Crossing the Virtual Boundary:
The Effect of Task-Irrelevant Environmental Cues on Task Implementation

Min Zhao, University of Toronto
Leonard Lee, Columbia University
Dilip Soman, University of Toronto

Forthcoming, Psychological Science

Word count: 3999
Abstract: 120
References: 33
Abstract

Task-oriented activities often involve a certain degree of waiting before the actual activities commence. In this paper, we suggest that seemingly irrelevant situational cues in the task environment such as queue guides, area carpets, or the location of another person can serve as a virtual boundary that divides the task system into two categories: in-system versus out-system. Results from four laboratory and field studies show that in-system individuals (i.e., those who have crossed the virtual boundary demarcated by these cues) are more likely to adopt an implemental mindset, as manifested by greater immediacy of action initiation, greater persistence in task-oriented behavior, and greater optimism. Further, these effects are attenuated when people are given sufficient extrinsic incentives to fulfill the task.

Keywords: motivation, implemental mindset, queuing, task-irrelevant cues.
Crossing the Virtual Boundary: The Effect of Task-Irrelevant Environmental Cues on Task Implementation

While individuals’ life spans may be marked by memorable experiences, they are also filled with a larger set of mundane and task-oriented activities. Whether it is sending a package using a courier company, getting a medical check-up, or buying a fast-food meal, a certain degree of waiting is often needed before the actual activity commences. This waiting may have multiple effects on individuals. In particular, waiting could lower motivation, such that people may decide to postpone, abandon, or avoid the task altogether. Others may bear with the experience but emerge feeling dissatisfied and frustrated.

Task environments that involve waiting are often characterized by cues such as queue guides (poles strung with guiding tape), area carpets, floor mats, signage, and seating zones. Although these cues are a noticeable part of the task environment, they are task-irrelevant and should not affect task-related decisions (e.g., whether to continue waiting in line). However, in our investigation, we found that—contrary to individuals’ own intuition—these cues can have a substantial impact on individuals’ task-oriented behavior. Extending prior research on goal gradients (Hull, 1932; Kivetz, Urminsky, & Zheng, 2006), mindsets (Gollwitzer, 1990, 2012), and queuing theory (Prabhu, 1997), we propose that such task-irrelevant cues can serve as a virtual boundary of the task system, dividing the system into two categories: in-system and out-system. Once individuals cross this virtual boundary (e.g., stepping into the queue guide or onto the carpet in front of the service provider) and “enter the system,” they adopt an implemental mindset, characterized by faster action initiation, greater task persistence, and greater optimism in general (Gollwitzer 1990, 2012; Gollwitzer & Bayer, 1999).
Conceptual Framework and Hypotheses

Channel Factors

Our conceptualization of task-irrelevant cues is related to the notion of channel forces, first proposed by Kurt Lewin (1951; Ross & Nisbett, 1991). Lewin defines channel forces as small situational factors that facilitate a specific desired behavior. While Lewin did not explicitly say so, a reading of his work (Lewin, 1951) suggests that people are conscious of channel forces at work.

Researchers have subsequently used the term “channel factors” to refer to contextual interventions employed to influence behavior. For instance, Leventhal, Singer, and Jones (1965) showed that, after attending a lecture on the importance of receiving tetanus inoculation, participants who had received a campus map with the location of the health center circled were more likely to receive a tetanus shot than those who did not receive the map. Similarly, Mullainathan and Shafir (2009) showed that amongst attendees of a workshop designed to encourage low-income individuals to open bank accounts, those who could submit the first form to a bank representative at the workshop were more likely to complete the application process and used the bank services more regularly, compared to attendees who merely received the application materials.

While the notion of channel factors is useful in thinking about contextual effects, key questions remain. Do the effects of channel factors persist in situations where the intervention arises from environmental cues that are not central to the actual goal? Prior research has shown that seemingly irrelevant situational cues can have a substantial impact on behavior (for a review, see Custers & Aarts, 2010). For example, solving a puzzle that included achievement-related words improved performance in subsequent tasks (Bargh et al., 2001), and exposure to French
(German) music in a wine store increased purchase of French (German) wines (North et al., 1999). In a task environment, could task-irrelevant environmental cues also influence individuals’ cognition and their subsequent task implementation?

Waiting and Implemental Mindset

Past research has shown that constituents of the waiting environment can be significant drivers of motivation (Hui, Thakor, & Gill, 1998; Larson, 1987). For instance, informative display boards or slow-tempo background music can improve the palatability of waiting (Katz, Larson, & Larson, 1991; Oakes, 2003). Social comparisons, such as the number of people behind in a queue, can affect goal desirability (Koo & Fishbach, 2010a) and waiting persistence (Zhou & Soman, 2003). Further, perceived goal progress (Soman & Shi, 2003) and focus on the remaining (vs. already completed) tasks can increase motivation (Koo & Fishbach, 2010b).

Expanding these prior findings, we draw upon the categorization (e.g., Tversky, 1992) and mindset literature (Gollwitzer, 1990, 2012; Gollwitzer & Bayer, 1999) in order to examine the novel effect of a different contextual factor on task implementation and mindset activation: task-irrelevant environmental cues. People tend to, consciously or non-consciously, categorize objects, products, and events; they find landmarks or other physical markers in the environment to define categories (Tversky, 1992). Categorization can result in decision biases. For example, individuals felt more protected against a deadly viral outbreak if they were on the opposite (vs. same) side of a state border from the disaster, even if the distance from the disaster was equal (Mishra & Mishra, 2010). Similarly, we propose that objects and patterns in a waiting environment (e.g., queue guides, area carpets, or third-party positions) can create a virtual boundary and divide the task system into two categories: in-system and out-system. Depending
on which side of the boundary individuals perceive themselves to be, they can adopt different mindsets and demonstrate different task-oriented behaviors.

Prior research has identified two types of mindsets during goal pursuit: a deliberative mindset characterized by open-mindedness and a more impartial analysis of goal-relevant information, and an implemental mindset characterized by a more optimistic view toward goal-relevant information and greater action-orientation toward goal attainment (Gollwitzer, 1990, 2012; Gollwitzer, Heckhausen, & Steller, 1990).

These distinct mindsets can be induced in different ways. Mindsets can change from deliberative to implemental naturally as people finalize what goals they want to pursue. Alternatively, thinking about the how (vs. the why) of attaining a goal can also result in a shift in mindset (Taylor & Gollwitzer, 1995). Further, explicitly asking people to evaluate the relative attractiveness of a set of objects can enhance implementation orientation even in an unrelated product category (Xu & Wyer, 2007, 2008). People’s mindset can also change as a function of physical location, e.g., shoppers who have entered a grocery store tend to adopt a more implemental mindset than those still outside the store (Lee & Ariely, 2006). In our research, we propose that task-irrelevant environmental cues that divide the task system into in-system and out-system categories can also trigger changes in mindset. Specifically, once people cross the virtual boundary into the in-system, we predict that they will adopt an implemental mindset.

Previous research has shown that once the implemental mindset is activated, it can be manifested along both cognitive and behavioral dimensions (Gollwitzer, 2012; Gollwitzer & Bayer, 1999). On the cognitive front, people with an implemental mindset become more optimistic in general, perceiving themselves to have greater (illusory) control over their environment (Gollwitzer & Kinney, 1989), or rating themselves more highly on various personal
attributes than their peers (Taylor & Gollwitzer, 1995). On the behavioral front, they are more persistent in goal-directed behavior, faster at initiating action (Gollwitzer, 1990; Gollwitzer & Bayer, 1999), and are less likely to defer choice (Xu & Wyer, 2008). Accordingly, we predict that crossing the virtual boundary represented by task-irrelevant cues in the waiting environment increases individuals’ task persistence, immediacy of action initiation, and general optimism. As a boundary condition, we posit that the potential effects of these cues depend on the opportunity for the effects to manifest. Specifically, we expect these cues to have a diminished impact in situations where the extrinsic incentive to complete the task is sufficiently high.

We next report four studies that examined how different environmental cues activate the implemental mindset both behaviorally and cognitively.

Study 1

In Study 1, we investigate the effect of a queue guide on people’s task persistence. The results of a pre-test (N=30) indicated that unlike other factors (e.g., queue length), the length of a queue guide was perceived as irrelevant to task completion and people’s waiting decision (Table 1).

Method

In this field study, adapted from Zhou and Soman (2003), we observed customers at the only ATM in the concourse of a subway station in a large Asian city (see Appendix). Prior observations suggested that queue lengths typically ranged from three to nine people, the total waiting time from five to ten minutes, and the rate of reneging from 20% to 25%. Further, most reneging occurred within the first three minutes of joining the queue.

In collaboration with the facilities manager, we observed ATM customers’ behavior under three conditions: in the *short-guide* condition, we placed a short queue guide next to the
ATM, such that three to four people could wait “within” the area covered by the guide; in the *long-guide* condition, a longer queue guide was placed, such that six to seven people could stand in the area covered by the guide; no queue guides were used in the *control* condition. Each observation session was randomly assigned to one of these conditions before the study’s commencement.

Over approximately four weeks at three time periods daily (morning rush hour, lunch hour, and evening rush hour) when the concourse was fairly crowded, a research assistant (RA) unobtrusively tracked 311 ATM customers who joined the queue at the fifth position—a position that was either in-system or out-system depending on the length of the queue guide. As the key measure, the RA recorded whether each customer left the queue before completing his/her transaction.

Results

Chi-square analysis showed that type of queue guide had a significant impact on customers’ persistence in completing their ATM transaction ($\chi^2(2) = 6.04, p < .05$). Specifically, significantly fewer people in the long-guide (in-system) condition left the queue than in the short-guide (out-system) condition ($M_{long-guide} = 14\%$ vs. $M_{short-guide} = 25\%; \chi^2(1) = 4.07, p < .05$) or the control condition ($M_{control} = 26\%; \chi^2(1) = 5.30, p < .05$).

Contrary to people’s intuition, the findings in Study 1 indicated that ATM customers who were in-system (who joined the queue with a longer queue guide) were more task-persistent by remaining in line to complete their financial transaction. One might argue that people in the short-guide (out-system) condition were more likely to give up because queue guides signaled typical queue lengths: while in-system individuals who stood within the queue guide might have perceived themselves to be within a queue of normal length, those outside the queue guide
perceived themselves to be standing beyond the normal queue length and were thus less committed to their transactions. This (conscious) inference seems inconsistent with our pre-test results that size of the queue guide would be irrelevant to task decisions. Further, we note that rush-hour customers of this ATM were mostly commuters who walked past the ATM daily and were hence familiar with the ATM’s typical queue length. We address this alternative account further in Study 4.

Study 2

Next, we sought to show that in-system individuals (e.g., long-guide customers) were more likely to adopt an implemental mindset by focusing on a different behavioral measure—immediacy of action initiation. Specifically, we examined *when* customers initiated task-related action by retrieving their ATM card in preparation for their financial transactions.

Method

We conducted this study in the lobby of an office building in an Asian city. We observed customers waiting in a common queue for one of three adjacent ATMs in this lobby. Typically, five people could stand within the area marked by a queue guide. On some days, however, we shortened the queue guide such that only *three* people could stand within the area marked by the guide. There were thus two conditions (short-guide, long-guide) in this study, randomly assigned to different days.

Over a period of ten working days, an RA unobtrusively observed the behavior of 805 individuals who joined the queue *outside* the queue guide, recording the position at which they retrieved their ATM card from their pocket/wallet/purse in preparation for their financial transactions at the machine. The first person in the queue (i.e., the next in line to use an ATM) was coded as standing at position 1, the next person as standing at position 2, etc. Pre-
observations before the main study indicated that queue length did not differ across different working days.

Results

The modal position at which customers retrieved their ATM card corresponded to the point at which they first stepped into the queue guides—when they crossed the virtual boundary and entered the in-system category (Figure 1). When the queue guide was long (five-person capacity), significantly more customers retrieved their card when they reached the fifth position in the queue than at the other positions ($M_{5th\text{-}position} = 38\%$ vs. $M_{average\text{-}of\text{-}the\text{-}other\text{-}positions} = 9\%; \chi^2(7) = 275.80, p < .0001$). When the queue guide was short (three-person capacity), significantly more customers retrieved their card at the third position than at the other positions ($M_{3rd\text{-}position} = 45\%$ vs. $M_{average\text{-}of\text{-}the\text{-}other\text{-}positions} = 11\%; \chi^2(5) = 244.77, p < .0001$). Direct comparisons across conditions at the two key positions in the queue (third and fifth) further revealed that at the fifth position, significantly more customers in the long-guide condition retrieved their ATM card than in the short-guide condition ($M_{long\text{-}guide} = 38\%$ vs. $M_{short\text{-}guide} = 15\%; \chi^2(1) = 50.50, p < .0001$), while at the third position, significantly more customers in the short-guide condition retrieved their card than in the long-guide condition ($M_{short\text{-}guide} = 45\%$ vs. $M_{long\text{-}guide} = 5\%; \chi^2(1) = 175.71, p < .0001$). These results show that holding the objective position in the task system constant, people who have crossed the virtual boundary demarcated by a task-irrelevant cue are more likely to initiate action on the task earlier, indicative of being in an implemental mindset.

We replicated these results in a follow-up study in a different context using a different cue—an area carpet. We observed when 820 international business-class travelers waiting in line at a large Asian airport retrieved their travel documents (e.g., passport) to prepare themselves for check-in, while manipulating the size of the carpet in front of the check-in counter. Consistent
with Study 2’s results, the majority of travelers retrieved their documents when they first stepped onto the carpet regardless of their positions in the queue, contrary to pre-test results indicating that carpet size is irrelevant to task-related behavior (Figure 2 and Table 2; details are available upon request).

Study 3

While the results thus far are consistent with our hypothesis that crossing the virtual boundary defined by task-irrelevant cues induces an implemental mindset along the behavioral dimension, we sought cognitive evidence for this mindset activation in Study 3. Specifically, manipulating yet another environmental cue (i.e., the experimenter’s standing position), we tested whether task-irrelevant cues can lead to increased general optimism—a key cognitive characteristic of the implemental mindset (Gollwitzer, 2012; Gollwitzer & Bayer, 1999). Further, we examined the effect of this cue on willingness to make a choice—another indicator of action orientation—in an unrelated subsequent task (Xu & Wyer, 2007).

Method

Fifty-four students in a North American university participated in this study conducted during the waiting period in between two parts of a long session. After completing Part 1 in a room within the lab, all participants were asked to wait in the waiting area for Part 2 to begin (see Appendix for a sketch of the lab). The experimenter walked out of the study room with the participants and seated them in the waiting area. He then stood at a predetermined position in the lab and gave participants further instructions. Our task-irrelevant-cue manipulation was introduced in this setting with a two-level, single-factor (perceived location of waiting: inside vs. outside) between-subjects design. In the *inside* condition, the experimenter asked participants to “please wait inside the waiting area” while standing at the lab entrance so that participants
perceived they were *inside* the area relative to the experimenter’s position. In the *outside* condition, the experimenter asked participants to “please wait outside in the waiting area” while standing at the entrance of the study room (Room 1) so that participants perceived they were *outside* relative to the experimenter’s position. We alternated the experimental sessions between these two conditions such that for any given session, all participants were assigned to either the “inside” or the “outside” condition. Further, it is important to note that regardless of which condition they were in, participants waited in the same physical area across both conditions.

While waiting, they completed two short tasks:

(a) Golf-ball prediction: Participants were asked to imagine they had to hit a golf ball into a hole five meters away and to estimate how many times out of 100 attempts they would succeed. If participants in the inside condition indeed adopted an implemental mindset, they would be generally more optimistic and predict a higher success rate than participants in the outside condition.

(b) Computer choice: Participants read descriptions of two computers and were asked to either choose one of the two or defer making a choice (Xu & Wyer, 2007, 2008). If participants in the inside condition indeed adopted an implemental mindset, they would be more action-oriented and more likely to choose one of the computers than to defer their decision.

Results

Compared to participants in the outside condition, those in the inside condition estimated that they could hit significantly more golf balls into the hole ($M_{\text{inside}} = 48\%$ vs. $M_{\text{outside}} = 31\%$, $F(1, 52) = 3.89, p = .05$) and were more likely to choose one of the two computers ($M_{\text{inside}} = 79\%$ vs. $M_{\text{outside}} = 50\%$, $\chi^2(1) = 4.83, p < .05$). These results indicate that in-system individuals (whose perception was triggered by a task-irrelevant spatial cue in the task environment) were indeed
more likely to adopt an implemental mindset, as characterized by greater optimism and action-orientation.

Study 4

In this final study, we examined a boundary condition for the effect of task-irrelevant cues on implemental-mindset activation: in-system individuals’ task persistence is attenuated when the extrinsic incentive to persist is high, such that there is little opportunity for task-irrelevant cues to generate an effect.

Method

Eighty-eight students in a North American university participated in this study conducted during the waiting period between two parts of a 30-minute session. After completing Part 1, participants were asked to form a line in front of a food-tasting station at the back of the room for a taste test. Before the session, we had set up this food-tasting station (i.e., desk with some supplies) and laid a black runner on the floor under the station (see Appendix). In half the sessions, we laid a short black runner that covered only the area under the tasting station; participants thus formed a line standing on the light-gray floor carpet. In the remaining sessions, the black runner extended from under the tasting station to the opposite side of the room; participants thus formed a line standing on this runner. There were eight participants in each session—information that we communicated to all participants, thus controlling for expected queue length across conditions.

After participants had formed a line, the experimenter told them that the food samples were unfortunately not yet available. After pretending to call the supplier outside the lab to resolve this issue, she returned to the room and informed participants that they had to wait for ten more minutes. She repeated this procedure several times while keeping participants updated
about the remaining waiting time (thus controlling for expected waiting time across conditions). In total, participants waited in line for about eight minutes.

Finally, three minutes before the session was scheduled to end, the RA informed participants that the session would run overtime and they could leave if they wished. An incentive for staying was manipulated at this moment: while all participants were told they could collect the full participation fee ($5) if they chose to leave, half of the participants (high-incentive) were promised an additional $2 if they stayed for five more minutes. Participants indicated their decision (stay or leave) on a given slip of paper so as not to bias others’ decisions, after which they either left or stayed as per their decisions. Study 4 thus employed a 2 (standing-surface: floor carpet vs. black runner) x 2 (incentive-to-stay: low vs. high) between-subjects design.

As the main dependent variable, we recorded participants’ stay-or-leave decision and their respective positions in the queue.

Results

Chi-square analysis showed a significant difference across conditions in participants’ decision to stay ($\chi^2(3) = 20.10, p < .001$; Figure 3). Specifically, when the incentive to stay was lower (i.e., no extra compensation), we replicated the effect of task-irrelevant cues on task persistence: participants standing on the black runner were more likely to stay than those standing on the floor carpet, controlling for their queue position ($M_{black runner} = 64\%$ vs. $M_{floor carpet} = 43\%$, Wald(1) = 2.84, $p = .05$). However, when the incentive to stay was high (i.e., extra 2), the effect disappeared—all participants chose to stay ($Ms = 100\%$).

These results show that when the incentive for task persistence is high, task-irrelevant cues have less opportunity to activate an implemental mindset and encourage persistence. They
also rule out the concern that either differential expected typical queue length or estimated waiting time across conditions could explain the effect.

General Discussion

Be it waiting in line at the bank or scheduling a medical appointment, many activities in life are task-oriented and involve waiting. In this research, we demonstrate that task-irrelevant cues in the waiting environment can create a virtual boundary that divides the task system into in- and out-system categories. Once people cross this boundary and enter the system, they adopt an implemental mindset and become more persistent in task-oriented behavior, more action-oriented, and more optimistic in general.

Overall, our findings add to a growing literature that demonstrates the unconscious effects of environmental cues on motivation and behavior (Bargh & Chartrand, 1999; Chartrand, Huber, Shiv, & Tanner, 2008; Custers & Aarts, 2010; North et al., 1999). This work also contributes theoretically and empirically to the extant literature on goals and mindsets in three ways. First, it extends Gollwitzer’s (1990, 2012) mindset theory by demonstrating that even environmental cues that are non-central to a goal can activate an implemental mindset with both cognitive and behavioral consequences. Second, complementing earlier research that shows the motivational force of goal-relevant progress and goal proximity (Hull, 1932; Kivetz et al., 2006), our research shows that goal-irrelevant cues can also increase task motivation. Third, based on our findings, we further speculate that perceived goal progress is not necessarily a linear function of physical proximity to the goal (Soman & Shi, 2003). Rather, goal-progress perception could be disproportional when individuals move from out-system to in-system. It is also noteworthy that while our research demonstrates the important role of implemental mindset in individuals’
task persistence, future research is needed to investigate whether this effect is related to other possible processes (e.g., greater perceived psychological costs when people are in-system).

Apart from mundane tasks, our research also suggests that the role of task-irrelevant cues in implemental-mindset activation has much broader implications, particularly in situations where the decision to wait or not might have life-and-death consequences. Take, for example, a patient waiting for a kidney transplant. In such cases, motivating individuals to persevere and maintain an optimistic outlook can have substantial impact on their well-being (Taylor & Brown, 1988, 1994; Taylor & Gollwitzer, 1995). The virtual-boundary idea could be used to help cancer patients stay upbeat and optimistic during the delays between the initial diagnosis of a non-threatening cancer and their first visit to the oncologist. Our results would predict that a short phone call from a nurse to patients acknowledging the receipt of their case reports, confirming basic information, and offering to forward any questions would alleviate the patients’ anxiety by having them cross the virtual-boundary en route to their goal of being treated by a specialist. As they say, “A good start is half the battle.”
References

Appendix

Study 1: ATM Where Waiting Behavior Was Observed

Study 3: Sketch of the Lab and RA’s Position
Study 4: Pictures and Sketches of the Study Room with Food-Tasting Station

(a) Floor-Carpet Condition

(b) Black-Runner Condition
Figure 1

Study 2: Percentage of People Who Retrieved Their ATM Card at Each Position in the Queue

This figure plots the percentage of people who retrieved their ATM card as a function of queue position for different queue-guide lengths. In the long-guide (5-person guide) condition, the earliest position at which people retrieved their card was the eighth position, whereas in the short-guide (3-person guide) condition, the earliest position at which people retrieved their card was the sixth position. Note that these positions did not represent the end of the line.
This figure plots the percentage of people who retrieved their check-in materials as a function of queue position for different carpet sizes. In the condition with long-carpet (that held seven people), the earliest position at which people retrieved their materials was the tenth position, whereas in the condition with short-carpet (that held four people), the earliest position at which people retrieved their materials was the seventh position. Note that these positions did not represent the end of the line.
Figure 3

Study 4: Percentage of Participants Who Stayed for the Taste-Test

<table>
<thead>
<tr>
<th>Incentive Level</th>
<th>Waiting on floor carpet (out-system)</th>
<th>Waiting on black runner (in-system)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5 (Low incentive to stay)</td>
<td>43%</td>
<td>64%</td>
</tr>
<tr>
<td>$7 (High incentive to stay)</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Table 1

Pre-Test Results: Importance Ratings on Waiting Decision (Whether to Continue Waiting)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Average Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total length of the queue</td>
<td>5.33***</td>
</tr>
<tr>
<td>Decoration of the room</td>
<td>.07</td>
</tr>
<tr>
<td># people behind</td>
<td>1.97***</td>
</tr>
<tr>
<td>Average speed of service</td>
<td>4.87***</td>
</tr>
<tr>
<td>Length of the queue guide</td>
<td>.03</td>
</tr>
<tr>
<td>Presence or absence of background music</td>
<td>2.53***</td>
</tr>
<tr>
<td># counters opened</td>
<td>4.93***</td>
</tr>
<tr>
<td>Color of the floor</td>
<td>.03</td>
</tr>
<tr>
<td>Whether it is Tuesday or Thursday</td>
<td>.03</td>
</tr>
<tr>
<td># people ahead</td>
<td>6.27***</td>
</tr>
</tbody>
</table>

***: $p < .001$ (one-sample t-test; comparison with 0)
Table 2

Pre-Test Results: Importance Ratings on Waiting Decision (When to Retrieve Materials to Get Ready for Service)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Average Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total length of the queue</td>
<td>2.69***</td>
</tr>
<tr>
<td>Size of the ATM</td>
<td>.03</td>
</tr>
<tr>
<td># people behind</td>
<td>3.31***</td>
</tr>
<tr>
<td>Average speed of service</td>
<td>1.22**</td>
</tr>
<tr>
<td>Size of the carpet</td>
<td>.16</td>
</tr>
<tr>
<td>Whether listing to music</td>
<td>.22</td>
</tr>
<tr>
<td>Color of the ATM</td>
<td>.03</td>
</tr>
<tr>
<td>Color of the carpet</td>
<td>.00</td>
</tr>
<tr>
<td>Whether it is Tuesday or Thursday</td>
<td>.00</td>
</tr>
<tr>
<td># people ahead</td>
<td>5.25***</td>
</tr>
</tbody>
</table>

***: $p < .001$; **: $p < .01$ (one-sample t-test; comparison with 0)
Acknowledgements

We thank Bin Han, Grace Lee, Mandy Li, Vicky Liu, and Abby Schneider for research assistance, and Pankaj Aggarwal, Eldar Shafir, Bob Wyer, Alison Xu, Chenbo Zhong, as well as seminar participants at the University of Toronto and HKUST for comments.