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Abstract

We develop a general framework for modeling decision problems in which actions
can be personalized by taking into account the information available to the decision
maker at each stage through binomial and multinomial logistic regression. We demon-
strate the application of our method to customized pricing decisions and personalized
assortment optimization. We show that learning under our model takes place reli-
ably by establishing finite-sample high probability convergence guarantees for model
parameters which hold regardless of the number of customer types, which can be po-
tentially uncountable. The parameter convergence guarantees can then be extended to
performance bounds in operational problems in which the gap between the expected
revenue of our suggested method and the optimal personalized decisions shrinks in pro-
portion to the square root of the size of the training set. Tests of our method on real
transaction data for airline seating reservations demonstrate that effective customized
pricing can increase revenue by at least 7% over the best single-price. Further tests
on simulated data suggest that the methods we developed tend to perform better than
the worst-case bounds we present.

Keywords: machine learning; statistics; price discrimination; assortment optimization;
logistic regression; choice modeling; revenue management



1. Introduction

The increasing prominence of electronic commerce has given businesses an unprecedented

ability to understand their customers as individuals and to tailor their services for them

appropriately. This benefit is two-fold: customer profiles and data repositories often provide

information that can be used to predict which products and services are most relevant to a

customer, and the fluid nature of electronic services allows for this information to be used to

optimize their experience in real-time, see Murthi and Sarkar (2003). For instance, Linden

et al. (2003) document how Amazon.com has used personalization techniques to optimize

the selection of products it recommends to users for many years, dramatically increasing

click-through and conversion rates as compared to static sites. Other companies, such as

Netflix, have implemented personalization through recommender systems as described by

Amatriain (2013) to drive revenue indirectly by improving customer experience.

To implement a personalization strategy it has been widely proposed to divide the

customer base into distinct segments and to tailor the service to each type appropriately as

in Chan et al. (2011). This segmentation of customers is often accomplished in practice by

dividing them into archetypical categories based on broad, easily observable characteristics

such as business versus leisure travelers in the case of the airline industry as discussed in

Talluri and van Ryzin (2004b). Such methods can increase revenue over models in which

customers are assumed to be homogeneous, but are likely to be suboptimal in the presence

of large amounts of data.

In this paper, we consider a statistical model and algorithm that use observed contextual

information, rather than previously defined customer segments, to inform decisions. This

approach represents a shift from thinking about personalization in terms of customer types

towards personalized management decisions as a function of the unique relevant informa-

tion available at the time of each decision. In the language of machine learning, we cast

personalized decision making as a supervised learning problem, where past transactional

data is used to discover the underlying relationship between contextual information and

customer behavior, and predictions are made based on this relationship. This approach

takes full advantage of available data in at least two ways. First, it allows the seller to

consider more complex relationships between context and customer behavior than can be

captured with just a few customer segments. Our approach also allows previous learning
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to be generalized easily, even to previously unseen types, allowing for customization even

in the case of novel customer data.

As a demonstration of the advantages of this approach, consider again the example of

business and leisure travelers in the airline industry. Within the business customer segment,

there are large businesses with many assets and low price sensitivity, but also small firms

that may not yet be financially established. Similarly, leisure travelers are often more

price sensitive, but there are some wealthy travelers who may behave more like business

customers. Transaction-specific contextual information is often rich enough to capture

these “second-order” trends within the broad categories, which can then be leveraged to

drive incremental revenue or to improve customer experience. With the granularity of

information available today, it is likely that each new customer represents a unique pattern

of information, and our personalization strategy should be flexible enough to both learn

from and optimize for the full diversity of the customer population.

To accomplish this type of strategy, we model demand or customer choice with a binomial

or multinomial logit function, where the arguments to the logit are assumed to be linear

functions of observed features. Since logistic regression models have been well-studied and

are very popular in practice, this approach leads both to theoretical guarantees and to a

practical, data-driven algorithm. Our main contributions are summarized here.

Incorporation of actions of the seller into estimable models of choice. In many applica-

tions of statistics and machine learning, the data of interest consist of contextual informa-

tion (or features) and outcomes. In our case, however, there is a third element to the data -

the action of the seller. This action may be a price set by a firm or an assortment offered to

a customer, and it has an important effect on the observed outcome of the transaction. We

provide ways to incorporate these actions into learning algorithms for customer behavior

models.

Estimation of personalized choice behavior with transaction data. By assuming a para-

metric form of the choice model, we allow for estimation of customer choice across arbitrary

types, even for customers with feature vectors not before observed. It is natural to expect

this when customer features consist of continuous variables and several or many dimen-

sions. An example is an airline ticket sale, in which the features for the transaction may

include time remaining until the flight takes off, origin, destination, an indicator for week-

end versus weekday purchases, customer web browser, etc. Our framework allows for all
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of this information to be taken into account in the model of each customer’s choice, and

provides a practical way of estimating all necessary parameters using transaction data of

the form available to modern firms.

Statistical revenue bounds. Using a probabilistic analysis of the maximum likelihood

estimates for logistic regression, we provide a parameter bound in terms of the number of

samples. This result allows us to bound the expected revenue gap between our algorithm’s

performance and the performance of an oracle, and demonstrates that this revenue gap

shrinks to zero as the number of samples grows large. A version of these bounds also holds

in the high-dimensional case where the dimension of the feature space grows with the

number of samples.

Good performance with real transaction data. We test the performance of our proposed

algorithm specialized for customized pricing on transaction data from a European airline

and show a significant increase in revenue over the best single price policy. We also show

that our algorithms perform well with simulated data for customized pricing.

Throughout this paper we demonstrate our analysis by examining the application of our

approach to two problems in operations management: customized pricing and personalized

assortment optimization. In customized pricing a seller aims to offer her product to each

customer at a price that maximizes expected profit, given information she has obtained

about the transaction and the customer. Customized pricing, or price discrimination, is

quite common in business to business transactions. Despite its limited application to gen-

eral settings due to customer satisfaction and legal issues, it is predicted that the practice

will spread and become more widely accepted as more data becomes available (see Gol-

rezaei et al. (2014)). Our work in this application builds on the ideas and work of Carvalho

and Puterman (2005).

In personalized assortment optimization a seller aims to show to each customer the

assortment of products which maximizes her expected profit for each individual customer

arrival, again given the contextual information. In the traditional brick-and-mortar con-

text, implementation of a personalized assortment strategy is out of the question due to

prohibitive setup costs. However, for online retailers personalized assortments are possible

and even natural.

We will demonstrate that our approach makes a significant contribution in both of these

growing areas of application. We also note that our style of analysis is not limited to these
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specific instances, and can be applied in many other contexts such as online advertisement

allocation, crowdsourcing task assignment, personalized medicine, and other problems in

which personalization can aid in optimal decision-making.

2. Literature Review

Our work combines two recent themes within operations management: learning problem

parameters from data and personalizing decisions using contextual information. One recent

paper that incorporates both of these aspects is Rudin and Vahn (2014), in which the

authors consider a “big data newsvendor” problem. In their model, the decision maker has

access to relevant information about the current environment before making each order

quantity decision, and aims to find not just one optimal order quantity, but an optimal

rule for mapping contextual information into an order decision. They propose techniques

for choosing such a rule using only observed data and prove bounds on the cost that

depend on the amount of past data available. Tools from machine learning provide the

main machinery for their proofs. They also test their approach on real data for a nurse

staffing problem and demonstrate a remarkable improvement over approaches which do

not take contextual information into account. Our work follows in this theme by examining

how pricing, assortment, and other customer-facing decisions can be personalized using

contextual information and past data, resulting in revenue bounds that improve as the

amount of data available increases.

The main applications of personalization that we consider here are customized pricing

and personalized assortment optimization. As both pricing and assortment optimization

have been well studied recently, we provide a brief overview of both of these areas. We

highlight in each application area recent work focusing on learning and personalization.

Recently, dynamic pricing and demand learning has been a popular theme in the field

of revenue management and a brief survey of some early work in this field can be found

in Aviv et al. (2012). In these settings it is often assumed that the demand function

of the entire population is unknown, but it is possible to obtain information about the

structure of demand through price experimentation. A common modeling assumption,

(as used in Broder and Rusmevichientong (2012), for example), is that the true market

demand function is specified by a parametric choice model. Using price experimentation,

they develop a pricing policy that achieves the minimum possible asymptotic regret in
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comparison to a clairvoyant who knows the full demand model. Even more related to the

current work is that of Carvalho and Puterman (2005), who assume a logistic regression

model for demand as a function of price. They mention maximum likelihood estimation

for their model, which we study here in detail.

At least in the field of operations research and management science (as opposed to

economics), literature on personalized pricing is sparse. This is likely due to the fact that

pure price discrimination is often thought to have limited application. However, there

have been some important contributions. In Carvalho and Puterman (2005), the authors

mention that customer-specific features may be included as part of their model. Aydin

and Ziya (2009) consider the case of customized pricing in which customers belong to a

high or low reservation price group and provide a signal to the seller that provides some

information as to how likely they are to belong to the higher price group. Among other

results, they develop conditions on the relationship between the signal and a customer’s

probability of belonging to the higher price group under which the optimal price to offer

is monotonic in the signal strength. Netessine et al. (2006) consider a form of personalized

dynamic pricing in their treatment of cross-selling based on the other items that each

consumer is considering purchasing.

In many other cases, models of price discrimination are actually cast as multi-product

models, where the different price levels come with different qualifications and extras as in

the airline industry. See Talluri and van Ryzin (2004a) and Belobaba (1989) for examples

of this type. While allowing for customized pricing for a single product based on customer

attributes, which would be appropriate in the insurance industry and in business to business

transactions, our conception of features also allows for dynamic pricing of differing products

based on their individual attributes, the effects of which may be learned over time. For

example, in our work with a corporate partner, the price of seating reservation privileges

can be customized to features of the generic transaction such as time of day in which

the website was accessed and details concerning the flight itself such as the origin and

destination pair and the time of departure.

Assortment optimization in the static case was brought to the attention of the operations

management community by van Ryzin and Mahajan (1999). Since that time assortment

optimization techniques and models have been heavily researched, with much past work

well summarized in Kök et al. (2008). Some setups such as those of Talluri and van Ryzin
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(2004a) and Golrezaei et al. (2014) allow for a general model of customer choice, but others

study structural properties specific to certain choice models. The multinomial logit model

(MNL), our model in the current work, is among the most commonly studied models of

customer choice for assortment optimization. Some examples include Rusmevichientong

et al. (2010) and Rusmevichientong et al. (2014).

One notable paper that specifically treats learning of parameters for choice models in

assortment optimization and related problems is Vulcano et al. (2008), which presents

an algorithm for estimating true demand from censored transaction data and proves con-

vergence of the algorithm. Also, in Rusmevichientong et al. (2010), the authors consider

a constrained version of assortment optimization and propose a dynamic algorithm that

incorporates learning the parameters of the MNL model.

As discussed above, personalized assortment optimization has only been considered

recently assortment planning literature. Bernstein et al. (2011) approached this problem

by assuming multiple customer types, each with its own choice model. The authors show

properties of an optimal assortment policy for two products in the presence of inventory

considerations. Golrezaei et al. (2014) also consider multiple customer types, providing a

practical algorithm for personalization under inventory constraints and proving a strong

worst-case performance bound. They also discuss the issue of estimating model parame-

ters, and show that a version of their worst-case competitive ratio bound still holds for the

case when parameters are estimated from the data.

The rest of the paper will proceed as follows. We give our approach and models in

Section 3. In Section 4 we present the algorithms for customized pricing and assortment

optimization. Sections 5 and 6 are devoted to proving revenue bounds for the two problems

under various assumptions, including a high-dimensional result. In Section 7 we show the

results of experiments on both real and simulated data.

3. A General Model

In this section we present a general modeling framework for data-driven decision problems

that include decision-specific context information, or features. We consider two applications

in detail, customized pricing and assortment optimization, but we note that our approach

is certainly not limited to these domains.

A decision maker observes a vector of features z ∈ Z ⊆ Rd that encodes information

about the context of the specific decision at hand. Taking into account z, he chooses
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an action a from a problem-specific action space A. After the decision has been made,

he observes an outcome y from a finite set Y and gains a random reward from a finite

set R. The probability of outcome y depends on the context z and the decision a. The

reward ra(y) for outcome y may also depend on the decision a. He would like to make

the decision that maximizes his expected reward given the context z. The key to our

modeling framework is a method for capturing the interaction between features, decision,

and outcome using a binomial or multinomial logit model, depending on the application.

These models give conditional outcome probabilities Pz(y;a). We will derive the specific

form for outcome probabilities as a function of features and decision for both customized

pricing and assortment optimization later in the section.

Given the outcome probabilities from the problem-specific logit model, we can write the

expected reward:

fz(a) =
∑

y∈Y
ra(y)Pz(y;a).

The algorithm we present estimates the expected reward and then maximizes over all

possible decisions. Before stating the algorithms in detail, we give specific models for

customized pricing and personalized assortment optimization.

3.1. Customized Pricing Model

The first application of our model is in the case where a seller has a single product without

inventory constraints and wishes to offer a price that will maximize his revenue. In basic

form, the single-product pricing problem consists of a set A = {p1, . . . , pK} of candidate

prices and a probability of purchase P(y = 1;pk), k = 1, . . . ,K. Here the outcome y is

a binary decision and is equal to one if the customer purchases the product and zero

otherwise. Thus, the expected revenue function is

f(p) = pP(y= 1;p). (1)

Without any other information, the seller would maximize f(·) over A.

In the customized pricing problem, we assume that the seller has the ability to offer a

different price p∈A to each customer and that each customer is associated with a feature

vector z ∈ Z ⊆ Rm which supplies the context for each pricing decision. This vector z is

observed by the seller before choosing a price.
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This information structure allows us to define a personalized demand function Pz(y =

1;p), which is the probability that a customer with the feature vector z purchases the

product at price p. We model outcome probabilities Pz(y= 1;p) using a logistic regression

model, introducing parameters β∗ and γ∗:

log
Pz(y= 1;p,β∗, γ∗)

1−Pz(y= 1;p,β∗, γ∗)
=

K∑

k=1

β∗kI(p= pk) +
m∑

j=1

γ∗j zj

This model gives a specific form for the demand function:

Pz(y= 1;p,β∗, γ∗) =
1

1 + exp
(
−
(∑K

k=1 β
∗
kI(p= pk) +

∑m
j=1 γ

∗
j zj

)) ,

where I(A) is the indicator function which takes the value 1 when the event A is true

and 0 otherwise. For simplicity of notation, let x = (I(p = p1), . . . , I(p = pK), z) ∈ RK+m

and let θ∗ = (β∗, γ∗) ∈ RK+m be the true parameter vector. We can then write the model

Pz(y= 1;p,β∗, γ∗) in a more succinct way:

Pz(y= 1;p,β∗, γ∗) = σ(〈x, θ∗〉),

where σ(c) = 1
1+e−c is the sigmoid function.

The reward gained for each customer given the decision to offer price p is p with proba-

bility Pz(y= 1;p,β∗, γ∗), and zero otherwise. Thus, the expected reward is given by

fz(p, θ
∗) := p Pz(y= 1;p,β∗, γ∗). (2)

We pause to make explicit the connection between customized pricing notation and the

general notation. For customized pricing, each action a is a price p ∈ A = {p1, . . . , pK}.
As mentioned above, outcomes y ∈ {0,1} correspond to purchase decisions, and reward

ra(y) = rp(y) = p if y = 1 and zero if y = 0. Using these mappings one can identify Pz(y =

1;p,β∗, γ∗) and fz(p, θ
∗) as the problem-specific versions of Pz(y;a) and fz(a).

We also note that our limitation of the price effect to the vector β∗ is simply for clarity

of exposition and to highlight the use of price as a feature in our model. In practice,

this model also applies to estimating interaction effects between offered prices and other

features. We have found such interaction effects to be especially useful in our work with

real transaction data.
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3.2. Personalized Assortment Optimization Model

Our framework also applies to the challenging problem of personalized assortment opti-

mization. For background, in the original assortment optimization problem the decision

maker has J products indexed by {1,2, . . . , J}. For each product j, let rj be its associated

revenue, fixed a priori. We also have another “no-purchase” option indexed by zero with

r0 = 0. Without loss of generality, we assume that the products are indexed such that

rJ ≥ rJ−1 ≥ . . .≥ r1 ≥ r0 = 0. The decision maker must choose an assortment S ∈A to show

to the customer, where A is some set of feasible assortments.

In the general form of the problem, we assume that customers choose among the products

according to some probabilities P(j;S), that is, the probability that a customer chooses

product j given that she was shown assortment S is equal to P(j;S). The expected revenue

for a given assortment (without any contextual information) can then be written as

f(S) =
∑

j∈S
rjP(j;S), (3)

and the decision maker then maximizes f(S) over S ∈A.

The problem so far puts very few constraints on the choice model of the customer.

One way to practically estimate the probabilities P(j;S) is to make further assumptions.

In particular, we assume the customers choose among the offered products according to

random utility maximization, where customers have a utility

Uj = Vj + εj

for each product j. Here, εj is a standard Gumbel random variable with mean zero and

we view Vj as the mean utility of product j. We normalize the utility of the no purchase

option to zero.

If we offer the assortment S ∈A of products to the customers, then a customer chooses

the product with the highest utility if the utility of this product is positive, but otherwise,

leaves without purchasing anything. It is a standard result in discrete choice theory that

if we offer the assortment S to the customers, then a customer chooses product j ∈ S with

probability

P(j;S) =
eVj

1 +
∑

l∈S e
Vl
. (4)
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The choice model above is known as the multinomial logit (MNL) model, and is widely

used to model discrete choice. It is an extension of the logit model to cases with more than

two alternatives. Inserting the MNL choice probabilities into (3) gives an expected revenue

function in terms of the parameters Vj, j ∈ [J ], which can be estimated from data.

For the personalized problem, suppose that before choosing an assortment S, the decision

maker observes a vector of features z ∈ Z ⊆ Rd. We can modify our assumptions on the

choice probabilities to take into account this new information. In particular, we assume

that each feature vector z corresponds to a different utility for each product j:

U z
j = V z

j + εj,

where εj is again a standard Gumbel random variable and we view V z
j as the mean utility

of product j for the customer with feature vector z. We assume the following form on the

utility:

V z
j = 〈θ∗j , z〉,

where θ∗j ∈ Rd for 1 ≤ j ≤ J . This reduces the parameter space from an arbitrary set to

a dJ-dimensional linear space, and thus allows us to generalize learning from previous

customers to future customers with new feature vectors. With this structural assumption,

we can modify (4) for the personalized case:

Pz(j;S, θ∗) =
eV

z
j

1 +
∑

l∈S e
V zl

=
exp{〈θ∗j , z〉}

1 +
∑

l∈S exp{〈θ∗l , z〉}
. (5)

If θ∗ = (θ∗1, . . . , θ
∗
m) ∈RdJ fully specifies customer behavior, and we offer the assortment

Sz to the customer with the feature vector z, then the expected revenue obtained from

this customer can be written as,

fz(S, θ
∗) =

∑

j∈S
rjPz(j;S, θ∗). (6)

As in the previous subsection, we note the mapping between the general framework

notation and the notation specific to the personalized assortment optimization problem.

The action a in this case is the subset S, with action space A being the set of feasible

assortments. The possible outcomes y are products, with y ∈ {0, . . . , J}, and ra(y) = rS(j)

and is equal to rj if j ∈ S and zero otherwise. Using these mappings one can identify

Pz(j;S, θ∗) and fz(S, θ
∗) as the problem-specific versions of Pz(y;a) and fz(a).
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Now that we have some concrete examples of our approach, we will highlight some of

its important characteristics. By creatively defining features, our framework captures the

interaction between decisions and outcomes within the logit model. Because we assume

that past feature-decision-outcome data are observed and recorded, these models give rise

to practical algorithms via maximum likelihood estimation for logistic regression, which is

well-understood and widely used for statistics and machine learning problems.

In addition to motivating good algorithms, our approach leads to important theoretical

bounds on revenue. We extend theory about maximum likelihood estimates to bound the

revenue gap between the algorithm’s decision and the best decision with high probability

in terms of the number of samples available. This theory can also be extended to the

high-dimensional setting where the number of features grows with the number of samples.

4. Algorithm

We assume the decision maker has access to a set T = {(z1, a1, y1), . . . (zn, an, yn)} of n

samples of past features, decisions, and outcomes. We can calculate the negative log-

likelihood

`n(T , θ) =− 1

n

n∑

i=1

log (Pzi(yi;ai, θ)) .

Also, recall from (3) that fz(a, θ) is the expected revenue of decision a given features

z and parameter vector θ. The Personalized Revenue Maximization Algorithm is given

below, assuming that we can pre-determine a positive number R such that ‖(θ∗)‖1 ≤R. In

practice, one can either tune this R for better performance or fix a large enough number

R.

For the customized pricing problem, the actions ai correspond to offered prices pi, and

the outcomes yi are binary indicators of purchase decisions. The problem-specific negative

log-likelihood can be calculated as follows:

`n(T ;β,γ) =− 1

n

n∑

i=1

[yi logPzi(pi;β,γ) + (1− yi) log(1−Pzi(pi;β,γ))]

=− 1

n

n∑

i=1

[
yi log

Pzi(pi;β,γ)

1−Pzi(pi;β,γ)
+ log (1−Pzi(pi;β,γ))

]
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Personalized Revenue Maximization Algorithm

1. Fit the regularized logistic regression on the observed data:

(θ̂) = arg min
‖(θ)‖1≤R

`n(T , θ)

2. Obtain the estimate of outcome probability Pz(y;a, θ̂) for every z ∈Z and a∈A.

3. Construct the decision policy h :Z →A as h(z) = a∗ where

a∗ = arg max
a∈A

fz(a, θ̂). (7)

=
1

n

n∑

i=1

[
− yi

( K∑

k=1

βkI(pi = pk) +

m∑

j=1

γjzij

)

+ log
(

1 + exp
( K∑

k=1

βkI(pi = pk) +

m∑

j=1

γjzij

))]

=
1

n

n∑

i=1

[−yi〈xi, θ〉+ log (1 + exp (〈xi, θ〉))] ,

and the expected reward function is given in (2). In summary, the algorithm begins by

using regularized logistic regression to learn a relationship between the context as well as

the offered price and the probability of purchase. It then proceeds to select the price that

maximizes expected revenue under this model.

In personalized assortment optimization, each action ai is a subset of products Si shown

to the customer in transaction i. The outcomes yi are the purchase decision: either a

product index or a no-buy decision, indexed by zero. The negative log-likelihood is

`n(T , θ) =
1

n

n∑

i=1

[
−〈θji , zi〉+ log

(
1 +

∑

l∈Si
exp{〈θl, zi〉}

)]
, (8)

and the expected reward can be found in (6). In this case, the algorithm begins by regular-

ized logistic regression to learn the relationship between the context as well as the selected

assortment and the probability of purchase for each item. If there are J products available

to offer, it then proceeds to select the assortment Ŝ from some set of feasible subsets A
that maximizes the expected revenue given the model.

We note that when the point estimates of each parameter vector θ̂j are used in this final

step and A is taken to be all subsets of J products, the maximization over the power set
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of subsets of products can be reduced to maximization over revenue-ordered assortments,

that is subsets of the form Sk = {1, . . . , k} for some k ∈ {1,2, . . . , J}, as demonstrated in

Talluri and van Ryzin (2004a). This is because under this estimate the mean utility V z
j

is taken to be deterministic. Further, since we assume that customer behavior is specified

by the true parameter vectors θ∗j , it follows that the optimal such set is also a revenue-

ordered assortment. Thus this property ensures that our maximization scales linearly with

number of products J and that both our estimated optimal assortment and the true optimal

assortment belong to the same limited subset of A. This reduction of the search space

is not trivial. By contrast, if the parameters V z
j were random then as demonstrated by

Rusmevichientong et al. (2014), the maximization in step three above is NP-complete even

when the distributions of the model parameters are known exactly. Other papers, such as

Rusmevichientong et al. (2010), consider the maximization with constraints on A and give

tractable methods of optimization.

5. Theory: Well-specified Model Setting

With some assumptions on the inputs and outputs of the problem at hand, we will prove

bounds on the optimality gap of the algorithm above in terms of the number of samples

n. Our analysis focuses on the case of binomial logistic regression as used in customized

pricing, but also holds for multinomial logistic regression problems.

For the first part of the analysis, we assume that there exists θ∗ such that for all observed

data i∈ [n],

P(yi) = Pzi(yi;ai, θ∗), (9)

which means the logistic model is the correct underlying model of outcome probabilities.

We use as our benchmark the oracle policy that knows this true θ∗. Let â be the action rec-

ommended by the algorithm in (7). Using properties of the maximum likelihood estimates,

for any feature vector z we aim to bound the optimality gap

fz(a
∗, θ∗)− fz(â, θ∗).

5.1. Customized Pricing Bound

As mentioned above, we will give the detailed revenue bound proof for the case of the

customized pricing problem. In the context of this application, (9) can be specialized to

say that

P(yi = 1) = Pzi(yi = 1;pi, β
∗, γ∗) =

1

1 + exp
(
−
(∑K

k=1 β
∗
kI(pi = pk) +

∑m
j=1 γ

∗
j zij

)) , (10)
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where zij is the j-th component of the feature vector corresponding to transaction i.

Recall that xi = (I(pi = p1), . . . , I(pi = pK), zi). In addition to the well-specified model

assumption, we assume that the outputs yi ∈ {0,1} are independent given each xi. We also

assume bounded inputs, i.e., there exists a constant B′ > 0, such that for any i ∈ [n] and

j ∈ [m]

|zij| ≤B′,

which further implies that for any i∈ [n] and j ∈ [d],

|xij| ≤max(B′,1) ,B. (11)

This assumption guarantees that the data we train on will not contain arbitrarily large

elements which could have an outsize effect on our learning procedure.

We consider both deterministic design, where the input feature vectors zi are viewed

as fixed quantities and only outputs are random, and random design, where inputs zi

and outputs yi are both randomly drawn from some distribution. The remainder of our

assumptions differ between these two cases.

1. In the deterministic design setting, we assume that

λmin (Σn)≥ ρ

2
> 0, (12)

where Σn = 1
n

∑n
i=1 xix

T
i .

2. For the random design, we assume that {xi}ni=1 are i.i.d. and each feature vector zi is

a sub-Gaussian random vector with sub-Gaussian norm ψz, i.e.,

ψz = sup
‖w‖2≤1

‖〈z,w〉‖ψ2,

where z has the same distribution as any zi. Under this assumption, it is easy to show

that each xi is also a sub-Gaussian random vector with sub-Gaussian norm

ψx ≤ψz + 1,ψ.

To see this, let vi =
(
I(pi = p1), . . . , I(pi = pK)

)
and v be the vector which has the same

distribution as each vi. Then

ψx = sup
‖(wv ,wz)‖2≤1

‖〈v,wv〉+ 〈z,wz〉‖ψ2

≤ sup
‖wv‖≤1

‖〈v,wv〉‖ψ2 + sup
‖wz‖2≤1

‖〈z,wz〉‖ψ2

≤ψz + 1.
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Further, we assume that

λmin(Σ)>ρ> 0, (13)

where Σ =E(xxT ).

We note that the strictly positive smallest eigenvalue assumptions ensure that each

feature provides sufficently unique information. In the random design setting we also make

the assumption of a sub-Gaussian distribution of the feature vectors which ensures that

the tails of the distribution are sufficiently well behaved to enable effective learning. Many

common distributions are sub-Gaussian, including any bounded distribution, and so the

assumption is not too restrictive and is used to simplify the analysis. It is widely used in

statistics research (see Bühlmann and van de Geer (2011), for example).

Let d = K +m. In the low dimensional setting where d� n, we prove that under the

assumptions above, with probability, at least 1− 2
n
,

‖θ̂− θ∗‖2 ≤
Ccp(R,B,ψ)

ρ

√
d log(nd)

n
, (14)

where Ccp(R,B,ψ) is a constant only depending on R,B and ψ. This will drive our revenue

bound. To prove (14), we first establish the strong convexity of the loss `n with strong

convexity parameter η > 0. In our proofs, we suppress the data argument T in the function

`n for convenience. Let ∆̂ = θ̂− θ∗ denote the error in our estimate of the true parameter

vector, θ∗. The strong convexity of `n implies that

η

2
‖∆̂‖22 ≤ `n(θ∗+ ∆̂)− `n(θ∗)−〈∇`n(θ∗), ∆̂〉. (15)

Since θ̂ is the true minimizer of the `n, we observe that `n(θ∗+ ∆̂)− `n(θ∗)≤ 0. Together

with (15), this implies that

η

2
‖∆̂‖22 ≤−〈∇`n(θ∗), ∆̂〉 ≤ ‖∇`n(θ∗)‖∞‖∆̂‖1 ≤

√
d‖∇`n(θ∗)‖∞‖∆̂‖2,

which further implies that

‖∆̂‖2 ≤
2
√
d

η
‖∇`n(θ∗)‖∞. (16)

Therefore, once we establish the bound on ‖∇`n(θ∗)‖∞, we obtain an upper bound on

‖∆̂‖2 = ‖θ̂− θ∗‖2. We begin by showing that ‖∇`n(θ∗)‖∞ can be upper bounded with high

probability in both cases.
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Lemma 1. Under the previous assumptions, in the deterministic design setting, we have

with probability at least 1− 1
n

,

‖∇`n(θ∗)‖∞ ≤ cB
√

log(nd)

n
. (17)

For the randomized design, we have with probability at least 1− 1
n

,

‖∇`n(θ∗)‖∞ ≤ cψ
√

log(nd)

n
. (18)

W e note the j-th component of ∇`n(θ∗) takes the following form,

[∇`n(θ∗)]j =
1

n

n∑

i=1

Wij,

where Wij =
(

e〈xi,θ
∗〉

1+e〈xi,θ∗〉
− yi

)
xij Conditioned on xi, Wij is a zero-mean bounded random

variable with |Wij| ≤ |xij| ≤B. For the fixed design setting, applying Hoeffding’s inequality,

Pr (|[∇`n(θ∗)]j| ≥ t)≤ 2 exp

(
− nt

2

2B2

)
.

By a union bound, we have

Pr (‖∇`n(θ∗)‖∞ ≥ t)≤ 2 exp

(
log(d)− nt2

2B2

)
. (19)

By setting t=B
√

2 log(2nd)
n

, we make the R.H.S. of (19) equal to 1
n
, which gives the result

in (17).

In the randomized design setting, Wij is a centered sub-Gaussian random variable with

the norm bounded above by ψ. To see this, observe that

E exp (tWij)≤E exp (|tWij|)≤E exp (|txij|)≤E exp (|t|〈sign(xij)ej, xi〉)≤ exp
(
ct2ψ2

)

for some constant c. Applying Hoeffding’s inequality this implies that,

Pr (|[∇`n(θ∗)]j| ≥ t)≤ 2 exp

(
−c1nt

2

ψ2

)
.

By a union bound, we then have that

Pr (‖∇`n(θ∗)‖∞ ≥ t)≤ 2 exp

(
log(d)− c1nt

2

ψ2

)
. (20)

By setting t=ψ
√

log(2nd)
c1n

, we make the R.H.S. of (20) equal to 1− 1
n
, which gives the result

in (18).
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In the next lemma, we identify the required strong-convexity parameter η of `n.

Lemma 2. Under the previous assumptions, for deterministic design setting, we have

that `n is strongly convex with

η=
exp(RB)

4(1 + exp(RB))2
· ρ. (21)

In the randomized design setting, as long as n≥ 4Ccp(ψ) log(n)d

min(ρ,1)2
for some constant Ccp(ψ) only

depending on ψ, `n is strongly convex with

η=
exp(RB)

4(1 + exp(RB))2
· ρ, (22)

with probability at least 1− 2( 1
n
)d.

T he Taylor expansion of `n implies that for some α∈ (0,1) we have

`n(θ∗+ ∆̂)− `n(θ∗)−〈∇`n(θ∗), ∆̂〉= 1

2n

n∑

i=1

exp(xTi θ
∗+αxTi ∆̂)

(1 + exp(xTi θ
∗+αxTi ∆̂))2

∆̂T
(
xix

T
i

)
∆̂. (23)

Further,

|xTi θ∗+αxTi ∆̂| ≤ ‖xi‖∞‖θ∗+α∆̂‖1 ≤ ‖xi‖∞
(
α‖θ∗‖1 + (1−α)‖θ̂‖1

)
≤RB.

Since the function exp(a)
(1+exp(a))2

≤ 1
4

is an even function and monotonically decreasing as |a|
increases, we have

exp(xTi θ
∗+αxTi ∆̂)

(1 + exp(xTi θ
∗+αxTi ∆̂))2

≥ exp(RB)

(1 + exp(RB))2
, (24)

which further implies that,

1

2n

n∑

i=1

exp(xTi θ
∗+αxTi ∆̂)

(1 + exp(xTi θ
∗+αxTi ∆̂))2

∆̂T
(
xix

T
i

)
∆̂≥ 1

2

exp(RB)

(1 + exp(RB))2
∆̂T

(
1

n

n∑

i=1

xix
T
i

)
∆̂

≥ 1

2

exp(RB)

(1 + exp(RB))2
λmin(Σn)‖∆̂‖22.

In the deterministic setting, by the assumption that λmin(Σn)≥ ρ
2
, we obtain the desired

result in (21).

In the randomized setting, by Corollary 5.50 from (Vershynin 2012), for any ε ∈ (0,1)

and t ≥ 1, when n ≥ Ccp(ψ)
(
t
ε

)2
d, where Ccp(ψ) is a constant depends only on ψ, with

probability at least 1− 2 exp(−t2d),

‖Σn−Σ‖op ≤ ε.
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By setting ε= 1
2

min(ρ,1) and t=
√

log(n), we have with probability at least 1− 2( 1
n
)d,

‖Σn−Σ‖op ≤
1

2
ρ,

provided that n≥ 4Ccp(ψ) log(n)d

min(ρ,1)2
. By Weyl’s theorem, we have

|λmin(Σn)−λmin(Σ)| ≤ ‖Σn−Σ‖op ≤
1

2
ρ,

which further implies that,

λmin(Σn)≥ λmin(Σ)− 1

2
ρ≥ 1

2
ρ.

This completes the proof.

Combining Lemma 1 and 2 with (16), we obtain the following theorem by following the

steps sketched above.

Theorem 1. Under the previous assumptions, in deterministic design setting, with

probability at least 1− 1
n

,

‖θ̂− θ∗‖2 ≤ c
B

ρ

(1 + exp(RB))2

exp(RB)

√
d log(nd)

n
. (25)

In the randomized design setting, as long as n≥ 4Ccp(ψ) log(n)d

min(ρ,1)2
for some constant Ccp(ψ) only

depending on ψ, w.p. at least 1− 1
n
− 2( 1

n
)d,

‖θ̂− θ∗‖2 ≤ c
ψ

ρ

(1 + exp(RB))2

exp(RB)

√
d log(nd)

n
, (26)

where c is a universal constant.

Given that (14) holds with high probability, we now present the associated bound on

expected revenue. In what follows, we fix a feature vector z. Define the optimized prices

p̂ := max
k∈[K]

fz(p, β̂, γ̂) and p∗ := max
k∈[K]

fz(p,β
∗, γ∗).

We now provide a bound on the loss in expected revenue for choosing to offer p̂ over the

unknown p∗ and demonstrate that this revenue loss decreases at a quantifiable rate as the

sample size n is increased.
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Theorem 2. With high probability, as long as n ≥ 4Ccp(ψ) log(n)d

min(ρ,1)2
, the loss in expected

revenue associated with choosing p̂ over p∗ can be bounded as follows:

fz(p
∗, β∗, γ∗)− fz(p̂, β∗, γ∗)≤

(
max
k∈[K]

pk
)
C ′cp(R,B,ψ)

ρ

√
d2 log(nd)

n
,

for all bounded feature vectors z where C ′cp(R,B,ψ) is a constant only depending on R,B

and ψ.

F or a fixed k, we have

∣∣∣fz(pk, β∗, γ∗)− fz(pk, β̂, γ̂)
∣∣∣ =

∣∣∣∣∣∣
pk

1 + exp
(
−
(
β∗k +

∑
j γ
∗
j zj

)) − pk

1 + exp
(
−
(
β̂k +

∑
j γ̂jzj

))

∣∣∣∣∣∣

≤ pk

4

∣∣∣〈(1, z), (β∗k − β̂k, γ∗− γ̂)〉
∣∣∣ (27)

≤ pk

4
‖(1, z)‖2

∥∥∥(β∗k − β̂k, γ∗− γ̂)
∥∥∥
2

≤
(

max
k∈[K]

pk
)√

mB2 + 1

4

∥∥∥(β∗− β̂, γ∗− γ̂)
∥∥∥
2
,

where (27) follows from the fact that the derivative of the function (1 + exp(−a))−1 is

bounded by 1
4

for any a. Thus, using the fact that fz(p̂, β̂, γ̂)≥ fz(p∗, β̂, γ̂),

fz(p
∗, β∗, γ∗)− fz(p̂, β∗, γ∗) = fz(p

∗, β∗, γ∗)− fz(p̂, β̂, γ̂) + fz(p̂, β̂, γ̂)− fz(p̂, β∗, γ∗)

≤ fz(p
∗, β∗, γ∗)− fz(p∗, β̂, γ̂) + fz(p̂, β̂, γ̂)− fz(p̂, β∗, γ∗)

≤
∣∣∣fz(p∗, β∗, γ∗)− fz(p∗, β̂, γ̂)

∣∣∣+
∣∣∣fz(p̂, β̂, γ̂)− fz(p̂, β∗, γ∗)

∣∣∣

≤
(

max
k∈[K]

pk
)√

mB2 + 1

4

∥∥∥(β∗− β̂, γ∗− γ̂)
∥∥∥
2
. (28)

We can then apply (14) to get the desired result.

As desired, we have bounded the optimality gap of the reward generated by the recom-

mended price p̂ as compared to the optimal price p∗. This bound decreases as O

(
1√
(n)

)
,

up to logarithmic terms. It is interesting to note that because of the discrete nature of

the problem of choosing a price to offer, for large enough n, the bound will guarantee a

revenue gap of zero.
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5.2. Personalized Assortment Optimization Bounds

We can give a similar bound for the personalized assortment optimization revenue func-

tion, with the addition of a factor of J4, where J is the number of products. The key

assumption we make in addition to the assumptions for customized pricing is that the

seller has sufficiently explored every product. In particular, for each product j ∈ {1, . . . , J},
let

Ij = {i : j ∈ Si}. (29)

We assume that nj = |Ij|> νn for all j where ν ∈ (0,1] is a constant.

As in the customized pricing model, we assume that the outputs yi ∈ {0,1} are inde-

pendent given each zi. We also assume bounded inputs, i.e., there exists a constant B > 0,

such that for any i∈ [n] and k ∈ [d]

|zik| ≤B.

We again consider both the deterministic design and random design and make simi-

lar assumptions concerning the postive definiteness of the empirical covariance matrices

in the deterministic case and the true covariance matrix in the randomized setting. In

the randomized setting we again assume that the feature vectors follow a sub-Gaussian

distribution.

1. For deterministic design, we assume that

λmin(Σnj)≥
ρj
2
> 0,

where Σnj = 1
nj

∑nj
i=1 ziz

T
i . Denote ρ= minj{ρj}.

2. For the random design, we assume that {zi}ni=1 are i.i.d. sub-Gaussian random vectors

with sub-Gaussian norm ψ, i.e.,

ψ= sup
‖w‖2≤1

‖〈z,w〉‖ψ2,

where z has the same distribution as any zi.

Further, we assume that

λmin(Σ)>ρ> 0, (30)

where Σ =E(zzT ).
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Using these assumptions and a proof similar to that used in the case of customized

pricing, we derive the following results:

Theorem 3. (MLE Parameter Bound for multinomial logit) Under the previous

assumptions, for deterministic design, with probability at least 1− J/n,

‖θ̂j − θ∗j‖2 ≤ c
B

ρ

[1 + exp(RB)]2

exp(−RB)
J2

√
d log(nd)

nν

simultaneously for all products j = 1, . . . , J .

For the randomized design, as long as n ≥ 4Cao(ψ) log(n)d
νmin(ρ,1)2

for some constant Cao(ψ) only

depending on ψ, with probability at least 1− J/n− 2J(1/n)d,

‖θ̂j − θ∗j‖2 ≤ c
ψ

ρ

[1 + exp(RB)]2

exp(−RB)
J2

√
d log(nd)

nν

simultaneously for all products j = 1, . . . , J .

Theorem 4. (Optimality Gap Bound for Personalized Assortment) Under the previous

assumptions, with high probability the optimality gap of the algorithm as specified above

can be bounded as follows:

fz(S
∗, θ∗)− fz(Ŝ, θ∗)≤

2C ′ao(R,B,ψ)

ρ
r1J

4

√
d2 log(nd)

nν
.

The proof for Theorem 3 uses the exact method for proving Theorem 1, viewing the

assortment optimization negative log-likelihood as a function only of θj and fixing all other

parameters to their predicted values. Theorem 4 is a straight-forward extension of 2.

6. Extensions of Theory

The theory presented so far been developed assuming our model has been well-specified

and implicitly assuming a low-dimensional feature space due to the appearance of the

dimension in our revenue bounds. In this section, we demonstrate that it is possible for

both of these assumptions to be relaxed.

6.1. Misspecified Model Setting

Sometimes it is unreasonable to assume that the logit model correctly specifies the true

underlying probabilities. In this case, the same bounds still hold for a different optimality

gap.
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Suppose the data T = {(z1, a1, y1), . . . (zn, an, yn)} is generated from some underlying

random process. We do not consider fixed design here. As a new benchmark, we redefine

θ∗ = arg min
θ

E(`n(θ)),

so that in this section, θ∗ represents the estimated parameters given an infinite amount of

i.i.d. data rather than the true parameters. We will refer to θ∗ in this section as the oracle

estimator.

As before, we assume that we have a number R such that ‖θ∗‖1 ≤ R. We assume the

inputs zi to be i.i.d. sub-Gaussian random variables with sub-Gaussian norm ψ, and that

the minimum eigenvalue of the covariance matrix of z is at least ρ, where z has the same

distribution as each zi.

All of the results of the previous section will still hold with the new definition of θ∗,

provided that

E∇`n(θ∗) = 0. (31)

To see that (31) indeed does hold, note that because θ∗ is defined as an unconstrained

minimum, ∇E(`n(θ∗)) = 0. Since each component of ∇`n(θ) is integrable, we are justified in

switching the order of differentiation and integration, which means that (31) holds. Thus,

we can apply the proofs from our previous analysis directly to the misspecified setting. We

state just one result, our bound for customized pricing, as an example.

Theorem 5. With high probability, as long as n ≥ 4Cψ log(n)d

min(ρ,1)2
, the gap between oracle

estimator revenue and the revenue achieved with (β̂, γ̂) can be bounded as follows:

fz(p
∗, β∗, γ∗)− fz(p̂, β∗, γ∗)≤

(
max
k∈[K]

pk
)
C ′cp(R,B,ψ)

ρ

√
d2 log(nd)

n
,

for all bounded feature vectors z where C ′cp(R,B,ψ) is the same constant from Theorem 2.

6.2. High-Dimensional Setting

In previous sections, our bounds are increasing functions of the number of features d.

This is reasonable when d remains fixed and n grows large. However, as companies con-

tinue to collect more granular and larger quantities of data concerning their customers,

there are applications where the number of customer features matches or even exceeds the

number of data points. Examples of this could include highly granular GPS information
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or detailed lists of preference comparisons featuring irrational cycles that are not easily

specified without introducing a combinatorial number of parameters.

In such a high-dimensional setting where d is comparable to or larger than n, a bound

of the form presented above is of no use. In order to derive analogous bounds for the

performance of our method in this setting, we must make assumptions about the sparsity

of the true parameter θ∗. Specifically, for some index set S ⊂ {1 . . . d} with |S|= s� d, we

assume that θ∗ ∈ Θ(S) := {θ ∈ Rd : θj = 0, ∀j /∈ S}. In the well-specified case this means

that a small portion of the available feature data can be used to precisely quantify the

likelihood of purchase. A natural way to obtain an estimator of such a sparse vector is to

use `1-norm regularization as we have considered in the low-dimensional case.

The sparsity assumption allows us to prove theoretical revenue bounds analogous to those

in the low dimensional setting, with dimension parameter d replaced by sparsity parameter

s and only a logarithmic dependence on d. We include here the high-dimensional version

of our revenue bound for the well-specified random design customized pricing problem.

Using a soft constraint form of the regularization problem, we obtain an estimator given

by

θ̂λn ∈ arg min
θ∈Rd

{`n(T , θ) +λn‖θ‖1} . (32)

Theorem 6. As long as n> 16(κ2
κ1

)2s logd, the objective function error associated with

(β̂, γ̂), the solution to (32) with regularization parameter λn = 4ψ
√

log p
2n

, can be bounded as

follows:

fz(p
∗, θ∗)− fz(p̂, θ∗)≤

(
max
k∈[K]

pk
)

12Bψ
√

logd

κ1
√

2n− 4κ2
√

2s logd
,

for all bounded feature vectors z with probability at least 1−2d exp(−n
4
)−c1 exp(−c2n)− 2

d
.

Here κ1, κ2, c1, and c2 are positive constants depending only on B,ψ,ρ, and Σ.

The proofs are highly technical and follow from Negahban et al. (2010) and Negahban

et al. (2012). The rest of our results can be extended to the high-dimensional setting using

similar techniques.

7. Experiments

The theory we have presented so far suggests that our method provides an effective tech-

nique for estimating and optimizing data-driven decisions. However, many of the bounds

we present are a worst case analysis and we would expect that, on average, the performance
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of the algorithms we suggest would far exceed these worst case scenarios. To test this

intuition, in this section, we describe the results of the experiments on real and simulated

data.

7.1. Customized Pricing for Airline Priority Seating

In addition to our theoretical results, we were also fortunate to be able to test our method

for data-driven customized pricing with sales data from a European airline carrier. The data

set concerns sales of passenger seating reservations, in which, for an extra fee, passengers

of this carrier may pre-select a seat on their airplane that will be reserved for them on

the day of their flight. The charges for these reservations are small in comparison to the

price of the ticket, but optimizing these prices would allow the airline to generate extra

revenue at essentially no marginal cost. Due to the potential legal issues with offering prices

to customers based on their personal attributes, the data consists solely of information

concerning the flight such as date or destination and transaction information such as

date and time of website access that could also be used to fairly adjust prices for all

customers. This data set is unique in that the carrier was willing to perform random price

experimentation and that we observe decisions by customers both to purchase and to reject

the reserved seating option.

This data set was collected for flights within a single country over the month of December

2014. During this period, some fraction of all customers who purchased domestic airline

tickets was offered the opportunity to purchase a seating reservation at a price randomly

selected with equal probability from four candidate prices. We will refer to these four

prices in order with Price 1 being the smallest and Price 4 being the highest. The resulting

data set consists of around 300,000 transaction records with the treatment price offered,

the resulting purchase decision, and data concerning attributes of the flight and of the

transaction. Such attributes include the date and time of booking, the date and time of

the flight and the corresponding return flight, the origin and destination pair, the number

of passengers, and the average ticket price paid among other variables.

The performance metric of interest in this case is the expected revenue from reserved

seating per passenger. To allow us to fairly evaluate the success of our method, we began

by splitting our data into a training and testing set chronologically, with the earliest 60% of

transaction records used for training and the latest 40% used for testing, corresponding to

a testing training split on December 18, 2014. This ensures that any method selected based
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on the training set could have been implemented by the company during the subsequent

testing period. The benchmark to which we will compare our method is the performance of

the best single price that could have been selected by the company, based on the training

data, on the testing set data. Since treatment prices were offered independently at random,

we can estimate in an unbiased fashion such a single price performance, by restricting our

attention to customers who were offered each specific price during the testing period. The

highest single-price expected revenue per passenger on the training set is achieved using

the highest price, Price 4. Therefore we will report the test set performance of our method

as ratios to the test set performance of this price.

Since each customer was only offered a single price, we are unable to perform a true

counterfactual analysis to evaluate algorithm performance when it chooses to offer a price

to customer that is different than the one they were offered in the data set. However since

treatment prices were offered to customers independently at random, to estimate expected

revenue per passenger it is sufficient to restrict our attention to the subset of records

for which the best price selected by the algorithm matches the price offered in actuality.

Although this limits the size of the test set, it allows us to obtain an unbiased estimate of

expected revenue per passenger without the need for potentially erroneous counterfactual

assumptions.

In accordance with our algorithm given in section 3, we fit a logistic regression model

to predict purchase probability using the treatment price offered as a feature as well as

the flight and transaction data discussed previously. We also found it useful to include

interaction effects between the treatment price offered and other variables in the data

set. To perform feature selection we used a 4-fold cross-validation procedure with our

cross-validation metric being the expected revenue per passenger, estimated as specified

in the previous paragraph, on the held out subset of data. Our final model was selected

as the linear model with the subset of features generating the best performance in the

cross-validation trials.

The best models that we identified through this cross validation procedure all considered

the effects of the treatment price offered, the day of week of booking (BDW), and the day

of week of the return flight if applicable (RFDW). Importantly, they all also used both

the interaction between the price offered and BDW and the interaction between the price

offered and RFDW.
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Day of Week

Sun. Mon. Tue. Wed. Thu. Fri. Sat. NA

BDW
Purchase Likelihood - + + +

Price Sensitivity + - + - +

RFDW
Purchase Likelihood + + -

Price Sensitivity + + - - + +

Table 1 Displays the effect of booking day of week (BDW) and return flight day of week (RFDW) on seating

reservation purchase probability and price sensitivity. Higher purchase likelihood indicates a higher chance to buy

at any offered price, while higher price sensitivity indicates more resistance to higher prices compared to lower

ones. ’+’ denotes a relatively higher value than average while ’-’ denotes a relatively lower value.

Due to the interpretability of logistic regression we are able to draw some conclusions

from our models on how the factors above affect willingness to purchase a reserved seating

option. These conclusions for BDW and RFDW are summarized in table 2. For example,

at any offered price a customer with a return flight scheduled for Friday or Saturday has a

higher likelihood of purchase while a comparable customer with no return flight scheduled

at all is much less likely to purchase. From the interaction effects we observe that price

sensitivity increases for samples when the BDW is Monday, Thursday, and Saturday and is

lower when tickets are purchased on Tuesday and Friday. Many of these effects align with

the traditional division between leisure travelers and business travelers, who are assumed

to be less price sensitive.

Using the best model selected by the process above, our price selection technique gener-

ated an increase in estimated expected revenue per passenger of 7.49% over the performance

of statically offering Price 4. To demonstrate the robustness of our technique we also com-

puted the performance of the top ten models we identified using revenue performance on

the cross-validation and note that all of these models have similar performance to the final

model. These estimated expected revenue performance on the test set of our strategies and

each of the single price strategies are displayed in Figure 1.

It is interesting to note that although Price 4 generated the highest expected revenue

on the training set, this was not the case on testing set. For those dates later in the

month, Price 3 happened to yield the best performance generating 2.95% more revenue per

passenger than the static Price 4. This highlights the non-stationarity of real transaction

data and motivates the need to split the training and testing set chronologically rather

than at random for fair evaluation.
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Figure 1 Performance of pricing strategies over offering Price 4. The first four bars represent the performance

of offering single prices. Final Model plots the performance of the best cross-validated model. Top 10

plots the average performance of the 10 best models identified in the cross-validation process.

7.2. Numerical Experiments

In addition to the airline data test, we performed simulations for both customized pricing

and personalized assortment optimization. We tested our algorithm against an aggregate

approach that does not use feature information and against an oracle who knows the true

distribution.

7.2.1. Well-specified Model For customized pricing we defined a problem class by

specifying each of the following:

• Number of prices K ∈ {2,4,10}
• Number of features d∈ {5,10,15}
• Amount of training data n∈ {100,300,500}.
For each problem class we performed N = 100 trials. For each trial, we generated a price

set of size K by random sampling from a uniform distribution on [5,20], with the lowest

price anchored at 5. We also generated a d-dimensional true parameter vector γ∗, where

each dimension is chosen i.i.d from a normal distribution with mean zero and standard

deviation 1.5, and a K-dimensional parameter vector β as the order statistics of K i.i.d.

normal random variables with mean zero and standard deviation 2.5 sorting from lowest

to highest. The difference in standard deviations for the two parameters allows the price

effect to dominate the effects of the other features. The sorting of the βk is motivated by

the fact that in almost all cases, demand for a product is decreasing in its price. We then
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generated n data points as a training set, where each data point consists of a feature vector

z of size d, drawn i.i.d. from a multivariate normal distribution, a price drawn uniformly at

random from the constructed set, and a purchase decision given according to the logistic

regression model with the true parameters γ∗ and β∗. The distribution of the vectors z had

mean zero and a covariance structure such that var(Zi) = 1 and cov(Zi,Zj) = 0.3, i 6= j.

We trained the following using the training data:

1. The Personalized Revenue Maximization Algorithm (PRM),

2. The I-PRM Algorithm (a variant of PRM described below), and

3. A single-price policy.

In cases with a small number of data samples, we would expect information about the

monotonicity of the βk parameters to be helpful. Thus, the I-PRM algorithm (for Isotonic-

constraint PRM) performs the same maximum likelihood estimation as PRM, but with

the added constraint that β must lie in the cone {x∈RK | x1 ≤ · · · ≤ xK}.
We generated a test set of 1000 data points consisting of feature vectors and a reservation

price generated according to the true model. We then used the test set to calculate empirical

expected revenue for each method.

Figure 2 shows the performance of all three methods for K = 10 under various dimen-

sions of the feature space. The isotonic-constrained version of PRM Algorithm slightly

outperforms the regular version, and both are significantly better than a single price strat-

egy. Not very many samples are required for the algorithms to recover almost all of the

oracle revenue.

We found that the PRM Algorithm consistently outperforms the single price policy by

4-20% on average for each problem class, with the performance improvement becoming

more pronounced as K and d increase. In the case of 2 prices, the algorithm recovers at

least 94% of the oracle revenue with only 100 training samples, and closes to 1% with 300

samples.

8. Extensions and Future Work

Beyond problems in revenue management our approach is relevant in many other situations

in which decisions resulting in discrete outcomes can benefit from taking into account

explicit contextual information. One such example is in online advertisement allocation in

which we would like to predict click-through rates and make the optimal advertisement
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Figure 2 Performance of three pricing methods in the well-specified case, with K = 10 prices

selection taking into account information we have about each viewer. Another example

application is crowdsourcing in which we would like to specialize our work schedule based

on information we have gathered concerning our workers, the available tasks, and the

interaction between their attributes. Finally, beyond the specific domain of operations

management we envision applications in personalized medicine in which the likelihood

of success of a treatment or the probability of disease could be predicted and decisions

optimized by taking into account information concerning each patient.

Although our framework is quite general, we make some simplifying assumptions in our

analysis that could be relaxed in future work. Many of the papers that study dynamic

pricing and assortment optimization do so with inventory constraints over multiple periods,

whereas our results do not explicitly consider inventory and are inherently myopic due to

the offline nature of logistic regression. Due to this offline nature, our method does not

work to dynamically learn and optimize over time, and it would be interesting to examine

how these results could be adapted to such a setting. An alternation scheme between

exploration and exploitation phases such as that suggested by Rusmevichientong et al.

(2010) would allow for asymptotic convergence, but the logistic regression would need to

be recomputed at step, which could be cumbersome even with a warm-start as the size

of the data set grows large. A potential remedy for this would be to learn from a finite

window of past data. Such a scheme could account for changes in parameters over time in

which case asymptotic convergence becomes meaningless.
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Finally, assuming a logistic model is only one way to gain the theoretical tractability

necessary to produce finite-sample performance guarantees. There are likely to be many

other types of models which are capable of producing similar results. We believe that future

work in broadening the scope of this style of analysis could be fruitful.
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