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Abstract

We provide a risk-based explanation for the excess returns of two widely-known

currency speculation strategies: carry and momentum trades. We construct a global

equity correlation factor and show that it explains the variation in average excess

returns of both these strategies. The global correlation factor has a robust negative

price of beta risk in the FX market. We also present a multi-currency model which

illustrates why heterogeneous exposures to our correlation factor explain the excess

returns of both portfolios.
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I Introduction

There is a great deal of evidence of significant excess return to foreign exchange (hence-

forth FX) carry and momentum strategies (see, e.g., Hansen and Hodrick (1980) and Okunev

and White (2003)). Numerous studies provide different risk-based explanations for the for-

ward premium puzzle.1 However, it has proven rather challenging to explain carry and

momentum strategies simultaneously using these risk factors (see, Burnside, Eichenbaum,

and Rebelo (2011) and Menkhoff, Sarno, Schmeling, and Schrimpf (2012b)).2 This paper

contributes to this literature by providing a risk-based explanation of FX excess returns

across carry and momentum portfolios simultaneously. We construct a common factor that

drives correlation across international equity markets and show that the cross-sectional vari-

ations in the average excess returns across carry and momentum sorted portfolios can be

explained by different sensitivities to our correlation factor. We also present a multi-currency

model which illustrates why heterogeneous exposures to our correlation factor explain the

excess returns of both portfolios.

The correlation-based factor as a measure of the aggregate risk is motivated by the

analysis in Pollet and Wilson (2010). They document that, since the aggregate wealth

portfolio is a common component for all assets, the changes in the true aggregate risk reveal

1The forward premium puzzle arises since FX changes do not compensate for the interest rate differentials.
Under rational expectation assumption, exchange rates are expected to change in direction to eliminate
gains from interest rate differentials. However, a number of empirical studies have found that the uncovered
interest parity is violated. The extant literatures document various risk-based explanations for the forward
premium puzzle. See, e.g., consumption growth risk (Lustig and Verdelhan (2007)), time-varying volatility
of consumption (Bansal and Shaliastovich (2012)), exposure to the FX volatility (Bakshi and Panayotov
(2013), Menkhoff, Sarno, Schmeling, and Schrimpf (2012a)), exposure to high-minus-low carry factor (Lustig,
Roussanov, and Verdelhan (2011)), liquidity risk (Brunnermeier, Nagel, and Pedersen (2008), Mancini,
Ranaldo, and Wrampelmeyer (2013)), disaster risk (Jurek (2008) and Farhi, Fraiberger, Gabaix, Ranciere,
and Verdelhan (2009)) and peso problem (Burnside, Eichenbaum, Kleshchelski, and Rebelo (2011)).

2While showing that the risk-based explanation for carry fails to explain momentum, Menkhoff, Sarno,
Schmeling, and Schrimpf (2012b) offered an alternative limits to arbitrage explanation by showing that
the exposure to currency momentum strategies is subject to fundamental investment risk characterized
by idiosyncratic components, such as idiosyncratic volatility or country risk, of the currencies involved.
Similarly, Burnside, Eichenbaum, Kleshchelski, and Rebelo (2006) and Burnside, Eichenbaum, and Rebelo
(2011) argue that the high excess returns should be understood, along with high bid-ask spread and price
pressure, as an increasing function of net order flow.

1



themselves through changes in the correlation between observable stock returns. Therefore,

an increase in the aggregate risk must be associated with increased tendency of co-movements

across international equity indices. Since currency market risk premium should be driven by

the same aggregate risk which governs international equity market premium, our correlation

factor can explain the average excess returns across currency portfolios.

We construct two measures of correlations to quantify the evolution of co-movements in

international equity market indices. First, we employ the dynamic equicorrelation (DECO)

model of Engle and Kelly (2012) and apply it to monthly equity return series. Second,

we measure the same correlation dynamics by taking a simple mean of bilateral intra-month

correlations at each month’s end using daily return series. The correlation innovation factors

are constructed as the first difference in time series of the global correlation. Across portfolios,

we run cross-sectional (CSR) asset pricing tests on FX 10 portfolios which consist of two

sets of five portfolios: the set of sorted carry and momentum portfolios.

We show that differences in exposures to our correlation factor can explain the system-

atic variation in average excess returns of portfolios sorted on interest rates and momentums.

Our correlation factor has an explanatory power over the cross-section of carry and momen-

tum portfolios with R2 of 90 percent. The prices of beta risk for both measures of our

correlation innovation factor are economically and statistically significant under Shanken’s

(1992) estimation error adjustment as well as misspecification error adjustment as in Kan,

Robotti, and Shanken (2012). The negative price of beta suggests that investors demand low

risk premium for the portfolios whose returns co-move with the global correlation innovation

since they provides hedging opportunity against unexpected deteriorations of the investment

opportunity set.

To explore the explanatory power of our correlation factor, we construct numerous risk

factors discussed frequently in the currency literature. The list includes (i) a set of traded

and non-traded factors constructed from FX data, (ii) a set of liquidity factors, and (iii)

a set of US equity market risk factors. Consistent with the forward puzzle literature, we

find that those factors have explanatory power over the cross-section of carry portfolios with
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R2 ranging from 58 percent for TED spread innovation to 92 percents for FX volatility

factor. We show that the same set of factors fail to explain the cross-section of momentum

portfolios which is consistent with the finding in Burnside, Eichenbaum, and Rebelo (2011)

and Menkhoff, Sarno, Schmeling, and Schrimpf (2012b). Furthermore, we demonstrate that

our factor can explain the cross-section of momentum portfolios and significantly improve

the explanatory power across carry portfolios, whereas the price of beta risk is not affected

by the inclusion of those factors.

We also examine whether the statistical significance of the regression results is specifically

driven by our choice of test assets. Lustig and Verdelhan (2007) add 5 bond portfolios and 6

Fama-French equity portfolios to their 8 FX portfolios. Burnside, Eichenbaum, Kleshchelski,

and Rebelo (2011) uses 25 Fama-French portfolios jointly with the equally-weighted carry

trade portfolios. Following their methodologies, we augment our FX 10 portfolios with Fama-

French 25 portfolios formed on size and book-to-market and run cross-sectional regression on

these expanded test assets. We find that the price of beta risk of our factor is still statistically

and economically significant with these augmented test assets after controlling for market

risk premium and Fama-French factors.

Since ours is a non-traded factor3, the variance of residuals generated from projecting

the factor onto the returns could be very large, which leads to large misspecification errors

(Kan, Robotti, and Shanken (2012)). Therefore, we convert our correlation factor into excess

returns by projecting it onto the FX market space and test the significance of price of the

factor-mimicking portfolio as in Lustig, Roussanov, and Verdelhan (2011) and Menkhoff,

Sarno, Schmeling, and Schrimpf (2012a). The cross-sectional regression result shows that a

similar level of R2 (about 90 percents) can be obtained whether the tests are performed on

carry and momentum portfolios separately or jointly.

To investigate the robustness of our empirical findings, we perform the following series

3There have been recent developments to estimate the average correlation of US equity stocks that
is implied in the option market. Correlation swap to hedge risks associated with the observed average
correlation in stock, commodity and FX markets have also emerged from over-the-counter trades. See,
Driessen, Maenhout, and Vilkov (2009) for details of the correlation swap trade.
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of additional tests. First, we show that trading on portfolios sorted on the correlation

innovation factor betas can yield a statistically significant monotonic relation in average

returns (see, Wolak (1989) and Patton and Timmermann (2010) for the description of the

monotonicity tests). The average excess returns of those portfolios are a decreasing function

of the average beta exposure to our risk factor, confirming the idea of negative price of

beta risk. Second, we investigate GLS cross-sectional regressions for different statistical

implications of regression results. Third, we perform different regression tests excluding

outliers, using different sampling periods (excluding the financial crisis period), forming

alternative measures of innovation series (AR-1 or AR-2 model), and using different frequency

of equity and FX data (weekly instead of monthly data). The results from these various

specifications confirm that the correlation risk is an important driver of the risk premia in

the FX market.

To deliver an economic intuition behind our empirical findings, we build a multi-currency

model to analyze the sources of risk and the main drivers of the expected returns in currency

portfolios. We follow the habit formation literature (see, Campbell and Cochrane (1999),

Menzly, Santos, and Veronesi (2004) and Verdelhan (2010)) and present a multicurrency

specification that captures heterogeneity and time variation in risk aversion across countries.

Our model decomposition of the expected returns demonstrates that heterogeneity in risk

aversion is able to explain the cross-section of average excess returns of carry portfolios.

However, heterogeneity in risk aversion coefficient alone cannot explain carry and momentum

simultaneously. We show instead that the cross-sectional differences in loading on the risk

factor depend on two terms: the portfolio average risk aversion coefficient and the interaction

between the risk aversion coefficient and country-specific consumption correlation.4 Carry

portfolios are closely related to the former term, whereas momentum portfolios are closely

related to the latter term. Thus, our decomposition explains why the payoffs from both long-

short carry and momentum trades positively co-move with changes in global consumption

4Through simulation, we show that the model implied global equity correlation innovation is very similar
to the consumption correlation.

4



level.

We also perform Monte-Carlo simulation experiments to elaborate further on the model

implied risk-return relationship. Consistent with the mathematical decomposition, our sim-

ulation shows that portfolios of currencies with high interest rates (carry) have lower average

risk-aversion coefficients but no significant pattern for the interaction between risk-aversion

coefficient and country-specific correlation. On the other hand, portfolios of currencies with

high momentum have a lower interaction term but no significant pattern for risk-aversion

coefficient. Time-series decomposition of shocks from our simulation study also suggests that

the payoffs from traditional long-short carry and momentum trades have negative loading

on our correlation factor. These simulation results are strongly consistent with our empirical

findings.

Finally, this paper also sheds light on the cross-market integration between the equity

and the FX markets. Previous literature shows difficulties in finding a common risk factor

that explains both equity and currency risk premia (see, for example, Burnside (2011)). If

the financial markets are sufficiently integrated, the premiums in international equity and

FX markets should be driven by the same aggregate risk. By using a factor constructed

from the equity market to explain abnormal return in the FX market, we demonstrate the

important linkage between the equity and FX market through equity correlations as a main

instrument of the aggregate risk.

The rest of the paper is organized as follows: Section II presents data and Section III

describes the portfolio construction method used in this paper. Section IV introduces the

correlation innovation factor and provides the main empirical cross-sectional testing results.

A number of alternative tests and robustness checks are performed in Section IV as well.

Section V discuss theoretical model underlying the empirical findings and Section VI con-

cludes.
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II Data

This section describes the three sets of data used in the empirical analysis. Our database

consist of spot and forward exchange rates as well as international equity market indices.

In what follows, we describe each database separately and examine the currency strategies

investigated in this paper.

II..1 Spot and Forward Rates

Following Burnside, Eichenbaum, Kleshchelski, and Rebelo (2011), we blend two datasets

of spot and forward exchange rates to span a longer time period. Both datasets are obtained

from Datastream. The datasets consist of daily observations for bid/ask/mid spot and one

month forward exchange rates for 48 currencies. FX rates are quoted against the British

Pound and US dollar for the first and second dataset, respectively. The first dataset spans

the period between January 1976 and November 2013 and the second dataset spans the

period between December 1996 and November 2013. To blend the two datasets, we convert

pound quotes in the first dataset to dollar quotes by multiplying the GBP/Foreign currency

units by the USD/GBP quotes for each of bid/ask/mid data. For the monthly data series,

we sample the data on the last weekday of each month. For the weekly data series, which

we use in section IV.H of this paper as a robustness check, we choose Wednesday, following

the tradition of option literatures5.

Our full dataset consists of the currencies of 48 countries. In the empirical section, we

carry out our analysis for the 48 countries as well as for a restricted database of only the 17

developed countries for which we have longer time series. Our choice of the currencies are

reported in Appendix.

5See Bakshi, Cao, and Chen (1997) for the rationale for using Wednesday. Similar reasons can be applied
to FX rates.
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II..2 Equity Returns

We collect daily closing U.S. dollar MSCI indices from Datastream for all available coun-

tries in the FX data. The sample covers the period from January 1973 to November 2013.

We note that the number of available international equity indices varies over time, as data for

a number of emerging market countries only become available in the later period. Therefore,

we create three separate datasets: The first dataset consists of 17 developed market indices

available from January 1973 where the countries are selected to match with 17 developed

market currencies. We use this dataset to create our main factor for the cross-sectional

regression (henceforth, CSR) analysis. The second and third dataset consists of all the

matching equity market indices available from January 1988 (31 indices) and 1995 (39 in-

dices) respectively. The list of the equity market indices available for each of the datasets are

also shown in Appendix. We find that, the innovation factors generated from the second

and third datasets are very similar to the one from the first dataset. Thus, we rely on the

correlation implied by 17 developed market indices for the analysis and use the second and

third databases as a robustness check.

III Currency Portfolios

This section defines both spot and excess currency returns. It describes the portfolio

construction methodologies for both carry and momentum and provides descriptive statistics

of associated excess returns.

III.A Spot and Excess Returns for Currency

We use q and f to denote the log of the spot and forward nominal exchange rate measured

in home currency per foreign currency, respectively. An increase in q∗ means an appreciation

of the foreign currency (∗). Following Lustig and Verdelhan (2007), we define the log excess
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return (∆π∗t+1) of the currency (∗) at time t+ 1 as

∆π∗t+1 = ∆q∗t+1 + i∗t − it ≈ q∗t+1 − f ∗t (1)

where i∗t and it denote the foreign and domestic nominal risk-free rates over a one-period

horizon. This is the return on buying a foreign currency (f ∗) in the forward market at time

t and then selling it in the spot market at time t + 1. Since the forward rate satisfies the

covered interest parity under normal conditions (see, Akram, Rime, and Sarno (2008)), it

can be denoted as f ∗t = log(1+it)−log(1+i∗t )+q∗t . Therefore, the forward discount is simply

the interest rate differential (q∗t − f ∗t ≈ i∗t − it) which enables us to compute currency excess

returns using forward contracts. Using forward contracts instead of treasury instruments

has comparative advantages as they are easy to implement and the daily rates along with

bid-ask spreads are readily available.

III.B Carry Portfolios

Carry portfolios are the portfolios where currencies are sorted on the basis of their in-

terest rate differentials. As described in subsection III.A, they are equivalent to portfolios

sorted on forward discounts due to the covered interest parity. Following Menkhoff, Sarno,

Schmeling, and Schrimpf (2012a), portfolio 1 contains the 20 % of currencies with the lowest

interest rate differentials against US counterparts, while portfolio 5 contains the 20 % of

currencies with the highest interest rate differentials. The log currency excess return for

portfolio i can be calculated by taking the equally-weighted average of the individual log

currency excess returns (as described in Equation 1) in each portfolio i. The difference in

returns between portfolio 5 and portfolio 1 is the average profit obtained by running a tradi-

tional long-short carry trade portfolio (HMLCarry) where investors borrow money from low

interest rate countries and invest in high interest rate countries’ money markets. Therefore,

it is a strategy that exploits the broken uncovered interest rate parity in the cross-section.

Previous research has found that the strategy is profitable, since interest rate differentials
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are strongly autocorrelated and spot rate changes do not fully adjust to compensate for the

differentials. Lustig, Roussanov, and Verdelhan (2011) construct risk factors from excess

returns of portfolios sorted on interest rate differentials, level (DOL) and slope (HMLCarry)

factors. They document that most of the cross-sectional variation in average excess returns

among carry sorted portfolios can be mapped to differential exposure to the slope factor.

Menkhoff, Sarno, Schmeling, and Schrimpf (2012a) show that there is a strong relationship

between the global FX volatility risk and the cross-section of excess returns in carry trades.

To take transaction costs into account, we split the way to calculate the net excess return

of portfolio i at time t+1 into six different cases depending on the actions we take to rebalance

the portfolio at the end of each month. For example, if a currency enters (In) a portfolio

at the beginning of the time t and exits (Out) the portfolio at the end of the time t, we

take into account two-way transaction costs (∆πIn−Outlong,t+1 = qbidt+1 − faskt ), whereas if it stays

in the portfolio once it enters, then we take into account a one-way transaction cost only

(∆πIn−Staylong,t+1 = qmidt+1 −faskt ). A similar calculation is for a short position as well (with opposite

signs while swapping bids and asks).

Descriptive statistics for our carry portfolios are shown in Panel 1 of Table 1. Panel 1

shows results for the sample of all 48 currencies (ALL) and the statistics for the sample of

the 17 developed market currencies (DM) are shown on the right. Average excess returns

and Sharpe ratios are monotonically increasing from portfolio 1 to portfolio 5 for both ALL

and DM currencies. The unconditional average excess returns from holding a traditional

long-short carry trade portfolio are about 5.8 % and 5.2 % per annum respectively after

adjusting for transaction costs. Theses magnitudes are similar to the levels reported in the

carry literature. Consistent with Brunnermeier, Nagel, and Pedersen (2008) and Burnside,

Eichenbaum, Kleshchelski, and Rebelo (2011), we also observe decreasing a skewness pattern

as we move from a low interest rate to a high interest rate currency portfolio.
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III.C Momentum Portfolios

Momentum portfolios are the portfolios where currencies are sorted on the basis of past

returns.6 We form momentum portfolios sorted on the excess currency returns over a period

of three months, as defined in Equation 1. Portfolio 1 contains the 20 % of currencies with

the lowest excess returns, while portfolio 5 contains the 20 % of currencies with the highest

excess returns over the last three months. As portfolios are rebalanced at the end of every

month, formation and holding periods considered in this paper are three and one months,

respectively. We consider three months for the formation period because we generally find

highly significant excess returns from momentum strategies with a relatively short time hori-

zon as documented in Menkhoff, Sarno, Schmeling, and Schrimpf (2012b). The significance,

however, is not confined to this specific horizon and our empirical results are robust to other

formation periods, such as a one or six month period, as well.7

We find that the returns from currency momentum trades are seemingly unrelated to

the returns from carry trades since unconditional correlation between returns of the two

trades is about 0.02. The weak relationship holds regardless of the choice of formation

period for momentum strategy since momentum strategy is mainly driven by favorable spot

rate changes, not by interest rate differentials. Menkhoff, Sarno, Schmeling, and Schrimpf

(2012b) also demonstrate that momentum returns in the FX market do not seem to be

systematically related to standard factors such as business cycle risks, liquidity risks, the

Fama-French factors, and the FX volatility risk. Burnside, Eichenbaum, and Rebelo (2011)

similarly argue that it is difficult to explain carry and momentum strategies simultaneously,

6Compared to carry trades, relatively few studies have examined the momentum strategy in the cross-
section of currencies. Among these papers, Asness, Moskowitz, and Pedersen (2013) have shown that there is
consistent and ubiquitous evidence of cross-sectional momentum return premia across markets. The strong
co-movement pattern across asset classes suggests that momentum profits could share a common root. Similar
to their findings, Moskowitz, Ooi, and Pedersen (2012) document that there is also a common component
affecting time-series momentum strategies across asset classes simultaneously which is not present in the
underlying asset themselves. They document that time-series and cross-sectional momentum is different but
significantly correlated, especially in the FX market.

7The cross-sectional regression results are available upon request.
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hence they argue that the high excess returns should be understood with high bid-ask spread

or price pressure associated with net order flow. In this paper, we also confirm that, using

a different sample of countries and different time intervals, the factors that the later papers

investigate are indeed unable to explain the carry and momentum portfolios. In addition,

we provide a risk-based explanation for both these strategies.

Panel 2 of Table 1 reports the descriptive statistics for momentum portfolios. There is a

strong pattern of increasing average excess return from portfolio 1 to portfolio 5, whereas we

do not find such a pattern in volatility. Unlike carry portfolios, we do not observe a decreasing

skewness pattern from low to high momentum portfolios. A traditional momentum trade

portfolio (HMLMoM) where investors borrow money from low momentum countries and

invest in high momentum countries’ money markets yields average excess return of 7.4 %

and 3.6 % per annum after transaction costs for ALL and DM currencies respectively.

IV Asset Pricing Model and Empirical Testing

There is ample evidence that the world’s capital markets are becoming increasingly inte-

grated (see, Bekaert and Harvey (1995) and Bekaert, Harvey, Lundblad, and Siegel (2007)).

Over the last three decades, we notice a high level of capital flows between countries through

secularization, and liberalization. This high level of international capital flows leads to an

equalization of the rates of return on financial assets with similar risk characteristics across

countries (see, for example, Harvey and Siddique (2000)). Thus, order flow conveys im-

portant information about risk-sharing among international investors that currency markets

need to aggregate. Indeed, Evans and Lyons (2002a) and Evans and Lyons (2002c) show that

order flow from trading activities has a high correlation with contemporaneous exchange rate

changes. Since equity trading explains a large proportion of capital flows, their empirical

results document that there is a linkage between the dynamics of exchange rates and inter-

national equities. Motivated by their papers, Hau and Rey (2006) develop an equilibrium

model in which exchange rates, stock prices, and capital flows are jointly determined. They
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show that net equity flows are important determinants of foreign exchange rate dynamics.

Differences in the performance of domestic and foreign equity markets change the FX risk ex-

posure and induce portfolio rebalancing. Such rebalancing in equity portfolios initiates order

flows, eventually affecting movements of exchange rates. Our paper builds on this intuition

and demonstrates the important linkage between the equity and FX markets through equity

correlations as a main driver to explain the cross-sectional differences in average return of

currency portfolios.

If the premiums in international equity markets and FX markets are driven by the same

aggregate risk, how should we measure it? CAPM indicates that investors require a greater

compensation to hold an aggregate wealth portfolio as the conditional variance of the ag-

gregate wealth portfolio increases. However, as noted in Roll (1977), the variance on an

aggregate wealth portfolio is not directly observable and might be difficult to proxy for when

conducting empirical asset pricing tests. Indeed, Pollet and Wilson (2010) document that

the stock market variance, as a proxy to the risk on an aggregate wealth portfolio, has weak

ability to forecast stock market expected returns in a domestic setting. They show that the

changes in true aggregate risk may nevertheless reveal themselves through changes in the

correlation between observable stock returns as the aggregate wealth portfolio is the common

component for all assets.

The same logic can be applied to the international markets and international capital

asset pricing models. Increase in the aggregate risk must be associated with an increased

tendency of co-movements across international equity indices. Therefore, an increase in

global equity correlation is due to an increase in aggregate risk. Risk-averse investors should

demand a higher risk premium for portfolios whose payoffs are more negatively correlated

to the changes in aggregate risk. The currency portfolios should not be an exception if the

currency markets are sufficiently integrated into the international capital market. The FX

market risk premium is driven by the same aggregate risk which governs international equity

market premium. Thus, the cross-sectional variations in the average excess returns across

currency portfolios must be explained by different sensitivity to the changes in global equity
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correlation.

It is important to note that an increase in global correlation across bilateral currency

returns may not be associated with increase in the aggregate risk. Therefore, currency

correlation may not qualify as a proper risk factor. For example, a high level of correlation

can arise when the variance of domestic stochastic discount factor is large. This high level of

correlation is not due to the elevated aggregate risk, but due to single denomination for the

bilateral currencies (the US domestic currency, for example). Therefore, the correlation of

bilateral currency returns can be mainly driven by changes in local market conditions, while

the correlation of international equity indices is related to the global aggregate risk.

The following section describes our main proxy for the global equity correlation innovation

factor, cross-sectional asset pricing model, and empirical cross-sectional regression results.

IV.A Factor Construction: Common Equity Correlation Innova-

tion

We construct two empirical measures of correlations to quantify the evolution of co-

movements in international equity market indices. We rely on the dynamic equicorrelation

(DECO) model of Engle and Kelly (2012) as our base case and apply the model to monthly

equity return series.8 To mitigate model risk, we measure the same correlation dynamics by

computing bilateral intra-month correlations at each month’s end using daily return series.

Then, we take an average of all the bilateral correlations to arrive a global correlation level

of a particular month. Although the second approach has a comparative advantage due to

its model-free feature, there is a potential benefit of relying on the first measure because of

the bias in daily frequency returns from non-synchronous trading. Thus, for completeness,

8The DECO model assumes the correlations are equal across all pairs of countries but the common
equicorrelation is changing over time. The model is closely related to the dynamic conditional correlation
(DCC) of Engle (2002), but the two models are non-nested since DECO correlations between any pair of
assets i and j depend on the return histories of all pairs, whereas DCC correlations depend only on the its
own return history.
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we consider both measures in our main empirical testing framework.

The following section illustrates the DECO model. To standardize the individual equity

return series, we assume the return and the conditional variance dynamics of equity index i

at time t are given by

ri,t = µi + εi,t = µi + σi,tzi,t (2)

σ2
i,t = ωi + αiε

2
i,t−1 + βiσ

2
i,t−1 (3)

where µi denotes the unconditional mean, σ2
i,t the conditional variance, zi,t a standard normal

random variable, ωi the constant term, αi the sensitivity to the squared innovation, and βi

the sensitivity to the previous conditional variance. Since the covariance is just the product

of correlations and standard deviations, we can write the covariance matrix (Σt) of the

returns at time t as

Σt = DtRtDt (4)

where Dt has the standard deviations (σi,t) on the diagonal and zero elsewhere, and Rt is an

n×n conditional correlation matrix of standardized returns (zt) at time t. Depending on the

specification of the dynamics of the correlation matrix, DCC correlation (RDCC
t ) and DECO

correlation (RDECO
t ) can be separated. Let Qt denotes the conditional covariance matrix of

zt.

Qt = (1− αQ − βQ)Q+ αQQ̃
1
2
t−1zt−1z

′

t−1Q̃
1
2
t−1 + βQQt−1 (5)

RDCC
t = Q̃

− 1
2

t QtQ̃
− 1

2
t (6)

ρt =
1

n(n− 1)
(ı

′
RDCC
t ı− n) (7)

RDECO
t = (1− ρt)In + ρtJn×n (8)

where αQ is the sensitivity to the covariance innovation of zt, βQ is the sensitivity to the
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previous conditional covariance of zt, Q̃t replaces the off-diagonal elements of Qt with zeros

but retains its main diagonal, Q is the unconditional covariance matrix of zt, ρt is the

equicorrelation, ı is an n × 1 vector of ones, In is the n-dimensional identity matrix, and

Jn×n is an n×n matrix of ones. To estimate our model, we follow the methodology in Engle

and Kelly (2012). We refer the reader to the latter paper for an exhaustive description of

the estimation methodology.

For the empirical analysis, we construct a common factor in international equity correla-

tion innovation (∆EQcorr) as a risk factor. We simply take the first difference in time series

of expected DECO correlation to quantify the evolution of co-movements in international

equity market indices. ∆EQcorr,t = Et[EQcorr,t+1]−Et−1[EQcorr,t].
9 We rely on the shock to

global equity correlation rather than the level as a factor for currency excess returns. This

choice is motivated by the intertemporal capital asset pricing model (ICAPM) of Merton

(1973). Under the ICAPM framework, investors consider the state variables that affect the

changes in the investment opportunity sets.

Our hypothesis is that change in the global international equity correlation is a state

variable that affects the changes in the international investment opportunity set. Therefore,

the ICAPM predicts that investors who wish to hedge against unexpected changes (inno-

vations) should demand currencies that can hedge against the risk, hence they must pay a

premium for those currencies. In other words, ∆EQcorr must be a priced risk factor in the

cross-section of FX portfolios. The global equity correlation levels and innovations for both

measures are plotted in Figure 2. We report two different versions of the DECO model

implied correlation series. The solid black line, DECO IS (in-sample), is measured by the

DECO model where parameters are estimated on the entire sample periods. The dotted blue

9Note that we use the first difference as our main approach to get the innovation series simply because it is
the most intuitive way to do so. However, we also investigated alternative ways to measure innovations such
as AR(1) or AR(2) shocks and find that the empirical testing results are quite robust to those variations.
We report these findings in the robustness section. Furthermore, given that we rely on the unconditional
cross-sectional regression as our test, the existence of autocorrelation should not affect the validity of our
test.
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line depicts the time series of the global equity correlation without look ahead bias and we

name this measure DECO OOS (out-of-sample). In contrast to DECO IS, this correlation

is estimated using the same DECO model, but the parameters in this case are measured on

the data available only at that point in time and updated throughout as we observe more

data. We also construct a non-parametric estimation of the correlation. The dotted red line,

the intra-month correlation, is measured by computing bilateral intra-month correlations at

each month end using daily return series of international equity indices and then taking the

simple mean of those bilateral correlations.

Model-implied global correlation levels and innovations, whether parameters are updated

or not, are very similar to those of the intra-month correlation. The descriptive statistics and

p-values from an augmented Dicky-Fuller stationary test, Ljung-box and Breusch-Godfrey

serial dependence tests for the three innovation series are shown in the upper right table.

All of the innovation series are stationary which makes them statistically valid factors under

an unconditional cross-sectional regression (CSR) framework. The lower right table shows

the unconditional correlation between the model-implied DECO innovation series and the

intra-month innovation series.

IV.B Cross-Sectional Regression

IV.B.1 Methods

To test whether our factor is a priced risk factor in the cross-section of currency portfolios,

we utilize the popular two-pass cross-sectional regression (CSR) method. We first obtain

estimates of betas by running a time-series regression of portfolio returns on our factors.

In the second-pass, we regress the unconditional mean of excess return of portfolios on the

estimated betas.

For statistical significance of beta, we report both the statistical measures of Shanken

(1992) and Kan, Robotti, and Shanken (2012) throughout this paper. Shanken (1992) pro-

vides asymptotic distribution of the price of beta, adjusted for the errors-in-variables problem
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to account for the estimation errors in beta. Kan, Robotti, and Shanken (2012) further in-

vestigate the asymptotic distribution of the price of beta risk under potentially misspecified

models as well as under i.i.d multivariate elliptical distribution assumption (rather than i.i.d

normal). They emphasized that statistical significance of the price of covariance risk is an

important consideration if we want to answer the question of whether an extra factor im-

proves the cross-sectional R2. Therefore, we apply both tests based on the price of covariance

risk as well as the price of beta risk in the empirical testing. They also have shown how to

use the asymptotic distribution of the sample R2 in the second-pass CSR as the basis for

a specification test. To save space, we report the details of the estimation methodology of

these statistics to Section VII.

IV.B.2 Results

In this section, we present empirical findings that show that the international equity

correlation innovation factor (∆EQcorr) is a priced risk factor in the cross section of currency

portfolio and that it simultaneously explains the persistent significant excess returns in both

carry and momentum strategies. We follow Lustig, Roussanov, and Verdelhan (2011) and

account for the dollar risk factor (DOL) in all the main empirical asset pricing tests. DOL

is the aggregate FX market return available to a U.S. investor and it is measured simply

by averaging all excess returns available in the FX data at each point in time. Although

DOL does not explain any of the cross-sectional variations in expected returns, it plays an

important role in the variations in average returns over time since it captures the common

fluctuations of the U.S. dollar against a broad basket of currencies. The test assets are

the two sets of sorted currency portfolios described in Section III. We will refer to all the

currency portfolios, the set of sorted carry (5) and momentum (5), as FX 10 portfolios.

Table II presents the results of the asset pricing tests using all FX 10 portfolios. The

left side of Panel 1 reports estimation results with all 48 currencies (ALL) and the right

side reports estimation results with 17 developed market (DM) currencies only. The market
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price of beta risk (γ) is estimated to be about -8.75 % and -5.26 % per month for ALL

and DM currencies, respectively. We find they are statistically significant under Shanken’s

(1992) estimation error adjustment as well as misspecification error adjustment, with t-ratio

of -3.83 and -3.37 respectively. The price of the beta risk is also economically significant,

since one standard deviation of cross-sectional differences in beta exposure can explain about

2.5 % per annum in the cross-sectional differences in mean return for ALL currencies. Kan,

Robotti, and Shanken (2012) show empirically that misspecification-robust standard errors

are substantially higher when a factor is a non-traded factor. They document that this

is because the effect of misspecification adjustment on the asymptotic variance of beta risk

could potentially be very large due to the variance of residuals generated from projecting the

non-traded factor on the returns. Therefore, it is surprising for us to see that a non-traded

factor like our correlation factor has a highly significant t-ratio.

In each panel of Table II, we include the prices of covariance risk (λ) since the price of

covariance risk allows us to identify factors that improve explanatory power (cross-sectional

R2) of the expected returns from a model. We find the global correlation innovation factor

could yield cross-sectional fit with R2 of 90% and 64% for ALL and DM currencies respec-

tively. While we cannot reject the null H0: R2 = 1 under the assumption of the correctly

specified model, it is significance for the test that the model has any explanatory power for

expected returns under the null of misspecified model H0: R2 = 0.

The negative prices of beta and covariance risk suggest that investors would demand a

low risk premium for portfolios whose returns co-move with the global correlation innovation,

as they provide a hedging opportunity against unexpected deterioration of the investment

opportunity set. To substantiate this finding, we investigate the negative price of beta risk

for our global correlation factor. Panel 2 of Table II illustrates that portfolios with low

forward discount (interest rate differential) and low momentum have high betas with our

global correlation factor. Their average excess returns are relatively low compared to the

average excess returns of high forward discount and high momentum portfolios. This strong

pattern of decreasing beta across both sets of portfolios strengthens our conclusion that
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investors indeed demand a low risk premium for the portfolios whose returns co-move with

our correlation factor.

Similarly, Panel 1 of Table III presents the results from the second pass CSR where

our correlation factor is now measured from the mean of bilateral intra-month correlations,

instead of DECO correlations. Although the level of market price of beta risk (γ) is different

from the one using DECO correlation, the economic magnitude of the beta price is about the

same due to lower spreads in beta exposures across portfolios. In other words, one standard

deviation of cross-sectional differences in beta exposure can explain just about 2.43 % per

annum in the cross-sectional differences in mean return of the FX 10 portfolios.

Contrasting Panel 1 of Table III and Panel 1 of Table II shows that the two separate

measures of our correlation factor have similar beta coefficients as well as t-ratios. These

findings confirm that the global equity correlation factor is a priced risk factor in the cross-

section of currency portfolios. Overall, the results using the non-parametric intra-month

correlation are similar to the DECO case presented above.

Finally, we present in Figure 3 the pricing errors of the asset pricing model with our

global equity correlation as a risk factor. The realized excess return is on the horizontal axis

and the model-predicted average excess return is on the vertical axis. The fits for both of our

models, using DECO OOS innovation on the left and intra-month correlation innovation on

the right, suggest that our model can explain the cross-sectional differences in mean returns

quite well.

IV.C Cross-sectional regression with other factors

In this subsection, we confirm that the factors discussed in the FX literature fail to

explain the cross-sectional differences in mean returns across the extended test assets (FX

10 ). We also test whether the inclusion of our correlation factor improves the explanation

of carry and momentum portfolios above these existing factors.

The factors in this empirical exercise are i) FX volatility innovations from Menkhoff,
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Sarno, Schmeling, and Schrimpf (2012a), ii) FX correlation innovation, iii) the TED spread,

iv) the global average bid-ask spread from Mancini, Ranaldo, and Wrampelmeyer (2013), v)

the Pastor and Stambaugh (2003) liquidity measure, vi) US equity market premiums, vii) US

small-minus-big size factor, viii) US high-minus-low value factor, ix) US equity momentum

factor, and high-minus-low risk factors from excess returns of portfolios sorted on interest

differentials, x) the FX carry factor from Lustig, Roussanov, and Verdelhan (2011), and

sorted on past returns, xi) the FX momentum factor. We verified that the FX volatility

factor, a set of illiquidity innovation factors and the FX carry factor can explain the spreads

in mean returns of carry portfolios very well with R2 raging from 58 % for the TED spread

innovation factor to 92 % for the FX volatility factor. The factor prices are statistically

significant under a misspecification robust cross-sectional regression, and have the expected

signs, that is, negative for illiquidities and FX volatility factors and positive for the FX

carry factor. However, the same set of factors which have great explanatory power over the

cross-section of carry portfolios does not explain well momentum portfolios at the same time.

In Table IV, we add our correlation factor along with other factors described above to

evaluate the relative importance of the factors. The specification for the test is exactly the

same as in Table II. In each panel of the table, a CSR test is performed on three factors,

the dollar factor, the control variable X, and the global equity correlation innovation factor

from the DECO model for Panel 1 and intra-month correlation for Panel 2. In this way, the

model in each panel of Table IV nests the model in Panel 1 of Table II and Table III.

It is straightforward to see that the explanatory power of the larger model exceeds that of

the smaller model. Table IV also reports that the pricing power for our factor is not much

affected by the inclusion of other factors in the previous literature.

Although we only show the case for the price of beta risk, the same conclusion can be

drawn from the price of covariance risk. When the models are potentially misspecified, Kan,

Robotti, and Shanken (2012) document that R2s of two (nested) models are statically differ-

ent from each other if and only if the covariance risk (λ) of the additional factor is statistically

different from zero with misspecification robust errors. Therefore, we perform a statistical
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test on the price of covariance risk of our correlation factor under the null hypothesis of zero

price (H0: λ∆EQcorr = 0). The nested models are CSR using only two factors, the dollar

factor and each of the control variables. We find that the prices of the covariance risk are

statistically significantly different from zero in all cases. R2s are also economically and sta-

tistically different from the nested models with control variables only.10 The significant price

of covariance risk of our correlation factor confirms that our correlation factor improves the

explanatory power across the mean returns of carry and momentum portfolios. Overall, we

find that the inclusion of our correlation factor enhances the explanation of cross-sectional

differences in mean returns of carry and momentum portfolios over the risk factors discussed

frequently in the FX literature.

IV.D Factor-mimicking portfolio

In this subsection we convert the global equity correlation innovation factor into excess

returns by projecting the factor onto the FX market space. This exercise converts the non-

traded macro factor to a traded risk factor within the FX market. We first regress our

correlation innovation series on FX 10 portfolios and then retrieve fitted return series. The

fitted excess return series is in fact the factor-mimicking portfolio’s excess return. Table V

reports the cross-sectional asset pricing test applied to different sets of test assets with the

correlation innovation factors used in previous tables and the corresponding factor-mimicking

portfolio’s excess returns. We also report cross-sectional regression tests for carry and mo-

mentum portfolios separately to examine whether the explanatory power for cross-sectional

differences in mean return is mainly driven by one particular type of strategy. We find that

the price of beta risk is statistically significant with a similar level of R2 whether the cross-

sectional regression is performed on the two strategies separately or jointly. The price of

the traded risk factor is much smaller than the price of the original non-traded factor. The

10Alternatively, we use the orthogonalized component of each factor with respect to the correlation in-
novation factor by taking the residuals from regressions. We still find similar level of R2s. The results are
available upon request.
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reason is that differences in beta exposure to the traded factor across FX 10 portfolios are

much larger in absolute terms than those to the non-traded factor. Therefore, the factor-

mimicking portfolio can explain about the same level of cross-sectional differences in mean

returns among FX 10 portfolios as the non-traded factor (R2 of about 90% in both cases).

IV.E Alternative test assets

In this section, we follow Lustig and Verdelhan (2007) and Burnside, Eichenbaum,

Kleshchelski, and Rebelo (2011) and examine whether the statistical significance of the

regression results are specifically driven by our choice of test assets. Lustig and Verdel-

han (2007) used the 6 Fama-French portfolios sorted on size and book-to-market to test

whether compensation for the consumption growth risk in currency markets differs from

that in domestic equity markets from the perspective of a US investor. Burnside, Eichen-

baum, Kleshchelski, and Rebelo (2011) also use the 25 Fama-French portfolios together with

the equally weighted carry trade portfolio to see whether the carry payoffs are correlated

with traditional risk factors. We augment the FX 10 portfolios with the 25 Fama-French

portfolios formed on size and book-to-market. We test whether the entire cross-section of

average returns of the 35 equity and currency portfolios can be priced by the same stochastic

discount factor that prices currency market risks. This test also serves as a test for market

integration across the international currency market and the domestic equity market.

Table VI reports the cross-sectional pricing test results. In Panel 1 of Table VI, we

report the results where the dollar risk factor and our global equity correlation factor are used

to price the extended portfolios. In Panel 2 of Table VI, we report the results where the

US market risk premium (MRP), US equity size (SMB) and value (HML) factors are added

as additional control variables. We find that both coefficients on beta and covariance risks

of our correlation factor are negatively significant, which is consistent with our previous

findings. The negatively significant price of the risk across the FX and domestic equity

market also supports the conjecture of market integration. This exercise confirms that the
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statistical significance of the regression results is not specifically driven by our choice of test

assets.

IV.F Trading on Betas with Common Equity Correlation

This section presents the results for trading on portfolios sorted on our correlation factor

betas. Building portfolios based on each currency’s exposure to the risk factor provides

a direct alternative test of whether the correlation factor is a priced-risk factor. If our

correlation factor is a risk factor with negative price of risk, we should expect currencies that

provide hedging opportunity against the correlation risk (high beta currencies) to yield low

average excess returns. The average portfolio returns in Figure 4 show that the empirical

results are consistent with this intuition.

In this exercise, we assume that portfolios are rebalanced at the end of each month t

by sorting currencies into five groups based on the slope coefficients (betas) available at

time t. Each beta is obtained by regressing currency i’s excess return on the global equity

correlation innovation factor on a 24-period moving window (left) or on a 36-period moving

window (right). Portfolio 1 contains currencies with the lowest betas, while portfolio 5

contains currencies with the highest betas. Both figures illustrate that the average excess

returns of portfolios are a decreasing function of average beta exposure to the risk factor,

confirming the idea of negative price of the risk. We also perform a formal monotonicity

test and we fail to reject the null hypothesis of weak monotonicity in average excess returns

from the multivariate inequality test of Wolak (1989), with p-value of 0.95 for 24 months and

0.96 for 36 months. Under the monotonic relation (MR) test of Patton and Timmermann

(2010), we can only reject the null of a non-monotonic relationship at the 5% level for 24

months with p-value of 0.04, while it is 0.11 for 36 months. On the other hand, both sets

of portfolios show statistical significance in favor of a monotonically increasing pattern in

post-ranked betas with p-value close to zero. The results suggest that past beta estimates

are stable and have predictive power over future betas.
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IV.G GLS Cross-sectional Regression

OLS and GLS represent different ways of measuring and aggregating the sample devia-

tions. Since we want to allow for the model misspecification, the choice between OLS and

GLS should be determined based on economic relevance rather than estimation efficiency.

We argue that in our setting OLS is more relevant if the focus is on the expected returns

for a particular set of test portfolios, but GLS may be of greater interest from an invest-

ment perspective. Therefore, we also run GLS cross-sectional regression tests and report

the results in Table VII. As expected from the choice of the weighting matrix on sample

deviations, we find lower R2s for GLS cross-section regression (42% and 51% for DECO

OOS and Intra-month correlation respectively). Those R2s are still economically large in

GLS regression. We also find that both our global equity correlation factor measures remain

statistically significant. The high absolute magnitudes of t-ratios, -2.74 and -3.04 for DECO

OOS and Intra-month correlation respectively, confirm that our cross-sectional regression

results are robust to econometric modification.

IV.H Other Robustness Checks

In this subsection we perform a number of other robustness checks associated with out-

liers, different sampling periods, an alternative measure of innovations, and different fre-

quency of data. First we winsorize the correlation innovation series at the 90% level, which

means we exclude the 10% of sample periods. Secondly, we set different time horizons for

the testing period. In particular, we pick a time period before the financial crisis, from

March 1976 to December 2006, since the large positive innovations during the crisis period

can potentially drive the CSR testing results. The testing results for 10% winsorization and

the different time period are shown in Panel 1 and Panel 2 of Table VIII. We still find

strong significance for the price of the risk in both cases. For the alternative specification

of innovation, we choose an AR(2) shock for the robustness check to see if the different

definition of the shock changes the empirical testing results. Panel 3 reports the estimation
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results with an AR(2) shock and we generally find that the results are extremely robust to

the other specifications as well. Last, we construct both of our factors (the dollar and DECO

equity correlation innovation factors) and test assets (FX 10 portfolios) from weekly data

series. For forward exchange rates, we use forward contract with a maturity of one week to

properly account for the interest rate differentials in the holding period. The weekly sample

covers the period from October 1997 to November 2013. In Panel 4, we confirm that the

correlation innovation factor is a priced-risk factor in the FX market.

V Theoretical Model

So far, we have shown that our international global equity correlation factor is a priced

risk factor in the cross-section of currency portfolios. For the economic intuition behind our

empirical findings, we present a model that allows us to decompose the sources of risk for the

currency risk premiums. Specifically, we build a multi-currency model with global shock to

analyze sources of risk following the habit-based specification (see, Campbell and Cochrane

(1999), Menzly, Santos, and Veronesi (2004) and Verdelhan (2010)). Under complete market

assumption, the real exchange rate is simply the ratio of foreign to domestic pricing kernels

(see, Lustig, Roussanov, and Verdelhan (2011)). Therefore, the bilateral exchange rate

depends on country specific (both domestic and foreign) and global consumption shocks. In

our modeling framework, we assume global shock affects all countries simultaneously whereas

country specific shock is partially correlated with the global shock.

Backus, Foresi, and Thelmer (2001) show that any currency risk premia can be measured

as the difference between the higher moments of domestic and foreign stochastic discount

factor (SDF). Since we use log-normal specification in our model, presenting difference in

conditional variance of SDF should be sufficient to measure currency risk premia. A foreign

currency from a country with smaller conditional variance of SDF is expected to appreciate

more.

Our model decomposition of the expected returns in this section demonstrates that het-
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erogeneity in the risk aversion is able to explain the cross-section of average excess returns of

carry portfolios. However, heterogeneity in the risk aversion coefficient alone cannot explain

carry and momentum simultaneously. We show instead that the cross-sectional differences

in loading on the risk factor depends on two terms, the portfolio average risk aversion co-

efficient and the interaction between the risk aversion coefficient and the country-specific

consumption correlation. We demonstrate that carry portfolios are closely related to the for-

mer term, whereas momentum portfolios are closely related to the latter term. Payoffs from

both traditional long-short carry and momentum trades positively co-move with changes in

the global consumption level because of the two terms. Therefore, the two trading strategies

are considered risky.

Last, a large negative global consumption shock is associated with a large positive innova-

tion to the global correlation due to the model-implied reponse of correlation to consumption

shock (see, for example, Ang and Chen (2002); Hong, Tu, and Zhou (2007)).11 Hence, unex-

pected increases in the global correlation level would imply an adverse price effect for carry

and momentum trades. This relation is consistent with our empirical cross-sectional regres-

sion results, where we find a negatively significant price of beta risk to the equity correlation

innovation factor. More detailed specification of the model is described in this section.

11In our model, we show that the model-implied equity correlation across countries inherits the same
properties of the global consumption correlation specified in our framework. By incorporating time varying
and asymmetric correlation dynamics in our specification of the dynamic consumption process, we are able
to relate the source of currency market premium to aggregate consumption risk through equity market
correlation.
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V.A Preferences and Consumption Growth Dynamics

Under Habit-based preferences12, the agents of country i maximizes

E

[
∞∑
t=0

βtU(Ct, Ht)

]

U(Ct, Ht) = ln(Ct −Ht)

where U denotes Habit utility function, Ht the external habit level, and Ct consumption

level at time t.

Log consumption growth dynamics is given by

∆ct+1 = g + σ ∗ (ρt+1εw,t+1 +
√

1− ρ2
t+1εt+1)︸ ︷︷ ︸+σw,t+1 ∗ εw,t+1︸ ︷︷ ︸

Country-specific shock Global shock

= g + σ
√

1− ρ2
t+1 ∗ εt+1 + (σρt+1 + σw,t+1) ∗ εw,t+1 (9)

where σ denotes the volatility for country-specific consumption shock, σw is the volatility

for global consumption shock, εt+1 and εw,t+1 are the standardized idiosyncratic and global

shock, respectively. We assume that both εt+1 and εw,t+1 are independent and normally

distributed with mean of zero and standard deviation of one (εt+1 and εw,t+1 ∼ N(0, 1)).

ρt+1 is the correlation parameter between the country-specific and the global consumption

shock. We extend the habit model in Campbell and Cochrane (1999) and Verdelhan (2010)

and assume that the consumption growth innovations have two components, the country-

specific and global shocks. Our specification allows the variance of country-specific shock

to be constant but the variance of global shock is time-varying. This setup allows us to

12We have also explored the model under a CRRA framework. The most important assumption we have
to make under a CRRA framework is the existence of heterogeneity in risk aversion coefficients across the
countries. Habit preference relaxes this assumption by delivering conditional heterogeneity in risk aversion
coefficients even with similar long-term average risk aversion across countries. In other words, given that
investors rebalance the portfolios every month, the conditional heterogeneity in risk aversion coefficients
should be a sufficient condition.
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distinguish between global and country-specific factors and to capture the dynamics of the

global consumption correlation among N different countries.

We assume that the volatility of the global consumption shock follows asymmetric GARCH

form. Its dynamics are given by

σ2
w,t+1 = ω + αgarch ∗ σ2

w,t(εw,t − θgarch)2 + βgarch ∗ σ2
w,t

where ω, αgarch, θgarch, and βgarch are the GARCH parameters. The dynamics of the corre-

lation between the country specific shock and the global shock are given by

ρt+1 = tanh[κρ(ρ̄− ρt) + αρ(∆ct − E [∆ct])]

where tanh denotes the hyperbolic tangent function, which guarantees the correlation to be

between -1 and 1, κρ is the speed of mean reversion, and αρ is the sensitivity to the con-

sumption shock. For simplicity of the exposition, we assume g, σ, ω, αgarch, θgarch, βgarch,

κρ, αρ are the same across all countries.

The local curvature (Γt) of the utility function is inversely related to the surplus con-

sumption ratio (St) and the dynamics of log local curvature, risk aversion coefficient (γt),

follow the equation below,13

Γt = −Ct
Ucc
Uc

=
Ct

Ct −Ht

≡ 1

St

logΓt = log
1

St
= −st = γt

∆γt+1 = κγ(γ̄ − γt)− αγ(γt − θγ)(∆ct+1 − E [∆ct+1])

where Uc and Ucc are the first and second derivatives of the utility function with respect to

consumption, κγ denotes the speed of mean reversion, αγ > 0 is the sensitivity of γt to the

13See Menzly, Santos, and Veronesi (2004) and Christoffersen, Du, and Elkamhi (2013) for the dynamics
of the risk aversion coefficient
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consumption shock, and θγ ≥ 1 is the lower bound for γt. Note that the total sensitivity

of γt to the consumption shock is also a function of the level of γt. The higher the level of

risk aversion, the more sensitive to the consumption shock, hence countercyclical variation

in volatility of γt. The log of pricing kernel mt can be derived as follows

mt+1 ≡ log(Mt+1) = log β
Uc(Ct+1, Ht+1)

Uc(Ct, Ht)
= log β

(
St+1

St

Ct+1

Ct

)−1

= logβ + ∆γt+1 −∆ct+1

= log β + κγ(γ̄ − γt)− g − [1 + αγ(γt − θγ)]︸ ︷︷ ︸[σ(ρt+1εw,t+1 +
√

1− ρ2
t+1εt+1) + σw,t+1εw,t+1]

γ̂t

V.B Risk-Free Rates

Given the log-normal assumption of the pricing kernel, the time-varying risk free rates can

be simplified to

it = = −logEt(Mt+1) = −[Et(mt+1) +
1

2
σ2
t (mt+1)]

= −log β + g − κγ(γ̄ − γt)︸ ︷︷ ︸− 1

2
γ̂t

2 [σ2 + σ2
w,t+1 + 2 σ σw,t+1 ρt+1]︸ ︷︷ ︸ (10)

intertemporal substitution precautionary saving

When the precautionary saving term dominates intertemporal substitution effect, interest

rates become procyclical, which we will assume in this paper. We define (*) as a foreign

country. The interest differentials between foreign (*) and domestic rates boil down to

i∗t − it = = −κγ(γ̂t − γ̂∗t ) +
1

2
(γ̂2
t − γ̂∗2t )[σ2 + σ2

w,t+1] + (ρt+1γ̂t
2 − ρ∗t+1γ̂t

∗2) σ σw,t+1
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V.C Real Exchange Rates

With a complete financial market assumption, there is a unique stochastic discount factor

(SDF) that satisfies the following N systems of equations simultaneously: Et(M
i
t+1R

i
t+1) = 1

and Et(Mt+1R
i
t+1

Qi
t+1

Qi
t

) = 1 where Q is the real exchange rates measured in home country

goods per foreign country i’s good. As a result, the change in log real exchange rate (∆q∗t+1)

is given by

∆q∗t+1 = m∗t+1 −mt+1

= κγ(γ̂t − γ̂∗t )

− γ̂∗t [σ
√

1− ρ∗2t+1ε
∗
t+1 + (σρ∗t+1 + σw,t+1) εw,t+1]

+ γ̂t [σ
√

1− ρ2
t+1εt+1 + (σρt+1 + σw,t+1) εw,t+1] (11)

The exchange rate premium, or excess return of the currency (∆π∗t+1), is defined as the

return for an investor who borrows funds at a domestic risk-free rate, converts them to

foreign currency, lends them at foreign risk free rate at time t, and converts the money back

to domestic currency at time t+1 once she collects the money from a foreign borrower.

∆π∗t+1 = ∆q∗t+1 + i∗t − it

=
1

2
(γ̂2
t − γ̂∗2t )[σ2 + σ2

w,t+1] + (ρt+1γ̂t
2 − ρ∗t+1γ̂t

∗2) σ σw,t+1

− γ̂∗t [σ
√

1− ρ∗2t+1ε
∗
t+1 + (σρ∗t+1 + σw,t+1) εw,t+1]

+ γ̂t [σ
√

1− ρ2
t+1εt+1 + (σρt+1 + σw,t+1) εw,t+1] (12)
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V.D The Model Implied Consumption Correlation

Under the specification of the model in Equation 9, consumption correlation between two

countries (i and j) is defined as

corri,jt+1 = corr(∆cit+1 − Et
[
∆cit+1

]
,∆cjt+1 − Et

[
∆cjt+1

]
)

=
cov(∆cit+1 − Et

[
∆cit+1

]
,∆cjt+1 − Et

[
∆cjt+1

]
)√

var(∆cit+1 − Et
[
∆cit+1

]
) ∗ var(∆cjt+1 − Et

[
∆cjt+1

]
)

=
σ2
w,t+1

σ2 + σ2
w,t+1︸ ︷︷ ︸ ∗

1 + ( σ
σw,t+1

)(ρit+1 + ρjt+1) + ( σ
σw,t+1

)2ρit+1ρ
j
t+1√

1 + 2( σσw,t+1

σ2+σ2
w,t+1

)(ρit+1 + ρjt+1) + 4( σσw,t+1

σ2+σ2
w,t+1

)2ρit+1ρ
j
t+1

Ψt+1

Note that Ψt+1 does not depend on any particular selection of countries and thus can be

considered a common driver of the global consumption correlation across countries. The

global correlation level is high when the conditional volatility of global shock is elevated

relative to the volatility of a country-specific shock. In other words, it is high when the

consumption shock is expected to be more likely driven by global shock. Since we have

Et[Ψt+1] = Ψt+1 due to GARCH specification for conditional volatility, the expected excess

return of any currency or currency portfolio can be written as

Et[∆π
∗
t+1] =

1

2
(γ̂2
t − γ̂∗2t )σ2

+
1

2
(γ̂2
t − γ̂∗2t )[σ2 + σ2

w,t+1]Ψt+1

+ (ρt+1γ̂t
2 − ρ∗t+1γ̂t

∗2) σ
√
σ2 + σ2

w,t+1

√
Ψt+1

The currency risk premium required by investors for holding currency (∗) depends on

both domestic and foreign risk aversion coefficients. Across time, for a given level of con-

sumption volatility and correlation, domestic investors require greater currency excess re-

turn when they are more risk averse (high γt). This countercyclical risk premium shares the
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same intuition with Lustig, Roussanov, and Verdelhan (Forthcoming) and Verdelhan (2010).

Cross-sectionally, investors demand high compensation for bearing global correlation risk be-

cause of holding a currency of a country with a low risk aversion coefficient (low γ∗t ) and low

interaction between idiosyncratic correlation and the risk aversion coeffcient (low ρ∗t+1γ̂t
∗2).

The ex-post unexpected excess return of holding a portfolio of currency set (∗) is given

by

∆π∗t+1 − Et[∆π∗t+1] = γ̂t σ
√

1− ρ2
t+1εt+1 − γ̂∗t σ

√
1− ρ∗2t+1ε

∗
t+1

+[(γ̂t − γ̂∗t ) σw,t+1 + (ρt+1γ̂t − ρ∗t+1γ̂t
∗) σ] εw,t+1 (13)

The first term on the right side of Equation 13 is about countercyclical risk premia as it

carries greater domestic consumption risk when γt is high. If the number of currencies in

portfolio (∗) is large enough, the idiosyncratic foreign consumption shocks cancel each other

out. Thus, the second term would have a marginal effect on risk premia. The last term

shows that the payoffs from a portfolio of currencies that have a relatively low level of risk

aversion rate or low level of interaction term positively co-move with global consumption

shocks. Equation 13 also illustrates that the cross-sectional differences in loading on the

global consumption risk only depend on two terms, portfolio γ̂∗t and ρ∗t+1γ̂t
∗. The lower the

two terms, the more positively related the payoffs from portfolios to the global consumption

shock. Therefore, those portfolios that have relatively low γ̂∗t or low ρ∗t+1γ̂t
∗ are considered

more risky and investors will require a greater rate of return as compensation.

We show that, on one hand, portfolios of currencies with high interest rates have lower

γ̂∗t but no significant pattern for ρ∗t+1γ̂t
∗. On the other hand, portfolios of currencies with

high momentum have lower ρ∗t+1γ̂t
∗ but no significant pattern for γ̂∗t . In other words, sorting

currencies by interest rate differentials is nothing more than sorting by average risk aver-

sion rates of countries, and sorting currencies by momentum is essentially sorting by the

interaction term, idiosyncratic consumption correlations and risk aversion rates.

To illustrate this relation, we perform a Monte-Carlo simulation. We first simulate the
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consumption dynamics of 48 countries, and drive the changes in spot rates and excess returns

of the corresponding currencies through Equation 11 and 12. To be consistent with our

empirical analysis, we create five carry portfolios sorted on interest differentials and five

momentum portfolios sorted on the past three month excess returns. On the left panel of

Figure 5, we plot time-series of the average γ̂∗t of the highest and the lowest interest portfolios

from the simulation. The average γ̂∗t of the portfolio with low interest rate currencies is

persistently higher than the average γ̂∗t of the portfolio with high interest rate currencies. We

do not find this persistent gap in the average γ̂∗t in the cross-section of momentum portfolios.

The right side of Figure 5 shows the average ρ∗t+1γ̂t
∗ of the highest and the lowest momentum

portfolios. The average ρ∗t+1γ̂t
∗ of the portfolio with low momentum currencies is persistently

higher than the average ρ∗t+1γ̂t
∗ of the portfolio with high momentum currencies. We do not

find this persistent gap in the average ρ∗t+1γ̂t
∗ in the cross-section of carry portfolios. Thus,

this simulation exercise confirms the idea that carry portfolios are closely related to the

risk aversion coefficient, whereas momentum portfolios are closely related to the interaction

between the risk aversion coefficient and country-specific correlation.

We now turn our attention to the ex-post unexpected excess return on the long (L) - short

(S) portfolios. Doing so gives us a better representation of the sources of risk driving the

excess returns in the long and short portfolios. Using equation 13 and taking first difference

of the ex-post unexpected excess return of long and short portfolios gives

∆πL−St+1 − Et[∆πL−St+1 ] ≈ [(γ̂St − γ̂Lt ) σw,t+1 + (ρSt+1γ̂t
S − ρLt+1γ̂t

L) σ] εw,t+1

≈ −[(γ̂St − γ̂Lt ) σw,t+1︸ ︷︷ ︸+ (ρSt+1γ̂t
S − ρLt+1γ̂t

L) σ︸ ︷︷ ︸] ∆Ψt+1

(1) (2)

The payoff from any currency long-short portfolio is no longer exposed to a domestic

consumption shock but only exposed to a global consumption shock. Second, the degree of

exposure to global shock depends on the gap between (1) the risk aversion coefficient and

(2) interaction between the idiosyncratic correlation and risk aversion coefficient of the long
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and short portfolios. Last, a large negative consumption shock is closely related to a large

positive innovation to the global correlation level due to asymmetric response.

We also perform Monte-Carlo simulation experiments to elaborate further on the model

implied risk-return relationship. Figure 6 plots the time-series decomposition of shocks

from the traditional long-short carry trades and the long-short momentum trades. The

carry trade on the left panel shows a persistently positive pattern for the first component

but no systematic pattern for the second component. For momentum trades, on the other

hand, there is a persistent positive pattern for the second component and it dominates the

first component. Therefore, when the terms are combined, the payoffs from traditional carry

and momentum trades would have negative loading on innovations to the global consumption

correlation. This finding explains our results in the empirical section where we find negatively

significant price of beta risk for our correlation factor.

Throughout the theoretical section, we have relied on countries’ consumption correlation

as a source of risk while it is the global equity correlation that is of interest to us in the

empirical section. It is straightforward to show that in our theoretical setting global equity

correlation innovation is actually capturing the same information as the global consumption

correlation innovation. To show the relation between our model global equity correlation

as a function of consumption correlation, we first simulate the consumption dynamics of 48

countries, and drive equity returns using numerical integration. A time-series of the global

consumption correlation level is given by the equation for Ψt+1 and that of the global equity

correlation level is estimated by running the DECO model on the simulated equity return

series. Figure 7 plots the time-series of the global consumption levels and innovations (solid

blue line) and the equity correlation levels and innovations (dotted red lines) in the upper

and lower panel, respectively. The figure shows that they are essentially measuring the same

thing, hence using equity correlation in the empirical setting is motivated by our model.
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VI Conclusion

Carry and momentum trades are a widely known speculative strategies in the FX mar-

kets. As the strategies draw more attention from global investors, there have been recent

developments to create benchmark indices and ETFs reflecting this popularity in FX carry

and momentum. These strategies have also received a great deal of attention in the academic

literature to explain their abnormal profitability. Despite this popularity, the risk based ex-

planations in the literature have not been very successful in simultaneously explaining their

returns. In this paper, we build a factor which governs the evolution of co-movements in

the international equity markets and show that it explains the cross-sectional differences

in the excess return of carry and momentum portfolios. We find that FX portfolios which

deliver high average excess returns are negatively related to innovations in the global equity

correlation. The differences in exposure to our correlation factor can explain the systematic

variation in average excess returns of portfolios sorted on interest rates and momentums

simultaneously. Furthermore, we derive the condition under which investors should demand

high compensation for bearing the global correlation risk. From the decomposition of FX

risk premia, we show that the cross-sectional differences in loading on the correlation fac-

tor depend on two terms, the portfolio average risk aversion coefficient and the interaction

between the risk aversion coefficient and country-specific correlation. We demonstrate that

carry portfolios are closely related to the former term, whereas momentum portfolios are

closely related to the latter term. Taking both terms together, we show that the payoffs

from both carry and momentum trades positively co-move with our global correlation inno-

vation.

While a large body of the FX literature explores the linkages between economic funda-

mentals and carry and momentum strategies, our global equity correlation factor bridges

both the FX and international equity markets. By showing that a factor constructed from

the international equity market can explain abnormal returns in the FX market, we shed

light on the cross-market integration where premiums in two different markets are driven by
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the same aggregate risk. A useful extension of this study would be to investigate the role of

currency risk in equity market contagion. Identifying crisis and non-crisis periods through

our global correlation factor may help to link a contagion indicator in one market to the

other market. We leave this cross-market contagion for future research.

VII Appendix: Cross-Sectional Asset Pricing Model

Let f be a K-vector of factors, R be a vector of returns on N test assets with mean µR

and covariance matrix VR, and β be the N ×K matrix of multiple regression betas of the

N assets with respect to the K factors. Let Yt = [f
′
t , R

′
t]

′
be an N + K vector. Denote the

mean and variance of Yt as

µ = E[Yt] =

 µf

µR

 (14)

V = V ar[Yt] =

 Vf VfR

VRf VR

 (15)

If the K factor asset pricing model holds, the expected returns of the N assets are given by

µR = Xγ (16)

where X = [1N , β] and γ = [γ0, γ
′
1]

′
is a vector consisting of the zero-beta rate and risk premia

on the K factors. In a constant beta case, the popular two-pass cross-sectional regression
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(CSR) method first obtains estimates β̂ by running the following multivariate regression:

Rt = α + βft + εt, t = 1, · · · , T (17)

β̂ = V̂Rf V̂
−1
f (18)

γW = argminγ(µR −Xγ)
′
W (µR −Xγ) = (X

′
WX)−1X

′
WµR (19)

γ̂ = (X̂
′
WX̂)−1X̂

′
Wµ̂R (20)

where W = IN under OLS CSR and W = Σ−1 = (VR − VRfV −1
f VfR)−1 under GLS CSR (or

equivalently use W = V −1
R ).

A normalized goodness-of-fit measure of the model (cross-sectional R2) can be defined as

ρ2
W = 1− Q

Q0

(21)

where Q = e′WWeW , Q0 = e′0We0,

and eW = [IN −X(X
′
WX)−1X

′
W ]µR, e0 = [IN − 1N(1

′
NW1N)−11

′
NW ]µR

Shanken (1992) provides asymptotic distribution of γ adjusted for the errors-in-variables

problem when we need to account for the estimation errors in β. For OLS CSR, and GLS

CSR,

√
T (γ̌ − γ)

A∼ N(0K+1, (1 + γ
′
V −1
f γ)(X

′
X)−1(X

′
ΣX)(X

′
X)−1 +

 0 0
′
K

0K Vf


√
T (γ̌ − γ)

A∼ N(0K+1, (1 + γ
′
V −1
f γ)(X

′
ΣX)−1 +

 0 0
′
K

0K Vf

 (22)

Kan, Robotti, and Shanken (2012) further investigate the asymptotic distribution of γ̂

under potentially misspecified models as well as under the case when the factors and returns

are i.i.d. multivariate elliptically distribution (rather than i.i.d normal). The distribution is
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given by

√
T (γ̌ − γ)

A∼ N(0K+1, V (γ̂)) (23)

V (γ̂) =
∞∑

j=−∞

E[hth
′

t+j] (24)

ht = (γt − γ)− (θt − θ)wt +Hzt (25)

where θt = [γ0t, (γ1t − ft)
′
]
′
, θ = [γ0, (γ1 − µf )

′
]
′
, ut = e′W (Rt − µR), wt = γ

′
1V
−1
f (ft −

µf ), and zt = [0, ut(ft − µf )
′
V −1
f ]

′
. Note that the term ht is now specified with three terms

which are the asymptotic variance of γ when the true β is used, the errors-in-variables (EIV)

adjustment term, and the misspecification adjustment term. Please see Kan, Robotti, and

Shanken (2012) for details of the estimation.

An alternative specification will be in terms of the N × K matrix VRf of covariances

between returns and the factors.

µR = Xγ = Cλ (26)

λ̂ = (Ĉ
′
WĈ)−1Ĉ

′
Wµ̂R (27)

where C = [1N , VRF ] and λW = [λW,0, λ
′
W,1]

′
.

Although the pricing errors from this alternative CSR are the same as those in the

one using β above (thus the cross-sectional R2 will also be the same), they emphasize the

differences in the economic interpretation of the pricing coefficients. In fact, according to

the paper, what matters is whether the price of covariance risk associated additional factors

is nonzero if we want to answer whether the extra factors improve the cross-sectional R2.

Therefore, we apply both tests based on λ as well as β in the empirical testing. They also

have shown how to use the asymptotic distribution of the sample R2 (ρ̂) in the second-pass

CSR as the basis for a specification test. Testing ρ̂ also crucially depends on the value of ρ.
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1. (Carry) Portfolios Sorted on Forward Discount 1. (Carry) Portfolios Sorted on Forward Discount 

Portfolio 1 2 3 4 5 HML*(5-1) Portfolio 1 2 3 4 5 HML*(5-1)

Mean -1.60 -0.13 1.76 2.85 4.21 5.80 Mean -0.86 -0.70 1.65 2.59 4.31 5.17

Median -1.20 1.28 2.49 4.06 8.95 9.85 Median -0.26 0.71 3.28 3.98 5.26 9.53

Std. Dev 9.21 9.25 8.54 8.98 10.38 8.37 Std. Dev 10.02 9.92 9.23 9.90 11.37 9.65

Skewness -0.12 -0.45 -0.01 -0.43 -1.11 -1.92 Skewness 0.01 -0.25 -0.16 -0.42 -0.60 -0.96

Kurtosis 4.37 4.60 4.07 4.63 6.79 13.51 Kurtosis 3.72 4.01 4.28 4.93 5.14 6.18

Sharpe Ratio -0.17 -0.01 0.21 0.32 0.41 0.69 Sharpe Ratio -0.09 -0.07 0.18 0.26 0.38 0.54

* t-stats (HML) = 4.78 * t-stats (HML) = 2.88

2. (MoM) Portfolios Sorted on Past Excess Return 2. (MoM) Portfolios Sorted on Past Excess Return 

Portfolio 1 2 3 4 5 HML*(5-1) Portfolio 1 2 3 4 5 HML*(5-1)

Mean -1.79 -1.13 0.64 1.89 5.60 7.39 Mean -1.75 1.41 0.75 1.71 3.61 5.37

Median -0.30 0.75 1.33 1.81 6.30 7.31 Median -0.64 2.14 2.18 2.94 4.36 7.08

Std. Dev 9.69 9.40 9.27 9.11 9.15 8.33 Std. Dev 10.18 10.20 10.40 9.82 9.96 9.66

Skewness -0.24 -0.42 -0.22 -0.30 -0.32 -0.11 Skewness -0.12 -0.22 -0.42 -0.16 -0.20 -0.06

Kurtosis 4.69 4.52 4.54 4.14 4.60 3.86 Kurtosis 4.91 4.18 4.21 3.91 4.17 3.72

Sharpe Ratio -0.19 -0.12 0.07 0.21 0.61 0.89 Sharpe Ratio -0.17 0.14 0.07 0.17 0.36 0.56

* t-stats (HML) = 5.44 * t-stats (HML) = 4.44

Table I

Descriptive Statistics

All Currencies (48) Developed Market Currencies (17)

The table reports statatistics for the annualized excess currency returns of currency portfolios sorted by the following procedures. 1. (Carry) portfolios are sorted on time t-1 forward

discounts, 2. (MoM) portfolios on their excess return over the last 3 month. All portfolios are rebalanced at the end of each month and the excess returns are adjusted for

transaction costs (bid-ask spread). The portfolio 1 contains the 20% of currencies with the lowest measures, whilst portfolio 5 contains currencies with highest measures. HML

denotes the difference in returns between portfolio 5 and 1, and HAC standard error of Newey West (1987) is used for t-test. The excess returns cover the period March 1976 to

November 2013. 
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Figure 1. The figure shows a time-series plot of number of available currencies to

construct carry portfolios (blue line) and momentum portfolios (dotted red line). 

1. December 1996: The increase in the number of currencies is due to merger of two

separate dataset (one denominated in GBP, the other denominated in USD). 

2. January 1999: The decrease is due to introduction of EURO. 

3. March 2004: The increase is due to inclusion of many emerging market currencies
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Figure 2. The upper panel of the figure shows a time-series plot of the global equity correlation levels. The solid black line, DECO IS (in-

sample), is measured by DECO model (Engle and Kelly, 2012) where parameters are estimated on the entire monthly return series of international

indices. The dotted blue line, DECO OOS (out-of-sample), is measured by the same model where parameters are estimated on the data available

only at the point in time and updated with expanding window as we collect more data. The dotted red line, correlation level is measured by

computing bilateral intra-month correlations at each month end using daily return series of international indices and then average over all

bilateral correlations of the particular month. The lower panel shows a time-series plot of the global equity correlation innovations. The

correlation innovations are measured by taking first difference of each of the correlation level series respectively. The sample covers the period

March 1976 to November 2013. 
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Factors

1. DECO IS 

Innovation

2. DECO OOS 

Innovation

3. Intra-Month 

Innovation

Mean (Monthly) 0.001 0.001 0.001

Volatility (Monthly) 0.051 0.051 0.119

Augmented Dicky-

Fuller test (p-val)
0.001 0.001 0.001

AR(1) coefficient -0.015 -0.037 -0.364

Ljung-Box Test

(p-val)
0.744 0.432 0.000

Breusch–Godfrey 

Test (p-val)
0.740 0.491 0.000

* Augmented Dicky-Fuller test is a test for a unit root (H0 = Unit root is 

present), Ljung-box test and Breusch-Godfrey test are tests for serial 

dependence (H0 = No serial correlation is present)

Correlation

Level

DECO 

IS

DECO 

OOS

Intra-

month

DECO IS 1.00 0.99 0.94

DECO OOS 0.99 1.00 0.94

Intra-month 0.94 0.94 1.00

Correlation

Innovation

DECO 

IS

DECO 

OOS

Intra-

month

DECO IS 1.00 0.92 0.76

DECO OOS 0.92 1.00 0.76

Intra-month 0.76 0.76 1.00

Correlation across the factors
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Factor: DOL ΔEQ_corr R2 0.907 Factor: DOL ΔEQ_corr R2 0.643

ϒ 0.107 -8.745 pval-1 0.612 ϒ 0.091 -5.263 pval-1 0.102

t-ratio (s) 0.929 -3.829 pval-2 0.001 t-ratio (s) 0.727 -3.099 pval-2 0.017

t-ratio (jw) 0.932 -3.488 pval-3a 0.000 t-ratio (jw) 0.726 -2.906 pval-3a 0.001

t-ratio (krs) 0.932 -3.366 pval-3b 0.002 t-ratio (krs) 0.724 -2.315 pval-3b 0.002

λ 1.354 -33.20 λ 0.843 -19.98

t-ratio (s) 0.355 -3.710 t-ratio (s) 0.330 -3.034

t-ratio (jw) 0.296 -3.022 t-ratio (jw) 0.284 -2.659

t-ratio (krs) 0.296 -2.935 t-ratio (krs) 0.286 -2.205

Descriptions

ϒ: Coefficients on beta risk pval-1: p-value of testing R
2
 = 1

λ: Coefficients on covariance risk pval-2: p-value of testing R
2
 = 0 (without imposing HO: ϒ = 0N)

t-ratio (s): Shanken Error-in-Variables adjusted t-ratio pval-3a: p-value of Wald ϒ = 0k (HO: ϒ = 0N)

t-ratio (jw): EIV t-ratio under general distribution assumption pval-3b: p-value of Wald ϒ = 0k (without imposing HO: ϒ = 0N)

t-ratio (krs): Misspecification robust t-ratio

Table II. Cross-Sectional Regression (CSR) Asset Pricing Tests

: Equity Correlation Innovation (DECO OOS) on FX 10 Portfolios

The table reports cross-sectional pricing results for the factor model based on the dollar risk factor (DOL) and Global Equity

Correlation Innovation where the correlation levels are measured by DECO model (ΔEQ_corr). The test assets are the set of

sorted carry portfolios (1-5), and the set of sorted momentum portfolios (1-5). Panel 1. on the left reports estimation results

for test assets contructed using currencies from all 48 countries and the panel on the right reports estimation results for test

assets constructed using currencies from 17 developed market countries only. Market price of beta riskϒ (multiplied by 100),

market price of covariance risk λ, the Shanken (1992) and the Jagannathan and Wang (1998) t-ratios under correctly

specified models and account for the EIV problem: [t-ratio(s) and t-ratio(jw) ] and the Kan, Robotti, and Shanken (2012)

misspecification-robust t-ratios: [t-ratio(krs) ] are reported. pval-1 is the p-value for the test of H0: R squared = 1. pval-2 is 

the p-value for the test of H0: R squared = 0, pval-3a and pval-3b are the p-value for Wald test of H0: ϒ = 0 with and

without imposing price of beta is zero under the null respectively. Panel 2 shows beta estimation results for time-series

regressions of excess returns on a constant, the dollar risk factor (DOL) and Global Equity Correlation Innovation

(ΔEQ_corr). HAC standard errors are reported in parentheses. Data are monthly and the sample covers the period March

1976 to November 2013. 

Panel 1. Factor Prices

All Countries (48) Developed Countries (17)

Portfolio α β(DOL) β(ΔEQ_Corr) R2 Portfolio α β(DOL) β(ΔEQ_Corr) R2

1 -0.003 0.993 0.031 0.832 6 -0.003 1.005 0.013 0.774

(0.001) (0.044) (0.009) (0.001) (0.040) (0.011)

2 -0.002 1.034 0.018 0.893 7 -0.003 1.035 0.023 0.873

(0.000) (0.025) (0.009) (0.001) (0.026) (0.008)

3 0.000 0.954 -0.007 0.892 8 -0.001 1.045 0.006 0.913

(0.000) (0.025) (0.006) (0.000) (0.017) (0.007)

4 0.001 0.999 -0.004 0.891 9 0.000 1.001 -0.003 0.867

(0.000) (0.029) (0.007) (0.000) (0.024) (0.008)

5 0.002 1.005 -0.037 0.702 10 0.003 0.893 -0.041 0.692

(0.001) (0.034) (0.016) (0.001) (0.043) (0.014)

Carry Momentum

Panel 2. Factor Betas

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 
 

Factor: DOL ΔEQ_corr R2 0.841 Factor: DOL ΔEQ_corr R2 0.373

ϒ 0.146 -24.075 pval-1 0.569 ϒ 0.093 -11.974 pval-1 0.004

t-ratio (s) 1.081 -3.362 pval-2 0.001 t-ratio (s) 0.742 -2.616 pval-2 0.088

t-ratio (jw) 1.046 -3.464 pval-3a 0.000 t-ratio (jw) 0.741 -2.548 pval-3a 0.043

t-ratio (krs) 1.047 -3.723 pval-3b 0.002 t-ratio (krs) 0.739 -1.986 pval-3b 0.016

λ -2.107 -17.14 λ -0.756 -8.52

t-ratio (s) -0.498 -3.278 t-ratio (s) -0.286 -2.573

t-ratio (jw) -0.444 -3.396 t-ratio (jw) -0.266 -2.545

t-ratio (krs) -0.450 -3.669 t-ratio (krs) -0.272 -1.996

Descriptions

ϒ: Coefficients on beta risk pval-1: p-value of testing R
2
 = 1

λ: Coefficients on covariance risk pval-2: p-value of testing R
2
 = 0 (without imposing HO: ϒ = 0N)

t-ratio (s): Shanken Error-in-Variables adjusted t-ratio pval-3a: p-value of Wald ϒ = 0k (HO: ϒ = 0N)

t-ratio (jw): EIV t-ratio under general distribution assumption pval-3b: p-value of Wald ϒ = 0k (without imposing HO: ϒ = 0N)

t-ratio (krs): Misspecification robust t-ratio

Table III. Cross-Sectional Regression (CSR) Asset Pricing Tests

: Equity Correlation Innovation (Intra-month) on FX 10 Portfolios

The table reports cross-sectional pricing results for the factor model based on the dollar risk factor (DOL) and Global Equity

Correlation Innovation where the correlation levels are measured by intra-month realized correlation (ΔEQ_corr). The test

assets are the set of sorted carry portfolios (1-5), and the set of sorted momentum portfolios (1-5). Panel 1. on the left reports

estimation results for test assets contructed using currencies from all 48 countries and the panel on the right reports

estimation results for test assets constructed using currencies from 17 developed market countries only. Market price of beta

risk ϒ (multiplied by 100), market price of covariance risk λ, the Shanken (1992) and the Jagannathan and Wang (1998) t-

ratios under correctly specified models and account for the EIV problem: [t-ratio(s) and t-ratio(jw) ] and the Kan, Robotti,

and Shanken (2012) misspecification-robust t-ratios: [t-ratio(krs) ] are reported. pval-1 is the p-value for the test of H0: R

squared = 1. pval-2 is the p-value for the test of H0: R squared = 0,  pval-3a  and pval-3b are the p-value for Wald test of H0: 

ϒ = 0 with and without imposing price of beta is zero under the null respectively. Panel 2 shows beta estimation results for

time-series regressions of excess returns on a constant, the dollar risk factor (DOL) and Global Equity Correlation Innovation

(ΔEQ_corr). HAC standard errors are reported in parentheses. Data are monthly and the sample covers the period March

1976 to November 2013. 

Panel 1. Factor Prices

All Countries (48) Developed Countries (17)

Portfolio α β(DOL) β(ΔEQ_Corr) R2 Portfolio α β(DOL) β(ΔEQ_Corr) R2

1 -0.003 0.994 0.008 0.830 6 -0.003 1.007 0.006 0.774

(0.001) (0.044) (0.005) (0.001) (0.040) (0.005)

2 -0.002 1.034 0.003 0.892 7 -0.003 1.038 0.015 0.875

(0.000) (0.025) (0.003) (0.001) (0.026) (0.004)

3 0.000 0.954 0.001 0.892 8 -0.001 1.045 0.000 0.913

(0.000) (0.025) (0.004) (0.000) (0.017) (0.003)

4 0.001 0.999 -0.003 0.891 9 0.000 1.001 -0.002 0.867

(0.000) (0.029) (0.003) (0.000) (0.024) (0.004)

5 0.002 1.004 -0.008 0.698 10 0.003 0.890 -0.015 0.691
(0.001) (0.035) (0.006) (0.001) (0.043) (0.005)

Carry Momentum

Panel 2. Factor Betas
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Figure 3. The figure shows pricing errors for asset pricing models with global equity correlation as the risk factor. The realized actual excess return is on the

horizontal axis and the model predicted average excess return is on the vertical axis. The test assets are the set of sorted carry portfolios (5) and momentum

portfolios (5), "FX 10". The estimation results are based on OLS CSR test while imposing the same price of beta/covariance risk for the test assets within each

plot. The sample data are available on monthly frequency and cover the period March 1976 to November 2013. 
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Descriptions Controls R2 R2

X DOL X ΔEQ_corr_OOS DOL X ΔEQ_corr_IM

FX moments ΔFX_vol 0.11 -0.23 -9.38 0.92 0.12 -0.57 -22.74 0.87

(0.48) (0.50) (-2.76) (0.09) (-0.61) (-0.64) (-2.92) (0.10)

ΔFX_corr 0.11 -10.13 -8.40 0.95 0.12 -7.67 -23.49 0.85

(0.08) (-0.89) (-2.54) (0.09) (-0.48) (-0.26) (-3.03) (0.11)

Liquidity ΔTED 0.11 10.47 -9.43 0.93 0.12 0.38 -24.80 0.85

(0.58) (0.75) (-2.94) (0.09) (-0.33) (0.27) (-3.19) (0.11)

ΔFX_BAS 0.11 0.01 -8.79 0.93 0.12 -0.01 -24.69 0.86

(0.24) (0.60) (-2.99) (0.09) (-0.40) (-0.40) (-3.52) (0.11)

ΔLIQ_PS 0.12 -2.21 -10.86 0.93 0.12 2.98 -21.93 0.83

(0.28) (-0.91) (-2.50) (0.09) (-0.28) (0.34) (-2.32) (0.12)

FF factors EQ_MRP 0.11 0.92 -9.21 0.94 0.12 2.18 -23.76 0.85

(0.65) (-0.77) (-3.02) (0.09) (-0.56) (0.39) (-3.53) (0.11)

EQ_SMB 0.11 -1.15 -9.23 0.93 0.12 1.77 -23.23 0.85

(0.19) (-0.68) (-2.77) (0.09) (-0.35) (0.37) (-3.28) (0.11)

EQ_HML 0.10 2.65 -7.78 0.95 0.11 3.13 -22.41 0.88

(0.52) (1.05) (-2.68) (0.09) (-0.15) (0.81) (-3.08) (0.10)

EQ_MoM 0.11 3.71 -9.43 0.95 0.12 0.55 -24.26 0.84

(0.56) (0.84) (-2.84) (0.09) (-0.37) (0.20) (-3.55) (0.11)

HML factors Carry_HML 0.11 0.52 -10.06 0.92 0.11 0.55 -20.97 0.88

(0.27) (-0.54) (-2.71) (0.09) (-0.40) (0.78) (-3.26) (0.10)

MoM_HML 0.11 0.63 -7.40 0.95 0.12 0.61 -21.03 0.85

(0.47) (0.96) (-2.38) (0.09) (-0.31) (0.54) (-2.99) (0.11)

Beta

Table IV. Cross-Sectional Regression (CSR) Asset Pricing Tests: All 10 Portfolios

The test assets are the set of sorted carry portfolios (1-5), and the set of sorted momentum portfolios (1-5). 

Panel 1 and 2 reports cross-sectional pricing results for the factor model based on the dollar risk factor (DOL), a control factor X, and

Global Equity Correlation Innovation factors: DECO OOS innovation (ΔEQ_corr_OOS) and Intra-month innovation(ΔEQ_corr_IM)

respectively. Kan, Robotti, and Shanken (2012) misspecification-robust t-ratio: [t-ratio(krs)] is reported in prentheses under beta

coefficient. The p-values for the test of H0: R squared = 0 is reported in prentheses under coefficient of determination. 

Factor Description

ΔFX_vol = global FX volatility innovationas (Menkhoff, Sarno, Schmeling and Schrimpf, 2012 JF ), ΔFX_corr = global FX

correlation innovationas, ΔTED = TED spread innovation, ΔFX_BAS = Innovations to aggregate FX bid-ask spreads (Mancini, 

Renaldo and Wrampelmeyer, 2013 JF ), ΔLIQ_PS = Pastor-Stambaugh liquidity innovation, EQ_MRP = Market risk premium,

EQ_SMB = US equity sizefactor, EQ_HML = US equity value factor, EQ_MoM = US equity momentum factor, Carry_HML =

High-minus-low FX carry factor (Lustig, Roussanov, and Verdelhan, 2011 RFS ), MoM_HML = High-minus-low FX momentum

factor.

Panel 2Panel 1

Beta
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1 2 3 4 5 1 2 3 4 5
-0.8
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-0.2
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0.4

0.6

0.8

Beta Loadings on Factor Mimicking Portfolios ( EQ corr OOS)

Momentum Portfolios

Carry Portfolios

Beta R2 Beta R2 Beta R2 Beta R2

Original ΔEQ_corr_OOS -7.77 0.93 -9.80 0.93 -8.74 0.91 -5.26 0.64

(-2.54) (0.13) (-2.83) (0.07) (-2.94) (0.00) (-2.21) (0.00)

ΔEQ_corr_IM -35.38 0.97 -20.79 0.85 -24.05 0.84 -11.97 0.37

(-1.72) (0.12) (-3.42) (0.09) (-3.68) (0.00) (-2.00) (0.04)

Mimicking ΔEQ_corr_OOS -0.34 0.92 -0.45 0.91 -0.39 0.88 -0.32 0.76

(mimicking) (-4.08) (0.13) (-4.96) (0.07) (-5.22) (0.10) (-3.97) (0.25)

ΔEQ_corr_IM -1.37 0.95 -0.73 0.81 -0.85 0.79 -0.72 0.66

(mimicking) (-3.49) (0.12) (-5.69) (0.09) (-6.49) (0.12) (-4.36) (0.28)

Table V. Cross-Sectional Regression (CSR) Asset Pricing Tests: Factor Mimicking Portfolios

The table reports cross-sectional pricing results for the factor model based on the dollar risk factor (DOL) and Global Equity Correlation

Innovation factors: DECO OOS innovation (ΔEQ_corr_OOS) and Intra-month innovation(ΔEQ_corr_IM) respectively. The factor

mimicking portfolios are obtained by projecting the factor into FX 10 portfolio space. The test assets are the set of portfolios are sorted

on time t-1 forward discounts for (Carry 5), the set of portfolios are sorted on their excess return over the last 3 month for (Momentum

5), the set of sorted Carry 5 and Momentum 5 portfolios for (FX10). Developed market currencies are used to construct the test assets for 

(DM FX 10). Kan, Robotti, and Shanken (2012) misspecification-robust t-ratio: [t-ratio(krs)] is reported in prentheses under beta

coefficient. The p-values for the test of H0: R squared = 0 is reported in prentheses under coefficient of determination.

Momentum 5Carry 5 FX 10 DM FX 10
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Factor: MRP SMB HML DOL ΔEQ_corr R2 0.619

ϒ 0.111 -2.808 pval-1 0.000

t-ratio (s) 0.962 -2.974 pval-2 0.330

t-ratio (jw) 0.966 -2.172 pval-3a 0.002

t-ratio (krs) 0.970 -2.186 pval-3b 0.060

λ 1.724 -10.66

t-ratio (s) 0.780 -2.916

t-ratio (jw) 0.697 -1.837

t-ratio (krs) 0.705 -1.849

Factor: MRP SMB HML DOL ΔEQ_corr R2 0.848

ϒ 0.545 0.262 0.395 0.105 -4.592 pval-1 0.001

t-ratio (s) 2.529 1.774 2.703 0.906 -3.488 pval-2 0.091

t-ratio (jw) 2.537 1.774 2.692 0.909 -3.456 pval-3a 0.000

t-ratio (krs) 2.521 1.768 2.701 0.911 -2.253 pval-3b 0.000

λ -1.721 0.673 6.434 2.224 -18.07

t-ratio (s) -0.788 0.264 2.626 0.827 -3.245

t-ratio (jw) -0.648 0.257 2.522 0.682 -3.067

t-ratio (krs) -0.457 0.231 2.419 0.653 -2.198

Descriptions

ϒ: Coefficients on beta risk pval-1: p-value of testing R
2
 = 1

λ: Coefficients on covariance risk pval-2: p-value of testing R
2
 = 0 (without imposing HO: ϒ = 0N)

t-ratio (s): Shanken Error-in-Variables adjusted t-ratio pval-3a: p-value of Wald ϒ = 0k (HO: ϒ = 0N)

t-ratio (jw): EIV t-ratio under general distribution assumption pval-3b: p-value of Wald ϒ = 0k (without imposing HO: ϒ = 0N)

t-ratio (krs): Misspecification robust t-ratio

Panel 1

Panel 2

The table reports cross-sectional pricing results for the factor model based on Fama/French factors. The test assets are the set of

sorted carry (5), momentum (5) and Fama/French 25 portfolios (portfolios formed on Size and Book-to-Market ratio). MRP is

the market risk premium, SMB is the small-minus-big size factor, HML is the high-minus-low value factor, DOL is the dollar

factor, and ΔEQ_corr is the global equity correlation innovation where the correlation levels are measured by DECO model.

Market price of beta risk ϒ (multiplied by 100), market price of covariance risk λ, the Shanken (1992) and the Jagannathan and

Wang (1998) t-ratios under correctly specified models and account for the EIV problem: [t-ratio(s) and t-ratio(jw)] and the Kan,

Robotti, and Shanken (2012) misspecification-robust t-ratios: [t-ratio(krs)] are reported. pval-1 is the p-value for the test of H0:

R squared = 1. pval-2 is the p-value for the test of H0: R squared = 0, pval-3a and pval-3b are the p-value for Wald test of H0: ϒ

= 0 with and without imposing price of beta is zero under the null respectively. HAC standard errors are reported in parentheses.

Data are monthly and the sample covers the period March 1976 to November 2013. 

Table VI. Cross-Sectional Regression (CSR) Asset Pricing Tests

: FX 10 Portfolios + 25 Size and Book-to-Market sorted portfolios
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Figure 4. The figure reports average returns for the portfolios sorted on the correlation betas. Currencies are sorted according to

their beta in a rolling time-series regression of individual currencies's excess returns on Global Equity Correlation Innovations.

Portfolios are rebalanced at the end of each month t by sorting currencies into five groups based on beta coefficients available at

time t. Each beta is obtained by regressing currency i 's excess return on the correlation innovation (ΔEQ_corr) on a 24-period

moving window (left) or on a 36-period moving window (right). Portfolio 1 contains currencies with the lowest betas, whilst

portfolio 5 contains currencies with highest betas. All moments are annualized and the excess returns are adjusted for transaction

costs (bid-ask spread). The excess returns cover the period March 1976 to November 2013. 
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Factor: DOL ΔEQ_corr R2 0.419 Factor: DOL ΔEQ_corr R2 0.514

ϒ 0.111 -6.870 pval-1 0.011 ϒ 0.115 -20.200 pval-1 0.185

t-ratio (s) 0.964 -3.904 pval-2 0.010 t-ratio (s) 0.996 -3.652 pval-2 0.004

t-ratio (jw) 0.965 -3.495 pval-3a 0.000 t-ratio (jw) 1.003 -4.109 pval-3a 0.000

t-ratio (krs) 0.966 -2.744 pval-3b 0.002 t-ratio (krs) 1.002 -3.035 pval-3b 0.000

λ 1.753 -26.75 λ -1.628 -14.38

t-ratio (s) 0.539 -3.778 t-ratio (s) -0.416 -3.545

t-ratio (jw) 0.453 -3.001 t-ratio (jw) -0.375 -4.043

t-ratio (krs) 0.453 -2.357 t-ratio (krs) -0.372 -3.015

Descriptions

ϒ: Coefficients on beta risk pval-1: p-value of testing R
2
 = 1

λ: Coefficients on covariance risk pval-2: p-value of testing R
2
 = 0 (without imposing HO: ϒ = 0N)

t-ratio (s): Shanken Error-in-Variables adjusted t-ratio pval-3a: p-value of Wald ϒ = 0k (HO: ϒ = 0N)

t-ratio (jw): EIV t-ratio under general distribution assumption pval-3b: p-value of Wald ϒ = 0k (without imposing HO: ϒ = 0N)

t-ratio (krs): Misspecification robust t-ratio

Table VII. GLS Cross-Sectional Regression (CSR) Asset Pricing Tests: All 10 Portfolios

The table reports cross-sectional pricing results for the factor model based on the dollar risk factor (DOL) and Global Equity Correlation

Innovation where the correlation levels are measured by DECO model (ΔEQ_corr). The test assets are the set of sorted carry portfolios

(1-5), and the set of sorted momentum portfolios (1-5). Panel 1. on the left reports estimation results for test assets contructed using

currencies from all 48 countries and the panel on the right reports estimation results for test assets constructed using currencies from

17 developed market countries only. Market price of beta risk ϒ (multiplied by 100), market price of covariance risk λ, the Shanken

(1992) and the Jagannathan and Wang (1998) t-ratios under correctly specified models and account for the EIVproblem: [t-ratio(s) and t-

ratio(jw)] and the Kan, Robotti, and Shanken (2012) misspecification-robust t-ratios: [t-ratio(krs)] are reported. pval-1 is the p-value for

the test of H0: R squared = 1. pval-2 is the p-value for the test of H0: R squared = 0, pval-3a and pval-3b are the p-value for Wald test

of H0: ϒ = 0 with and without imposing price of beta is zero under the null respectively. HAC standard errors are reported in

parentheses. Data are monthly and the sample covers the period March 1976 to November 2013. 

1. DECO OOS Correlation Innovation 2. Intra-Month Correlation Innovation
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Factor: DOL ΔEQ_corr R2 0.61 Factor: DOL ΔEQ_corr R2 0.84

ϒ 0.15 -10.94 pval-1 0.43 ϒ 0.10 -9.89 pval-1 0.50

t-ratio (s) 1.27 -2.35 pval-2 0.16 t-ratio (s) 0.78 -3.40 pval-2 0.13

t-ratio (jw) 1.29 -2.43 pval-3a 0.00 t-ratio (jw) 0.78 -3.19 pval-3a 0.00

t-ratio (krs) 1.29 -2.69 pval-3b 0.02 t-ratio (krs) 0.78 -3.24 pval-3b 0.01

λ 5.24 -88.26 λ 4.79 -34.79

t-ratio (s) 0.75 -2.32 t-ratio (s) 1.03 -3.30

t-ratio (jw) 0.75 -2.51 t-ratio (jw) 0.90 -2.79

t-ratio (krs) 0.75 -2.77 t-ratio (krs) 0.90 -2.80

Factor: DOL ΔEQ_corr R2 0.93 Factor: DOL ΔEQ_corr R2 0.65

ϒ 0.11 -8.47 pval-1 0.78 ϒ 0.03 -1.67 pval-1 0.31

t-ratio (s) 0.95 -3.94 pval-2 0.00 t-ratio (s) 0.83 -3.04 pval-2 0.08

t-ratio (jw) 0.96 -3.65 pval-3a 0.00 t-ratio (jw) 0.83 -2.29 pval-3a 0.00

t-ratio (krs) 0.96 -3.52 pval-3b 0.00 t-ratio (krs) 0.83 -2.22 pval-3b 0.07

λ 1.71 -33 λ -11.31 -40.15

t-ratio (s) 0.46 -3.81 t-ratio (s) -1.61 -2.99

t-ratio (jw) 0.38 -3.17 t-ratio (jw) -1.15 -2.04

t-ratio (krs) 0.38 -3.07 t-ratio (krs) -1.13 -1.95

Descriptions

ϒ: Coefficients on beta risk pval-1: p-value of testing R
2
 = 1

λ: Coefficients on covariance risk pval-2: p-value of testing R
2
 = 0 (without imposing HO: ϒ = 0N)

t-ratio (s): Shanken Error-in-Variables adjusted t-ratio pval-3a: p-value of Wald ϒ = 0k (HO: ϒ = 0N)

t-ratio (jw): EIV t-ratio under general distribution assumption pval-3b: p-value of Wald ϒ = 0k (without imposing HO: ϒ = 0N)

t-ratio (krs): Misspecification robust t-ratio

Table VIII. Cross-Sectional Regression (CSR) Asset Pricing Tests: All 10 Portfolios

The table reports cross-sectional pricing results for the factor model based on the dollar risk factor (DOL) and Global Equity

Correlation Innovation where the correlation levels are measured by DECO model (ΔEQ_corr). The test assets are the set of

all FX 10 portfolios (Carry 5 and Momentum 5). The winsorized correlation innovation series (at the 10% level) is used for

Panel 1, pre-financial crisis period (from March 1976 to December 2006) is chosen for Panel 2. For Panel 3, AR(2) shock

instead of the first difference is used to measure the correlation innovations. Data are monthly and the sample covers the

period March 1976 to November 2013. For Panel 4, both factors (DOL and ΔEQ_corr) and test assets (FX 10 portfolios) are

constructed from weekly data series. Weekly sample cover the period October 1997 to November 2013. 

Panel 1. 10% Winsorization Panel 2. Before Financial Crisis (to Dec 2006)

Panel 3. AR(2) Shock Panel 4. Weekly Data
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Figure 5. The figure on the left shows average ϒ for the portfolios sorted on simulated time t-1 forward discouts. The solid blue line is a time-series plot of ϒ for

low interest rate portfolio, and the dotted blue line is for high interest rate portfolio. The figure on the right shows average ρϒ for the portfolios sorted on simulated

excess returns over the last 3 month. The solid blue line is a time-series plot of ρϒ for low momentum portfolio, and the dotted blue line is for high momentum

portfolio. 
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Figure 6. The left chart of the figure shows time-series decomposition of shocks for carry trades, long high interest rate currencies and short low interest rate currencies using

simulated rates and returns. The right chart of the figure shows time-series decomposition of shocks for momentum trades, long high excess return currencies and short excess return

currencies over the last 3 month using simulated returns. The solid blue line and the dotted red line shows the first and the second part of the equation  above respectively. 
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Figure 7. This figure compares consumption correlation and equity correlation where both series are simulated from our model. The upper

panel of the figure shows a time-series plot of the common consumption correlation levels (solid blue line) and the equity correlation levels

estimated by running DECO model on the simulated equity return series (dotted red line). The lower panel shows a time-series plot of the

correlation innovations. The correlation innovations are measured by taking first difference of each of the correlation level series. The

correlations between two series are 0.76 and 0.80 for the level and the innovation respectively. 
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Country
FX All FX DM

Equity DM

(1973 ~)

Equity

(1988 ~)

Equity

(1995 ~)

Number of country 48 17 17 31 39

1.Australia V V V V V

2.Austria V V V V V

3.Belgium V V V V V

4.Brazil V V V

5.Bulgaria V

6.Canada V V V V V

7.Croatia V

8.Cyprus V

9.Czech Repulbic V V

10.Denmark V V V V V

11.Egypt V V

12.Euro area V V

13.Finland V V V

14.France V V V V V

15.Germany V V V V V

16.Greece V V V

17.Hong Kong V V V

18.Hungary V V

19.Iceland V

20.India V V

21.Indonesia V V V

22.Ireland V V V

23.Israel V V

24.Italy V V V V V

25.Japan V V V V V

26.Kuwait V

27.Malaysia V V V

28.Mexico V V V

29.Netherlands V V V V V

30.New Zealand V V V V V

31.Norway V V V V V

32.Philippines V V V

33.Poland V V

34.Portugal V V V

35.Russia V V

36.Saudi Arabia V

37.Singapore V V V

38.Slovakia V

39.Slovenia V

40.South Africa V V

41.South Korea V V V

42.Spain V V V V V

43.Sweden V V V V V

44.Switzerland V V V V V

45.Taiwan V V V

46.Thailand V V V

47.Ukraine V

48.UK V V V V V

49.US V V V

FX Equity

Appendix: Country Selection 
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