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Abstract

We propose a new discrete choice model for use in optimal pricing and assortment planning.

In contrast to multinomial and nested logit (the prevailing choice models used for optimizing

prices and assortments), we assume the distribution of consumer utilities is negatively skewed,

an assumption motivated by conceptual arguments as well as published data. The choice prob-

abilities in our model can be derived in closed-form as an exponomial (a linear function of

exponential terms). The loglikelihood function is concave in model parameters, which makes

empirical estimation straightforward. Our pricing and assortment planning insights di�er from

the literature in two important ways. First, our model allows variable markups in optimal prices

that increase with expected utilities. Second, when prices are exogenous, the optimal assort-

ment allows leapfrogging in prices, i.e., a product can be skipped in favor of a lower-priced one

depending on the utility positions of neighboring products. These two plausible pricing and

assortment patterns are ruled out by multinomial logit (and by nested logit within each nest).

We provide structural results on optimal pricing for monopoly and oligopoly cases, and on the

optimal assortments for both exogenous and endogenous prices. Finally, we show that our model

generalizes to allow di�erent variances for each choice’s stochastic error term without sacrificing

closed-form choice probabilities, something that is not feasible in the logit framework.

Keywords: Discrete choice theory, assortment planning, pricing, revenue management, multi-

nomial logit, nested logit.
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1. Introduction

Recent academic research in the area of optimal pricing and assortment planning has caught the

attention of companies that provide decision support systems for retailers (Kök et al. 2009; Sinha

et al. 2013). As a case in point, the authors were approached by a software development com-

pany building business analytics solutions for several retail chains selling packaged goods. Their

clients were seeking more intelligent tools that could help store managers select the right assort-

ments and/or prices as well as predict the associated revenue e�ects. Because the model needed

to be applied to 1000’s of retail stores with 100’s of di�erent assortments, it needed to be scal-

able, customizable, and tractable (in an optimization sense). The software company was already

investigating several published pricing and assortment planning models.

To date, the prevailing choice models used for optimizing prices and assortments—multinomial

logit (MNL) and nested logit (NL)—assume the distribution of consumers’ willingness to pay (WtP)

for a product is positively skewed (e.g., van Ryzin and Mahajan 1999; Talluri and van Ryzin 2004;

Rusmevichientong et al. 2010; Li and Huh 2011; Davis et al. 2012; Alptekino�lu and Grasas 2014).

This stems from the error term in logit models having a Gumbel distribution, and it makes sense

in many cases, particularly those where consumers have limited information regarding a product’s

value (e.g., wine, art, etc.). However, in situations where consumers are well informed about

products and their values, one might expect the distribution of consumers’ WtP to be negatively

skewed simply because even an enthusiastic buyer would be put o� by the thought of overpaying.

To make this concrete, imagine a person buying a new car. Most individuals know the MSRP

and many more consult resources such as Kelley Blue Book or Edmunds.com to see what others

are paying or to obtain the dealer’s cost. A consumer who has been informed in this manner thus

obtains a benchmark price for each car in their choice set. In most cases, the probability that a

consumer is willing to pay 10-20% more than this benchmark price is likely much smaller than the

probability that they are willing to pay 10-20% less. In fact, we would expect to find a point in the

WtP distribution beyond which buyers tail o� rapidly because any higher price would be regarded

as overpaying or unfair. This should result in a short right-hand tail. In contrast, we would expect a

proportionately longer left-hand tail simply because consumers can lower their WtP for a particular

car for any number of idiosyncratic reasons (e.g., intangibles such as the car’s look and feel, etc.).
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All of this suggests a negatively skewed distribution of consumers’ WtP. This conceptual analysis

is not limited to cars. In markets where consumers are well informed about products and prices,

one might expect to find negative skewness – we give an example later based on published WtP

data for soybean oil. In general, the point at which the distribution of consumers’ WtP drops

o� could be a function of many things, including product attributes (quality, etc.), environmental

attributes (store location, product display, etc.), and consumer attributes (income, loyalty, etc.).

Our proposed model allows all of these attributes to be included in capturing the drop-o� point.

The purpose of this paper is to o�er a new discrete choice model based on negatively skewed

distributions of consumer utilities, and to develop its analytical consequences on pricing and as-

sortment planning. Because a requirement of the model is that it could be customized to each store

in a retail chain, it is designed to be analytically tractable, scalable, and optimization-friendly. We

call the new model the exponomial choice (EC) model due to its use of exponomials (Du�n and

Whidden 1961) to characterize the closed-form choice probabilities.

The EC model leads to new insights on pricing and assortment planning that complement pre-

vious findings from the dominant closed-form choice models used in this area, MNL and NL. These

new insights suggest a stronger link between product desirability and optimal prices/assortments;

hence, they may be more in step with managerial intuition. First, our model need not conform

to the “constant markup” property, which holds that the profit-maximizing price for a fixed as-

sortment (or a nest) is some constant dollar amount (markup) added to each product’s unit cost

(Anderson et al. 1992; Li and Huh 2011). Instead, optimal markups obey a “hockey-stick” shape; in

particular, they increase in expected utilities for products that are more desirable than the outside

option. Second, our model need not conform to the “contiguous price” property, which holds that

the optimal assortment for exogenous prices (selected from a universal set of products or a nest)

is always some contiguous set of the most expensive products (Talluri and van Ryzin 2004; Davis

et al. 2012). Instead, the optimal assortment allows leapfrogging in prices; a lower-priced product

can be selected over a higher-priced product due to its favorable utility position.

This paper is devoted to development of the theoretical model as well as its analytical conse-

quences. Not only do we present results on optimal prices and assortments, but also properties

that are desirable for implementation in practice, e.g., concavity of the loglikelihood function. (All

proofs are provided in the Appendix.) As for its usefulness in practice, this will be addressed
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in a companion paper (Anonymous 2014) that includes a three-way comparison between the EC

model, a generalized version of the EC model (with choice-specific variance terms discussed in §6),

and the MNL model. There, it will be shown that, using the top 25 categories of household level

grocery data analyzed by Briesch et al. (2013) as our test set, the EC model was superior to MNL

in out-of-sample prediction for 22 of the 25 categories, and the generalized EC model was superior

for 23 categories (in all 25 categories one of our two models was superior to MNL). We believe this

o�ers empirical support for the validity of the models introduced in this paper.

2. Literature Review

The area of research most related to our work uses discrete choice modeling as the basis for analytical

pricing and assortment planning models. We organize our review of this literature around the two

major families of discrete choice models used in this area: logit and Hotelling models, and their

generalizations. For in-depth treatment of the theoretical foundations of discrete choice models in

general, the reader is referred to Manski and McFadden (1981), Ben-Akiva and Lerman (1985),

Anderson et al. (1992) and Train (2009).

Logit Model: MNL and its nested variety are the most popular discrete choice models in this

stream of literature. The primary reasons for this are that they o�er reasonable levels of ana-

lytical tractability coupled with years of empirical research supporting their real-world relevance

(McFadden 2001). van Ryzin and Mahajan (1999) derive the structure of optimal assortment for

exogenous uniform prices, assuming MNL choice behavior for consumers and newsvendor costs

(with lost sales) for each product. Talluri and van Ryzin (2004) address optimization of fare classes

in revenue management using a general choice model that subsumes MNL as a special case. They

prove the optimal fares must form an e�cient subset, that is, a subset of the most expensive prod-

ucts where no price is leapfrogged. Cachon et al. (2005) develop an MNL-based model of consumer

search to understand how it influences optimal assortment. They show that it can be optimal to

o�er an unprofitable product to prevent consumer search. Again building on MNL, Aydın and

Hausman (2009) investigate contractual forms a manufacturer can use to induce a retailer to make

supply-chain optimal assortment decisions. Rusmevichientong et al. (2010) and Rusmevichientong

and Topalo�lu (2012) study a dynamic assortment problem where the firm is attempting to learn
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the parameters of an MNL choice model by experimenting with its assortment. Davis et al. (2013)

show under MNL choice that the problem of finding the revenue-maximizing assortment subject

to a set of totally unimodular constraints can be cast as a linear program. They demonstrate how

this general setup applies to some specific pricing and assortment planning problems.

NL has also been used in analytical models of pricing and assortment planning, although finding

a suitable nesting structure can be di�cult in practice (Koppelman and Bhat 2006; Louviere and

Woodworth 1983). In retail operations, for example, it helped understand the impact of category

management (Cachon and Kök 2007) and consumer returns (Alptekino�lu and Grasas 2014) on

assortment selection. Li and Huh (2011) and Gallego and Wang (2012) generalize past results

on optimal pricing under NL choice. Davis et al. (2012) show that the contiguous price property

due to Talluri and van Ryzin (2004) applies to each nest when selecting the optimal assortment

under exogenous prices. This body of work is expanding in many interesting dimensions such as

generalizing the tree structure of NL (Li et al. 2013).

Hotelling Model: Another popular discrete choice model family in this literature is due to

Hotelling (1929), who originally set out to explain the ‘sameness’ in product variety o�ered by

competing firms. His model is variously known as the locational choice model, the address model,

or simply the Hotelling model. Because the choice probabilities are generally not closed-form, it is

less tractable than MNL for pricing and assortment planning purposes, and it does not lend itself

to empirical inquiry as easily. Yet it has enjoyed great conceptual appeal after it was formalized by

Lancaster (1966) into a theory of consumption that views products as a bundle of characteristics

and consumer preferences as points or addresses in a characteristics space. Applications of the

Hotelling model in business disciplines include multichannel retail competition (Balasubramanian

1998), brand loyalty (Villas-Boas 2004), and joint inventory-price optimization (Alptekino�lu and

Corbett 2010). The Hotelling model can be tied to MNL and the general body of discrete choice

models in a unified manner (Anderson et al. 1992).

Our research contributes to this literature by o�ering a new, analytically tractable discrete

choice model that has di�erent implications for optimal prices and assortments. These implications

are consistent with managerial intuition and further supported by our ongoing empirical work noted

earlier.
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3. The Exponomial Choice Model

We begin with the standard random utility framework where the consumers’ utility for a particular

choice among an assortment of choices is composed of two parts, a deterministic part and a random

part. The deterministic part in our model represents what we term the choice’s ideal utility, an

upperbound on the utility that would be obtained “for the right person,” and it can be a function of

many attributes (product, environment, and consumer). It reflects the preferences of an enthusiastic

buyer. A literal interpretation of ideal utility would be that it is the maximum utility any consumer

in the population (having the same consumer attributes) derives from a particular choice. The

random part of our model captures consumer heterogeneity and has one sign (negative).

The utility that a random consumer k has for choice i in our model is the linear function

U

k

(i) = u

i

≠ z

ik

for i = 1, . . . , m, where m is the number of choices, u

i

is the ideal utility for choice i, and z

ik

are IID

(independent and identically distributed) exponential random variables with mean 1/⁄ (in §6 we

relax this condition by allowing choice-specific parameters ⁄

i

). For example, these m choices may

consist of m ≠ 1 products o�ered by a firm plus an outside option (the alternative of not buying

from the firm). Observe that the maximum utility that a consumer can obtain from a particular

choice is it’s ideal utility, but the random term means each consumer’s final utilities can assume

any order and thus reflect their personal preferences. The expected utility for each choice is easily

obtained from its respective ideal utility by subtracting 1/⁄. This utility specification results in a

negatively skewed distribution of consumer utilities for each choice.

In many empirical applications, modeling the ideal utility as a function of product attributes,

environmental attributes, and consumer attributes would represent the model’s standard form.

(Indeed, the empirical analysis in our companion paper included the environmental attributes

“feature” and “display.”) However, models used for assortment and price optimization generally

consider only product level attributes. We do the same to simplify our exposition. We also note

that consumer heterogeneity in ideal utilities can be incorporated using the following specification:

U

k

(i) = (u
i

+ d

k

) ≠ z

ik

where d

k

is an IID random variable. The component d

k

is di�erenced out
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Figure 1: Density of the Exponomial Utility U

k

(i) = (u
i

+ d

k

) ≠ z

ik

with u

i

= 40, d

k

≥ N(0, 0.5),
and z

ik

≥ exp(0.5).

when calculating our choice probabilities, but it may help represent aggregate level consumer data

better. For example, if the d

k

are IID normal random variables, one might see a utility distribution

like that in Figure 1.

When the choices are products to buy, the observable component of our utility specification

can be operationalized as follows. Let the ideal utility for product i be u

i

= –

i

≠ —p

i

, where –

i

captures all non-price related product attributes and can be interpreted as the intrinsic desirability

or attractiveness of the product, p

i

is the price, and — is the price sensitivity parameter. Using the

approach of Besanko et al. (1998), one can then specify consumer k’s maximum willingness to pay

for product i as W

k

(i) = –

i

—

≠ z

ik

—

, where the WtP error term z

ik

—

is exponentially distributed with

rate parameter —⁄. Moreover, W

k

(i)≠p

i

is consumer k’s surplus for product i, and the product that

maximizes consumer k’s utility is the same as the product that maximizes consumer k’s surplus.

In practice, it is easier to observe WtP than utility, so we make liberal use of the connection

between the two in establishing the practical relevance of our utility specification. We imagine a

consumer who is well informed about various product alternatives and their market prices. Knowl-

edge of products and prices can be obtained from a variety of sources including stated MSRPs,

frequent purchases within a product category (e.g., groceries), third party information providers,

or even word-of-mouth. Our model does not rely on a particular learning mechanism, it merely

7



Figure 2: CDF of Willingness to Pay for Genetically Modified Soybean Oil

assumes that some mechanism exists. The consumer then makes an informed decision about their

maximum willingness to pay for an item. Given extensive product/price knowledge, one would ex-

pect the distribution of their WtP to drop o� rapidly above some value simply because consumers

dislike overpaying. This means the WtP distribution would be negatively skewed, as would the

distributions of consumer surplus and consumer utility.

Negatively skewed WtP distributions have been cited in health care (Philips et al. 2006), agri-

culture (Hu et al. 2006; Norwood et al. 2005), and financial security markets (Garbade and Silber

1976), among others. We could only find one paper that published data on consumers’ WtP. Hu

et al. (2006) collected data on consumers’ WtP for genetically modified (GM) soybean oil in Nan-

jing, China. As noted by the authors, soybean oil is a popular product in China, and so participants

were well informed about the various oil products and their market prices. The market price for

GM soybean oil at the time was 40 RMB. Of the 244 participants who would buy GM soybean

oil, the following WtP distribution was observed: 18.5 RMB (5), 22.5 RMB (1), 27.5 RMB (23),

32.5 RMB (26), 37.5 RMB (15), 42.5 RMB (113), 47.5 RMB (51), 52.5 RMB (4), 55 RMB and up

(6). Observe that the WtP distribution has a pronounced hump slightly above the current market

price with a relatively short tail to the right and a longer tail to the left. The empirical cumulative

distribution function (CDF) is shown in Figure 2.

Now consider the distribution of WtP in the EC model versus its MNL analog, which is based
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on Gumbel distributed errors. Using the Kolmogorov distance as a measure of fit (the maximum

gap between the theoretical and empirical WtP distributions, see Weber et al. 2006), we find that

the EC utility framework approximates the data substantially better than the MNL model. This is

even visually apparent from the tail behavior. The fitted distributions are shown in Figure 2. (The

minimum Kolmogorov distance for the best EC and MNL models are 0.056 and 0.112, respectively.)

Having introduced the basic components of the EC model, we first derive the choice probabilities

implied by utility maximization.

3.1 Choice Probabilities

Dropping the consumer subscript to improve readability, the probability that a consumer prefers

choice i – because it o�ers the largest utility – is

Q(i) = Prob {u

i

≠ z

i

Ø u

j

≠ z

j

’j, j ”= i}

= Prob {z

j

Ø u

j

≠ u

i

+ z

i

’j, j ”= i}

=
Œ̂

0

r

j ”=i

[1 ≠ F (u
j

≠ u

i

+ z)] f(z)dz,

(1)

where f(z) = ⁄e

≠⁄z and F (z) = 1 ≠ e

≠⁄z for z Ø 0 are the probability density function (PDF) and

CDF, respectively, of an exponential distribution with rate ⁄ (f(z) = F (z) = 0 for z < 0 ).

The selection of an exponential distribution has considerable mathematical virtue in simplifying

(1), which is an important consideration for a discrete choice model. Indeed, in the case of a linear

utility model whose random part takes both positive and negative values, the analogous integral

would simplify (to one of the form
´

u

k

du) provided the distribution function satisfied the property

F (x + y) = F (y)g(x) for some function g(x). It can be shown that this is the defining equation of

a Gumbel distribution and the basis of the MNL model. Indeed, Yellott (1977) has demonstrated

that Gumbel is the only distribution which leads to the closed-form MNL choice probability for

three or more choices.

In all that follows, we assume without loss of generality that the ideal utilities are labeled in

increasing order u1 Æ u2 Æ · · · Æ u

m

(ties between ideal utilities can be broken arbitrarily).

Theorem 1. (Exponomial Choice Probabilities) Out of m products with utilities U(i) = u

i

≠z

i
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(u1 Æ · · · Æ u

m

), where z

i

follow independent exponential distributions with rate ⁄, the probability

that the consumer chooses product i œ {1, . . . , m}, i.e., considers it as utility-maximizing, is

Q(i) =
exp

C

≠⁄

mq
j=i

(u
j

≠ u

i

)
D

m ≠ i + 1 ≠
i≠1ÿ

k=1

exp

C

≠⁄

mq

j=k

(u
j

≠ u

k

)
D

(m ≠ k)(m ≠ k + 1) . (2)

This expression is known as an exponomial (a linear function of exponential terms) as first

defined by Du�n and Whidden (1961). Without loss of generality, one may take ⁄ = 1 and rescale

the u’s accordingly. Additionally, the choice probabilities depend on the di�erence in ideal utilities,

and this means they are una�ected if translated by a common constant. This in turn means one

of the ideal utilities can be set to a convenient value. We defer setting any u

i

at this point, but we

set ⁄ = 1 for ease of exposition.

In the rest of this section we develop some immediate implications of the EC model.

3.2 Basic Properties

At first glance, the EC probabilities (2) appear to lack any attractive qualities, but they actually

possess excellent structure. To analyze this structure in greater detail, it helps to define

G(i) =
exp

C

≠
mq

j=i

(u
j

≠ u

i

)
D

m ≠ i + 1 (3)

for i = 1, . . . , m. The choice probabilities in (2) can now be expressed as

Q(1) = G(1)

Q(2) = G(2) ≠ 1
m ≠ 1G(1)

Q(3) = G(3) ≠ 1
m ≠ 2G(2) ≠ 1

m ≠ 1G(1)

... (4)

Q(m ≠ 1) = G(m ≠ 1) ≠ 1
2G(m ≠ 2) ≠ · · · ≠ 1

m ≠ 2G(2) ≠ 1
m ≠ 1G(1)

Q(m) = G(m) ≠ G(m ≠ 1) ≠ 1
2G(m ≠ 2) ≠ · · · ≠ 1

m ≠ 2G(2) ≠ 1
m ≠ 1G(1)
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Whereas it is di�cult to see why the choice probabilities sum to 1 using (2), the probabilities

expressed in (4) reveal this fact fairly readily: the coe�cients of G(1), G(2), ..., G(m ≠ 1) in (4)

sum to zero—note there are m ≠ 1 terms of the form ≠1
m≠1G(1), m ≠ 2 terms of the form ≠1

m≠2G(2),

etc. The only term that remains after summing the expressions on the right hand side of (4) is

G(m), which equals 1 using (3).

It is also easy to see that the choice probabilities are monotone increasing in i. Because u1 Æ

u2 Æ · · · Æ u

m

, the G(i) defined in (3) must satisfy

(m ≠ i + 1)G(i) Æ (m ≠ i)G(i + 1) (5)

But then using (4),

Q(i + 1) ≠ Q(i) = G(i + 1) ≠ m ≠ i + 1
m ≠ i

G(i) Ø 0 (6)

Hence, the higher the ideal utility of a product, the higher the choice probability associated with

that product, i.e., Q(1) Æ Q(2) Æ · · · Æ Q(m). Observe that the inequalities in both (5) and (6)

are strict if and only if u

i

< u

i+1.

An attractive property of EC probabilities is logconcavity.

Lemma 1. (Logconcavity) The exponomial choice probabilities, Q(i), are each a logconcave

function of the ideal utilities in the region u1 Æ u2 Æ · · · Æ u

m

.

This result only applies to ordered ideal utilities, but it is a building block for showing that

logconcavity extends to the choices’ parameter space (using unordered utilities) provided the ideal

utilities are linear functions of the unknown parameters.

In the rest of this section, we use the index j to identify and label a product name and not

its particular ideal utility rank among available choices. In building the likelihood function this is

necessary because consumers choose products and not their ranks. Suppose, for choice scenario k,

consumers are o�ered a set of products indexed by the set S

k

. Let n

kj

represent the number of

consumers who chose product j, j œ S

k

, for choice scenario k. Assume product j has an ideal utility

u

kj

(“) that is a linear function of its unknown parameters, represented by the vector “. To capture
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a product’s rank within each choice set, we define the integer-valued rank function as (1 = lowest)

r

kj

(“) = rank of u

kj

(“) among all u

ki

(“), i œ S

k

.

We maintain the notational convention that Q(1) refers to the probability of the lowest utility

product, Q(2) refers to the probability of the second lowest utility product, etc. Thus the probability

that a consumer chooses product j in choice scenario k is simply Q(r
kj

(“)).

Assuming consumers are exposed to a total of K choice scenarios, the loglikelihood function is

LL(“) =
Kÿ

k=1

ÿ

jœS

k

n

kj

ln (Q(r
kj

(“))) . (7)

An important property for estimation is given in the following theorem.

Theorem 2. (Concavity of Loglikelihood Function) LL(“) =
q

K

k=1
q

jœS

k

n

kj

ln (Q(r
kj

(“)))

is a concave function of the unknown parameters “.

Theorem 2 is the primary reason estimating the unknown parameters is both fast and easy on

real data, something that we experienced first-hand by applications to 25 di�erent categories of

consumer level grocery data (Anonymous 2014).

3.3 Patterns of Cannibalization

Inherent in any discrete choice setting, new choices cannibalize existing demand. In this subsection

we show that cannibalization behaves di�erently in EC than MNL. In the MNL model, the IIA

(independence of irrelevant alternatives) property holds that the ratio of two choice probabilities is

constant regardless of the remaining alternatives in the choice set. This implies demand cannibal-

ization is proportional across existing products. The IIA property does not hold for the EC model.

A simple numerical example should make this clear.

Numerical Example. Consider an initial choice set consisting of three products with ideal utilities

u1 = 1.1, u2 = 1.2, u3 = 1.3, plus an outside option (no buy) with ideal utility u0 = 1.0 (and zero

expected utility, given ⁄ = 1). Then consider an expanded choice set that includes a fourth product

with ideal utility u4 = 1.4. The choice probabilities for both scenarios are given in Table 1 below.
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Table 1: Choice probabilities for three and four product examples.

The introduction of product 4 reduces the choice probability of product 1 by a relative fraction

of (.201-.119)/.201 = .408, for product 2 by (.283-.183)/.283 = .353, and for product 3 by (.378-

.265)/.378 = .299. In other words, from an assortment planning perspective, introducing a product

that is more attractive than all the alternatives in a choice set appears to have a disproportionately

larger impact (in percentage terms) on the less attractive products. This turns out to be provable.

Theorem 3. (Addition of a Superior Choice) Consider ideal utilities u1 Æ u2 Æ · · · Æ u

I

. Let

the choice probability for item i be denoted by Q

I(i). Suppose a new item with ideal utility u

I+1 is

introduced to the choice set so that u1 Æ u2 Æ · · · Æ u

I

Æ u

I+1. Let the new choice probabilities for

the expanded set be denoted by Q

I+1(i). Then

Q

I+1(i)
Q

I(i) Æ Q

I+1(i + 1)
Q

I(i + 1) i = 1, 2, . . . , I ≠ 1.

Now consider the relative change in choice probabilities as in the numerical example above.

Theorem 3 implies Q

I(i)≠Q

I+1(i)
Q

I(i) Ø Q

I(i+1)≠Q

I+1(i+1)
Q

I(i+1) for i = 1, 2, . . . , I ≠ 1, that is, when a superior

product is added to the choice set, the percent reduction in choice probability is greater for products

with lower ideal utility. Therefore, unlike MNL, the EC model implies that new products can

cannibalize existing demand at non-proportional rates.

A related result is obtained by studying the elasticities of the choice probabilities. It is not hard

to show using (3) and (4) that the elasticities are

E

i

k

© ˆQ(i)
ˆu

k

u

k

Q(i) =

Y
_______]

_______[

≠u

k

i < k

u

k

·
Ë

(m≠k+1)G(k)
Q(k) ≠ 1

È
i = k.

≠u

k

· Q(k)
Q(i) i > k

(8)
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Observe that the monotonicity of choice probabilities implies that E

i

k

< E

i

Õ
k

Æ 0 for any three

choices i < k < i

Õ with u

i

< u

k

or u

k

< u

i

Õ . This means that when the ideal utility for a

mid-tier product is increased (as might occur if its price were reduced on a promotion), it has a

proportionately larger e�ect on products of lower ideal utility. To the extent that higher product

quality translates into higher ideal utility, this result is fully consistent with the empirical findings

of Blattberg and Wisniewski (1989), who showed that price reductions in mid-tier quality products

stole market share disproportionately from lower-tier products.

4. Pricing under Exponomial Choice

When choices are products to buy, the consumer utility is typically a function of many factors

(quality, aesthetics, etc.) including price. We assume that the ideal utility of product j is separable

and linear in price p

j

, i.e.,

u

j

(p
j

) = –

j

≠ —p

j

j = 1, ..., m. (9)

The intercept –

j

captures all non-price related factors and measures the intrinsic desirability of

the product, i.e., the ideal utility of product j if p

j

= 0. The coe�cient — (— > 0) captures the

price sensitivity of consumers. It is important to note that the labeling of products in (9) does

not imply any ordering of their ideal utilities as it does in Theorem 1; this is because the ordering

of products via their ideal utilities involves prices. It remains to be seen how the ideal utilities of

these products are ordered once their prices are decided, which is the focus of our structural results

in this section.

The objective is to maximize expected revenue, but profit maximization—with marginal cost

c

j

per unit of product j—can be easily accommodated. Rewriting the ideal utility equation in (9)

as u

j

(p
j

) = (–
j

≠ —c

j

) ≠ —(p
j

≠ c

j

), it is easy to see that the profit maximization model would

have profit margin (p
j

≠ c

j

) in place of price, and (–
j

≠ —c

j

) would become the measure of intrinsic

desirability (= the ideal utility of product j assuming p

j

= c

j

). Hence, we set the marginal cost of

all products to zero without loss of generality.
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4.1 Optimal Pricing for a Fixed Assortment

In revenue management as well as assortment planning, it is common to optimize the expected

revenue of a given assortment. In the setting we consider next, a fixed assortment is o�ered to the

market and a manager coördinates prices to optimize the expected revenues from the assortment.

Suppose for the moment that we knew how the products’ ideal utilities (including the outside

option) were ordered at optimality. We could then relabel products so that u1 Æ u2 Æ · · · Æ u

m

.

Additionally suppose the outside option were in the n

th position (1 Æ n Æ m). The remaining

m ≠ 1 options are then products o�ered by a single firm that wants to price them optimally. The

firm’s expected revenue per choice could then be expressed as

R(p1, . . . , p

m

) =
mÿ

i=1
p

i

Q(i). (10)

Observe that we must impose the constraint p

n

= 0 (price of the outside option) to make the

revenue expression valid. This does not sacrifice any generality; because the price of the outside

option is fixed, its original price component can be rolled into the intercept and its price reset to 0.

We show next that we essentially know the optimal ordering of final ideal utilities of products

based on their intercepts; only the position of the outside option is unknown. The result rests on

a simple swapping argument.

Theorem 4. (Intrinsic Desirability of Products and Their Optimal Prices) Suppose all

products have been relabeled so that u1 Æ u2 Æ · · · Æ u

m

at optimal prices, and the outside option

is in position n. Then it cannot happen in the revenue maximizing solution that u

i

(p
i

) > u

i

Õ (p
i

Õ )

and –

i

< –

i

Õ for two arbitrary products i and i

Õ (i ”= n, i

Õ ”= n).

The importance of the preceding theorem is that it implies intrinsically less desirable products

(as measured by their –

i

) cannot be assigned higher ideal utilities (and therefore higher probabil-

ities) than intrinsically more desirable products once prices are optimized. This makes the search

for optimal prices considerably easier. Once the position of the outside option is known—and there

are only m possibilities—the remaining positions are taken by products in order of increasing –

i

.

This means the particular choice probability formula (2) to apply to each product is known as well.

To solve the firm’s pricing problem, one may assume each possible position for the outside option

15



and solve m optimization problems. We refer to these as conditional price optimization problems

because they are conditioned on the position of the outside option.

Each conditional optimization can be transformed into a separable concave programming prob-

lem, which means standard optimization techniques can be used for its solution. We now outline

the key steps of this transformation.

Conditional Price Optimization. The ideal utility of the outside option is assumed to be

in position n (1 Æ n Æ m) with p

n

= 0 at optimality. The firm’s m ≠1 products are assigned to the

remaining positions in order of increasing intrinsic desirability. For the purposes of this conditional

optimization, products and prices are henceforth labeled according to their position in this list.

By Theorem 4 and our assumption regarding the position of the outside option at optimality,

the optimal prices must satisfy u1(p1) Æ u2(p2) Æ · · · Æ u

m

(p
m

). The structure of the probabilities

in (4) implies the expected revenue defined in (10) can be expressed as

R(p1, . . . , p

m

) = G(1)

S

U
p1 ≠ 1

m ≠ 1

mÿ

j=2
p

j

T

V + G(2)

S

U
p2 ≠ 1

m ≠ 2

mÿ

j=3
p

j

T

V

+ · · · + G(m ≠ 1) [p
m≠1 ≠ p

m

] + G(m) [p
m

] . (11)

We transform the price variables into new “y” variables using the linear transformation y = Ap,

where p

T = (p1, p2, . . . , p

m

), y

T = (y1, y2, . . . , y

m

), and the matrix A is upper triangular with

elements A

ij

= ≠1
m≠i

for j > i, A

ij

= 1 for j = i, and A

ij

= 0 for j < i (the rows of A are the

coe�cients of prices in the bracketed terms of equation (11)). We then define parameters

”

i

=
mÿ

j=i+1
(–

j

≠ –

i

) i = 1, 2, . . . , m ≠ 1

”

m

= 0.

The y’s are then transformed to equivalent w

Õ
s using the nonlinear transformation

w

i

= exp [≠”

i

≠ (m ≠ i)—y

i

] i = 1, 2, . . . , m ≠ 1

w

m

= z

m

.
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Table 2: Solutions to the five conditional price optimization problems.

The equivalent conditional optimization to be solved is

Max R(w1, . . . , w

m

) = w

m

+
q

m≠1
i=1

w

i

(m≠i+1) · [ln(w
i

)+”

i

]
≠(m≠i)— (12)

s.t. ≠ ln(w
n

)+”

n

(m≠n)— ≠ ln(w
n+1)+”

n+1
(m≠n)(m≠n≠1)— ≠ ln(w

n+2)+”

n+2
(m≠n≠1)(m≠n≠2)— ≠ · · · ≠ ln(w

m≠1)+”

m≠1
2—

+ w

m

Æ 0 (13)

w1 Æ w2 Æ · · · Æ w

m≠1 Æ 1 (14)

The objective function (12) is concave and separable. The nonlinear but separable and convex

constraint in (13) ensures that the outside option has price p

n

= 0. The linear inequality constraints

in (14) ensure the optimal utilities satisfy the ordering of the u

i

specified at the outset. To determine

the optimal revenue, one solves m di�erent versions of the problem formulated in (12)-(14), each

one adjusted to account for the conditional position of the outside option. This optimization has

good structure and could even be solved using a piecewise linear approximation and thus linear

programming.

Numerical Example. Consider a set of four products with ideal utilities u1 = 9≠p1, u2 = 9.1≠p2,

u3 = 9.5 ≠ p3, u4 = 10 ≠ p4, and outside option u0 = 8. There are five di�erent conditional price

optimization problems to solve. The solutions to each of these as well as the corresponding prices

and revenues are given in Table 2. The w’s are those that solve (12)-(14), whereas the prices

p(1), . . . , p(5) correspond to the prices of the ranked alternatives; for example, when the outside

option is constrained to be the least desirable product, its price is p(1) = 0, and the remaining

prices p(2) = 1.00, p(3) = 1.10, p(4) = 1.39, p(5) = 1.65 reflect the prices for products 1, 2, 3,

and 4 respectively. With the exception of the outside option (whose price is constrained to be

0), products are always ranked in ascending order of intrinsic desirability, i.e., by their intercepts

–

i

. In this example, the global optimal prices are those where the outside option is ranked third
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from the bottom (total revenue of 1.268) and the corresponding prices are 1.39 (product 1), 1.39

(product 2), 1.45 (product 3), and 1.72 (product 4). It is easy to check that the ideal utilities for

the five alternatives are 7.61 (product 1), 7.71 (product 2), 8.00 (outside option), 8.05 (product 3),

and 8.28 (product 4). The associated choice probabilities are .040, .065, .205, .240, .450. Note that

20.5% of potential buyers do not buy (they choose the outside option).

A closer examination of the results suggests that those products whose ideal utilities are below

that of the outside option have equal prices. For example, the final optimal prices are $1.39 for

both products 1 and 2. This is not a coincidence, as the following theorem explains. Without loss

of generality, we assume the price of the outside option has been reset to 0 (i.e., its price term

has been rolled into its intercept) and the products are indexed and relabeled according to their

optimal ideal utilities u1 Æ u2 Æ · · · Æ u

m

. Recall that we set the marginal cost of all products to

zero without loss of generality. Prices can thus be viewed as equivalent to profit margins.

Theorem 5. (Monotonicity of Optimal Prices) Assume product i’s ideal utility is linear in

prices (u
i

= –

i

≠ —p

i

) and the –

i

are distinct (to avoid ties). Then (a) all products whose optimal

ideal utilities are less than the outside option have identical optimal prices; (b) all products whose

optimal ideal utilities are greater than the outside option have optimal prices that increase mono-

tonically. That is, p

ú
1 = · · · = p

ú
n≠1 < p

ú
n+1 < · · · < p

ú
m

, where n is the ideal utility position of the

outside option.

The theorem is relatively easy to visualize. The optimal prices follow a “hockey stick” pattern,

where the outside option divides the constant price of the lower utility products (the “shaft”) from

the increasing prices of the higher utility products (the “blade”).

This result yields an appealing managerial insight. It prescribes profit margins or markups that

must increase in expected utilities for products that are more desirable than the outside option, but

a constant markup for all other products. Thus, o�ering higher quality—one way to increase the

utility of a product—means higher profit margins only if the product is ultimately more desirable

than the outside option. In contrast, the MNL model cannot accommodate increasing margins; it

prescribes a constant markup for all products in the assortment (Anderson et al. 1992).

Suppose all products including the outside option are relabeled in order of their optimal ideal

utilities (after price optimization is complete). Then an interesting consequence of the proof of
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Theorem 5 is that for any product whose optimal ideal utility is less than the outside option, its

(constant) price satisfies the equation

p

i

= p

i+1 + 1
(m ≠ i)— (15)

where p

i

is the price of the product having the i-th lowest utility (i.e., u

i

), p

i+1 is the average

price of all products {i + 1, i + 2, . . . , m} (i.e., the set of products having higher ideal utilities than

product i), and — is the price sensitivity parameter. In the special case where the outside option

has the highest optimal utility (and so has index m), we have p

m

= 0, p

m≠1 = + 1
—

, and so p

i

= + 1
—

for i = 1, 2, . . . , m ≠ 2. When marginal costs c

i

are included (recall intercepts are then adjusted

and the p

i

represent margins), the optimal sticker price is p

ú
i

= c

i

+ 1
—

. Observe that this special

case of EC echoes the constant markup property of MNL, except the EC formula is closed-form

and represents a form of “pass through” pricing based solely on the consumers’ price sensitivity

parameter.

4.2 Price Competition Among Single-Product Firms

In contrast to a manager coördinating all prices for the assortment (§4.1), imagine m ≠ 1 firms

each o�ering a single product and setting its own price independently through oligopolistic market

competition. Although the prices ultimately determined would di�er from those selected by a

monopolist, we show next that the products’ optimal ideal utilities would still be ordered according

to each product’s intrinsic desirability (akin to Theorem 4). This means there is at least agreement

on how products should be ranked in monopoly and oligopoly solutions.

Assume we know which product occupies position i in the list of ordered ideal utilities in

the Nash equilibrium, and assume the ideal utility for the product is a linear function of price

(u
i

= –

i

≠—p

i

with — > 0). The unconstrained optimal revenue R

i

(u
i

) obtained by the firm owning

product i, expressed as a function of the ideal utility u

i

, is

R

i

(u
i

) = –

i

≠ u

i

—

· Q(i) (16)

where u

i

Æ –

i

. Di�erentiation of equation (16) with respect to u

i

reveals the optimal ideal utility

19



satisfies the equation

(–
i

≠ u

i

) = Q(i)
ˆQ(i)
ˆu

i

.

The right hand side ratio Q(i)/ˆQ(i)
ˆu

i

has three important properties summarized below.

Property 1. (a) Monotonicity and Positivity: Q(i)/ˆQ(i)
ˆu

i

is monotone nondecreasing in u

i

and

strictly positive. (b) Agreement on Boundary: Q(i)/ˆQ(i)
ˆu

i

= Q(i ≠ 1)/ˆQ(i≠1)
ˆu

i≠1
when u

i

= u

i≠1 , i.e.,

Q(i)/ˆQ(i)
ˆu

i

|
u

i

=u

i≠1= Q(i ≠ 1)/ˆQ(i≠1)
ˆu

i≠1
. (c) Independence from Higher-Ranked Ideal Utilities: The

ratio Q(i)/ˆQ(i)
ˆu

i

is independent of the ideal utilities u

i+1, . . . , u

m

.

These three simple properties allow us to establish that the following construction process results

in a Nash equilibrium.

Construction of a Nash Equilibrium. Suppose each product is o�ered by a separate

firm and the products have been ordered (relabeled) according to their intrinsic desirability as

–

Õ
1, –

Õ
2, ....–

Õ
m≠1; the primes (Õ) signify an initial and temporary ordering because the outside option

has yet to be included. Let the outside option have ideal utility –0. Beginning with the least

desirable product, the one having intercept –

Õ
1, solve

!
–

Õ
1 ≠ u1

"
= Q(1)

ˆQ(1)
ˆu1

= 1
(m ≠ 1)

The optimal solution is u1 = –

Õ
1 ≠ 1

m≠1 . If u1 Æ –0, set –1 = –

Õ
1, u

ú
1 = –1 ≠ 1

m≠1 . If u1 > –0, set

–1 = –0, u

ú
1 = –0 and relabel the remaining temporary intercepts using –

Õ
j≠1 æ –

Õ
j

for j = 2, ..., m.

The general step is to find u

i

that solves

!
–

Õ
i

≠ u

i

"
=

S

U Q(i)
ˆQ(i)
ˆu

i

T

V

u

k

=u

ú
k

k=1,2,...,i≠1

(17)

Observe that the previous optimal ideal utilities for less desirable products (k = 1, 2, ..., i ≠ 1) are

substituted and fixed in this equation. That this equation always has a solution with u

i

Ø u

ú
i≠1
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requires some inductive reasoning. Observe

–

Õ
i

≠ u

ú
i≠1 Ø –

Õ
i≠1 ≠ u

ú
i≠1 Ø

S

UQ(i ≠ 1)
ˆQ(i≠1)

ˆu

i≠1

T

V

u

k

=u

ú
k

k=1,2,...,i≠1

(18)

=

S

U Q(i)
ˆQ(i)
ˆu

i

T

V

u

i

=u

ú
i≠1; u

k

=u

ú
k

k=1,2,...,i≠1

The first inequality is because the –

Õ
i

are nondecreasing; the second inequality is because u

ú
i≠1 either

solves its version of equation (17) or equals –0 (in which case we have “>” for the second Ø in

18); the last equality is due to Property 1(b). However, the right hand side of (17) is positive

nondecreasing by Property 1(a), and the left hand side of (17) equals 0 when u

i

= –

Õ
i

; thus (17)

has a solution u

i

on the interval [uú
i≠1, –

Õ
i

]. If this solution satisfies u

i

Æ –0, then set u

ú
i

= u

i

and

–

i

= –

Õ
i

. If u

i

> –0 , then set u

ú
i

= –0 and relabel the remaining temporary intercepts using

–

Õ
j≠1 æ –

Õ
j

for j = i + 1, ..., m.

That this produces a Nash equilibrium may require some additional thought. We have shown

the construction process naturally orders the optimal ideal utilities u

ú
1 Æ u

ú
2 Æ · · · Æ u

ú
m

. Moreover,

we claim no firm has an incentive to deviate from their optimal ideal utility. This is because each

firm selected its own optimal ideal utility with full knowledge of all products having lesser ideal

utilities, and the selections by all firms having products with higher ideal utilities have no impact on

their decision (see Property 1(c)). Thus the construction does indeed produce a Nash equilibrium

in the ideal utilities. Optimal prices can be backed out by inverting the linear utility-price equation

for each product.

Numerical Example. Consider the previous four-product example with ideal utilities u1 = 9≠p1,

u2 = 9.1 ≠ p2, u3 = 9.5 ≠ p3, u4 = 10 ≠ p4, and outside option –0 = 8. Here, –

Õ
1 = 9, –

Õ
2 = 9.1,

–

Õ
3 = 9.5, –

Õ
4 = 10. Solving for –

Õ
1 ≠ u1 = 1

m≠1 yields u1 = 9 ≠ 1
4 = 8.75. Because 8.75 > –0 = 8, we

set u

ú
1 = 8, –1 = 8 and relabel the remaining intercepts –

Õ
2 = 9, –

Õ
3 = 9.1, –

Õ
4 = 9.5, –

Õ
5 = 10. Fixing

u

ú
1 = 8 and solving –

Õ
2 ≠ u2 = Q(2)/ˆQ(2)

ˆu2
yields u2 = 8.673, and so we set u

ú
2 = 8.673, –2 = 9.

Continuing in this fashion we obtain the results in Table 3. The total expected revenue is .6286,

approximately half of what was achieved by a monopolist setting prices. As expected, competition

brings down prices, and only 0.58% of consumers fail to buy a product. Recall the corresponding

figure was 20.5% in the monopoly case.
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Table 3: Nash equilibrium in prices.

5. Assortment Planning under Exponomial Choice

In this section we treat two canonical assortment planning problems with exogenous and endogenous

prices.

5.1 Optimal Assortment Given Exogenous Prices

Here we assume the assortment is endogenous but prices are exogenous. This occurs, for example,

when a manufacturer forces its retailers to follow an MSRP.

The IIA property of the MNL model implies that, when a new product is introduced to the

choice set, the choice probabilities for all prior products are reduced in equal proportion. This

is enough to imply that the optimal assortment consists of some contiguous subset of the most

expensive products (Talluri and van Ryzin 2004). One can construct an algorithmic proof of this

result that highlights the role of the IIA property (details available upon request).

In contrast, the EC model does not exhibit the IIA property and so optimizing the assortment

is not as easy. However, this is not without some interesting consequences. The optimal assortment

in the EC model does not need to be a contiguous set of the most expensive choices. In other words,

rank-ordering products by price from the highest to the lowest, the EC-optimal assortment may

leapfrog some products with higher prices in favor of some products with lower prices. For example,

Table 4 shows 10 products plus an outside option (choice 11) ranked in order of descending prices.

The optimal assortment {1, 2, 4, 6, 7} skips products 3 and 5 even though they have higher prices

than products 6 and 7. The intuitive reason is that the skipped products—which have high ideal

utilities—would significantly cannibalize the higher priced choices.

Finding an optimal assortment 100% of the time proved to be a daunting task given the combi-
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Table 4: Optimal assortment vs. heuristic solution (exogenous prices)

natorial complexity of the problem. However, we now describe a simple and very fast heuristic that

solves the problem with near certainty. The heuristic is based on the idea of backward elimination:

starting with the complete list of products, eliminate one product at a time until expected revenue

stops improving.

Backward Elimination Heuristic for Assortment Optimization under Exogenous Prices:

1. Initialize the assortment to include all products and the outside option, S = {1, 2, ..., m}. Let

index n denote the outside option.

2. Identify the product in S \{n} that would improve the expected revenue the most if removed,

i = argmax{R(S \ {i}) ≠ R(S) | i œ S \ {n}}, where R(S0) is the expected revenue defined in

(10) for any choice set S0.

3. If no product improves the expected revenue when removed, then stop. Otherwise, remove

product i from S, i.e., S Ω S \ {i}, and repeat step 2.

We report two numerical experiments to help understand the skipping behavior and the heuristic’s

performance. Both experiments involved solving 500, 000 randomly generated problems with 10

products plus an outside option (m = 11) using complete enumeration versus backward elimination.

Experiment 1 (E1) is a conservative test of skipping; ideal utilities and prices were randomly

drawn but monotone, which tends to reduce the incidence of skips. We generated these parameters

by taking independent draws from uniform and normal distributions as follows: u1 = X1 and
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u

i

= u

i≠1 + X

i

for i = 2, ..., 10, where X

i

≥ U (0, 1) and U(a, b) denotes the uniform distribution

with support [a, b]; p1 = Y1 and p

i

= p

i≠1 + Y

i

for i = 2, ..., 10, where Y

i

≥ U (0, 1); u11 ≥ N(5, 2),

where N(µ, ‡) denotes the normal distribution with mean µ and standard deviation ‡, and p11 = 0

for the outside option; and –

i

= u

i

+ p

i

for i = 1, ..., 11.

Experiment 2 (E2) is a conservative test of the heuristic; intrinsic desirability parameters (–
i

)

and prices (p
i

) were independently drawn with no particular ordering, which creates large variability

in choices and tends to influence the performance of the heuristic adversely. We generated these

parameters as follows: –

i

≥ U (≠4, 12) and p

i

≥ U (0, 6) for i = 1, ..., 10; –11 = 1 and p11 = 0 for

the outside option; and u

i

= –

i

≠ p

i

for i = 1, ..., 11.

We observed one or more skipped products in the optimal solution for 7.74% and 29.36% of

E1 and E2 problem instances, respectively. Skips, defined as any product not included in the

optimal assortment that contained a lower-priced product, tended to happen when the skipped

product was su�ciently attractive that it would cannibalize too much demand from higher-priced

products. Within the (sub)sample where skipping occurred, the modal number of skips was 1 and

the maximum was 7 in both experiments. In many cases, the optimal solution had multiple runs of

skipped products. Hence, skips had a substantial presence in optimal assortments, even for highly

structured problem instances with ordered ideal utilities and prices (E1).

Out of all randomly generated E1 and E2 problem instances, the heuristic solution matched the

optimal solution 99.87% and 99.97% of the time (645 and 158 mismatches, respectively). In those

rare cases where there was a mismatch, the optimality gap was typically quite small, averaging

0.05% (E1) and 1.71% (E2) weighted by optimal revenues. Only 27 of the mismatches in E2

had optimality gaps in excess of 10%, and those were all low-revenue problems (average optimal

revenue of 0.98 vs. 4.33 for all problems) where even small misses meant large percentage gaps.

Two-thirds (105) of the mismatches in E2 had gaps below 3%. As for the example in Table 4—one

of the mismatches from E2—the heuristic produced a notably di�erent assortment, but missed the

optimal revenue of 5.055 by only 0.215%. In sum: E2 produced less frequent but worse mismatches

than E1; yet, even with the extreme choice variability in E2, the heuristic performed remarkably

well; it produced the optimal solution with near-perfect certainty and accuracy when ideal utilities

and prices were ordered (E1).

To explain why such a heuristic should work well in practice, we consider its application to
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a class of problems with good structure–those where the choice model is MNL. The idea here is

similar to that of testing a nonlinear maximization technique on negative definite quadratic forms.

If it works well on a class of problems with good structure, it bodes well for its performance in

general. This is the motivation for the following result.

Theorem 6. Assume prices are exogenous and the choice model is MNL. Backward elimination

produces an optimal assortment in a finite number of steps.

A related problem is to find the optimal assortment having no more than C di�erent products.

Rusmevichientong et al. (2010) and Farias et al. (2011) developed optimal algorithms based on a

series of product additions and exchanges. In contrast to their forward-searching approach, our

algorithm is based on backward elimination and involves no exchanges—once a product is removed

it never returns. Theorem 6 suggests backward elimination may also be a valuable idea.

Surprisingly, the case where both the assortment and prices are endogenous can be solved

optimally without a heuristic. This case is treated in the next subsection.

5.2 Optimal Assortment and Prices

In order to analyze the case where the assortment and prices are both endogenous, we prove an

important structural result that reduces the number of possible assortments to m ≠ 1. Once again

the notion of intrinsic desirability is front and center.

Theorem 7. (Structure of the Optimal Assortment under Endogenous Prices) The

optimal assortment is composed of products with highest intrinsic desirability, i.e., labeling the

products such that –1 Æ –2 Æ · · · Æ –

m

, S

ú = {m ≠ k, . . . , m} \ {n} for some k œ {0, 1, . . . , m ≠ 1},

where n is the position of the outside option (1 Æ n Æ m).

The importance of the preceding theorem is that we can now optimize both the assortment and

prices simultaneously. Theorem 7 indicates only m ≠ 1 possible assortments. The optimal prices

for each of these m≠1 assortments can be computed using the pricing techniques described in §4.1.

The optimal revenues can then be computed and compared so that both the optimal assortment

and the optimal prices are obtained jointly. Note that the structure shown in Theorem 7 is not

necessarily optimal when prices are given exogenously (see Table 4 for an example, where the two

most intrinsically desirable products, 3 and 5, are not in the optimal assortment).
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6. Concluding Remarks

We propose a new, tractable discrete choice model for use in pricing and assortment planning.

The model is based on the premise that consumers would not choose to overpay if they were

well-informed about products and prices, thus creating a negatively skewed willingness-to-pay dis-

tribution. The model has closed-form choice probabilities that are linear functions of exponential

terms. It implies a concave loglikelihood function and disproportional demand cannibalization

between products (i.e., it violates the IIA property).

6.1 Summary of Pricing and Assortment Planning Insights

We o�er two significant managerial insights based on the new model, which contrast with the

prevailing choice models (MNL and NL) currently used in price and assortment optimization.

First, the EC model shows that optimal markups (profit margins) increase in expected utilities

for all products that are more desirable than the outside option. Second, when deciding optimal

assortments given prices set by management, the EC model shows that skipping or leapfrogging

higher-priced products in favor of lower-priced ones – due to their favorable utility position – can

be optimal. The managerial appeal of these insights lies in product desirability (and the resulting

utility) playing a major role in optimal pricing and assortment planning decisions. By contrast,

logit-based models imply constant margins and no skipping, entirely independent of the products’

desirability levels.

6.2 Extensions and Future Research Directions

Avenues for future research include (i) applying the EC model in areas that use discrete choice

models as analytical building blocks and (ii) pursuing various generalizations of the EC model.

With respect to (i), it would be interesting to see, for example, what the EC model may bring to

bear on choice-based revenue management (e.g., Chaneton and Vulcano 2011) and pricing (e.g.,

van Ryzin 2013), inventory management under price-dependent demand (e.g., Aydın and Porteus

2008), product line design (e.g., Alptekino�lu and Corbett 2010) and multiproduct competition

(e.g., Cachon et al. 2008). Because optimal pricing has good structure in the EC model (and

even a simple closed-form expression under certain conditions), it could potentially simplify more
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complex problems if used as the embedded choice model.

With respect to (ii), the baseline version of the EC model generalizes in many ways. For

example, independent but non-identical random terms—requiring a rate parameter ⁄

i

associated

with each choice i—would still yield closed-form choice probabilities, which we state without proof.

Theorem 8. (Generalized Exponomial Choice Probabilities) Out of m products with utilities

U(i) = u

i

≠ z

i

(u1 Æ · · · Æ u

m

), where z

i

follow independent exponential distributions with rate

⁄

i

, the probability that the consumer chooses product i œ {1, . . . , m}, i.e., considers it as utility-

maximizing, is

Q(i) = ⁄

i

L

i

exp

S

U≠
mÿ

j=i

⁄

j

(u
j

≠ u

i

)

T

V ≠
i≠1ÿ

k=1

⁄

i

⁄

k

L

k

L

k+1
exp

S

U≠
mÿ

j=k

⁄

j

(u
j

≠ u

k

)

T

V (19)

where L

i

©
mq

j=i

⁄

j

for i = 1, . . . , m.

This generalization allows error terms with di�erent variances, which is not analytically tractable

in the logit framework. It may also enable richer choice settings; as a case in point, we know the

choice probabilities are no longer necessarily ascending in ideal utilities (instead, it can be shown

that the ratio Q(i)/⁄

i

is monotone increasing in i), but this could be viewed as a positive feature

in some settings.

The EC model can be nested using a fairly simple formula for the expected value of maximum

utility out of a nest, which we omit, but the model may no longer be consistent with utility

maximization (although it is consistent with a two-stage sequential choice framework, one described

by Anderson et al. (1992) for NL). A mixed version is certainly possible using existing simulation

techniques, but there is also the possibility of closed-form expressions. This is because the choice

probabilities in the mixed version involve an integral with respect to the distribution of unknown

parameters, and the EC model appears to be more integral-friendly than the existing choice models.

Despite promising empirical results on grocery data (Anonymous 2014), a full understanding

of the EC model’s strengths and weaknesses in empirical applications requires much more work.

Fortunately, there is a large and well established literature to draw from on choice estimation (Train

2009). Structural results we present in this paper, especially the concavity of the loglikelihood

function (Theorem 2), pave the way for the EC model to be considered as an empirical building
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block in much the way that MNL has (e.g., Guadagni and Little 1983). Indeed, the vast array of

results and machinery now available in the choice modeling literature should serve as a valuable

guide for future parallel investigations of the EC model.
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