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Display advertising is a $25 billion business with a promising upward revenue trend. In this paper, we

consider an online display advertising setting in which a web publisher posts display ads on its website and

charges based on the cost-per-impression (CPM) pricing scheme while promising to deliver a certain number

of impressions to the ads posted. The publisher is faced with uncertain demand for advertising slots and

uncertain supply of visits from viewers. Advertisers specify various attributes of viewers who are most related

to their ads, and request their ads to be displayed only to those viewer types (targeting). We formulate

the problem as a novel queuing system, where the advertising slots correspond to service channels with the

service rate of each server synchronized with other active servers. We determine the publisher’s optimal price

to charge per impression and show that it can increase in the number of impressions made to each ad, which

is in contrast to the quantity-discount commonly offered in practice. Furthermore, we show that the optimal

CPM price may increase in the number of ads rotating among slots. This result is typically not expected

because an increase in the number of rotating ads in the system can be interpreted as an increase in the

service capacity. However, the effective service rate to each ad depends negatively on the number of rotating

ads, which leads to the opposite impact.
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1. Introduction

Display advertising is currently a $25 billion business (Anandan 2012), which is expected to reach

$200 billion in “a few short years,” according to Google. As a result, Google is now investing

heavily in display advertising (Peterson 2011) and not only focusing on its sponsored search adver-

tising, where textual ads are displayed along with search results. In addition, display advertising

is expected to continue to grow at a faster pace and overtake sponsored search advertising by 2015

(Fredricksen 2011). This paper focuses on a common online advertising setting in which web pub-

lishers post display ads on their websites for an upon-agreed number of impressions (Guaranteed

Delivery), and charge based on the cost-per-impression (CPM1) pricing scheme (i.e., an advertiser

pays a certain price for each impression made to his ad). The publishers are often faced with uncer-

tain demand from advertisers requesting advertising space to post their ads and uncertain supply

1 Generally, CPM price refers to the price for 1000 impressions. However, throughout this paper we slightly abuse the
term and use the CPM price to refer to “price per every impression”.
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of visits from viewers. That makes – even though, the publisher guarantees to serve an ad with a

certain number of impressions – the completion of the service highly uncertain as it depends on

how many viewers would visit the page where the ad is posted. In such an inherently uncertain

environment, pricing is one of the most challenging operational decisions that web publishers face,

and mostly ad-hoc approaches are currently used. It is now generally believed that the ability to

determine the CPM price of display ads optimally in this highly uncertain environment is a key

to the web publishers’ revenue increase. However, optimal pricing of display ads has not received

much attention in the literature, in contrast with pricing of sponsored search ads, which is quite

well researched (see, e.g., Edelman et al. 2007 and references within).

In view of this gap, this paper has three main objectives. First, we develop a modeling framework

that captures the fundamental operational challenges faced by web publishers posting ads on their

websites and charging based on the CPM pricing scheme while promising to deliver a certain

number of impressions on the ads posted. The publishers are faced with uncertain demand for

advertising space through an advertising network (an online intermediary matching and sending

advertisers to related websites) and uncertain traffic to their websites. Advertisers specify various

attributes of viewers who are most related to their ads, and request their ads to be displayed only

to those viewer types (targeting). Second, we use this model to determine the publishers’ optimal

price to charge per impression and investigate the impact of various factors, such as the number of

advertising spaces and the number of promised impressions on its behavior. And third, we would

like to derive improved understanding about the publishers’ operational decisions when they face

uncertainties from both the demand and supply sides and other real factors such as targeting.

Advertising networks Advertising networks are online companies that connect web publish-

ers who want to sell their impressions or clicks (i.e., online inventory), with advertisers who want to

run their ads on relevant websites. Large publishers often sell around 60% of their inventory through

advertising networks and smaller ones often sell their entire inventory. We focus on publishers that

receive their demand through ad networks. However, our model also applies to the setting where

direct sales channels are used with advertisers not willing to wait for an ad space to become avail-

able. This scenario is very common when there is intense competition of web publishers attracting

advertisers. The setting where a web publisher posts ads sent through an advertising network and

charges based on the CPM pricing scheme captures about 25% of the display advertising market

(IAB 2011).

We consider a common type of advertising network, known as a blind network. A blind network

is sone where advertisers clearly define their desired slot categories for their ads in advance when
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registering with the ad network. (For instance, they may request a right hand side slot on a sport

page.) But, they do not know the exact website that their ads will be posted on. Contextweb,

Valueclick, and Clicksor are examples of blind ad networks. A more recent generation of blind ad

networks are known as targeted networks in which advertisers (in addition to specifying the slot

categories) can target specific audience segments (viewer types) based on their demographic, geo-

graphic and (cookie-based) behavioral attributes. Chitika is an example of a targeted ad network.

Furthermore, advertising networks often work with immediate (unfilled) inventories. That is, an

advertiser’s demand is sent to a web publisher only if it has a space available to post the ad in the

advertiser’s requested category. Otherwise, the ad network does not offer any ad space with this

publisher and automatically directs the demand to other available publishers.

Note that since advertising networks often contain thousands of websites, it is rare that an

advertiser’s desired slot on a page, with his targeted the viewer types, is unavailable. However, even

in such unusual cases, advertising networks do not keep advertisers waiting for the next available

publisher. Instead, they direct advertisers to available publishers that participate in one of their

partner networks.

Transaction steps The general steps for the transactions made between advertisers and pub-

lishers through an advertising network are the following.

(1) A web publisher has slots available and approaches the advertising network. The publisher

registers each group of equivalent slots in terms of size, format, and page (the typical audience

segments or viewer types that visit that page, e.g., sport, travel, etc.) as a separate “subsystem”

with a different tracking code and a chosen price (per impression). The price that the publisher

chooses for each subsystem is often called the subsystem’s ask-price. Publishers are mostly free to

determine their ask-prices. Nevertheless, some networks, such as Clicksor, have a more selective

process. In these networks, publishers are often segmented into two main groups of premium and

non-premium publishers. Premium publishers can freely choose their ask-prices, but the slot prices

for non-premium publishers are set automatically by advertising networks. Advertising networks

often do not reveal the price information to non-premium publishers, but they guarantee to pay

no less than a pre-agreed minimum payment to the publisher for posting ads. In this paper, we

restrict our attention to the common case that publishers can freely set their own ask-prices. (2)

An advertiser requests his ad to be posted on a related participating website in the network. When

registering his request, the advertiser clearly defines his target slot and viewers types (e.g., a leader-

board slot on top of a travel page, displayed to viewers from California with a potential interest

in photography), as well as the maximum price he is willing to pay (bid-price). In addition, most
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Figure 1 The general steps for transactions between advertisers and web publishers through an advertising

network

advertisers choose mostly from either of the two following contracts. The first contract is known

as Guaranteed Delivery (GD) in which the advertiser requests a certain number of impressions or

clicks to be made on his ad. The second contract is known as Fixed-Advertising-Campaign-Length

where the advertiser merely specifies a start and an end date and requests his ad to be posted for

that fixed time frame (see, e.g., Akella et al. 2009). In this paper, we focus on the common case

that the advertiser requests a certain number of impressions, and is charged based on the CPM

pricing scheme. We refer to the information about an advertiser’s desired slot category, and the

viewer types he targets as his chosen “ad campaign”.

We note that in practice, there are also some slot categories that no advertiser may be interested

in. These categories are often referred to as orphan categories (Arpita et al. 2009). Since there is

little demand for orphan categories (mostly due to an overly low probability that the posted ads

are clicked on), some networks try to sell them using auctions at lower prices through advertising

exchanges (Balseiro et al. 2014). Ad exchanges are platforms that facilitate the buying and selling

of the orphan slot categories from multiple ad networks. In this paper, we focus on Guaranteed

Delivery contracts only. (See, e.g., Balseiro et al. 2012, Muthukrishnan 2009, and Celis et al. 2012

for a survey of researches on auction pricing in advertising exchanges.)
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(3) The advertising network, through some selection procedure, selects and sends the ad to

one of the available subsystems that is matched to the advertiser’s ad campaign and bid price.

The selected publisher displays the ad to the targeted viewer groups specified by the advertiser’s

campaign.

(4) The advertiser pays the ask-price to the ad network. The ad network often takes about

25-50% of the payment as commission and transfers the rest to the publisher’s account. Figure 1

summarizes the steps in an online transaction between publishers and advertisers through an ad

network.

Web publishers seek the CPM prices that maximize their expected revenues based on the uncer-

tain arrival of advertisers through the ad network and the uncertain supply of visits from viewers.

To capture the dynamics of the display advertising settings, with advertisers approaching the

publisher at any time and viewers uploading the website at any time, we model the publisher’s

system as a queueing system in which advertisers act as customers who arrive at the system

requesting to be served with certain number of impressions, viewers act as servers, and the slots

act as serving channels. The resulting queueing system is new and despite complicated dynamics,

a closed-form solution of the steady-state probability can be determined.

The main contributions in this paper are:

1. We construct a modeling framework capturing the main trade-offs in the operation of a web

publisher dealing with an ad network that comes from matching supply with demand. We consider

a general setting of multiple webpages, multiple types of ads (e.g. based on location and size), and

targeted viewer types with different prices, and allow several ads to randomly share an advertising

slot (random ad rotation). This model can serve as a building block for studying more complicated

operational challenges faced by a web publisher such as competition. (See Sections 3 and 5.)

2. We derive a closed-form solution of the steady-state probability distribution of the number

of advertisers in the system. This enables us to determine the optimal price for the web publisher

to charge advertisers and analyze the publisher’s system in detail. (See Sections 3 and 4.)

3. We demonstrate that the optimal price can increase in the number of impressions that are

offered. While this can be explained based on operational insights, all web publishers we approached

offer either fixed prices or quantity discount, except for Yahoo! that has recently started to charge

a higher price per impression for contracts delivering a large number of impressions2.

2 Confirmed by Prof. Preston McAfee, former VP and Research Fellow at Yahoo! (currently, a chief economist at
Microsoft)
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4. We provide further insights by showing that, in certain conditions, the optimal CPM price

increases in the number of ads rotating among the slots. This result is typically not expected given

our common intuition from the supply-demand relationship: an increase in the number of rotating

ads in the system can be interpreted as an increase in the service capacity. However, the fact that

the effective service rate to each ad depends on the number of rotating ads causes an opposite

impact. (See Section 4.)

5. We provide an analysis based on a real data-set from a major Norwegian web publisher to

support our assumptions and results, along with a simulation analysis. (See Section 5.)

The remainder of this paper is structured as follows. Section 2 reviews the related literature and

Section 3 describes the model. Section 4 details the optimal CPM price for web publishers. Section

5 considers some extensions and Section 6 provides concluding remarks.

2. Literature Review

There are two streams of literature related to our research. The first is online advertising within

the marketing area, which is quite extensive. Novak and Hoffman (2000) provide an overview

of advertising pricing schemes for the Internet. However, there is limited literature on analytical

models for optimal pricing and other decision making for a web publisher with an advertising

operation. (For issues faced by advertisers such as predicting audience for advertising campaigns

see, e.g., Danaher (2007) and papers referenced therein.)

The second stream of literature is in operations research and management science. The online

advertising research within this area is limited and there are few works directly related to online

advertising pricing.

In some of the earlier work, Mangàni (2003) compares the expected revenues from the CPC

and the CPM schemes using a simple deterministic model. Unlike our paper, he does not consider

the uncertainties involved with the advertisers’ demands and viewers’ supplies. Chickering and

Heckerman (2003) develop a delivery system that maximizes the CTR given inventory-management

constraints in the form of advertisement quotas. Both of these papers assume the prices are fixed.

Fjell (2009) uses a deterministic economic model to analyze the choice between CPM and CPC

when a web publisher is both a price taker in the market for display ads and faces a decreasing

number of viewers visiting its website. His results show that if the CTR is less than the CPM to CPC

ratio the publisher should choose the CPM contract otherwise CPC should be chosen. The prices

are assumed to be determined exogenously by the market and the supply and demand uncertainties

are not considered. McAfee et al. (2010) consider a deterministic model for a web publisher selling

maximally representative allocations to advertisers based on the GD contract. Lewis and Reiley
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(2011) measure the impact of advertising on sales through an experiment performed between Yahoo!

and a major retailer. They find that online display advertising can have a significant impact on

a retailer’s sales. Najafi-Asadolahi and Fridgeirsdottir (2014) focus on pricing for a CPC pricing

scheme. The common misconception exists in the industry that CPC prices are simply CPM prices

scaled by the click-through rate. This paper addresses that issue and shows that the simple scaling

has flaws as the actual click-through rate depends on how many ads are on display. The paper

develops a novel model for the CPC pricing scheme, which is different from the CPM model as the

CPC system has a service rate that depends on the state of the system.

Some authors have considered the problem of a web publisher who not only generates revenues

from advertising but also from subscriptions. Baye and Morgan (2000) develop a simple economic

model of online advertising and subscription fees. Prasad et al. (2003) model two offerings to viewers

of a website: a lower fee with more ads and a higher fee with fewer ads. Kumar and Sethi (2009)

study the problem of dynamically determining the subscription fee and the size of advertising space

on a website. Unlike our paper, all these papers are focused on capacity management problems not

pricing decisions, and the price is assumed to be fixed.

Scheduling of ads on a website has also recently become a popular topic. Kumar et al. (2006)

develop a model that determines how ads on a website should be scheduled in a planning horizon

to maximize revenue. Their problem belongs to the class of NP-hard problems, and they develop a

heuristic to solve it. They also provide a good overview of other related papers on scheduling. In a

related work, Turner et al. (2011) develop a model for the dynamic in-game ad scheduling problem

faced by a leading network provider of in-game ad space.

There is a growing literature on online display advertising from a revenue management perspec-

tive, which mainly focuses on the optimal display ads allocation problems. Examples of recent

works include Balseiro et al. (2014), J. Yang et al. (2010) and Alaei et al. (2009) (for a reference

of traditional revenue management models, see, e.g., Talluri and van Ryzin 2004). Ciocan and

Farias (2012) develop an algorithm for a large class of dynamic allocation problems with unknown

demand, with applications in display ad slot allocation and network revenue management. Chen

(2011) considers a mechanism design approach for a monopolistic web publisher deciding whether

to allocate its display ad slots to guaranteed contracts or to the spot market. Balseiro et al. (2014)

consider a similar problem for a web publisher with a single slot, and use a stochastic control

approach to characterize an asymptotically optimal efficient allocation policy. Balseiro et al. (2013)

study auctions for online display advertising exchanges and show that ignoring advertisers’ bud-

gets in these markets can result in substantial revenue losses for publishers. Araman and Popescu
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(2010) study the ad allocation problem for more traditional media, specifically broadcasting. Their

model is concerned with how to allocate limited advertising space between up-front contracts and

the so-called scatter market (i.e., a spot market). Araman and Fridgeirsdottir (2011) consider a

similar web publisher setting to our paper and study pricing and capacity management for a CPM

system where advertisers are willing to wait. Their setting does not allow for closed-form solutions

and they derive asymptotically optimal solutions.

3. The Model

In this section, we formulate the problem of a web publisher facing uncertain demand from adver-

tisers requesting space to display their ads. The web publisher’s website consists of a single webpage

with similar slots for ads. In Section 5.1, we will generalize this setting and consider a website

with multiple pages. The web publisher uses an ad network that supplies it with the demand.

Advertisers request a certain number of impressions (visits) made to their ads by their targeted

viewer types (through their chosen ad campaigns). However, the supply of (targeted) viewers is

uncertain.

Advertisers’ Arrivals and Impression Request Let K be the set of ad campaigns with

size |K|. An advertiser arriving at the ad network, chooses an ad campaign κh ∈K, h= 1,2, ..., |K|,
where κh is a vector of attributes of the slot and viewer types that he aims to target. These

attributes may include: (i) the slot size and format with the page content, (ii) the keywords related

to the page content, (iii) the demographic information of the targeted viewers (e.g., their gender,

age, ethnicity, education, income, geographical location), (iv) the device and operating systems

that viewers use (e.g., PCs, laptops, smartphones, etc.), and (v) other (behavioral) attributes that

the ad network may learn by tracking viewers’ activities through the cookie files posted in their

devices (e.g., viewers with potential interest in photography) (see, e.g., Bharadwaj et al. 2010).

We assume that advertisers with the ad campaign κh arrive at the publisher’s page according

to a Poisson process with rate λκh . Assuming Poisson arrivals is common in service settings (see,

e.g., Van Mieghem 2000, Cao et al. 2002, Savin et al. 2005). While this assumption captures the

stochastic nature of advertisers’ demand and may be appropriate for some ad networks, it is unlikely

to be a good universal estimator of all advertisers’ arrival distributions. We retain the Poisson

assumption to maintain the analytical tractability.

Each arriving advertiser with the campaign κh requests his ad to be posted on one of the slots

on the publisher’s page until displayed to (impressed by) xκh unique viewers (impression goal). In

reality, the requested number of impressions, xκh , can be random across advertisers, i.e., xκh is a

random variable. We will look at this as an extension in Section 5.2.
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As explained in the introduction, advertisers’ requests are sent to the web publisher’s system as

long as the publisher has a space available to serve. That is, if all of the publisher’s ad spaces are

already occupied by advertisers, the network does not send advertisers to the publisher’s system.

Rather, it sends advertisers to other available systems that match their request. This implies that

the publisher’s page is a loss system. Note that if advertisers approach a web publisher directly

(not using any ad network), they may be willing to wait for an available space (e.g., an advertiser

directly approaching CNN.com). In that case, if the waiting time is short (e.g., advertisers are

served shortly after their arrivals) then since no (or little) queue is formed, the arrivals and the

service mechanisms of the system would still be close to those of a loss system. Thus, the main

results and managerial insights would be similar as well.

In addition, when the web publisher has a slot available, it usually does not leave it empty; rather

it places a default (filler) ad in there (remnant advertising). A default ad is often the publisher’s

own ad (house ad), or a run-of-network ad that the ad network sends to fill the place (e.g., a

public service announcement). In both cases, a default ad generates minimal revenue. Hence, when

a revenue generating ad is sent to the publisher the filler ad would be replaced by a proper revenue

generating ad.

Viewers’ Arrivals and Targeting Let V be the set of viewer types with size |V|. Each

element in V, denoted by vj ∈ V, j = 1,2, ..., |V|, is a vector of the attributes for one viewer type,

which we call “type vj”. Viewers type vj arrive at the publisher’s page according to a Poisson

process with rate µvj . This assumption is consistent with empirical studies, e.g., Cao et al. (2002),

that show that the viewers’ traffic tends locally to Poisson distribution. In addition, in Section

5.2, we show that our results provide accurate estimates for the publisher’s model even when the

viewers’ arrivals are non-Poisson. We let the binary variable v
κh
j be v

κh
j = 1 if the ad campaign

κh targets viewers type vj, and v
κh
j = 0, otherwise. We let V (κh) be the set of viewer types that

are targeted by ad the ad campaign κh, i.e., V (κh) = {vj|vκhj = 1, vj ∈ V}, and K(vj) be the set

of ad campaigns that target viewers type vj, i.e., K(vj) = {κh|vκhj = 1, κh ∈ K}. Without loss of

generality, we assume that each viewer type is targeted by at least one ad campaign and each ad

campaign targets at least one viewer type, i.e., ∪
κh∈K

V (κh) = V, ∪
vj∈V

K(vj) =K. When a viewer type

vj visits the publisher’s page, only ads from the campaigns set K(vj) are displayed to him, which

we refer to as the page-version vj. Figure 2 shows an illustrative example of three ad campaigns

targeting different viewer types. For convenience, we denote the viewer type that is targeted by

only the ad campaign κh with vh.

Case A: In this case, the set of ad campaigns and viewer types are K={κ1, κ2, κ3} and

V ={v1, v2, ..., v7}, respectively. In addition, the set of viewer types targeted by the ad campaigns
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Figure 2 An example of three ad campaigns targeting various viewer types.

κ1, κ2, and κ3 are V (κ1) = {v1, v4, v6, v7}, V (κ2) = {v2, v4, v5, v7}, and V (κ3) = {v3, v5, v6, v7}, respec-

tively. When a viewer type vi visits the publisher’s page, he sees only ads from the campaigns

that belong to the set K(vi), which have targeted the viewer (i.e., page-version vj). For example,

a viewer type v1 see ads only from the campaign set K(v1) = {κ1}, a viewer type v4 sees ads

only from the campaigns set K(v4) = {κ1, κ2}, and a viewer type v7 sees ads only from the set

K(v7) = {κ1, κ2, κ3}.
Case B: In this case, we have K={κ1, κ2, κ3}, V ={v1, v2, v3}. In addition, each ad campaign

is targets exactly one viewer type (i.e., V (κh) = {vh}, h = 1,2,3) while each viewer type is tar-

geted exactly by one ad campaign (i.e., K(vj) = {κj}, j = 1,2,3). That is, there is a one-to-one

correspondence between the elements of K and V.3

We note that in some ad networks, advertisers may not target the viewer types specifically.

Instead, they may leave the task of targeting related viewer types to the ad network. In such cases,

using the ad campaign and viewer type attribute vectors κh and vj, the ad network determines

a relevant score sometimes referred to as quality of service (QoS) or placement quality, which we

denote by Q(κh, vj). A higher value of Q(κh, vj) suggests that an ad from the campaign κh has

a greater chance to be considered and clicked by viewers type vj. There is no standard way to

obtain Q(κh, vj), however one common measure for Q(κh, vj) is that it is viewed equivalent to the

click-through rate (CTR) that an ad with the campaign κh is estimated to perceive if it is shown

to viewers type vj (see, e.g., Balseiro et al. 2013). Ad networks typically use empirical data to

estimate Q(κh, vj) and post an ad on the page-version vj only if a minimal QoS level criteria such

3 Note that it is also possible that multiple viewer types are targeted by exactly one advertiser. This situation, is a
special scenario of Case B because we may consider all those viewer types as a unified type.
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as Q(κh, vj)≥ τ, for some given τ , is satisfied. Here, we do not consider the QoS criteria directly,

but in Section 4, we will capture it indirectly by considering a generalized price-demand function

for the publisher’s page.

Ads Rotation The publisher can typically serve more advertisers on each page-version vj

than there are slots. For example, multiple ads could share the same slot with each ad randomly

displayed to the viewers based on pre-assigned display weights. Random weight-based ad rotations

are commonly used by ad management software such as Double-Click for Publishers (DCP) by

Google (DCP 2010) or AdCycle’s ad management software4. We denote Sκh as the maximum

number of ads from the campaign κh accepted into the publisher’s system. In addition, we denote

nvj to be the number of slots on the page-version vj. If Svj :=
∑

κh∈K(vj)

Sκh >nvj then, when a viewer

type vj arrives, a subset of nvj ads from the pool of Svj is selected randomly and displayed to him

(random ad rotation). For example, in Figure 2, Case A, the publisher may accept up to 7 ads

from each campaign into the system, i.e., Sκ1 = Sκ2 = Sκ3 = 7, whereas each page-version has only

4 slots, i.e., nvj = 4, j = 1,2, ...,7. Thus, for example, when a viewer type v7 arrives the publisher

displays 4 ads from a pool of maximum Sv7 =
∑

κh∈K(v7)

Sκh = Sκ1 +Sκ2 +Sκ3 = 21 related ads from

the campaigns that have targeted the viewer, i.e., K(v7) = {κ1, κ2, κ3}.
The Optimization Problem The publisher’s goal is to maximize its total revenue rate by

determining the right prices to charge advertisers each time their ads are displayed to one of

their targeted viewers. The revenue rate gained from advertisers served on the page-version vj ∈ V
consists of the payments made by advertisers multiplied by their “actual” demand rate for the page-

version vj (defined later). The payment of an advertiser on the page-version vj consists of the price

per each impression, denoted by pvj (specified below), multiplied by the number of impressions,

denoted by xvj . Thus, the total payment made by an advertiser with the ad campaign κh ∈ K
is

∑
vj∈V (κh)

xvjpvj , where xκh =
∑

vj∈V (κh)

xvj . The following proposition characterizes the advertisers’

demand process for any page-version vj.
5

Proposition 1 Let µκh be the arrival rate of viewers whose types are targeted by the ad campaign

κh ∈K, i.e., µκh =
∑

vj′∈V (κh)

µvj′ . Then the total demand for a page version vj ∈ V, from advertisers

with the campaigns κh ∈K(vj), is Poisson with rate

λvj =
∑

κh∈K(vj)

µvj
µκh

λκh ,∀vj ∈ V. (1)

4 http://www.adcycle.com/

5 Note that each impression made an ad is now valued and priced based on a viewer’s type who has visited the page.
Naturally some viewers might be more valuable to an advertiser than others. For example, viewers with an income
level greater than $100k may be more valuable to an advertiser than college students. Thus, when the ad is impressed
by these more valuable viewers, the advertiser is charged more.
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Proof: Advertisers with the campaign κh arrive at the publisher’s system according to a Poisson

process with rate λκh , and request their ads to be displayed to the set of viewer types V (κh). As

the arrival of viewers type vj ∈ V (κh) is Poisson, the probability that the ad is displayed to the

viewer-type vj ∈ V (κh) is µvj/µκh , where µκh =
∑

vj′∈V (κh)

µvj′ . Thus, the demand for the page-version

vj is Poisson with rate
µvj
µκh

λκh , any ad campaign κh ∈ K(vj). Hence, the total demand for the

page-version vj ∈ V is Poisson with rate λvj =
∑

κh∈K(vj)

µvj
µκh

λκh . �

We capture the price-sensitivity of the advertisers with a price-demand function, pvj (λvj , xvj , Svj ),

which is assumed to be continuous and (weakly) decreasing in the advertisers’ arrival rate, the

number of impressions, and the number of ad spaces. The decreasing relation between the price and

the number of impressions captures the fact that, given all other parameters are fixed, advertisers

receive lower prices (better deals) if they are willing to purchase larger numbers of impressions. In

addition, advertisers often do not want to see their ads posted on pages on which the ads are hardly

recognized, due to many ads posted on the page (slot congestion). For this reason, advertisers

request pages with a lower ad congestion as they provide a higher chance for the ads to be seen

and clicked on. As explained before, advertisers often perceive such a higher chance as a higher

QoS or the placement quality. Publishers are aware that to deliver a desired quality of service,

there is a trade-off between the website’s profitability and the slot congestion, which prevents the

publisher from becoming overly greedy and posting too many ads on its page (see, e.g., Mookerjee

et al. 2012). To capture this trade-off, we assume that the publisher incurs a congestion penalty, in

the form of a price discount, for adding an extra space on each page version (i.e., ∂pvj/∂Svj ≤ 0).

The decreasing relation between pvj and Svj prevents the publisher from posting too many ads (on

each page-version), so the click chance of the posted ads does not reduce significantly.

Even though it might not be trivial for the publisher to determine the price function, we assume

it can do so with trial and error. For instance, ad networks often encourage publishers to start

by offering low prices and then gradually increase them to the appropriate values. Furthermore,

publishers such as Yahoo! have started looking into estimating the price-demand relationship. The

process of advertisers being matched to web publishers based on type preference and willingness-

to-pay can be modelled specifically. However, ultimately it will lead to a price-demand relationship.

We will not model the process in detail here but in Section 1, we have provided a description of

the matching process common in ad networks.

For popular websites often only a part of the advertisers’ demand can be met by the publisher.

This means that the actual demand rate for each subsystem is scaled down by the probability that

there are advertising spaces available at the arrival time of an advertiser. However, as arrivals are
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Poisson, we can invoke the PASTA property that Poisson arrivals always see time averages. Thus,

the arrival-time probability of having i advertisers served in the page-version vj is identical to its

steady-state probability (Gross and Harris 1998), which we denote by Pvji , i∈ {0, ..., Svj}, vj ∈ V.
We note that as the price for each page-version, pvj (λvj , xvj , Svj ), is a one-to-one function of λvj ,

and λvj is a function of λκh ( Proposition 1), we can optimize the revenue rate with respect to λκh

directly and then determine the optimal λvj and pvj (λvj , xvj , Svj ), accordingly. The optimization

problem of the publisher can be formulated as:

max
∀λκh≥0, κh∈K

R=
∑

vj∈V
λvj (1−PvjSvj (λvj ;xvj , Svj , µvj ))pvj (λvj , xvj , Svj )xvj , (2)

Subject to:

λvj =
∑

κh∈K(vj)

µvj
µκh

λκh , vj ∈ V.

In the above formula, PvjSvj is the steady-state probability that the page-version vj page is fully

occupied. Hence, λvj (1−PvjSvj ) is the effective arrival rate of advertisers with the ad campaigns κh ∈
K(vj) who are accepted by the page-version vj

6. Note that if there is a one-to-one correspondence

between the elements of K and V (e.g., as in Figure 2, Case B), the demand rate from the advertisers

with a particular ad campaign is the same as the demand rate for the page-version that they

have targeted, i.e., λvh = λκh (h = 1,2, ..., |K| = |V|). Thus, the optimization problem (2) can be

re-expressed based on the ad-campaigns instead of the viewer-types:

max
∀λκh≥0, κh∈K

R=
∑

κh∈K
λκh(1−PκhSκh (λκh ;xκh , Sκh , µκh))pκh(λκh , xκh , Sκh)xκh , (3)

where since the right side is separable over κh ∈K, we can focus on optimizing the revenue generated

by one campaign.

In order to optimize (2), we first need to characterize the steady-state probability

PvjSvj (λvj ;xvj , Svj , µvj ). To obtain PvjSvj , we focus on only one page-version (a single page with only

one version), drop all indices and refer to the advertisers targeting version vj merely as “advertis-

ers”, and viewers type vj merely as “viewers”.

6 Note that if an advertiser is not accepted into the page-version vj , his request is immediately forwarded to another
relevant publisher with available space on its page-version vj . For example, an advertiser may request his ad to be
viewed by three types of viewers a, b and c. The publisher can only serve the ad when viewers a or b arrive, but
not when viewers type c arrive (because there are already enough ads posted when viewers type c arrive). In that
situation, the publisher served only part of the contract, and the rest is forwarded to and immediately served by
another relevant publisher who can expose the ad to viewers type c.
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The Steady-State Probability Distribution In this section, we first set S = n, i.e., there is

no rotation of ads. However, we will consider ads rotation later in the section. Having Markovian

arrival and service processes, we can now model the system using continuous-time Markov chains.

Note that even though we are ultimately interested in keeping track of the number of advertisers

in the system, in order to model the system’s dynamics we need to keep track of the system at a

more detailed level; the number of impressions left to be delivered for each slot.

When an advertiser arrives, he is randomly assigned to one of the available slots with an equal

probability as the slots are equivalent. This random ad-to-slot allocation means that we can keep

track of the dynamics of the system without distinguishing between the slots. Let us now define

the state of the system and its transitions. We formulate the system as a queueing model with the

state vector

k=(k1, k2, ..., kn), 0≤ kh ≤ x, h= 1,2, ..., n, (4)

in which each component represents the number of impressions left to be satisfied in one of the

slots without distinguishing among the slots. For instance, kh indicates that there is an ad in the

system, which needs to be displayed kh times more to leave the system. If kh = 0, it indicates that

the corresponding slot is empty. Alternatively, if kh = x it indicates that an ad of a new advertiser

has just been placed in the slot. Note that as we do not distinguish between the slots (all slots in

the system are equivalent) any combination of the same components does not lead to a new state.

For example, (3,4,2), (4,3,2), and (2,3,4) all refer to the same state. For convenience, we consider

that k’s positive components are always arranged in an increasing order followed by components

whose values are zero. We illustrate how the state transitions work through the following examples:

i) Suppose that the system is in the state (k1, k2, ..., ki,0, ...,0), where the first i components

are positive and the rest n− i are zero. This means that there are i ads in the system with the

remaining impressions k1, ..., ki and the rest n− i slots are empty. The viewers consider the system

with rate µ. When a viewer arrives at the system, since all the ads are displayed, the state of the

system makes a transition to the new state

k′ = (k1− 1, k2− 1, ..., ki− 1,0, ...,0) = k−
i∑

h=1

eTh ,

with rate µ where eh is the hth unit vector. That is, all the positive components’ values reduce by

one at the same time (the synchronized service), while the zero components do not change. For

example, if the state of the system is (2,3,4,0,0) then it makes a transition to the state (1,2,3,0,0)

with rate µ. We note that (unlike many typical multi-channel systems) the service channels in the
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CPM system are inter-dependent through their synchronized services, which are triggered by the

arrival of each viewer (synchronization), which makes the analysis of the system complicated.

ii) Next, consider the state of the system to be

k=(k1, k2, ..., ki,0, ...,0︸ ︷︷ ︸
n−i

).

Now, if an advertiser arrives at the system, the publisher assigns one of the empty slots to his ad,

and the state will make a transition to the state

k
′′

= (k1, k2, ..., ki, x,0, ...,0︸ ︷︷ ︸
n−i−1

) = k+xeTi+1

with rate λ. Once again, we note that the vectors k+xeTi+1,k+xeTi+2, ..., and k+xeTn all refer to

the same system state, where for convenience we represent them all with k
′′

= k+xeTi+1.

In order to find πk, the steady-state probability that the system is in state k, we characterize all

possible states and transitions, and solve the flow balance equations. Given the complex transition

dynamics one may wonder if a nondegenerate solution exists for πk. Proposition 2 ensures the

existence of the steady state for the publisher’s Markov chain.

Proposition 2 In the publisher’s Markov chain, a unique nondegenerate solution to the stationary

flow-balance equations always exists.

The proof of Proposition 2 mainly relies on two well-known theorems for stochastic processes.

The first says that a continuous-time Markov chain (CTMC) has identical and unique limiting

and stationary distributions if it is irreducible and positive recurrent, while the second says that

an irreducible CTMC with finite number of states is positive recurrent (ergodic). The publisher’s

CTMC is clearly irreducible since any state can be reached from any other. It can also be seen

directly from (4) that the number of states is finite. Hence, the chain is positive recurrent. Thus,

a unique steady-state distribution exists. The following proposition gives the closed-form solution

of the steady-state probability distribution of the number of advertisers in the system.

Proposition 3 The steady-state probability of a web publisher’s system with n slots in the state

k=
∑i

j=1kje
T
j , where kj (0≤ kj ≤ x) is the number of impressions left in slot j (0≤ j ≤ i) and the

rest n− i slots are empty is:

πk(r,x,n) =

(
r

1+r

)i (
1

1+r

)x
1i<n +

(
r

1+r

)n (
1

1+r

)x−1

1i=n
n∑
j=0

(
x+n−1

j

)(
r

1+r

)j (
1

1+r

)x−1+n−j , r=
λ

µ
, (5)
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Furthermore, the steady-state probability of having i advertisers (0≤ i≤ n) in the system is:

Pi(r,x,n) =

(
x+i−1
i

)(
r

1+r

)i (
1

1+r

)x
1i<n +

(
x+n−1
n

)(
r

1+r

)n (
1

1+r

)x−1

1i=n
n∑
j=0

(
x+n−1

j

)(
r

1+r

)j (
1

1+r

)x−1+n−j . (6)

Surprisingly, despite the complicated structure of (6), we may interpret it intuitively using an

M/M/1 system. This interpretation is interesting because the two systems have considerably differ-

ent mechanisms. We note that the ratio r/(1 + r) can be viewed as the (jump-process) probability

(in an M/M/1 system) that the number of advertisers arriving at the system increases by one at

any arbitrary point in time. When i < n, Equation (6) suggests that from a steady-state stand-

point the system has i advertisers if from any idle period, the number of advertisers arriving at

the system jumps from 0 to i before the number of viewers jumps from 0 to x. Technically, this

is all the possible rearrangements between the i terms r/(1 + r) and the x− 1 terms 1/(1 + r),

i.e.,
(
x+i−1
i

)(
r

1+r

)i (
1

1+r

)x−1

, times the probability that the xth viewer arrives last, i.e., 1/(1 + r).

In a similar way, the denominator of (6) can be explained as the (Binomial) probability that the

publisher accepts up to and including n advertisers into the system. When i = n, Equation (6)

suggests that the steady-state probability that the publisher’s system has n advertisers is the

probability that from any idle period, there are at least n jumps in advertisers’ arrivals before

the number of jumps in the viewers’ arrivals reaches to x, i.e.,
∑∞

k=n

(
x+n−1
n

)(
r

1+r

)k (
1

1+r

)x−1

=
(
x+n−1
n

)(
1

1+r

)x−2 (
r

1+r

)n
, times the probability that the xth viewer arrives last, i.e., 1/(1 + r).

However, this probability is scaled by the denominator, the probability that at most n advertisers

can be served. Another interesting observation from Proposition 3 is that πk does not depend on

the actual number of impressions left in each slot, but it depends only on the number of filled slots.

Rotation of Ads Next, we consider the case where the slots can be shared by up to S > n

(real) ads. Let us consider there are m ads present in the system, which are rotated across the n

slots in the system. If m<S then (S−m) ads would be filler ads. When a new advertiser arrives

the publisher immediately replaces this real ad with one of the filler (default) ads. When a viewer

arrives at the system a subset of n ads are randomly selected from the pool of S real and filler ads

and displayed to the viewer7. We know that the number of possible subsets to select n ads out of

S is
(
S
n

)
. To obtain the number of subsets that include a particular ad, we select that particular ad

7 It would be possible to consider that when the number of ads in the system m< n then the publisher only fills
(n−m) slots with filler ads. Hence, when a viewer arrives all ads are displayed. This scenario might be more realistic,
however adds layers of complexity to the analytical model. To maintain analytical tractability, we assume that if
m<n, the publisher posts (S−m) filler ads in the remaining empty slots and rotates all randomly.
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and then choose the remaining n− 1 ads in the subset from the S− 1 remaining total ads. Hence,

the probability that a particular ad is displayed is

PDisp =

(
S−1
n−1

)
(
S
n

) =
n

S
.

Therefore, the Markovian transitions of the system would be identical to those of a system with

S slots without rotation while the viewers’ arrival (service) rate is µ×PDisp = µn/S8. That is, the

probability of having i advertisers in the system with random ad rotation, Pi(r,x,n,S), is

Pi(r,x,n;S) = Pi(r̂, x,S), i= 0,1,2, ..., S, (7)

r̂= rS/n,

where Pm(r̂, x,S) is defined by (6). In the next two propositions, we show some structural properties

of the average number of advertisers in the system and the busy probability. These will be useful

when considering the pricing problem of the web publisher in the next section.

Proposition 4 ∀x,S,n (n≤ S) the full state probability, PS, defined by (6) satisfies:

(i) ∂PS
∂r
≥ 0, (ii) PS(x+ 1)−PS(x)≥ 0, (iii) PS+1(x)≤ PS(x).

This proposition confirms the intuition that the web publisher is busier if there is more demand

and less traffic, more impressions, and fewer advertising spaces. Nevertheless, our numerical analysis

indicates that PS is not necessarily concave in the number of impressions.

Proposition 5 ∀x,S the average number of advertisers, LS(x), and the increment ∆LS(x) = L(x+

1)−L(x) satisfy:

(i) ∆LS(x)≥ 0, (ii) ∆LS(x+ 1)≤∆LS(x), (iii) ∂L
∂r
≥ 0, ∂

2L
∂r2
≤ 0, (iv) LS(x)≤ LS+1(x).

Parts (i) and (ii) in Proposition 5 imply that if the web publisher’s system contains only one

subsystem (i.e., a page containing similar ads with one version) then the average number of adver-

tisers in the web publisher’s system is increasing and concave in the number of impressions. Hence,

the publisher is busier if the number of impressions it offers is larger. However, as x increases,

this impact levels off. In addition, Part (iii) implies that the average number of advertisers in the

system is increasing and concave in the intensity rate r. That is, the publisher is busier with more

demand, less traffic, or a higher demand-to-traffic ratio. However, as r increases, the impact levels

off. Part (iv) states that the average number of advertisers in the web publisher’s system increases

in the number of advertising spaces. Proposition 4 and 5 are crucial when solving the optimal

pricing problem in the next section.

8 That is, in the proof of Proposition 2, all the transition flow balance equations would be the same with the only
difference that µ is replace by µn/S. Other than that, all the steps of the proof for the system with random ad
rotation would be identical to the proof of Proposition 2.
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4. The Optimal Price

Having fully characterized the probabilistic properties of the web publisher’s operation, we now

turn to the task of finding the optimal pricing policy. The web publisher’s objective is to determine

the optimal price to charge per click that maximizes the revenue rate defined in (10). The next

proposition ensures the existence of the optimal solution and gives the optimal price.

Proposition 6 Let the price function, pvj (λvj ;xvj , Svj ), vj ∈ V, be concave and (weakly) decreas-

ing in λvj . Then the publisher’s revenue, R, is concave in Λ = (λκ1 , ..., λκ|K|). In addition, the

advertisers’ optimal arrival rate for each ad campaign, λ∗κh , κh ∈K, is the unique solution to:

∑

vj∈V (κh)

(
∂Lvj (λvj ;xvj , Svj )

∂λvj
pvj (λvj ;xvj , Svj ) +

∂pvj (λvj ;xvj , Svj )

∂λvj
Lvj (λvj ;xvj , Svj )

)
µvj = 0, (8)

where λvj =
∑

κh∈K(vj)

µvj
µκh

λκh , vj ∈ V and Lvj (λvj ;xvj , Svj ) = rvj
Svj
nvj
xvj (1−PSvj (λvj ;xvj , Svj , µvj )) is

the average number of advertisers served on page version vj.

In order to ensure concavity of the objective function, we need pvj (λvj ;xvj , Svj ) to be weakly

concave in λvj . Even though this might seem a restrictive assumption it includes a linear price,

which is widely applied in economics and management science literature (see, e.g., Adida and

DeMiguel 2011). In addition, our numerical analysis indicates that many convex price functions

give a unimodal revenue function as well.

The next proposition confirms the somewhat nonintuitive results that the web publisher may

be worse off by having more spaces on its page-version vj, and offering more impressions; but is

always better off by having more viewer traffic to its page-version vj. We denote the revenue rate

generated from each page version vj by RSvj ,xvj (λvj (Svj , xvj , µvj );µvj ) to emphasize the dependence

on Svj , xvj , and µvj .

Proposition 7 The overall optimal revenue of the publisher,
∑
vj∈V

RSvj ,xvj (λ
∗
vj

(Svj , xvj , µvj );µvj ),

is: (i) concave in Svj with a global maximum at some S∗vj , (ii) concave in xvj with a global

maximum at some x∗vj , (iii) increasing in µvj .

This proposition implies that it is possible that the publisher loses revenue by serving more

advertisers on a page-version. The reason for this behavior is due to the trade-off between the two

opposing forces: (i) the number of ad spaces and (ii) price. Adding an extra space to a page-version

enables the publisher to serve more advertisers at the same time, which increases the revenue.

However, with an additional space, the publisher reduces the price (as a congestion penalty) to
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compensate offering a more congested page (e.g., lower click-through rate), which drives down the

revenue. If the revenue gained from adding an extra space is less than the revenue lost due to the

price discount, the optimal revenue decreases.

The following proposition states the counter-intuitive result from a marketing point of view that,

when there is a one-to-one correspondence between the elements of K and V, then the publisher

may optimally increase the price per impression when offering more impressions.

Proposition 8 Let pvj (λvj , xvj , Svj ) be weakly concave in λvj with
∂pvj (λvj ,xvj ,Svj )

∂λvj ∂xvj
≤ 0, and K(vj) =

{κj}, V (κj) = {vj}, for all j = 1,2, ..., |V|= |K|. Then:

(i) λ∗vj is decreasing in xvj . That is,
∂λ∗vj
∂xvj
≤ 0,

(ii)
dpvj (λ∗vj ,xvj ,Svj )

dxvj
≥ 0, if and only if

∂λ∗vj
∂xvj
≤−∂p(λ∗vj ,xvj ,Svj )

∂xvj
/
∂p(λ∗vj ,xvj ,Svj )

∂λvj
.

This proposition is interesting as one typically expects the opposite, i.e., the optimal price to be

lower when more impressions are offered. In order to understand what drives these results, we note

that the higher the number of impressions is, the longer it takes to serve each advertiser. Since

the service time for each ad is longer, the web publisher does not need as many advertisers (per

time unit) to fill the ad spaces (i.e., empty buffers) and keep the system busy (i.e., eliminate the

downtime). This results in a lower optimal arrival rate. In addition, since the price has a decreasing

relationship with xvj and λ∗vj , an increase in xvj lowers the price while a decrease in λ∗vj raises it.

Part (ii) suggests that if the price increase due to the lower λ∗vj is greater than the price decrease

caused by a higher xvj , then the publisher finds it optimal to increase the price rather than giving

a quantity discount.

Practical Evidence i) We also checked this result with some real publishers. All publishers

we spoke to offer quantity discounts except Yahoo!. According to Prof. Preston McAfee, the former

vice president and senior research fellow at Yahoo!, (currently a chief scientist at Microsoft) Yahoo!

now increases the CPM price for large contracts instead of giving a discount. However, they did

not have any theoretical underpinnings why this policy yields a higher expected revenue; Rather

they had come to this pricing approach through a series of trials and errors over time. Our result

provided them with a theoretical explanation.

ii) In addition to approaching publishers, we obtained and studied real data from Aller Inter-

nett, a major Norwegian web publisher, which may confirm the counter-intuitive quantity-discount

result. The data belongs to a period from 1st October 2009 to 24th February 2010 (when we con-

ducted this empirical study). After clearing the data and considering a particular ad size and

location, we did not have many data points remaining. Figure 3 illustrates the empirical rela-

tionship between the number of impressions and the CPM price. As can be seen, the CPM price
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Figure 3 The relationship between the delivered number of impressions and the CPM price.

increases in the number of impressions being offered. Nevertheless, we note that despite the visible

upward trend the t-statistic value for the slope of the regression line is close to zero, which implies

that the price might be independent of the number of impressions for this publisher. However, the

increasing relation may weakly confirm the pricing insight.9

Next, we consider the sensitivity of the optimal price with respect to the number of advertising

spaces. When the web publisher increases the space Svj , it is typically expected to reduce the

price to attract more advertisers and fill the extra space as well as due to a higher slot congestion.

Nevertheless, the next proposition shows that when the publisher increases Svj , it may increase

the price.

Proposition 9 Let |V| = |K| and K(vj) = {κj}, V (κj) = {vj}, j = 1,2, ..., |V|. In addition, let

pvj (λvj , xvj , Svj ), be decreasing and weakly concave in λvj and Svj <<xvj . Then, there exists some

wvj ∈ [
µvjnvj
xvjSvj

,
exp(1)µvjnvj

xvjSvj
] such that if λ∗vj ≥wvj then:

(i) λ∗vj is decreasing in Svj . That is,
∂λ∗vj
∂Svj
≤ 0,

(ii)
dpvj (λvj ,xvj ,Svj )

dSvj
≥ 0, if and only if

∂λ∗vj
∂Svj
≤−∂pvj (λvj ,xvj ,Svj )

∂Svj
/
∂pvj (λvj ,xvj ,Svj )

∂λvj
.

Part (i) states that if there is a one-to-one correspondence between the elements of K and V,

unlike the typical expectation, when the publisher increases the number of ad spaces it may lose

some advertisers at the optimal level. The main reason for this behavior is that increasing the

number of ad spaces (system buffers) enables the publisher to serve more advertisers simultaneously.

9 Note that the reason that this publisher has offered various prices for similar impressions is that the impressions
were sold by real sales agents who negotiated with advertisers. The agents were not using any pricing software to
determine the prices systematically; rather the prices were set through negotiations.



Authors’ names blinded for peer review
Article submitted to Operations Research; manuscript no. 21

However, as more ads are being served at the same time, each ad has less chance to be displayed

to arriving viewers. Thus, advertisers spend more time in the system, which increases the system’s

non-zero buffers (occupied spaces) and reduces its downtime. Hence, the publisher does not need

to speed up the arrivals. Furthermore, we note that increasing Svj and a consequent decrease in

λ∗vj have opposite impacts on the optimal price. Part (ii) mentions that if the price increase as a

result of a lower λ∗vj (publisher needing fewer arrivals) is greater than the price decrease as a result

of a higher Svj (publisher discounting as a congestion penalty), then the optimal price increases.

5. Extensions

There are several directions that the CPM model can be extended to. In this section, we discuss

three important extensions, leaving the rest for future research.

5.1. Multiple Pages and Types of Ads

Until now, we have considered that the publisher’s system consists of a single page. In this section,

we extend the base model to examine multiple pages. In order to start, we assume the publisher’s

website contains L pages labeled from 1 to L. For example, for a news site these pages could

correspond to the business page, travel page, etc. Each page can have several groups of ads where

the same price is charged within each group. For example, the top of the page may display two

equally sized ads, while several small ads may be placed at the bottom (rectangles). This would

lead to two ad-groups. More formally, for each page l, we group the ads into M l groups of equivalent

slots. Each ad-group ml, 1≤ml ≤M l, has |V| different versions. We denote the version-vj of each

ad-group ml (i.e., group m on page l) by (ml, vj) and refer to it as a subsystem. We assume that each

subsystem (ml, vj) contains nm
l

vj
equivalent slots. The advertisers with the ad campaign κh ∈K who

wish to post an ad in the group ml arrive at the publisher’s system according to a Poisson process

with rate λm
l

κh
. They request that their ads are displayed to xm

l

κh
unique viewers of type vj ∈ V (κh),

and pay pm
l

vj
dollars each time their ads are viewed. Viewers type vj ∈ V visit page l according to

a Poisson process with rate µlvj and use the page content based on an exponential distribution.

When a viewer type vj visits page l, only ads from the subsystems (ml, vj) are displayed to him.

Thus, the arrival rate for each subsystem (ml, vj) is the same as the one for the version vj of page l,

i.e., ∀(ml, vj), µ
ml

vj
= µlvj . After visiting page l, viewers type vj, may decide to visit a different page

h( 6= l) with probability αlhvj , or leave the publisher’s system without visiting any other pages with

probability αl0vj = 1−∑
h6=l

αlhvj . The probability αlhvj may be viewed as the traffic shaping probability

as referred to by some recent literature, e.g., Chakrabarti and Vee 2012. Chakrabarti and Vee

2012 suggest that targeted ad networks (e.g., Chitika) may wish to influence these traffic shaping



Authors’ names blinded for peer review
22 Article submitted to Operations Research; manuscript no.

probabilities (e.g., αlhvj ) by including relevant links on page l in order to encourage viewers to visit

page h as well, and by so, increase the viewers’ traffic to each page as well as the ads’ click chance.

For tractability, we assume that viewers do not return to a page that they have already visited

once (no feedback). The next proposition presents the overall arrival process of viewers type vj at

page l (from outside and from other pages).

Proposition 10 In the publisher’s system with no viewers’ feedback, the arrivals of viewers type

vj at page l, from outside and from other pages, follow a Poisson process with overall rate

µ̂lvj = µlvj +
∑

h6=l
µhvjα

hl
vj
. (9)

The proof follows from the fact that viewers’ arrivals and the time they spend on each page

are both exponential. Thus, the publisher’s website, from arriving viewers’ arrival and service

perspective, is an Open Jackson Network with no feedback in which the indicated properties hold

(see, e.g., Gross and Harris 1998).

We denote the price-demand function for subsystem (ml, vj) by pm
l

vj
(λm

l

vj
, xm

l

vj
, Sm

l

vj
), which is

decreasing with respect to λm
l

vj
, xm

l

vj
, and Sm

l

vj
. Let P

ml,vj

i , i∈ {0, ..., Smlvj }, vj ∈ V, be the probability of

having i advertisers in subsystem (ml, vj). The optimization problem for L pages and the different

types of ads on each page is:

max
∀λmlκh≥0, κh∈K

R=
L∑

l=1

M l∑

m=1

|V|∑

j=1

λm
l

vj
(1−P

ml,vj

Sm
l

vj

(λm
l

vj
;xm

l

vj
, Sm

l

vj
, µ̂lvj ))p

ml

vj
(λm

l

vj
, xm

l

vj
, Sm

l

vj
)xm

l

vj

λm
l

vj
=

∑

κh∈K(vj)

µ̂lvj
µ̂lκh

λm
l

κh
, vj ∈ V, (10)

in which µ̂lκh =
∑

vj′∈V (κh)

µ̂lvj′ and P
ml,vj

Sm
l

vj

(λm
l

vj
;xm

l

vj
, Sm

l

vj
, µ̂lvj ) is the steady-state full-state probability

of the subsystem (ml, vj), which is given by

P
ml,vj

Sm
l

vj

(λm
l

vj
;xm

l

vj
, Sm

l

vj
, µ̂lvj ) =

(xmlvj +Sm
l

vj
−1

Sm
l

vj

)
(

r̂m
l

vj

1+r̂m
l

vj

)Smlvj (
1

1+r̂m
l

vj

)xmlvj −1

Sm
l

vj∑
j=0

(xmlvj +Sm
l

vj
−1

j

)( r̂m
l

vj

1+r̂m
l

vj

)j(
1

1+r̂m
l

vj

)xmlvj −1+Sm
l

vj
−j
, r̂m

l

vj
=
λm

l

vj

µ̂lvj

Sm
l

vj

nmlvj
.

5.2. Non-Poisson Arrivals

In Section 3 we assumed that the advertisers’ arrivals at the web publisher from the ad network

follow a Poisson process, which might not be the case in reality. In addition, the viewers’ arrival

process might not be Poisson either while the number of requested impressions is not necessarily
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Figure 4 The empirical distribution of the viewers’

arrivals, and other fitted distributions.
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Figure 5 The empirical distribution of the advertisers’

arrivals, and other fitted distributions.

the same for all advertisers. Figures 4 and 5 show an example of the empirical distributions, based

on real data from Aller Internett for the advertisers’ and viewers’ arrivals as well as other fitted

distributions. Our analysis indicates that for the arrival distribution of the viewers, the Poisson,

Weibull, and Normal distributions pass the Kolmogorov-Smirnov and Anderson-Darling goodness-

of-fit tests at the 5% significance level. However, for the advertisers’ arrival distribution only the

Uniform and Normal distributions pass the tests, not the Poisson. In this section, we explore other

distributions for both the demand and supply sides while considering the advertisers requesting

random numbers of impressions.

In our simulation study, we specifically examine the amount of revenue a publisher can lose by

using the base model’s solution obtained in Section 4 (based on Poisson arrivals, a single number

of impressions offered, and a single price charged) to determine the price, while the impressions

requested are random across advertisers and both advertisers’ and viewers’ arrival processes are

non-Poisson. For illustrative purposes, we focus only on one subsystem and drop the indices.

We let the viewers’ arrival rate be µ= 1. For the advertisers’ interarrival time distributions, we

consider the following distributions: Normal with mean 1/λ and standard deviation 1/λ, Erlang-2

with mean 1/λ and standard deviation 1/(
√

2λ), uniform with the two parameters 0 and 2/λ, and

finally exponential with rate λ. For the viewers’ inter-arrival time distributions, we consider the

same distributions with λ replaced with µ. The selection of the distributions is mainly inspired by

the data belonging to Aller Internett as in Figures 4 and 5.

The number of slots is set to be n = 4, and there is no ad rotation. We choose the pricing

function to be p(λ) = 0.02− 0.2λ0.8 − 10−7X where X is a random variable following the normal
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Figure 6 A schematic illustration of the revenue gap with non-Poisson arrivals and random impressions request.

distribution with mean E(X) = 1000 and standard deviation 500. The steps of each simulation

process are as follows. Using simulation, we obtain the advertisers’ optimal arrival rate, λ∗X,D1,D2
,

when the advertisers’ interarrival times follow the generic distribution D1, the viewers’ interarrival

times follow D2, and each advertiser requests a different number of impressions according to a

random variable X. We represent the revenue related to λ∗X,D1,D2
with RX ,D1,D2

(λ∗X,D1,D2
). Then,

we obtain the optimal value for λ using the closed-form solution provided in (3) with Poisson

arrivals of advertisers and viewers, where the number of impressions is the same for all advertisers,

i.e., x= E(X) = 1000. We represent this optimal value with λ∗x,Exp . If the web publisher uses our

analytical solution with the average demand x, for a system that does not have Poisson arrivals

of advertisers and viewers, and each advertiser requests X impressions its “real” revenue would

become RX ,D1,D2
(λ∗x,Exp ) (see Figure 6). Finally, we obtain the revenue gap using the following

formula:

Gap=
RX,D1,D2

(λ∗X,D1,D2
)−RX,D1,D2

(λ∗x,Exp)

RX,D1,D2
(λ∗X,D1,D2

)
× 100(%).

Table 1 shows the relative revenue performance gaps for the different interarrival time distribu-

tions considered for advertisers’ and viewers’ arrivals as well as the random number of requested

impressions X that results in generating instantaneously adjusted price for each impression request.

We observe that the computed revenue gaps are between 0.06%− 0.95%. This suggests that the

Poisson policy, while considering the expected value of the number of requested impressions for

all advertisers’ requests, tends to be an accurate estimate for the publisher’s model when both

the viewers’ and the advertisers’ arrivals are non-Poisson and the price is adjusted based on each

advertiser’s requested impressions10.

10 In addition, in the Electronic Companion, we examine the model’s performance considering other distributions for
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Interarrival dist. Advertisers (D1)

Viewers(D2) Erlang-2 Normal Uniform Exponential
Erlang-2 0.22% 0.40% 0.45% 0.26%
Normal 0.67% 0.13% 0.95% 0.15%
Uniform 0.06% 0.10% 0.26% 0.11%

Exponential 0.16% 0.21% 0.85% −
Table 1 The relative gap

RX,D1,D2
(λ∗

X,D1,D2
)−RX,D1,D2

(λ∗
x,Exp)

RX,D1,D2
(λ∗

X,D1,D2
)

×100(%)

We note that the revenue depends on the full-state probability, Pn, a small revenue gap means

that Pn may not be sensitive to the forms of D1 and D2. One possible explanation for the Pn’s

robustness is that its structure is somewhat similar to Erlang loss formula, PErn = (rx)n

n!
/
∑n

j=0
(rx)j

j!
.

In fact, when x→∞ or when n→∞, both formulas converge together as both approach either 1 or

0. In addition, Erlang has this property that its structure is independent of the form of underlying

service distribution, D2. Nevertheless, we note that while this structural similarity is helpful in

explaining Pn’s possible insensitivity to D2, it cannot not explain the reason for its insensitivity to

both D1 and D2.

Providing Bounds for the Publisher’s Revenue When X is a random variable, the pub-

lisher’s revenue function is not analytically tractable. Thus, one way to proceed is to develop

bounds for such a function. Bounds are useful in that they provide a worst-case or a best-case

revenue scenario given the model parameters. In this section, we develop an analytical bound for

the publisher’s revenue when X is a random variable. In order to start, we first notice that the

publisher’s expected revenue rate with the random variable X is:

R(λ;X) = λ(1−PS(λ;X,n,µ))p(λ,X,n)X. (11)

Note that R(λ;X) is a random variable because it is a function of X. In other words, R(λ;X)

has a probability distribution and not a fixed outcome. Thus, we can only give a bound for the

probability that, for any observed X,R(λ;X) is sufficiently close to the deterministic revenue used

in Section 3 (i.e., R(λ;x), x=E(X)). The next proposition provides this bound.

Proposition 11 Let R(λ∗;x∗) be the maximum of R(λ,x) when optimized over both λ and x. Then

Pr(|R(λ,X)−R(λ,x)| ≥ ε)≤ 2exp(− 2ε2

R(λ∗, x∗)2
).

the impressions’ request, X (together with various distributions for the advertisers and viewers’ arrivals) and show
that the optimal revenue tends to be affected minimally.
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The proof relies on two well-known theorems in probability theory. The first is McDiarmid’s

Inequality (McDiarmid (1989)), which says that if X is a random variable and ψ(·) is a function

that satisfies sup
x0

|ψ(x0)−ψ(x̂)| ≤ c (i.e., replacing the optimal value x0 by some other value x̂

changes the value of ψ by at most c) then Pr(|ψ(X)−E(ψ(X))| ≥ ε)≤ 2exp(−2ε2c−2). The second

is Jensen Inequality, which says that if X a random variable and ψ(·) a concave function, then

E(ψ(X))≤ψ(E(X)). Clearly, ψ(X) :=R(λ,X) satisfies McDiarmid’s Theorem because:

sup
x0

|R(λ,x0)−R(λ, x̂)| ≤ sup
x0,λ

∣∣∣R(λ,x0)−R(λ̂, x̂)
∣∣∣= max

x0,λ
R(λ,x0) =R(λ∗, x∗).

Thus, we have Pr(|R(λ,X)−E(R(λ,X))| ≥ ε)≤ 2exp(− 2ε2

R(λ∗,x∗)2 ). In addition, by (7), R(λ,x0) is

concave with respect to x0 and λ. Thus, by Jensen’s Inequality, E(R(λ,X))≤R(λ,E(X)) =R(λ,x).

Therefore, Pr(|R(λ,X)−R(λ,x)| ≥ ε) ≤ Pr(|R(λ,X)−E(R(λ,X))| ≥ ε), and the result follows.

For example, with the numerical information in this section (i.e., p(λ) = 0.02− 0.2λ0.8 − 10−7X,

µ= 1,E(X) = x= 1000, and n= 4), we have R(λ∗, x∗) = 0.066. Thus, Pr(|R(λ,X)−R(λ,x)| ≥ ε=

0.1)≤ 0.02. �

5.3. Fixed Advertising Campaign Length

Some ad networks allow the advertisers to request a certain advertising campaign length instead

of delivering a certain number of impressions. The publisher might then give some estimates on

how many impressions the advertiser can expect to receive during the campaign. This system is a

special case of the random impressions request (RIR) system analyzed above. The reason is that

the number of impressions received by each advertiser with ad campaign κh during a horizon Tκh , is

a random variable X
Tκh
κh ∼ Poisson(µκhTκh), where µκh =

∑
µvj , vj ∈ V (κh), is the overall viewers’

arrival rate for an ad with campaign κh, based on the fact that the interarrival times of the viewers

are exponential. Following the approach of the last section, we can approximate this system of

fixed campaign length by setting the single impressions’ number to be E(X
Tκh
κh ) = µκhTκh in our

base model.

In addition, we can extend the fixed campaign length system to incorporate not a single horizon

Tκh but multiple horizon values that the advertisers can choose from. We define the choice set

as Ωκh =
{
T 1
κh
, ..., Tmκh

}
. We can argue that this system is equivalent to the RIR system. We let

τ iκh ∈ [0,1] be the percentage of the advertisers preferring to stay in the system for T iκh ∈ Ωκh

time units. Since the viewers’ interarrival times are exponential each advertiser choosing T iκh is

served with XTi
κh
∼ Poisson(µκhT

i
κh

) impressions. This system of multiple campaign lengths can

be approximated with a deterministic request system with xκh =
m∑
i=1

τ iκhµκhT
i
κh

impressions. The
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continuous version of the multiple campaign lengths system, in which the service time Tκh is a

continuous random variable can be approximated by a deterministic request system with xκh =

E(X
Tκh
κh ) =

∫∞
0
µκhtκhhκh(tκh)dtκh impressions where Tκh follows the probability density function

hκh(Tκh).

6. Conclusion

Optimal pricing of display ads while considering the uncertainties involved in demand from adver-

tisers and supply of visits from viewers has received minimal attention in the marketing and

operations research literature. This paper attempts to bridge this gap. We consider a revenue opti-

mization model for a web publisher selling its advertising space through an ad network. The web

publisher generates revenue by displaying ads on its website and charges according to the CPM

pricing scheme, which it needs to optimize. We model the web publisher’s operation with a queuing

system, where the arrival process corresponds to the advertisers sent by the ad network and the

service process corresponds to viewers visiting the website. Given the fact that all advertisers on

display pay once a viewer uploads the webpage, the advertisers whose ads are displayed are served

in a “synchronized” manner. We derive a closed-form solution for the probability distribution of the

number of advertisers in the system, which enables us to characterize the price and other decision

variables for the publisher and analyze them in detail.

On the managerial side, we show that the optimal price to charge per impression may increase

in the number of impressions, contrary to the quantity discount common in practice. Yahoo! is the

only publisher we came across that charges higher CPM price for larger contracts instead of giving

a discount. We were pleased to offer a theoretical explanation that they were seeking. In addition,

we provide further insights by showing that the optimal CPM price may increase in the number of

rotating ads on the page. This behavior may not seem intuitive compared to our common intuition

from the supply-demand relationship, since an increase in the number of advertising spaces can be

interpreted as an increase in the system’s service capacity. In addition, with random ad rotation,

we show that the optimal CPM price may increase as the publisher adds a service capacity to serve

more ads.

The framework for the web publisher’s operations can be extended in several directions. First,

even though cost-per-impression is a common pricing scheme, others exist such as cost-per-click

or even a mix of the two. Second, in this paper, we have not considered the competition between

publishers. Exploring targeted pricing with competing publishers would be an interesting direc-

tion. Finally, studying how the publisher’s optimal CPM pricing may change when advertisers or

publishers become risk-averse would be an interesting direction.
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We hope that the modeling approach in this paper can serve as a basis for many promising

research directions beyond this work, and in doing so, stimulate future research on online advertising

in operations research and marketing.
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Appendix. Proofs

Proof of Proposition 3 We consider a Markov chain where the state of the system is defined

to be the vector k
∆
= (k1, k2, ..., kn) =

n∑
j=1

kje
T
j ∈ (N∪{0})n where eTj is the jth unit vector and kj

is the number of remaining impressions in a slot. We define the sets Gh(k)
4
= {j

∣∣ 〈k,ej
〉

= h} and

G>0(k)
4
= {j

∣∣ 〈k,ej
〉
> 0} in which

〈
k,ej

〉
is the inner product of the two vectors k and ej, the jth

unit vector. In addition, we define |Gh(k)| and |G>0(k)| to be the sizes of the sets Gh(k) and G>0(k),

respectively (i.e., the number slots with h, and with positive remaining impressions, respectively).

To prove the proposition, we first show that the solution is of the structural form

πk =Ar|G>0(k)|(1 + r)n−|G>0(k)|−11|G>0(k)|<n +Arn1|G>0(k)|=n, (A.1)

Next, by summing over the relevant π′s, we show that the steady-state probability that there are

i advertisers in the system is of the form:

Pi =

(
x+ i− 1

i

)
Ari(1 + r)n−i−11i<n +

(
x+n− 1

n

)
Arn1i=n, i= 0,1,2, ..., n. (A.2)

Finally, using the fact that
∑n

i=0 Pi = 1, we obtain the coefficient A and show that the closed-form

result holds as introduced in the proposition.

In order to show πk has the structural form in (A.1), we need to identify all possible states of the

system and obtain the flow balance equation for every state. We note that each transition equation

is a complex multidimensional difference equation for which there is no standard mathematical
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approach to solve, while in order to find the steady-state probabilities, we need to consider and

solve all transition equations in a single system. Therefore, we use the verification approach, which

in this problem is identical to mathematical induction, to show that the closed-form results hold.

The CPM system has in general 5 distinct transition equations as follows:

i) For k=(0, ...,0) = 0n×1 the flow balance is straightforward to obtain. k can either go to

(k+xeT1 ) with rate λ, or it can come from any of the states vTi
4
=

i∑
j=1

eTj ,1≤ i≤ n, with rate µ. As

a result, the flow balance equation becomes: rπ0 =
n∑
i=1

πvTi
where r= λ/µ.

ii) Define vT|G>0(k)|
4
=
|G>0(k)|∑
j=1

eTj and wT
q

4
=

q∑
j=|G>0(k)|+1

eTj , |G>0(k)|+ 1≤ q ≤ n. If k =
|G>0(k)|∑
j=1

kje
T
j ,

kj > 0 with |G>0(k)|< n and |Gx(k)|= 0 then k can either go to the state k− vT|G>0(k)| with rate

µ or to the state k+xeT|G>0(k)|+1 with rate λ. It can also comes from either k+ vT|G>0(k)| or any of

the states k+vT|G>0(k)|+wT
q , |G>0(k)|+ 1≤ q ≤ n with rate µ. Hence, the balance equation would

become

(1 + r)πk = πk+vT|G>0(k)|
+

n∑

q=|G>0(k)|+1

πk+vT|G>0(k)|
+wTq

, (A.3)

For example, if k = (4,0,0) and x = 5 we have G>0(k) = {1}, G0(k) = {2,3}, |G>0(k)| = 1, vT1 =

(1,0,0), wT
2 = (0,1,0), and wT

3 = (0,1,1). Hence, the flow balance equation becomes: (1+r)π(4,0,0) =

π(5,0,0) +π(5,1,0) +π(5,1,1).

iii) If k=
|Gx(k)|∑
j=1

xeTj +
|G>0(k)|∑

j=|Gx(k)|+1

kje
T
j where |G>0(k)|<n (some slots are empty), |Gx(k)|> 0 (the

impressions left to satisfy in some slots are x) then the flow balance equation becomes (1 + r)πk =

rπ(k−xeT1 )TDn×n , where Dn×n
4
= [e2

...e3

......
...en−1

...01×n]n×n. For example, if we take x = 5 and n = 4

and k = (5,5,4,0) then k−xeT1 = (0,5,4,0) and D4×4 =




0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0




4×4

. Hence, (k−xeT1 )TDn×n =

(5,4,0,0). Therefore, the flow balance equation becomes: (1 + r)π(5,5,4,0) = rπ(5,4,0,0).

iv) If k=
|Gx(k)|∑
j=1

xeTj +
|G>0(k)|∑

j=|Gx(k)|+1

kje
T
j , where |G>0(k)|= n (all slots are occupied), |Gx(k)|> 0 (the

impressions left to satisfy in some slots are x) then the flow balance equation becomes:

πk = rπ(k−xeT1 )TDn×n , where Dn×n = [e2

...e3

......
...en−1

...01×n]n×n. (A.4)

For example, if x = 5 and n = 4 and k = (5,5,4,3) then k−xeT1 = (0,5,4,3) and D4×4 =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0




4×4

. Hence, (k−xeT1 )TDn×n = (5,4,3,0). Therefore, we have: π(5,5,4,3) = rπ(5,4,3,0).

v) If k=
|G>0(k)|∑
j=1

kje
T
j with |G>0(k)|= n, (all slots are occupied), |Gx(k)|= 0 (the impressions left

to satisfy in all slots are less than x) then the flow balance equation becomes:
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πk = πk+vT|G>0(k)|
, where vT|G>0(k)| =

|G>0(k)|∑

j=1

eTj . (A.5)

For example, if x= 5 and n= 4 and k = (4,3,2,1) then vT|G>0(k)| = (1,1,1,1) and the flow balance

equation becomes: π(4,3,2,1) = π(5,4,3,2).

Next we verify that the functional form stated in Equation (A.1) satisfies the Flow Balance

Equations (i) - (v). Due to space limitation, here we only verify the solution for item (i) as the rest

items are verified similarly.

For item (i) by inserting Equation (A.1) into the flow balance equation we obtain a left hand side

of rπ0 = Ar(1 + r)n−1 and a right hand side of
∑n

j=1 πvTj
= A(

∑n−1

j=1 r
j(1 + r)n−j−1 + rn). We use

induction to show that both sides are equal. We start with n= 1 and note that both sides are equal

to r. We now assume that the equality holds for n= k, i.e.,
∑k−1

j=1 r
j(1 + r)k−j−1 + rk = r(1 + r)k−1.

In order to show that the equality then holds for n = k + 1 we need to show that
∑k

j=1 r
j(1 +

r)k−j +rk+1 = r(1+r)k. It is easy to see that
∑k

j=1 r
j(1+r)k−j +rk+1 is equal to (1+r)

∑k−1

j=1 r
j(1+

r)k−j−1 + rk + rk+1. Using the induction assumption we obtain (1 + r)[r(1 + r)k−1− rk] + rk + rk+1

that simplifies to r(1 + r)k, which completes the induction proof.

In order to obtain A, we note that P0 = π0 =A(1+r)n−1. Let us then consider the state of having

i (1≤ i≤ n) advertisers in the publisher’s system where each advertiser has kj impressions left to

satisfy with k =
∑|G>0(k)|

j=1 kje
T
j , |G>0(k)|= i≤ n, |Gx(k)|= 0. Without loss of generality, let kj be

increasing in j, i.e., k1 ≤ k2 ≤ ...≤ ki. It is easy to see that Pi =
∑x

k1=1

∑x

k2=k1
...
∑x

ki=ki−1
πk, where

by Lemma 1 Pi reduces to Pi =
(
x+i−1
i

)
πk, i≤ n. Moreover, since

∑n

i=0 Pi = 1, using (A.1), we have
∑n

i=0

(
x+i−1
i

)
πk = 1, which gives A =

(∑n−1

j=0

(
x+j−1
j

)
rj(1 + r)n−j−1 +

(
x+n−1
n

)
rn
)−1

. Finally, using

Lemma 3, A reduces to A=
(∑n

j=0

(
x+n−1

j

)
rj
)−1

. Dividing the numerator and denominator of Pi

by (1 + r)x+n−1, gives

Pi =

(
x+i−1
i

)(
r

1+r

)i (
1

1+r

)x
1i<n +

(
x+n−1
n

)(
r

1+r

)n (
1

1+r

)x−1

1i=n

∑n

j=0

(
x+n−1

j

)(
r

1+r

)j (
1

1+r

)x+n−1−j . (A.6)

Hence, the proof is complete. �

Proof of Proposition 4 (i) In order to show PS is increasing in r we show its derivative with

respect to r is always positive. By differentiating PS with respect to r and simplifying we get:

∂PS
∂r

=
∂PS
∂r

∂r

∂r
= (

S

n
)

∑S

i=0

(
x+S−1
S

)(
x+S−1

i

)
rS+i−1(S− i)

∑S

i=0

(
x+S−1

i

)
ri

≥ 0, r=
S

n
r (A.7)

which is always positive. Hence, PS is increasing in both r and r.
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(ii) After some calculations we get

PS(x+ 1)−PS(x) =
rS
∑S

i=0 r
i
(
x+S−1
S

)(
x+S
i

) (
S−i
x

)
∑S

j=0

(
x+S−1

j

)
rj
∑S

k=0

(
x+S
k

)
rk
≥ 0.

Hence, PS is increasing in x.

(iii) We prove PS+1 ≤ PS using contradiction. Let us assume PS+1 > PS, which identically can be

expressed as

rS
x+S

S+ 1

S∑

i=0

riS(x+S− 1)!

i!(x+S− 1− i)! >
S+1∑

i=0

riS+1(x+S)!

i!(x+S− i)! , (A.8)

where rS = S
n
r. Reindexing the sum on the right hand side by setting i= j+1 and simplifying gives

S∑

i=0

riS(x+S)!

(S+ 1)i!(x+S− 1− i)! >
1

rS
+

S∑

j=0

(
rS+1

rS

)
rjS+1(x+S)!

(j+ 1)!(x+S− 1− j)! . (A.9)

By comparing the sums term by term, and noting that rS+1 > rS, we see that each term on the

left hand side is smaller than the corresponding one on the right hand side, which contradicts the

assumption of PS+1 > PS. Hence, we must have PS+1 ≤ PS. �

Proof of Proposition 6 (i) We know that R =
∑
vj∈V

Rvj (λvj ) where Rvj (λvj ) =

λvjxvj (1 − PSvj (λvj ))p(λvj ). Thus, the FOC becomes ∂R
∂λκh

=
∑
vj∈V

∂R
∂λvj

∂λvj
∂λκh

= 0 where
∂λvj
∂λκh

=

µvj
µκh

1vj∈V (κh). Hence, ∂R
∂λκh

=
∑

vj∈V (κh)

∂R
∂λvj

µvj
µκh

= µκh
∑

vj∈V (κh)

∂R
∂λvj

µvj . Therefore, the FOC reduces to

∑
vj∈V (κh)

∂R
∂λvj

µvj = 0. (ii) Next, to show R is concave with respect to Λ = (λκ1 , ..., λκ|K|), as R is twice

continuously differentiable, it is enough to show that:

HR

|K|×|K|
=




∂2R
∂λ2κ1

∂2R
∂λκ1∂λκ2

... ∂2R
∂λκ1∂λκ|K|

∂2R
∂λκ2∂λκ1

∂2R
∂λ2κ2

... ∂2R
∂λκ2∂λκ|K|

...
...

. . .
...

∂2R
∂λκ|K|∂λκ1

∂2R
∂λκ|K|∂λκ2

· · · ∂2R
∂λ2κ|K|



|K|×|K|

is negative semidefinite, where HR is the Hessian matrix of R. It can be observed that HR is a

diagonal matrix because for all off-diagonal elements we have ∂2R
∂λκh∂λκh′

= 0. Thus, to show HR

is negative semidefinite, it is enough only to show that the diagonal elements are negative, i.e.,

∂2R
∂λ2κh

≤ 0, h= 1, ..., |K| . However, taking the second derivative of R gives

∂2R

∂λ2
κh

=
∑

vj∈V

∂2R

∂λ2
vj

(
µvj
µκh

)21vj∈V (κh) =
∑

vj∈V (κh)

∂2Rvj (λvj )

∂λ2
vj

(
µvj
µκh

)2.
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Thus, if
∂2Rvj (λvj )

∂λ2vj
≤ 0 holds for all vj ∈ V (κh), then ∂2R

∂λ2κh
≤ 0. To show

∂2Rvj (λvj )

∂λ2vj
≤ 0, re-expressing

Rvj (λvj ) as

Rvj (λvj ) = µvj
nvj
Svj

Lvj (λvj )pvj (λvj ),Lvj (λvj ) = r̂vjxvj (1−PSvj ),

where r̂vj =
λvj
µvj

Svj
nvj

= rvj
Svj
nvj

gives

∂2Rvj (λvj )

∂λ2
vj

= µvj
nvj
Svj

(
∂2Lvj (λvj )

∂λ2
vj

pvj (λvj ) +Lvj (λvj )
∂2pvj (λvj )

∂λ2
vj

+ 2
∂Lvj (λvj )

∂λvj

∂pvj (λvj )

∂λvj
). (A.10)

Knowing that pvj (λvj ) is positive and concave decreasing and Lvj is concave increasing we have

that
∂2Rvj (λvj )

∂λ2vj
≤ 0. Thus, HR is negative semidefinite and R is concave in Λ. (iii) Showing the

average number of advertisers is Lvj (λvj ) = rvj
Svj
nvj
xvj (1−PSvj ) is immediate from Little’s Law. �

Proof of Proposition 7 (i) Let Λ∗ = [λ∗κh ]1×|K| be the optimal vector. First, taking the

first derivative using the chain rule, we find dR(Λ∗)/dSvj = ∂R(Λ∗)/∂Svj +
∑
κh∈K

∂R(Λ∗)/∂λκh ×
∂λκh/∂Svj . However, as Λ∗ satisfies ∂R(Λ∗)/∂λκh = 0, we find dR(Λ∗)/dSvj = ∂R(Λ∗)/∂Svj

(Envelope Theorem). Second, we note that ∂R(Λ∗)/∂Svj = ∂Rvj (λ
∗
vj

)/∂Svj . As Rvj (λ
∗
vj

) =

µvj (
nvj
Svj

)Lvjpvj (λ
∗
vj
, Svj , xvj ), we get ∂Rvj (λ

∗
vj

)/∂Svj = µvj (
nvj
Svj

)×∂(LvjPvj )/∂Svj − 1
S2
vj

nvjµvjLvjpvj .

We show that ∂Rvj (λ
∗
vj

)/∂Svj = 0 has a single root. First, let Avj := ∂(LvjPvj )/∂Svj . Then

from ∂Rvj (λ
∗
vj

)/∂Svj = 0, it is clear that: 1
S2
vj

(AvjSvj − LvjPvj ) = 0. Thus, ∂2Rvj (λ
∗
vj

)/∂S2
vj

=

1
Svj

∂Avj
∂Svj
− 2

S3
vj

(AvjSvj −LvjPvj ). In addition, since ∂Lvj/∂Svj > 0 and ∂2Lvj/∂S
2
vj
≤ 0, ∂pvj/∂Svj ≤

0, ∂2pvj/∂S
2
vj
≤ 0, we have that ∂Avj/∂Svj < 0. Thus, ∂2Rvj (λ

∗
vj

)/∂S2
vj
< 0, i.e., ∂Rvj (λ

∗
vj

)/∂Svj

is strictly decreasing in Svj . Therefore, it crosses the zero-line at a unique point, namely, S∗vj . If

S∗vj ≥ 0 then for all nvj ≤ S∗vj , Rvj (λ∗vj ) (or R(Λ∗)) is increasing in Svj and for all Svj ≥ S∗vj it is

decreasing in Svj . If S∗vj < 0 then for all Svj ≥ 0, Rvj (λ
∗
vj

) (or R(Λ∗)) is decreasing in Svj .

(ii) Invoking the Envelope Theorem as in Part (i) gives dR(Λ∗)/dxvj = ∂R(Λ∗)/∂xvj . As

∂R(Λ∗)/∂xvj = ∂Rvj (λ
∗
vj

)/∂xvj , we have dR(Λ∗)/dxvj = ∂Rvj (λ
∗
vj

)/∂xvj . As in Part i, we can show

∂R(λ∗vj )/∂xvj is strictly decreasing in xvj , i.e., ∂2Rvj (λ
∗
vj

)/∂x2
vj
< 0 (because Lvj/∂xvj > 0 and

∂2Lvj/∂x
2
vj
< 0, ∂pvj/∂xvj ≤ 0, and ∂2pvj/∂x

2
vj
≤ 0). Thus, ∂R(λ∗vj )/∂xvj has a single root, namely

x∗vj . If x∗vj ≥ 0 then for all xvj ≤ x∗vj , Rvj (λ∗vj ) (or R(Λ∗)) is increasing in xvj and for all xvj ≥ x∗vj
it is decreasing in xvj . If x∗vj < 0 then for all xvj ≥ 0, Rvj (λ

∗
vj

) (or R(Λ∗)) is decreasing in xvj .

(iii) Using Envelop Theorem, we have dR(Λ∗)/dµvj = ∂R(Λ∗)/∂µvj . Since ∂R(Λ∗)/∂µvj =

∂Rvj (λ
∗
vj

)/∂µvj , we have dR(Λ∗)/dµvj = ∂Rvj (λ
∗
vj

)/∂µvj = −∂PSvj (λ
∗
vj

)/∂µvj . We note that

PSvj (λ
∗
vj

) depends on λ∗vj and µvj only through r∗vj = λ∗vj/µvj , not each of them separately. Thus,

by the chain rule ∂PSvj (λ
∗
vj

)/∂µvj = ∂PSvj (λ
∗
vj

)/∂r∗vj × 1/µvj ≥ 0, which is positive by Part (i) of

Proposition 4. Hence, dR(Λ∗)/dµvj ≤ 0 and the result follows. �
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Proof of Proposition 9 (i) We need to show that
∂λ∗vj
∂Svj
≤ 0. By Implicit Function Theorem,

we have

∂λ∗vj
∂Svj

=−
∂2Rvj (λ∗vj )

∂λvj ∂Svj

∂2Rvj (λ∗vj )

∂λ2vj

=−





µvj
nvj
Svj

(
∂2Lvj (λ∗vj )

∂λvj ∂Svj
p(λ∗vj , xvj , Svj ) +

∂Lvj (λ∗vj )

∂Svj

∂pvj (λ∗vj ,xvj ,Svj )

∂λvj

+Lvj (λ
∗
vj

)
∂2pvj (λ∗vj ,xvj ,Svj )

∂Svj ∂λvj
+

∂Lvj (λ∗vj )

∂λvj

∂p(λ∗vj ,xvj ,Svj )

∂Svj
)−µvj

nvj
S2
vj

Lvj (λ
∗
vj

)p(λ∗vj , xvj , Svj )





∂2Lvj (λ∗vj )

∂λ2vj
pvj (λ

∗
vj
, xvj , Svj ) + 2

∂Γvj (λ∗vj )

∂λvj

∂p(λ∗vj ,xvj ,Svj )

∂λvj
+ Lvj (λ

∗
vj

)
∂2pvj (λ∗vj ,xvj ,Svj )

∂λ2vj

,

in which by First Order Necessary Condition we have
∂Rvj (λ∗vj )

∂λvj
=

∂Lvj (λ∗vj )

∂λvj
pvj (λ

∗
vj
, xvj , Svj ) +

Lvj (λ
∗
vj

)
∂pvj (λ∗vj ,xvj ,Svj )

∂λvj
= 0. Based on Proposition 6, it is clear that

∂2Rvj (λ∗vj )

∂λ2vj
≤ 0. Based on the

proposition assumptions and Lemma 5, it is sufficient to show that
∂2Lvj (λ∗vj )

∂λvj ∂Svj
≤ 0. For convenience,

let ρvj =
λ∗vjxvj
µvj

Svj
nvj
. If xvj >>Svj then it is easy to see that PSvj is simplified to PSvj =

ρ
Svj
vj

(1−ρvj )

1−ρ
Svj+1

vj

.

Thus, Lvj = ρvj (1 − PSvj ) =
ρvj (1−ρ

Svj
vj

)

1−ρ
Svj+1

vj

. Next, by the chain rule, we have
∂Lvj
∂λvj

=
∂Lvj
∂ρvj

∂ρvj
∂λvj

=

∂Lvj
∂ρvj

(
Svj
nvj

)(
xvj
µvj

). Thus, obtaining the second derivative gives
∂2Lvj

∂λvj ∂Svj
=

xvj
nvjµvj

(
∂2Lvj

∂ρvj ∂Svj
Svj +

∂Lvj
∂ρvj

). In

order to determine
∂2Lvj

∂λvj ∂Svj
, we need to characterize

∂Lvj
∂ρvj

and
∂2Lvj

∂ρvj ∂Svj
. First, from the formulation

for Lvj , we find
∂Lvj
∂ρvj

=
1−(1+Svj )ρ

Svj
vj

+Svj ρ
Svj+1

vj

(1−ρ
1+Svj
vj

)2
≥ 0. In addition, calculating the derivative of

∂Lvj
∂ρvj

with respect to Svj gives:

∂2Lvj
∂ρvj∂Svj

=−
ρ
Svj
vj

(
(1− ρvj )

(
1− ρ1+Svj

vj

)
+
(

1− ρvj
(

2− ρSvjvj

)
+Svj (1− ρvj )

(
1 + ρ

1+Svj
vj

))
ln(ρvj )

)

(
1− ρ1+Svj

vj

)3 .

Replacing the values of
∂Lvj
∂ρvj

and
∂2Lvj

∂ρvj ∂Svj
in

∂2Lvj
∂λvj ∂Svj

gives:

∂2Lvj
∂λvj∂Svj

=
xvj
nµ





(
1− ρ1+Svj

vj

)
(1 + 2Svj )ρ

Svj
vj (ρvj − 1)

−Svjρ
Svj
vj

(
1− 2ρvj + ρ

1+Svj
vj +Svj (1− ρvj )

(
1 + ρ

1+Svj
vj

))
ln(ρvj )





(
1− ρ1+Svj

vj

)3 (A.11)

It can be seen that lim
λvj→0

∂2Lvj
∂λvj ∂Svj

=
xvj
nµ

. In addition for any ρvj ≥ exp(1) (i.e., λ∗vj ≥
exp(1)µvjnvj

xvjSvj
) the

numerator of (A.11) is always negative. Thus,
∂2Lvj

∂λvj ∂Svj
≤ 0. In addition, at ρvj = 1, the numerator

is zero. Therefore, by Rolle’s theorem there exists some wvj ∈ [ µn
xvjSvj

, exp(1)µn

xvjSvj
], such that for any
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λ∗vj ≥ wvj , the numerator is negative while the denominator is positive. Hence,
∂λ∗vj
∂Svj

> 0 in the

neighborhood of λ∗vj . Note that in the worst case, if there is no interior value for wvj , wvj would

merely coincide the upper-bound. That is wvj = exp(1)µn

xvjSvj
.

(ii) By Implicit Function Theorem:

dp(λ∗vj , xvj , Svj )

dSvj
=
∂p(λ∗vj , xvj , Svj )

∂Svj︸ ︷︷ ︸
<0

+
∂p(λ∗vj , xvj , Svj )

∂λvj︸ ︷︷ ︸
<0

∂λ∗vj
∂Svj

.

It is clear that when
∂λ∗vj
∂Svj

> 0 then
dp(λ∗vj ,xvj ,Svj )

dSvj
< 0. That is, if the publisher decides to attract

more advertisers it optimally lowers its price. But, if
∂λ∗vj
∂Svj

< 0 then
dp(λ∗vj ,xvj ,Svj )

dSvj
may become either

positive or negative. That is, if the publisher sees that it needs fewer advertisers it may decide to

increase or decrease the price. The increase or decrease of the price depends on whether the impact

of the reduction of λvj on the price increase is greater or the impact of the price penalty due to an

added slot. �
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EC.1. Proofs of Propositions 5 and 8

Lemma 1 Given any natural numbers x∈N and n∈N,
S∑

i=0

S−1∑

j=0

(
x+S− 1

i

)(
x+S

j

)
ri+j ≥

S∑

i=0

(
x+S− 1

S

)(
x+S

i

)
rS+i(S− i). (EC.1)

Proofs of all lemmas are provided in the Technical Supplement.

Lemma 2 Let Q(x) =QN(x)/QD(x), where

QN(x) =

(
S∑

i=0

(
x+S− 1

i

)(
x+S

S

)
rS+i +

S∑

i=0

(
x+S− 1

S

)(
x+S

i

)
rS+i(S− i)

)
(EC.2)

and

QD(x) =

(
S∑

i=0

(
x+S− 1

i

)
ri

S∑

i=0

(
x+S

i

)
ri

)
. (EC.3)

Then for any x, S ∈N, and r ∈R+, Q(x) is increasing in x.

Lemma 3 Given any natural numbers x∈N and S ∈N,
S∑

i=0

S∑

j=0

(
x+S− 1

i

)(
x+S− 1

j

)
ri+j ≥

S∑

i=0

(
x+S− 1

S

)(
x+S− 1

i

)
rS+i(S+ 1− i). (EC.4)

Lemma 4 Given any x,S ∈N∪{0}, and r ∈R+

S∑

i=0

S∑

j=0

(
x+S− 1

i

)(
x+S− 1

j

)
ri+j(S+ 1− i)(S+ i− 2j)≥ 0. (EC.5)

Proof of Proposition 5 (i) We set LS(x) = rx(1−PS(x)) where r = rS/n. We need to show

that ∆LS(x) = L(x+ 1)−L(x)≥ 0. We have ∆LS(x) = rx(PS(x)− PS(x+ 1)) + r(1− PS(x+ 1)).

Focusing on the first term in ∆LS(x) we get

x(PS(x)−PS(x+ 1)) =
xrS[

(
x+S−1
S

)∑S

i=0

(
x+S
i

)
ri−

(
x+S
S

)∑S

i=0

(
x+S−1

i

)
ri]

∑S

i=0

(
x+S−1

i

)
ri
∑S

i=0

(
x+S
i

)
ri

. (EC.6)

Knowing that
(
x+S
i

)
=
(
x+S−1

i

)
+
(
x+S−1
i−1

)
and after some simplification we get

x(PS(x)−PS(x+ 1)) =−r
S
(
x+S−1
S

)∑S

i=0

(
x+S
i

)
ri(S− i)

∑S

i=0

(
x+S−1

i

)
ri
∑S

i=0

(
x+S
i

)
ri
. (EC.7)
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The result in (EC.7) also shows that the full state probability is increasing in x. In addition, we

can see that 1−PS(x+ 1) =
∑S−1

i=0

(
x+S
i

)
ri/
∑S

i=0

(
x+S
i

)
ri. Therefore we can simplify ∆LS(x) as

∆LS(x) = r
−∑S

i=0

(
x+S−1
S

)(
x+S
i

)
rS+i(S− i) +

∑S−1

i=0

(
x+S
i

)
ri
∑S

i=0

(
x+S−1

i

)
ri

∑S

i=0

(
x+S−1

i

)
ri
∑S

i=0

(
x+S
i

)
ri

. (EC.8)

Now to show ∆LS(x) is positive we need to show its numerator is always positive. But, this is

always true according to Lemma 1. Therefore, LS(x) is increasing in x.

(ii) In order to prove that LS(x) is concave in x we need to show that

∆LS(x) = 1−
∑S

i=0

(
x+S−1

i

)(
x+S
S

)
rS+i +

∑S

i=0

(
x+S−1
S

)(
x+S
i

)
rS+i(S− i)

∑S

i=0

(
x+S−1

i

)
ri
∑S

i=0

(
x+S
i

)
ri

, (EC.9)

is decreasing in x. But this is always true based on Lemma 2.

(iii) As r= λ
µ
S
n

it is equivalent to showing that L is concave increasing in r given µ is fixed. We

know that LS(x) = rx(1−PS) = rx− rxPS. Hence, we get ∂LS(x)

∂r
=
(
x−x∂(rPS)

∂r

)
S
n

and ∂2LS(x)

∂r2
=

−xS
n

∂2(rPS)

∂r2
. We first show that ∂LS(x)

∂r
≥ 0. We have that:

∂(rPS)

∂r
=

(
x+S−1
S

)
rS[
∑S

i=0

(
x+S−1

i

)
ri(S+ 1− i)]

[
∑S

i=0

(
x+S−1

i

)
ri]2

. (EC.10)

Hence, in order to ensure that ∂LS(x)

∂r
≥ 0 we need to show that:

[
S∑

i=0

(
x+S− 1

i

)
ri]2− [

(
x+S− 1

S

) S∑

i=0

(
x+S− 1

i

)
ri+S(S+ 1− i)]≥ 0, (EC.11)

which is true according to Lemma 3. Hence, LS(x) is increasing in r. Now we show that d2LS(x)

dr2
≤ 0.

Note that showing d2LS(x)

dr2
≤ 0 is equivalent to showing ∂2(rPS)

∂r2
≥ 0. So we work with the latter one.

From the relation (54) in the paper we have

∂(rPS)

∂r
=

(
x+S−1
S

)
rS+1[

∑S

i=0

(
x+S−1

i

)
ri−1(S+ 1− i)]

[
∑S

i=0

(
x+S−1

i

)
ri]2

. (EC.12)

Furthermore,

∂2(rPS)

∂r2 =

(
x+S−1
S

)
rS−1

[
∑S

i=0

(
x+S−1

i

)
ri]3

[
S∑

i=0

S∑

j=0

(
x+S− 1

i

)(
x+S− 1

j

)
ri+j(S+1− i)(S+ i−2j)]. (EC.13)

Based on Lemma 4 we have that ∂2(rPS)

∂r2
≥ 0. Hence, LS(x) is concave increasing in both r and r.

(iv) The proof is immediate from part (iii) and part (iii) of Proposition 2. �
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Proof of Proposition 8 (i) We need to show that
∂λ∗vj
∂xvj
≤ 0. By Implicit Function Theorem,

we have

∂λ∗vj
∂xvj

=−
∂2Rvj (λ∗vj )

∂λvj ∂xvj

∂2Rvj (λ∗vj )

∂λ2vj

=−





∂2Lvj (λ∗vj )

∂λvj ∂xvj
pvj (λ

∗
vj
, xvj , Svj ) +

∂Lvj (λ∗vj )

∂xvj

∂pvj (λ∗vj ,xvj ,Svj )

∂λvj

+Lvj
(λ∗vj )

∂2pvj (λ∗vj ,xvj ,Svj )

∂xvj ∂λvj
+

∂Lvj (λ∗vj )

∂λvj

∂pvj (λ∗vj ,xvj ,Svj )

∂xvj









∂2Lvj (λ∗vj )

∂λ2vj
pvj (λ

∗
vj
, xvj , Svj )

+2
∂Lvj (λ∗vj )

∂λvj

∂pvj (λ∗vj ,xvj ,Svj )

∂λvj
+ Lvj

(λ∗vj )
∂2pvj (λ∗vj ,xvj ,Svj )

∂λ2vj





, (EC.14)

in which by First Order Necessary Condition we have

∂Rvj (λ
∗
vj

)

∂λvj
= µvj (

nvj
Svj

)(
∂Lvj

(λ∗vj )

∂λvj
pvj (λ

∗
vj
, xvj , Svj ) + Lvj

(λ∗vj )
∂pvj (λ

∗
vj
, xvj , Svj )

∂λvj
) = 0.

Note that since xvj is discrete we are slightly abusing the Implicit Function Theorem. Consider xvj

to be continuous rather than discrete. It is clear that if λ∗vj is increasing in real-valued xvj , it is

increasing in discrete values of xvj . Similarly, if Lvj (λ
∗
vj

) and
∂Lvj (λ∗vj )

∂λvj
are increasing (/ decreasing)

in any increasing sequence of real values xvj then the monotonicity holds for any increasing sequence

of integer values xvj . As λ∗vj is a maximizer of a concave function we have
∂2Rvj (λ∗vj )

∂λ2vj
≤ 0 (Proposition

6), i.e., the denominator is negative. In addition, since
∂pvj (λ∗vj ,xvj ,Svj )

∂xvj
≤ 0 and

∂2pvj (λ∗vj ,xvj ,Svj )

∂xvj ∂λvj
≤ 0,

we are left with showing
∂2Lvj (λ∗vj )

∂λvj ∂xvj
pvj (λ

∗
vj
, xvj , Svj ) +

∂Lvj (λ∗vj )

∂xvj

∂pvj (λ∗vj ,xvj ,Svj )

∂λvj
≤ 0. Using the FONC,

∂Lvj (λ∗vj )

∂λvj
pvj (λ

∗
vj
, xvj , Svj )+Lvj (λ

∗
vj

)
∂pvj (λ∗vj ,xvj ,Svj )

∂λvj
= 0, we are are left with showing that

g(λ∗vj )
4
=
∂Lvj (λ

∗
vj

)

∂xvj

∂Lvj (λ
∗
vj

)

∂λvj
−
∂2Lvj (λ

∗
vj

)

∂xvj∂λvj
Lvj (λ

∗
vj

)≥ 0. (EC.15)

Without loss of generality we set µvj = 1 and thus λ∗vj = rvj . Now we have Lvj = rvjxvj (1− Pxvj )

and then
∂Lvj
∂xvj

= rvj (xvj + 1)(1−Pxvj+1)− rvjxvj (1−Pxvj ). (EC.16)

(We denote PSvj with Pxvj to emphasize the dependence on xvj .) Also from the proof of Proposition

3 we have that
∂Lvj
∂λvj

= xvj (1− fxvj ) where fxvj is

fxvj
4
=

∑Svj
i=0

(xvj+Svj−1

i

)(xvj+Svj−1

Svj

)
r
Svj+i

vj (Svj − i+ 1)

∑Svj
i=0

∑Svj
j=0

(xvj+Svj−1

i

)(xvj+Svj−1

j

)
ri+jvj

. (EC.17)

Hence, we get
∂2Lvj (λ

∗
vj

)

∂xvj∂λvj
= 1−xvj (fxvj+1− fxvj )− fxvj+1. (EC.18)
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Using (EC.16) and (EC.18) in (EC.15) and after some algebra we get

g(λ∗vj ) = (1−Pxvj )(fxvj+1− fxvj )− (1− fxvj )(Pxvj+1−Pxvj ). (EC.19)

Next we calculate each term in g(λ∗vj ) by inserting the relevant functions. Using the relation (5) in

the paper as well as (EC.17) in (EC.19) we get

fxvj+1− fxvj (EC.20)

=

∑Svj
i=0

∑Svj
j=0

∑Svj
k=0

(xvj+Svj−1

i

)(xvj+Svj−1

j

)(xvj+Svj
Svj

)(xvj+Svj
k

)
r
i+j+Svj+k

vj (Svj − k+ 1)

∑Svj
i=0

∑Svj
j=0

∑Svj
k=0

∑Svj
l=0

(xvj+Svj
i

)(xvj+Svj
j

)(xvj+Svj−1

k

)(xvj+Svj−1

l

)
ri+j+k+l
vj

(EC.21)

−
∑Svj

i=0

∑Svj
j=0

∑Svj
k=0

(xvj+Svj
i

)(xvj+Svj
j

)(xvj+Svj−1

Svj

)(xvj+Svj−1

k

)
r
i+j+Svj+k

vj (Svj − k+ 1)

∑Svj
i=0

∑Svj
j=0

∑Svj
k=0

∑Svj
l=0

(xvj+Svj
i

)(xvj+Svj
j

)(xvj+Svj−1

k

)(xvj+Svj−1

l

)
ri+j+k+l
vj

.

Multiplying the both sides of (EC.20) and simplifying the right side gives

(1−Pxvj )(fxvj+1− fxvj )

=

∑Svj
i=0

∑Svj
j=0

∑Svj
k=0

∑Svj−1

l=0 (
xvj+Svj−1

i
)(
xvj+Svj−1

j
)(
xvj+Svj
Svj

)(
xvj+Svj

k
)(
xvj+Svj−1

l
)r
i+j+Svj+k+l

vj
(Svj−k+1)

∑Svj
i=0

∑Svj
j=0

∑Svj
k=0

∑Svj
l=0

∑Svj
h=0 (

xvj+Svj
i

)(
xvj+Svj

j
)(
xvj+Svj−1

k
)(
xvj+Svj−1

l
)(
xvj+Svj−1

h
)ri+j+k+l+hvj

−
∑Svj
i=0

∑Svj
j=0

∑Svj
k=0

∑Svj−1

l=0 (
xvj+Svj−1

i
)(
xvj+Svj−1

j
)(
xvj+Svj−1

Svj
)(
xvj+Svj−1

k
)(
xvj+Svj−1

l
)r
i+j+Svj+k+l

vj
(Svj−k+1)

∑Svj
i=0

∑Svj
j=0

∑Svj
k=0

∑Svj
l=0

∑Svj
h=0 (

xvj+Svj
i

)(
xvj+Svj

j
)(
xvj+Svj−1

k
)(
xvj+Svj−1

l
)(
xvj+Svj−1

h
)ri+j+k+l+hvj

.

(EC.22)

Using (EC.17) we get

Pxvj+1−Pxvj =

1
xvj

∑Svj
i=0

(xvj+Svj
i

)(xvj+Svj−1

Svj

)
r
i+Svj
vj (Svj − i)

∑Svj
i=0

∑Svj
j=0

(xvj+Svj
i

)(xvj+Svj−1

j

)
ri+jvj

. (EC.23)

Now we use (EC.17) and (EC.23) to obtain (1− fxvj )(Pxvj+1 − Pxvj ), the second term in g(λ∗vj ).

After some simplification we obtain

(1− fxvj )(Pxvj+1−Pxvj )

=

∑Svj
i=0

∑Svj
j=0

∑Svj
k=0

∑Svj
l=0 (

xvj+Svj−1

i
)(
xvj+Svj−1

j
)(
xvj+Svj−1

Svj
)(
xvj+Svj

k
)(
xvj+Svj

l
)r
i+j+Svj+k+l

vj
(
Svj−k
xvj

)

∑Svj
i=0

∑Svj
j=0

∑Svj
k=0

∑Svj
l=0

∑Svj
h=0 (

xvj+Svj−1

i
)(
xvj+Svj−1

j
)(
xvj+Svj

k
)(
xvj+Svj−1

l
)(
xvj+Svj

h
)ri+j+k+l+hvj

−
∑Svj
i=0

∑Svj
j=0

∑Svj
k=0 (

xvj+Svj−1

Svj
)(
xvj+Svj−1

i
)(
xvj+Svj−1

Svj
)(
xvj+Svj

j
)(
xvj+Svj

k
)r
i+j+k+2Svj
vj

(Svj−i+1)(
Svj−j
xvj

)

∑Svj
i=0

∑Svj
j=0

∑Svj
k=0

∑Svj
l=0

∑Svj
h=0 (

xvj+Svj−1

i
)(
xvj+Svj−1

j
)(
xvj+Svj

k
)(
xvj+Svj−1

l
)(
xvj+Svj

h
)ri+j+k+l+hvj

.

(EC.24)

Adding Equations (EC.22) and (EC.24) gives (notice the denominators are in fact the same)

g(λ∗vj ) (EC.25)
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=
xvj
∑Svj

i=0

∑Svj
j=0

∑Svj
k=0

∑Svj−1

l=0

(xvj+Svj−1

i

)(xvj+Svj−1

j

)(xvj+Svj
Svj

)(xvj+Svj
k

)(xvj+Svj−1

l

)
ri+j+k+l
vj

(Svj − k+ 1)

∑Svj
i=0

∑Svj
j=0

∑Svj
k=0

∑Svj
l=0

∑Svj
h=0

(xvj+Svj−1

i

)(xvj+Svj−1

j

)(xvj+Svj
k

)(xvj+Svj−1

l

)(xvj+Svj
h

)
ri+j+k+l+h
vj

−
xvj
∑Svj

i=0

∑Svj
j=0

∑Svj
k=0

∑Svj−1

l=0

(xvj+Svj
i

)(xvj+Svj
j

)(xvj+Svj−1

Svj

)(xvj+Svj−1

k

)(xvj+Svj−1

l

)
ri+j+k+l
vj

(Svj − k+ 1)

∑Svj
i=0

∑Svj
j=0

∑Svj
k=0

∑Svj
l=0

∑Svj
h=0

(xvj+Svj−1

i

)(xvj+Svj−1

j

)(xvj+Svj
k

)(xvj+Svj−1

l

)(xvj+Svj
h

)
ri+j+k+l+h
vj

−
∑Svj

i=0

∑Svj
j=0

∑Svj
k=0

∑Svj
l=0

(xvj+Svj−1

i

)(xvj+Svj−1

j

)(xvj+Svj−1

Svj

)(xvj+Svj
k

)(xvj+Svj
l

)
ri+j+k+l
vj

(Svj − k)

∑Svj
i=0

∑Svj
j=0

∑Svj
k=0

∑Svj
l=0

∑Svj
h=0

(xvj+Svj−1

i

)(xvj+Svj−1

j

)(xvj+Svj
k

)(xvj+Svj−1

l

)(xvj+Svj
h

)
ri+j+k+l+h
vj

+

∑Svj
i=0

∑Svj
j=0

∑Svj
k=0

(xvj+Svj−1

Svj

)(xvj+Svj−1

i

)(xvj+Svj−1

Svj

)(xvj+Svj
j

)(xvj+Svj
k

)
r
i+j+k+Svj
vj (Svj − i+ 1)(Svj − j)

∑Svj
i=0

∑Svj
j=0

∑Svj
k=0

∑Svj
l=0

∑Svj
h=0

(xvj+Svj−1

i

)(xvj+Svj−1

j

)(xvj+Svj
k

)(xvj+Svj−1

l

)(xvj+Svj
h

)
ri+j+k+l+h
vj

.

To show that g(λ∗vj ) ≥ 0 we are left with showing that its numerator is always positive as the

denominator is clearly positive. To show this we need to systematically group the terms in the

numerator in the four sums together and show that the sum of the terms in each group are positive.

We do the grouping according to the power of rvj . Let us assume that the power of rvj is z where

0 ≤ z ≤ 4Svj . If g(λ∗vj ) ≥ 0 then the coefficient of rzvj for each and every z, 0 ≤ z ≤ 4Svj , needs

be positive. We divide the range into four parts: 0 ≤ z < Svj , Svj ≤ z < 2Svj , 2Svj ≤ z < 3Svj ,

3Svj ≤ z ≤ 4Svj . Here we will illustrate the proof for 0 ≤ z < Svj . The other ranges are proved

similarly.

Let B(xvj , Svj , z) be the coefficient of rzvj in the numerator for any given z. If 0≤ z < Svj and

l= z− i− j− k. Then after some algebra we obtain B(xvj , Svj , z) as

B(xvj , Svj , z) =
z∑

i=0

z−i∑

j=0

z−i−j∑

k=0

Hi,j,k(xvj , Svj )Ci,j,k(xvj , Svj ), (EC.26)

where Hi,j,k(xvj , Svj ) is

Hi,j,k(xvj , Svj )
4
=

(
xvj +Svj − 1

i

)(
xvj +Svj − 1

j

)(
xvj +Svj − 1

Svj

)(
xvj +Svj − 1

k

)(
xvj +Svj − 1

z− i− j− k

)
(xvj +Svj )

2 ≥ 0,

(EC.27)

and Ci,j,k(xvj , Svj ) is

Ci,j,k(xvj , Svj )
4
= (

Svj − k+ 1

xvj +Svj − k
)−

xvj (Svj − k+ 1)

(xvj +Svj − i)(xvj +Svj − j)
−(

Svj − k
xvj +Svj − k

)(
1

xvj +Svj − (z− i− j− k︸ ︷︷ ︸
l

)
).

(EC.28)

We can see that Hi,j,k(xvj , Svj ) ≥ 0. Hence, we only need to show Ci,j,k(xvj , Svj )≥ 0. After some

simplification in (EC.28) we get

Ci,j,k(xvj , Svj )≥
ij(Svj − l− 1) +S2

vj
(Svj − i− j− l− 1) + kxvj (Svj − l)

(Svj +xvj − i)(Svj +xvj − j)(Svj +xvj − k)(Svj +xvj − k)
(EC.29)
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+
Svjxvj (2Svj − 2i− 2j− l− 2) +x2

vj
(Svj − i− j− 1)

(Svj +xvj − i)(Svj +xvj − j)(Svj +xvj − k)(Svj +xvj − k)

≥ 0.

Having in mind that z = i+j+k+ l and 0≤ z < Svj we notice that in the right side of (EC.29) each

term in the numerator (and the denominator) is positive. Hence, Ci,j,k(xvj , Svj ) ≥ 0. Given that

other ranges for z hold we have that g(λ∗vj )≥ 0, which ensures
∂λ∗vj
∂xvj
≤ 0. As the price is decreasing

in λvj , we have proved that the optimal price is increasing in xvj .

(ii) The proof is immediate from part (i) and the chain rule
dpvj (λ∗vj ,xvj ,Svj )

dxvj
=

∂pvj (λ∗vj ,xvj ,Svj )

∂λvj

∂λ∗vj
∂xvj

+

∂pvj (λ∗vj ,xvj ,Svj )

∂xvj
. �
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EC.2. Lemmas and Proofs

Lemma 1 Given x∈N, i∈N, and κ∈R, the following result holds:

x∑

k1=1

x∑

k2=k1

...
x∑

ki=ki−1

κ=

(
x+ i− 1

i

)
κ. (EC.30)

Proof We prove the lemma with induction. For the case i= 1, as mentioned earlier, B1 = x=

(
x+1−1

1

)
. Now let us assume that the formula holds for Bi for i= s, i.e., Bs =

(
x+s−1
s

)
and for any

x. We then need to show that it also holds for i= s+ 1, i.e., Bs+1 =
(
x+s
s+1

)
. Let us condition our

counting of terms on the value of ks+1. We first assume ks+1 takes the value of 1. The number of

the terms in this case will be exactly the same as for the problem with s filled slots which is equal

to
(
x+s−1
s

)
according to the induction assumption. If ks+1 = 2 the other indices can vary from 2 to

x. They can not take 1 anymore because all the states with 1 are already counted for in the case

with ks+1 = 1. The number of terms in this case will be similar as the first case except we only have

x− 1 values to choose from, i.e.,
(
x+s−2
s

)
. With a similar reasoning for ks+1 = 3 we obtain

(
x+s−3
s

)
.

Repeating the same reasoning we can see that Bs+1 =
(
x+s−1
s

)
+
(
x+s−2
s

)
+
(
x+s−3
s

)
+ ...+

(
s
s

)
. By

using Lemma 2 we obtain that this summation is equal to
(
x+s
s+1

)
, which completes the proof. �

Lemma 2 Given k ∈N∩ [0, x− 1] and x∈N∪{0}, the following result holds:

x+k−1∑

i=k

(
i

k

)
=

(
x+ k

k+ 1

)
. (EC.31)

Proof We prove the lemma by induction. For x = 1 we have both sides equal to 1. Let us

assume that for x= s we have
∑s+k−1

i=k

(
i
k

)
=
(
s+k
k+1

)
. We then need to show that for x= s+1 we have

∑s+k

i=k

(
i
k

)
=
(
s+k+1
k+1

)
. We can see that

∑s+k

i=k

(
i
k

)
=
∑s+k−1

i=k

(
i
k

)
+
(
s+k
k

)
and by using the induction

assumption we have
∑s+k

i=k

(
i
k

)
=
(
s+k
k+1

)
+
(
s+k
k

)
. Using the Pascal’s rule,

(
a−1
b

)
+
(
a−1
b−1

)
=
(
a
b

)
, we obtain

∑s+k

i=k

(
i
k

)
=
(
s+k+1
k+1

)
, which completes the proof. �

Lemma 3 Given x∈N∩ [S− 1,∞) with S ∈N and rvj ∈R+,

S−1∑

i=0

(
x+ i− 1

i

)
ri(1 + r)S−i−1 =

S−1∑

i=0

(
x+S− 1

i

)
ri. (EC.32)
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Proof We prove the lemma by induction. If S = 1 then both sides are equal to 1. Let us assume

the equality holds for S = k, i.e.,

D(k)
4
=

k−1∑

i=0

(
x+ i− 1

i

)
ri(1 + r)k−i−1−

k−1∑

i=0

(
x+ k− 1

i

)
ri = 0. (EC.33)

Then we need to show it also holds for S = k+ 1, i.e., that

D(k+ 1) =
k∑

i=0

(
x+ i− 1

i

)
ri(1 + r)k−i−

k∑

i=0

(
x+ k

i

)
ri = 0. (EC.34)

We start from D(k+ 1) and try to reach to D(k). We obtain

D(k+ 1) = (1 + r)
k−1∑

i=0

(
x+ i− 1

i

)
ri(1 + r)k−i−1 +

(
x+ k− 1

k

)
rk−

k∑

i=0

(
x+ k

i

)
ri. (EC.35)

Using the induction assumption we get

D(k+ 1) = (1 + r)
k−1∑

i=0

(
x+ k− 1

i

)
ri +

(
x+ k− 1

k

)
rk−

k−1∑

i=0

(
x+ k

i

)
ri−

(
x+ k

k

)
rk (EC.36)

=
k−1∑

i=0

[(
x+ k− 1

i

)
−
(
x+ k

i

)]
ri−

k−1∑

i=0

(
x+ k− 1

i

)
ri+1 +

(
x+ k− 1

k

)
rk−

(
x+ k

k

)
rk,

and in the end using Pascal’s rule twice and setting the index in the first sum to i= j− 1, we get

D(k+ 1) =
k−2∑

j=0

(
x+ k− 1

j

)
rj+1 +

(
x+ k− 1

k− 1

)
rk−

k−1∑

i=0

(
x+ k− 1

i

)
ri+1 (EC.37)

=
k−1∑

j=0

(
x+ k− 1

j

)
rj+1−

k−1∑

i=0

(
x+ k− 1

i

)
ri+1 =D(k) = 0,

which completes the proof. �

Lemma 4 Given any natural numbers x∈N, and S ∈N,
S∑

i=0

S−1∑

j=0

(
x+S− 1

i

)(
x+S

j

)
ri+jvj
≥

S∑

i=0

(
x+S− 1

S

)(
x+S

i

)
rS+i
vj

(S− i). (EC.38)

Proof The Lemma can be proved using the same approach as in the proof of Lemma 3. �

Lemma 5 Let Q(x) =QN(x)/QD(x), where

QN(x) =

(
S∑

i=0

(
x+S− 1

i

)(
x+S

S

)
rS+i
vj

+
S∑

i=0

(
x+S− 1

S

)(
x+S

i

)
rS+i
vj

(S− i)
)

(EC.39)

and

QD(x) =

(
S∑

i=0

(
x+S− 1

i

)
rivj

S∑

i=0

(
x+S

i

)
rivj

)
. (EC.40)

Then for any x, S ∈N, and rvj ∈R+, Q(x) is increasing in x
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Proof We need to show that Q(x+ 1)≥Q(x). This is equivalent to showing that

A(x,S)
4
=

S∑

i=0

S∑

j=0

S∑

k=0

(
x+S− 1

i

)(
x+S

j

)(
x+S

k

)(
x+S+ 1

S

)
ri+j+kvj

(EC.41)

+
S∑

i=0

S∑

j=0

S∑

k=0

(
x+S− 1

i

)(
x+S

j

)(
x+S+ 1

k

)(
x+S

S

)
ri+j+kvj

(S− k)

+
S∑

i=0

S∑

j=0

S∑

k=0

(
x+S− 1

i

)(
x+S

j

)(
x+S+ 1

k

)(
x+S

S

)
ri+j+kvj

(S− k)

−
S∑

i=0

S∑

j=0

S∑

k=0

(
x+S

i

)(
x+S+ 1

j

)(
x+S− 1

k

)(
x+S

S

)
ri+j+kvj

−
S∑

i=0

S∑

j=0

S∑

k=0

(
x+S

i

)(
x+S+ 1

j

)(
x+S

k

)(
x+S− 1

S

)
ri+j+kvj

(S− k)≥ 0.

In order to show that the inequality above holds we need to show that for any z, 0≤ z ≤ 3S, the

coefficient of rzvj is positive. We consider z in three separate regions, namely, 0≤ z < S, S ≤ z < 2S,

and 2S ≤ z ≤ 3S. Here we prove the inequality for 0≤ z < S. The proof is similar for the other two

regions. For any z, 0≤ z < S, the coefficient for rzvj in A(x,S) is

z∑

i=0

S−z∑

j=0

B(x,S, i, j, z),

where we set k= z− i− j and B(x,S, i, j, z) is obtained as

B(x,S, i, j, z) =

(
x+S− 1

i

)(
x+S

j

)(
x+S− 1

z− i− j

)(
x+S− 1

S

)
(x+S)2(x+S+ 1) (EC.42)

[
1

x(x+ 1)(x+S− z+ i+ j)
+

(S− z+ i+ j)

x(x+S− z+ i+ j)(x+S− z+ i+ j+ 1)

− 1

x(x+S− i)(x+S− j+ 1)
− (S− z+ i+ j)

(x+S− i)(x+S+ 1− j)(x+S− z+ i+ j)
].

Since z = i+ j+ k and 0≤ z < S we have

1

x(x+ 1)(x+S− z+ i+ j)
− 1

x(x+S− i)(x+S− j− 1)
(EC.43)

=
(−i− iS− jS+S2) + (Sx+ zx− 2ix− 2jx) + (z− i− j)
x(x+ 1)(x+S− z+ i+ j)(x+S− i)(x+S− j− 1)

≥ 0.

as all three terms in the numerator are positive. In a similar way we have

(S− z+ i+ j)

x(x+S− z+ i+ j)(x+S− z+ i+ j+ 1)
− (S− z+ i+ j)

(x+S− i)(x+S+ 1− j)(x+S− z+ i+ j)
(EC.44)

=
(S− z+ i+ j)((S− i) + (S2− iS− jS) + (Sx+xz− 2ix− 2jx) + ij

x(x+S− z+ i+ j)(x+S− z+ i+ j+ 1)(x+S− i)(x+S+ 1− j) ≥ 0.

Therefore, the coefficient of rzvj is positive, which completes the proof for 0≤ z < S. �
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Lemma 6 For 0≤ j ≤ i≤ S and x≥ 1 we have

(
x+S− 1

i

)(
x+S− 1

S+ j− i

)
≥
(
x+S− 1

S

)(
x+S− 1

j

)
. (EC.45)

Proof We prove the lemma by contradiction and assume
(
x+S−1

i

)(
x+S−1
S+j−i

)
<
(
x+S−1
S

)(
x+S−1

j

)
.

After some algebra we have

S!(x− 1)!j!(x+S− 1− j)!< i!(x+S− 1− i)!(S+ j− i)!(x+−1− j+ i)!.

With further simplifications we get

Πi
k=j+1(S− i+ k) ·Πi

k=j+1(x+S− k)<Πi
k=j+1k ·Πi

k=j+1(x+ i− k),

which is a contradiction as S ≥ i. Hence, we conclude that
(
x+S−1

i

)(
x+S−1
S+j−i

)
≥
(
x+S−1
S

)(
x+S−1

j

)
. �

Lemma 7 Given any natural numbers x∈N and S ∈N,

S∑

i=0

S∑

j=0

(
x+S− 1

i

)(
x+S− 1

j

)
ri+j ≥

S∑

i=0

(
x+S− 1

S

)(
x+S− 1

i

)
rS+i(S+ 1− i). (EC.46)

Proof

We prove this lemma by selecting a few “convenient” terms from the double sum on the left

hand side of the inequality and then showing that their sum is always greater than the sum on the

right hand side.

We focus on the double sum on the left hand side and notice since all its terms are positive this

double sum is greater than a sum over a few of its terms. We first list the terms where i+ j = 2S,

then the term with i+ j = 2S− 1, etc:

S∑

i=0

S∑

j=0

(
x+S− 1

i

)(
x+S− 1

j

)
ri+j (EC.47)

≥
(
x+S− 1

S

)(
x+S− 1

S

)
r2S + [

(
x+S− 1

S

)(
x+S− 1

S− 1

)

+

(
x+S− 1

S− 1

)(
x+S− 1

S

)
]r2S−1 + [

(
x+S− 1

S

)(
x+S− 1

S− 2

)

+

(
x+S− 1

S− 1

)(
x+S− 1

S− 1

)
+

(
x+S− 1

S− 1

)(
x+S− 1

S− 1

)

+

(
x+S− 1

S− 2

)(
x+S− 1

S

)
]r2S−2 + ...+ [

(
x+S− 1

S

)(
x+S− 1

S− 3

)

+

(
x+S− 1

S− 1

)(
x+S− 1

S− 2

)
+

(
x+S− 1

S− 2

)(
x+S− 1

S− 1

)
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+

(
x+S− 1

S− 3

)(
x+S− 1

S

)
]r2S−3 + ...+ [

S∑

i=0

(
x+S− 1

i

)(
x+S− 1

S− i

)
]rS.

After some algebra we obtain

S∑

i=0

S∑

j=0

(
x+S− 1

i

)(
x+S− 1

j

)
ri+j (EC.48)

≥ [
S∑

i=S

(
x+S− 1

i

)(
x+S− 1

2S− i

)
]r2S + [

S∑

i=S−1

(
x+S− 1

i

)(
x+S− 1

2S− 1− i

)
]r2S−1

+ [
S∑

i=S−1

(
x+S− 1

i

)(
x+S− 1

2S− 1− i

)
]r2S−1 + [

S∑

i=S−2

(
x+S− 1

i

)(
x+S− 1

2S− 2− i

)
]r2S−2

+ ...+ [
S∑

i=0

(
x+S− 1

i

)(
x+S− 1

S− i

)
]rS

=
S∑

j=0

[
S∑

i=j

(
x+S− 1

i

)(
x+S− 1

S+ j− i

)
]rj+S.

Now we subtract the term −∑S

j=0

(
x+S−1
S

)(
x+S−1

j

)
rS+i(S+ 1− j) from both sides of (EC.48) to get

S∑

i=0

S∑

j=0

(
x+S− 1

i

)(
x+S− 1

j

)
ri+j −

S∑

j=0

(
x+S− 1

S

)(
x+S− 1

j

)
rS+i(S+ 1− j) (EC.49)

≥
S∑

j=0

rS+j[
S∑

i=j

(
x+S− 1

i

)(
x+S− 1

S+ j− i

)
−
(
x+S− 1

S

)(
x+S− 1

j

)
(S+ 1− j)].

On the other side Lemma 6 tells us that the below result is always correct:

(
x+S− 1

i

)(
x+S− 1

S+ j− i

)
≥
(
x+S− 1

S

)(
x+S− 1

j

)
for 0≤ j ≤ i≤ S and x≥ 1. (EC.50)

Replacing (EC.50) in (EC.49) we get

S∑

j=0

rS+j[
S∑

i=j

(
x+S− 1

i

)(
x+S− 1

S+ j− i

)
−
(
x+S− 1

S

)(
x+S− 1

j

)
(S+ 1− j)] (EC.51)

≥
S∑

j=0

rS+j[
S∑

i=j

(
x+S− 1

S

)(
x+S− 1

j

)
−
(
x+S− 1

S

)(
x+S− 1

j

)
(S+ 1− j)]

=
S∑

j=0

rS+j[

(
x+S− 1

S

)(
x+S− 1

j

)
(S+ 1− j)−

(
x+S− 1

S

)(
x+S− 1

j

)
(S+ 1− j)] = 0.

That shows the positivity of (EC.46) and completes the proof. �

Lemma 8 Given any x,S ∈N∪{0}, and r ∈R+

S∑

i=0

S∑

j=0

(
x+S− 1

i

)(
x+S− 1

j

)
ri+j(S+ 1− i)(S+ i− 2j)≥ 0. (EC.52)

Proof The lemma can be proved using a similar approach as in the proof of Lemma 3. �
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EC.3. Considering a Charge for Filler Ads

In this section, we show that considering a charge for “filler” ads does not affect the increasing

property of the optimal price with respect to the requested impressions.

In order to see the reason for this issue, first consider the price function to depend only on λ

(demand rate) and n (number of slots). We assume no ad rotation, i.e., S = n. In addition, we

assume that displaying each filler ad generates the revenue e > 0 per impression for the publisher,

which can be considered as a transfer price if the ad is for a different division of the company that

the publisher belongs to, or a low fee charged to a non-profit organization1. Our task is now to

show that the charge for filler ads, e, does not play a role in the monotonicity of the optimal price.

We can modify the revenue function to include the price as follows:

R(λ,µ,x,n) =Lp(λ,n)µ+ (n−L)eµ, (EC.53)

where n is the number of slots and L is the number of advertisers in the publisher’s system (in

the steady state condition). Then (n−L) is the average number of empty slots and (n−L)eµ is

the average revenue of displaying (n− L)µ filler ads per time unit. For the next step, we apply

L= rx(1−Pn(λ,x,n)), with r= λ/µ to (EC.53). Our problem now reduces to

R(λ,µ,x,n) = λ(1−Pn(λ,µ,x))x(p(λ,n)− e) +neµ. (EC.54)

Note that for a high value of e, i.e., e≥ p(λ,n), the maximum of (EC.53) with respect to λ becomes

R∗ = neµ. This is because a large e makes the first term negative, which leads to λ∗ = 0. That is,

the publisher denies all the arriving advertisers.

Given this, it only remains to show that e does not play a role in the maximization problem above.

In order to see that, we note that the two terms e, and neµ in (EC.54) are both independent of λ.

Hence, it is easy to see that the maximization of (EC.54) becomes equivalent to the maximization

of

max
λ
R̂(λ,µ,x,n) = λ(1−Pn(λ,µ,x))xp̂(λ,n), (EC.55)

where the price function is defined as p̂(λ,n) = p(λ,n)−e≥ 0.We can now see that (EC.55) has the

same form as the basic model considered in our paper. In addition, since p(λ,n) has the following

1 In the context of advertising networks, e can also be considered as the flat rate charged to the ad network by the
publisher for displaying low rate run-of-network ads.
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properties p′λ(λ,n) ≤ 0, p
′′
λ(λ,n) ≤ 0 (i.e., the necessary technical conditions for Proposition 6 to

hold), so does p̂(λ,n). As a result, the revenue function in (EC.55) with the new price function

p̂(λ,n) satisfies the necessary conditions for Proposition 6. Therefore, at the optimal level, the price

function p̂∗(λ∗(x), n) would increase in x. However, it is easy to see that in (EC.55), p∗(λ∗(x), n)

increases in x as well. This is because p̂′∗x (λ∗(x), n) ≥ 0 is the same as (p∗(λ∗(x), n)− e)′x ≥ 0.

However, as e is a constant (p∗(λ∗(x), n)− e)′x ≥ 0 reduces to p′∗x (λ∗(x), n)≥ 0. Therefore, the result

follows and we can conclude that charging for filler ads does not change our monotonicity results.

EC.4. More Detailed Explanation about Synchronization

We consider the basic model with n advertising slots, where each slot can display only one ad.

Every time a visitor uploads the publisher’s website all the ads in the system are displayed. An

advertiser pays every time his ad is displayed regardless of whether the viewer sees the ads. One

of the most well-known contracts in practice is called Guaranteed Delivery or GD. In the GD

contracts the publisher promises each advertiser to deliver a certain number of impressions to the

viewers. For each ad, the publisher keeps track of the number of times the ad is displayed. For

example, when an advertiser arrives at the system and is promised to be delivered x impressions

the counter’s initial value for that advertiser would be set on x. Then each time the ad is displayed

the counter’s value drops by one unit. On a related issue, if there are multiple advertisers in the

publisher’s system, and a viewer arrives, the values of all the related counters drop by one unit

at the same time (i.e., simultaneously). We refer to this property, in which all the counters count

down simultaneously, as synchronization.

We recall that the publisher’s system is formulated as a queuing model with the state vector

k= (k1, k2, ..., kn), which indicates that the number of remaining impressions for one of the slots is

k1, for another slot it is k2,..., and for the last one is kn, without distinguishing between the slots.

In order to observe the effect of synchronization on the state transitions consider the following

example:

Consider that the state of the system is k= (k1, k2, ..., ki,0, ...,0︸ ︷︷ ︸
n−i

), where the first i components

are positive and the rest are zero (empty slots). When a viewer arrives at the system (i.e., loads the

publisher’s webpage) the state of the system goes to the new state (k1− 1, k2− 1, ..., ki− 1,0, ...,0)

with rate µ. This is because when a viewer enters the system all the ads are displayed once to
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him. Therefore, the remaining impressions (i.e., the values of the counters) for all the positive

components of the state vector (i.e., the active ads in the system) are reduced by one unit at

the same time, while the zero-components (i.e., the empty slots) stay the same. As previously

mentioned, synchronization is regarded as this simultaneous reduction of the counter values in the

positive components.

EC.5. Additional Simulations for Non-Poisson Arrivals

In this section we provide additional simulation results for the gap analysis of the different interar-

rival time distributions considered for advertisers’ and viewers’ arrivals. The numerical information

of parameters is the same as in the paper. We note the gap is smaller with a larger number of

impressions and fewer slots. To fully focus on the interarrival distributions, the number of impres-

sions are assumed to be deterministic. The steps for each simulation process are as follows:

Step 1. We obtain the optimal advertisers’ arrival rate, λ∗D1,D2
, when the advertisers’ interarrival

times follow the generic distribution D1, and the viewers’ interarrival times follow D2. This involves

simulating the publisher’s system for multiple values of λ and then selecting λ∗D1,D2
, the rate that

gives the highest revenue. We represent the revenue related to λ∗D1,D2
with RD1,D2

(λ∗D1,D2
).

Step 2. We compute the optimal value for λ using the closed form solution provided in the paper.

We represent this value with λ∗Exp. If the web publisher used our analytical solution for a system

that does not have Poisson arrivals on either side its revenue would become RD1,D2
(λ∗Exp).

Step 3. We compute the revenue gap using the following formula:

Gap=
RD1,D2

(λ∗D1,D2
)−RD1,D2

(λ∗Exp)

RD1,D2
(λ∗D1,D2

)
× 100(%). (EC.56)

Figure 1 shows a schematic presentation of how the revenue gap is obtained using the above

steps.

We notice that the revenue gap is considerably higher (i.e., about 20.13%) when the viewers’

and the advertisers’ arrival processes are both deterministic. This suggests that the Poisson policy

may not be a good approximation when there is no uncertainty in the model. However, we notice

that when even either advertisers’ or viewers’ arrival process is not deterministic the Poisson policy

tends to perform very well.
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Figure 1 A schematic presentation of how the revenue gap is computed through the mentioned steps.

n= 2, x= 500 Viewers (D2)

Advertisers (D1) Erlang-2 Erlang-4 Normal Uniform Deterministic Exponential
Erlang-2 0.9% 0.19% 0.04% 0.64% 0.69% 0.42%
Erlang-4 1.02% 1.71% 1.36% 1.70% 0.70% 0.85%
Normal 1.24% 0.04% 0.24% 0.52% 1.16% 0.06%
Uniform 0.80% 0.69% 0.84% 0.63% 0.75% 0.58%

Deterministic 2.82% 2.80% 2.91% 2.88% 20.13% 3.02%
Exponential 0.26% 0.01% 0.08% 0.04% 0.46% −

Table 2 The relative performance gap
RD1,D2

(λ∗
D1,D2

)−RD1,D2
(λ∗

Exp)

RD1,D2
(λ∗

D1,D2
)

×100(%)

n= 2, x= 1000 Viewers (D2)

Advertisers (D1) Erlang-2 Erlang-4 Normal Uniform Deterministic Exponential
Erlang-2 0.58% 0.35% 0.32% 0.37% 0.39% 1.05%
Erlang-4 1.09% 1.08% 0.95% 1.18% 0.50% 1.25%
Normal 0.22% 0.05% 0.37% 0.27% 0.17% 0.38%
Uniform 0.69% 1.01% 1.15% 0.40% 0.76% 0.73%

Deterministic 2.17% 1.95% 1.50% 2.32% 11.10% 2.23%
Exponential 0.35% 0.12% 0.33% 0.12% 0.14% −

Table 3 The relative performance gap
RD1,D2

(λ∗
D1,D2

)−RD1,D2
(λ∗

Exp)

RD1,D2
(λ∗

D1,D2
)

×100(%)

EC.6. Additional Simulation Results for non-Poisson Arrivals and Random Requests

In this section we provide additional simulation results for the gap analysis of the different inter-

arrival time distributions considered for advertisers’ and viewers’ arrivals as well as the various
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n= 2, x= 1500 Viewers (D2)

Advertisers (D1) Erlang-2 Erlang-4 Normal Uniform Deterministic Exponential
Erlang-2 0.1% 1.13% 0.20% 1.11% 0.14% 0.64%
Erlang-4 1.27% 0.93% 0.86% 1.00% 0.73% 0.96%
Normal 0.12% 0.38% 0.07% 0.02% 0.05% 0.07%
Uniform 1.14% 1.4% 0.21% 1.13% 0.98% 1.06%

Deterministic 3.39% 3.54% 3.68% 3.26% 5.90% 3.70%
Exponential 0.32% 0.11% 0.03% 0.38% 0.53% −

Table 4 The relative performance gap
RD1,D2

(λ∗
D1,D2

)−RD1,D2
(λ∗

Exp)

RD1,D2
(λ∗

D1,D2
)

×100(%)

n= 4, x= 1500 Viewers (D2)

Advertisers (D1) Erlang-2 Erlang-4 Normal Uniform Deterministic Exponential
Erlang-2 1.38% 0.88% 0.55% 0.03% 1.49% 0.84%
Erlang-4 0.97% 1.22% 0.46% 1.41% 1.04% 1.23%
Normal 0.19% 0.08% 0.06% 0.06% 0.11% 0.13%
Uniform 0.81% 0.18% 1.11% 1.65% 0.96% 0.31%

Deterministic 3.55% 3.34% 3.41% 3.49% 5.90% 3.16%
Exponential 0.73% 0.15% 0.22% 0.05% 0.35% −

Table 5 The relative performance gap
RD1,D2

(λ∗
D1,D2

)−RD1,D2
(λ∗

Exp)

RD1,D2
(λ∗

D1,D2
)

×100(%)
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Figure 2 An illustration of the empirical distribution of the impressions requested by the advertisers of Aller

Internett

distributions considered for the number of impressions, X. The numerical values of parameters are

identical to the Extensions Section in the paper (non-Poisson Arrivals). Here, we consider multiple

distributions for arrival processes as well as the impressions’ request. The selection of the different

distributions for X is based on our empirical observation on real data from Aller Internett (see

Figure 2).
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D2 ∼ Exp Advertisers (D1)

Impressions Erlang-2 Erlang-4 Normal Uniform Exponential
Erlang-2 1.14% 1.58% 0.01% 0.98% 1.31%
Erlang-4 0.87% 1.44% 0.23% 1.19% 0.34%
Normal 0.16% 0.86% 0.21% 0.85% 0.30%
Uniform 0.04% 0.66% 0.11% 0.40% 0.25%

Table 6 The relative gap
RX,D1,D2

(λ∗
X,D1,D2

)−RX,D1,D2
(λ∗

x,Exp)

RX,D1,D2
(λ∗

X,D1,D2
)

×100(%)

D2 ∼ Normal Advertisers (D1)

Impressions Erlang-2 Erlang-4 Normal Uniform Exponential
Erlang-2 0.42% 1.25% 0.28% 1.20% 0.33%
Erlang-4 0.29% 1.46% 0.63% 0.96% 0.08%
Normal 0.67% 0.40% 0.13% 0.95% 0.15%
Uniform 0.29% 0.43% 0.19% 0.57% 0.50%

Table 7 The relative gap
RX,D1,D2

(λ∗
X,D1,D2

)−RX,D1,D2
(λ∗

x,Exp)

RX,D1,D2
(λ∗

X,D1,D2
)

×100(%)

D2 ∼ Uniform Advertisers (D1)

Impressions Erlang-2 Erlang-4 Normal Uniform Exponential
Erlang-2 0.31% 1.26% 0.38% 0.99% 0.21%
Erlang-4 0.49% 0.93% 0.39% 0.93% 0.55%
Normal 0.06% 0.66% 0.10% 0.26% 0.11%
Uniform 0.05% 1.65% 0.27% 0.46% 0.65%

Table 8 The relative gap
RX,D1,D2

(λ∗
X,D1,D2

)−RX,D1,D2
(λ∗

x,Exp)

RX,D1,D2
(λ∗

X,D1,D2
)

×100(%)

D2 ∼ Erlang Advertisers (D1)

Impressions Erlang-2 Erlang-4 Normal Uniform Exponential
Erlang-2 0.38% 1.00% 0.08% 1.29% 0.47%
Erlang-4 0.60% 0.73% 0.09% 1.45% 2.02%
Normal 0.22% 0.60% 0.40% 0.45% 0.26%
Uniform 0.11% 0.15% 0.20% 0.92% 0.39%

Table 9 The relative gap
RX,D1,D2

(λ∗
X,D1,D2

)−RX,D1,D2
(λ∗

x,Exp)

RX,D1,D2
(λ∗

X,D1,D2
)

×100(%)
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Figure 3 Comparison of L vs. simulated LRIR
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Figure 4 Comparison of Pn vs. simulated PRIRn

EC.7. Simulating L and Pn with Random Numbers of Impressions

As mentioned in the paper, publishers usually display any number of impressions requested by

advertisers or allow them to choose among several listed quantities. As mentioned in the Model’s

Section, we can model this choice by defining X as a random variable representing the number of

impressions chosen by advertisers. In this section, we compare the simulated values of two system

quantities when random numbers of impressions are requested, with their corresponding analytical

values when all advertisers request the same number of impressions, E(X) (Assumption 3). The

random variable X can either have a discrete distribution representing a list of numbers offered,

or it can be assumed to be continuous (as X is usually large) representing that any number can be

chosen. We denote this system by random impressions request system (RIR) and the system where

Assumption 3 applies by deterministic request system (DR). Solving this RIR system analytically

does not appear to be tractable but to gain further insights, we perform additional simulation study

and simulate the system quantities of interest; L, the average number of advertisers in the system

and Pn, the probability that the system is full (we assume no rotation of ads). In our simulation

study, we let the advertisers’ arrival rate be equal to 0.1 per time unit, λ= 0.1, and the viewers’

arrival rate be equal to 10 per time unit, µ= 10. These numbers are chosen for illustration purposes.

The number of slots is chosen to be, n= 4 and there is no ad rotation, i.e., s= 1. Each arriving

advertiser requests X = Y · 1{Y≥0} impressions, where Y ∼ N(µ,ϑµ), i.e., X is a truncated normal

random variable. We compare the RIR system with the DR system, in which all advertisers request

E(X) = µ/(1−Φ(−1
ϑ

)) impressions (the mean of a truncated normal random variable), wherein Φ(·)
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is the standard normal distribution and (1−Φ(−1
ϑ

)) is the probability of the event {X ≥ 0}. We run

each simulation for 100,000 time units varying ϑ from ϑ= 0.05 to ϑ= 1. Figures 3 and 4 compare

the values of LSR and PSRn obtained through simulations with the corresponding values L and Pn

calculated using the closed-form solution for the DR system with x=E(X) = µ/(1−Φ(−1
ϑ

)).

Based on Figures 3 and 4 we can see that the performance measures considered for the RIR

system are very similar to the ones of the DR system with an increasing difference when the

variance increases, as can be expected. Other simulation results using different distributions for X

confirm this result. These results indicate that the DR system seems to be an accurate estimator

for the RIR system’s behavior even for low numbers of impressions.




