^2 & \gamma_2^2 \end{pmatrix}^\top$$

$$dX_t \equiv \mu(X_t) + \sigma(X_t)dW_t.$$

Approximated expressions for the augmented drift $\mu(X)$ and the variance-covariance matrix $\Sigma(X) \equiv \sigma(X)\sigma(X)^\top$ are derived using a Taylor expansion around the reference vector x_0. We discuss the procedure below in Definition 3.
Definition 3. The reference vector \(x_0 \) satisfies

\[
\begin{align*}
 x_{02} &= \log(1.5) \quad x_{03} = x_{04} = \bar{f} \\
 x_{05} &= x_{06} = 0 \\
 x_{07} &= x_{08} \equiv \gamma_{ss}.
\end{align*}
\]

Note that \(x_{01} \) is not defined because \(\zeta_1 \) neither shows up in the drift \(\mu(X) \) nor in the variance-covariance matrix \(\Sigma(X) \). \(\bar{f} \) is the long-term mean of \(\hat{f}_1 \) and \(\hat{f}_2 \), 0 is the long-term mean of \(\pi_1 \) and \(\pi_2 \), and \(\gamma_{ss} = \sigma_\delta \sqrt{\sigma_f^2 (1 - \Psi^2) + \lambda^2 \sigma_\delta^2 - \lambda \sigma_f^2} \) is the uncertainty conditional on \(\pi_i = 0 \). The derivations of the long-term means are provided in Appendix A.1. The long-term uncertainty \(\gamma_{ss} \) is computed in Appendix A.2.

The drift \(\mu(X) \) and the variance-covariance matrix \(\Sigma(X) \) are expanded around the reference vector \(x_0 \) defined in 3. More precisely, \(\mu(X) \) and \(\Sigma(X) \) are written

\[
\begin{align*}
 \mu(X) &\approx K_0 + K_1 X \\
 \Sigma(X) &\approx H_0 + \sum_{i=1}^{17} H_i X_i,
\end{align*}
\]

where \(K_1 \) and \(H_i, i = 0, \ldots, 17 \) are 17-dimensional squared matrices and \(K_0 \) a 17-dimensional vector. \(K_0, K_1, \) and \(H_i, i = 0, \ldots, 17 \) are available upon request.

Using the approximation, the theory on affine processes applies. Following Duffie, Pan, and Singleton (2000), the transforms defined in Equations (23) and (24) are approximated by

\[
E_t \left(e^{\xi \tau + \chi \tilde{Q} \tau} \right) \approx e^{\bar{\alpha}(T-t) + \sum_{i=1}^{17} \bar{\beta}_i (T-t) X_i},
\]

where the functions \(\bar{\alpha}(.) \) and \(\bar{\beta}_i(., i = 1, \ldots, 17 \), solve a set of 18 Riccati equations subject to \(\bar{\alpha}(0) = 0, \bar{\beta}_1(0) = \epsilon, \bar{\beta}_2(0) = \chi \), and \(\bar{\beta}_i(0) = 0, i = 3, \ldots, 17 \).

The system of Riccati equations is

\[
\begin{align*}
 \bar{\beta}'(\tau) &= K_1^T \bar{\beta}(\tau) + \frac{1}{2} \bar{\beta}(\tau)^T H_+ \bar{\beta}(\tau) \\
 \bar{\alpha}'(\tau) &= K_0^T \bar{\beta}(\tau) + \frac{1}{2} \bar{\beta}(\tau)^T H_0 \bar{\beta}(\tau),
\end{align*}
\]

where \(\tau = T - t \).\(^{18}\) The set of Riccati equations is solved numerically. Then, substituting Equation (28) in Equations (23) and (24) determines the single-dividend paying securities

\(^{18}\)Note that the matrix \(H_+ \) is 3-dimensional. It consists in the concatenation of the matrices \(H_i, i = 1, \ldots, 17 \). This notation is used to avoid writing an equation for each \(\bar{\beta} \).
prices P^T_1 and P^T_2. As described in Equation (16), stock prices are obtained by numerically integrating over the single-dividend paying securities.

A.5 Return-decomposition using VAR

We decompose quarterly returns of sixteen industries using a VAR model from January 1970 to December 2014.19 We assume that the vector of state variables $z_{i,t}$ describing an industry i at time t are generated by the following first-order VAR model:

$$z_{i,t} = A + \Gamma z_{i,t-1} + u_{i,t} \quad \Sigma = E[u_{i,t}u_{i,t}'], \quad (29)$$

where

$$z_{i,t} = \begin{bmatrix} r_{i,t} \\ r_{i,t-1} \\ dp_{i,t} \\ roe_{i,t} \\ ty_t \\ rm_t \end{bmatrix}, \quad A = \begin{bmatrix} a_1 \\ 0 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \end{bmatrix}, \quad \Gamma = \begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} & b_{15} & b_{16} \\ 1 & 0 & 0 & 0 & 0 & 0 \\ b_{31} & b_{32} & b_{33} & b_{34} & b_{35} & b_{36} \\ b_{41} & b_{42} & b_{43} & b_{44} & b_{45} & b_{46} \\ 0 & 0 & 0 & 0 & b_{55} & b_{56} \\ 0 & 0 & 0 & 0 & b_{56} & b_{66} \end{bmatrix}, \quad \text{and} \quad u_{i,t} = \begin{bmatrix} u_{i1,t} \\ 0 \\ u_{i3,t} \\ u_{i4,t} \\ u_{i5,t} \\ u_{i6,t} \end{bmatrix}.$$

The error term $u_{i,t}$ is assume to have a covariance matrix Σ. The first four elements in $z_{i,t}$ are industry-specific variables, where $r_{i,t}$, $dp_{i,t}$, and $roe_{i,t}$ denote the log industry excess return, the log dividend-price ratio, and the log return on equity, respectively. The lagged industry excess return $r_{i,t-1}$ is stacked as a second element in $z_{i,t}$ so that the VAR system in a first-order form (see Campbell (1991)). The remaining two elements in $z_{i,t}$ are macro variables, where ty_t is the term yield spread, and rm_t is the log market excess return, respectively.

We assume that the VAR coefficients A and Γ are constant, both over time and across industries. The elements in A represent time-series means of the state variables. The elements in the lower-left-hand corner of Γ are set equal to 0. This ensures the uniqueness in the dynamic of macro variables as they cannot be generated by a data generating process that differs from one industry to the next; see also Table 5 in Vuolteenaho (2002) for a similar setup. We estimate the VAR model in Equation (29) using the weighted least squares (WLS) approach. The number of industries in each cross section are used as weights. Panel A in Appendix Table A1 reports estimation results for the VAR model. For brevity, only coefficient estimates in Γ are reported.

19Our main empirical tests begin in 1985 due the data availability for calculating the attention measure. However, data for the return decomposition is available earlier. Thus, we use data starting in 1970 to improve the precision of VAR estimates.
Estimates from the VAR model can be conveniently applied to implement the return decomposition. Define $e1 \equiv [1 \ 0 \ 0 \ 0 \ 0 \ 0]'$ and

$$
\lambda' = e1'\rho\Gamma (I - \rho\Gamma)^{-1},
$$

where we recall that ρ is the discount factor in Equation (17). We follow Vuolteenaho (2002) and set $\rho = 0.967$ per annum, or $0.967^{1/4}$ for our quarterly frequency. Campbell (1991) shows that the discount-rate-news return can be expressed as $\lambda'u_{i,t}$ and the cash-flow-news return as $(e1' + \lambda')u_{i,t}$. Components in the variance decomposition of unexpected industry return as shown in Equation (17) can be written as follows:

$$
\text{var (Ndr)} = \lambda'\Sigma\lambda \\
\text{var (Ncf)} = (e1' + \lambda')\Sigma (e1 + \lambda) \\
\text{cov (Ndr, Ncf)} = \lambda'\Sigma (e1 + \lambda).
$$
Table A1: VAR Estimates and Variance Decomposition of Industry Returns

This table reports the parameter estimates for the first-order VAR (Panel A) and presents the variance decomposition of unexpected industry returns in a spirit of Campbell (1991) (Panel B). We estimate the following VAR system for the sixteen industries:

$$z_{i,t} = A + \Gamma z_{i,t} + u_{i,t}, \quad \Sigma = E \left[u_{i,t} u_{i,t}' \right],$$

where $z_{i,t} = [r_{i,t} \ r_{i,t-1} \ dp_{i,t} \ roe_{i,t} \ ty \ r_{m,t}]'$. The model includes industry-specific variables and aggregate variables. The industry-specific variables included are excess log return, r; log dividend-to-price ratio, dp; and log return on equity, roe. We include two lags of industry excess log return in the VAR system. The aggregate variables are term yield spread, ty, defined as the difference between 10-year and 3-month treasury rates; and excess log market return, r_{m}. We estimate the VAR system using quarterly data from 1970 to 2014. Panel A reports the estimates and robust Jackknife t-statistics of the parameters in Γ. ***, ** and * indicate statistical significance at the 1, 5 and 10 percent levels, respectively. Adjusted R^2 for each dependent variable is reported in the far-right column. Panel B reports a variance decomposition of quarterly industry excess returns using the VAR estimates. For each industry, we decompose the unexpected industry return, r_e, into a discount-rate news component, Ndr, and a cash-flow news component, Ncf. The variance of the total unexpected return can be split up into three terms $\text{var}(Ndr)$, $\text{var}(Ncf)$, $\text{cov}(Ndr, Ncf)$; see Equation (19) for a reference. The far-right column in Panel B reports the correlation between Ndr and Ncf. For each variable, we report the cross-sectional mean and its standard error, as well as the minimum and maximum values across the sixteen industries.

Panel A. Coefficient Estimates of the First-order VAR model

<table>
<thead>
<tr>
<th>$z_{i,t}$</th>
<th>$r_{i,t-1}$</th>
<th>$r_{i,t-2}$</th>
<th>$dp_{i,t-1}$</th>
<th>$roe_{i,t-1}$</th>
<th>ty_{t-1}</th>
<th>$r_{m,t-1}$</th>
<th>Adjusted R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r_{i,t}$</td>
<td>-0.0359*</td>
<td>-0.0581***</td>
<td>0.6410***</td>
<td>0.0048*</td>
<td>0.8263***</td>
<td>0.0892***</td>
<td>2.2%</td>
</tr>
<tr>
<td></td>
<td>(-1.80)</td>
<td>(-4.44)</td>
<td>(6.35)</td>
<td>(1.85)</td>
<td>(6.48)</td>
<td>(3.23)</td>
<td></td>
</tr>
<tr>
<td>$r_{i,t-1}$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$dp_{i,t}$</td>
<td>0.0023**</td>
<td>0.0008</td>
<td>0.9409***</td>
<td>-0.0003**</td>
<td>-0.0255***</td>
<td>-0.0068***</td>
<td>88.7%</td>
</tr>
<tr>
<td></td>
<td>(2.52)</td>
<td>(1.43)</td>
<td>(17.47)</td>
<td>(-2.37)</td>
<td>(-4.47)</td>
<td>(-5.49)</td>
<td></td>
</tr>
<tr>
<td>$roe_{i,t}$</td>
<td>0.1321**</td>
<td>-0.0041</td>
<td>-0.6023**</td>
<td>0.8606***</td>
<td>0.0602</td>
<td>-0.2608***</td>
<td>74.5%</td>
</tr>
<tr>
<td></td>
<td>(2.54)</td>
<td>(-0.12)</td>
<td>(-2.30)</td>
<td>28.1100</td>
<td>(0.18)</td>
<td>(-3.63)</td>
<td></td>
</tr>
<tr>
<td>ty_{t}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.7980***</td>
<td>-0.0080***</td>
<td>63.3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(18.38)</td>
<td>(-6.88)</td>
<td></td>
</tr>
<tr>
<td>$r_{m,t}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.8802***</td>
<td>0.0401***</td>
<td>1.9%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(9.57)</td>
<td>(3.04)</td>
<td></td>
</tr>
</tbody>
</table>

Panel B. Descriptives of the Variance Decomposition

<table>
<thead>
<tr>
<th></th>
<th>$\text{var}(r_e)$</th>
<th>$\text{var}(Ndr)$</th>
<th>$\text{var}(Ncf)$</th>
<th>$-2\text{cov}(Ndr, Ncf)$</th>
<th>$\text{corr}(Ndr, Ncf)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.0122</td>
<td>0.0030</td>
<td>0.0097</td>
<td>-0.0004</td>
<td>0.0309</td>
</tr>
<tr>
<td>Standard error</td>
<td>0.0004</td>
<td>0.0003</td>
<td>0.0010</td>
<td>0.0006</td>
<td>0.0295</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.0060</td>
<td>0.0017</td>
<td>0.0031</td>
<td>-0.0048</td>
<td>-0.0987</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.0184</td>
<td>0.0052</td>
<td>0.0182</td>
<td>0.0013</td>
<td>0.2890</td>
</tr>
</tbody>
</table>
Table A2: Industry-level Summary: Discount-rate Return, Discount-rate Volatility, and Investor Attention

This table reports summary statistics of quarterly variables used in the panel-regression model for each industry. See Table 3 for industry descriptions. Industry-level variables reported are the discount-rate return, Ndr; the discount-rate news volatility (in annualized term), σ; and the attention measure, Φ. For each variable, we report its time-series mean, standard deviation, minimum, and maximum values. Ndr each industry is calculated using a VAR model in the spirit of Campbell and Shiller (1988) and Campbell (1991); see Table A1 for the VAR estimates. Quarterly volatility of the discount-rate return σ that we report is calculated using the exponentially weighted moving-average (EWMA) model. Quarterly investor attention measure Φ is derived based on four industry-level characteristics: trading volume, number of institutional investors, number for analyst followings, and number of analysts’ forecast revisions. See text for details.

<table>
<thead>
<tr>
<th>Industry</th>
<th>Discount-rate news: Ndr</th>
<th>Discount-rate vol (annualized): σ</th>
<th>Attention measure: Φ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Stdev</td>
<td>Min</td>
</tr>
<tr>
<td>Cars</td>
<td>0.002</td>
<td>0.056</td>
<td>-0.117</td>
</tr>
<tr>
<td>Chems</td>
<td>-0.004</td>
<td>0.043</td>
<td>-0.130</td>
</tr>
<tr>
<td>Elecr</td>
<td>-0.003</td>
<td>0.056</td>
<td>-0.103</td>
</tr>
<tr>
<td>Food</td>
<td>-0.004</td>
<td>0.054</td>
<td>-0.134</td>
</tr>
<tr>
<td>Instr</td>
<td>-0.006</td>
<td>0.043</td>
<td>-0.173</td>
</tr>
<tr>
<td>Machn</td>
<td>-0.006</td>
<td>0.055</td>
<td>-0.182</td>
</tr>
<tr>
<td>Oil</td>
<td>0.000</td>
<td>0.058</td>
<td>-0.216</td>
</tr>
<tr>
<td>Phone</td>
<td>0.007</td>
<td>0.067</td>
<td>-0.332</td>
</tr>
<tr>
<td>Print</td>
<td>0.002</td>
<td>0.057</td>
<td>-0.103</td>
</tr>
<tr>
<td>Ptrlm</td>
<td>0.004</td>
<td>0.047</td>
<td>-0.096</td>
</tr>
<tr>
<td>Rail</td>
<td>-0.008</td>
<td>0.041</td>
<td>-0.103</td>
</tr>
<tr>
<td>Srvc</td>
<td>-0.009</td>
<td>0.048</td>
<td>-0.199</td>
</tr>
<tr>
<td>TV</td>
<td>-0.004</td>
<td>0.038</td>
<td>-0.083</td>
</tr>
<tr>
<td>Trans</td>
<td>-0.008</td>
<td>0.043</td>
<td>-0.134</td>
</tr>
<tr>
<td>Utils</td>
<td>0.015</td>
<td>0.057</td>
<td>-0.189</td>
</tr>
<tr>
<td>Whlsl</td>
<td>-0.004</td>
<td>0.040</td>
<td>-0.187</td>
</tr>
</tbody>
</table>
Table A3: Cross-industry Correlations of Discount-rate-news Returns

This table reports the correlation matrix of the discount-rate return component (Ndr) in quarterly returns of the sixteen industry portfolios from 1970 to 2014. There are 120 unique industry pairs. We estimate Ndr for each industry using a VAR model in the spirit of Campbell (1991). Quarterly time-varying correlations are calculated using the Exponentially-Weighted Moving Average (EWMA) model. Each cell consists of three rows. The first and second rows report the time-series mean and standard deviation (in parentheses) of the Ndr correlations. The third row reports the range of each correlation time series (in brackets), i.e., the minimum value and the maximum value.

<table>
<thead>
<tr>
<th>Industry</th>
<th>Cars</th>
<th>Chems</th>
<th>Elctr</th>
<th>Food</th>
<th>Instr</th>
<th>Machn</th>
<th>Oil</th>
<th>Phone</th>
<th>Print</th>
<th>Ptrlm</th>
<th>Rtail</th>
<th>Srvc</th>
<th>TV</th>
<th>Trans</th>
<th>UTILs</th>
<th>Whlsl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cars</td>
<td>1</td>
<td>0.68</td>
<td>0.72</td>
<td>0.55</td>
<td>0.69</td>
<td>0.48</td>
<td>0.49</td>
<td>0.65</td>
<td>0.52</td>
<td>0.71</td>
<td>0.51</td>
<td>0.62</td>
<td>0.75</td>
<td>0.55</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.17)</td>
<td>(0.17)</td>
<td>(0.15)</td>
<td>(0.18)</td>
<td>(0.14)</td>
<td>(0.14)</td>
<td>(0.17)</td>
<td>(0.13)</td>
<td>(0.19)</td>
<td>(0.14)</td>
<td>(0.14)</td>
<td>(0.16)</td>
<td>(0.20)</td>
<td>(0.15)</td>
<td>(0.19)</td>
</tr>
<tr>
<td>Chems</td>
<td>1</td>
<td>0.73</td>
<td>0.86</td>
<td>0.89</td>
<td>0.79</td>
<td>0.64</td>
<td>0.57</td>
<td>0.68</td>
<td>0.65</td>
<td>0.78</td>
<td>0.65</td>
<td>0.75</td>
<td>0.88</td>
<td>0.69</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.17)</td>
<td>(0.21)</td>
<td>(0.23)</td>
<td>(0.20)</td>
<td>(0.16)</td>
<td>(0.14)</td>
<td>(0.16)</td>
<td>(0.15)</td>
<td>(0.20)</td>
<td>(0.17)</td>
<td>(0.18)</td>
<td>(0.23)</td>
<td>(0.17)</td>
<td>(0.22)</td>
<td></td>
</tr>
<tr>
<td>Elctr</td>
<td>1</td>
<td>0.63</td>
<td>0.77</td>
<td>0.78</td>
<td>0.52</td>
<td>0.52</td>
<td>0.67</td>
<td>0.54</td>
<td>0.80</td>
<td>0.72</td>
<td>0.57</td>
<td>0.76</td>
<td>0.56</td>
<td>0.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.15)</td>
<td>(0.19)</td>
<td>(0.18)</td>
<td>(0.13)</td>
<td>(0.13)</td>
<td>(0.16)</td>
<td>(0.13)</td>
<td>(0.19)</td>
<td>(0.15)</td>
<td>(0.17)</td>
<td>(0.18)</td>
<td>(0.14)</td>
<td>(0.19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food</td>
<td>1</td>
<td>0.78</td>
<td>0.62</td>
<td>0.53</td>
<td>0.54</td>
<td>0.63</td>
<td>0.54</td>
<td>0.68</td>
<td>0.55</td>
<td>0.62</td>
<td>0.74</td>
<td>0.66</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.20)</td>
<td>(0.17)</td>
<td>(0.14)</td>
<td>(0.14)</td>
<td>(0.16)</td>
<td>(0.13)</td>
<td>(0.18)</td>
<td>(0.14)</td>
<td>(0.15)</td>
<td>(0.18)</td>
<td>(0.17)</td>
<td>(0.18)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instr</td>
<td>1</td>
<td>0.96</td>
<td>0.64</td>
<td>0.49</td>
<td>0.63</td>
<td>0.64</td>
<td>0.82</td>
<td>0.65</td>
<td>0.73</td>
<td>0.82</td>
<td>0.65</td>
<td>0.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.22)</td>
<td>(0.16)</td>
<td>(0.13)</td>
<td>(0.15)</td>
<td>(0.16)</td>
<td>(0.22)</td>
<td>(0.18)</td>
<td>(0.19)</td>
<td>(0.21)</td>
<td>(0.23)</td>
<td>(0.24)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machn</td>
<td>1</td>
<td>0.70</td>
<td>0.53</td>
<td>0.68</td>
<td>0.76</td>
<td>0.60</td>
<td>0.73</td>
<td>0.60</td>
<td>0.77</td>
<td>0.82</td>
<td>0.57</td>
<td>0.76</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.18)</td>
<td>(0.14)</td>
<td>(0.18)</td>
<td>(0.17)</td>
<td>(0.17)</td>
<td>(0.16)</td>
<td>(0.16)</td>
<td>(0.18)</td>
<td>(0.16)</td>
<td>(0.18)</td>
<td>(0.16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil</td>
<td>1</td>
<td>0.40</td>
<td>0.48</td>
<td>0.78</td>
<td>0.61</td>
<td>0.44</td>
<td>0.63</td>
<td>0.70</td>
<td>0.54</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.11)</td>
<td>(0.12)</td>
<td>(0.20)</td>
<td>(0.12)</td>
<td>(0.12)</td>
<td>(0.16)</td>
<td>(0.18)</td>
<td>(0.14)</td>
<td>(0.18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone</td>
<td>1</td>
<td>0.52</td>
<td>0.48</td>
<td>0.56</td>
<td>0.40</td>
<td>0.56</td>
<td>0.57</td>
<td>0.57</td>
<td>0.71</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.12)</td>
<td>(0.15)</td>
<td>(0.11)</td>
<td>(0.15)</td>
<td>(0.15)</td>
<td>(0.15)</td>
<td>(0.19)</td>
<td>(0.14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Print</td>
<td>1</td>
<td>0.50</td>
<td>0.70</td>
<td>0.49</td>
<td>0.67</td>
<td>0.70</td>
<td>0.54</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.12)</td>
<td>(0.17)</td>
<td>(0.13)</td>
<td>(0.16)</td>
<td>(0.17)</td>
<td>(0.13)</td>
<td>(0.17)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ptrlm</td>
<td>1</td>
<td>0.53</td>
<td>0.46</td>
<td>0.58</td>
<td>0.72</td>
<td>0.67</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.14)</td>
<td>(0.12)</td>
<td>(0.14)</td>
<td>(0.14)</td>
<td>(0.16)</td>
<td>(0.16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rtail</td>
<td>1</td>
<td>0.56</td>
<td>0.77</td>
<td>0.76</td>
<td>0.64</td>
<td>0.83</td>
<td>0.56</td>
<td>0.76</td>
<td>0.64</td>
<td>0.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.16)</td>
<td>(0.20)</td>
<td>(0.20)</td>
<td>(0.20)</td>
<td>(0.16)</td>
<td>(0.22)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Srvc</td>
<td>1</td>
<td>0.46</td>
<td>0.54</td>
<td>0.41</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.13)</td>
<td>(0.15)</td>
<td>(0.18)</td>
<td></td>
</tr>
<tr>
<td>TV</td>
<td>1</td>
<td>0.78</td>
<td>0.57</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.20)</td>
<td>(0.15)</td>
<td>(0.19)</td>
<td></td>
</tr>
<tr>
<td>Trans</td>
<td>1</td>
<td>0.69</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.17)</td>
<td>(0.24)</td>
<td></td>
</tr>
<tr>
<td>UTILs</td>
<td>1</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>Whlsl</td>
<td></td>
</tr>
</tbody>
</table>
Table A4: Time-varying Attentions and Volatility Spill-over: Alternative Specification

This table reports quarterly panel-regression results for the effect of time-varying attentions on discount-rate news volatility. The panel consists of 16 cross sections, one for each of the 16 industry portfolios. The sample period is from 1985 through 2014. The dependent variable in each column is the quarterly discount-rate news volatility $\sigma_{i,t+1}$ at time $t+1$ for industry i. Panel A reports results where the volatility is estimated using the EWMA model. In Panel B, the quarterly volatility is the absolute value of the discount-rate news component, i.e., realized volatility. The general regression model is:

$$
\sigma_{i,t+1} = \alpha_i + \beta_1 \Phi_{i,t} + \beta_2 \Phi_{-i,t} + \sum_{j=1}^{p} \gamma'_j X_{t-j} + \varepsilon_{i,t+1},
$$

for $i = 1, \ldots, 16$. In the above regression, $\Phi_{i,t}$ is the unexpected change in attention to industry i at time t, and $\Phi_{-i,t}$ is the average unexpected change in attention to the remaining 15 industries. Columns (1) and (3) report baseline regression results examining the impact of shocks to $\Phi_{i,t}$ and $\Phi_{-i,t}$ separately on volatility. Columns (2) and (4) examine the impact of unexpected change in total attention, $\Phi_{i,t} + \Phi_{-i,t}$, which is accomplished by restricting $\beta_1 = \beta_2$ in the above regression model. We include a number of lagged time-series variables as controls in the regression, represented by $\sum_{j=1}^{p} \gamma'_j X_{t-j}$. This includes one-period lag of the attention variables, and four lags of the dependent variable. For brevity, only estimates on lagged attention variables are reported. Industry- and quarter-fixed effects are included. T-statistic adjusted for Heteroscedasticity (White, 1980) is shown in parentheses below each estimate.

<table>
<thead>
<tr>
<th>Discount-rate news volatility $\sigma_{i,t+1}$</th>
<th>Panel A. EWMA volatility</th>
<th>Panel B. Realized volatility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Time-varying attentions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Phi_{i,t}$</td>
<td>0.002*</td>
<td>0.012***</td>
</tr>
<tr>
<td></td>
<td>(1.79)</td>
<td>(2.95)</td>
</tr>
<tr>
<td>$\Phi_{-i,t}$</td>
<td>0.005***</td>
<td>0.022***</td>
</tr>
<tr>
<td></td>
<td>(2.96)</td>
<td>(3.97)</td>
</tr>
<tr>
<td>$\Phi_{i,t} + \Phi_{-i,t}$</td>
<td>0.003***</td>
<td>0.005***</td>
</tr>
<tr>
<td></td>
<td>(3.95)</td>
<td>(5.86)</td>
</tr>
<tr>
<td>Lagged attentions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Phi_{i,t-1}$</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>$\Phi_{-i,t-1}$</td>
<td>0.000</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>(0.18)</td>
<td>(0.87)</td>
</tr>
<tr>
<td>$\Phi_{i,t-1} + \Phi_{-i,t-1}$</td>
<td>0.000</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(0.26)</td>
<td>(0.58)</td>
</tr>
<tr>
<td>Industry-fixed effect</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Quarter-fixed effect</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Lagged control vars</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>79.8%</td>
<td>79.8%</td>
</tr>
<tr>
<td></td>
<td>7.79%</td>
<td>7.75%</td>
</tr>
<tr>
<td>No. of cross sections</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Time-series length</td>
<td>120</td>
<td>120</td>
</tr>
</tbody>
</table>

50