
A User’s Guide to Solving Dynamic Stochastic

Games Using the Homotopy Method

– Code Description and Instructions –

Ron N. Borkovsky∗ Ulrich Doraszelski† Yaroslav Kryukov‡

June 7, 2010

∗Rotman School of Management, University of Toronto, Toronto, ON M5S 3E6,

ron.borkovsky@rotman.utoronto.ca.
†Department of Economics, Harvard University, Cambridge, MA 02138, doraszelski@harvard.edu.
‡Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213, kryukov@cmu.edu.

1

Contents

1 Overview 3

2 Model-independent code 4

3 Learning-by-doing code 5

3.1 Compiling and running . 5
3.2 Code for computing the starting point . 7
3.3 Homotopy code . 8
3.4 Output processing and summary statistics 9

4 Quality ladder code 10

4.1 Compiling and running . 11
4.2 Code for computing the starting point . 11
4.3 Homotopy code . 12
4.4 Output processing and summary statistics 13

5 Coding up a new model 14

5.1 Preliminaries . 14
5.2 Write out the binary file in Matlab (StartHom.m) 14
5.3 Read the binary file in Fortran (Main.f) . 15
5.4 System of equations (rho.f) . 16
5.5 Sparsity structure (SparseStru.f) . 17
5.6 HOMPACK90 with numeric Jacobian . 19
5.7 Analytic Jacobian with ADIFOR . 19
5.8 Reading the output (HomRead.m) . 21

2

1 Overview

This note accompanies the code for the two examples of dynamic stochastic games that are
solved using the homotopy method in Borkovsky, Doraszelski & Kryukov (2010). This note
also provides a step-by-step guide to coding up a new model. The code has several parts:

1. The code common to both models (in the Src directory), which is written entirely in
Fortran90, includes:

(a) HOMPACK90, developed by Watson, Sosonkina, Melville, Morgan & Walker
(1997), which in turn includes the BLAS and LAPACK libraries; and

(b) several small subroutines that we have written, which provide input and record
output using binary files and compute Jacobians.

2. The code specific to the models (in the LBD and QLD directories), which includes:

(a) Matlab code that solves for a starting point and generates a binary input file;

(b) Model-specific Fortran90 files that read the starting point binary input file, sup-
ply HOMPACK90 with the system of equations and its Jacobian, and run HOM-
PACK90. We use ADIFOR2.1 (developed by Bischof, Khademi, Mauer & Carle
(1996)) to compute the Jacobian.

(c) Matlab code that reads the binary output files generated by HOMPACK90 and
uses the output to compute some summary statistics for equilibria.

In order to run the code, you must have:

1. Matlab 6.0 or higher version. Matlab is a commercial product developed and dis-
tributed by Mathworks. We have used versions 6.5 and 7+.

2. Fortran90 compiler. There are several commercial compilers available on the market,
and there is a free version developed under the GNU project. We have successfully
compiled our code with the Compaq Visual Fortran 6.6.a compiler under Windows,
and the Portland Group PGF95 compiler on a Linux system.

The choice of Matlab as the “front end” is entirely due to our familiarity with it prior
to using HOMPACK, which in turn stems from its ease of use and graphical capabilities.
Our Fortran90 code can be used with any application that can read and write binary files.

Similarly, it is not necessary to use ADIFOR to analytically differentiate the code. We
supply the code to compute the Jacobian numerically, which offers comparable performance
when using the Normal flow and Augmented Jacobian algorithms.

Following a solution path of a reasonably-sized model can take a substantial amount of
time, up to several hours depending on the model, the algorithm used, and computer per-
formance. We have found it most efficient to use dedicated computational servers, typically

3

dense Jacobian sparse Jacobian
ODE based FIXPDF FIXPDS
normal flow FIXPNF FIXPNS

augmented Jacobian FIXPQF FIXPQS

Table 1: Path-following algorithms and dense vs. sparse Jacobian in HOMPACK90.

running Linux. At the same time, code development is much easier on a desktop, typically
a Windows machine. As such, our code is designed to work on both platforms and minimal
changes are required to move from one platform to the other.

The Fortran files described below might require minor editing depending on which com-
piler and operating system one uses. The code contains preprocessor directives (#ifdef,
#else, #endif, etc.) that attempt to instruct the compiler to use the correct syntax au-
tomatically, but they do not always work. If this occurs, it is safe to comment out the
preprocessor directives and one of the two versions of the command that they enclose. The
possible code changes that we have identified are:

1. Different compilers use different syntax for opening binary files. This affects open

statements in * Main.f and HOMPACK90/hom fileIO.f. To instruct the preprocessor
directive to use the ‘gfortran’ syntax, the user must define the “GFORTRAN” symbol in
the compiler environment or use the -dGFORTRAN switch in the command line.

2. Unix uses forward slash (“/”) as the directory separator, Windows uses backslash
(“\”). This affects the statement “write(filenm ... HomXpt ...” in the file
Src/hom fileIO.f, which is described in Section 2. Preprocessor directives assume
that a Windows compiler will have the “ WIN32” symbol defined in its environment,
or have the -WIN32 switch in the command line.

3. At least one compiler (Absoft) does not allow a comma in the write statement after
parentheses that enclose the output unit and format string. This affects multiple files.

The rest of this note proceeds as follows. Section 2 describes code common to all models.
Sections 3 and 4 present code specific to the learning-by-doing and organizational forgetting
(LBD) and quality ladder duopoly (QLD) models, respectively. Finally, Section 5 provides
a step-by-step guide to applying HOMPACK90 to a new problem.

2 Model-independent code

The code common to all models is stored in the Src directory and consists of the For-
tran90 (*.f) files listed below. We expanded HOMPACK90 by writing several subroutines
(hom fileIO.f, homjac*.f, and homjs*.f) that provide input and output via binary files
as well as Jacobian computation.

4

1. lapack.f, blas*.f – The LAPACK and BLAS packages handle linear algebra and
sparse matrices. The user will never need to change any of these.

2. hompack90.f – the HOMPACK90 package. Specifically, it includes the entry-point
subroutines for all six of the path-following algorithms (see Table 1), as well as all the
subroutines and functions that they call. The only change that a user may need to
make is to the LIMITD parameter that is present in each of the entry-point subroutines;
it is the upper bound on the number of steps that the homotopy algorithm takes.

3. hom fileIO.f – Converts output into binary files, written to a pre-existing HomXpt
subdirectory.

4. homjacA.f, homjacN.f – These subroutines compute the dense Jacobian used in the
FIXP*F algorithms. homjacN.f computes the Jacobian numerically using a two-sided
finite difference scheme. homjacA.F computes the Jacobian analytically by calling the
model-specific ADIFOR-generated file. Both files actually compute a specified column
of the Jacobian; HOMPACK90 assembles the Jacobian itself.

5. homjsA.f, homjsN.f – These subroutines compute the sparse Jacobian used in the
FIXP*S algorithms. homjsN.f computes the numeric Jacobian using a two-sided finite
difference scheme. homjsA.F computes the analytic Jacobian by calling the model-
specific ADIFOR-generated file.

3 Learning-by-doing code

The learning-by-doing model was our first application of HOMPACK90, so the code is not
always as polished or well-commented as the code for the quality ladder model. Therefore,
a user interested in applying the homotopy to his/her own problem would be better off
using the quality ladder code as an example.

On the plus side, the learning-by-doing code contains the features for storing and keeping
track of multiple runs of the code (for different parameterizations, that is); HOMPACK90
output for each run is converted into Matlab files, which are saved into an automatically-
named subdirectory. Expected Herfindahl indices for each run are saved in a separate file
for easy access and plotting.

The code is contained in the LBD directory and includes Matlab (*.m), Fortran90 (*.f),
and C (*.c) files.

As explained in Section 1, the code can be divided into three parts, each described in a
separate subsection below. In addition, we open with instructions on compiling and running
the code.

3.1 Compiling and running

Here are the instructions for compiling and running the code.

5

1. Compile C code used in Matlab code: open Matlab and run mex PM.m. Matlab
typically has its own C compiler; use this compiler or use the mex -setup command
to instruct Matlab to find and use compilers available on the system.

2. Compile Fortran files:

(a) Compile the following Fortran files:
LBD/NE Main.f

LBD/g NE rho1.f

LBD/NE rho.f

LBD/NE QRT.f

Src/hompack90.f

Src/rhojsA.f

Src/lapack.f

Src/hom fileIO.f

Src/blas*.f

(b) Make sure the compiled executable (typically an .exe file on a Windows system,
and an a.out file on a Unix/Linux system) is in the LBD directory.

(c) Open homNE90 Start.m. Uncomment line 117 if running on a Windows system
and line 119 if running on Unix-based system. On this line, make sure that the
correct name of the compiled executable appears after the “!” character.

3. Compute starting point. Edit the parameter values in masterNE.m and run it to
compute and save an equilibrium that will serve as a starting point for the homotopy
algorithm. There is already an equilibrium saved for the baseline parameterization
with δ = 0 and ρ = 0.85. masterNE.m allows one to compute several equilibria that
could later be used as starting points for different runs of the homotopy algorithm;
variables dlt val and rho val allow the user to select one or several (δ, ρ) pairs.
masterNE.m computes an equilibrium for each of these (δ, ρ) pairs; in particular, the
code will go through them in order, using the equilibrium computed for each param-
eterization as the starting point for the computation of an equilibrium for the next
parameterization.

4. Run the homotopy. Edit the starting and ending points in homNE90 Start.m and
run it. The homotopy code will run (it can take from minutes to hours, depending
on computer speed and the range of parameter values covered). It will then convert
step files from binary format to Matlab’s .mat format (homNE90 read.m). It will then
compute and plot expected Herfindahl indices for each step (hom steps.m).

Finally, it will generate two files and save them in the HomRes directory:

(a) DeltaRho *.mat contains δ and ρ for each step in the run.

6

(b) Herf *.mat contains several expected Herfindahl indices (limiting, maximum
over T = {1, 2, ..., 100} etc.) for each step.

3.2 Code for computing the starting point

We provide Matlab code for computing a starting point for the homotopy. While several
parts of the code are written to accommodate models with entry and exit, we focus here on
models without entry or exit.

1. GridDat – This is the directory for saved equilibrium files. It already includes one
equilibrium for δ = 0, ρ = 0.85.

2. mex PM.m – Compiles all C files. Matlab typically has its own C compiler; use this
compiler or use the mex -setup command to instruct Matlab to find and use compilers
available on the system.

3. masterNE.m – Main control script that computes and saves equilibria for one or several
sets of parameter values. Before starting computation, the script attempts to load a
saved equilibrium to use as a starting point; if there is no saved equilibrium, it uses
the equilibrium already in memory. Specifically, this means that if the code is used to
compute equilibria for several parameterizations, then the equilibrium for each param-
eterization is retained in memory and used as the starting point for computation of
the equilibrium for the next parameterization. If no saved file or previous equilibrium
is available, computation starts from the default policy and value functions that were
placed into memory by InitParamsEE.m.

The file also includes functionality to save multiple equilibria for the same parameter
values (the string variable FileMod becomes part of the filename), compute transient
distributions and Herfindahl indices, and produce summary plots of equilibria.

4. InitParamsEE.m – Sets up and initializes the global variables used in computation.

5. duopolyNE.m – computes an equilibrium using the Pakes & McGuire (1994) algorithm.
Note that important parts of the computation are done by WLEc and SolveFOCc, which
are described below.

6. plotEE Iter.m – Plots iteration progress.

7. cost.m – computes cost as a function of experience level.

8. FOC.m – FOC for the best response problem, as Matlab code. This can be used
with Matlab’s fzero command if SolveFOCc reports errors (uncomment line 43 in
duopolyNE.m).

7

9. FOCc.c – FOC for the best response problem, as a C function (run mex PM.m to
compile). This can be used with Matlab’s fzero command if SolveFOCc reports
errors (uncomment line 41 in duopolyNE.m).

10. SolveFOCc.c – Solution to the FOC, as a C function (run mex PM.m to compile). This
code implements our own zero-finding algorithm, which combines Interpolation and
Newton methods.

11. Fsale.m – Probability of sale going to firm 1.

12. Fsale0.m – Probability of sale going to the outside good.

13. WL.m – Conditional expectations, with no exit/entry, as Matlab code. This file can be
used in place of WLEc if compilation fails, but it is much slower.

14. WLEc.c – Conditional expectations, as a C function (run mex PM.m to compile).
Recall from the paper that the conditional expectation V n1(e) refers to the expected
value of firm 1 if firm n wins the sale. For legacy reasons, the code represents V 11(e)
as the W array (firm 1 W ins), V 21(e) as L (firm 1 Loses to its competitor), and V 01(e)
as Wa (a W in by the outside alternative). Furthermore, this code is general in that
it works for the version of the model that allows exit and entry, and thus requires
computation of conditional expectations for a monopolist (e2 = M + 1); for this
model, which does not include entry and exit, we simply set parameters to values at
which exit never occurs.

3.3 Homotopy code

This set of programs initializes the homotopy path-following package HOMPACK90 and
describes the model to it.

1. HomXpt – Directory that receives the step files generated by the homotopy.

2. homNE90 Start.m – Runs the homotopy:

(a) loads a saved equilibrium that serves a starting point for the homotopy algorithm;

(b) writes the equilibrium and parameter values into a binary file (hom start.dat);

(c) calls the executable compiled from Fortran90 files;

(d) generates the “name” of the run (fileMod variable);

(e) initiates output processing by running homNE90 read.m and hom steps.m.

3. NE Main.f – Starting point of the homotopy:

(a) reads the binary file created by homNE90 Start.m;

8

(b) sets precision for the path-following algorithm (ARCRE and ARCAE variables) – we
do not recommend making precision more strict than 10−12;

(c) calls the path-following algorithm.

4. NE rho.f – System of equations.

5. NE SparseStru.f – Defines sparsity structure of the Jacobian.

6. g NE rho1.f – ADIFOR-generated code that computes one column of the Jacobian.

ADIFOR-related files. These files serve as inputs to ADIFOR:

1. rho1.f – A version of NE rho.f modified to fit the requirements of ADIFOR2.0:

(a) stricter Fortran77 syntax;

(b) single input variable: NE rho.f has inputs x ∈ RN and λ ∈ R, while rho1.f

combines them into x ∈ RN+1.

2. rho1.adf and rho1.cmp provide additional input parameters to ADIFOR.

3. ad.bat is the Windows batch file containing the command line to the file that calls
ADIFOR. Running it creates the file output files/g QLD rho1.f. Before it can be
used in compilation, it has to be modified as described in Section 5 below.

3.4 Output processing and summary statistics

HOMPACK90 output is converted into Matlab .mat files, which are saved into an automatically-
named subdirectory; Herfindahl indices for every 10th step of the run are saved in a separate
file for easy access and plotting.

1. HomDat – Directory that stores step files in Matlab .mat format, each run gets its
own subdirectory.

2. HomRes – Directory that stores short files with homotopy results (δ and ρ values,
Herfindahl indices).

3. homNE90 read.m – Reads the step files generated by the homotopy from the HomXpt
directory and saves them as Matlab .mat files in a subdirectory of HomDat. Also
writes out list of δ and ρ values to a file in HomRes directory. The name of the run
as generated by homNE90 Start.m is used for both these files and the subdirectory of
HomDat.

4. hom steps.m – Computes Herfindahl indices for a given run, plots them and saves
them in a file in the HomXpt directory; this file again is named after the run. Can
also plot and test step files.

9

5. EE symmetry.m – Symmetry measures (Herfindahl indices).

6. EE welfExp.m – Welfare measures.

7. markEE Lim.m – Limiting (ergodic) distribution, linear algebra computation.

8. partition.m – Part of limiting distribution calculation.

9. components.m – Part of limiting distribution calculation.

10. markEE LimDirect.m – Limiting (ergodic) distribution, direct computation (T =
1024).

11. markEE Trans.m – Transient distributions.

12. transE.m – Experience transition probabilities, entry and exit.

13. transLC.m – Experience transition probabilities, no exit or entry.

14. TransMatEE duo.m – Markov kernel (matrix of state-to-state transition probabilities).

15. meanmode.m – Computes mean and mode of distribution over states.

16. plotNE ResTrans.m – Plots summary of equilibrium.

17. subtitle.m – Fills in “title” area in the figure (top middle).

18. ffooter.m – Fills in “footer” area (bottom-left corner).

19. fpage.m – Fills in “page #” area (bottom-right corner).

4 Quality ladder code

While the structure of the code is similar to that of the learning-by-doing model, the
code for the quality ladder model was developed at a later date; therefore, it incorporates
several programming improvements, better comments, and the option to use a wider range
of path-following algorithms. To keep the code simple, and because this smaller model
computes faster, we do not include the infrastructure for storing solution paths; recall that
this infrastructure is included in the code for the learning-by-doing model.

The code is contained in the QLD directory and includes Matlab (*.m) and Fortran90
(*.f) files.

As explained in Section 1, the code can be divided into three parts, each described in
its own subsection below. In addition, we open with instructions on compiling and running
the code.

10

4.1 Compiling and running

The instructions for compiling and running the code are as follows.

1. Compile Fortran files:

(a) Compile the following Fortran files:
QLD/QLD Main.f

QLD/QLD rho.f

QLD/g QLD rho1.f

QLD/QLD SparseStru.f

Src/hompack90.f

Src/rhojsA.f

Src/lapack.f

Src/hom fileIO.f

Src/blas*.f

To use a numeric Jacobian instead of an analytic Jacobian, replace Src/rhojsA.f
with Src/rhojsN.f, and remove QLD/g QLD rho1.f from the above list. To use
dense Jacobian storage format instead of sparse Jacobian storage format, re-
place QLD/QLD Main.f with QLD/QLD MainFull.f. To switch algorithms, com-
ment/uncomment the relevant lines in QLD Main.f (see Table 1).

(b) Make sure the compiled executable (typically an .exe file on a Windows system,
and a .out file on a Unix/Linux system) is in the QLD directory.

(c) Open QLD StartHom.m and uncomment line 109 if running on a Windows system
or line 112 if running on a Unix-based system. In either line, make sure that the
correct name of the compiled executable appears after the “!” character.

2. Compute starting point. Edit the parameter values in QLDmaster.m and run it
to compute and save an equilibrium. There is already an equilibrium saved for the
current parameter values.

3. Run the homotopy. Edit the starting and ending points in QLD StartHom.m and
run it. Watch the homotopy run, read the output, and compute and plot expected
Herfindahl indices (QLD HomRead.m); see step 4 in Section 3.1 for more detail.

4.2 Code for computing the starting point

We provide Matlab code for computing a starting point for the homotopy.

1. equilibria – Directory for saved equilibrium files.

2. PeriodProfit – The directory for saved equilibria of the product market game – i.e.,
equilibrium prices and profits. These product market equilibria are saved separately

11

from the Markov perfect equilibria in the directory equilibria so as to avoid repeated
computation, since the parameters that we allow the homotopy algorithm to vary do
not affect the product market equilibrium and thus the equilibrium profit function.

3. QLDmaster.m – The main control script that computes and saves equilibria for spec-
ified parameter values. Before starting computation, the script attempts to load a
saved equilibrium to use as a starting point. The script has the functionality to com-
pute transient distributions and Herfindahl indices, and to produce summary plots of
equilibria.

4. Qldsetup.m – Computes the period profit function.

5. myfun.m, myprof.m – Used in computation of the period profit function.

6. Qldvfi.m – Computes an equilibrium using the Pakes & McGuire (1994) algorithm.

7. QLDfigures.m - Plots figures for an equilibrium (can be run directly or called from
QLDmaster.m).

8. subtitle.m – Service function used in plotting.

9. QLDherf.m – Computes the Herfindahl index for a single equilibrium (can be called
from QLDmaster.m).

4.3 Homotopy code

This set of programs initializes the homotopy path-following package HOMPACK90 and
describes the model to it.

1. HomXpt - Directory that receives the step files generated by the homotopy algorithm.

2. QLD StartHom.m – Runs the homotopy:

(a) loads a saved equilibrium that will serve as the starting point for the homotopy
algorithm;

(b) writes the equilibrium and parameter values into a binary file (hom start.dat);

(c) calls the executable compiled from Fortran90 files;

(d) initiates output processing and Herfindahl calculation by running QLD ReadHom.m.

3. QLD Main.f – Starting point of the homotopy:

(a) reads the binary file created by homNE90 Start.m

(b) sets precision for the path-following algorithm (ARCRE and ARCAE variables)– we
do not recommend making precision more strict than 10−12;

12

(c) calls a sparse-Jacobian path-following algorithm (to choose an algorithm, un-
comment the corresponding INCLUDE and CALL statements in lines 168-177);

4. QLD MainFull.f – a version of QLD Main.f for dense (“full”) Jacobian algorithms.
Again, algorithm-specific INCLUDE statements and CALL statements are on lines 39-41
and 142-151, respectively.

5. QLD rho.f – System of equations.

6. QLD hom1.m - Matlab “prototype” of QLD rho.f.

7. QLD SparseStru.f – Defines sparsity structure of the Jacobian.

8. g QLD rho1.f – ADIFOR-generated code that computes one column of the Jacobian.

ADIFOR-related files. These files serve as inputs to ADIFOR:

1. rho1.f – A version of NE rho.f modified to fit the requirements of ADIFOR2.0:

(a) stricter Fortran77 syntax;

(b) single input variable: NE rho.f has inputs x ∈ RN and λ ∈ R, while rho1.f

stacks them into x ∈ RN+1.

2. rho1.adf and rho1.cmp provide additional input parameters to ADIFOR.

3. ad.bat is the Windows batch file containing the command line to the file that calls
ADIFOR. Upon running, it will create file output files/g QLD rho1.f. Before it
can be used in compilation, it has to be modified as described in Section 5 below.

4.4 Output processing and summary statistics

HOMPACK90 output is converted into Matlab .mat files. The code then computes and
plots various summary statistics.

1. QLD ReadHom.m – Reads the step files generated by the homotopy algorithm from
the HomXpt directory, computes the expected Herfindahl indices and other summary
statistics, and plots them.

2. QLD TransHerfs.m – Computes transient distributions and expected Herfindahl in-
dices.

3. QLD transMat.m – Computes transition matrix.

13

5 Coding up a new model

This section suggests a sequence of steps that one could take in applying HOMPACK90 to
an arbitrary model. It uses the quality ladder code described above as a starting point and
builds up the code in small testable steps. These steps are aimed at Fortran90 beginners
(which we were when we started); experienced Fortran users might find the level of detail
to be excessive.

5.1 Preliminaries

The process described below assumes that you:

1. Already have Matlab code that computes a solution for each starting point (i.e, start-
ing parameterization) that will be chosen for the homotopy algorithm. One can obtain
these solutions either analytically or numerically; for the latter, one could use a Gaus-
sian algorith – such as the Pakes & McGuire (1994) algorithm – or an equations
solver.

2. Know the basics of the Matlab scripting language and Fortran90.

3. Have access to Matlab and Fortran90 compilers. While everything can be done on a
server, a desktop environment might be more convenient.

4. Have successfully compiled and run the code for the quality ladder model.

5. Have made a copy of the quality ladder code, as it will be the starting point of your own
code. Feel free to rename files as long as you do not change names in the SUBROUTINE

statements within the files.

As mentioned above, use of Matlab as the front end is not necessary; one could use any
application that can read and write binary files as described below.

5.2 Write out the binary file in Matlab (StartHom.m)

In the quality ladder code, this is done by QLD StartHom.m. The binary file should be
named hom start.dat and should contain:

1. Parameter values, including starting and ending values. Since Matlab does not have
explicit support for integer variables, we write them out as reals, and convert them
to integer variables in Fortran.

2. The starting vector x - comprising stacked policies and values (i.e., the policy and
value functions evaluated at each state). If you replace the policies with the Zangwill
& Garcia (1981) variables, you will need to compute the corresponding policies; see
QLD StartHom.m , lines 53-82 .

14

3. The period profit function – if the model has a period profit function and if it is
not a function of the parameters that will be varied by the homotopy algorithm. If
changes in these parameters do change the equilibrium period profit function, then
you will need to add the period game policies (e.g., prices) to the x vector, and the
period game first-order conditions (or other optimality conditions) to the system of
equations.

The Fortran code assumes that the input file stores a sequence of 8-byte double precision
real numbers. Binary files operate like magnetic tape; Fortran will read the numbers in the
same order as they were written out by Matlab.

5.3 Read the binary file in Fortran (Main.f)

Here you have to decide whether you want to use a dense or sparse Jacobian. Using a dense
Jacobian requires a little less coding; however, a sparse Jacobian algorithm will likely run
faster. We strongly recommend using a sparse Jacobian (Main.f), and we do so in the
example below. If you want to use a dense Jacobian, use MainFull.f; that line numbers
are different but statements are generally quite similar.

Edit your copy of Main.f as follows:

1. Comment out the calls to code components that are not there (yet):
CALL QR STRU(N,LENQR) – line 122
CALL FIXP... – lines 168-177
USE HOMPACK90, ONLY : FIXP... – lines 39-41
CALL hom TestRun(H,A,X,N) – line 128
CALL RHOJS(A,LAMBDA,X), and PRINT commands around it – lines 343-345

2. Uncomment SUBROUTINE RHOJS (lines 381-383) and SUBROUTINE RHO (lines 385-387).
We do not have those functions (yet), so we need to replace them with these “dum-
mies”İn MainFull.f, uncomment RHOJAC, which replaces RHOJS for the time being.

3. In subroutine hom Initialize1Run (lines 203-291):

(a) Replace declarations of model parameters and COMMON blocks (used as ”global”
variables);

(b) Replace the code that reads in model parameters, which is below the declarations;

(c) Compute the number of equations N based on these parameters.

4. If you have a vector containing the stacked version of the period profit matrix, replace
N/2 with the length of that vector in line 112:
ALLOCATE(Profit(N/2))

Do the same in line 118:
read(fid) (Profit(i),i=1,N/2)

15

5. If your model does not have a period profit function, remove: (a) lines 112 and 118;
(b) declaration of module mProfit (lines 23-26); (c) USE mProfit (line 37).

6. If you have more than one ”profit function” or other vector inputs, add them to the
declaration of module mProfit, allocate them, and read them in.

Then compile and run the following files:
Main.f

Src/hompack90.f

Src/lapack.f

Src/hom fileIO.f

Src/blas*.f

Use print statements or debugging tools to make sure that all inputs have been read cor-
rectly.

5.4 System of equations (rho.f)

The inputs to the system of equations are the homotopy parameter λ and the vector x

that contains values and policies for all states; moreover, if one uses the Zangwill & Garcia
(1981) reformulation of the complementary slackness conditions, then the vector x will
include the additional variables that this reformulation introduces. The output is a vector
of residuals of the system of equations H = H(x). (Vector a is not used because it is a part
of the HOMPACK90 artificial-parameter homotopy algorithms; we use the HOMPACK90
natural-parameter homotopy algorithms.)

If you are not familiar with the process through which you recast your problem as system
of equation, it might be useful to make a Matlab prototype first. In any case, it is very
helpful to have the system of equations written out before you start coding.

You can edit the existing function by replacing the code below the declaration of the
subroutine and its input/output arguments and above the END statement. Alternatively,
you can create your own function using function and argument declarations.

It is good practice to copy (rather than re-type) declarations of model parameters and
COMMON statements from the Main.f and hom Initialize1Run subroutines.

You will need to extract policies and values for specific states from the x vector, substi-
tute them into an equation from the system of equations in order to compute the equation
residual, and then insert this residual into the corresponding element of the H vector.
Specifically, this means mapping each policy and value for each state into a scalar position
(“an index”) within x. In QLD rho.f, we do this using index “offsets” (offV for value func-
tion, etc.), a pre-computed index (ndx1), and function calls (like ndx(i,j,L)). Similarly,
each equation for each state is mapped to a position within H vector.

Pay very close attention to syntax; Fortran is much more rigorous than Matlab. For
example, one must ensure all variables are declared, either as real*8 or integer; some

16

compilers assume undeclared variables are real*4, which limits precision to 7-8 digits.
Consider another example: we once found that a missing comma in a variable declaration
did not cause a compiler error, but instead led to a crash at runtime.

Once the function is complete, it is time to test it. In Main.f, do the following.

1. Comment out SUBROUTINE RHO (3 lines near the end of file); the function you just
wrote replaces it.

2. Uncomment the line that reads:
CALL hom TestRun(H,A,X,N).

3. Compile the following files:
Main.f

Src/hompack90.f

Src/lapack.f

Src/hom fileIO.f

Src/blas*.f

rho.f

The executable should return the maximum absolute residual. Needless to say, it should
be reasonably small for the starting point; specifically, it should be below the path following
precision set in the ARCRE and ARCAE variables in Main.f. If it is not, make sure the starting
value is computed to similar or higher precision. If the starting value is computed to similar
of higher precision, note the number of the equation that results in the largest residual, and
then use debug features or print statements to explore the computation of this element and
search for the problem.

5.5 Sparsity structure (SparseStru.f)

If you are using a dense Jacobian, skip this section. If you are using a sparse Jacobian,
you need to specify the location (row and column) of all potentially non-zero elements
of the Jacobian. In other words, for any row j, you need to specify the set of columns
I ⊂ {1, ..., N +1} such that each variable in the set {xi}i∈I enters the expression for Hj(x).
This structure must remain unchanged throughout the entire run, so one cannot quite
“read” the sparsity structure from the Jacobian as one computes it, and instead has to
specify it in advance.

That might sound like a challenge, but in fact you have already done this when you
computed Hj(x) in rho.f. Now, you simply need to go though the rho.f code and identify
the components of X used to compute each component of H.

The sparse Jacobian uses the so-called “sparse row” storage format, which is described
in detail on p. 528 of Watson et al. (1997). It requires three vectors:

17

1. QRSPARSE – This vector comprises the potentially nonzero elements of the Jacobian,
ordered by row; the elements within a row need not be in column order, however,
we feel that is more straightforward to arrange them in column order. The LENQR

variable is set equal to the number of potential nonzeros; therefore, the length of the
QRSPARSE vector is LENQR.

2. COLPOS – This vector comprises column indices of potentially non-zero elements, in
the same order as in QRSPARSE. The length of this vector is LENQR, as there is one such
index for each potentially non-zero element of the Jacobian.

3. ROWPOS – ROWPOS(j) provides the location within QRSPARSE (COLPOS) of the beginning
of the elements (indices) for the jth row of the Jacobian. ROWPOS is an (N + 1)-
dimensional vector; element (N + 1) is set equal to LENQR+1.

COLPOS and ROWPOS represent the “sparsity structure” of the Jacobian and remain un-
changed as HOMPACK90 runs. Unlike them, QRSPARSE changes every time the Jacobian
is evaluated (by the rhojs subroutine).

One approach is to set COLPOS and ROWPOS in Fortran using SparseStru.f. Detailed
instructions are included within the file; the general idea is to have a loop that goes through
every row (equation) in order, and within each equation, passes column indices to a function
(RECNZ) that “records” them in the sparsity structure.

An alternative approach is to create COLPOS and ROWPOS in Matlab, write them into a
binary file, and then read them in Fortran.

Once the sparsity structure is defined, one can test it by modifying Main.f:

1. Comment out the SUBROUTINE RHOJS placeholder (3 lines at the end of the file).

2. Uncomment CALL RHOJS(A,LAMBDA,X) and the PRINT commands around it.

3. Uncomment CALL QR STRU(N,LENQR).

4. Compile the following files:
Main.f

Src/hompack90.f

Src/lapack.f

Src/hom fileIO.f

Src/blas*.f

rho.f

SparseStru.f

Src/RhojsN.f (the numeric computation of a sparse Jacobian)

5. Once you run, you will either get a “RHOJS done” success message or an ”unexpected
nonzero” message from Rhojs indicating that it came across a nonzero that was not
specified in the sparsity structure.

18

5.6 HOMPACK90 with numeric Jacobian

Below we provide instructions for running HOMPACK90 with a numeric Jacobian.

1. Uncomment the following lines in Main.f:

(a) CALL FIXP...

(b) USE HOMPACK90, ONLY : FIXP...

2. Set ARCRE and ARCAE to 1.0D-7 in Main.f; you cannot achieve better precision with
a numeric Jacobian.

3. Compile the following files:
Main.f (is using a dense Jacobian, replace with MainFull.f)
rho.f

SparseStru.f (not used with dense Jacobian)
Src/hompack90.f

Src/rhojsN.f (if using a dense Jacobian, replace with rhojacN.f)
Src/lapack.f

Src/hom fileIO.f

Src/blas*.f

4. Create the HomXpt subdirectory (if it does not already exist).

5. Run the compiled executable. You should see the homotopy algorithm going through
the steps, and the step files should be saved in HomXpt.

5.7 Analytic Jacobian with ADIFOR

This step is optional for the Normal flow and Augmented Jacobian algorithms. However,
the ODE-based algorithm is very sensitive to Jacobian precision and therefore should be
run with an analytic Jacobian. Moreover, with any algorithm, one cannot set precision
parameters (ARCRE and ARCAE variables) below 10−7 when using a numeric Jacobian because
limited precision of numeric Jacobian computation limits the precision of path-following.

In order to obtain the code for the analytic Jacobian, we create a copy of rho.f, adapt
it as per the ADIFOR requirements, run ADIFOR on it, and edit the result.

1. Obtain ADIFOR from http://www-unix.mcs.anl.gov/autodiff/ADIFOR

2. Make a copy of the rho.f file; we usually call it rho1.f.

3. Edit the file so that it has a single input vector and Fortran77 syntax:

(a) Copy subroutine and argument declarations from QLD rho1.f.

19

(b) Use X(N+1) instead of LAMBDA.

(c) Replace ”USE mProfit” command with ”real*8 profit(10000)”.

(d) Replace all ”DOUBLE PRECISION” declarations with real*8.

(e) Replace all array size declarations with constants or parameters (see LBD code).

4. Make sure you have ad.bat, rho1.adf and rho1.cmp in your directory. Open rho1.cmp

with Notepad (or any text editor) and insert the name of your rho1.f file; this file
should include only the name of this file.

5. Run ad.bat or execute the command for it on a Unix machine (see the ADIFOR
manual for more detail).

(a) If you get an error message regarding a particular line and this message contains
only a “smiley face” character, delete or comment out all empty lines or make
sure that there are no spaces in them.

(b) If you get an “Incompatible argument types” error message, make sure integer
constants are written as “2.0D0” when used in the same expressions as reals.

6. If successful, ADIFOR will generate Output Files/g * rho1.f file (g for augmented).
Copy it to the main directory.

7. Open g * rho1.f file, and undo all “Replace” changes made in step 3 (i.e., steps (c),
(d) and (e)). Keep X(N+1) and the declarations of the subroutine and the arguments.

8. Search for and comment out lines beginning with “call eh”. These are calls to
ADIFOR’s “exception handler” for handling potential kinks; we eliminate these calls
because we design our model to be free of kinks. Alternatively, add the ADIFOR
exception handling libraries into compilation (see the ADIFOR manual).

If your model has been designed to be free of kinks, you can comment out all calls to
ADIFOR’s exception handler. There is one call, “call ehsfid” at the beginning of
every procedure that can safely be commented out. On further calls to the exception
handler, you might want to add a print statement indicating that an exception has
been reached. If your model has been designed to be free of kinks, this print state-
ment should never be executed. If you see the output of the print statement in the
homotopy output, a mistake has occurred; examine the code and read the ADIFOR
documentation to identify the exception that ocurred and try to resolve it – either by
directly altering the code or using ADIFOR’s exception-handling libraries.

9. If rho.f includes any functions that are not affected by LAMBDA or the X vector (like
NDX() in QLD rho.f), g * rho1.f will contain exact copies of these functions and
you should delete them in order to avoid “already defined” compiler errors.

20

10. Replace RhojsN.f in the compilation list with g * rho1.f and rhojsA.f. It follows
that the complete list becomes:
Main.f (if using a dense Jacobian, replace with MainFull.f)
rho.f

SparseStru.f (not used with dense Jacobian)
Src/hompack90.f

Src/lapack.f

Src/hom fileIO.f

Src/blas*.f

g * rho1.f

Src/rhojsA.f (if using a dense Jacobian, replace with rhojacA.f)

- compile and run
- you should see the homotopy algorithm going through the steps, and step files should

be saved in HomXpt

5.8 Reading the output (HomRead.m)

To read the output, you can create a Matlab script that will go through the files in the
HomXpt directory. For each file:

1. Use fread to read an (N + 2)-dimensional vector from the file; it contains (x, λ, s).
s ∈ R is the path-following parameter (or path length) described in the main paper.
Changes in s from step to step show you large each step is and accordingly how quickly
the algorithm moves along the solution path.

2. Recover model parameters from λ: It is a good practice to either keep parameter
values in Matlab’s memory, or read them from hom start.dat.

3. Break up x into policy and value functions, and convert them into matrices (use
reshape).

Do whatever you please with the equilibrium you have – save it, test it, compute eco-
nomic indicators, plot it etc. See QLD/QLD HomRead.m and LBD/hom steps.m for some ideas.

References

Bischof, C., Khademi, P., Mauer, A. & Carle, A. (1996), ‘ADIFOR 2.0: Automatic dif-
ferentiation of Fortran 77 programs’, IEEE Computational Science and Engineering
3(3), 18–32.

Borkovsky, R., Doraszelski, U. & Kryukov, S. (2010), ‘A user’s guide to solving dynamic
stochastic games using the homotopy method’, Operations Research forthcoming.

21

Pakes, A. & McGuire, P. (1994), ‘Computing Markov-perfect Nash equilibria: Numerical
implications of a dynamic differentiated product model’, Rand Journal of Economics
25(4), 555–589.

Watson, L., Sosonkina, M., Melville, R., Morgan, A. & Walker, H. (1997), ‘Algorithm
777: HOMPACK90: A suite of Fortran 90 codes for globally convergent homotopy
algorithms’, ACM Transcations on Mathematical Software 23(4), 514–549.

Zangwill, W. & Garcia, C. (1981), Pathways to solutions, fixed points, and equilibria, Pren-
tice Hall, Englewood Cliffs.

22

	Overview
	Model-independent code
	Learning-by-doing code
	Compiling and running
	Code for computing the starting point
	Homotopy code
	Output processing and summary statistics

	Quality ladder code
	Compiling and running
	Code for computing the starting point
	Homotopy code
	Output processing and summary statistics

	Coding up a new model
	Preliminaries
	Write out the binary file in Matlab (StartHom.m)
	Read the binary file in Fortran (Main.f)
	System of equations (rho.f)
	Sparsity structure (SparseStru.f)
	HOMPACK90 with numeric Jacobian
	Analytic Jacobian with ADIFOR
	Reading the output (HomRead.m)

