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Abstract

Are large menus better than small menus? Recent literature argues that individuals’ ap-

parent preference for smaller menus can be explained by choosers’ behavioral biases or infor-

mational limitations. These explanations imply that absent behavioral or informational effects,

larger menus would be objectively better. However, in an important economic context—401(k)

pension plans—we find that larger menus are objectively worse than smaller menus, as measured

by the maximum Sharpe ratio achievable. We propose a model in which menu setters differ in

their ability to pre-select the menu. We show that when the cost of increasing the menu size

is sufficiently small, a lower-ability menu setter optimally offers more items in the menu than a

higher-ability menu setter. Nevertheless, the menu optimally offered by a higher-ability menu

setter remains superior. This results in a negative relation between menu size and menu quality:

smaller menus are better than larger menus.

Keywords: menu, menu setting, choice, pension plans, 401(k)

1 Introduction

In many settings, people choose from a menu designed by someone else. This can be a literal

menu at a restaurant, a choice of products on a supermarket shelf, or a list of assets available

for investment in a 401(k) retirement plan. There is a growing literature showing how choices are

influenced by the composition of the menu and that choosers often prefer smaller menus to larger

menus. Explanations of this phenomenon often appeal to behavioral biases (e.g., choice overload) or

∗We thank Ramon Casadesus-Masanell, Jim Dana, Emir Kamenica, Ralf Meisenzahl, Andreas Park,  Lukasz

Pomorski, Mike Simutin, Julie Wulf, the anonymous referees, the Associate Editor, and seminar participants at the

Interdisciplinary Center Herzliya, the MIT Junior Theory Summer Camp, the University of Toronto, and the Bank

of Canada for helpful comments and discussions. We thank Matt Levi and Ye-Ji Lee for excellent research assistance.
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to informational limitations of choosers that are alleviated when the menu size is reduced. However,

the existing explanations imply that fully rational and fully informed choosers would still prefer

larger menus.

Although the approach in the existing literature is plausible and applies in some contexts, we

propose a model in which larger menus can be objectively worse, even for fully rational and informed

choosers. Our model is based on the observation that the size and the composition of the menu are

themselves the result of a prior selection by another agent which we refer to as the menu setter.

When menu setters differ in ability, which is likely in practice, there can be a negative relation

between the menu size and the objective quality of the menu.

Our argument is not just a theoretical abstraction. We show empirically that larger menus

are objectively worse than smaller menus, on average, in an important economic context—401(k)

pension plans, where a plan is a menu of investment choices. This empirical finding cannot be

explained by existing theories.

When an employee is offered a menu of potential investments in a firm’s 401(k) pension plan,

ideally he would like to choose a portfolio that achieves a high expected return while at the same

time having low risk. Low risk is achieved by diversification, i.e., by choosing assets that have low

correlations with each other. An investment choice adds to the quality of a plan by having a high

expected return and a low correlation with other assets in the menu. However, some investment

choices do not increase the quality of the plan, e.g., if they have lower expected returns or are highly

correlated with other assets in the menu. We measure the overall quality of each plan as the highest

Sharpe ratio achievable from portfolios that can be constructed from the assets in that plan.1 This

is a measure of the objective quality of a plan, achievable by fully rational and informed investors.

We find a negative relation between the number of investment choices and the plan quality. Under

existing theories, this negative relation would be puzzling. However, it can be rationalized by our

model where menu setters differ in ability.

We model menu setters as selecting a menu of items from a large universe. An item may be

valuable or useless. Only valuable items improve the quality of the menu. However, the marginal

benefit of each additional valuable item declines. High-ability (or expert) menu setters are those

who can always identify valuable items and for any given menu size offer a menu of the highest

possible quality, while lower-ability menu setters may inadvertently offer some useless items. In the

absence of any cost of adding items to the menu, a menu setter of either ability could include the

whole universe of items, and individuals would be able to find their most favored choice.2 However,

1The Sharpe ratio is a common measure of portfolio quality that incorporates both risk and return. In Section 4
we detail how we estimate the Sharpe ratio.

2As explained above, to abstract from behavioral and informational effects, we assume that individuals are fully
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if there is a cost to offering more items on the menu, for example, a fixed cost of stocking or

managing each item, then the menu setter would limit the number of choices offered.

We show that for a given cost, a lower-ability menu setter may optimally offer a longer menu

than an expert menu setter. For the lower-ability menu setter, the marginal benefit of adding the

nth item to the menu may be lower or higher than the marginal benefit of adding the nth item

for the expert. On the one hand, for any additional item, the expected marginal benefit to the

lower-ability menu setter is reduced because there is a certain probability that the item is useless.

On the other hand, if previous items in the lower-ability menu setter’s menu were useless, the

marginal benefit of the nth item, if it is a valuable item, is higher than the value of the nth item for

the expert. We show that in general, when the cost of adding an item to the menu is large (and

thus the menu size is relatively small), the lower-ability menu setter optimally offers fewer items

in his menu than the expert. Conversely, when the cost is small (and the menu size is large) we

obtain the opposite effect: the lower-ability menu setter offers more items. Nevertheless, for any

cost, the quality of the menu offered by the expert is superior to the quality of the menu offered by

the lower-ability menu setter. Thus, for a low cost, we obtain a seemingly paradoxical result that

a smaller menu is of higher quality than a larger menu.

Related Literature

The fact that individuals often prefer small menus over large menus is not new to the economics

and management literature. For example, the reluctance to choose from large menus is documented

in Iyengar and Lepper (2000) for supermarket purchases; Bertrand et al (2010) for consumer credit;

and Huberman, Iyengar, and Jiang (2006) for 401(k) pension plans.3 The most frequent explanation

refers to choice overload, based on behavioral biases or bounded rationality. Moreover, a number of

recent books have argued that psychology (e.g., Schwartz, 2004, and Iyengar, 2010) and neurology

(Lehrer, 2009) can affect individuals’ choices. Our study differs from the literature that focuses on

individual behavior and psychology, as we focus on the menu setting decision in an environment

without behavioral biases. We assume that menu setters are rational, and to evaluate the quality

of menus we assume that the individuals choosing from the menu are also rational.

Closely related to our paper is a small but growing theoretical literature that addresses the de-

cision problem of the menu setter, and rational agents’ choices in response to optimal menu setting.

In Kamenica (2008) informationally-disadvantaged consumers cannot identify which menu items

most closely match their preferences. Thus, the menu setter limits the menu to the most popular

rational and costlessly identify their most desired choices.
3In an experimental study Salgado (2005) shows that individuals’ preferences for smaller menus depend on their

perceptions of the skill of the menu setter.
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options to increase the probability of a valuable match. In Villas-Boas (2009) informationally-

disadvantaged consumers must pay to evaluate menu items. If the menu size is too large, a seller

(i.e., a menu setter) can extract so much surplus—after the evaluation cost is paid—that the con-

sumer will choose ex-ante not to pay the evaluation cost, i.e., not to participate. Therefore, the

menu setter limits the menu size as a commitment not to extract the entire surplus, thus encour-

aging the consumer to participate. Similarly, Kuksov and Villas-Boas (2010) argue that the menu

setter limits the number of choices in order to make it worthwhile for choosers to evaluate the

alternatives. This literature provides a compelling rationale for why choosers who lack full infor-

mation may prefer a limited menu that is a subset of a larger menu. However, in these models,

fully informed choosers are better served by larger menus.

In our paper, in the context of 401(k) pension plans, we show empirically that smaller menus,

on average, are objectively better than larger menus. In other words, a fully informed and fully

rational investor would prefer a smaller menu. An important part of this result is that when menu

setters differ in ability, small menus are not subsets of larger menus, but include more valuable items

than larger menus. Of course, the relevance of each model depends on the empirical setting. Our

model does not explain the preference for subsets, while Kamenica (2008), for example, does not

explain our empirical finding that smaller 401(k) menus are objectively superior to larger menus.

There is a fairly large literature on 401(k) plans documenting the investment decisions made

by employees, and the behavioral biases that often drive those decisions.4 Our paper differs from

this literature by focusing on the quality of the menus in 401(k) plans rather than the decisions of

individuals, and shows that smaller menus often have better risk-return characteristics than larger

menus. An empirical paper that helps motivate our study is Elton, Gruber and Blake (2006). They

find that approximately half of all 401(k) plans are inadequate, i.e., they do not span a particular

set of indices. Their result opens the question of the role of the menu-setter’s ability, which we

directly address in our paper.

2 Motivating Empirical Regularity

The motivating example that leads us to develop the model in the next section is a regularity in

firms’ 401(k) plans offered to their employees. The key feature of a 401(k) plan is that it offers

a menu of investment choices. Employees construct a retirement portfolio by choosing from the

options in the 401(k) plan.

4This literature includes Agnew (2003); Agnew, Balduzzi, and Sunden (2003); Benartzi and Thaler (2001); Huber-
man, Iyengar, and Jiang (2006); Huberman and Jiang (2006); Iyengar and Kamenica (2010); Mottola and Utkus (2003)
and Tang, Mitchell, Mottola, and Utkus (2010).
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We analyze a sample of 401(k) plan menus. For each plan, we identify the optimal portfolio that

can be constructed from among the investment choices. We use the Sharpe ratio as an objective

measure of a portfolio’s quality, and we define the optimal portfolio as the one that achieves the

highest possible Sharpe ratio. We find that, on average, the optimal portfolios constructed from

smaller (i.e., shorter) menus are objectively better than the optimal portfolios constructed from

larger (i.e., longer) menus. We describe the data and empirical results in detail in Sections 4 and 5.

Our finding is intriguing because it runs counter to the traditional model of choice. In the

traditional model, longer menus are better than shorter menus for fully rational agents, because

longer menus expand the choice space and allow choosers to obtain more preferred outcomes. In

the context of investment portfolios, longer menus generally expand the efficient frontier, allowing

for the construction of portfolios with higher returns and/or lower risk.

The fact that we observe smaller menus that are better than larger menus without any reference

to psychological biases, suggests that these smaller menus are not subsets of the larger menus. If

smaller menus were subsets of larger menus, then it would not be possible for a smaller menu to be

objectively better than a larger menu. Our empirical regularity suggests that a theory is needed to

explain why smaller menus are composed of different options than larger menus, and specifically

how smaller menus can be objectively better than larger menus.

In the next section, we develop a model that shows the economic forces that lead menu setters

to choose different sizes and compositions for their menus. In particular, we show conditions under

which smaller menus are likely to be better than larger menus. The economic forces identified

in the model are general and not confined to the context of 401(k)s. Therefore, even though the

empirical motivation comes from 401(k) plans, we present the model without imposing any specific

context.

3 Model

Suppose that individuals choose a good or a bundle of goods from a menu that is comprised of a

number of items. The menu itself is pre-selected from a large universe of goods by a menu setter.

The menu setter selects a subset of n items to be included in the menu offered to individuals.

The universe of possible menu items includes both goods that are valuable as well as goods

that have no value, i.e., useless goods.5 We assume that the universe includes an infinite number

of valuable items and an infinite number of useless items. Individuals who ultimately choose from

among the menu items prefer a menu with many valuable items, either because each requires a

5Of course, in reality, goods can be of many different values. However, to starkly illustrate the driving forces, we
take the clearest case in which goods are either valuable or useless.
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bundle with a variety of valuable items (e.g., when choosing an investment portfolio), or because

different individuals have different preferences across items (e.g., when choosing ice-cream flavors).6

Thus, the menu is improved by including more valuable items in it, but it is not improved by

including useless items. Otherwise, each valuable item is a priori the same, and the quality of the

menu can be summarized by the number of valuable items included in the menu.

Denote the quality of a menu with n valuable items as Q(n), which can be interpreted as the

total utility achieved by the group of individuals optimally choosing from the menu. The marginal

benefit of the nth valuable item in the menu is the increase in the quality of the menu due to the

nth valuable item, i.e., q(n) = Q(n)−Q(n−1). Adding a useless item to the menu has no marginal

benefit. Adding each valuable item to the menu always increases the quality of the menu, but not

to the same degree. We assume that the quality improvement with each valuable item is decreasing

in the number of items already included in the menu. That is, we assume that Q(n) is strictly

increasing but concave in n, or equivalently, that q(n) is strictly positive for any n and strictly

decreasing in n.

The marginal benefit in our model can be interpreted in different ways depending on the setting.

If individuals have heterogeneous preferences and each chooses one item from the menu, then the

marginal benefit of the nth valuable item is derived from offering a menu that can better satisfy the

disparate preferences of the customers. Alternatively, if each individual chooses a bundle from the

menu (e.g., a set of mutual funds in a 401(k) plan) then the marginal benefit of the nth valuable item

can be interpreted as improving the bundle that will be chosen, even if choosers are homogenous.

In either case, it is reasonable to assume that the marginal benefit is positive and declining.7

Assumption of Declining Marginal Benefit. The marginal benefit of an additional valuable

item in a menu is always positive, but strictly declining in the number of valuable items already in

the menu, i.e., q(n) > 0 and q(n+ 1) < q(n) for all n.

At this stage, the assumption of declining marginal benefit is very general. Later we propose a

stronger assumption that imposes more structure on q(n).

We consider two types of menu setters: high-ability menu setters that we refer to as experts

and lower-ability menu setters. We assume that each individual is exogenously assigned to a menu

6In order to focus on the effects of variation in menu-setter ability, we abstract away from any behavioral biases
or informational limitations faced by the chooser. See Kamenica (2008) for a model with fully informed menu setters
and informationally disadvantaged choosers.

7In this paper, for expositional clarity and for transparency of the economic forces, we use a simplified model.
However, in unreported results we develop two context specific — and considerably more complex — models that lead
to the same properties and predictions. One model considers choosers who have heterogenous preferences around a
Salop circle, e.g., preferences over ice cream flavors. The other model considers investors choosing portfolios of assets.
Details are available upon request.
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setter and we do not consider competition between menu setters.8 Expert menu setters can always

identify valuable items. Thus, when an expert offers a menu with n items, they are all valuable

and the quality of his menu is equal to Q(n). Lower-ability menu setters recognize with error

whether an item is valuable. We assume that each item offered by a lower-ability menu setter is

valuable with probability p, and is useless with probability 1− p.9 The ability of a menu setter is

characterized by p.

When a lower-ability menu setter selects n items into the menu, it is not certain how many

valuable items are included in the menu. Therefore, for any number of items n, the quality of the

menu is a random variable, and its expectation depends on the menu setter’s skill, p. Let EQp(n)

denote the expected quality of a menu of size n chosen by a lower-ability menu setter with ability p.

Similar to q(n), we define Eqp(n) as the expected marginal benefit of the nth item in a menu chosen

by a lower-ability menu setter, i.e., Eqp(n) = EQp(n)− EQp(n−1). All parties are risk neutral.

We assume that a menu setter earns a rent equal to a fraction α < 1 of the quality of the menu

offered. For an expert, the rent is αQ(n), and for a lower-ability menu setter, it is αEQp(n).

For every item included in the menu, the menu setter bears a cost. We assume that the

marginal cost of including an additional item in the menu (whether or not it is valuable) is a

constant c > 0.10 Because we investigate the effect of the menu setter’s ability, we assume that

both c and α are common to all menu setters.

The objective of a menu setter is to select a number of items from the universe into his menu,

so that he maximizes his expected rent net of costs. Given p, the menu setter’s problem is

max
n

{
αEQp(n)− c · n

}
. (1)

Since the expected marginal benefit of the nth item is Eqp(n) — or q(n) for the expert — menu

setters increase the size of the menu as long as α times this marginal benefit exceeds the marginal

cost, c. As menu setters differ in their ability to recognize valuable items, and thus differ in the

marginal rent they expect to receive, menus will differ in quality and size.

8At the end of this section, we offer thoughts on situations where menu setters may compete.
9This constant probability p is consistent with our assumption of an infinite number of goods, where p is the ratio

of the mass of valuable goods to the total mass of possible goods. Our results are robust to an alternative assumption
of a finite number of possible goods, but at the expense of considerable complications in notation, since p will no
longer be constant.

10If c = 0, all menu setters would offer menus of infinite size with all available valuable items.
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3.1 Ability and Menu Size

Clearly, for a given menu size, n, an expert’s menu is of higher quality than the menu of a lower-

ability menu setter. On the face of it, it might appear that the expert should have a higher

marginal benefit than the lower-ability menu setter from adding another item, since the expert

always identifies valuable items. However, in this section we present the conditions under which

the lower-ability menu setter has a higher expected marginal benefit to increasing the menu size

than does the expert.

The key point of our argument in the section is that as n increases, the marginal benefit for

the expert declines more steeply than that for the lower-ability menu setter. Moreover, there exists

a number, n∗, such that the two marginal benefits are equal. For menu sizes larger than n∗, the

expected marginal benefit achieved by the lower-ability menu setter is larger than the marginal

benefit achieved by the expert. Thus, for low enough costs the lower-ability menu setter optimally

offers a larger menu than the expert.

To formalize the argument, we must first prove a series of lemmas characterizing Eqp(n) and

comparing it to q(n). For the expert, the optimal n is chosen such that αq(n) ≥ c and αq(n+1) < c.

Similarly, for the lower-ability menu setter, the optimal n is chosen such that αEqp(n) ≥ c and

αEqp(n+ 1) < c.

In Lemma 1 we show that Eqp(n) is decreasing in n. This result is obtained by directly applying

the Assumption of Declining Marginal Benefit.

Lemma 1. For any 0 < p < 1, the expected marginal benefit for the lower-ability menu setter of

adding the nth item to a menu, Eqp(n), is decreasing in n.

Proof. See Appendix (page 27).

Lemma 1 states that similar to q(n), Eqp(n) is decreasing in n. Although the menu of a lower-

ability menu setter has an unknown number of valuable items, when the menu setter adds the nth

item to the menu, he either successfully increases the number of valuable items or he does not. If

he successfully improves the menu, then the next improvement faces a declining marginal benefit

regardless of the current number of items because q(n) is declining for all n. If he did not improve

the menu, the expected marginal benefit of trying again is the same. So, on average, the (n+ 1)st

item has a lower expected marginal benefit than the nth item.

Of course, the realized marginal benefit when the lower-ability menu setter increases the size

of his menu may be non-monotonic. When the menu setter mistakenly includes a useless item,

the marginal benefit is zero. When he later adds a valuable item, the marginal benefit is positive.
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Nevertheless, in expectation, the marginal benefit is monotonically declining.11

Now that we have established that the marginal benefit of increasing the menu size is declining

for both types of menu setters, in what follows we show that the expert has a higher marginal benefit

when the menu is small, and that the lower-ability menu setter has a higher marginal benefit when

the menu is large.

To see this, consider the first item put on the menu. When an expert offers one item, the

menu is of quality Q(1) = q(1). When a lower-ability menu setter offers one item, the expected

marginal benefit is lower, since it is only valuable with probability p; and the expected quality of

the menu offered by the lower-ability menu setter is EQp(1) = p · q(1). Thus, his marginal benefit

from increasing the menu size from zero to one is less than the marginal benefit for the expert.

For the second (and later) items, the comparison between marginal benefits for the two types

of menu setters is not as straightforward. For the expert, the marginal benefit of the second item

declines to q(2). However, for the lower-ability menu setter, the marginal benefit of the second

item depends on whether the first item was valuable or not. If the first item was valuable, then

the expected marginal benefit of the second item would be p · q(2); but if the first item was useless,

then the expected marginal benefit of the second item would be p · q(1) > p · q(2). In expectation,

the marginal benefit of the second item is

Eqp(2) = p
(
p · q(2) + (1− p) · q(1)

)
> p · q(2) . (2)

Thus, between the first item and the second item, Eqp declines at the slower rate than does q. The

general form of this result will be given in Lemma 2.

Notice that Eqp(2) may even be larger than q(2). This occurs when

Eqp(2) > q(2) ⇐⇒ q(2) < q(1)
p

1 + p
⇐⇒ p >

q(2)

q(1)− q(2)
. (3)

The marginal benefit of each new valuable item must be declining rapidly for this inequality to

hold. If q(2) is much smaller than q(1), then the marginal benefit of the expert is very small; but

the marginal benefit of the lower-ability menu setter is higher in expectation because he is possibly

adding q(1). Conversely, if q(2) > 1
2q(1) then there is no p that would satisfy inequality (3), and

q(2) would remain above Eqp(2).12

For larger n, the condition under which Eqp(n) > q(n) is easier to satisfy. That is, the tradeoff

11The relevant measure is the expected marginal benefit and not the realized marginal benefit. Therefore, from
now on we abbreviate “expected marginal benefit” simply as “marginal benefit.”

12Notice that regardless of the difference between the marginal benefits, the total quality of a menu with two items
is always greater for the expert than for the lower-ability menu setter, i.e., Q(2) > EQp(2). We generalize this in
Proposition 2.
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tends to shift in favor of the expected marginal benefit of the lower-ability menu setter. Given

any n, the lower-ability menu setter always finds a valuable item with probability p. But as n

grows, it is more and more likely that the lower-ability menu setter’s menu includes fewer than n

valuable items, and the marginal benefit conditional on the (n+1)st item being valuable is likely

to be substantially greater than the expert’s marginal benefit of the next item, q(n + 1). If this

difference is large enough, then the unconditional expected marginal benefit of the lower-ability

menu setter is larger than q(n+ 1).

Of course, the exact nature of the tradeoff between the lower probability of identifying a valuable

item and the higher marginal benefit of an additional valuable item for the lower-ability menu setter

depends on the marginal benefit function q(n). Therefore, we now impose a specific structure on

q(n) with the stronger assumption that the marginal benefit of each additional valuable item in a

menu declines at a fixed rate, i.e., q(n+1) = k ·q(n), where 0 < k < 1.13 We maintain this stronger

assumption for all of the remaining results in this section.

Strong Assumption of Declining Marginal Benefit. For any n, the marginal benefit of an

additional valuable item in a menu is strictly positive (i.e., q(n) > 0), and declines at a rate such

that q(n+ 1) = k · q(n) for some k < 1.

Lemmas 2 and 3 along with Corollary 1 below establish a single crossing property between

the marginal benefits of the two types of menu setters: For any n, the expert’s marginal benefit

declines quicker than the marginal benefit of the lower-ability menu setter. There exists a unique

number n∗ where the two marginal benefits are equal. Thus, for all menu sizes larger than n∗, the

marginal benefit of the lower-ability menu setter is larger than the marginal benefit of the expert.

Lemma 2. The expected marginal benefit of an additional menu item for a lower-ability menu setter

is Eqp(n+1) = [(1−p)+pk]Eqp(n). Therefore, the expected marginal benefit of an additional menu

item for the low-ability menu setter decreases more slowly than the marginal benefit of an additional

menu item for the expert, i.e., Eqp(n+1)
Eqp(n) > q(n+1)

q(n) for any 0 < p < 1.

Proof. See Appendix (page 28).

Lemma 2 arises because for the expert the marginal benefit of adding another item to the menu

declines at a rate q(n+ 1)/q(n) = k. In contrast, when the lower-ability menu setter adds the nth

item, he may or may not have been successful in adding a valuable item. If he was successful, then

the expected marginal benefit for the (n+ 1)st item declines at a rate k—just like the expert; but

13The assumption that the marginal benefit of additional valuable items declines at a fixed rate is made for modeling
tractability and expositional simplicity. However, such a restrictive assumption is not necessary to obtain our results.
In Appendix C, we discuss weaker assumptions that are sufficient for obtaining the results in Propositions 1 and 2.
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if he was unsuccessful, then the expected marginal benefit remains unchanged. Thus, the expected

marginal benefit declines with a factor p · k + (1 − p) · 1 > k, and the overall expected decline in

the marginal benefit is not as steep as it is for the expert.

Corollary 1 to Lemma 2 states that if for some n the marginal benefit for the lower-ability menu

setter is higher than the marginal benefit for the expert, then it remains higher for any size larger

than n.

Corollary 1. For any 0 < p < 1, if q(n) < E qp(n), then q(n+ 1) < E qp(n+ 1).

Proof. See Appendix (page 28).

Lemma 3 completes the single-crossing property argument by proving that there always exists

a finite menu size n such that q(n) < E qp(n), i.e., the marginal benefit for the lower-ability menu

setter is larger than the marginal benefit for the expert. Moreover, Lemma 3 characterizes the

crossing point.

Lemma 3. For any 0 < p < 1, let

n∗ = 1 +
ln(p)

ln(k)− ln
(
(1− p) + pk

) . (4)

(i) The expected marginal benefit of an additional menu item is the same for the expert and the

lower-ability menu setter, i.e., E qp(n) = q(n) if and only if n = n∗.

(ii) For n larger (smaller) than n∗, the expected marginal benefit of an additional menu item for

the lower-ability menu setter is larger (smaller) than the marginal benefit for the expert, i.e.,

n > n∗ ⇒ E qp(n) > q(n), and n < n∗ ⇒ E qp(n) < q(n).

Proof. See Appendix (page 28).

Lemma 3 characterizes n∗ as the point at which the marginal benefit for the expert and the

marginal benefit for the lower-ability menu setter are equal. It should not be surprising that n∗ > 1,

as we have previously shown that E qp(1) = p · q(1). Of course, if n∗ is not an integer, there is

no menu size at which the two types of menu setters have exactly the same marginal benefit.

Nevertheless, n∗ delineates where the marginal benefit of an additional menu item is higher for

one type of menu setter than the other: for menu sizes larger than n∗, the marginal benefit for

the lower-ability menu setter is larger than the marginal benefit of the expert, and for menu sizes

smaller than n∗, the marginal benefit for the expert is larger. Figure 1(a) displays an example of

the comparison between the expert’s and lower-ability menu setter’s marginal benefits.
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(a) (b)

Figure 1. Marginal benefit as a function of the menu size for the expert and the lower-ability
menu setter. Costs cH and cL are chosen so that cL < αq(n∗) < cH . This example assumes p = 0.6,
k = 0.85, and αq(1) = 1.

Recall that menu setters increase the menu size as long as their marginal rent exceeds the

marginal cost of including an additional item. As we can see in Figure 1(b), for any cost above

α q(n∗) the lower-ability menu setter includes fewer items in his menu than the expert.14 However,

for any cost below α q(n∗), the expert includes fewer items in his menu than the lower-ability

menu setter. This property is formally stated in Proposition 1. For clarity, we abuse the notation

somewhat by allowing n to be a continuous variable, and allowing q(·) to be defined over that

continuous variable.15

Proposition 1. The relative sizes of menus optimally offered by expert and lower-ability menu

setters depend on the marginal cost of increasing the menu size, c.

(i) If c < αq(n∗), the lower-ability menu setter optimally includes more items in his menu than

the expert.

(ii) If c > αq(n∗), the expert optimally includes more items in his menu than the lower-ability

menu setter.

Proof. See Appendix (page 28).

When the cost of including more items is high, we are in the conventional situation in which

the expert uses his ability to find a larger number of valuable items, while the lower-ability menu

14This inequality is strict when we ignore the complication that n must be an integer. However, if the menu size
must be an integer, it becomes a weak inequality — both menu setters offer the same menu size when they both
round down to the same integer. Menu setters never round up, since that would result in a marginal benefit less than
the marginal cost.

15Ellison, Fudenberg, and Mobius (2004) refer to this as a quasi-equilibrium when they take a similar approach in
an auction problem and ignore the integer constraint on the number of participants.
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setter does not find it worthwhile to include as many items (see Figure 1(b) for cost cH). In such

a case, a larger menu would suggest an expert menu setter. Moreover, a larger menu would be

associated with higher quality—both because the larger menu is designed by a menu setter with a

higher ability, and more simply because a larger menu offers more choices to individuals.

However, Proposition 1 shows that when the cost of including more items is low, the lower-

ability menu setter offers a larger menu than the expert (as in Figure 1(b) for cost cL). This is

because when c is small, both menu setters include more than n∗ items in their menus. By the

single-crossing property in Lemma 3, when n > n∗, the marginal benefit for the lower-ability menu

setter is above the expert’s. Thus, when c < αq(n∗), the lower-ability menu setter optimally offers

more items in his menu, leading to a negative relation between the number of items offered in the

menu and the menu setter’s ability.

Now that we have established the situations when the lower-ability menu setter offers a larger

menu than the expert, it is not immediately clear which menu is of higher quality—the larger menu

offered by the lower-ability menu setter or the smaller menu offered by the expert. We explore this

question in the following two sections.

3.2 Ability and Menu Quality

We now consider the relation between the ability of the menu setter and the quality of the menu.

In the cases when the expert offers a larger menu than the lower-ability menu setter (i.e., when

c is high) it is immediately clear that the expert’s menu is of higher quality—both because of his

ability as an expert menu setter and because the menu offers more choices. However, when the

lower-ability menu setter offers a larger menu (i.e., when c is low), there is a tradeoff. On the one

hand, the larger menu has more items to choose from. But on the other hand, those items are

pre-selected by a menu setter with lower ability and are more likely to include useless items.

In this section, we show that the tradeoff always favors menu setter ability. Specifically, in

Proposition 2, we establish that when both menu setters select their menu sizes optimally, the

menu offered by the expert is, in expectation, of higher total quality than the menu offered by the

lower-ability menu setter, even when the lower-ability menu setter offers more items. Of course, in

any one instance, the lower-ability menu setter may have more valuable items in his menu than the

expert, but in expectation the expert offers a higher quality menu.16

Proposition 2. Suppose that for a given cost, c, an expert and a lower-ability menu setter set their

optimal menu sizes. Then the quality of the menu offered by the expert is always higher than the

16Proposition 2 allows n to be a continuous variable. In Appendix B we show the condition that ensures that the
Proposition holds when n is limited to being an integer.
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expected quality of the menu offered by the lower-ability menu setter.

Proof. See Appendix (page 29).

The main force driving this result is Lemma 2, which states that the marginal benefit of an

additional menu item declines more rapidly for the expert than for the lower-ability menu setter.

The intuition is as follows: When each type of menu setter stops at the optimal menu size, they

are both at the same marginal benefit. If they were each to increase the menu size by one more

item (which, in the presence of costs they would choose not to do), by Lemma 2 the extra marginal

benefit to the lower-ability menu setter would be greater than the extra marginal benefit to the

expert. This inequality would continue to hold for hypothetical increases in the menu size ad

infinitum. Thus, the total benefit foregone due to c > 0 is larger for the lower-ability menu setter

than for the expert. In the absence of costs the total menu quality would be the same for the

two menu setters (i.e., the quality of a menu including all possible valuable items). Thus, in the

presence of costs, the total quality of the optimal menu set by the expert must be higher than the

total quality of the lower-ability menu setter’s optimal menu.

3.3 Menu Size and Menu Quality

Since lower-ability menu setters sometimes offer larger menus than the experts (Proposition 1)

but at the same time the expert’s menu always has higher quality (Proposition 2), it follows that

larger menus may be of lower quality. More specifically, if the menus are larger than n∗ (i.e., if

c < αq(n∗)), then there is a negative relation between the menu size and expected quality. This

seemingly counterintuitive result follows from a difference in composition: a smaller menu offered by

an expert is not merely a subset of the larger menu offered by a lower-ability menu setter. Instead,

the smaller menu is likely comprised of a larger number of valuable items, and consequently is of

higher quality in expectation.

A negative relation between menu size and menu quality is possible because of differences in the

ability of menu setters. Most importantly, this prediction would not hold in an alternative model

with menu setters of the same ability, but who differ in the cost that each incurs when increasing

the size of the menu. If the menu setters differ in cost but not in ability, we would only ever observe

a positive relation between menu size and menu quality.

Different costs would lead menu setters to offer menus of different sizes. Specifically, a menu

setter with a low cost would offer a larger menu than a menu setter with a high cost. Thus, for a

menu setter of a fixed ability (or two menu setters of the same ability), a larger menu would always

have higher expected quality. Since menu setters of the same ability identify valuable items with
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the same probability, in expectation a larger menu would include a larger number of valuable items

than the smaller menu. The total benefit from the larger menu would be higher than the total

benefit from the smaller menu.

Conversely, if menu setters differ in ability but incur the same cost, c, the menu of the expert is

likely to include a larger number of valuable items than the menu of the lower-ability menu setter.

Therefore, when c is small, and the lower-ability menu setter offers a larger menu than the expert,

we would observe a negative relation between the menu size and menu quality.

Until now, we have been comparing an expert who always successfully identifies valuable menu

items with a lower-ability menu setter. However, in most settings, it is unlikely that any menu

setter will be perfect. Instead, it may be more fitting to compare two non-expert menu setters,

each with a different ability. In such a case, all of the results in this section can be generalized,

albeit with slightly more complicated notation. If two menu setters had abilities p′ and p, where

p′ > p, the crossing point of marginal benefits would be

n∗∗ = 1 +
ln(p)− ln(p′)

ln[(1− p′) + p′k]− ln[(1− p) + pk]
.

When costs are sufficiently low, i.e., when c < αEqp(n∗∗) = αEqp′(n∗∗), the lower-ability menu

setter offers more menu items than the higher-ability menu setter, and again there is a negative

relation between menu size and menu quality.

While the model compares menu setters of different ability for a fixed cost c, in reality, different

menu setters also face different costs. To illustrate the model with variation in both ability and

costs, we simulate it as follows: Consider 33 menu setters, with each menu setter characterized by

his ability, p, and his cost, c, where there are 11 different values for p = {0.5, 0.55, 0.60, ...1.0} and

3 values for c = {0.15, 0.30, 0.45}. Figure 2 displays the resulting menu sizes and menu qualities.

The left third of the plot illustrates the relation between menu size and menu quality for high

cost, and an upward relation holds. The middle of the plot is almost vertical. There is little relation

between menu size and quality corresponding to menus close to the crossing point of Figure 1. The

rightmost third of the plot represents a negative relation between menu size and quality because

menu setters have low c over this range.

The overall relation between menu size and menu quality is not simple, but it resembles an

inverted-U. If a linear relation is fitted across all the points, the slope may be positive or negative,

depending on the composition of the high-cost and low-cost menu setters. In this particular sim-

ulation, a linear relation fitted across all the points in Figure 2 would be positive. Of course, a

linear fit would mask the more subtle ability-driven relation between menu size and menu quality.
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Figure 2. Model predictions for 33 simulated menu setters: p = {0.5, 0.55, 0.60, ...1.0},
c = {0.15, 0.30, 0.45} and k = 0.9.

Our model focuses on a menu setter who may be an expert or of lower-ability, and does not

explore competition between menu setters. We show that an expert menu setter may offer a shorter

menu than a lower-ability menu setter would. In many environments, including 401(k) plans and

local monopolies, it is reasonable to assume that choosers are restricted to a single menu. However,

in other environments, menu setters may be competing for choosers. If menu setters compete

for business, our results open the question of whether the lower-ability menu setter can mimic

the expert by shortening his menu. To answer this question, suppose that the lower-ability menu

setter has both a set of existing captive customers as well as a set of potential customers that will

only come to him if he can mimic the expert. Then a tradeoff exists between attracting the new

customers and offering the best possible menu to existing customers. It is relatively straightforward

to show the conditions under which a separating equilibrium can be sustained and mimicking would

not occur.17

Even if lower-ability menu setters do not mimic experts, coexistence of menu setters of differing

ability raises the issue of why a customer would choose a lower-ability menu setter in the first place.

This could occur if customers select menu setters for reasons other than menu quality—perhaps

because of other services provided by the menu setter or simply because of personal relationships.

While this may not be satisfying from a theory perspective, there is a well-established empirical

literature that struggles with the question of why coexisting superior and inferior financial products

are frequently observed.18 In many cases documented in the literature, the link between observ-

17Details of the separating equilibrium are available upon request.
18Gruber (1996) addresses the growth of actively-managed mutual funds which regularly underperform index funds.

Christoffersen and Musto (2002) discuss high-fee money market funds that are dominate by low-fee money-market
funds. Similarly, Elton Gruber and Busse (2004) show that high fee S&P500 index funds coexist with low fee
S&P500 funds. Bergstresser, Chalmers, and Tufano (2009) compare broker-sold and direct-sold mutual funds. See
also Gil-Bazo and Ruiz-Verdo (2009) and Choi, Laibson, and Madrian (2010).
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able characteristics and quality is more direct than it is for menu size, yet high-quality products

apparently do not always drive out lower-quality products. Like the empirical literature, we must

appeal to arguments such as intangible benefits or agency conflicts if we want to allow for multiple

menu setters with different abilities to coexist in the market.

4 Empirical Setting and Data

While the theory above is written to be general and applies to many settings, we focus on 401(k)

pension plans as a particular example. The unique empirical implication of the theory is that under

certain circumstances (i.e., low c) there is a negative relation between menu size and menu quality.

401(k) plans are especially suitable to test this empirical implication because the number of options

in plan menus varies and the objective quality of 401(k) plans can be estimated. Indeed, we show

a negative relation between the number of investment choices offered by a 401(k) plan and the

quality of the plan.

When a company provides a 401(k) plan for its employees, it typically appoints an outside

trustee to design and manage the plan. Each plan is a menu of investment choices for employees’

retirement savings, mostly mutual funds and similar investments, as well as a money market fund.

Frequently the company’s own stock is one of the possible investments. Each employee allocates

his 401(k) savings across the various choices in the plan.

Since the employer appoints the trustee, and because the employer, as the plan sponsor, has

influence over the list of possible investments, one could view menu setting as designed by two

separate agents or having two stages (as described in Cohen and Schmidt, 2009). Instead, for our

purpose it is sufficient to think of the menu setter as a single party that is a combination of the

sponsor and the trustee.

Our data is comprised of 401(k) plans of companies that file SEC form 11-K.19 This form must

be filed if the company offers its own stock as one of the choices in the 401(k) plan, and includes the

full menu of investment choices offered to employees. We collected the 11-K data of 300 randomly

selected company plans offered in 2007 to examine how menu setters affect the portfolios that

investors can achieve. After eliminating unusable data (see Section 4.1 for details) we are left with

191 plans. Among the plans in our data set, the number of funds offered (aside from a company’s

own stock and any money market funds) ranges from 4 to 28.

1911-K filings are also used as the main data source in Elton, Gruber and Blake (2007) and Cohen and
Schmidt (2009). The nature of the 11-K filing requirements means that our selection is limited to publicly traded
companies. Being publicly traded, these companies and their pension plans are likely larger than average. Elton,
Gruber and Blake (2006) show that pension plans that offer company stock as a choice have more assets under
management. We see no reason why this selection should bias our results.
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Table 1. Summary statistics. The optimal Sharpe ratio is based on the World CAPM, assuming
an equity risk premium of 0.05.

average std dev minimum maximum

# of funds 13.1 3.82 4 28
# of stocks 1.07 0.25 1 2
# money market 1.32 0.57 0 4
plan assets ($million) 301.1 614.0 0.1 4,392.4
optimal Sharpe ratio 0.313 0.059 0.101 0.432

We study how the number of fund choices in a plan menu is related to the quality of the plan.

We define a plan’s quality as the highest Sharpe ratio achievable within the plan. The portfolio of

investment choices that achieves this maximum Sharpe ratio is referred to as the optimal portfolio

of the plan.

Importantly, the optimal Sharpe ratio is a measure of the objective quality of the plan. It

corresponds to the portfolio that a fully rational and fully informed investor would choose. This is

in line with Section 3 where we model the objective quality of the menu. We do not measure the

actual choices of investors in 401(k) plans, as they are subject to a number of well known behavioral

biases (e.g., Benartzi and Thaler, 2001, and Iyengar and Kamenica, 2010).

The Sharpe ratio of a portfolio is the expected return of the portfolio above the risk-free rate

divided by the standard deviation of the portfolio’s returns. Thus, the Sharpe ratio increases in

the expected return and decreases in the risk of the portfolio. In the absence of any differences in

menu setters’ abilities, larger menus should be more likely to include high expected return funds

and/or provide more scope for diversification of risk.

In Section 4.1 below, we provide further details on determining the number of choices in each

plan. In Section 4.2 we explain the methodology for estimating the maximum Sharpe ratio.

Table 1 summarizes the number of choices and Sharpe ratios for the plans in our data set.20

Before starting the formal analysis, in Figure 3 we give a preview of the relation between the number

of choices and the optimal Sharpe ratio. The plans are divided into three groups by the number

of menu items in each plan, with each group having approximately the same number of plans. For

each group, Figure 3 presents the optimal Sharpe ratio averaged across the plans in the group. We

see that, on average, plans with a larger number of funds have a smaller optimal Sharpe ratio than

plans with fewer funds. In Section 5, we consider the relation between the number of choices and

the optimal Sharpe ratio in detail.

20The average number of funds is almost exactly the same as that in Huberman and Jiang (2006). However, it is
significantly larger than the average number of funds in Elton, Gruber, and Blake (2006), who study 401(k) plans
from a survey that includes smaller non-publicly listed firms.
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Figure 3. Average optimal Sharpe ratio in plans, broken up into three ranges based on the number
of choices in each plan. The ranges are chosen so that each has as close to the same number of
plans as possible. The number of plans in each range is 64, 66, and 61, respectively.

4.1 Number of Funds

Our original data is comprised of 300 11-K filings. The 11-K forms include a list of all investment

choices available for employees’ 401(k) pension savings, and the total amount invested in each.21

Most of the investment choices in each plan are mutual funds. In addition, every plan in our

sample includes the company’s own stock, since offering the company’s own stock to employees is

the trigger for the requirement to file an 11-K. Almost every plan also includes one or more money

market funds. Finally, some of the plans offer nonstandard investment choices, such as insurance

contracts, warrants, as well as self-directed accounts. Whenever possible, we use historical prices

for the mutual funds in the data from CRSP. However, for a significant subset of the funds within

the plans, we were unable to obtain a CRSP identifier. We exclude plans if more than 6% of the

amount invested is in funds for which we were unable to obtain price data.22 This reduced our

sample size from 300 pension plans to 191.

Within the 191 plans, there are a total of 1131 unique mutual funds. Over 60% of funds are

offered by only one of the 401(k) plans in our sample. More than 90% of the funds are offered by five

or fewer plans. The large number of funds in our sample, and the relatively small overlap of funds

used in multiple plans, indicates significant differences in the composition of 401(k) plans. These

differences in menu composition make it unlikely that 401(k) menu setters likely mimic the menus

in other plans. Furthermore, it gives scope to the variation in skill that underpins our modeling

assumptions.

For each plan, we count the number of investment choices available to participants. We exclude

nonstandard investments, as well as any choices that are not open to new investments. For example,

21The total amount invested in each asset is given at the aggregate level for the plan, thus it is not appropriate for
studying individual investors’ choices.

22We chose 6% as our cutoff because it coincides with a natural gap in the data.
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after a merger, there may be investments that remain in funds that were previously available to

the employees of the acquired company, but are no longer open to new investments. Our count of

investment choices does not include money market funds or the company’s own stock. However,

excluding money market funds and own stock from the count makes little difference since there

is very little variation across plans. A number of plans include a set of “lifecycle” funds. Each

lifecycle fund targets a subset of employees based on their expected retirement date. For example,

a plan may include a set of lifecyle funds aimed at employees who will retire in the years 2020, 2030,

2040, and 2050. In such cases, since each employee is targeted by one of these funds, we count the

entire set of lifecycle funds as one choice.

In order to find the optimal Sharpe ratio, we include all mutual funds available for investment,

as well as the company’s own stock. The exclusion of money market funds does not materially

affect the Sharpe ratio since it affects the numerator and denominator essentially in the same way.

4.2 Sharpe Ratios

For almost all of our analysis, we determine the expected return of each fund using the world

Capital Asset Pricing Model (CAPM).23 To obtain expected returns, we regress the returns of

each investment choice against the MSCI World Index returns using weekly data over the five year

period 2003–2007. The estimated coefficient on the world index, i.e., the beta, is used within the

CAPM to estimate the expected return.24 The expected return of a portfolio of funds within a plan

is the weighted average of the expected returns of the component funds. The standard deviation

of returns for a portfolio of funds is estimated based on the historical variance-covariance matrix

of weekly returns of the funds within each plan. For each 401(k) plan, we identify the optimal

portfolio as the weights on each fund within the plan that give the highest Sharpe ratio. Since

short sales are not possible in 401(k) accounts, the optimization routine assumes that the amount

of money invested in any choice is non-negative.

We use the world index for the beta estimation, as opposed to a U.S. index such as the S&P 500,

because international equity funds are an important area of potential diversification. We use weekly

data, as opposed to daily data, to minimize the lead-lag effects in international beta estimation

that can be caused by time-zone differences. While some lead-lag issues surely remain in our data,

we find that weekly data is an effective compromise with the need for a larger sample. Note that

23We assume that in expectation, fund managers do not earn any excess return (often referred to as alpha) above
that predicted by the CAPM. Of course, there remains the open question of why each plan is not comprised solely of
the world market index. This is part of a broader question in the investments literature and is far beyond the scope
of this paper.

24We assume an equity risk premium of 5%, but because the Sharpe ratio is proportional to the equity risk premium,
it does not have any effect on the statistical significance in our cross-sectional analysis.
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we use a model-based estimate of expected returns rather than historical returns in the numerator

of the Sharpe ratio to avoid the well-known problems associated with backward-looking returns. In

contrast, since variances and covariances tend to be persistent, we use historical data to estimate

the variance-covariance matrix.

When estimating variances and covariances, we run into the problem that newer funds do not

have a full five year return history. In these cases, we necessarily estimate the variance based on

the shorter time series and we estimate the covariance based on the shorter of the two time series’

for each pair of funds.25

To check the robustness of our results (see Table 2 below) we also use alternatives to the

world CAPM to estimate expected returns in the numerator of the optimal Sharpe ratio. We use

a four-factor expected return model that includes the U.S. market index, the Fama-French size

factor (SMB), the Fama-French value factor (HML), and a momentum factor (MOM). As a further

alternative, to capture the international aspects of the funds in many plans, we use a three-factor

model of expected returns using global factors: the world market index, global SMB, and global

HML. A global momentum factor was not available.26

5 Empirical Analysis

The empirical implication unique to our theory is that when the cost of including an additional

menu item is low, there is a negative relation between the number of choices and the menu quality.27

We compare the optimal (annualized) Sharpe ratio — a measure of plan quality — and the number

of funds available for investment in the plan. The regression is

optimal Sharpe ratio i = a+ b · number of funds i ,

where the optimal Sharpe ratio for a plan and the number of funds in the plan menu are defined

in the previous section. The results are displayed in Table 2. Regressions (1) and (2) use optimal

Sharpe ratios calculated using CAPM for expected returns, while Regressions (3) and (4) use the

four-factor (domestic) expected return model to calculate optimal Sharpe ratios, and Regressions (5)

and (6) use the three-factor (global) model. For readability, all coefficients in the table are multiplied

by 100.

25We exclude a very small number of funds for which we have less than 20 weekly observations.
26This data was taken from Ken French’s website. We used an equity risk premium of 5%, an SMB premium of

2%, an HML premium of 4%, and a momentum premium of 8%. These risk premia are similar to those often used
in the literature, and are close to the average excess returns in the factor data since 1926.

27We do not directly observe costs, but under our model of differing ability, low costs would rationalize such a
result. The alternative model, with equal ability but differing costs, cannot explain a negative relation.
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Table 2. Regression of optimal Sharpe ratio on number of funds in menu. The optimal Sharpe
ratio uses model-based expected returns and historical variance-covariance matrices. The expected
return is determined either by CAPM, a four-domestic-factor model, or a three-global-factor model.
For readability, coefficients are multiplied by 100 and intercepts are suppressed. The t-statistics
are calculated using robust standard errors clustered at the trustee level, and are reported in
parentheses. Triple, double, and single asterisks denote statistical significance at the 1%, 5%, and
10% levels, respectively.

CAPM 4-factor (domestic) 3-factor (global)
(1) (2) (3) (4) (5) (6)

all data n ≥ 10 all data n ≥ 10 all data n ≥ 10
# of menu items −0.075 −0.358∗∗∗ −0.325∗ −0.418∗∗ −0.403∗∗ −0.531∗∗

(-0.61) (-2.74) (-1.80) (-1.96) (-2.07) (-2.43)
R2 0.24% 3.96% 2.09% 2.72% 1.95% 2.48%
N 191 166 191 166 191 166

Overall, the results in Table 2 suggest a negative relation between the number of choices and

the optimal Sharpe ratio. When the entire data set is included (Regressions (1), (3), and (5)), the

negative relation between the number of choices and the optimal Sharpe ratio is only statistically

significant under the three-factor and four-factor models, but not under the CAPM. Examination

of the data shows that there is a large degree of variability in the Sharpe ratio for plans with the

fewest number of funds. Thus, in Regressions (2), (4), and (6) we exclude those plans with fewer

than ten menu items, and run the regression on the remaining 87% of the data. The results are

starker when the smallest menus are excluded, with a clear negative relation between the number

of funds and the optimal Sharpe ratio. This relation is significant at the 5% or 1% level, depending

on which expected return model is used.28

The results are economically significant. For example, when considering plans with at least 10

menu items using CAPM, the coefficient on the number of funds in a plans is -0.00358. When

compared to the average annual optimal Sharpe ratio of 0.313, the coefficient suggests that each

additional menu item corresponds to a 1.14% decline in the plan’s quality. A one standard deviation

change in the number of menu items (i.e., a change of 3.82 menu item) corresponds to a 4.4% change

in plan quality.29

While we cannot definitively explain why the plans with fewest number of menu items do not

display the downward relation, the difference between shorter menus and longer menus may be

consistent with an extended model that allows for both variation in menu setter ability and costs.

28For robustness, we also calculate Sharpe ratios with less than the full five years of historical data using weekly
data for the period 2005 to 2007. Furthermore, because Sharpe ratios are not unambiguous measures of quality in
the absence of a risk-free asset, we rerun the regressions excluding the three plans that did not offer money market
accounts. For both robustness checks, we obtain similar results and similar statistical significance.

29When limited to plans with at least ten funds, the R2 of the regressions ranges from 2.5% to 4%. Not surprisingly,
there are other important factors contributing to the variation in quality across 401(k) plans.
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Above, in Section 3, we present a simulation showing that if menu setters differ in costs, the relation

between menu size and menu quality may resemble an inverted-U. Nonetheless, the fact that the

bulk of the plans have a significant negative relation can be explained by our theory: experts offer

smaller but better menus, while lower-ability menu setters offer larger but worse menus. Moreover,

whether or not we exclude any plans, we do not observe a positive relation between the number

of choices and plan quality, as would be predicted by the alternative theory with homogeneous

menu-setter ability and driven only by varying costs.

Since the trustee has an important influence on the offering of funds in a plan, and since

companies may use the same trustee, all of our regressions use robust standard errors clustered at

the trustee level.

Table 3. Regression of optimal Sharpe ratio on number of funds in menu, including dummy vari-
ables as controls for Fidelity, Vanguard, Merrill Lynch, T. Rowe Price, Charles Schwab, and Wells
Fargo as trustees. For readability, coefficients are multiplied by 100 and intercepts are suppressed.
The t-statistics are calculated using robust standard errors clustered at the trustee level, and are
reported in parentheses. Triple, double, and single asterisks denote statistical significance at the
1%, 5%, and 10% levels, respectively.

(1) (2)
all data n ≥ 10

# of menu items −0.100 −0.357∗∗

(-0.81) (-2.47)
Fidelity 4.218∗∗∗ 4.433∗∗∗

(5.16) (4.63)
Vanguard 2.839∗∗∗ 2.107∗∗

(3.81) (2.36)
Merrill Lynch −0.574 0.330

(-0.51) (0.25)
T Rowe Price 2.083∗∗ 1.582∗

(2.60) (1.72)
Charles Schwab −0.464 −0.761

(-0.60) (-0.82)
Wells Fargo 0.387 −0.084

(0.48) (-0.09)
R2 9.99% 14.10%
N 191 166

In our sample of 191 plans, Fidelity, Vanguard, Merrill Lynch, T. Rowe Price, Charles Schwab,

and Wells Fargo are the most common trustees, with 43, 18, 10, 11, 10, and 7 plans, respectively.

To ensure that our results are not driven by the choice of trustee, in Table 3 we include individual

dummy variables for these six frequent trustees as controls. We find that our results are robust to

these controls. The coefficient on the number of menu items remains negative and is statistically

significant when limited to plans with at least 10 menu items.30 Interestingly, in Table 3 the

30When we run the analysis limited to the most frequent trustees (unreported) we again find similar results. The
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coefficients on the individual trustee dummies are positive and strongly significant for Fidelity and

Vanguard (and to some extent for T. Rowe Price). Plans that use these trustees have higher optimal

Sharpe ratios than other plans.31

Table 4. Regressions (1) and (2) report the relation between the optimal Sharpe ratio and the
number of funds in menu, with the optimal Sharpe ratio based on expected returns net of total fund
expenses. Regressions (3) to (6) are based on the constrained optimal Sharpe ratio when the weight
on the company stock is set equal to observed weight. The variables # of menu items and weight on
stock are demeaned. For readability, coefficients are multiplied by 100 and intercepts are suppressed.
The t-statistics are calculated using robust standard errors clustered at the trustee level, and are
reported in parentheses. Triple, double, and single asterisks denote statistical significance at the
1%, 5%, and 10% levels, respectively.

net of expenses constrained by stock holdings
(1) (2) (3) (4) (5) (6)

all data n ≥ 10 all data n ≥ 10 all data n ≥ 10
# of menu items −0.083 −0.420∗∗ −0.041 −0.285∗ −0.026 −0.301∗

(-0.55) (-2.58) (-0.26) (-1.75) (-0.16) (-1.81)
weight on stock −47.42∗∗∗ −49.37∗∗∗ −47.31∗∗∗ −49.67∗∗∗

(-16.6) (-15.6) (-16.4) (-14.0)
# of menu items × −0.280 0.299
weight on stock (-0.58) (0.54)
R2 0.22% 4.00% 49.82% 51.55% 49.88% 51.59%
N 191 166 191 166 191 166

The dependent variable in the regressions reported until now was the optimal Sharpe ratio in

each plan, where expected returns ignoring expenses are used in the optimization routine and in

the calculation of the Sharpe ratio. In Regressions (1) and (2) of Table 4 we repeat the main

regressions using expected returns net of expenses. For each fund, we calculate the expected return

based on the world CAPM and then subtract the expense ratio for 2007 as reported in CRSP.

This net-of-expenses expected return is used to calculate the optimal Sharpe ratio. The results are

robust to the adjustment for expenses. The coefficients and t-statistics vary slightly, but the results

are qualitatively the same as in the original regressions.32

As is generally well known, employees who invest in 401(k) plans tend to hold a portion of

their assets in the company’s own stock. In our data, the percentage of assets held by employees

in company stock within the 401(k) plan varies from less than 1% to 69%, and averages 16.6%

statistical significance in those regressions is reduced, as one would be expect with fewer observations.
31The effect of the individual trustee dummy variables remains when we control for the total plan assets as in

Table 5. The t-statistics on the individual trustee dummies are smaller when we use standard errors that are not
clustered at the trustee level. All other t-statistics in this paper are only affected by a small amount by the clustering
technique.

32The specification in Regressions (1) and (2) of Table 4 accounts for expenses while ignoring loads. In an alternative
specification, for the few funds that appear to have front-end loads, we add the maximum load divided by five to the
expenses. This makes almost no difference to the results.
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of assets.33 Not surprisingly, even though company stock is one of the menu items, the optimal

portfolio in our sample never includes company stock. Nevertheless, employees hold company stock,

whether due to restrictions, explicit incentives, implicit incentives, or behavioral biases. As such, for

robustness, we consider an alternative measure of menu quality in which we assume that employees

hold company stock, and we calculate the Sharpe ratio using an optimization constrained to having

a portion of assets in the company stock.

The dependent variable in Regressions (3) to (6) of Table 4 is the optimal Sharpe ratio, in

which the optimization is constrained to have a weight on the company stock equal to that held

in aggregate by employees. We find very similar results. When considering plans with at least

10 funds in the menu, there is a negative relation between the number of menu items and the

constrained-optimal Sharpe ratio, although the statistical significance is not as strong.

Not surprisingly there is an extremely strong relation between the proportion of assets held in

company stock, and the highest achievable Sharpe ratio in this constrained scenario. If individuals

are constrained to hold a large proportion of their funds in company stock, their wealth will not be

well diversified. It is unlikely that that even a well-designed menu could offset such an unbalanced

investment portfolio. The interaction term between the number of menu items and the weight on

company stock shows no effect.

Table 5. Regression of optimal Sharpe ratio on number of funds in menu, controlling for plan assets.
This table includes robustness checks for the logarithm of total assets, as well as an interaction term.
The variables # of menu items and ln(total assets) are demeaned. For readability, coefficients
are multiplied by 100 and intercepts are suppressed. The t-statistics are calculated using robust
standard errors clustered at the trustee level, and are reported in parentheses. Triple and double
asterisks denote statistical significance at the 1% and 5% levels, respectively.

(1) (2) (3) (4)
all data n ≥ 10 all data n ≥ 10

# of menu items −0.096 −0.356∗∗∗ −0.095 −0.380∗∗∗

(-0.82) (-2.79) (-0.82) (-2.95)
ln(total assets) 0.613∗∗ 0.577∗∗ 0.624∗∗ 0.494

(2.55) (1.96) (2.45) (1.64)
# of menu items × 0.018 0.083
ln(total assets) (0.37) (1.07)
R2 3.41% 6.50% 3.47% 7.09%
N 191 166 191 166

The value of assets in the plans in our sample vary widely. It is possible that larger plans

have access to higher quality menus. Thus, in Table 5 we control for the value of assets in each

plan. All regressions in Table 5 include the logarithm of the total assets as a control variable, while

33Our data includes the aggregate amount held by employees in each investment. Unfortunately, we do not observe
the selections of individual employees.
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Regressions (3) and (4) also include the interaction term between the number of menu items and the

logarithm of total assets. Even with this control, for more than 10 menu items, the results indicate

a negative relation between the number of funds in a pension plan and plan quality. Interestingly,

we find evidence that the size of the 401(k) plans, as measured by the logarithm of total assets,

is generally positively related to the optimal Sharpe ratio indicating that larger plans have better

menus. The interaction term is not statistically significant.

Until this point, we assume that the 401(k) menu is the entire investment opportunity set for

all investors, and the quality of a menu can be summarized by a single optimal Sharpe ratio. In

reality, investors may prefer different portfolios because they hold risky assets outside the 401(k),

have risky human capital, or face different consumption risks in the future. We cannot directly

observe these risks in our data. To ensure that our results are robust to investors who also own

assets outside 401(k) plans, we identify the optimal portfolios assuming that investors hold 20% of

their wealth in one of the broad Fama-French industry portfolios and that the remaining 80% is

invested in the 401(k). We rerun the analysis of Table 2 using the resulting (constrained) optimal

Sharpe ratios. We find that for menus with at least ten funds, the relation between the number

of menu items and the optimal Sharpe ratio remains very strong for three out of the four industry

portfolios.34

As described previously, we explain the negative relation between the number of menu items

and the optimal Sharpe ratio as stemming from differences in menu-setter ability. The possibility

that some menu setters have imperfect ability is also explored in Elton, Gruber, and Blake (2006)

who show that about half of all 401(k) plans in their sample do not span a set of eight indices.

While the relation between the number of choices and menu quality is not the focus of their paper,

looking at their results, there does not appear to be a negative relation between the number of

choices and whether a plan spans the indices—indeed they find a positive relation, or no relation at

all when the tails are excluded. The difference between our results and those in Elton et al (2006)

come from differences in the sample analyzed, as well as differences in the method of measuring

menu quality. The two samples differ in their spectrum of plan sizes. Elton et al (2006) study a

sample drawn from a survey that includes smaller plans and fewer menu items than our sample. To

identify the effect of the difference in the sample on the results, one needs to use the same method

of analysis on both samples. Without access to data used in Elton et al (2006), we could not

analyze their sample using Sharpe ratios. Instead, we use Elton et al’s spanning methodology on

our data.35 We do not find the positive relation reported in Elton et al (2006). But we also did not

find the negative relation we report in this paper obtained using Sharpe ratios as a measure of menu

34Detailed results are available upon request.
35Details of this analysis are available upon request.
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quality. We believe that the continuous Sharpe ratio can better distinguish between suboptimal

menus of varying quality. In contrast, the spanning criteria is appropriate for Elton et al (2006),

who classify menus as either adequate or inadequate.

6 Conclusion

In this paper we study the relation between menu size and menu quality. There exists a growing

literature showing that individuals often prefer to choose from a smaller set. This preference is often

ascribed to choosers’ behavioral biases or informational limitations. While the existing literature

can rationalize a preference for smaller menus, it predicts that larger menus will still be better for

fully rational, fully informed choosers.

Empirically, we study the relation between the number of investment choices offered by 401(k)

pension plans, and the objective quality of those plans. We measure plan quality by the maximum

Sharpe ratio achievable given the investment choices in the plan. Excluding the funds with the

fewest investment choices, we find a statistically significant negative relation between the number

of investment choices and plan quality.

Motivated by the empirical finding that larger 401(k) menus are objectively worse, we take a

different approach to the theoretical model. We recognize that menus are generally pre-selected

by menu setters from a larger universe of items, and that menu setters may differ in their ability

to construct menus. Our results show that when the marginal cost of increasing a menu is low,

menu setters with lower ability offer larger menus than experts. At the same time, the menu of the

expert is of higher quality in the sense that it offers a larger number of valuable items. Together,

these two results lead to smaller menus that are of higher objective quality than larger menus.

While the empirical application in our paper addresses only investment portfolios, the central

insight that menus are pre-selected by a menu setter is applicable to many scenarios. Of course,

other forces also come into play when evaluating menus. Certainly the behavioral and informational

effects recently addressed in the literature affect choices made by agents facing menus of different

sizes. Nevertheless, we argue that one must be aware of the role played by the ability of menu

setters in designing the menu offered to individuals.

A Appendix: Proofs

Proof of Lemma 1 (page 8) Fix arbitrary p ∈ (0, 1). The general formula for Eqp(n) is

Eqp(n) =

n−1∑
i=0

(n− 1)!

(n− 1− i)!i!
pn−i(1− p)i q(n− i) . (5)
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By applying this formula to Eqp(n+ 1) and algebraical manipulation, we get

Eqp(n+ 1) = (1− p)
n−1∑
i=0

(n− 1)!

(n− 1− i)!i!
pn−i(1− p)i q(n− i) + p

n−1∑
i=0

(n− 1)!

(n− 1− i)!i!
pn−i(1− p)i q(n+ 1− i) . (6)

By the Assumption of Declining Marginal Benefit, q(n) is decreasing, i.e., q(n+ 1) < q(n). Therefore,

Eqp(n+ 1) <

n−1∑
i=0

(n− 1)!

(n− 1− i)!i!
pn−i(1− p)i q(n− i) = Eqp(n) .

Proof of Lemma 2 (page 10) We can write Eqp(n) as Eqp(n) = p·E(q| success at n), where E(q| success at n)

is the expected marginal benefit conditional on getting a valuable item.36 Then37

Eqp(n+1) =
[
(1−p)+p k

]
pE(q| success at n) =

[
(1−p)+p k

]
Eqp(n) =⇒ Eqp(n+ 1)

Eqp(n)
= (1−p)+p k .

For p ∈ (0, 1), this ratio is a convex combination between k and 1. Hence, k < Eqp(n+1)
Eqp(n) < 1. By the Strong

Assumption of Declining Marginal Benefit, q(n+1)
q(n) = k. Therefore, q(n+1)

q(n) < Eqp(n+1)
Eqp(n) .

Proof of Corollary 1 (page 11) By the Strong Assumption of Declining Marginal Benefit, q(n+1) = k q(n)

for some k < 1. Suppose also that q(n) < Eqp(n). From the proof of Lemma 2, Eqp(n + 1) =
[
(1 − p) +

p k
]
Eqp(n) > kEqp(n). Then, Eqp(n+ 1) > kEqp(n) > k q(n) = q(n+ 1) ⇐⇒ Eqp(n+ 1) > q(n+ 1) .

Proof of Lemma 3 (page 11) By the Strong Assumption of Declining Marginal Benefit, q(n) = kn−1q(1).

By Lemma 2, Eqp(n) = Eqp(1)[(1− p) + p · k]n−1 = p q(1)[(1− p) + p · k]n−1. Moreover, Eqp(1) = p q(1). Let

n∗ = 1 + ln(p)

ln(k)−ln
(
(1−p)+p·k

) . By applying those formulas, and some algebraic manipulation, we obtain

Eqp(n) > q(n) ⇐⇒ p
1

n−1 >
k

(1− p) + p · k
⇐⇒ n > 1 +

ln(p)

ln(k)− ln
(
(1− p) + p · k

) = n∗ .

Therefore, Eqp(n) > q(n) ⇐⇒ n > n∗. By similar calculations, we obtain Eqp(n) < q(n) ⇐⇒ n < n∗, and

Eqp(n) = q(n) ⇐⇒ n = n∗.

Proof of Proposition 1 (page 12) The objective of the menu setter is to maxn

{
αEQp(n) − c · n

}
. By

the first order condition, the optimal menu size for the lower-ability menu setter, m̂, is characterized by

αEqp(m̂) = c. And the optimal menu size for the the expert, x̂, is characterized by α q(x̂) = c.

(i) If c < αq(n∗), then c = α q(x̂) for x̂ > n∗ (by decreasing q(n)). Then, by Lemma 3(ii), Eqp(x̂) > q(x̂).

So, c < αEqp(x̂). Since Eqp(n) is also decreasing, c = αEqp(m̂) for m̂ > x̂. Therefore, the menu of

the lower-ability menu setter is larger than the menu of the expert.

(ii) By analogous reasoning, we obtain that for c > αq(n∗) the expert offers larger menu than the lower-

ability menu setter.

36Since Eqp(n) is given by (5) and q(n) = kn−1 q(1), then E(q| success at n) =
∑n−1

i=0
(n−1)!

(n−1−i)!i!
pn−1−i(1 −

p)i kn−i−1q(1) .
37By substituting q(n) = kn−1 q(1) into (5) and (6), we also obtain Eqp(n + 1) = [(1− p) + p k]Eqp(n).
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Proof of Proposition 2 (page 13) Suppose that for a given c, x̂ is the optimal size of a menu selected by

the expert, i.e., α q(x̂) = c. And m̂ is the optimal size of a menu selected by the lower-ability menu setter,

i.e., αEqp(m̂) = c. Since the cost is the same for both menu setters, it must be that the respective optimal

menu sizes satisfy q(x̂) = Eqp(m̂).

By the Strong Assumption of Declining Marginal Benefit, q(x̂) = kx̂−1q(1). By Lemma 2, Eqp(m̂) =

Eqp(1)
[
(1− p) + pk

]m̂−1
. Moreover, Eqp(1) = pq(1). Therefore,

q(x̂) = Eqp(m̂) ⇐⇒ kx̂−1 q(1) = p q(1)
[
(1− p) + pk

]m̂−1 ⇐⇒ kx̂−1 = p
[
(1− p) + pk

]m̂−1
. (7)

The respective qualities of the menus are given by38 Q(x̂) = q(1) k
1−k

(
1− kx̂

)
and EQp(m̂) = q(1) k

1−k

(
1−

[
(1− p) + pk

]m̂)
.

Then, Q(x̂) > Eqp(m̂)⇐⇒by(7) kp < [(1− p) + pk] ⇐⇒ p < 1. Therefore, for all p < 1, Q(x̂) > Eqp(m̂).

B Appendix: Proposition 2 with Integer Constraint

The proof of Proposition 2 above ignores the constraint that the menu size, n, must be an integer. With

the integer constraint, both the lower-ability menu setters and the experts round down the number of menu

items offered. For the purpose of Proposition 2 there is concern in cases where the expert rounds down the

number of menu items by more than the lower-ability menu setter, as this results in a possibility that the

lower-ability menu setter’s menu would be of higher quality. Below we derive the condition that ensures that

even in the most severe case of rounding, the expert offers the superior menu.

To account for the integer constraint, we approach the problem as follows: Suppose that x′ and m′ are

the largest integers less than or equal to x̂ and m̂. (Note that (7) still holds for x̂ and m̂.) The worst case

scenario is when m̂ is an integer and x̂ is just below an integer. Then m′ = m̂ and we can approximate

x′ = x̂−1. Then Q(x̂−1) > EQp(m̂) would assure that the expert offers a better menu than the lower-ability

menu setter, even under the worst case scenario.

By similar calculations as in the proof of Proposition 2, we find that Q(x̂ − 1) = q(1)k
∑x̂−2

l=0 k
l =

q(1) k
1−k

(
1− kx̂−1

)
. Then, Q(x̂ − 1) > EQp(m̂) ⇐⇒ kx̂−1 <

[
(1 − p) + pk

]m̂ ⇐⇒ p < 1 − p + pk ⇐⇒
p(2− k) < 1 . That is, for sufficiently small p and large k the condition will be satisfied.

Notice that this is a strong sufficient condition designed to hold under the worst case scenario for x′ and

m′. In most cases, the inequality Q(x′)− EQp(m′) > 0 is satisfied for weaker condition.

C Role of k in Propositions 1 and 2

In order to obtain Propositions 1 and 2, we introduced the Strong Assumption of Declining Marginal

Benefit, stating that the marginal benefit of additional valuable items declines at a rate k, such

that q(n + 1) = k · q(n). While this assumption of fixed k allows for modeling tractability and

expositional simplicity, far weaker assumptions are sufficient for the results in Propositions 1 and 2.

38We directly use here the formula for the finite geometric series:
∑N−1

K=0 g
K = 1−gN

1−g
.
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The necessary feature that leads to the single-crossing property in Proposition 1 is that the

marginal benefit for the expert declines more rapidly than the marginal benefit for the lower-ability

menu setter (as in Lemma 2). For a fixed k, the marginal benefit for the lower-ability menu setter

is (1− p) + pk which is greater than k, thus leading to our result (see proof of Lemma 2). However,

if k varies depending on the number of valuable items already in the menu — and we will denote

this as kn, where q(n+ 1) = kn · q(n) —, then the comparison of slopes is less clear. This is because

after including n items in his menu, the lower-ability menu setter does not know how many of those

n items are valuable. Thus, the marginal benefit for the lower-ability menu setter depends on all

past k’s, i.e., Eqp(n+ 1) = [(1− p) + pkn]Eqp(n), where kn denotes the combination of past k’s:

kn =

∑n−1
i=0

(n−1)!
(n−1−i)!i!p

i(1− p)n−1−i
∏i+1

l=1 kl∑n−1
i=0

(n−1)!
(n−1−i)!i!p

i(1− p)n−1−i
∏i

l=0 kl
, with k0 = 1 .

A sufficient condition for the single-crossing property is that for all n

(1− p) + pkn > kn. (8)

The left hand side of this inequality is a convex combination of kn and 1. So, (8) is violated only

if previous ki’s (i = 1, . . . , n − 1) are much below kn. If k is constant or if ki is decreasing, the

condition is satisfied. If ki is increasing at a small rate, the condition still is satisfied. However,

if ki is increasing sufficiently to violate condition (8), then there are areas for which the marginal

benefit for the lower-ability menu setter will be declining more rapidly than the marginal benefit

for the expert, and it will be possible for the single-crossing condition to be violated.

A similar argument applies for Proposition 2, which states that the expert’s menu is always of

higher total quality than that of the lower-ability menu setter. Using the same notation as in the

proof to Proposition 2, x̂ and m̂ are the optimal menu sizes for the high-ability menu setter and

the lower-ability menu setter, for a given c. The argument behind the proposition is that the slope

of the marginal benefit at x̂ for the expert is more negative than the slope of the marginal benefit

for the lower-ability menu setter m̂. Moreover, this inequality must continue for each additional

item beyond x̂ and m̂.

Thus, the sufficient condition for Proposition 2 is that for all optimal menu sizes for the two

types of menu setters, x̂ and m̂, inequality (1− p) + pkm̂+i > kx̂+i holds for all i ≥ 0.

Again, the left hand side is a convex combination of km̂+i and one, so it is violated only if kx̂+i

is much higher than the previous k’s. In other words, Proposition 2 will hold as long as ki does not

vary excessively.
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