
MANUFACTURING & SERVICE
OPERATIONS MANAGEMENT

Vol. 15, No. 3, Summer 2013, pp. 423–443
ISSN 1523-4614 (print) � ISSN 1526-5498 (online) http://dx.doi.org/10.1287/msom.2013.0449

© 2013 INFORMS

Incentive-Compatible Revenue Management in
Queueing Systems: Optimal Strategic Delay

Philipp Afèche
Rotman School of Management, University of Toronto, Toronto, Ontario M5S 3E6, Canada,

afeche@rotman.utoronto.ca

How should a firm design a price/lead-time menu and scheduling policy to maximize revenues from het-
erogeneous time-sensitive customers with private information about their preferences? We consider this

question for a queueing system with two customer types and provide the following results. First, we develop a
novel problem formulation and solution method that combines the achievable region approach with mechanism
design. This approach extends to menu design problems for other systems. Second, the work conserving c� pri-
ority rule, known to be delay cost minimizing, incentive-compatible, and socially optimal, need not be revenue
maximizing. A strategic delay policy may be optimal: It prioritizes impatient customers, but artificially inflates
the lead times of patient customers. This suggests a broader guideline: Revenue-maximizing firms that lack
customer-level demand information should also consider customer incentives, not only operational constraints,
in their scheduling policies. Third, we identify general necessary and sufficient conditions for optimal strategic
delay: a price, a lead-time, and a segment-size condition. We translate these into demand and capacity parameter
conditions for cases with homogeneous and heterogeneous valuations for each type. In some cases strategic
delay is optimal if capacity is relatively abundant, in others if it is relatively scarce.
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1. Introduction
1.1. Motivation, Example, and Research Question
How should a capacity-constrained firm design a
price/lead-time menu and scheduling policy to max-
imize its revenues from heterogeneous time-sensitive
customers with private information about their pref-
erences? This question is relevant for service and
manufacturing firms whose customers’ willingness
to pay for a product or service depends on the
lead time between order placement and delivery.
Recognizing that some customers value speedy ser-
vice more than others, Federal Express and United
Parcel Service offer a menu of differentiated price/
lead-time options, for example, same-day or two-day
service. Such lead-time-based price and service dif-
ferentiation can also be a valuable revenue manage-
ment tool for manufacturing firms, particularly those
with a make- or assemble-to-order process. For exam-
ple, Beta LAYOUT (beta-layout.com), a printed circuit
board supplier with headquarters in Germany, offers
a price/lead-time menu to its over 28,000 customers.
The problem of designing the revenue-maximizing
menu and the corresponding scheduling policy is sig-
nificantly complicated if the provider does not know
individual customers’ preferences, but only has aggregate
information about their attributes, for example, based

on market research. In such settings, each customer
chooses her preference among the menu options, and
the provider must account for these service class
choices, which give rise to incentive-compatibility con-
straints. (We write “IC” for “incentive-compatibility”
and “incentive-compatible.”)

We consider this problem in the context of a
queueing model of a monopoly firm. IC pricing and
scheduling in queueing systems is well understood
under social optimization, but not so under revenue/
profit optimization. Social optimization is a key objec-
tive for a government service, for an internal service
center, or from a regulatory perspective, but a com-
mercial firm serving external customers is primarily
concerned with its own profitability. As this paper
shows, revenue-maximizing and IC price/lead-time
menus yield optimal scheduling policies with novel
features. Consider the following example, which also
illustrates our model. We study the problem for two
customer segments or types, indexed by i ∈ 81129, and
model the operation as an M/M/1 system. Let � be
the capacity in jobs per unit time. For maximum sim-
plicity, this example assumes ample capacity: �= �.
This means that every work conserving scheduling
policy yields zero lead times. (The paper specifies the
optimal menu as a function of �≤ �.) The types dif-
fer in their arrival rates, valuation distributions, and
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Table 1 If Types Are Not Observable, Then the Revenue-Maximizing Policy Uses Strategic Delay

Policy FB SB-wc SB

Provider observes types Yes No No

Optimal: Not optimal: Optimal:
Scheduling policy Absolute priority to 1, Absolute priority to 1, Absolute priority to 1,

work conserving work conserving strategic delay

Customer type 1 2 1 2 1 2

Price 105 005 0064 0064 1036 0.48
Lead time 0 0 0 0 0 0.44
Demand rate 205 500 3093 3057 2074 4.32
Revenue rate 3075 205 2053 2030 3072 2.08

Total revenue rate 6.25 4.82 5.79
(−2208% vs. FB) (−703% vs. FB)

Notes. Valuations: type 1∼U60137, type 2 ∼U60117. Delay cost rates: c1 = 2, c2 = 002. Arrival rates: å1 = 5, å2 = 10.

delay cost rates. Type i arrive at a rate åi per unit
time; we call åi the segment size. Let å1 = 5 and
å2 = 10. A customer’s valuation represents her will-
ingness to pay for zero lead time. Type 1 valuations
are uniformly distributed on the interval 60137, and
those of type 2 are uniformly distributed on 60117.
Customers are time sensitive: The net value of a type i
with valuation v and lead time w is v− ciw, where
ci > 0 is the type i delay cost rate per unit of lead time.
Type 1 customers are more impatient: let c1 = 2 > c2 =

002. Customers do not observe the queue. Based on
the prices and lead times, they choose which service
class to purchase, if any, to maximize their net value
minus price from service. Taking this choice behav-
ior into account, the provider chooses a static price/
lead-time menu and a scheduling policy to maximize
her revenue rate. Table 1 summarizes the revenue-
maximizing price/lead-time menu and demand and
revenue rates for three policies.

The first-best policy (FB) is the one that maxi-
mizes the revenue if the provider can observe types.
It charges different prices for zero lead times. For
�= �, every work conserving scheduling policy is
first-best. The one shown in Table 1 is the standard c�
priority rule, since it is the unique first-best policy for
�<�. It assigns static priorities in increasing order of
jobs’ ci�i index, so type 1 get priority since c1 > c2. The
c� policy minimizes the system’s delay cost rate. The
c� policy is also socially optimal and IC (Mendelson
and Whang 1990). This is clear in this example: with
ample capacity, it is socially optimal and IC to serve
everyone with a price and lead time of zero.

However, under revenue maximization, the c� pol-
icy is not in general part of the second-best policy,
that is, the optimal one if the provider cannot observe
types. In the example, the menu under FB is not
IC since type 1 would not pay more for the same
lead time. If a provider is restricted to work conserv-
ing policies, IC requires charging a single price; the

second-best policy with this restriction (SB-wc) yields
a revenue loss of over 20% versus FB.

However, the provider can charge the impatient
type 1 a premium if she artificially inflates the lead
time targeted to the patient type 2: doing so deters
type 1 from the slower, cheaper service preferred by
type 2. This is the unrestricted second-best policy (SB)
in this example. We call this artificial delay policy
strategic delay, because its rationale is to manipulate
customers’ strategic service class choices, and its oper-
ational impact is that scheduling is no longer work
conserving. Strategic delay increases the delay cost,
which sets it apart from standard instances of optimal
server idleness (see Kanet and Sridharan 2000). The
value of strategic delay can be significant. The rev-
enue loss of SB versus FB drops to roughly 7%, and
the gain versus SB-wc exceeds 20%. However, strate-
gic delay is not always optimal. This paper focuses on
the question: Under what demand and capacity conditions
is strategic delay optimal?

1.2. Summary of Main Results and Contributions
This paper develops a new analytical approach and
identifies novel solution properties for the problem
of designing revenue-maximizing and IC price/lead-
time menus and scheduling policies for queueing
systems.

1. Problem formulation and solution method. We use
mechanism design and adapt the achievable region
approach to formulate the scheduling control prob-
lem as a nonlinear program in arrival rates and lead
times. Two sets of constraints ensure IC and oper-
ationally achievable lead times. We solve this prob-
lem in two steps. First, we show how the lead-time
constraints partition the arrival rate space and iden-
tify the optimal policy for each set in the partition.
Second, we optimize the resulting piecewise rev-
enue function over arrival rates. This approach for
designing price/lead-time menus is novel and can
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be applied to systems with different operational or
demand attributes.

2. Implications of optimal strategic delay for the design
of scheduling policies. A key insight of this paper is
that strategic delay can be optimal under a range
of plausible conditions. Since strategic delay is nei-
ther work conserving nor delay cost minimizing, this
result implies a more general guideline: In designing
IC and revenue-maximizing price/lead-time menus,
providers should not restrict attention to standard
scheduling policies that minimize delay costs or
related measures—in our model, equivalent to the
work conserving c� rule. Such policies are oper-
ationally appealing and maximize revenues in the
absence of IC constraints, but they ignore customer
incentives. The optimality of strategic delay also raises
implementation issues. We discuss three approaches:
idling the server before, reducing its speed during,
and delaying the delivery after processing.

3. Demand and capacity conditions for optimal strategic
delay. We identify three general necessary and suffi-
cient conditions for optimal strategic delay: a price,
a lead-time, and a segment-size condition. We apply
these to specific valuation distributions and obtain
explicit demand and capacity parameter conditions.
The types’ maximum valuation-to-delay cost ratios,
segment sizes, and the demand elasticities corre-
sponding to their valuations play key roles in these
conditions. (i) In the special case of homogeneous val-
uations for each type, strategic delay is optimal if and
only if the patient type has the higher valuation-to-
delay cost ratio, the lower valuation, its segment is
not too large relative to the impatient segment, and
the capacity exceeds a threshold. (ii) Valuation het-
erogeneity for each type yields different results, as
we show for uniformly distributed valuations. Strate-
gic delay can be optimal for every ranking of the
types’ maximum valuation-to-delay cost ratios. More-
over, strategic delay is not necessarily a “large capac-
ity phenomenon”: If impatient customers have the
higher maximum valuation-to-delay cost ratio, which
is quite plausible, then under mild conditions strate-
gic delay may be optimal only with relatively scarce
but not with ample capacity, or only at low and
high but not at intermediate capacity. (iii) For gen-
eral valuation distributions, if impatient (patient) cus-
tomers have the higher maximum valuation-to-delay
cost ratio, then strategic delay is (not) optimal at the
lowest capacity levels for which it is second-best to
serve both types.

1.3. Literature and Positioning
This paper builds on queueing control and econo-
mic mechanism design tools. Traditionally, analysis,
design, and control problems for queueing systems
assume that the system manager is fully informed

about and controls all job flows. See Stidham (2002)
for a survey. Minimizing the delay cost or related
measures is a prevalent optimality criterion in these
settings. We adapt the achievable region approach to
multiclass stochastic scheduling problems, pioneered
by Coffman and Mitrani (1980). In contrast to the stan-
dard approach, we extend the achievable region to
policies that are not work conserving, and we restrict
it by IC constraints.

Mechanism design tools have been applied to many
resource allocation problems under private informa-
tion. Myerson (1981) provides a seminal analysis of
optimal auction design. Among studies of screen-
ing or adverse selection problems, papers on the
design of price/quality menus (e.g., Mussa and Rosen
1978, Rochet and Chonè 1998) are closest to ours.
Although some form of quality degradation similar
to strategic delay is known to be optimal in these
“standard” screening problems, two important fea-
tures distinguish our setup from the standard one.
First, the capacity constraint, queueing, and delay
costs imply externalities among service classes. Sec-
ond, the provider controls these externalities through
the price/lead-time menu and her scheduling policy.

Like in this paper, Su and Zenios (2006) use mech-
anism design and the achievable region approach to
solve a problem with a capacity constraint and exter-
nalities, namely, allocating a fixed total supply rate of
quality-differentiated kidneys to decoupled queues of
risk-differentiated, privately informed transplant can-
didate types with fixed arrival rates. Unlike in this
paper, their analysis involves no pricing, focuses on
social welfare criteria, uses fluid approximations that
ignore queueing constraints, and characterizes the
achievable region of expected kidney quality vectors.

This paper fits in a research stream on pricing and
operational decisions for queueing systems with self-
interested customers. Naor (1969) started this stream.
See Hassin and Haviv (2003) for an excellent sur-
vey. We consider static price/lead-time menus, unlike
papers on dynamic price and/or lead-time quotation
(e.g., Plambeck 2004, Çelik and Maglaras 2008, Ata
and Olsen 2013).

Three characteristics jointly distinguish our prob-
lem from most others on static price/lead-time
menus: revenue maximization, schedule optimization,
and customers who choose their class.

In problems of socially optimal and IC pricing and
scheduling, the solution is the same as that with-
out IC constraints, and the optimal scheduling pol-
icy is work conserving (Mendelson and Whang 1990,
Van Mieghem 2000, Hsu et al. 2009). Most stud-
ies of revenue/profit maximization restrict the schedul-
ing policy, customers’ service class choices, or both
(Lederer and Li 1997, Rao and Petersen 1998, Boyaci
and Ray 2003, Maglaras and Zeevi 2003, Afèche and
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Mendelson 2004, Maglaras and Zeevi 2005, Allon
and Federgruen 2009, Jayaswal et al. 2011, Zhao
et al. 2012).

This paper is part of a stream of studies that
design static revenue-maximizing and IC price/lead-
time menus and corresponding scheduling policies.
The problem formulation and solution method pre-
sented in this paper, and the concept of strategic
delay and its potential value, were first identified and
illustrated in early drafts of this work leading up
to Afèche (2004). He derives for the two-type model
considered here partial sufficient demand conditions
under which strategic delay may be optimal. He also
shows that it may be optimal to alter priority assign-
ments if types have different service requirements.
His analysis assumes fixed unit capacity and uniform
valuations. This paper identifies necessary and suf-
ficient demand and capacity conditions for optimal
strategic delay under general valuation distributions,
and it relates strategic delay to the first- and second-
best solutions.

Cui et al. (2012) extend the analysis of Afèche
(2004) for a special case of his model, by allowing
the provider to choose a static admission probabil-
ity for each class; such rationing may yield different
lead times for customers with the same delay cost.
Katta and Sethuraman (2005) and Afèche and Pavlin
(2011) show for a multitype model that it may opti-
mal to pool multiple types into a common service
class. The latter show that strategic delay may also be
optimal and characterize the optimal menu as a func-
tion of demand parameters and the capacity. Yahalom
et al. (2006) perform an approximate analysis of the
optimal menu and scheduling policy for fixed arrival
rates, under convex increasing delay costs. Maglaras
et al. (2013) derive structural insights on the IC and
revenue-maximizing menu based on an asymptotic
analysis for multiserver systems.

There are interesting connections between strate-
gic delay and policies of discretionary task comple-
tion and service inducement in queueing systems. The
benefits of these policies derive from increasing ser-
vice times of jobs. In contrast, strategic delay requires
increasing the entire lead time, regardless of its effect
on service times. In discretionary task completion, the
value of a job increases in its service time (Hopp
et al. 2007), whereas strategic delay does not affect
job values. Debo et al. (2008) study service induce-
ment, whereby an expert provides unnecessary ser-
vices that add no value to the customer but that
allow the expert to increase revenues by charging
based on her service time. Strategic delay and ser-
vice inducement have in common that they increase
revenues by adding unnecessary delays, but there are
important differences between these concepts. Strate-
gic delay arises only if customers are heterogeneous

and can choose from a menu of classes. In Debo
et al. (2008), customers are identical and the provider
offers a single first-in, first-out (FIFO) class; cus-
tomers only choose whether to buy or not. The
benefit of service inducement derives from its state-
dependent nature: Customers observe whether the
provider is idle or busy, and she only induces service
for those who arrive when she is idle. These model-
ing differences imply differences in the results. Service
inducement increases revenues on delayed customers,
whereas strategic delay reduces revenues on delayed
(low priority) customers, but increases revenues on
high priority customers. Furthermore, whenever it
is optimal, service inducement reduces welfare. In
contrast, optimal strategic delay may yield a Pareto
improvement versus the second-best work conserving
policy (Example 2 in §6.4).

1.4. Plan of the Paper
In §2 we describe the model and formulate the prob-
lem. In §3 we specify admissible scheduling policies
and strategic delay. In §4 we transform the problem
by adapting the achievable region approach, present
the solution method, and summarize the main nota-
tion. In §5 we present the first-best solution. The
main results are in §6: We solve the second-best
problem, develop the necessary and sufficient con-
ditions for optimal strategic delay, translate these
into demand parameter and capacity conditions, and
explain within our framework why the c� policy is
socially optimal and IC. In §7 we offer concluding
remarks. Proofs are in the online supplement (avail-
able at http://dx.doi.org/10.1287/msom.2013.0449).

2. Model and Problem Formulation
2.1. Model Primitives
We model a capacity-constrained firm that faces
a population of small price- and delay-sensitive
potential customers as an M/M/1 system. “Delay” or
“lead time” interchangeably refer to the entire time
interval between the placement and delivery of an
order. The marginal cost of service is zero. Customers
differ ex ante in two attributes, their valuation and
delay cost rate, but have independent and identically
distributed (i.i.d.) nominal service times as explained
below. They are grouped based on their delay cost
rates into two types or segments, indexed by i ∈ 81129.
Type i arrivals are Poisson with fixed rate or segment
size åi; let å 4

= 4å11å25. (We write all vectors in bold-
face.) The arrival rate of any customer is infinitesimal
relative to åi. Each arrival is for one unit of service.
We specify purchase decisions in §2.2. The arrival pro-
cesses and the distributions of customer attributes are
mutually independent.

Valuations. A customer’s valuation v represents
her willingness to pay for instant delivery. Type i
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valuations are i.i.d. draws from a continuous distribu-
tion with cumulative distribution function Fi and con-
tinuous probability density function fi, where fi4v5 >
0 for v ∈ 6vi1 v̄i7 and 0 ≤ vi < v̄i < �. Let F̄i = 1 − Fi,
and let F̄ −1

i be its inverse.
Delay Costs. All type i customers have the same con-

stant delay cost rate ci > 0 per unit time in the system.
We assume without loss of generality (w.l.o.g.) that
c1 > c2 and refer to type 1 as impatient customers and
to type 2 as patient customers. For service with lead
time w, a type i customer with valuation v is willing
to pay v− ci ·w; we call this amount her net value.

Nominal Service Times. A job’s nominal service time is
defined as its total service time if the server works at
its maximum rate while dedicated to that job. As dis-
cussed in §3, if the server slows down for certain jobs,
then their effective service times exceed their nominal
values. Nominal service times are i.i.d. draws from an
exponential distribution with mean 1/�. Let � denote
the nominal capacity in jobs per unit time. The results
specify how the optimal menu depends on �. We
assume �−1 <�−1

0
4

= min4v̄1/c11 v̄2/c25, which rules out
the trivial case where it is unprofitable to serve type i
regardless of �j for j 6= i. It may still be optimal not to
serve type i.

Information Structure. The provider knows the fol-
lowing aggregate demand statistics, for example, based
on market research and/or past purchase data: the
arrival process statistics including å, the value dis-
tributions Fi, delay cost rates ci, and the nominal ser-
vice time distribution and its mean 1/�. However, the
delay cost rates and valuations of individual customers
are the private information of each customer, based
on the notion that the provider either cannot track
individuals’ purchase histories or that such informa-
tion is inadequate to estimate their future purchase
preferences. A customer only knows her nominal
mean service time when deciding on her purchase;
nominal service time realizations become known only
once jobs are completed. Customers do not see the
queue.

2.2. Mechanism Design Problem Formulation
The provider designs a price/lead-time menu and a
scheduling policy to maximize her revenue rate sub-
ject to customers’ choices. We formalize this problem
as a mechanism design game.

Decisions and Timing. The provider first designs
and announces a static menu of up to two service
classes, indexed by k ∈ 81129, and a scheduling pol-
icy r , which specifies how to process customers in
each class. We outline the set of admissible scheduling
policies below and specify it in detail in §3. “Class”
refers to the attributes of a menu option; “type” refers
to those of a customer. Class k has two attributes, a
per-job price pk and an expected lead time Wk, both

scalar constants. We often refer to Wk simply as the
class k lead time or delay. Let p 4

= 4p11 p25 and W 4

=

4W11W25 ∈�2
+

.
Customer arrival times are exogenous. However,

customers are self-interested and strategic in their
purchase decisions. They are risk neutral with respect
to lead-time uncertainty and seek to maximize their
expected utility. Upon her arrival a customer chooses
based on the menu 4p1W5 which service class to
purchase, if any, as specified below. We assume no
reneging and no retrials. Let �k4p1W5 be the class k
arrival or demand rate as a function of the menu, and
Ë

4

= 4�11�25. The provider serves all class k requests
at the price pk and schedules them based on the
policy r .

Purchase Decisions and Demand Rates. Given a menu
4p1W5, the expected class k utility of a type i cus-
tomer with valuation v is v− ciWk − pk; her expected
class k full price is pk + ciWk. Customers who do not
buy get zero utility. We restrict attention w.l.o.g. (see
§2.3) to IC menus that target class i to type i cus-
tomers, such that they (weakly) prefer class i or no
service over service in class j 6= i. Given an IC menu, a
type i with valuation v buys class i if v− ci ·Wi − pi ≥
0 and otherwise does not buy at all, which captures
the individual rationality (IR) constraints and implies
�i = åi · F̄i4pi + ciWi5, i = 112. We call class i open if
�i > 0 and closed if �i = 0. To close class i, we set pi =
v̄i − ciWi; with this convention, the full prices satisfy
pi + ciWi ≤ v̄i for i = 112. To ensure that type i cus-
tomers do not buy class j 6= i, the menu must satisfy
the IC constraints ci · Wi + pi ≤ ci · Wj + pj if �j > 01
i 6= j ; the condition �j > 0 indicates that the constraint
is only in force if class j is open.

Posted Lead Times, Realized Lead Times, and Admissi-
ble Scheduling Policies. Customers base their decisions
on the posted expected delays W. They do not possess
information about queue lengths, scheduling policy,
arrival rates, capacity, etc., to reliably forecast their
mean delays. Let wr

i 4Ë1�5 denote the realized class i
mean steady-state delay given a scheduling policy r ,
as a function of the demand vector Ë and the capac-
ity �, and wr 4Ë1�5

4

= 4wr
14Ë1�51w

r
24Ë1�55. Although

the realized lead times of individual customers devi-
ate from the posted averages, we require that W agree
with the system’s realized average steady-state delays,
based on the notion that reputation effects and third-
party auditors instill in the provider the commitment
to perform in line with her announcements. That is,
we impose the consistency constraints W = wr 4Ë1�5,
where Ë = Ë4p1W5 are the demand rates induced by
the purchase decisions given the menu 4p1W5.

Let A be the set of admissible scheduling poli-
cies. Price/lead-time optimization studies typically
assume a given policy such as FIFO, a priority dis-
cipline, or processor sharing, and restrict attention
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to work conserving policies. This paper imposes nei-
ther restriction. To complete the problem formulation
without delving into scheduling details, we defer the
detailed definition and discussion of A until §3 (see
Definition 2). Here we simply state two necessary and
sufficient conditions on A for the provider’s optimiza-
tion problem to be well defined: If �1 + �2 < �, then,
(i) for every admissible policy r ∈A, the mean steady-
state delays wr 4Ë1�5 are well defined and finite, and
(ii) the minimum of the system-wide delay cost rate
�1c1w

r
14Ë1�5+�2c2w

r
24Ë1�5 over r ∈A exists.

Provider Problem. In summary, the provider solves

max
p∈�21W∈�2

+1 r∈A

2
∑

i=1

pi ·�i (1)

s.t. �i = åi · F̄i4pi + ci ·Wi51 i = 1121 (2)

ci ·Wi + pi ≤ ci ·Wj + pj if �j > 01 i 6= j1 (3)

�1 +�2 < �1 (4)

W = wr 4Ë1�51 (5)

where (2) is for IR, (3) is for IC, (4) is for stability,
and (5) is for consistency. We call (1)–(5) the second-
best problem. The first-best problem is the second-best
problem without the IC constraints (3).

2.3. Discussion
(i) Two delay costs. We restrict attention to N = 2

delay costs, ci ∈ 8c11 c29. This yields the simplest setup
for our results. It approximates settings where jobs
can be clustered into two segments based on their
delay costs, for example, regular versus urgent, such
that the delay cost variance within each segment
is small relative to the variance between segments.
Mendelson and Whang (1990) show for an arbitrary
number N ≥ 2 of delay costs that the work conserv-
ing c� priority policy is socially optimal and IC. In §6.5
we revisit this result within our framework, which
clarifies why the problem of IC revenue optimization
for N > 2 (Katta and Sethuraman 2005, Afèche and
Pavlin 2011) is more challenging than the problem of
IC social optimization.

(ii) Restriction to a single service class for customers
with the same delay cost rate. We restrict attention to
menus that target a single class to all type i customers
even though they differ in their valuations. This
is w.l.o.g. under our assumption that the provider
accepts all purchase requests: It can be shown that
among all such static menus, the provider cannot
increase revenues with a menu that targets two or
more distinct service classes to type i customers based
on their valuations.

(iii) Restriction on prices. Since service times are
i.i.d., it is w.l.o.g. that prices are independent of ser-
vice times. Charging based on realized service times
may be optimal if �1 6=�2 (Afèche 2004).

(iv) Equivalence of mechanism specified in §2.2 to a
direct revelation mechanism. Based on the revelation
principle (e.g., Myerson 1981), mechanism design
problems restrict attention w.l.o.g. to IC direct reve-
lation mechanisms in which each customer directly
reveals her type. Although the mechanism specified
in §2.2 is strictly speaking an “indirect mechanism,”
it is de facto equivalent to a direct revelation mecha-
nism and more naturally describes how services are
typically sold.

3. Admissible Scheduling Policies
and Strategic Delay

This section defines the set of admissible scheduling
policies A with a focus on extending the standard
space of work conserving policies to include simple
policies that are not work conserving.

3.1. Work Conserving Policies
As a reference point for A, consider the following
definition.

Definition 1. Consider a scheduling policy r that
serves jobs in each class FIFO and does not serve mul-
tiple jobs simultaneously. It is work conserving if it sat-
isfies the following conditions.

1. Nonidling: It does not idle the server when there
is unfinished work in the system.

2. Service time invariance: It does not affect the
total service time of any job.

3. Immediate delivery: It delivers each job to the
customer as soon as it is completed.

4. Nonanticipative and regenerative: It assigns the
server to jobs on the basis of the time elapsed and the
history of the process since the last epoch at which
the system became empty.

The restrictions to FIFO in each class and the exclu-
sion of processor sharing are w.l.o.g. and made to
simplify the exposition. Conditions 1 and 2 are stan-
dard. Condition 2 is equivalent to requiring that the
total service time of every job equal its nominal ser-
vice time, as defined in §2.1. Condition 2 allows,
for example, preemptive-resume priority policies with
zero switchover times, but rules out policies that slow
down the server. Condition 3 is implicitly assumed
as part of any notion of work conservation, but usu-
ally not explicitly stated; we do so here to highlight
the possible differences between the features of poli-
cies that are work conserving and those that are not
in our setting. Condition 4 is similar to the one in
Federgruen and Groenevelt (1988) and appears to be
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the most general, easily describable restriction under
which the existence of long-run averages of wait-
ing times is verifiable. Condition 4 excludes policies
that depend on prior knowledge of customers’ actual
(remaining) nominal service times (we assume that
this information is unavailable), or where decisions in
one busy period depend on information concerning
prior busy periods. Condition 4 does allow decisions
to be based on the expected (remaining) or the accu-
mulated nominal service times.

3.2. Strategic Delay and Admissible Policies
Conditions 1–3 in Definition 1 capture the essence of
work conserving policies: they do not affect the evolu-
tion of the total work-in-system inventory. As a result,
various performance vectors obey invariance princi-
ples known as conservation laws. Here, given 4Ë1�5
and �1 + �2 < �, the mean lead times under a work
conserving policy r satisfy

�1

�
wr

14Ë1�5+
�2

�
wr

24Ë1�5 =
1
�

�1 +�2

�−�1 −�2
0 (6)

That is, the average work-in-system inventory equals
a constant that is independent of r . Restricting atten-
tion to work conserving policies is intuitively appeal-
ing since they clear work from the system as quickly
as “operationally feasible.” However, as shown in §1,
in our setting it may be optimal to intentionally inflate
the delay of one class in a controlled fashion with-
out altering the delay of the other class, which is
clearly not work conserving. We call this artificial
inflation strategic delay and consider three approaches
for its implementation; each violates one condition of
Definition 1:

1. Idling the server before commencing service on a
waiting job, which violates Condition 1.

2. Reducing the server speed during processing,
which violates Condition 2. Define a job’s effective
service time to be its total service time given the
server’s actual processing rate while working on that
job. If the server slows down while processing a job,
then its effective service time exceeds its nominal ser-
vice time. We allow no other deviations from Con-
dition 2; for example, customers do not renege, and
any service preemptions are preemptive-resume and
with zero switchover times. Therefore, nominal service
times must be independent of the scheduling policy;
effective service times may increase but only due to a
reduced server speed.

3. Delaying the delivery of a job after its processing
is completed, which violates Condition 3.

Under a policy r that uses any combination of these
delay tactics, the left-hand side of (6) exceeds the con-
stant on its right-hand side. Although one can con-
ceive of arbitrarily sophisticated controls for these
delay tactics, the focus of this paper is to identify the

concept of strategic delay and conditions for its opti-
mality, not to analyze its most sophisticated imple-
mentations. With this in mind, we restrict attention to
the following class of policies. We discuss implemen-
tation criteria in §7.

Definition 2. For �1 +�2 <�, a scheduling policy r
is admissible (r ∈A) if it serves jobs in each class FIFO,
does not serve multiple jobs simultaneously, and sat-
isfies the following conditions.

1. Server idleness: The provider chooses a random
variable Ii ≥ 0 with E4Ii5

2 < � for i = 112. It assigns
to the nth class i job a cumulative server idle time Ini
such that 8Ini 9

�
n=1 are i.i.d. as Ii and independent of all

other system processes. If the set of jobs requiring pro-
cessing is nonempty at time t ∈ 601�5, then the server
is assigned to exactly one job in this set. Whenever
the server is assigned to the nth class i job, the server
processes that job if and only if it has already idled
for a total amount of time Ini while being assigned to
that job.

2. Server speed: The provider chooses a constant
server speed ki ∈ 40117 for i = 112. It processes class i
jobs at a fraction ki of its maximum processing rate, so
the effective class i capacity is � · ki ≤�. The schedul-
ing policy does not affect the nominal service time of
any job.

3. Delivery delays: The provider chooses a random
variable Di ≥ 0 with E4Di5 < � for i = 112. It assigns
to the nth class i job a delivery delay Dn

i such that
8Dn

i 9
�
n=1 are i.i.d. as Di and independent of all other

system processes. After its processing is completed,
the nth class i job is put into a delay node for an
amount of time Dn

i before delivery.
4. Nonanticipative and regenerative: It assigns the

server to jobs on the basis of the time elapsed and the
history of the process since the last epoch at which
the system became empty.

5. Stability: The effective server utilization satisfies
∑2

i=14�iEIi +�i/4ki�55 < 10

In Condition 1, notice the distinction between the
server being assigned to and processing a job. While
processing a job the server is also assigned to it, but
while assigned to a job the server may be idling;
key is that it is unavailable to other jobs. The con-
dition that all of a job’s cumulative server idle time
be injected prior to processing is for simplicity and
operational efficiency in that it minimizes processing
interruptions. Call the sum of the cumulative server
idle time plus the effective service time of a job its
server assignment time. For given Ii and ki, the server
assignment times of class i jobs are i.i.d. and inde-
pendent of the sequencing policy with mean EIi +

4ki�5
−1, where 4ki�5

−1 is the effective class i mean ser-
vice time. If EIi = 0 and ki = 1, the class i mean server
assignment time equals the nominal mean service
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time. Definition 2 allows preemption, that is, interrup-
tion of server assignment times. Preemption is instant
and costless during the server idle time portion of a
job’s server assignment time. Whether preemption is
feasible during processing depends on the operational
context. For simplicity we allow preemption during
processing.

4. Problem Transformation and
Solution Method

In this section we first transform the formulation
(1)–(5) from a problem in 4p1W1 r5 to an equivalent
one in 4Ë1W5. We then outline the solution method.
Table 2 summarizes the main notation.

Define the marginal value functions

vi4�i5
4

= F̄ −1
i

(

�i

åi

)

1 �i ∈ 601åi71 i = 1121 (7)

where vi4�i5 is the valuation of the marginal type i
customer corresponding to �i. The properties of Fi
imply 0 ≤ vi = vi4åi5 < vi405 = v̄i < � and −� <
v′
i4�i5 < 0 on 601åi7. Let �i4�i5

4

= −vi4�i5/�iv
′
i4�i5

denote the elasticity function corresponding to vi4�i5.
We further assume the following.

Assumption A1. The minimum type i valuation
vi4åi5 = 0, i = 112. This ensures that it is not optimal to
serve all type i customers and rules out menus that satisfy
vi4åi5 > ciWi + pi.

Assumption A2. Let Ri4�i5
4

= �i · vi4�i5 be the type i
gross revenue function; we assume that R′′

i < 0.

Table 2 Summary of Main Notation

v̄i 1 ci Type i maximum value, delay cost rate
åi 1 �i Type i segment size, arrival rate
vi 1 �i 1 Ri Type i marginal value, elasticity, gross revenue functions
�1�0 Capacity, minimum capacity
M Set of feasible arrival rates
8M01M11M29 Partition of M for IC under c� policy
Wf

1Ws Lead-time functions under first-, second-best policies
wc�1pc� Lead-time, price functions under c� policy
wsd 1psd Lead-time, price functions under strategic delay policy
W̄ Indifference threshold function for IC, where W̄ = w sd

2
çf 1çs1çsd Revenue functions under first-, second-best, strategic

delay policies
çf

�i
1çf

�i �j
First-, second-order partial derivatives of çf

(similarly for çs, çsd )
Ëf 1Ës1Ësd Optimal arrival rates under first-, second-best, strategic

delay policies
��

1 Optimal type 1 arrival rate for �2 = 0
Ësd 4�15 Optimal arrival rates under strategic delay for fixed �1

�sd2 4�15 Optimal type 2 arrival rate under strategic delay for fixed �1

�f 1 �s Infimum of capacity levels where first-, second-best policy
serves both types

�sd Infimum of capacity levels where strategic delay is optimal

The demand functions (2) with pi ≤ v̄i − ciWi and
A1 imply the inverse demand functions

pi4�i1Wi5
4

= vi4�i5−ciWi1 �i ∈ 601åi71 i=1120 (8)

The marginal type i customer has zero expected util-
ity, that is, the price equals the marginal net value.

4.1. Operationally Achievable Lead Times
The problem (1)–(5) depends on an admissible
scheduling policy r ∈ A only through its steady-state
mean lead times wr 4Ë1�5. We transform the con-
trol problem of choosing a policy r ∈ A into the
simpler optimization problem of choosing a vector
W in the corresponding achievable region OA4Ë1�5

4

=

8wr 4Ë1�52 r ∈ A9 given 4Ë1�5. Lemma 1 is immedi-
ate from the achievable region for work conserving
policies (Coffman and Mitrani 1980).

Lemma 1. Fix Ë and � such that �1 + �2 < �. Call a
lead-time vector W operationally achievable for 4Ë1�5 if
W ∈ OA4Ë1�5. A vector W is operationally achievable for
4Ë1�5 if and only if

Wi ≥
1

�−�i

1 i = 1121 (9)

�1

�
W1 +

�2

�
W2 ≥

1
�

�1 +�2

�−�1 −�2
0 (10)

The work conserving policies that give absolute
preemptive priority to class 1 or 2 correspond to
the extreme points of OA4Ë1�5 and yield the lower
bounds (9). For the standard achievable region, which
is defined for work conserving policies, (10) holds
with equality and corresponds to the conservation
law (6).

4.2. IC Lead Times
Let M4�5

4

= 8Ë2 0 ≤ Ë ≤ å1�1 + �2 <�9 denote the set
of feasible arrival rates. The IC constraints (3) and the
inverse demand functions (8) yield IC constraints that
only depend on 4Ë1W5.

Definition 3. Fix � and Ë ∈M4�5.
1. Define the indifference threshold

W̄ 4Ë5
4

=
v14�15−v24�25

c1 −c2
1 where W̄ 405=

v̄1 − v̄2

c1 −c2
0 (11)

2. A lead-time vector W, or a scheduling policy r
with wr 4Ë1�5= W, is IC for 4Ë1�5 if and only if W ∈

IC4Ë5, where

IC4Ë5
4

=
{

W2 �14W̄ 4Ë5−W15≥0≥�24W̄ 4Ë5−W25
}

0 (12)

The indifference threshold W̄ 4Ë5 defined in (11)
plays a key role in customers’ service class choices:
Both types have the same marginal net value for the
lead time W̄ 4Ë5. We discuss the lead-time constraints
(12) that define the IC region IC4Ë5 in §6.1.
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4.3. Transformed Problem
We obtain the following equivalent problem from
(1)–(5):

max
Ë1W

ç4Ë1W5
4

=

2
∑

i=1

�i · pi4�i1Wi5

=

2
∑

i=1

�i · 4vi4�i5− ci ·Wi5 (13)

s.t. Ë ∈ M4�51 (14)

W ∈ OA4Ë1�5∩ IC4Ë50 (15)

4.4. Solution Method
For fixed � we solve the second-best problem
(13)–(15) in two steps.

Step 1. Fix Ë ∈ M4�5. Determine the second-best
lead-time vector

Ws4Ë1�5
4

= arg min
W

{

�1c1W1 +�2c2W2 s.t.

W ∈ OA4Ë1�5∩ IC4Ë5
}

0 (16)

It maximizes the revenue and minimizes the delay
cost rate over all operationally achievable and IC lead
times for 4Ë1�5. It is unique if OA4Ë1�5 ∩ IC4Ë5 6=

�. Call a policy r ∈ A “second-best for 4Ë1�5” if
wr 4Ë1�5 = Ws4Ë1�5. Step 1 yields the second-best
revenue function çs4Ë1�5

4

=ç4Ë1Ws4Ë1�55.
Step 2. Determine the jointly second-best arrival

rates Ës4�5
4

= arg maxË∈M4�5ç
s4Ë1�5 and lead times

Ws4Ës4�51�5. Any scheduling policy r ∈ A that
achieves these lead times is second-best for 4Ës4�51�5;
constructing such a policy is the synthesis prob-
lem. The inverse demand functions (8) determine the
unique optimal prices from Ës4�5 and Ws4Ës4�51�5.

In §6 we execute these two steps to solve the
second-best problem and characterize its solution
depending on the demand parameters and capacity.
In §5 we first use the same two-step approach to solve
the benchmark first-best problem, that is, (13)–(15)
without the IC constraints W ∈ IC4Ë5:

1. Determine for fixed � and Ë ∈M4�5 the first-best
lead-time vector

Wf 4Ë1�5
4

= arg min
W

{

�1c1W1 +�2c2W2 s.t.

W ∈ OA4Ë1�5
}

0 (17)

It minimizes the delay cost rate and yields the first-
best revenue function çf 4Ë1�5

4

=ç4Ë1Wf 4Ë1�55.
2. Determine the first-best arrival rates Ëf 4�5

4

=

arg maxË∈M4�5ç
f 4Ë1�5.

4.5. Relationship to Standard Achievable
Region Approach

Our solution method is based on the achievable
region approach to multiclass stochastic scheduling

problems, which was pioneered by Coffman and
Mitrani (1980); see also Federgruen and Groenevelt
(1988), and Stidham (2002). However, the second-best
problem calls for important modifications to the stan-
dard approach: (i) Our achievable region OA4Ë1�5
allows for policies that are not work conserving,
unlike in standard problems. (ii) For fixed Ë, the
optimization in W (in Step 1) is over the intersection
OA4Ë1�5 ∩ IC4Ë5. The standard approach does not
consider IC constraints. (iii) We optimize the revenue
over Ë ∈M4�5 (in Step 2). Standard problems consider
a fixed Ë.

5. Benchmark: The First-Best Problem
For fixed � and Ë ∈ M4�5, the first-best lead times
(17) and the corresponding scheduling policy are well
known and follow from Lemma 1: In M/M/1 systems
with linear delay costs, the work conserving preemp-
tive c� priority rule minimizes the system’s delay cost
rate. Here, type 1 get absolute priority since c1 > c2
and �1 = �2. We say “c� policy” to refer both to its
priority ranking and to its work conserving property,
and we denote related quantities by superscript c�.

Lemma 2. Fix � and Ë ∈ M4�5. The work conserving
preemptive c� priority policy and its mean steady-state
lead times wc�4Ë1�5 are first-best for 4Ë1�5:

Wf 4Ë1�5 = wc�4Ë1�5=

[

wc�
1 4�11�5

wc�
2 4Ë1�5

]

4

=









1
�−�1

�

4�−�154�−�1 −�25









0 (18)

Lemma 2 highlights a simple but important fact:
without IC constraints, revenue maximization and delay
cost minimization are equivalent for any Ë. The first-best
prices under the c� policy are

pc�1 4�11�5
4

= v14�15− c1w
c�
1 4�11�5 and

pc�2 4Ë1�5
4

= v24�25− c2w
c�
2 4Ë1�50

(19)

Proposition 1. Fix � > �0. The first-best rev-
enue function çf 4Ë1�5 = �1p

c�
1 4�11�5 + �2p

c�
2 4Ë1�5 is

strictly concave and submodular in Ë, and Ëf 4�5 =

arg maxË∈M4�5ç
f 4Ë1�5 is unique.

It is optimal to serve type i if it satisfies one of two
conditions:

(i) It has the weakly higher v̄i/ci ratio, where

ç
f
�1
4Ë1�5

c1
−
ç

f
�2
4Ë1�5

c2



















>
v̄1

c1
−
v̄2

c2
1 �1 =0<�23

<
v̄1

c1
−
v̄2

c2
1 �1>0=�20

(20)
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(ii) It has the higher net value at zero utilization, where

ç
f
�1
401�5−ç

f
�2
401�5 =

[

v̄1 −
c1

�

]

−

[

v̄2 −
c2

�

]

= 4c1 − c25

[

v̄1 − v̄2

c1 − c2
−

1
�

]

0 (21)

Furthermore, �f 4

= inf8� ≥ �02 Ëf 4�5 > 09 < � and
Ëf 4�5 > 0 ⇔�>�f .

1. If v̄1/c1 = v̄2/c21 then

1
�f

=
1
�0

=
v̄1

c1
=

v̄2

c2
=

v̄1 − v̄2

c1 − c2
1

Ëf 4�f 5= 0, and Ëf 4�5 > 0 for �>�0.
2. If v̄1/c1 > v̄2/c21 then

1
�f

<
1
�0

=
v̄2

c2
<

v̄1

c1
<

v̄1 − v̄2

c1 − c2

and �
f
1 4�5 > 0 = �

f
2 4�5 for �≤�f .

3. If v̄2/c2 > v̄1/c11 then

v̄2

c2
>

1
�0

=
v̄1

c1
>

1
�f

>
v̄1 − v̄2

c1 − c2

and �
f
2 4�5 > 0 = �

f
1 4�5 for �≤�f .

That çf 4Ë1�5 is submodular in Ë follows because
the low priority lead time wc�

2 4Ë1�5 increases in the
high priority arrival rate. The sufficient conditions
(i) and (ii) for serving a type are intuitive. (i) By (20)
the type with the weakly higher v̄i/ci ratio has the
higher ratio of marginal revenue to delay cost if only
the other type is served. (ii) The marginal revenue of
the type that has the higher net value (i.e., is more
profitable) at zero utilization further increases, rel-
ative to the other type’s marginal revenue, if only
the other type is served. By (21), at zero utiliza-
tion the net value of the impatient type 1 (patient
type 2) is higher if the mean service time is below
(above) the IC indifference threshold, where W̄ 405 =

4v̄1 − v̄25/4c1 − c25 by (11). Conditions (i) and (ii) and
the ranking of the v̄i/ci ratios imply parts 1–3 of
Proposition 1.

The first-best solution also provides some intuition
for the second-best solution for � ∈ 4�01�

f 7. In par-
ticular, at zero utilization the difference in the types’
marginal revenues equals the difference in their net
values, as shown in (21). Since both classes offer the
same lead time at zero utilization, both types would
prefer the (lower price) class targeted to the lower
net value type, if it were opened. However, for � ∈

4�01�
f 7 opening this class is not first-best by Proposi-

tion 1. Therefore, at zero utilization, the type with the
higher net value buys her targeted class, whereas the
type with the lower net value has no incentive to pur-
chase the class targeted to the higher net value type.
As shown in §6.4, for � ∈ 4�01�

f 7, these preferences
at zero utilization prevail at the optimal utilization, so
the first-best solution is second-best.

6. The Second-Best Problem
In this section we solve the second-best problem
(13)–(15) with the method outlined in §4.4. In §6.1 we
execute Step 1, that is, we determine the second-best
lead times for fixed Ë. We show that strategic delay is
optimal for Ë in one of three regions that partition the
Ë-space. In §6.2 we execute Step 2, that is, we charac-
terize the second-best 4Ë1W5. We develop necessary
and sufficient conditions for optimal strategic delay
at the second-best arrival rates. We then apply these
conditions to identify demand and capacity param-
eters that yield optimal strategic delay, in §6.3 for
the special case of homogeneous valuations for each
type, and in §6.4 for our model with heterogeneous
valuations for each type. In §6.5 we explain within
our framework why the c� policy is socially optimal
and IC.

6.1. Second-Best Lead-Time Vector for Fixed Ë
In Step 1 we determine for fixed Ë ∈M4�5 the second-
best lead times by solving (16):

Ws4Ë1�5

=argmin
W

{

�1c1W1 +�2c2W2 s.t. W∈OA4Ë1�5∩IC4Ë5
}

0

Consider the region IC4Ë5 defined in (12). IC requires
W1 ≤ W̄ 4Ë5 if class 1 is open and W2 ≥ W̄ 4Ë5 if class 2
is open, where W̄ 4Ë5= 4v14�15− v24�255/4c1 − c25 is the
IC indifference threshold in (11). These constraints
reflect the fact that an impatient customer’s net value
decreases more sharply in the lead time, compared
to that of a patient customer, and both types have
the same marginal net value for the lead time W̄ 4Ë5.
Hence, if W2 ≥ W̄ 4Ë5, then the impatient type has a
(weakly) lower marginal net value for class 2 than the
patient type, and therefore has no incentive to buy
class 2: v14�15− c1W2 ≤ v24�25− c2W2 = p2. The equal-
ity holds since by (8) the marginal customer of each
type has zero expected utility in its targeted class.
Conversely, if W2 < W̄4Ë5, impatient customers pre-
fer class 2 to their own class. The intuition for the IC
constraint W1 ≤ W̄ 4Ë5 is similar.

Now consider the c� policy. By Lemma 2 it is first-
best for all � and Ë ∈ M4�5, so it is second-best for
4Ë1�5 if and only if its lead-time vector is IC, that is,
wc�4Ë1�5 ∈ IC4Ë5. Partition M4�5 as follows:

M04�5
4

=
{

Ë ∈M4�52 �14W̄ 4Ë5−wc�
1 4�11�55≥ 0

≥ �24W̄ 4Ë5−wc�
2 4Ë1�55

}

1 (22)

M14�5
4

=
{

Ë ∈M4�52 �14W̄ 4Ë5−wc�
1 4�11�55 < 0

}

1 (23)

M24�5
4

=
{

Ë ∈M4�52 �24W̄ 4Ë5−wc�
2 4Ë1�55 > 0

}

0 (24)

The c� policy is second-best for 4Ë1�5 if and only if
Ë ∈M04�5, where the subscript 0 indicates that neither
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Figure 1 Proposition 2: Partition of M4�5 and Second-Best Lead Times for Representative Ë in Each Set of the Partition

�2

�1

W2

W1 W1 W1

IC OA

strategic delay

c� policy

IC OA IC OA

c� policy

Partition of M(�)

M0(�)

M2(�)

M1(�)

�M2(�) �M0(�) �M1(�)� � �

Secondbest: Secondbest:

Notes. The grey line on the boundary �2 = 0 is part of M04�5. For fixed � and � ∈ M4�5, Lemma 1 defines the OA region in (9) and (10), and Definition 3
defines the IC region in (11) and (12).

IC constraint is violated: If the high priority class is
open (�1 > 0), then wc�

1 4�11�5 ≤ W̄ 4Ë5, and if the low
priority class is open, then wc�

2 4Ë1�5≥ W̄ 4Ë5, so each
type prefers her targeted class. For Ë ∈ Mi, i = 112,
the lead time of priority class i under the c� policy
violates the IC constraint. For Ë ∈M14�5, the high pri-
ority lead time wc�

1 4�11�5 exceeds W̄ 4Ë5, so patient
customers prefer class 1 to class 2 if W = wc�4Ë1�5.
Deterring them from class 1 requires a shorter lead
time, but this is operationally impossible since W1 ≥

wc�
1 4�11�5 for all achievable W ∈ OA4Ë1�5. To induce

demand rates Ë′ ∈M04�5, the provider can either close
class 1 or reduce its appeal to patient customers, by
raising its price so that �′

1 < �1 and/or by reducing
the class 2 price so that �′

2 > �2. For Ë ∈ M24�5, the
low priority lead time wc�

2 4Ë1�5 is below W̄ 4Ë5, so
impatient customers prefer class 2 to class 1 if W =

wc�4Ë1�5. Since the c� policy yields the maximum
class 2 lead time among work conserving policies, to
deter impatient customers from class 2, the provider
must artificially increase W2 above its operationally
achievable level, wc�

2 4Ë1�5, by inserting strategic delay.
This discussion implies Proposition 2, which is illus-
trated in Figure 1.

Proposition 2. Fix � and Ë ∈M4�5.
1. If Ë ∈M04�5, the work conserving preemptive c� pol-

icy is second-best for 4Ë1�5: Ws4Ë1�5= wc�4Ë1�50
2. If Ë ∈ M14�5, no operationally achievable lead times

are IC for 4Ë1�5: OA4Ë1�5∩ IC4Ë5= �.
3. If Ë ∈ M24�5, no work conserving policy is IC for

4Ë1�5. The second-best lead times are

Ws4Ë1�5 = wsd4Ë1�5=

[

wsd
1 4�11�5

wsd
2 4Ë5

]

4

=

[

wc�
1 4�11�5

W̄ 4Ë5

]

1

(25)

where wsd
2 4Ë5 > wc�

2 4Ë1�5, and “sd” denotes a strategic
delay policy with lead times given by (25). It sequences jobs
in the c� order, giving preemptive priority to impatient
over patient customers, but uses server idleness, server
speed, and/or delivery delays to artificially inflate the mean
low priority lead time to W̄ 4Ë5. The low priority lead times

exceed operationally achievable levels by an average strate-
gic delay of

wsd
2 4Ë5−wc�

2 4Ë1�5

=
pc�1 4�11�5+c1w

c�
1 4�11�5−6pc�2 4Ë1�5+c1w

c�
2 4Ë1�57

c1 −c2
>00

(26)

Remark 1. Strategic delay increases the delay cost to
establish IC, relative to the minimum under the first-
best c� policy (Lemma 2), but it allows the provider
to target arrival rates Ë ∈M24�5, which can be optimal
as shown in §§6.2–6.4.

Remark 2. How much strategic delay is optimal for
fixed Ë? Increasing the class 2 lead time by ãW2 while
dropping its price by ãp2 = −c2 ·ãW2 keeps p2 + c2W2
constant. This leaves the class 1 full price for impa-
tient customers constant but increases their class 2 full
price by 4c1 − c25 ·ãW2. By (26), the optimal strategic
delay for fixed Ë ∈ M24�5 therefore equals the impa-
tient type’s full price premium for class 1 relative
to class 2 under the c� policy, divided by the delay
cost difference c1 − c2. With this delay added to the
class 2 lead time, impatient customers are indifferent
between the two classes.

6.2. Strategic Delay Optimality: Necessary and
Sufficient Conditions

We turn to Step 2 outlined in §4.4: find the second-
best arrival rates Ës4�5 ∈ arg maxË∈M4�5ç

s4Ë1�5 and
lead times Ws4Ës4�51�5. By Proposition 2 strategic
delay is optimal for fixed Ë ∈M24�5. We develop nec-
essary and sufficient conditions for strategic delay to
be optimal at Ës4�5.

Let çsd4Ë1�5
4

= ç4Ë1wsd4Ë1�55 be the revenue
function under strategic delay. By Proposition 2,

çs4Ë1�5

=











çf 4Ë1�5= �1p
c�
1 4�11�5+�2p

c�
2 4Ë1�51 Ë ∈M04�53

01 Ë ∈M14�53

çsd4Ë1�5= �1p
c�
1 4�11�5+�2p

sd
2 4Ë51 Ë ∈M24�51

(27)
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where çf is the first-best revenue function (Proposi-
tion 1), pc�1 4�11�5 and pc�2 4Ë1�5 are given by (19), and
by (25) the class 2 price under strategic delay is

psd2 4Ë5
4

= v24�25− c2w
sd
2 4Ë5

= v24�25− c2
v14�15− v24�25

c1 − c2
0 (28)

This price increases in �1: Serving more impatient cus-
tomers requires dropping the class 1 full price, which
reduces their marginal value v14�15 and the lead time
wsd

2 4Ë5 required to deter them from class 2. As a result,
çsd4Ë1�5 is supermodular in Ë.

Definition 4. We say that strategic delay is optimal
if arg maxË∈M4�5ç

s4Ë1�5⊂M24�5.

Proposition 3. Fix �>�0, and suppose that çsd4Ë1�5
is strictly concave in Ë.

1. Strategic delay is optimal and Ës4�5 is the unique
second-best demand vector, if and only if

Ës4�5= arg max
Ë∈M4�5

çsd4Ë1�5 ∈M24�51

which holds if and only if Ë= �s4�5 satisfies the following:

çsd
�1
4Ë1�5 = pc�1 4�11�5+�1

¡pc�1 4�11�5

¡�1

+�2
¡psd2 4Ë5

¡�1
= 01 (29)

çsd
�2
4Ë1�5 = psd2 4Ë5+�2

¡psd2 4Ë5

¡�2
= 01 (30)

Ë > 01 (31)

wsd
2 4Ë5−wc�

2 4Ë1�5 > 01 and �>�1 +�20 (32)

2. If strategic delay is optimal, then the first-best arrival
rates Ëf 4�5 ∈M24�5.

The converse of part 2 is not true; for example, if
Ëf 4�5 ∈ M24�5, it may be second-best to close class 2
(Proposition 7.1(a)).

Next, to translate (29)–(32) into more specific
conditions, we characterize the maximum revenue
çsd4Ë1�5 as a function of the impatient customer
arrival rate �1. By (27), çsd4Ë1�5 depends on the
arrival rate of patient customers only through their
revenue �2p

sd
2 4Ë5, which is independent of capacity.

We make the following mild assumptions.

Assumption A3. The function çsd4Ë1�5 is strictly
concave in Ë for fixed �≤ �, and v′

2/R
′′
2 < c1/c20

Lemma 3. For fixed �1, the optimal type 2 arrival rate
under strategic delay, that is,

�sd
2 4�15

4

= arg max
�2∈601å27

�2p
sd
2 4Ë51

is unique. Let Ësd4�15
4

= 4�11�
sd
2 4�155.

1. If v̄2/c2 ≤ v14�15/c1, then opening class 2 is not prof-
itable with strategic delay: �sd

2 4�15= 0.
If v̄2/c2 > v14�15/c1, then �sd

2 4�15 ∈ 401å25,
psd2 4Ësd4�155 > 0, and

çsd
�2
4Ësd4�151�5= 0

⇔
R′

24�
sd
2 4�155

c2
=

v24�
sd
2 4�155

c2

(

1 −
1

�24�
sd
2 4�155

)

=
v14�15

c1
0 (33)

2. The rate �sd
2 4�15 is nondecreasing, and �sd′

2 4�15 > 0
for �1 > �1

4

= min8�1 ≥ 02 v14�15/c1 ≤ v̄2/c29.
3. The lead time wsd

2 4Ësd4�155 and the strategic delay
wsd

2 4Ësd4�155−wc�
2 4Ësd4�151�5 strictly decrease in �1.

4. For fixed �1, the segment share �sd
2 4�15/å2 and the

lead time wsd
2 4Ësd4�155 are independent of å2 > 0, and the

strategic delay wsd
2 4Ësd4�155 − wc�

2 4Ësd4�151�5 is nonin-
creasing in å2.

In Lemma 3.1, the condition for opening class 2 fol-
lows by (28). Under strategic delay,

psd2 4Ë5 > 0

⇔
v24�25

c2
>

v14�15

c1
>

v14�15− v24�25

c1 − c2
=wsd

2 4Ë51 (34)

that is, the class 2 price is positive if and only if the
patient type has the higher marginal value-to-delay
cost ratio. This ensures that increasing the class 2 lead
time to wsd

2 4Ë5, which makes the impatient type indif-
ferent between the classes, leaves the patient type
with positive marginal net value.

The optimality condition (33) implies that the more
elastic the patient type’s marginal value function, the
lower the price and the higher the lead time of their
class under strategic delay.

In Lemma 3.2, that �sd
2 4�15 is increasing follows

since çsd4Ë1�5 is supermodular in Ë.
In Lemma 3.3, the condition v′

2/R
′′
2 < c1/c2 in A3

ensures that the impatient type’s marginal value
v14�15 drops more sharply in �1 than the patient type’s
marginal value v24�

sd
2 4�155. As a result, the optimal

class 2 lead time and strategic delay decrease in �1.
A sufficient condition for v′

2/R
′′
2 < c1/c2 is that the elas-

ticity �24�25 be nondecreasing. For linear vi4�i5, dis-
cussed in §6.4, v′

2/R
′′
2 = 1/2.

In Lemma 3.4, that �sd
2 4�15/å2 and wsd

2 4Ësd4�155 are
constant in å2 follows because by (7) and (28), the
class 2 lead time and price depend on �i and åi only
through the fraction of type i served, �i/åi. Therefore,
�sd

2 4�15 is proportional to å2, and the strategic delay
is nonincreasing in å2.
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By (19), (28), (29), and Lemma 3, the total revenue
derivative with respect to �1 satisfies

dçsd4Ësd4�151�5

d�1
= çsd

�1
4Ësd4�151�5

=

[

R′

14�15−
c1�

4�−�15
2

]

+

[

�sd
2 4�15 · c2

−v′
14�15

c1 − c2

]

0 (35)

It strictly decreases in �1 since çsd4Ë1�5 is strictly
concave in Ë. The term in the first bracket of (35)
is the marginal revenue from impatient customers,
which decreases in �1 since R′′

1 < 0 by A2. The term
in the second bracket is the marginal change in
the maximum revenue from patient customers with
respect to �1, which is positive if �sd

2 4�15 > 0 since
¡psd2 4Ë5/¡�1 = −c2v

′
14�15/4c1 − c25 > 0.

Let �sd
1 be the impatient type arrival rate that solves

çsd
�1
4Ësd4�151�5= 0. By Proposition 3.1, strategic delay

is optimal if and only if (31) and (32) hold for Ë =

Ësd4�sd
1 5, that is, both types are served and strategic

delay is required to deter impatient customers from
class 2. We translate these into more specific condi-
tions, based on the following key system properties
under strategic delay.

First, by (35), serving impatient customers is prof-
itable, and �sd

1 is at least as large as the optimal arrival
rate of impatient customers in the absence of patient
customers; let ��

1 be this rate. Then by (35), �sd
1 ≥ ��

1 > 0
and

R′
14�

�
15

c1
=

v14�
�
15

c1

(

1 −
1

�14�
�
15

)

=
�

4�−��
15

2
0 (36)

Second, serving patient customers is optimal if and
only if it is profitable to open class 2 at ��

1, i.e., v̄2/c2 >
v14�

�
15/c1 (Lemma 3.1). This holds since çsd4Ë1�5 is

strictly concave and supermodular in Ë.
Third, if serving patient customers is optimal, the

demand vector Ësd4�sd
1 5 increases in their segment

size å2: By (35), increasing �1 > ��
1 lowers the rev-

enue from impatient customers but increases the rev-
enue from patient ones, and this gain is proportional
to �sd

2 4�15, which increases in å2 (Lemma 3.4). This
implies (Lemma 3.3 and 3.4) that the optimal strategic
delay wsd

2 4Ësd4�sd
1 55−wc�

2 4Ësd4�sd
1 51�5 decreases in å2.

Therefore, strategic delay can be optimal if and only
if it is optimal for a small patient segment, i.e., å2 ≈ 0.
In this case, Ësd4�sd

1 5≈ 4��
1105 by (35) and (36), so that

wsd
2 4Ësd4�sd

1 55 ≈ wsd
2 4Ësd4��

155 and

wc�
2 4Ësd4�sd

1 51�5 =
�

4�−�sd
1 54�−�sd

1 −�sd
2 4�sd

1 55

≈
�

4�−��
15

2
0

This discussion implies three necessary and sufficient
conditions for optimal strategic delay, which Proposi-
tion 4 formalizes as the price, the lead-time, and the
segment-size condition.

Proposition 4. Fix �>�0. Then

��

1
4

= arg max
�1

{

�1p
c�
1 4�11�5 s.t. �1 ∈ 601å171�1 <�

}

> 00

Strategic delay is optimal if and only if the following con-
ditions hold.

1. Price condition. At ��
1 it is profitable to open class 2

with strategic delay:

v̄2

c2
>

v14�
�
15

c1
0 (37)

2. Lead-time condition. IC requires strategic delay if the
patient segment is small (å2 ≈ 0):

wsd
2 4Ësd4��

155=
v14�

�
15− v24�

sd
2 4��

155

c1 − c2
>

�

4�−��
15

2
1 (38)

where (38) is independent of å2. If (37) holds, then (38)
is equivalent to the condition �24�

sd
2 4��

155 > �14�
�
15c2/

4c1 − c25+ 1.
3. Segment-size condition. The patient segment is

smaller than a threshold å̄2: 0 <å2 < å̄2 <�.

The price and lead-time conditions are indepen-
dent of å2. Either one must hold.1 By the equivalent
condition for (38), the patient type’s marginal value
function must be sufficiently elastic: By (33) the more
elastic this function, the lower the class 2 price, and
the higher its lead time.

Proposition 4 provides a specific test for strategic
delay optimality. In §§6.3 and 6.4 we apply this test
to identify explicit demand and capacity parameter
conditions for optimal strategic delay.

6.3. Strategic Delay Optimality: Homogeneous
Valuations for Each Type

We start with the simplest valuation model in which
all type i customers have the same valuation: vi4�i5=

v̄i for �i ∈ 601åi7. In this case, the class 2 lead time
under strategic delay, which equals the threshold
W̄ 4Ë5 defined in (11), is independent of Ë, i.e., wsd

2 4Ë5=

4v̄1 − v̄25/4c1 − c25. The class 2 price is psd2 4Ë5 = v̄2 −

c244v̄1 − v̄25/4c1 − c255 by (28), so the revenue is addi-
tively separable in �1 and �2 by (27):

çsd4Ë1�5

= �1p
c�
1 4�11�5+�2p

sd
2 4Ë5

= �1

[

v̄1 − c1
1

�−�1

]

+�2

[

v̄2 − c2
v̄1 − v̄2

c1 − c2

]

0 (39)

1 If (37) does not hold, then �sd
2 4��

15= 0 and (38) holds:

v14�
�

15− v̄2

c1 − c2
≥

v14�
�

15

c1
>

R′

14�
�

15

c1
=

�

4�−��
15

2
0
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Under strategic delay the optimal impatient type
arrival rate �sd

1 is independent of �2, and �sd
1 = ��

1,
where

��
1 = å1 if

v̄1

c1
>

�

4�−å15
2
1 and

��
1 = arg

{

�1 ≥ 03
v̄1

c1
=

�

4�−�15
2

}

otherwise0
(40)

Since R′
14�15= v̄1 in this model, (40) is the counterpart

of (36).
In this model, A1 (i.e., vi4åi5 = 0) does not hold,

but the necessary and sufficient conditions of Proposi-
tion 4 apply. In particular, the price condition (37) and
the lead-time condition (38) do not hinge on A1, and
we specialize the segment-size condition to account
for the fact that vi4åi5= v̄i.

1. The price condition (37) requires that the patient
type has the higher v̄i/ci ratio: v̄2/c2 > v̄1/c1. This
implies v̄2/c2 > 4v̄1 − v̄25/4c1 − c25, so by (39) it is opti-
mal to serve all patient customers: �sd

2 =å2.
2. If v̄2/c2 > v̄1/c1, then v̄1/c1 > 4v̄1 − v̄25/4c1 − c25, so

that by (40) the lead-time condition (38) requires
v̄1 − v̄2

c1 − c2
>

�

4�−å15
2
0 (41)

That is, (38) can only hold if it is optimal to serve
all impatient customers: �sd

1 = å1. (The price and
lead-time conditions cannot both hold if v̄1/c1 =

�/4�−��
15

2.) It is necessary for (41) that patient cus-
tomers have lower valuations, i.e., v̄1 > v̄2, and capac-
ity is sufficiently large: �> 4c1 − c25/4v̄1 − v̄25 > �0.

3. The segment-size condition specializes to the
requirement
å2<å̄2

=min
{

�−å1 −
�

�−å1

(

v̄1 − v̄2

c1 −c2

)−1

1å1

(

c1

c2
−1
)}

1 (42)

where å̄2 > 0 if (41) holds. The first argument
on the right-hand side of (42) ensures wc�

2 4å1�5 <
4v̄1 − v̄25/4c1 − c25, i.e., å ∈ M24�5 by (24). That is,
when all customers are served, impatient customers
prefer class 2 under the c� policy (Proposition 2.3).
The second argument on the right-hand side of (42)
ensures that strategic delay maximizes the second-
best revenue in this case. Specifically, if W2 <
4v̄1 − v̄25/4c1 − c25, then one option to make impatient
customers indifferent between the classes is to reduce
the class 1 price so that p1 + c1W1 = p2 + c1W2. In this
situation,

p2 = v̄2 −c2W2 and

p1 =p2 +c14W2 −W15= v̄2 +4c1 −c25W2 −c1W1<v̄1 −c1W10

The inequality implies that impatient customers have
positive expected utility.2 Instead of reducing the

2 In the more plausible main model of the paper, it is not optimal to
serve all customers of either type, which rules out a solution where
the marginal customer of one type gets positive expected utility.

class 1 price, using strategic delay to inflate the class 2
lead time by ãW2 is more profitable if and only if
å2 <å14c1/c2 −15: the revenue gain on impatient cus-
tomers is å14c1 − c25ãW2; the loss on patient ones is
å2c2ãW2.

To summarize, strategic delay is optimal if and only
if the patient type has the higher v̄i/ci ratio and the lower
valuation; its segment is not too large relative to that
of the impatient type, that is,

1 <
v̄1

v̄2
<

c1

c2
and

å2

å1
<

c1

c2
− 13 (43)

and the capacity � is sufficiently large, that is, it exceeds
a threshold which (42) yields in closed form.

6.4. Strategic Delay Optimality: Heterogeneous
Valuations for Each Type

As we show in this section, valuation heterogeneity
at each delay cost level yields different results, com-
pared to the case of homogeneous valuations. For one,
strategic delay can be optimal for any ranking of the
v̄i/ci ratios. Moreover, strategic delay is not necessar-
ily a “large capacity phenomenon”: If the impatient
type has the higher v̄i/ci ratio, which is quite plausi-
ble, then under mild conditions strategic delay may
be optimal only at relatively scarce, but not at ample
capacity (Proposition 7).

The results in this section hold for any value dis-
tributions that satisfy the assumptions in §2.1 and
A1–A3, except for Propositions 5.2, 6.2, and 7.2, which
assume linear vi functions that satisfy the following.

Assumption A4. Let Fi4v5 = v/v̄i1 v ∈ 601 v̄i7, so
vi4�i5 = v̄i41 − �i/åi51�i ∈ 601åi7, and v′

i/R
′′
i = 1/2. We

assume å1/å2 > v̄1/v̄2/44c1/c24c1/c2 − 155, which ensures
that çsd4Ë1�5 is strictly concave in Ë for � ≤ �, so
A3 holds.

6.4.1. Ample Capacity. As a building block for
the finite capacity results, consider the limiting case
of ample capacity, i.e., �= �. In this case, work con-
serving policies yield zero lead times, so that price
discrimination requires strategic delay. Lemma 3 and
Proposition 4 imply Corollary 1.

Corollary 1. Fix �= �. Then ��
1 = arg8�1 ∈ 601å17:

R′
14�15 = 09 > 0. Strategic delay is optimal if and only if

the following conditions hold.
1. Price condition. At ��

1 it is profitable to open class 2
with strategic delay:

v̄2

c2
>

v14�
�
15

c1
1 where �14�

�

15= 10 (44)

2. Lead-time condition. IC requires strategic delay if the
patient segment is small (å2 ≈ 0):

wsd
2 4Ësd4��

155=
v14�

�
15− v24�

sd
2 4��

155

c1 − c2
> 01 (45)
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where (45) is independent of å2. If (44) holds, then (45) is
equivalent to the condition �24�

sd
2 4��

155 > c1/4c1 − c250
3. Segment-size condition. The patient segment size

å2 < å̄2. If (44) and (45) hold, then

å̄2 =
R′

14x15

v′
14x15

c1 − c2

c2

1
�sd

2 4x15/å2

> 01 (46)

where

x1
4

= arg
{

�1 ∈ 601�172 w
sd
2 4Ësd4x155=0

}

∈ 4��

11å151

and �sd
2 4x15/å2 is independent of å2.

For linear vi4�i5, Corollary 1 yields the following
conditions for optimal strategic delay:

c1

c1 − c2/2
<

v̄1

v̄2
< 2

c1

c2
and

å2 < å̄2 = 2å1

(

c1

c2

(

1 −
v̄2

v̄1

)

−
1
2

)

1

(47)

where v̄1/v̄2 < 24c1/c25 is the price condition. These
conditions are similar to those in (43), but the price
condition in (47) allows a higher v̄i/ci ratio for the
impatient type. Serving both types is profitable only
if the price condition holds. If the lead-time condition
is violated, i.e., v̄1/v̄2 ≤ c1/4c1 − c2/25, there is insuffi-
cient value differentiation to warrant price discrimi-
nation. This applies to the special case v̄1 = v̄2, where
the single price p = v̄i/2 is first- and second-best. If the
segment-size condition is violated, i.e., å2 ≥ å̄2, strate-
gic delay yields a larger loss in the patient segment
compared to the gain in the impatient segment, so
charging one price is optimal.

6.4.2. Impact of Capacity on the Second-Best
Solution: Preliminaries. Define the thresholds �s 4

=

inf8� ≥ �02 Ë
s4�5 > 09 and �sd 4

= inf8� ≥ �02 Ë
s4�5 ∈

M24�59, where inf � = � and �s ≤ �sd since strategic
delay is optimal only if it is second-best to serve both
types (Proposition 3.1). Recall that �f = inf8�≥�0:
Ëf 4�5 > 09 < � by Proposition 1. For each ranking of
the v̄i/ci ratios, we identify demand conditions that
yield optimal strategic delay for some capacity (i.e.,
�sd <�), characterize �sd and the capacity interval(s)
in 4�sd1�7 with optimal strategic delay, and relate �sd

to �f and �s . The discussion builds on Propositions 1
and 4, Corollary 1, and on Lemma 4.

Lemma 4. Suppose that

1
�
< min

(

1
�f

1
v̄1 − v̄2

c1 − c2

)

0

1. It is second-best to serve the impatient type.
2. It is second-best to serve the patient type if and only

if the price condition (37) holds: v̄2/c2 >v14�
�
15/c10

For the intuition to Lemma 4, recall that for � >
�f , the first-best c� policy serves both types (Propo-
sition 1), and for � > �0 the impatient type is prof-
itable under the strategic delay policy (Proposition
4). Part 1 of Lemma 4 holds because, for 1/� <
4v̄1 − v̄25/4c1 − c25, the class 1 lead time under the c�
policy is IC at low arrival rates (i.e., Ë y M14�5 for
�1 ≈ 0 by (11) and (23)). Part 2 holds because, if it is
not IC under the c� policy to open class 2, then it is
second-best to open class 2 if and only if its price with
strategic delay is positive at ��

1.

6.4.3. The Types Have the Same v̄i/ci Ratio. This
special case develops intuition for the other cases.

Proposition 5. Fix �>�0 and suppose that the types
have the same v̄i/ci ratio.

1. Then

v̄1 − v̄2

c1 − c2
=

v̄1

c1
=

v̄2

c2
=

1
�0

=
1
�f

=
1
�s

≥
1
�sd

0

For every profitable system, i.e., for �>�0, it is first- and
second-best to serve both types, and strategic delay may be
optimal.

2. For linear vi4 · 5 there exist capacity levels at which
strategic delay is optimal, if and only if it is optimal
at ample capacity (� = �), i.e., å2/å1 < 24c1/c2 − 1055.
In this case: (a) Strategic delay is optimal for all �>�sd.
(b) If å2/å1 ≤ 24c1/c2 − 1055/41 + v̄1/c1å14c1/c2 − 155,
then �sd =�0. Otherwise, �sd >�0.

Consider the conditions of Proposition 4. For fixed
�, strategic delay is optimal for some å2 if and only
if the price condition (37) and the lead-time condition
(38) hold, which are, respectively,

v̄2

c2
>

v14�
�
14�55

c1
and (48)

wsd
2 4Ësd4��

14�555=
v14�

�
14�55− v24�

sd
2 4��

14�555

c1 − c2

>
R′

14�
�
14�55

c1
=

�

4�−��
14�55

2
0 (49)

Serving impatient customers is not profitable at the
minimum capacity (��

14�05= 0).
The price condition (48) holds for all �> �0: Since

the types have the same v̄i/ci ratio, serving impatient
customers reduces their marginal valuation-to-delay
cost ratio v14�

�
14�55/c1 below v̄2/c2. It follows from

Lemma 4 that it is second-best to serve both types for
every �>�0.

The lead-time condition (49) holds for all �>�0
if c1/c2 > 105, and for no � otherwise. Fixing
v̄1/c1 = v̄2/c2 and ��

14�5 > 0, the class 2 lead time
wsd

2 4Ësd4��
14�555 increases in v̄1 and c1: Intuitively, the

higher the impatient type’s net value, the more it
prefers the class targeted to the patient type.
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For c1/c2 > 105, consider the interaction between the
capacity � and the patient segment size å2. Increas-
ing � yields higher optimal arrival rates, but also
speeds up service. The former effect reduces the
strategic delay, the latter increases it, and the net effect
depends on å2. For fixed �, the optimal strategic
delay decreases in å2 (Proposition 4). If å2 violates
the segment-size condition for ample capacity, i.e.,
å2 ≥å124c1/c2 − 1055, strategic delay is not optimal at
any capacity. If å2 is below the threshold in part 2(b),
strategic delay is optimal for every system (�sd =�0).
For å2 in between these thresholds, strategic delay is
optimal only for high enough capacity (�sd >�0).

6.4.4. The Patient Type Has the Higher v̄i/ci
Ratio. In this case strategic delay can be optimal only
for large enough capacity, consistent with the result
for the homogeneous valuation model in §6.3.

Proposition 6. Fix � > �0 and suppose that the
patient type has the higher v̄i/ci ratio.

1. Then

v̄2

c2
>

v̄1

c1
=

1
�0

>
1
�f

>
1
�s

≥
v̄1 − v̄2

c1 − c2
0

(a) For � ≤ �f , the first-best policy is second-best
and serves only patient customers. For � ∈ 4�f 1�s5 it
is first-best to serve both types but second-best to serve
only patient customers; they prefer class 1 at the first-best
solution. For 1/�< 4v̄1 − v̄25/4c1 − c25 it is second-best to
serve both types.

(b) If strategic delay is optimal for some capacity, then
�s < �sd < �, and there is a �′ ∈ 4�s1�sd5 such that for
�′ the first-best policy is second-best and serves both types.

2. For linear vi4 · 5 there exist capacity levels at which
strategic delay is optimal, if and only if it is optimal at
ample capacity (� = �), i.e., c1/4c1 − c2/25 < v̄1/v̄2 <
2c1/c2 and å2 < 2å144c1/c2541 − v̄2/v̄15−

1
2 5. In this case

strategic delay is optimal for all �>�sd, and

�sd >�∗4x5
4

= x+
1 +

√

1 + 4x4v̄1/c1541 − 2x/å15

24v̄1/c1541 − 2x/å15

>
c1 − c2

v̄1 − v̄2
>�01 where

x
4

=
å1

2
4c1/c254v̄2/v̄15− 1

c1/c2 − 105
0 (50)

At low arrival rates, both types’ v̄i/ci ratios exceed
the IC indifference threshold, because v̄2/c2 > v̄1/c1 >
4v̄1 − v̄25/4c1 − c25 = W̄ 405. At low capacity, the lead
times therefore exceed the indifference threshold,
so the patient type is more profitable and prefers
the high priority class targeted to the impatient
type. Proposition 6.1(a) follows from these properties,
Proposition 1, and Lemma 4. If strategic delay is opti-
mal, then these lead-time preferences are reversed at
higher capacity: The impatient type prefers the low

priority class at the first-best solution, which implies
Proposition 6.1(b), that is, the first-best solution must
be second-best at some intermediate capacity level.

Part 2 is similar to the case of homogeneous valu-
ations in §6.3. Since the patient type has the higher
v̄i/ci ratio, the price condition holds for all capacity
levels �>�0, but the minimum capacity at which the
lead-time condition can hold exceeds �0, as shown in
(50). The threshold �sd attains �∗4x5 for a negligibly
small patient segment (i.e., å2 → 0), but �sd increases
in å2 since a larger patient segment implies higher
arrival rates and delays.

Example 1. We illustrate Proposition 6 for linear vi

functions that satisfy the conditions in part 2. Figure 2
shows key metrics as functions of the capacity � ≥

4c1 − c25/4v̄1 − v̄25 = 009, for three policies: first-best
(FB), second-best with strategic delay allowed (SB),
and second-best with restriction to the work conserv-
ing c� policy (SB-wc). The threshold �sd = 603. For
� ∈ 600915047, the three policies agree, which illustrates
part 1(b). For � > 504 the first-best is not second-
best. For � ∈ 450416037, strategic delay is suboptimal,
so SB and SB-wc agree. For � > 603, strategic delay
is optimal, and SB deviates from SB-wc: To ensure
IC, SB inflates the class 2 lead time through strategic
delay, whereas SB-wc drops the price of class 1 and
raises that of class 2. As a result, SB achieves almost
as much price discrimination as FB, and much more
than SB-wc. For example, at � = 14 the class 1 price
premium versus the class 2 price is 193% under FB,
189% under SB, but only 16% under SB-wc. The value
of strategic delay can be dramatic: the revenue of
SB exceeds that of SB-wc by approximately 10% at
� = 10 and 23% at � = 20. (Over all parameters with
v̄1/c1 < v̄2/c2 and � = �, the maximum revenue gain
of strategic delay versus work conserving scheduling
approaches 100%.)

6.4.5. The Impatient Type Has the Higher v̄i/ci
Ratio. In contrast to the other cases, here it may be
that strategic delay is optimal only at relatively scarce
but not at ample capacity, or only at low and high but
not at intermediate capacity.

Proposition 7. Fix � > �0, and suppose that the
impatient type has the higher v̄i/ci ratio.

1. Then

v̄1 − v̄2

c1 − c2
>

v̄1

c1
>

v̄2

c2
=

1
�0

>
1
�f

>
1
�s

0

(a) For �≤�f , the first-best policy is second-best and
serves only impatient customers. For � ∈ 4�f 1�s5, it is
first-best to serve both types, but second-best to serve only
impatient customers; they prefer class 2 at the first-best
solution. For �>�s , it is second-best to serve both types.
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Figure 2 Illustration of Proposition 6: Strategic Delay Is Optimal Only if Capacity Is Sufficiently Large
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Notes. v̄1 = 3, v̄2 = 1, c1 = 2, c2 = 002, and å1 = å2 = 5. Capacity thresholds: �f <�s < 4c1 − c25/4v̄1 − v̄25= 009 <�sd = 603.

(b) There exist capacity levels at which strategic delay
is optimal if and only if �14�15 > 1, i.e., R′

14�15 > 0, where
�1 = arg8�1 ≥ 02 v14�15/c1 = v̄2/c29 ∈ 401å15. In this case,

�sd
=�s

= �1 +
1 +

√

1 + 4�1 ·R′
14�15/c1

2R′
14�15/c1

0 (51)

If R′
14�15≤ 0, it is second-best to serve only impatient cus-

tomers for all �.
2. For linear vi4 · 5, R

′
14�15 > 0 ⇔ v̄1/v̄2 < 24c1/c25. In

this case, �sd = �s is given by (51) with �1 = å141 −

4c1/c25v̄2/v̄15 and R′
14�15/c1 = 24v̄2/c25− v̄1/c1.

Strategic delay need not be optimal for all �>�sd:
(a) If v̄1/v̄2 ≤ c1/4c1 − c2/25 or å2 > 2å144c1/c2541−

v̄2/v̄15 − 1/25, then strategic delay is optimal for � ∈

4�sd1 �̄5, but not for �≥ ¯̄�, where �̄ and ¯̄� are thresholds
that satisfy �sd < �̄≤ ¯̄�<�.

(b) If c1/4c1 − c2/25 < v̄1/v̄2 < 24c1/c25, there is a
threshold å2 ∈ 4012å144c1/c2541− v̄2/v̄15−1/257 such that
the following holds.

If å2 ∈ 401å25, then strategic delay is optimal for all
�>�sd.

If å2 <å2 < 2å144c1/c2541− v̄2/v̄15−1/25, then strate-
gic delay is optimal if and only if � ∈ 4�sd1 �̄5 ∪ 4�1�7,

where �̄ and � are thresholds that satisfy �sd < �̄< �<�.

Since 4v̄1 − v̄25/4c1 − c25 > v̄1/c1 > v̄2/c2, the lead-
time condition holds, but the price condition is vio-
lated for lower capacity levels �> �0. Specifically, at
lower capacity, the lead times are below the IC indif-
ference threshold, so the impatient type prefers class 2
targeted to the patient type; that is, the lead-time con-
dition holds and strategic delay is needed if class 2
is opened. Strategic delay reduces the class 2 price
relative to the c� policy, so the second-best capacity
threshold for serving both types exceeds the first-best
threshold, i.e., �s >�f . By Lemma 4, opening class 2
is second-best if and only if the price condition is sat-
isfied. By Proposition 7.1(b), the price condition holds
at some capacity if and only if R′

14�15 > 0, i.e., if it is
optimal to serve more than �1 of the impatient type at
ample capacity, where �1 is the minimal arrival rate
that yields a nonnegative class 2 price under strate-
gic delay. In this case, strategic delay is optimal for

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Afèche: Incentive-Compatible Revenue Management in Queueing Systems
440 Manufacturing & Service Operations Management 15(3), pp. 423–443, © 2013 INFORMS

a set of larger capacity levels around the threshold
�sd in (51). This result shows that optimal strategic
delay arises naturally if the impatient type has the
higher v̄i/ci ratio: The condition R′

14�15 > 0 is easily
satisfied, loosely speaking, whenever the types’ v̄i/ci
ratios are not too far apart. This condition is also easy
to evaluate.

For capacity � > �sd, the price condition holds, so
that optimal strategic delay depends only on the lead-
time and segment-size conditions (Proposition 4).
In contrast to cases where v̄1/c1 ≤ v̄2/c2, here strategic
delay need not be optimal for all �>�sd: Around �sd,
optimal strategic delay arises because the class 2 price
and arrival rate are inherently low, so that the lead-
time and segment-size conditions hold in general. At
ample capacity, optimal strategic delay also hinges
on the elasticities and segment sizes. Proposition 7.2
for linear vi4 · 5 follows by part 1, and by (47) for
ample capacity. In part 2(a), the lead time and/or the
segment-size conditions in (47) are violated, so strate-
gic delay is not optimal at larger capacity. In part 2(b)

Figure 3 Illustration of Proposition 7.2(a): Strategic Delay Is Optimal if Capacity Is Relatively Scarce, But Not if It Is Ample
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Notes. v̄1 = 31 v̄2 = 11 c1 = 2, c2 = 1, and å1 = 41å2 = 7. Capacity thresholds: �fb = 201, �sd = �S = 402, and �̄= ¯̄�= 1603.

both conditions hold, so strategic delay is optimal for
smaller capacity close to �sd and for sufficiently large
capacity; however, for intermediate capacity levels,
strategic delay is optimal only if the segment size å2

is below the threshold å2.

Example 2. Figure 3 illustrates Proposition 7.2(a).
It shows the same metrics and policies as in Example 1.
The thresholds are �0 = 1, �f = 201, �sd =�s = 402, and
�̄ = ¯̄� = 1603. For � ∈ 440215055, serving patient cus-
tomers is second-best only if strategic delay is allowed
(SB). If it is precluded (SB-wc), then opening class 2
reduces profits because it requires a large class 1
price drop to ensure IC. In this capacity range, opti-
mal strategic delay yields a Pareto improvement versus
SB-wc: The impatient customer arrival rate is higher
under SB, which implies a lower full price by (19) and
a higher customer surplus. For �≥ 505, class 2 is prof-
itable under SB-wc: the drop in class 1 revenues is
offset by additional class 2 revenues. Strategic delay
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is optimal for � ∈ 4402116035 and yields more price
discrimination than SB-wc, as in Example 1. Strate-
gic delay is suboptimal for �≥ 1603: Since the patient
segment is relatively large and time sensitive, it is
more profitable to reduce the class 2 lead time and
raise its price at larger capacity. Strategic delay yields
less value than in Example 1: The SB revenue exceeds
that under SB-wc by at most 2%, at �= 505. (Over all
v̄1/c1 > v̄2/c2 and � = �, the maximum revenue gain
of strategic delay approaches 33%.)

6.5. IC Social Optimization vs. IC Revenue
Maximization

Mendelson and Whang (1990) characterize the socially
optimal and IC price/lead-time menu, allowing N > 2
delay cost rates. Their main result, that the work con-
serving c� priority policy is socially optimal and IC,
has an intuitive geometric interpretation in our ana-
lytical framework. Let NV4�1W5 denote the net value
rate. The social optimization problem without IC con-
straints is

max
Ë∈M4�51W∈OA4Ë1�5

NV4�1W5=
2
∑

i=1

[

∫ �i

0
vi4x5dx−ci�iWi

]

0

Since the c� policy is first-best (Lemma 2), let

NVc�4Ë1�5
4

=

2
∑

i=1

[

∫ �i

0
vi4x5dx− ci�iw

c�
i 4Ë1�5

]

be the first-best net value function. That the c�
policy is socially optimal and IC holds because
the socially optimal arrival rate vector is in M04�5:
arg maxË∈M4�5 NVc�4Ë1�5 ∈ M04�5. The following
stronger property also implies this result. At every
Ë where type i customers have an incentive to buy
class j 6= i under the c� policy, they also have the
higher marginal net value, so Ë cannot be socially
optimal: Ë ∈ M14�5 ⇒ NVc�

�1
4Ë1�5 < NVc�

�2
4Ë1�5 and

Ë ∈ M24�5 ⇒ NVc�
�1
4Ë1�5 > NVc�

�2
4Ë1�5; that is, the

types’ marginal net value contributions are aligned
with their incentives.

In contrast, under revenue optimization, the types’
marginal revenue contributions are not necessarily
aligned with their incentives. Therefore, the revenue-
maximizing first-best arrival rates need not be in
M04�5; for example, if strategic delay is optimal, then
Ëf 4�5 ∈ M24�5 by Proposition 3.2. This is also why
the problem of IC revenue maximization for N > 2 is
significantly more challenging than the problem of IC
social optimization.

7. Concluding Remarks
We present a novel problem formulation and solu-
tion method for designing revenue-maximizing and
IC price/lead-time menus in queueing systems. This

framework, based on Afèche (2004), combines mech-
anism design and the achievable region approach.
It can be applied to systems with different operational
or demand attributes (e.g., Katta and Sethuraman
2005, Yahalom et al. 2006, Afèche and Pavlin 2011,
Cui et al. 2012, Maglaras et al. 2013). We show that a
strategic delay policy is optimal for a broad range of
demand and capacity conditions; see §1.2 for a sum-
mary of these results.

Strategic delay runs counter to conventional work
conserving and delay-cost-minimizing scheduling
policies. A general implication is that firms that
use lead-time-based price differentiation should also
consider customer incentives, not only operational
constraints, in their scheduling policies.

The optimality of strategic delay also raises imple-
mentation issues. The following criteria may be help-
ful in choosing among the delay tactics described in
§3.2, idling the server before, reducing its speed dur-
ing, and delaying the delivery after processing.

(i) Preemption flexibility. The provider will want the
ability to use strategic delay without slowing down
the higher priority class(es). Slowing down the server
meets this criterion only if low priority jobs can be
preempted, for example, in standard tax preparation
services with minimal customer interaction between
order placement and delivery. Otherwise, it is prefer-
able to use server idleness before and/or delivery
delays after processing. The latter give the most con-
trol over both low and high priority lead times.

(ii) Processing rate flexibility. Similarly, if it is costly
or infeasible to vary the server speed, for example,
in laboratory tests that must meet stringent technical
requirements, then the choice is between server idle-
ness and delivery delays.

(iii) Customer interaction and information. The right
delay tactic also depends on what customers know
about their delays. In manufacturing operations with-
out customer interaction between order and deliv-
ery, all three approaches are available. Similarly, in
services such as package delivery, providers can
implement generalized notions of pre- and postpro-
cessing delays at hubs close to source and destination.
However, in services where customers interact with
the server during processing, delivery delays after
processing may be infeasible. In such cases, the choice
depends on how much customers know about the
system state and service requirements. Idling the
server will upset customers if they can see the server,
for example, in car rental branches. Slowing down
the server may upset customers, unless they are
unfamiliar with service requirements, for example, in
technical support services. Therefore, in call centers
with standard transactions, it may be best to imple-
ment strategic delay through server idleness before
processing.
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(iv) Lead-time variability. Reducing the lead-time
variance for a given target mean may be desirable if
customers are averse to delay cost risk, for example,
when sourcing critical electronic components. This
may be easiest to achieve by choosing delivery delays
after processing to minimize the difference between
realized and quoted lead times.

Our results raise further questions.
(i) A potentially fruitful avenue is to study some

of the implementation issues discussed above. For
example, what is the optimal policy to implement
strategic delay via server idleness only? How should
strategic delay be implemented if customers or the
firm incur different costs for delays before, during,
and after processing?

(ii) An interesting challenge is the multitype ver-
sion of our problem. It is analytically tractable
under certain restrictions on the valuation–delay cost
distribution (Katta and Sethuraman 2005, Afèche
and Pavlin 2011). The problem for an unrestricted
valuation–delay cost distribution remains open. The
difficulty arises because the number of IC constraints
is quadratic in the number of types, and with two-
dimensional types, local IC between neighboring
types does not ensure global IC. This challenge does
not arise under IC social optimization, as explained in
§6.5, and IC constraints are absent in standard appli-
cations of the achievable region approach.

(iii) We assume the provider cannot distinguish
patient from impatient types. If types correspond to
identifiable segments such as residential versus busi-
ness customers, the provider faces the first-best prob-
lem, and strategic delay is not optimal. The case with
more than two types, only some of which can be dis-
tinguished, is practically relevant and potentially of
theoretical interest in that IC constraints only apply
to a subset of classes.

(iv) We assume i.i.d. service times. Afèche (2004)
shows for types with heterogeneous service require-
ments that optimal strategic delay can also arise if
impatient customers have the lower mean service
time, but that other delay tactics may be optimal if
patient customers have the higher c� index; namely,
it may be optimal to alter priorities relative to the c�
policy, in some cases prioritizing them in the reverse
c� order. These results assume that service require-
ments are fixed. Another interesting problem arises if
quality depends on service times, which is character-
istic of discretionary services (Hopp et al. 2007): How
should firms design price/lead-time/quality menus?

(v) Last but not least, although it is known that
strategic delay may be optimal in a duopoly (Afèche
2008), IC and revenue-maximizing price/lead-time
design under competition is only partially understood.
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