
Asymptotically Optimal Dynamic Pricing in
Observable Queues

Jeunghyun Kim, Ramandeep Randhawa



Asymptotically Optimal Dynamic Pricing in Observable Queues

February 23, 2015

Abstract

We study optimal dynamic pricing to maximize revenues in queueing systems with price and

delay sensitive customers. A key feature of our model is that the system congestion is visible so

that upon arrival, customers decide to join the system based on the congestion and the price at

that time. We analyze this problem in the typical asymptotic regime of large customer market

size and capacity. This asymptotic analysis involves solving a first order or fluid optimization

problem that ignores stochastic variability and then refining it by minimizing the revenue loss

that occurs due to stochasticity. Denoting the market size by n, one expects the revenue loss

due to stochasticity to be on the scale of n raised to the power one-half. However, surprisingly,

we find that the optimal dynamic pricing leads to an order improvement and the loss due to

stochasticity is on the scale of n raised to the power one-third. The corresponding asymptotic

control problem also turns out to be non-conventional. We solve this problem to obtain a near-

optimal dynamic pricing policy, and further, we show that a simple policy of using only two

prices can achieve most of the benefits of dynamic pricing.

Keywords: revenue management, dynamic pricing, lead-time quotation, asymptotic analysis,

diffusion analysis
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1 Introduction

Time is an important attribute of many products and services with customers valuing quick access

at a premium. Given that the ability of a firm to provide quick access changes with the congestion

in the system, pricing dynamically as a function of the congestion seems to be a good strategy.

It has been observed (see, for example, Biller et al., 2005) that employing dynamic pricing has

improved profits and other supply chain metrics in the automotive industry. Indeed, it is now

standard for make-to-order manufacturers to change prices dynamically as a means to manage

demand and supply. Dynamic pricing has also been implemented in road-tolls, where toll-paying

single drivers gain access to high occupancy carpool lanes, and more recently by firms such as Uber

that use surge pricing to manage congestion between customers and available taxis. The goal of

this paper is to address the questions: What is the value of changing prices dynamically and what

is the optimal dynamic pricing strategy?

We study this question in the context of a monopolistic firm processing price and delay sensitive

jobs (or, equivalently customers) who arrive as a Poisson process. Customers are heterogeneous in

their valuation and have linear disutility in their waiting times. At the time of arrival, the customers

observe the posted or quoted waiting time and compare their value with the sum total of the price

and waiting costs and then either join if the net value is positive or leave the system otherwise. The

firm has limited and fixed capacity and we model the system as a single-server queue. The firm’s

decision is to set prices as a function of the congestion or queue-length in order to maximize its

long-term average revenue rate. As we will discuss in the literature review section, static versions

of this problem, in which the firm sets a single price using steady-state queueing behavior, are well

understood. However, the literature on dynamic pricing is quite sparse and treats only some special

cases. A priori, one expects some similarity between dynamic pricing and static pricing especially

for large systems. This is so because for large systems both pricing methods, loosely speaking,

attempt to minimize the system variability, or rather the revenue loss due to variability.

Our first result is that this intuition doesn’t quite play out and in fact there is a fundamental

difference between the two pricing methods in large systems; dynamic pricing can lead to an “order

improvement” in performance relative to static pricing. Formally, we consider the typical large
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system asymptotics in which the potential customer arrival rate and processing capacity are both

large, and increasing without bound. In this regime, static pricing, with linear customer disutility

for waits, has been established to follow the conventional square-root behavior, i.e., the loss in

revenue due to variability is of O(
√
n), where n denotes the system size. Somewhat surprisingly,

we find that dynamic pricing can mitigate the variability to the extent that the corresponding loss

in revenue is of a lower order. We identify this order to be the system scale raised to the power

one-third, i.e., O(n1/3). Further, we prove that a simple two-price policy, that sets a high price

when the queues are large and a low price otherwise can reap most of the benefits of dynamic

pricing. In particular, we prove that our proposed two-price policy achieves the O(n1/3)-scale up

to logarithmic terms.

Intuitively, the benefit from dynamic pricing that we find arises because a dynamic pricing

policy uses larger price refinements (of a larger order) compared with that in static pricing and

can maintain congestion at a lower order by increasing prices when queues are long, but at the

same time when the queues are short, the prices can be decreased to increase volume, and thus, the

revenue. In this sense, dynamic pricing provides an order of magnitude improvement over static

pricing. A mathematical explanation for this order improvement is as follows: the second-order

optimization problem trades-off the expected steady-state price refinement with the queue-length

scaled by system capacity (n). The conventional logic suggests that both of these should be on the

same order, which then would be the square-root order. However, by changing prices dynamically

especially by introducing negative price corrections, one can maintain the expected steady-state

price refinement at a much lower level, and hence balancing the trade-off with the expected queue-

length leads to a lower order of revenue loss. Technically, the optimization problem also contains

the second moment of the steady-state price refinement, which is typically of a lower order than

the expected steady-state price refinement. However, by changing the price dynamically, the first

moment of the steady-state price refinement is lowered to an extent that the second moment of

the steady-state price refinement becomes important and balancing this with the scaled expected

steady-state queue-length yields the one-third order.

From an analysis perspective, the conventional approaches of formulating the optimization
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problem using a limiting process do not work in our setting. Instead, we directly analyze the

underlying Markov Chain and work with approximations to the steady-state probabilities. These

allow us to formulate a control problem, which interestingly is not separable in the system scale,

and in this sense differentiates our work from antecedent literature as well. We solve this control

problem to propose a near-optimal pricing policy. This policy is intricate (as one would expect)

and changes prices with every arrival and departure to the system. Given such an intricate near-

optimal dynamic pricing policy, we feel our finding that a two-price policy can perform extremely

well, practically appealing.

2 Literature Review

This paper studies dynamic pricing to maximize revenues in queueing systems with observable

congestion under large market asymptotics. To place this paper’s model and results in perspective,

it is useful to view the related literature in terms of three dimensions: (a) Pricing method : do the

prices change with congestion (dynamic pricing) or remain fixed (static pricing); (b) Observability

of congestion: do the customers observe the congestion at time of joining the system or not; and

(c) Mode of analysis: is the analysis exact or asymptotic.

The literature that studies static pricing is much more extensive compared with that on dynamic

pricing. One of the first papers in this literature is Naor (1969). That paper studies the optimal

static price to be set when queues are observable. Another influential paper that considers static

pricing is Mendelson and Whang (1990), which studies differentiation between different customer

types when maximizing social welfare, but when the queues are not observable. Unobservable

queues lend a certain simplicity to the analysis because they allow using steady-state congestion

formulas directly, rather than dealing with the underlying Markov chain. More recent papers

that study static prices with unobservable queues are Cachon and Feldman (2011), that compares

subscription with pay-per-use, and Haviv and Randhawa (2014), that shows that a fixed price can

perform very well without any knowledge of the overall demand. All these papers take an exact

analysis approach. Maglaras and Zeevi (2003) is the first paper that studied the pricing problem

asymptotically and characterized the optimality of the “square-root” regime when the customer
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delay sensitivity is linear. That paper considers the case of unobservable queues. In that asymptotic

framework, Kumar and Randhawa (2010) studies static pricing and capacity sizing and reveals that

optimality scales depend on the curvature of the customer delay cost function near the origin. It

is worth mentioning that in this literature, there are also papers that consider settings in which

the firm announces lead-times. Plambeck and Ward (2008) considers such a model and uses an

asymptotic analysis to characterize the optimal static price and dynamic sequencing policies when

lead-times are quoted dynamically. Asymptotically, quoting lead-times is quite similar to simply

making the queue-length visible. One key difference is that in manufacturing settings, expediting

orders is allowed to ensure quoted lead-times are always met, which provides some additional

flexibility. Another related paper Lee and Ward (2014) considers customer abandonments while

studying the asymptotically optimal static pricing and capacity sizing decisions.

Turning to the literature on dynamic pricing. Early papers in this area assume that customers

are sensitive to only prices and not delay, and the firm changes prices dynamically because there

is a cost to the firm from having high congestion. Examples of such papers are Low (1974) and

Paschalidis and Tsitsiklis (2000). These two papers consider finite buffer systems. Low (1974)

proves that prices are non-decreasing in the number of customers in the system, whereas Paschalidis

and Tsitsiklis (2000) considers a multi-class system and numerically shows that static pricing can

perform quite well. More recent papers that study related problems are Yoon and Lewis (2004)

and Maglaras (2006): Yoon and Lewis (2004) assumes deterministic customer valuation but allows

non-stationarity in arrival and service rates and establishes interesting structural properties of the

optimal policy, and propose a practical point-wise stationary approximation; and Maglaras (2006)

proposes tractable capacity sizing, dynamic pricing, and sequencing for a multi-class system based

on a fluid approximation. Ata and Shneorson (2006) incorporates customer delay sensitivity and

observable queues into the dynamic pricing problem to maximize social welfare; the capacity is also

controllable. In this literature, perhaps the paper closest to ours is Celik and Maglaras (2008). That

paper uses an asymptotic approach to study dynamic pricing and scheduling to maximize revenues

when the firm quotes lead-times. A key difference is that we focus on settings in which capacity

is constraining. We feel that this approach provides flexibility in modeling situations in which
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capacity decisions are made over a long horizon and further helps study the cases in which there

are mismatches between supply and demand. Interestingly, this model change leads to a completely

different structure of the asymptotic problem. Another related paper in this domain is Ata and

Olsen (2013) which studies asymptotically optimal dynamic pricing and lead-time quotation in a

setting with two customer classes, and the customers have convex-concave delay costs; the customer

type is assumed not known to the manager.

While dynamic pricing is useful in dealing with congestible systems, its usefulness can be en-

hanced when there is parameter uncertainty or changes in underlying parameters. For instance,

Afeche and Ata (2013) uses dynamic pricing to learn customer delay sensitivity and Besbes and

Maglaras (2010) studies dynamic pricing when the demand is time-varying and stochastic. The

latter paper uses an observable queue framework with a customer model that is identical to ours.

However, the authors use an asymptotic fluid approach to capture the changes in market size,

whereas we use a diffusion based approach to capture the changes in congestion.

Our paper also relates to the literature on dynamic pricing in inventory systems. In particular,

our discussion of simple dynamic pricing policies relates to Netessine (2006), which optimizes the

number of price changes when dealing with a non-stationary arrival process. Other papers that use

dynamic pricing to learn demand characteristics in such systems are Farias and Van Roy (2010),

Eren and Maglaras (2010), Besbes and Zeevi (2012), and Harrison et al. (2012).

3 Model

We model the firm as a single-server queueing system that process jobs (or customers) which are

price and delay sensitive. We assume customer processing times are independent and identically

distributed according to an exponential distribution with unit mean and that the server processes

work at a fixed rate of n. Customers are differentiated on their valuation, which we assume is

independent and identically distributed across customers with a distribution whose cumulative

distribution and density functions are denoted by F and f , respectively. We assume that f is

continuously differentiable and its derivative is denoted by f ′. We also assume that the customer

valuation distribution has a non-decreasing hazard rate, i.e., H(x) := f(x)
1−F (x) is non-decreasing.
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Customers are homogeneous on their sensitivity to delay and we use h to denote the per unit

time cost of waiting. Upon arrival at time t, a customer observes the posted price p(t) and the

current queue-length Q(t). The customer joins the system if his randomly drawn valuation V

exceeds the total expected cost of joining the system. Because the firm’s processing rate is n, it

follows that a customer arriving at time t joins the queue if V > p(t) + hQ(t)/n. Alternatively,

instead of assuming the queue-length is visible, one can consider the case in which the firm quotes

the current lead-time, Q(t)/n. We further discuss lead-time quotations in Section 6.

We assume that potential customers arrive according to a Poisson process with an arrival rate

of nλ, which represents the market size. Thus, the effective arrival rate of customers who actually

join the system at time t is given by

nλP
(
V > p(t) + h

Q(t)

n

)
= nλF̄

(
p (t) + h

Q (t)

n

)
, (1)

where the tail distribution function F̄ (·) := 1 − F (·).

The firm’s decision is to select the optimal dynamic pricing strategy, i.e., the function p(·), in

order to maximize the long-term average revenue. For a pricing strategy p, using (1), we can write

firm’s rate of revenue accrual at time t as

p (t)nλF̄

(
p (t) + h

Q (t)

n

)
.

So, the firm’s optimization problem is

sup
p

lim sup
T→∞

1

T

∫ T

0
p (t)nλF̄

(
p (t) + h

Q (t)

n

)
dt. (2)

In this paper, we focus on stationary pricing policies so that p(t) is in fact p(Q(t)), and henceforth

we interpret the pricing function p as a function of the queue-length rather than the time explicitly.

So, (2) can be cast in the following steady-state formulation:

sup
p∈π

Rn(p) := E
[
p (Q)nλF̄

(
p (Q) + h

Q

n

)]
, (3)
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where the expectation is with respect to the steady-state queue-length distribution and π represents

the set of stationary pricing policies that are non-anticipating. We denote the optimal objective

function value by R⋆
n, and the optimizing price function by p⋆

n.

Notice that in this problem, the queue-length’s steady-state distribution is intertwined with

the choice of p, which makes solving (3) exactly difficult and not amenable to generating insights.

Therefore, we perform an asymptotic large system analysis in which the firm’s capacity n is large,

and correspondingly, the market size nλ is also large.

4 Asymptotic Analysis: Preliminaries and Static Pricing

Our asymptotic approach proceeds in the conventional manner. In Section 4.1, We first analyze the

system under a fluid approximation by taking a rate-based approach. Then, in Section 4.2, we per-

form some preliminary analysis for refining this approximation by incorporating the inter-temporal

fluctuations associated with customer arrivals and departures. Section 4.3 then characterizes the

asymptotically optimal static price that also serves as a benchmark for our analysis of dynamic

pricing in the next section.

4.1 Fluid analysis

In the fluid model of the system, customers are processed at a fixed rate of n as long as there is

work in the system, and customers arrive deterministically at the rate of nλF̄
(
p (Q(t)) + hQ(t)

n

)

at time t. Given the deterministic system behavior, it follows that the optimal pricing strategy for

the fluid model is to maintain the queue-length at a zero level by ensuring that the customer arrival

rate never exceeds the processing capacity. Thus, optimizing the fluid system entails solving

sup
p
pnλF̄ (p) (4)

s.t. nλF̄ (p) ≤ n.

We denote the unconstrained maximizer of the above program by p⋆ := arg maxp pF̄ (p). Because

the customer valuation distribution has a non-decreasing hazard rate, p⋆ is unique, and further the
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objective function in (4) is concave. Thus, (4) is solved by the price

p̄ := max

{
F̄−1

(
1

λ

)
, p⋆

}
.

We denote the optimal fluid objective function by R̄⋆
n.

The following result formally establishes a bound on the performance of dynamic pricing, in

particular, that the optimal revenue is bounded above by the optimal fluid objective. This bound

is quite useful as it allows us to focus on the revenue loss due to stochasticity that we define as

the gap between revenue obtained under a pricing policy and that obtained using the fluid model

(that has no stochasticity). The following result also establishes that the simple pricing strategy of

pricing at the fluid optimal price p̄, that is, p(q) = p̄ for all q ≥ 0, leads to o(n)-revenue loss. That

is, the revenue loss as a fraction of the system scale converges to zero.

Proposition 1.

(a) The optimal fluid objective value is an upper bound for the revenue obtained under any pricing

policy, i.e., for any n > 0, we have

R⋆
n ≤ R̄∗

n.

(b) The static price p̄ leads to o(n)-revenue loss due to stochasticity, i.e., we have

Rn (p̄) = R̄⋆
n − o(n).

We would like to highlight that though the naive policy of pricing at the fixed level p̄ is optimal

on the fluid scale, it ignores the queueing aspect of the problem completely. Hence, we only expect

this policy to perform well if the system is not capacity constrained or is extremely large in scale.

Because we anticipate capacity constraints to arise in practice, we focus on this setting by making

the following assumption.

Assumption 1. The system is capacity constrained so that the unconstrained optimizer of the fluid

optimization program is not achievable, i.e., we have λF̄ (p⋆) > 1.

9



We briefly discuss what happens if this assumption does not hold in Section 6. We next analyze

price refinements in the next section.

4.2 Refining the fluid approximation

In this section, we refine the fluid optimal price p̄ by considering prices of the form

pn(q) = p̄+ θn(q) for q ≥ 0,

for some function θn. Because the static price p̄ is optimal on the fluid-scale, we expect the

refinement θn to take small values. Thus, we focus on price refinements that are asymptotically

zero, i.e., θn(q) → 0 as n → ∞.

We proceed with an informal argument that characterizes the revenue loss due to stochasticity,

which will play a key role in our analysis. Our formal results will make this analysis precise.

Denoting Qn as the steady-state queue-length, we expect the queue-length to be small relative to

n for large n. So, we approximate the expected steady-state revenue by applying the Taylor series

expansion to the term F̄ (pn(Qn) + hQn/n) around p̄ as follows:

Rn(pn) =E
[(
p̄+ θn (Qn)

)
nλF̄

(
p̄+ θn (Qn) + h

Qn

n

)]

(a)
≈nλE



(
p̄+ θn (Qn)

)

F̄ (p̄) − f(p̄)

(
θn (Qn) + h

Qn

n

)
− f ′(p̄)

(
θn (Qn) + hQn

n

)2

2







(b)
≈nλp̄F̄ (p̄) −

(
−r′(p̄)nλE[θn(Qn)] +

(
f (p̄) +

p̄f ′ (p̄)
2

)
nλE[θn(Qn)2] + hp̄f(p̄)λE[Qn]

)

=R̄⋆
n −

(
αnE[θn(Qn)] + βnE[θn(Qn)2] + γE[Qn]

)
. (5)

where

r(p) := pF̄ (p), α := −r′(p̄)λ, β :=
(
f (p̄) + p̄f ′ (p̄) /2

)
λ, and γ := hp̄f(p̄)λ.

In (5), we obtain (a) using the first two terms of the Taylor series expansion, and we obtain (b)

by ignoring the lower order terms, specifically we ignore all terms of the form E[θn(Qn)iQj
n] for

i+ j ≥ 2 except the term E[θn(Qn)2], which is the second moment of the pricing refinement. In the
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next section, we will prove that this second moment term (surprisingly) plays an important role in

characterizing the optimal dynamic price.

The term in parenthesis in (5) represents the revenue loss relative to the fluid problem arising

due to stochasticity, and so our revenue maximization problem for the refined problem can be

restated as minimizing this revenue loss, i.e., we have

inf
θn

(
αnE[θn(Qn)] + βnE[θn(Qn)2] + γE[Qn]

)
. (6)

Thus, this refinement depends on the first and second moments of the steady-state price refine-

ment and the expected steady-state queue-length. We now proceed by solving (6). We begin by

analyzing the static pricing problem to illustrate the mode of analysis and because it serves as a

good benchmark policy to compare dynamic pricing with.

4.3 Static pricing benchmark

A static or fixed price is independent of the queue-length, and so we abuse notation and set the

price pn(q) = p̄+ θn for all q ≥ 0. Denoting the optimal static price by p⋆
n,S , we have the following

asymptotic characterization.

Proposition 2. If Assumption 1 holds, then static pricing leads to O(
√
n)-revenue loss due to

stochasticity, i.e., for some constant ΠS > 0, we have

Rn(p⋆
n,S) = R̄⋆

n − ΠS

√
n+ o(

√
n).

Further, the asymptotically optimal static price is

p⋆
n,S = p̄+

1√
n
πS for some πS ∈ R.

We next provide an intuitive derivation of this result, which will be useful to illustrate the key

value of dynamic pricing in this problem. We focus on positive price refinements. Noting that for

large n, the term θ2
n is much smaller, or more precisely, of a lower order compared with θn, we can
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ignore it and this simplifies (6) to the following program:

inf
θn

αnθn + γE [Qn] . (7)

Next, consider the expected steady-state queue-length. We can obtain an upper bound for this

term by ignoring the customers’ delay sensitivity, i.e., by letting the customer arrival rate depend

only on the price. This upper bounding system is an M/M/1 queue with arrival rate nλF̄ (p̄+ θn).

So, we have

E [Qn] ≤ n

n− nλF̄ (p̄+ θn)
=

1

λf(p̄)θn
+ o

(
1

θn

)
.

In fact, for price refinements of interest, we have E [Qn] = δ
θn

+ o
(

1
θn

)
, where δ > 0 is some

constant. So, (6) reduces to

inf
θn

αnθn +
γδ

θn
.

Note that λF̄ (p⋆) > 1 implies that α = −r′(p̄)λ > 0. Thus, we obtain that θ⋆
n = n− 1

2

√
γδ
α and the

value of the objective function equals 2
√
n
√
αγδ.

5 Dynamic Pricing: Asymptotic Analysis

In this section, we analyze dynamic pricing policies. First, in Section 5.1, we provide some intuitive

reasoning behind the order-improvement in revenue loss that occurs when using dynamic pricing.

Then, in Section 5.2, we analyze a simple dynamic pricing policy that utilizes only two price levels

and provide its asymptotic characterization. The two-price policy provides a lower-bound on the

performance of optimal dynamic pricing. In Section 5.3, we compute an asymptotic upper bound

on this performance. Finally, in Section 5.4, we formulate and solve a drift control problem to

characterize asymptotically near-optimal dynamic prices. Section 5.5 contains a numerical study

that illustrates the key insights of this section.

5.1 An intuitive argument

Clearly, the analysis of dynamic pricing is more complicated than that for static pricing. However,

it turns out that beyond complexity of analysis, there is also a fundamental benefit to dynamic

12



pricing that leads to an “order improvement” over static pricing. We proceed by first illustrating this

benefit using an informal argument. Unlike static pricing, in which the fixed pricing refinement

is positive, under dynamic pricing this refinement can be negative for small queue-lengths and

positive for long queue-lengths. If these prices are chosen properly, one can potentially ensure that

nEθn ≈ 0 so that (6) reduces to

inf
θn

(
βnE[θn(Qn)2] + γE[Qn]

)
. (8)

Similar to the static pricing case, one expects that the expected steady-state queue-length should

be inversely proportional to the price refinement, in this case, the positive price refinement. That

is, EQn ≈ φ
E[θn(Qn)+]

for some φ > 0. Then, (8) reduces to

inf
θn

(
βnE[θn(Qn)2] + γ

φ

E[θn(Qn)+]

)
. (9)

Expecting θ+
n and θ−

n functions to be of similar order, we further expect that E[θn(Qn)2] =

O
(
E[θn(Qn)+]2

)
and hence, ignoring the constants, the trade-off in (9) becomes that between

the terms

nE[θn(Qn)+]2 and
1

E[θn(Qn)+]
.

It follows that the optimal refinement should set

E[θn(Qn)+] = O
(
n− 1

3

)
.

This choice of price refinement also results in the objective (8) being O(n1/3), i.e., the total revenue

under such a dynamic pricing scheme is R̄⋆
n − O(n1/3) as compared with R̄⋆

n − O(n1/2), which one

obtains under static pricing. Thus, dynamic pricing is able to mitigate the revenue loss that occurs

due to stochasticity by varying the price. In particular, it uses a larger value of price refinement

compared with the static pricing and when queue-lengths are small, the refinement is negative to

prevent idleness of the server and as the queue-length increases, the refinement becomes positive

to lower the queue-length. This leads to lower congestion as well, with the expected steady-state
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queue-length being of O
(
n1/3

)
under dynamic pricing compared with O

(
n1/2

)
under static pricing.

We formalize this argument in the next section. The key departure of the analysis from the

intuitive discussion is that we find that we cannot set E [θn (Qn)] to be arbitrarily small. In fact,

the best we can do is to have nE [θn (Qn)] = O(n1/3) so that although this term plays a role in

the refined optimization problem, it does not impact its scale or order. The fact that both the

first and second moments of the price refinement play important roles in the optimization problem

complicates matters because this means that we need to consider both the first-order and second

order terms in the Taylor series expansion that we computed in (5).

5.2 The optimal two-price policy

We begin our formal analysis of dynamic pricing by studying a class of policies that uses only two

price levels and in this sense we refer to it as two-price (TP) policies. Such a policy sets one price for

small queue-lengths and another price for large queue-lengths and can be characterized as follows:

pn,TP (q) =





p̄− θ−
n if q ≤ τn,

p̄+ θ+
n otherwise,

(10)

for some non-negative constants θ−
n , θ+

n and τn.

Defining

φ =
1

2

(
H (p̄) +

H ′(p̄)
H(p̄)

)
(11)

(recall that H denotes the hazard rate function of the valuation distribution) and denoting the

optimal revenue under two-price policies by R⋆
n,TP , the following proposition provides an asymptotic

characterization of the optimal two-price policy and its performance.

Proposition 3. If Assumption 1 holds, then:

(a) The optimal two-price policy leads to O
(
n1/3 (log n)1/3

)
-revenue loss due to stochasticity, i.e.,

we have

R⋆
n,TP = R̄⋆

n − n1/3 (log n)1/3 ΠTP + o
(
n1/3 (log n)1/3

)
,

where ΠTP := φ1/3
(

3h
λf(p̄)

)2/3
.
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(b) The asymptotically optimal two-price policy is:

p⋆
n,TP (q) =





p̄− log n
(n log n)1/3π if q ≤ (n log n)1/3

3λf(p̄)π ,

p̄+ 3
(n log n)1/3π otherwise,

where π := 1
3

(
3h

λf(p̄)φ

)1/3
.

This result formalizes the intuitive reasoning of the previous section to prove that the optimal

two-price policy leads to a revenue-loss due to stochasticity of O(n1/3(log n)1/3) compared with

O(n1/2) that we obtain with static pricing. Notice that compared with the intuitive reasoning,

the performance of the two-price policy has an additional (log n)1/3 term in the revenue loss. This

term arises from the inability to keep the expected price refinement arbitrarily small because of the

discontinuity of the pricing function. A brief explanation for the presence of the (log n)1/3 term

is as follows: in the proof of the result, we show that the revenue can be written as Rn(pn,TP ) =

R̄⋆
n − n1/3Πn + o(n1/3), where defining π̂i

n := θi
nn

1/3 for i ∈ {−,+} and τ̂n := τnn
−1/3, we have

Πn := min
π̂−

n ,π̂+
n ,τ̂n≥0

n1/3

(
λF̄
(
p̄− π̂−

n /n1/3
))n1/3τ̂n

απ̂−
n π̂

+
n(

π̂−
n + π̂+

n

) + φπ̂−
n π̂

+
n + h

(
1

λf (p̄)

(
1

π̂+
n

− 1

π̂−
n

)
+ τ̂n

)
.

(12)

A careful examination of (12) shows that Πn must be O((log n)1/3) and further that the optimizers

(π̂−
n , π̂

+
n , τ̂n) must converge in the following fashion: π̂−

n (log n)−2/3 → π, π̂+
n (log n)1/3 → π/3, and

τ̂n (logn)−1/3 → 1/ (3λf (p̄)π), as in Proposition 3(b). The details are in the proof of the result.

We would like to comment that it is somewhat surprising that the asymptotically optimal two-

price policy can be easily characterized, and that it is of such a simple form. In contrast, the

asymptotically-optimal static pricing cannot be characterized explicitly. This difference arises from

the asymptotic analysis of the objective of (6). For instance, the expected queue-length term in

the objective equals:

E [Qn] =

∑∞
i=0 i

∏i−1
j=0 λF̄

(
p̄+ θn (j) + h j

n

)

∑∞
i=0

∏i−1
j=0 λF̄

(
p̄+ θn (j) + h j

n

) . (13)

In the two-price policy, the price refinement is of a larger order relative to the traditional square-
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root order, implying that the price refinement dominates the queue-length effect and asymptotically

the arrival rates take two values: low and high. This makes (13) easy to analyze. However,

in static pricing, the price refinement and queue-length effect are on the same order, and hence

asymptotically, we need to deal with the state dependent argument in the arrival rate, and precludes

a simple explicit characterization.

The two-price policy we have identified provides us with a lower bound on the performance of

dynamic pricing, and we expect allowing for additional prices will lead to even better performance.

This leads us to a natural question about how well can dynamic pricing be expected to perform if

we allow general pricing policies.

5.3 An upper bound on the performance of dynamic pricing

We next establish an asymptotic upper bound on optimal revenue achievable using dynamic pricing.

For asymptotic analysis, one typically introduces a scale factor that scales the decision variables

as the system scale increases. The analysis of the asymptotically optimal two-price policy yielded

that the positive and negative price refinements were scaled differently. Extending this to a fully

dynamic price would entail an infinite number of scales, one for each price possible, and would be

intractable. To make our asymptotic analysis tractable, we restrict attention to a smaller, yet fairly

general class of dynamic pricing policies that has two scales: one for positive price refinements, and

another for negative price refinements, and we establish the bound for this class of policies.

Dynamic pricing policy class. We focus on a class of sequences of dynamic pricing policies

denoted by P such that a sequence {pn} ∈ P is of the form pn(q) = p̄+ θn(q), where

θn (q) =





s−
n θ
(

q
τn

)
if θ
(

q
τn

)
≤ 0,

s+n θ
(

q
τn

)
otherwise,

(14)

with the following properties:

(a) s−
n , s+n , τn are positive constants with limn→∞ s+n = limn→∞ s−

n = 0.

(b) θ is a non-decreasing, bounded function (possibly discontinuous).
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Equation (14) is motivated by the typical approach in asymptotic analysis to separate the scale

from the decision variable. In this case, s−
n and s+n are the scale parameters that multiply the

decision variable θ when it is negative and positive, respectively. We would like to emphasize that

this is unlike typical asymptotic analysis, in which there tends to be only one such multiplying

scale. Further, because we expect the queue-length to be asymptotically large, we use τn to scale

down the queue-length in the argument of θ.

Before presenting the result, we would like to point out that the requirements that the price

refinement function θ be non-decreasing and bounded are technical conditions that we require

for our analysis to work. Notice that a non-decreasing θ implies that the prices we consider are

non-decreasing in the queue-length. Intuitively, one does expect a firm to charge higher prices

as the congestion increases, so this requirement does not seem too restrictive. Nevertheless, in

the appendix, we formulate the exact (non-asymptotic) dynamic program that the firm faces and

prove that the optimal price p⋆
n has the property that p⋆

n(q) + h q
n , a customer’s total cost of

joining the system, is non-decreasing in q (see Lemma 1 in Appendix A.1). Because we expect

p⋆
n(q) = p̄ + θ⋆

n(q) with |θ⋆
n(q)| ≫ q/n,1 the optimal prices should indeed be asymptotically non-

decreasing. So, restricting attention to this class of policies seems reasonable. We would also like

to point out that we do not require any continuity or differentiability conditions on θ.

Result. The following result proves that under any dynamic pricing policy from the class P, the

smallest possible revenue-loss due to stochasticity is O(n1/3), and thus establishes a formal limit

on the achievable performance of dynamic pricing.

Proposition 4. If Assumption 1 holds, then for any sequence of dynamic pricing policy {pn}n≥1 ∈

P, there exists a constant K > 0 such that

Rn(pn) ≤ R̄⋆
n −Kn1/3.

This result shows that the intuitive reasoning of Section 5.1 is tight with respect to the order

of optimality and dynamic pricing (within a large class of policies) cannot reduce the revenue loss

1The relation |θ⋆
n(q)| ≫ q/n, which is our convention for q/n = o (|θ⋆

n(q)|), is expected because under the optimal
pricing policy, we expect |θ⋆

n(q)| ≫ O( 1√
n
), and further under such pricing policy, we must have O( 1√

n
) ≫ Qn/n.
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to a value smaller than Kn1/3.

5.4 Computing asymptotically optimal dynamic prices

In this section, we formulate a drift control problem (DCP) in the diffusion limit to propose the

asymptotically optimal pricing policy. Our analysis thus far suggests that under the optimal policy,

the system queue-length should be on the O(n1/3) scale. So, in order to reach a proper limiting

problem, we need to spatially scale the system, i.e., scale the state-space by n1/3. Further, to be

consistent with the newly scaled state-space, we modify the price refinement function to take the

scaled queue-length as an argument, i.e., we replace θn(Qn(t)) by θn(Qn(t)n−1/3).

Approximating the system dynamics. In order to write out the limiting DCP, we need to

approximate the system dynamics with an appropriate diffusion process. To do so, we first write out

the exact system dynamics using the following notation: we define Na and Ns as two independent

unit rate Poisson processes, In as the cumulative server idle time process, and we use Qn to denote

the queue-length process. Then, noting that the effective arrival rate at time t is

Λn(t) := nλF̄

(
p̄+ θn

(
Qn (t)

n1/3

)
+ h

Qn(t)

n

)

and the amount of time the server is busy until time t is

Tn(t) := t− In(t),

we can write

Qn (t) = Na

(∫ t

0
Λn(s)ds

)
−Ns

(
nTn(t)

)
.

We now apply the strong approximation to the arrival and the job completion processes. In par-

ticular, we assume Xa and Xs are two independent standard Brownian motions so that Ni(t) =
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t+Xi(t) + o(
√
t) for i ∈ {a, s}. Then, we have

Na

(∫ t

0
Λn(s)ds

)
=

∫ t

0
Λn(s)ds+

√
nXa

(∫ t

0

Λn(s)

n
ds

)
+ o

(√
nt
)

Ns (nTn(t)) = nt+
√
nXs (Tn (t)) − nIn (t) + o

(√
nt
)
,

implying that

Qn (t) =

∫ t

0
(Λn(s) − n)ds+

√
nXa

(∫ t

0

Λn(s)

n
ds

)
− √

nXs (Tn (t)) + nIn (t) + o
(√

nt
)
.

Define

∆n (q) := λ
(
F̄
(
p̄+ θn (q) + h

q

n2/3

)
− F̄ (p̄)

)
, for all q ≥ 0,

so that n∆n

(
Qn(s)

n1/3

)
= Λn(s) − n is the drift of the system at time s. Then, we can write

Qn (t) = n

∫ t

0
∆n

(
Qn(s)

n1/3

)
ds+

√
nXa

(∫ t

0

Λn(s)

n
ds

)
− √

nXs (Tn (t)) + nIn (t) + o
(√

nt
)
.

We next consider the terms Xa and Xs. Because we expect θn → 0 and Qn/n → 0 as n → ∞, we

have ∫ t

0

Λn(s)

n
ds = t+ o(t)

and hence

Xa

(∫ t

0

Λn(s)

n
ds

)
= Xa (t) + o(

√
t).

Also, because the server should be busier when operating under this policy than when operating

under the optimal static pricing policy, we should have Tn(t) = t
(
1 − o

(
1√
n

))
, and so

Xs (Tn (t)) = Xs (t) + o
(
n−1/4

√
t
)
.

Putting all these components together, we obtain the following approximation of the system dy-

namics:

Qn (t) = n

∫ t

0
∆n

(
Qn (s)

n1/3

)
ds+

√
2nX (t) + nIn (t) + o

(√
nt
)
, (15)
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where X is another standard Brownian motion.

By further scaling the time dimension, equation (15) motivates the use of a diffusion process

Z(u) to approximate the queue-length process 1
n1/3Qn

(
u

n1/3

)
for large n, where Z is the (weak)

solution of the following stochastic differential equation:

Z (u) =

∫ u

0
∆ (Z (s)) ds+

√
2B (u) + I (u) , (16)

where I is a non-decreasing process such that
∫ u
0 I (s) dZ (u) = 0, and B is another independent

standard Brownian motion. Note that Z(u) approximates 1
n1/3Qn

(
u

n1/3

)
rather than Qn(u)

n1/3 . This

additional scaling in the time dimension is an artifact of the optimal dynamic pricing policy under

which the expected steady-state queue-length is of O
(
n1/3

)
rather than O (

√
n). We refer readers

to Appendix A.2 for additional details on how Z is derived from (15). In (16), ∆ is the drift of the

diffusion process. Also, the non-decreasing process I relates well to In in (16) because at any time

u, I can increase if and only if Z(u) = 0 and similarly In can increase if and only if Qn(u) = 0.

Solving the limiting DCP. With the state-dependent drift ∆ in (16) as the decision variable,

we now write out the DCP to propose an asymptotically optimal pricing policy. To do so, it will

be convenient to rewrite the revenue-loss due to stochasticity in terms of the drift rather than the

price refinement in (5). Straightforward application of the Taylor series expansion yields

R̄⋆
n −Rn (pn) ≈ nψE

[
∆n

(
Qn

n1/3

)]
+ n

φ

(λf(p̄))2
E

[
∆n

(
Qn

n1/3

)2
]

+ hE [Qn] , (17)

where ψ := r′(p̄)/f(p̄) < 0 and φ is defined in (11).

Recall that the process Z approximates the time and spatially scaled queue-length and ∆

approximates the drift of the queue-length process in the pre-limit. Hence, we correspondingly

scale the objective in (17) to obtain the following DCP:

inf
∆
n1/3ψE [∆ (Z)] +

φ

(λf(p̄))2
E
[
∆ (Z)2

]
+ hE [Z] , (18)

where the expectation is with respect to the steady-state distribution of Z. In solving (18), we
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restrict attention to increasing drift functions, i.e., ∆(q) is increasing in q. This is not restrictive,

because Lemma 1 in Appendix A.1 proves that the analogous drift term in the pre-limit queueing

system is also increasing.

We denote the optimizer and optimal objective value of (18) by ∆̂⋆
n and R̂⋆

n, respectively. Notice

that unlike typical asymptotic control problems that involve diffusion processes, our optimization

problem (18) has an “order-inconsistency” because it includes the term n1/3 even after we have

scaled the problem to the correct order. In particular, the first term in the objective, n1/3∆(Z),

dominates the other two terms for each Z. However, when we solve this optimization problem, we

find that the expected steady-state drift under the optimal solution is of a lower magnitude (in

order sense) than its point-wise value, i.e., E[∆̂⋆
n (Z (t))] ≪ ∆̂⋆

n (Z (t)), so that the optimal objective

value of (18) remains bounded. The following result characterizes the solution to the DCP (18).

Proposition 5. For each n ≥ 0, there exists a constant κ⋆ and a continuously differentiable

function g⋆ such that the optimal control that solves (18) is

∆̂⋆
n (q) = −

(
ψn1/3 + g⋆(q)

) (λf (p̄))2

2φ
, for all q ≥ 0,

where the pair (g⋆, κ⋆) solves

g⋆′ (q) + hq −
(
ψn1/3 + g⋆ (q)

)2 (λf (p̄))2

4φ
= κ⋆ (19)

with g⋆(0) = 0 and g⋆′(q) > 0 and g⋆′(q) ≤ C
√
q for all q > 0 for some positive constant C. Further,

the optimal objective value of (18) R̂⋆
n = κ⋆.

Notice that for any κ, (19) is an ordinary differential equation that can be solved explicitly.

Combining this solution with the conditions g⋆′(q) > 0 and g⋆′(q) ≤ C
√
q for all q > 0, allows us

to nail down the value of κ, and thus easily obtain the optimal drift ∆̂⋆
n.
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Proposed policy. We now “un-scale” the solution to the asymptotic DCP ∆⋆
n (q) to propose a

pricing policy for the actual system. We first set the drift in the pre-limit system as

∆n(q) = n−1/3∆̂⋆
n

( q

n1/3

)

to obtain the price refinement as

θn(q) = − 1

λf(p̄)
∆n(q) = −n−1/3 1

λf(p̄)
∆̂⋆

n

( q

n1/3

)
for q ≥ 0.

So, the proposed pricing policy is to post the following price to a customer who arrives when the

queue-length is q:

p̂⋆
n(q) = p̄− n−1/3 1

λf(p̄)
∆̂⋆

n

( q

n1/3

)
, (20)

In the next section, we numerically compare the performance of this policy with that of the asymp-

totically optimal static price and two-price policies, and also with that of the optimal dynamic

price obtained from exact analysis.

5.5 Numerical study

We use numerical experiments to illustrate two points. First, we will show that the solution

obtained using the approximate DCP in Section 5.4 well approximates the exact optimal solution

obtained by solving the underlying Markov Decision Process (MDP). Second, we will compare the

performance of the asymptotically optimal static and two-price schemes with the approximating

DCP solution. We verify that static pricing exhibits a greater (and on a higher order) loss in

revenue compared with other dynamic pricing schemes, and further that the two-price scheme has

near-optimal performance.

To illustrate our numerical observations, we pick one set of parameters, in particular, we fix

the customer valuation distribution as a unit mean exponential, the customer delay sensitivity as

h = 1 and the potential demand λ = 2e so that the “load” on the system λF̄ (p⋆) = 2. We would

like to point out that the results presented in the following paragraphs well represent the results

obtained from other settings in our numerical experiments that include λF̄ (p⋆) = 1.1, 2, 5, and
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Weibull distribution with shape parameter being 2 and scale parameter being 1 and Uniform [0, 1]

distribution.

Accuracy of approximating DCP. Figure 1a illustrates the accuracy of the DCP in approx-

imating the actual revenue by comparing the scaled revenue-loss of the DCP objective (18) with

the actual scaled revenue-loss
(

R̄⋆
n−Rn(p̂⋆

n)

n1/3

)
for the price function p̂⋆

n given in (20) that solves the

DCP. We see that the objective function of our DCP indeed well approximates the exact objective.

Figure 1b compares the scaled revenue-loss obtained from implementing the DCP solution p̂⋆
n with

the optimal solution obtain from solving the MDP. From the figure, we observe that indeed the

price obtained by solving the DCP has excellent performance relative to the optimal. Note that

because the complexity of solving the exact MDP increases very quickly with system size, we are

only able to solve it exactly for system sizes up to n = 105.
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n compared

with optimal MDP solution

Figure 1: Accuracy of drift control problem.

Performance of two-price policy. We next compare the performance of the asymptotically

optimal two-price policy characterized in Section 5.2 with the asymptotically optimal static pricing

and the solution to the DCP. Figure 2 plots the scaled revenue-loss for each of these policies for

different system sizes. The figure clearly illustrates the O(
√
n) revenue-loss of static pricing, which

when scaled by n1/3 grows without bound as n increases. We also observe that the two-price policy
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performs very well and has a very small gap relative to the solution of the DCP.
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Figure 2: Performance of two-price (TP) policy relative to static pricing and the DCP-based policy.

6 Conclusion

In this paper, we study optimal dynamic pricing to maximize revenue in a queueing system when

the system congestion is observable by arriving customers. We take an asymptotic approach and

find that there is a fundamental benefit to dynamic pricing that results in an order improvement

in the revenue-loss due to stochasticity relative to static pricing. In particular, under the optimal

dynamic pricing scheme, the queue-length is maintained at O(n1/3)-scale relative to the traditional

O(
√
n)-scale that one expects. We formulate an approximating DCP, solving which yields near-

optimal performance. Further, we propose a simple two-price policy that sets a low price when

system congestion is low and a high price when the congestion is high. We prove that this policy

has O((log n)1/3n1/3) revenue loss, i.e., within a logarithm term of the optimal scale. Our numerical

experiments show that this policy performs very close to optimal.

Our result that the optimal operating scale is O(n1/3) relates to the recent paper Kumar and

Randhawa (2010), which studies static pricing in unobservable queues. In that paper, the non-

square optimality scale is obtained due to the curvature of the customer delay costs in the vicinity

of the fluid operating point. Interestingly, in our paper, the customer delay sensitivity is linear,

and it is the dynamic pricing that leads to the non-conventional operating scale. We would also
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like to mention that such non-conventional asymptotic behavior has also been observed recently in

Lee and Ward (2014) in a setting with customer abandonments.

In the paper, we focus on the capacity-constrained setting which is characterized by the condi-

tion λF̄ (p⋆) > 1, so that the unconstrained optimal price is not optimal for the fluid optimization

problem. If this condition does not hold, the value of dynamic pricing is asymptotically quite lim-

ited. In particular, if λF̄ (p⋆) = 1, then static pricing by itself generates a revenue-loss of O(n1/3).

To see this, notice that we would have α = 0 in the Taylor series expansion (5). Hence, the revenue-

loss of static pricing would be on the same order as that of the corresponding optimal dynamic

pricing policy. If λF̄ (p⋆) < 1, then simply pricing at p⋆ leads to an under-loaded situation, i.e.,

we obtain an M/M/1 queueing system with utilization ρ = λF̄ (p⋆) < 1. Hence, as n grows with-

out bound, the queueing fluctuations will be extremely small, in particular of O(1)-scale, and will

effectively play no role in the optimal solution.

Finally, we would like to emphasize that our focus on observable queues is quite analogous to

settings of lead-time quotations. In particular, asymptotically, our setting is identical to one in

which the firm truthfully announces the current expected delay at each time instant. There are

several papers in the literature that consider static lead-time quotations (that do not change with

congestion) with an option of expediting orders to ensure that the quotes are always met (see, for

example, Celik and Maglaras, 2008, and Plambeck and Ward, 2008). Our mode of analysis can

be extended to cover this case. Incorporating expediting adds a “pushing boundary” to the drift

control problem, but does not affect the nature of the solutions, and the basic insights still carry

over. That is, our analysis based on Taylor series expansion remains essentially the same except an

additional constraint is needed on the quoted lead-time. In fact, the additional constraint makes

solving the DCP easier.
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Appendices

The appendix is organized as follows. In Appendix A, we provide some supporting materials that

are referred to in the main text. In Appendix A.1, we formally prove that the solution to the exact

MDP satisfies p⋆
n(q) +h q

n is non-decreasing in q. In Appendix A.2, we present the spatial and time

scaling used to derive (16) from (15). Appendix B provides the proofs of all the results in the body

of the paper. Appendix C contains proofs for technical lemmas that are used in Appendix B.
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A Supporting Materials

A.1 The MDP solution

We analyze the exact (non-asymptotic) optimization problem (3). Using the uniformization tech-

nique (Puterman, 2009, p. 562), we can derive the following set of equations from our model:

γn = sup
p∈F

{
pλF̄ (p) − λF̄ (p) yn (0)

}
(21)

γn = sup
p∈F

{
pλF̄

(
p+ h

i

n

)
− λF̄

(
p+ h

i

n

)
yn (i)

}
+ yn (i− 1) for i ≥ 1, (22)

where F is a set of feasible prices, γn is a “guess” for R⋆
n

n , and yn is an associated value function.

The following lemma formalizes the “non-decreasing” property that is mentioned in Section 5.3.

Lemma 1. If F = [0, pmax] for some pmax ∈ (p̄,∞) and f(q) > 0 for all q ≥ 0, there exists a unique

pair of γn and yn that jointly solves (21) and (22). Furthermore, R⋆
n = nγn and λF̄

(
p⋆

n(q) + h q
n

)

is non-increasing in q, i.e., p⋆
n(q) + h q

n is non-decreasing in q.

Note that (21) and (22) are of the same form as (12) and (13) of Ata and Shneorson (2006)

with a caveat that (22) has an infinite number of equations whereas (13) of Ata and Shneorson

(2006) has a finite number of equations. Indeed, the proof of Lemma 1 is quite similar to that of

its counterpart in Ata and Shneorson (2006) (a combination between Proposition 1 and Corollary

1 therein), and so is omitted here.

A.2 Additional steps in derivation of DCP of Section 5.4

We provide the time scaling steps that we use to derive (16) from (15). Dividing both sides of (15)

by n1/3, we obtain:

1

n1/3
Qn (t) = n2/3

∫ t

0
∆n

(
Qn (s)

n1/3

)
ds+

√
2n1/6X (t) + n2/3In (t) + o

(√
n1/3t

)
. (23)
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Observe that
√

2n1/6X (t)
d
=

√
2X(n1/3t). We next scale the time index by n1/3, i.e., we define a

new time variable u = n1/3t and use this in (23) to obtain

1

n1/3
Qn

( u

n1/3

)
= n2/3

∫ u

n1/3

0
∆n

(
Qn (s)

n1/3

)
ds+

√
2n1/6X

( u

n1/3

)
+ n2/3In

( u

n1/3

)
+ o

(√
u
)

(a)
=

∫ u

0
∆

(
1

n1/3
Qn (s)

( s

n1/3

))
ds+

√
2X̂ (u) + n2/3In

( u

n1/3

)
+ o

(√
u
)
, (24)

where X̂ is another independent standard Brownian motion, (a) is obtained by the change of

variables in the integration and by setting ∆ = n1/3∆n motivated from ∆n = O
(
n−1/3

)
. As I

in (16) increases only when Z(u) = 0, it is well matched with In in (24) and this motivates the

approximation of 1
n1/3Qn

(
u

n1/3

)
in (24) by Z(u) in (16).

B Proofs of Main Results

Notation. In the following proofs, we will use the following convention: for any two sequences of

real numbers {an}n≥1 and {bn}n≥1, we use the notation an ∼ bn, an & bn, an ≫ bn, and an = Θ(bn)

to represent

lim
n→∞

an

bn
= 1, lim inf

n→∞
an

bn
≥ 1, lim

n→∞
bn
an

= 0, and 0 < lim inf
n→∞

|an|
|bn| ≤ lim sup

n→∞

|an|
|bn| < ∞, respectively.

Also, we use x ↓ a for a ∈ R to denote “as x approaches to a from the right”. Finally, it is useful

to set PTP as a class of sequences of two-price policies defined in Section 5.2.

Proof of Proposition 1:

Since part (b) of the proposition is subsumed by the results in Proposition 2, we only prove part

(a) here. For p ≥ 0, let r (p) = pλF̄ (p) . Let F̄−1 be the inverse of F̄ so that p = F̄−1 (q) for each

q ∈ [0, 1]. Let r̃ (q) = λqF̄−1 (q). Because the distribution has an increasing hazard rate function,

it is straightforward to check r̃′′(q) < 0, so that r̃ is concave in q ∈ [0, 1] and it is maximized at
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q = F̄ (p⋆). Observe that for any pricing policy pn, we have

Rn (pn) = nλE
[
pn (Qn) F̄

(
pn (Qn) + h

Qn

n

)]

≤ nλE
[(
pn (Qn) + h

Qn

n

)
F̄

(
pn (Qn) + h

Qn

n

)]

(a)

≤ nr̃

(
E
[
F̄

(
pn (Qn) + h

Qn

n

)])
(25)

where (a) follows by Jensen’s inequality. We first consider the case when F̄−1
(

1
λ

)
≤ p⋆ so that

R̄⋆
n = nλp⋆F̄ (p⋆). In this case we have

Rn (pn) ≤ nr̃

(
E
[
F̄

(
pn (Qn) + h

Qn

n

)])
≤ R̄⋆

n

as desired because r̃ (q) ≤ λp⋆F̄ (p⋆) for any q ∈ [0, 1]. On the other hand, suppose p⋆ < F̄−1
(

1
λ

)
,

so that R̄⋆
n = p̄n = nr̃

(
1
λ

)
(recall that λ > 1 because λF̄ (p̄) = 1). Because r̃ (q) is increas-

ing in q ∈
[
0, F̄ (p⋆)

]
and 1

λ < F̄ (p⋆), we have r̃ (q) ≤ r̃
(

1
λ

)
for q ∈

[
0, 1

λ

]
. Observe that

nλE
[
F̄
(
pn (Qn) + hQn

n

)]
is the expected steady-state arrival rate and therefore it cannot exceed

the service capacity n, i.e,

E
[
F̄

(
pn (Qn) + h

Qn

n

)]
≤ 1

λ
. (26)

Putting (25) and (26) together, we have Rn (pn) ≤ nr̃
(

1
λ

)
= R̄⋆

n. �

Proof of Proposition 2:

First, we show that for any static price pn,S(q) = p̄ + θn,S for q ≥ 0, where θn,S is some constant

such that θn,S ≪ 1,

lim inf
n→∞

R̄⋆
n −Rn (pn,S)√

n
> 0. (27)

We next show that there exists a sequence {pn,S}n≥1 under which

lim sup
n→∞

R̄⋆
n −Rn (pn,S)√

n
< ∞. (28)
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Then, the first part of the proposition is established by combining (27) with (28). The second part

is established using a portion of the argument used to establish (27) because for any θn,S ≫ 1√
n

we

prove

lim inf
n→∞

R̄⋆
n −Rn (pn,S)√

n
= ∞. (29)

The following lemma is useful in establishing (27) - (29) (and many results in the sequel).

Lemma 2. For any sequence of prices {pn} in P or PTP , we have

R̄⋆
n −Rn (pn) & φnE

[
θn (Qn)2

]
+ hE [Qn] ,

R̄⋆
n −Rn (pn) ∼ αnE [θn (Qn)] + βnE

[
θn (Qn)2

]
+ γE [Qn] .

All lemmas are proved in Appendix C. To show (27), first, consider the case 1√
n

≪ θn,S and

θn,S > 0. By Lemma 2, we have

R̄⋆
n −Rn (pn,S) ∼ αnθn,S + βnθ2

n,S + γE [Qn]
(a)∼ αnθn,S + γE [Qn] ≥ αnθn,S , (30)

where (a) follows because θn,S ≪ 1. Since 1√
n

≪ θn,S and θn,S > 0, (30) implies (27) by (29).

Next, consider the case 1√
n

≪ θn,S and θn,S < 0. Let t̂n :=
n|θn,S|

h so that θn,S + h t̂n
n = 0.

Consider an M/M/1/t̂n system in which the static price is p̄ and customers are only price-sensitive.

Let Qn,lb be the steady-state queue-length of this system. It is obvious that Qn,lb ≤ Qn a.s. and

E [Qn,lb] ≤ E [Qn]. Also by the expected steady-state queue-length formula for an M/M/1 system

with a finite buffer, we can easily obtain that
√
n ≪ E [Qn,lb], so that (29) is established by Lemma 2.

For the cases of θn,S = O
(

1√
n

)
, we can prove that

√
n = O (E [Qn]), so that (27) holds, by

considering an M/M/1/
√
n system in which the static price is p̄+max{0, θn,S}+h 1√

n
and customers

are only price sensitive.

Finally, to show that there exists a sequence of static pricing policies under which (28) is

achieved, set θn,S = 0. Then, by Lemma 2, we have R̄⋆
n − Rn (pn,S) ∼ γE [Qn]. So, it suffices

to show that E [Qn] = O (
√
n). This can be established by considering an M/M/1 queue with a

two-price policy of p̄+ θn,TP , where θn,TP (q) is 0 if q ≤ √
n and h 1√

n
otherwise and customers are
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only price-sensitive. �

Proof of Proposition 3:

Define P⋆
TP to be a class of sequences of two-price policies defined in (10) such that

θ−
n > 0, θ+

n > 0,
1√
n

≪ min
{
θ−
n , θ

+
n

}
, and, τn ≪ √

n. (31)

We will use the following three lemmas to prove the proposition.

Lemma 3. For any {pn,TP }n≥1 ∈ PTP \P⋆
TP , we have

lim inf
n→∞

R̄⋆
n −Rn (pn,TP )

(n logn)1/3
= ∞.

Lemma 4. For any {pn,TP }n≥1 ∈ P⋆
TP , we have

R̄⋆
n −Rn (pn,TP ) ∼ Ln

(
θ−
n , θ

+
n , τn

)
,

where

Ln

(
θ−, θ+, τ

)
:= αn

−θ−D1 (θ−, τ) + θ+D2 (θ+)

D1 (θ−, τ) +D2 (θ+)
+ βn

(θ−)
2
D1 (θ−, τ) + (θ+)

2
D2 (θ+)

D1 (θ−, τ) +D2 (θ+)

+ h

( (
λF̄ (p̄− θ−)

)−τ

(D1 (θ−, τ) +D2 (θ+))
(
λF̄ (p̄− θ−) − 1

)2 + τ − 1

λF̄ (p̄− θ−) − 1
+D2

(
θ+
)
)

(32)

for

D1 (θ, τ) :=
1 −

(
λF̄ (p̄− θ)

)−τ−1

λF̄ (p̄− θ) − 1
and D2 (θ) :=

1

1 − λF̄ (p̄+ θ)
.

Lemma 5. For any {pn,TP }n≥1 ∈ P⋆
TP , we have

lim inf
n→∞

L (θ−
n , θ

+
n , τn)

(n logn)1/3
≥ ΠTP .
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Furthermore, if we let

θ⋆,−
n :=

log n

(n logn)1/3
π, θ⋆,+

n :=
3

(n logn)1/3
π, τ⋆

n :=
(n log n)1/3

3λf (p̄)π
,

then

lim sup
n→∞

L
(
θ⋆,−
n , θ⋆,+

n , τ⋆
n

)

(n logn)1/3
= ΠTP .

Given Lemma 3-5, we now prove the proposition. Lemma 3 proves that the sequence of asymp-

totically optimal two-price policies lies in P⋆
TP . Lemma 4 provides a tractable characterization of

the revenue gap under a sequence in P⋆
TP . This characterization is used in Lemma 5 to show that

the sequence defined in part (b) of the proposition is asymptotically optimal and its performance

is as given in part (a) of the proposition. �

Proof of Proposition 4:

We define xθ := inf {q ≥ 0 : θ (q) ≥ 0}. So, if xθ ∈ (0,∞), then we can think of xθτn as the “switch-

point,” with θn (q) ≤ 0 for q ≤ xθτn and θn(q) ≥ 0 otherwise. The following lemma will be useful

in the proof of the proposition.

Lemma 6. For any sequence {pn}n≥1 ∈ P such that limq↓0 θ(q) < 0, we have min {√
n, xθτn} =

O (E [Qn]).

Notice that if xθ = ∞, then the proposition is proved by applying Lemma 2 and Lemma 6. So,

in what follows, we only consider xθ ∈ [0,∞) and formally consider two cases: Case 1, in which

xθ > 0 and Case 2, in which xθ = 0. Furthermore, when xθ > 0, we will fix xθ = 1. This is only to

simplify notation and is without loss of generality.

Case 1: limq↓0 θ(q) < 0, i.e., xθ > 0. Suppose that θ(q) ≤ 0 for q ≥ 0. Then, by considering

an M/M/1/
√
n system with the arrival rate of nλF̄

(
p̄+ h 1√

n

)
and the service rate of n, we can

show that
√
n = O (E [Qn]). Therefore, using Lemma 2, the result follows. To proceed, consider

the following three cases: s+n τn ≪ 1, s+n τn = Θ(1), and s+n τn ≫ 1.
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Case 1(a): s+n τn = Θ(1). We already argued that there must exist ǫ > 0 such that θ(1+ǫ) > 0.

Observe that

E
[
θn (Qn)2

]
≥
(
s+n θ (1 + ǫ)

)2 P (Qn ≥ (1 + ǫ) τn)

E [Qn] ≥ (1 + ǫ) τnP (Qn ≥ (1 + ǫ) τn) .

We will next prove

lim inf
n→∞

P (Qn ≥ (1 + ǫ) τn) > 0. (33)

The proof of the result for this case will then follow by applying Lemma 2 because

n
(
s+n
)2

+ τn = O
(
φnE

[
θn (Qn)2

]
+ hE [Qn]

)
and n1/3 = O

(
n
(
s+n
)2

+ τn

)
,

when s+n τn = Θ (1). To show (33), fix N > 1 + ǫ and let Qn,lb be the steady-state queue-length of

an M/M/1/Nτn system with the arrival rate of nλF̄
(
p̄+ θn (Nτn) + hNτn

n

)
and the service rate

of n. Then, it is straightforward to check

P (Qn ≥ (1 + ǫ) τn) ≥ P (Qn,lb ≥ (1 + ǫ) τn) and lim inf
n→∞

P (Qn,lb ≥ (1 + ǫ) τn) > 0,

which establishes (33), and consequently the result for this case.

Case 1(b): s+n τn ≫ 1. Suppose limq↓1 θ(q) > 0. Observe that

E
[
θn (Qn)2

]
≥
(
s+n θ

(
1 +

1

τn

))2

P (Qn ≥ τn + 1) ,

Suppose we establish that

1

s+n τn
= O (P (Qn ≥ τn + 1)) . (34)

Then, because θ
(
1 + 1

τn

)
≥ limx↓1 θ (x) > 0 and 1

τn
= o (s+n ), using (34), we have

1

(τn)2
= O

(
E
[
θn (Qn)2

])
. (35)
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By Lemma 2, Lemma 6, and (35), the result is then proved for this case. So, we focus on proving

(34). To do so, we fix N > 1 and let Qn,lb be the steady-state queue-length of an M/M/1/Nτn

system with the service rate of n and the arrival rate of n exp
(
−λf (p̄) ch τn

n

)
, if q ≤ τn,, and

n exp
(
−λf (p̄) c

(
θn (Nτn) + hNτn

n

))
, otherwise. for some positive constant c > 0 that satisfies

exp
(
−λf (p̄) ch

τn
n

)
≤ λF̄ (p̄) F̄

(
p̄+ h

τn
n

)
, and

exp

(
−λf (p̄) c

(
θn (Nτn) + h

Nτn
n

))
≤ λF̄

(
p̄+ θn (Nτn) + h

Nτn
n

)

for sufficiently large n. Then, it is straightforward to check that

P (Qn ≥ τn + 1) ≥ P (Qn,lb ≥ τn + 1) and
1

s+n τn
= O (P (Qn,lb ≥ τn + 1)) ,

establishing (34).

We now consider the case when limq↓1 θ (q) = 0. If there exists ζ > 0 such that θ (1 + ζ) = 0

but limq↓1+ζ θ (q) > 0, then we can repeat the same arguments in the previous case to complete

the proof of the proposition. Therefore, we only need to consider the case θ (q) > 0 for q > q0

where q0 := sup {q ≥ 1 : θ (q) = 0} while limq↓q0 θ (q) = 0. Observe that we only need to consider

the case when q0 < ∞ because otherwise, we already know that
√
n = O (E [Qn]). Let ν ≥ 0 be

some constant such that q0 = 1 + ν. To proceed, define ∇(1) and ∇(k) for k = 2, 3, . . . , as follows:

∇(1) (θ) (q) = lim
x↓q

θ (x) − θ (q)

x− q
, ∇(k) (θ) (q) = lim

x↓q

∇k−1 (θ) (x) − ∇k−1 (θ) (q)

x− q
.

Then, we must have kθ < ∞ where kθ := inf
{
k ≥ 1 : ∇(k) (θ) (1 + ν) > 0

}
.

Let τ̂n,1 := τn

(
1 + ν + 1

(s+
n τn)

1/kθ

)
, By the definition of kθ and ∇(kθ), we have

θn (τ̂n,1) = Θ

(
1

τn

)
= Θ

(
1

τ̂n,1

)
(36)

where the last inequality follows because s+n τn ≫ 1. Let dn =

(
τ

kθ
n

s+
n

) 1
kθ+1

. Then, because s+n τn ≫ 1,
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we have

dn ≪ τn and
1

sn
≪ dn. (37)

Define τ̂n,2 := τn

(
1 + ν + dn

τn

)
. Then, by (37) and by the definition of kθ and ∇(kθ), we have

τ̂n,1 < τ̂n,2 for large n and

τ̂n,2 − τ̂n,1 = Θ (dn) and θn (τ̂n,2) = Θ

(
1

dn

)
. (38)

Define τ̂n,3 := τn

(
1 + ν + 2dn

τn

)
. Then, we also have τ̂n,2 < τ̂n,3 for large n and

τ̂n,3 − τ̂n,2 = Θ (dn) and θn (τ̂n,3) = Θ

(
1

dn

)
(39)

using the same reasoning as in (38). Let Qn,lb be the steady-state queue-length of an M/M/1/τ̂n,3

system for which the service rate is n and the arrival rate equals n exp
(
−λf (p̄) c

(
θn (τ̂n,i) + h

τ̂n,i

n

))
,

when there are q ∈
(
τ̂n,i−1, τ̂n,i

]
customers are in the system, for i = 1, 2, 3 and τ̂n,0 = −1 where

c > 0 is some constant that satisfies

exp

(
−λf (p̄) c

(
θn (τ̂n,i) + h

τ̂n,i

n

))
≤ λF̄

(
p̄+ θn (τ̂n,i) + h

τ̂n,i

n

)

for i = 1, 2, 3 and for large n. Then, it is straightforward to check that P (Qn ≥ τ̂n,1) ≥ P (Qn,lb ≥ τ̂n,1)

and by (36), (38), and (39), we can derive that

P
(
Q̂n,2 ≥ τ̂n,1

)
= Θ

(
dn

τn

)
. (40)

Therefore, by (40), we have

E
[
θn (Qn)2

]
≥ θn (τ̂n,1)

2 P (Qn,lb ≥ τ̂n,1) = Θ

(
1

τndn

)
.

Since 1
τn

= o
(

1
dn

)
, we have 1

τ2
n

= O
(
E
[
θn (Qn)2

])
. So, applying Lemma 2, the result is established

for this case.
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Case 1(c): s+n τn ≪ 1. In this case, if s+n = O
(

1√
n

)
, we can prove that

√
n = O (E [Qn]),

which establishes the result by applying Lemma 2. Let us focus on the case 1√
n

≪ s+n . Observe

that

E
[
θn (Qn)2

]
≥ θn

(
1

s+n

)2

P
(
Qn ≥ 1

s+n

)
and E [Qn] ≥ 1

s+n
P
(
Qn ≥ 1

s+n

)
.

Further, there exists ǫ > 0 such that θ (1 + ǫ) > 0 and for sufficiently large n, 1
s+
n τn

≥ 1+ε, implying

θn

(
1

s+
n

)2
≥ (s+n )

2
θ (1 + ε). We now establish lim infn→∞ P

(
Qn ≥ 1

s+
n

)
> 0 because then the proof

is complete by Lemma 2. For this, fix N > 2 and let Qn,lb be the steady-state queue-length of an

M/M/1/ N
s+
n

queue with the service rate of n and the arrival rate of n exp (−λf (p̄) cs+n ) for some

constant c > 0 that satisfies

exp
(
−λf (p̄) cs+n

)
< λF̄

(
p̄+ θn

(
1

s+n

)
+ h

1

ns+n

)
.

Such a c must exist because θn

(
1

s+
n

)
+ h 1

ns+
n

= Θ (s+n ) and θ is bounded. It is straightforward to

check that

P
(
Qn ≥ 1

s+n

)
≥ P

(
Qn,lb ≥ 1

s+n

)
and lim inf

n→∞
P
(
Qn,lb ≥ 1

s+n

)
> 0.

Hence, the result holds for this case.

Case 2: limq↓0 θ(q) ≥ 0, i.e., xθ = 0. Recall that in the case when limq↓0 θ(q) < 0, our analysis

was focused on θ(q) for q ≥ 1. In the current case, the same analysis can be applied with 0 replacing

the role of 1 in the previous case. �

Proof of Proposition 5:

Existence of the solution of the HJB equation. We first prove the existence of a pair (g⋆, κ⋆)

that solves (19). Similar to Kim and Ward (2013), we consider the following family of first order

ODEs parameterized by κ ≥ 0:

g′
κ (q) + hq −

(
ψn1/3 + gκ (q)

)2 (λf (p̄))2

4φ
= κ, with gκ(0) = 0. (41)
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With the same argument as in the proof of Lemma 4.1 of Kim and Ward (2013), we know that for

each κ, there exist a unique gκ that solves (41). Within this family, we will show that there exists a

unique κ⋆ such that (gκ⋆ , κ⋆) solves (19). To that end, for each κ, let wκ := −n1/3 + gκ and define

q∞,κ := inf

{
q ≥ 0 : lim

x↑q
wκ(x) = ∞

}
. (42)

We also define sets L and U that bisect non-negative real numbers:

L := {κ ≥ 0 : Sκ 6= ∅} and U := {κ ≥ 0 : Sκ = ∅} , where

Sκ :=
{
q ∈ [0, q∞,κ] : w′

κ(q) ≤ 0
}
.

Lemma 7. For any κ1 < κ2, we have wκ1 (q) < wκ2 (q) for q ∈ [0,min {q∞,κ1 , q∞,κ2}].

Lemma 8. Both L and U are non-empty.

Lemma 9. If κ ∈ L, then wκ(q) is strictly quasi-concave in q and limq→∞wκ(q) = −∞.

Lemma 10. wκ(q) is jointly continuous in κ ≥ 0 and q ≥ 0.

Lemma 11. Let κ⋆ := sup L. Then, κ⋆ < ∞ and κ⋆ ∈ U , i.e., w′
κ⋆(q) > 0 for q ≥ 0.

Lemma 12. For any κ ∈ L, wκ(q) ≤
√
κ⋆ + n2/3 + q.

To complete the proof, suppose now wκ⋆ does not satisfy the growth condition so that

lim inf
q→∞

wκ⋆ (q)√
q

= ∞.

Then, there must exist q̂ such that

wκ⋆ (q̂) ≥
√
κ⋆ + n2/3 + q̂ + ǫ,

which contradicts Lemma 10 because for any κ < κ⋆, we have

wκ (q̂) ≤
√
κ⋆ + n2/3 + q̂
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by Lemma 12. Thus, the existence result follows by setting g⋆ = wκ⋆ + n1/3.

Optimality of ∆̂⋆
n. It remains to show that for any ∆ (z) that is decreasing in z, we have

lim inf
t→∞

1

t
E
[∫ t

0

{
n1/3ψ∆ (Z (s)) +

φ

(λf (p̄))2
∆ (Z (s))2 + hZ (s)

}
ds

]
≥ κ⋆. (43)

and the inequality is replaced by the equality if we replace ∆ by ∆̂⋆
n.

If infz≥0 ∆ (z) ≥ 0, then

E
[
n1/3ψ∆ (Z (s)) +

φ

(λf (p̄))2
∆ (Z (s))2 + hZ (s)

]
≥ n1/3ψ∆ (0) + E [hZ (s)]

because ψ < 0. However, in this case lim inft→∞ 1
t E
[∫ t

0 Z (s) ds
]

= ∞ because Z is lower bounded

by a reflected Brownian motion with zero drift. So, (43) follows.

Suppose now that infz≥0 ∆ (z) := δ < 0. In this case, there must exist ẑ < ∞ such that

∆ (z) ≤ 0 for all z ≥ ẑ. To proceed, let v⋆ (q) :=
∫ q
0 g

⋆ (x) dx. Then, by the properties of g⋆ stated

in the proposition, we have v⋆ (0) = 0 and v⋆ (q) ≤ Cq3/2. Furthermore, it is straightforward to

check that v⋆ satisfies

v⋆′′ (q) + hq + inf
∆

{(
n1/3ψ + v⋆′ (q)

)
∆ (q) +

φ

(λf (p̄))2
∆ (q)2

}
= κ⋆. (44)

Recall that Z is the (weak) solution of

Z (t) =

∫ t

0
∆ (Z (s)) ds+

√
2B (t) + I (t) ,

where B is a standard Brownian motion and I is an increasing process such that
∫ t
0 Z (u) dI (u) = 0

for all t ≥ 0 a.s. By Ito’s lemma, we have

v⋆ (Z (t)) − v⋆ (Z (0))

=

∫ t

0

(
v⋆′ (Z (u)) ∆ (Z (u)) + v⋆′′ (Z (u))

)
du+

√
2

∫ t

0
v⋆′ (Z (u)) dB (u) +

∫ t

0
v⋆′ (Z (u)) dI (u) .

(45)
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By adding ∫ t

0

{
n1/3ψ∆ (Z (s)) +

φ

(λf (p̄))2
∆ (Z (s))2 + hZ (s)

}
ds

on both hand sides of (45), we obtain

E
[
v⋆ (Z (t)) − v⋆ (Z (0))

t

]
+

1

t
E
[∫ t

0

{
n1/3ψ∆ (Z (s)) +

φ

(λf (p̄))2
∆ (Z (s))2 + hZ (s)

}
ds

]

=
1

t
E
[∫ t

0

{
v⋆′′ (Z (s)) + hZ (s) +

(
v⋆′ (Z (s)) + n1/3ψ

)
∆ (Z (s)) +

φ

(λf (p̄))2
∆ (Z (s))2

}
ds

]
,

where the last equality follows because
∫ t
0 v

⋆′ (Z (s)) dB (s) is a martingale and v⋆′ (Z (s)) dI (s) = 0

for all s ≥ 0 a.s. by the condition v⋆′ (0) = 0 and I only increases when Z (s) = 0. As v⋆ and κ⋆

jointly solve (44), we have

1

t
E
[∫ t

0

{
n1/3ψ∆ (Z (s)) +

φ

(λf (p̄))2
∆ (Z (s))2 + hZ (s)

}
ds

]
≥ κ⋆ − E

[
v⋆ (Z (t)) − v⋆ (Z (0))

t

]

for any t ≥ 0 and ∆ such that infz≥0 ∆ (z) = δ < 0. Because v⋆ (q) ≤ Cq3/2, we have

E
[
v⋆ (Z (t))

t

]
≤ E

[
Z (t)3/2

t

]
≤
(

1

t1/3
E

[
Z (t)2

t

])3/4

(46)

by Jensen’s inequality. By Ito’s lemma, we have

E
[
Z (t)2

]
= E

[
Z (0)2

]
+ 2t+ E

[∫ t

0
2∆ (Z (s))Z (s) ds

]

= E
[
Z (0)2

]
+ 2t+ E

[∫ t

0
2∆ (Z (s))Z (s) 1{Z(s)≤ẑ}ds

]
+ E

[∫ t

0
2∆ (Z (s))Z (s) 1{Z(s)>ẑ}ds

]

≤ E
[
Z (0)2

]
+ 2t+ E

[∫ t

0
2∆ (Z (s))Z (s) 1{Z(s)≤ẑ}ds

]

≤ E
[
Z (0)2

]
+ 2
(
1 + ∆ (ẑ (0))

)
t,

implying that

lim sup
t→∞

E

[
Z (t)2

t

]
< ∞.
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Therefore, by (46), we have

lim sup
t→∞

E
[
v⋆ (Z (t))

t

]
= 0,

(it is without loss of generality to assume E
[
Z (0)2

]
< ∞)so that (43) follows.

To prove that R̂⋆
n = κ⋆, let Z⋆ be the (weak) solution of

Z⋆ (t) =

∫ t

0
∆̂⋆

n (Z⋆ (s)) ds+
√

2B⋆ (t) + I⋆ (t) ,

where B⋆ is a standard Brownian motion that is independent of B and I⋆ is an increasing process

such that Z⋆ (s) dI⋆ (s) = 0 for all s ≥ 0 a.s.

Observe that because g⋆ (z) is increasing in z and limz→∞ g⋆ (z) = ∞, ∆̂⋆
n (z) is decreasing in z

and limz→∞ ∆̂⋆
n (z) = −∞. Therefore, we can repeat the previous arguments to obtain

1

t
E
[∫ t

0

{
n1/3ψ∆̂⋆

n (Z⋆ (s)) +
φ

(λf (p̄))2
∆̂⋆

n (Z⋆ (s))2 + hZ⋆ (s)

}
ds

]
= κ⋆−E

[
v⋆ (Z⋆ (t)) − v⋆ (Z⋆ (0))

t

]

and

lim sup
t→∞

E
[
v⋆ (Z (t)) − v⋆ (0)

t

]
= 0.

Therefore, we have

lim inf
t→∞

1

t
E
[∫ t

0

{
n1/3ψ∆̂⋆

n (Z⋆ (s)) +
φ

(λf (p̄))2
∆⋆ (Z⋆ (s))2 + hZ⋆ (s)

}
ds

]
= κ⋆,

proving the optimality of ∆̂⋆
n. �

C Proofs of Lemmas

This section is omitted for brevity. The complete version is available from authors upon request.
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