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Prioritization and Price-Plus-Delay Competition with
Self-Selecting, Heterogeneous, Time-Sensitive Customers

Time is often used as a differentiating factor in several service operations contexts by service
providers (SPs) who prioritize their customers. We investigate the performance of such differenti-
ated service vis-a-vis single service in which customers are not prioritized, and analyze how it is
affected by customers’ self-selection and competition. Customers are of two types with different
delay sensitivities: impatient and patient. An SP providing differentiated service offers two service
classes. We first establish strong incentive compatibility (IC) conditions that this SP needs to
satisfy; otherwise, the queuing dynamics results in all the customers selecting just a single service
class. We show that these conditions are stronger than IC conditions which only preclude customers
from changing their choices after they have been made. We then derive multiple results pertaining
to different equilibriums under monopoly and duopoly. Two of them are especially noteworthy:
(i) under monopoly, we identify a novel criterion for differentiated service to do better: sufficient
customer heterogeneity ; (ii) under duopoly, customer composition also becomes important due to
competition between the two SPs: specifically, we find that if the fraction of impatient customers
is high, the SPs do not prioritize customers at equilibrium and they are better from doing that.
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1. Introduction

Differentiated service offerings, in which some customers are prioritized, are often used by service

providers (SPs) to differentiate customers who are heterogeneous in their delay sensitivities. Some

examples include (i) amusement/theme parks which allow customers to jump queues by purchasing

high-priced priority tickets and have faced some backlash from the practice (Wallop 2010), (ii)

concierge medicine in which physicians/general practitioners provide faster service and patients

pay a premium in comparison to regular primary care (e.g., see Wieczner (2013) and Gavirneni and

Kulkarni (2014)), and (iii) restaurants charging customers additional fees upfront when they make

reservations which enable them to avoid waiting for tables later (e.g., see Knowledge@Wharton

(2013) and Markovich (2014) who discuss about reservation fees). Although these examples might

suggest that offering differentiated service is always better than offering single service in which

there is no prioritization and all customers are seen on a first-come-first-serve (FCFS) basis, that

is not true in practice. For instance, there are some theme parks that do not have priority tickets,

physicians who do not offer concierge medicine, and restaurants that do have any reservations.

We analyze when a SP benefits from offering differentiated service instead of single service by

focusing on three key aspects: self-selecting customers, heterogeneity in their delay sensitivities,

and competition between SPs.

We consider two types of customers, impatient and patient, that differ in their delay sensitivities.

They self-select and make their choice based on the price(s) charged by SP(s) and the delay that

they would expect at equilibrium. An SP either (i) offers single service and charges a single price

for it, or (ii) offers differentiated service with two service classes in which she charges different

prices for high-priority and low-priority services. The SP also anticipates how customers would

make their choices at equilibrium, and optimizes her pricing and service delivery decisions. We first

show that the prices under differentiated service have to satisfy strong incentive compatibility (IC)

conditions; otherwise, all customers are better from selecting either high-priority or low-priority

service. We find that these conditions are stronger than IC conditions which prevent customers

from changing their choices after they have been made already. In order to better understand

the impact of competition, we analyze the optimal service delivery of SP(s) under two cases: (i)

monopoly with a single SP and (ii) duopoly in which two SPs engage in price-plus-delay competition.

In a monopoly, when customers highly value the service, we find that differentiated service is

beneficial only if the customers are sufficiently heterogeneous. This result marks a significant de-

parture from the research literature in queuing optimization and service operations management,
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which mostly assumes (implicitly or explicitly) that offering differentiated service through priori-

tization would be better than offering single service1. On the contrary, we find that the presence

of self-selecting customers and the resulting strong IC conditions can make differentiated service

worse than single service. Hence, we identify a key feature that needs to be considered by the SP

in making the service delivery decision: heterogeneity in customers’ delay sensitivities2.

In a duopoly, we consider equilibriums involving the SPs’ pricing decisions, resulting from the

price-plus-delay competition between them, under three different types of service deliveries: (i)

both SPs provide single service, (ii) one of them provides single service and the other provides

differentiated service, and (iii) both of them provide differentiated service. In the first case, we

find that there can be two kinds of equilibrium based on the composition of customers: low-price

equilibrium when patient customers comprise a majority and high-price equilibrium when impatient

customers form a majority. We also characterize the unique symmetric equilibrium in the third

case. We compare the three cases and find the equilibrium service delivery of the SPs for different

numerical examples. In particular, we find that if the fraction of impatient customers is high then

the SPs are better from offering single service and the resulting high-price equilibrium. Hence, in

a duopoly, customer composition is also a key feature that has to be taken into account by an SP

while deciding how to deliver the service.

2. Literature Review

The research in this paper is related to the literature on queuing optimization and equilibrium

consumer behavior in queuing systems. Hassin and Haviv (2003) examine this literature in detail.

Among the research that they review, this paper is closely related to Lederer and Li (1997). The

model here is similar to that in Lederer and Li (1997) who also consider time-sensitive customers

and price-plus-delay competition between firm. However, they assume that the number of firms is

so large that the “full price” (price plus waiting cost) at equilibrium does not depend on the prices

charged by the firms. We do not make this assumption, which fundamentally alters the nature of

the problem and leads to different results. An important implication is as follows. Lederer and Li

(1997) mainly consider (preemptive) priority queues because they are optimal for the firms in their

setting. However, we find that there are scenarios in which prioritization is sub-optimal because

(i) price charged by a firm affects the full price in our model so the firm decides it strategically,

1For details, see §2.
2A lack of capacity may also result in differentiated service being infeasible and hence worse than single service

(Sainathan 2014). However, we show that even if capacity is sufficient (and customers highly value the service),
differentiated service is still worse if they are not sufficiently heterogeneous.
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and (ii) customers self-select. Armony and Haviv (2003) also comes close to this paper because

they consider a duopoly facing demand from two customer classes with different delay sensitivities.

However, they assume that all customers are served on a first-come-first-served basis, and do not

consider priority queues. In this regard, whether a service provider should prioritize or not is a key

question we analyze in the paper, and which neither Lederer and Li (1997) nor Armony and Haviv

(2003) consider.

Other research works consider consumer behavior in conjunction with pricing in the context of

service operations management and are related to this paper. Luski (1976) was one of the pioneers to

consider price-plus-delay competition in a duopoly and finds scenarios when identical firms charge

different prices at equilibrium. However, he does not consider prioritization or heterogeneity in

delay sensitivity among customers. Li and Lee (1994) also consider a similar setting but with

non-identical firms and possible jockeying among customers, and show that the faster firm always

charges a higher price at equilibrium. Li et al. (2012) extend the analysis to naive customers who do

not know the firms’ service rates but observe their queue lengths and use that information to make

the decisions. Chen and Wan (2003) study the competition between two make-to-order firms in

which the firms may provide service with different value and customers may have firm-dependent

waiting costs. Some research papers have looked at pricing along with priority queues and/or

customer heterogeneity. Rao and Peterson (1998) analyze the pricing of priority services for a

service center with a fixed finite number of customers who maximize their own profits. Zhang et al.

(2007) consider the optimal pricing of communication services for customers with different service

valuations but same delay sensitivity. Afeche (2013) and Katta and Sethuraman (2005) model

heterogeneity in both service valuation and delay sensitivity among customers. They optimize the

service provider’s revenue subject to individual rationality (IR) and incentive compatibility (IC)

conditions among different customer classes. However, they consider only prioritization because

they find it to be always optimal, and do not analyze competition between service providers. Hsu

et al. (1998) examine optimal pricing and scheduling subject to IC conditions in the presence of

different quality-of-service guarantees for multiple customer classes, and show that randomized

prioritization may be optimal. Afeche et al. (2013) model risk aversion in customers and analyze

how time-sensitive services should be priced then. Pangburn and Stavrulaki (2008) investigate joint

pricing and capacity decisions for a firm facing heterogeneous customers who are dispersed among

different locations. It has to decide between offering segmented and pooled services. Segmented

service examined by them is different from prioritized service in this paper in one key aspect: there is

no loss in economies of scale from prioritization because the entire capacity is used. Furthermore,
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they do not model competition. As in this paper, Sainathan (2014) also compare differentiated

service with single service. However, he considers an SP offering ancillary service in which all the

customers have to satisfied while minimizing the cost of service provision.

A central feature of this paper is the presence of strong IC conditions (see §3). Some research

papers have analyzed optimal pricing in the context of service operations while ignoring IC con-

straints either because they consider aggregate demand (instead of individual customer choices) or

they assume that the firm allocates customers who do not self-select. Some examples include So

and Song (1998), Boyaci and Ray (2003), Allon and Federgruen (2009), and Anand et al. (2011).

To the best of our knowledge, this paper is the first research to view prioritization as a service

provider’s strategic choice. Most prior research either take prioritization for granted (because it

obviously performs better) or do not consider it at all3. However, this paper compares differentiated

service (through prioritization) with single service, and analyzes how two key aspects, heterogeneity

in customers’ delay sensitivities and competition between service providers, affect the SP’s decision

to prioritize.

3. Model

The arrival of customers for service is a Poisson process with rate λ. Customers are of two types,

impatient (Type 1) and patient (Type 2), with delay sensitivities given by η1 and η2 (η1 > η2 > 0)

respectively. Due to waiting, they experience delay costs given by the products of delay sensitivity

and waiting time4. A customer selects a service provider (SP) based on the dis-utility, which is

the sum of the price charged by SP and the expected delay cost incurred by him. If the dis-utility

does not exceed the valuation v, the customer buys the service; otherwise, he does not buy it. The

fraction of impatient (patient) customers is q (1− q). Without loss of generality, SP’s capacity (the

rate at which she provides service) is normalized to one and 0 < λ < 1. An SP provides service in

one of the following two ways: (i) single service in which the customers are served on a first-come-

first-serve (FCFS) basis and all of them pay the same price, and (ii) differentiated service (with two

service classes) in which some customers are prioritized 5 and the high-priority service is charged

a higher price than the low-priority service. If the SP provides single service, the expected waiting

3Sainathan (2014) do compare prioritized and single services while Pangburn and Stavrulaki (2008) compare
segmented and pooled services. However, as we explain above, their settings are different. Importantly, Sainathan
(2014) analyze ancillary services in which cost is minimized and single service becomes optimal due to low capacity,
while segmented service analyzed in Pangburn and Stavrulaki (2008) is different from prioritized service in this paper.

4We define waiting time as the sum of time in the queue and service time.
5We do not consider strategic delay because we focus on scenarios involving significant face-to-face interaction

between customers and SPs in which implementing it would be difficult. That is because if customers get to know
that they are delayed purposely, then SPs might face a significant backlash from them.
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time is W (δ) in which δ is the fraction of total customers that purchases the service from her. We

assume that v > η1W (0), i.e., if the price is zero and there is no queuing at the SP, any customer

would buy the service. If she provides differentiated service then we let δh (δl) be the fraction

of total customers that purchase the high-priority (low-priority) service from her. The expected

waiting times for high-priority and low-priority services are then given by Wh(δh) and Wl(δh, δl)

respectively. We define a customer’s net utility as the difference of his valuation and dis-utility. A

central feature of our model is the self-selecting behavior of customers. Next, we discuss about how

they do this self-selection and the implications it has on the SP’s pricing decisions.

We first consider a single SP. The customers either purchase from her or do not buy anything. If

she provides a single service at price p there are four possibilities at equilibrium: (i) p+η1W (1) ≤ v,

then δ = 1 and all the customers purchase the service; (ii) p+ η1W (1− q) < v < p+ η1W (1) then

1− q < δ = W−1
(
v−p
η1

)
< 1, some impatient customers and all patient ones purchase the service;

(iii) p + η2W (1 − q) ≤ v ≤ p + η1W (1 − q) then δ = 1 − q, none of the impatient customers buys

from the SP but all patient ones do; and (iv) v < p+ η2W (1− q) then δ = W−1
(
v−p
η2

)
< 1− q and

only some patient customers purchase from the SP. Note that although customers are served on an

FCFS basis, patient customers, due to their lower delay sensitivity, get a preference over impatient

ones in terms of who gets served. If the SP provides differentiated service, she charges prices ph

and pl for high-priority and low-priority services respectively. Also, δh, δl > 0; otherwise, she can

provide just a single service. The prices should satisfy incentive compatibility (IC) conditions for δh

and δl to be the fractions purchasing high-priority and low-priority services at equilibrium. These

conditions are given by

ph − pl ≤ η1 (W (δh + δl)−Wh(0)) , (1)

ph − pl ≥ η2 (Wl(δh + δl, 0)−W (δh + δl)) . (2)

We provide the reasoning for these conditions as follows. Suppose (1) does not hold, then ph −
pl > η1 (W (δh + δl)−Wh(0)) > η2 (W (δh + δl)−Wh(0)) since W (δh + δl) > Wh(0) ∀δh, δl >
0. Hence, the selection of low-priority service by all the δh + δl fraction of customers becomes

an equilibrium. Further, it’s a Pareto dominating equilibrium because every customer gets a

higher net utility from selecting low-priority service than that obtained from choosing high-priority

service. Similarly, if (2) does not hold then ph − pl < η2 (Wl(δh + δl, δh + δl)−W (δh + δl)) <

η1 (Wl(δh + δl, δh + δl)−W (δh + δl)). Then the selection of high-priority service by all the δh + δl

fraction of customers becomes a Pareto dominating equilibrium. Now consider two other conditions
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that are given as follows:

ph − pl ≤ η1 (Wl(δh, δl)−Wh(δh)) , (3)

ph − pl ≥ η2 (Wl(δh, δl)−Wh(δh)) . (4)

Condition (3) (Condition (4)) ensures that impatient (patient) customers are not worse from se-

lecting high-priority (low-priority) service instead of low-priority (high-priority) service. Therefore,

for prices satisfying (3) and (4), selection of high-priority and low-priority services by customer

fractions δh and δl respectively is an equilibrium, provided (i) δh ≤ q and δl ≤ 1 − q, and (ii) the

dis-utilities from high-priority and low-priority services do not exceed the valuation v. However,

if condition (1) or (2) is violated, it is not a Pareto dominating equilibrium. In this case, there is

another equilibrium in which customers are better by all of them selecting either high-priority (if

(2) is violated) or low-priority service (if (1) is violated). Next, we characterize in Proposition 1

the relationship between IC conditions (1) and (2) and conditions (3) and (4). All proofs are in

the Appendix.

Proposition 1 Under both M/M/1 preemptive and non-preemptive priority, Wl(x, y−x)−Wh(x)

is strictly increasing in x ∀x ∈ [0, y], y > 0. Hence, (1) ⇒ (3) and (2) ⇒ (4).

Proposition 1 implies that if having more customers selecting the high-priority service (while the

total amount of customers remains the same) has a higher impact on low-priority service, i.e., it

increases Wl more than it increases Wh (which is true for M/M/1 preemptive and non-preemptive

priority queuing systems), then the IC conditions given by (1) and (2) are stronger than the

conditions in (3) and (4) respectively. Because customers are self-selecting, we assume that they

are utility-maximizing and so a Pareto dominating equilibrium is more likely. Hence, if the SP

provides prioritized service, we require that the prices satisfy the strong IC conditions given by (1)

and (2) so that there are some customers selecting each of high-priority and low-priority services.

Next, we find how these two conditions affect customers’ service choices.

Proposition 2 Under both M/M/1 preemptive and non-preemptive priority, the IC conditions (1)

and (2) imply that impatient customers select only high-priority service and patient ones select only

low-priority service.

Proposition 2 shows that the prices satisfying IC conditions (1) and (2) result in a perfect differen-

tiation of customers in which impatient and patient customers select high-priority and low-priority

services respectively. It is important to note that this feature is not an assumption of our model
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but it is a result of the customers’ self-selecting behavior. The SP sets the prices sufficiently dif-

ferent, so that (1) and (2) are satisfied, in order to preclude the entire purchase resulting from just

the high-priority or low-priority service under a Pareto-dominating equilibrium. That results in a

perfect differentiation of customers by the SP. Next, we consider what happens with two SPs.

There are three possible ways in which service can be provided with two SPs: (i) each of

them provides single service, (ii) one of them provides single service while the other prioritizes

customers and provides differentiated service, and (iii) each of them prioritizes customers and

provides differentiated service. We consider each of these cases in detail in §5. With two SPs,

we further note that (i) the price(s) charged by an SP are influenced by the price(s) charged by

the other SP due to price-plus-delay competition between them, and (ii) if an SP prioritizes her

customers the prices should still satisfy the strong IC conditions given by (1) and (2).

For analytical conciseness, in the rest of the paper, we model SP(s) with an M/M/1 queuing

system and having a preemptive priority for high-priority service under differentiated service. So

we have W (δ) = Wh(δ) = 1/(1 − λδ) and Wl(δh, δl) = 1/ ((1− λδh) · (1− λδh − λδl)). We first

analyze when prioritizing customers is optimal under a monopolistic SP.

4. Monopoly

The SP can provide two types of services: single service and differentiated service. We first consider

single service, formulate the SP’s problem, and characterize her optimal solution.

4.1 Single Service

The SP’s profit maximization problem can be formulated as

(S) max
δ,p

πS = λδp

s.t. (δ + q − 1)+
(
p+

η1
1− λδ

)
≤ (δ + q − 1)+v (5)

p+
η2

1− λδ ≤ v (6)

0 ≤ δ ≤ 1; p ≥ 0.

The SP can provide service in two ways: (i) she sets the price high so that only patient customers

purchase the service, δ ≤ 1− q here and so constraint (5) is automatically satisfied, or (ii) she sets

the price low to satisfy all the patient customers and some impatient customers so that δ > 1−q and

constraint (5) implies that the net utility of these impatient customers from purchasing the service is

non-negative. Constraint (6) is always satisfied because the retailer is profitable (v > η2W (0) = η2
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ensures that) and patient customers get a preference over impatient ones due to their lower delay

sensitivity and customers’ self-selection. Next, we characterize the optimal solution of S.

Proposition 3 Under optimality, either (5) or (6) binds. The optimal values are given as follows:

1. If
√

η2
v > 1− λ(1− q) then δ∗ = 1

λ

(
1−

√
η2
v

)
, p∗ = v − η2

1−λδ∗ , and π∗S =
(√
v −√η2

)2
.

2. If
√

η2
v ≤ 1 − λ(1 − q) ≤

√
η1
v then δ∗ = 1 − q, p∗ = v − η2

1−λ(1−q) , and π∗S = λ(1 −
q)
(
v − η2

1−λ(1−q)

)
.

3. If
√

η1
v < 1− λ(1− q) then let δ̂ ≡ min

(
1
λ

(
1−

√
η1
v

)
, 1
)

. If λδ̂
(
v − η1

1−λδ̂

)
≥ (<)

λ(1 − q)
(
v − η2

1−λ(1−q)

)
then δ∗ = δ̂ (δ∗ = 1 − q), p∗ = v − η1

1−λδ∗
(
p∗ = v − η2

1−λ(1−q)

)
, and

π∗S = η1
(λδ∗)2

(1−λδ∗)2
(
π∗S = λ(1− q)

(
v − η2

1−λ(1−q)

))
.

Proposition 3 shows that the optimal price and fraction of customers who buy the service depend

on the ratios of customers’ delay sensitivities and their valuation. If these ratios are high (for both

patient and impatient customers) then the SP serves some patient customers. However, if the ratio

is low for patient but high for impatient customers, then the SP serves all the patient customers.

In both these cases, serving any impatient customer is unprofitable for the retailer. Finally, if the

ratios are low (for both patient and impatient customers), the SP is faced with two choices. She

can either (i) charge a high price and serve all patient customers but none of the impatient ones

or (ii) charge a low price and serve all the patient customers and some/all of the impatient ones.

The better choice is determined based on whether the increase in demand (from serving impatient

customers) is able to compensate for the price reduction. Next, we consider the SP providing

differentiated service.

4.2 Differentiated Service

The SP’s profit maximization problem can be formulated as

(D) max
δh,δl,ph,pl

πD = λ (δhph + δlpl)

s.t. ph +
η1

1− λδh
≤ v (7)

pl +
η2

(1− λδh) · (1− λδh − λδl)
≤ v (8)

ph − pl ≤ η1

(
λ (δh + δl)

1− λδh − λδl

)
(9)

ph − pl ≥ η2

(
λ (δh + δl)

(1− λδh − λδl)2
)

(10)

0 ≤ δh ≤ q; 0 ≤ δl ≤ 1− q; ph, pl ≥ 0. (11)
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Constraints (7) and (8) ensure that impatient and patient customers, who purchase high-priority

and low-priority services respectively (see Proposition 2), obtain non-negative net utilities. Con-

straints (9) and (10) correspond to IC conditions (1) and (2). They make high-priority and low-

priority services incentive compatible in the presence of self-selecting customers. Finally, constraints

in (11) require that (i) fraction of customers that select high-priority (low-priority) service does

not exceed the fraction of impatient (patient) customers and (ii) prices be non-negative. We let

δt ≡ δh+δl to denote the total fraction of customers who buy high-priority and low-priority services.

Next, we characterize the optimal solution of D.

Proposition 4 Under optimality, constraints (7) and (10) are binding, and there exists a unique

δ∗t that maximizes the SP’s profit under differentiated service. Further, the other optimal values

are given by δ∗h = min
(

max
(

0, δ∗t + q − 1,
√
η2−(1−λδ∗t )

√
η1

λ
√
η2

)
, q
)

, δ∗l = δ∗t − δ∗h, p∗h = v − η1
1−λδ∗h

, and

p∗l = v − η1
1−λδ∗h

− η2λδ∗t
(1−λδ∗t )2

, and δ∗t and δ∗h are increasing in the valuation v.
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Figure 1: Variation of δ∗h, δ∗l , and δ∗t with v when λ = 0.8, η1 = 1, η2 = 0.3, and q = 0.4

The upper bound on δ∗t in Proposition 4 ensures that the IC constraints (9) and (10) can be satis-

fied under optimality. If the customers are not sufficiently heterogeneous so that (1− η2/η1) /λ < 1

then the self-selecting behavior of customers limits how much of them can be served by the SP

providing differentiated service. If too many customers purchase from the SP then, depending on

prices ph and pl, all of them either select the high-priority or low-priority service. The SP does not
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Figure 3: Intermediate η2: Vari-
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prioritization when λ = 0.8, η1 =
1, η2 = 0.3, and q = 0.4
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Figure 4: High η2: Variation of
percentage benefit from prioriti-
zation when λ = 0.8, η1 = 1,
η2 = 0.5, and q = 0.4

prefer that because it defeats the purpose of providing differentiated service. Next, we consider

how the optimal fractions δ∗h, δ∗l , and δ∗t change with customers’ service valuation v.

Figure 1 illustrates the results from Proposition 4 in that the fractions δ∗h and δ∗t are mono-

tonically increasing in v. Initially, when v is low, δ∗h = 0 and none of the impatient customers

purchase from the SP. The SP would rather sell just to the patient customers (and charge them

more) instead of offering some impatient customers high-priority service (and charging less for the

impatient customers). When v takes intermediate values, δ∗h increases from zero to q, the fraction of

impatient customers. When v is high, all the impatient customers are satisfied. The total fraction of

customers purchasing from the SP increases from zero to the upper bound (1− η2/η1) /λ = 0.875.

Finally, Figure 1 shows that the variation of δ∗l with respect to v is non-monotone. Initially, when

v is low, δ∗l = δ∗t and increases in v. However, later when v takes intermediate values, we find that

δ∗l is decreasing in v (even though δ∗h and δ∗t are increasing). This result is explained as follows: the

SP benefits from more proportion of its customers selecting the high-priority service which is priced

at a premium in comparison to the low-priority service. When v is high, the high-priority service

satisfies all the impatient customers and so δ∗l increases in v until it’s limited by the upper bound

on the total fraction of customers served by the SP. Next, we compare the performances of single

service and differentiated service.

4.3 Single Service vs. Differentiated Service

We compare π∗S and π∗D, the optimal profits from single service and differentiated service respec-

tively. Next, we characterize how they change with v and how they are related to each other.

11



Theorem 1 Both π∗S and π∗D are convex and strictly increasing functions of v. There are three

possibilities: (i) ∃ v s.t. π∗D ≤ π∗S ∀v ≤ v and π∗D > π∗S otherwise; (ii) ∃ v & v with v < v < ∞
s.t. π∗D ≤ π∗S ∀v ≤ v & ∀v ≥ v and π∗D > π∗S otherwise; and (iii) π∗D ≤ π∗S ∀v. Further, if

1
λ

(
1− η2

η1

)
< (≥) 1 then limv→∞ π∗D < (>) π∗S.

Figures 2-4 illustrate the three possibilities in Theorem 1. In all the three figures, when the

valuation v is low, differentiated service performs worse than single service. That is because the

low valuation of service by customers makes the SP’s capacity insufficient for prioritizing them

well. However, for higher values of v, the value of η2 also determines how differentiated service

performs vis-a-vis single service. For these values of v, differentiated service performs better than

single service in Figure 2 in which η2 is low while the opposite is true in Figure 4 with a high

value of η2. In Figure 3, in which η2 has an intermediate value, we find that differentiated service

performs better when v takes intermediate values while single service performs better when v is

high. Finally, we observe that the sub-optimality of differentiated service under very high values

of v (in Figures 3 and 4) is driven by the strong IC constraints (9) and (10) which, in turn, result

from the self-selecting behavior of customers. We provide the reasoning as follows. Suppose the

SP only has to satisfy the weak IC conditions in (3) and (4) which, under M/M/1 priority, become

ph − pl ≤ η1

(
λ(δh+δl)

(1−λδh)(1−λδh−λδl)

)
and ph − pl ≥ η2

(
λ(δh+δl)

(1−λδh)(1−λδh−λδl)

)
respectively. Then it can

be shown under optimality that p∗h = v − η1
1−λδ∗h

and p∗l = v − η1
1−λδ∗h

− η2λ(δh+δl)
(1−λδh)(1−λδh−λδl)

6. Further,

for very high values of v, all the customers would be satisfied under both single and differentiated

services. Therefore, after some algebra, we find that the profit under differentiated service (if only

the weak IC conditions are satisfied) would have been v − η1
1−λ + (η1−η2)λ(1−q)

(1−λq)(1−λ) > v − η1
1−λ , which

is the profit under single service. So the presence of strong IC conditions not only reduces the

optimal profit under differentiated service but it may even make the optimal profit less than that

under single service. In summary, we have the following key result from our analysis above: even

when customers have very high service valuations (so that capacity does not directly constrain the

adequate provision of differentiated service), because of their self-selecting behavior, differentiated

service can still perform worse than single service when they are not sufficiently heterogeneous.

5. Duopoly

We consider two identical SPs (SP 1 and SP 2) with price-plus-delay competition between them.

The customers select an SP (and a service class if the SP is offering differentiated service) based on

6The proof is similar to that in Proposition 4; we omit the details for the sake of conciseness.
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their dis-utilities. For the purposes of focusing our analysis on the competitive dynamics, analytical

tractability, and expositional clarity, we assume customer valuation v is high enough so that it does

not constrain the price(s) charged by the SPs. However, note that the price(s) of an SP is/are still

limited by the price(s) charged by the other SP. We denote the price charged by SP i (i = 1, 2)

under single service as pi. The fraction of total customers who select single service from SP i and

are of Type j (j = 1, 2) is δij ; note that 0 ≤ δi1 ≤ q and 0 ≤ δi2 ≤ 1−q. The prices for high-priority

and low-priority services charged by SP i providing differentiated service are denoted by pih and pil

respectively. Then IC conditions similar to those in (9) and (10) have to be satisfied. Therefore, as

in §4, only impatient (patient) customers select the high-priority (low-priority) service. The fraction

of total customers who select high-priority and low-priority services from SP i are denoted by δih

and δil respectively; note that 0 ≤ δih ≤ q and 0 ≤ δil ≤ 1− q. Regardless of whether SP i provides

single or differentiated service, we let δi denote the fraction of total customers that purchase from

her. In the presence of two SPs, there are three possible ways in which service gets provided at

equilibrium 7: (i) both SPs provide single service, (ii) one of them provides single service while the

other provides differentiated service, and (iii) both SPs provide differentiated service.

5.1 Single Service by Both SPs

SPs 1 and 2 charge prices p1 and p2 respectively. Then the profit maximization problem for SP 1

can be formulated as

(SS) max
δ11,δ12,p1

π1,SS = λp1 (δ11 + δ12)

s.t. δ11

(
p1 +

η1
1− λ (δ11 + δ12)

)
≤ δ11

(
p2 +

η1
1− λ+ λ (δ11 + δ12)

)
(12)

δ12

(
p1 +

η2
1− λ (δ11 + δ12)

)
≤ δ12

(
p2 +

η2
1− λ+ λ (δ11 + δ12)

)
(13)

0 ≤ δ11 ≤ q; 0 ≤ δ12 ≤ 1− q; p1 ≥ 0.

Constraints (12) and (13) require respectively that if any impatient and patient customers buy

from SP 1 then their dis-utilities should not exceed those obtained by purchasing from SP 2. Note

that, because the valuation v is high, the market is covered and all the customers purchase from

one of the SPs. First, we characterize the optimal values of the fractions in SS for any given values

of p1, p2 ≥ 0.

7The equilibrium here pertains to the SPs’ decision of whether to provide single or differentiated service. Further,
we note that (i) because this decision is strategic and usually a long-term one, we only consider pure strategy equi-
librium and (ii) for any of SPs’ service choice (and pricing) decisions, there may be a sub-game equilibrium among
the self-selecting customers pertaining to their service choices.
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Proposition 5 Let α1 ≡ arg min0≤α≤1
∣∣∣p2 − p1 + η1

(
1

1−λ+λα − 1
1−λα

)∣∣∣ and α2 ≡ arg min0≤α≤1∣∣∣p2 − p1 + η2

(
1

1−λ+λα − 1
1−λα

)∣∣∣. Optimal values of δ11 and δ12 for p1, p2 ≥ 0 are then given by:

1. If p1 + η1
1−λ ≤ p2 + η1 then δ∗11 = q and δ∗12 = 1− q.

2. If p1 < p2 and p1 + η1
1−λ > p2 + η1 then δ∗11 = (α1 − δ∗12)+ and δ∗12 = min(α2, 1− q).

3. If p1 = p2 then (δ∗11, δ
∗
12) = {(δ11, δ12) : δ11 + δ12 = 0.5, 0 ≤ δ11 ≤ q, 0 ≤ δ12 ≤ 1− q}.

4. If p1 > p2 and p1 + η1 < p2 + η1
1−λ then δ∗11 = min(α1, q) and δ∗12 = (α2 − δ∗11)+.

5. If p1 + η1 ≥ p2 + η1
1−λ then δ∗11 = δ∗12 = 0.

Further, if prices are p1 and p2 then, after customers’ self-selection, the fraction of total customers

who buy from SP 1 and are of Type 1 and 2 are determined by δ∗11 and δ∗12 respectively.

Proposition 5 shows that the optimal service delivery in SS has a structure which is very different

from that in S. In S, patient customers always get a preference over impatient ones due to their

lower delay sensitivity. However, in SS, the relationship between prices p1 and p2 determines who

gets preferred at SP 1. Proposition 5 implies that if p1 < p2 then patient customers get a preference

and if p1 > p2 then impatient customers get a preference at SP 1. The rationale is as follows: a

low-priced SP serves more customers so that patient customers with a lower delay sensitivity get a

preference while a high-priced SP satisfies less customers so that impatient customers with a higher

delay sensitivity get a preference. Proposition 5 also shows that although SP 1 cannot directly set

the δ1j ’s, the corresponding fractions (at equilibrium) are given by δ∗1j ’s because of the self-selecting

customer behavior. Also, note that except when p1 = p2, both δ∗11 and δ∗12 are uniquely determined

by customers’ self-selection. Next, we characterize the higher level equilibrium involving prices

charged by SPs 1 and 2 when both of them provide single service.

Theorem 2 If an equilibrium exists, it is unique and symmetric. Further, the outcome of price-

plus-delay competition is characterized as follows: (i) if q ≥ 0.5 then p̃1,SS = p̃2,SS = η1λ

(1−λ2 )
2 and

π̃1,SS = π̃2,SS = η1λ2

2(1−λ2 )
2 , (ii) if q < 0.5 and η2λ2

2(1−λ2 )
2 ≥ max0≤δ1≤q λδ1

(
η2λ

(1−λ2 )
2 + η1

1−λ+λδ1 −
η1

1−λδ1

)

then p̃1,SS = p̃2,SS = η2λ

(1−λ2 )
2 and π̃1,SS = π̃2,SS = η2λ2

2(1−λ2 )
2 , and (iii) if q < 0.5 and η2λ2

2(1−λ2 )
2 <

max0≤δ1≤q λδ1

(
η2λ

(1−λ2 )
2 + η1

1−λ+λδ1 −
η1

1−λδ1

)
then there is no pure-strategy equilibrium.

Theorem 2 shows that, depending on the composition of the customers, there are two possible

types of equilibrium when SP 1 and SP 2 both provide single service. If there are many impatient
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customers (q ≥ 0.5) then there is a high-price equilibrium. The presence of a large fraction of such

customers enables each SP to charge the high price because deviating from that price is going to

be costly for the other SP. If there are few impatient customers (q is low) then there is a low-price

equilibrium. The low value of q ensures that an SP would not benefit from charging a higher

price and selling only to impatient customers when the other SP charges the low price. If q takes

intermediate values then there is no pure-strategy equilibrium because the high price makes an SP

better from reducing her price and increasing her sales while the low price makes her better from

increasing her price and satisfying only impatient customers.

Next, we consider the price-plus-delay competition when both single and differentiated services

are offered by the two SPs.

5.2 Single and Differentiated Services

We assume WLOG that SP 1 and SP 2 offer single and differentiated services respectively. Then

the optimization problem for SP 1 can be formulated as

(SD1) max
δ11,δ12,p1

π1,SD = λp1 (δ11 + δ12)

s.t. δ11

(
p1 +

η1
1− λ (δ11 + δ12)

)
≤ δ11

(
p2h +

η1
1− λq + λδ11

)
(14)

δ12

(
p1 +

η2
1− λ (δ11 + δ12)

)
≤ δ12

(
p2l +

η2
(1− λq + λδ11) (1− λ+ λ(δ11 + δ12))

)
(15)

0 ≤ δ11 ≤ q; 0 ≤ δ12 ≤ 1− q; p1 ≥ 0.

Constraints (14) and (15) respectively require that patient and impatient customers, if any of them

select SP 1, incur a lower dis-utility. We refer to constraint (14) (constraint (15)) as non-trivial if

δ11 > 0 (δ12 > 0). Next, we characterize the optimal values of δ11 and δ12 for any given prices.

Proposition 6 Let β1 ≡ arg min0≤β≤1
∣∣∣p2h − p1 + η1

(
1

1−λq+λβ − 1
1−λβ

)∣∣∣ and β2 ≡ arg min0≤β≤1∣∣∣p2l − p1 + η2

(
1

(1−λq)(1−λ+λβ) − 1
1−λβ

)∣∣∣. Optimal values of δ11 and δ12 for p1, p2h, p2l ≥ 0 are given

by: (i) if β1 ≤ β2 then δ∗11 = (β1 − δ∗12)+ and δ∗12 = min(β2, 1 − q) and (ii) if β1 > β2 then

δ∗11 = min(β1, q) and δ∗12 = (β2 − δ∗11)+. There are four possibilities: (i) δ∗11 = 0, (ii) δ∗11 = q,

(iii) δ∗12 = 0, or (iv) δ∗12 = 0. Further, for any given prices, the fractions of impatient and patient

customers satisfied by SP 1 get uniquely determined as δ∗11 and δ∗12.

Proposition 6 shows that at least one customer type, impatient or patient, exhibits an all-or-none

strategy in selecting SP 1 who provides single service. Either all the customers from this customer

type select SP 1 or none of them do so. Importantly, we note that this strategy is not a result of
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any rule enforced by the SP but it is actually a consequence of self-selection by customers. The

optimization problem for SP 2 can be formulated as

(SD2) max
δ2h,δ2l,p2h,p2l

π2,SD = λ (p2hδ2h + p2lδ2l)

s.t. p2h +
η1

1− λδ2h
≤ p1 +

η1
1− λ (1− δ2h − δ2l)

(16)

p2l +
η2

(1− λδ2h) (1− λδ2h − λδ2l)
≤ p1 +

η2
1− λ (1− δ2h − δ2l)

(17)

p2h − p2l ≤ η1

(
λ(δ2h + δ2l)

1− λδ2h − λδ2l

)
(18)

p2h − p2l ≥ η2

(
λ(δ2h + δ2l)

(1− λδ2h − λδ2l)2
)

(19)

0 ≤ δ2h ≤ q; 0 ≤ δ2l ≤ 1− q; p2h, p2l ≥ 0.

Constraints (16) and (16) ensure that impatient and patient customers, who select high-priority

and low-priority service respectively, incur less dis-utility than they would have obtained from SP

1. Constraints (18) and (19) are the strong incentive compatibility constraints. Next, we identify

some key properties of the equilibrium resulting from the price-plus-delay competition involving

SPs 1 and 2.

Theorem 3 At equilibrium, if it exists, SP 1 serves only one customer type and SP 2 satisfies

either all the patient customers or all the impatient customers. Suppose η2/η1 < 1− λ.

1. Let F1(q) ≡ η1λq
2−λq+ η2

1−λ+λq−
2η2λ(2−q)
(2−2λ+λq)2−

η2
(1−λq)2 and F2(q) ≡ (1−λq)3−λq(1−λ+λq)2. Offering

differentiated service is better for SP 1 than serving impatient customers if F1(q),F2(q) > 0.

2. Let F3(q) ≡ η1λq
1−λq + η2 + η2λq

(1−λq)2 −
η2(2+λ−3λq)

(1−λq)2(2−λ−λq) and F4(q) ≡ 2η1λq
1−λq + 2η2

2−λ+λq −
2η2

(1−λq)(2−λ−λq) −
η2λ(1−q)
(1−λ+λq)2 . Offering differentiated service is better for SP 1 than serving patient customers if

F3(q),F4(q) > 0.

Theorem 3 derives sufficient conditions so that offering differentiated service, in comparison to

an equilibrium outcome, is beneficial for SP 1. These conditions impose some restrictions on the

amount of heterogeneity among customers, arrival rate λ (which is the same as utilization since

capacity is one), and the composition of (patient vs. impatient) customers. In particular, we note

that if there is very high heterogeneity (η2 << η1 ) then SP 1 is better from offering differentiated

service provided the fraction of impatient customers q is not high so that F2(q) > 0.

Figure 5 illustrates an example which demonstrates how Fi’s (i = 1, ..., 4) vary with q. We find

that F1, F3, and F4 are increasing in q, which yields lower thresholds for q above which all the Fi’s
become positive. However, F2 is decreasing in q, which yields an upper threshold for q below which
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Figure 5: Variation of Fi (i = 1, ..., 4) with q when λ = 0.5, η1 = 1, and η2 = 0.05

F2 becomes positive. All the Fi’s become positive when q takes intermediate values in between 0.2

and 0.72 (correct to two decimals). The reason why differentiated service dominates single service

(for SP 1 when SP 2 is offering differentiated service) for intermediate values of q is as follows: if

q is low or high then there are many customers of a single type, and hence, offering single service

to those customers, instead of providing differentiated service, may be beneficial for SP 1.

5.3 Differentiated Service by Both SPs

Both SPs provide differentiated service. SP 1 (SP 2) charges prices p1h (p2h) and p1l (p2l) for high-

priority and low-priority services respectively. We assume that η1/η2 ≤ 1−λ because (i) it simplifies

the analysis and (ii) even under a monopoly, when customers have high valuation, η1/η2 > 1 − λ
results in differentiated service being sub-optimal (see §4.3). The optimization problem for SP 18

can be formulated as

(DD1) max
δ1h,δ1l,p1h,p1l

π1,DD = λ (p1hδ1h + p1lδ1l)

s.t. p1h +
η1

1− λδ1h
≤ p2h +

η1
1− λq + λδ1h

(20)

p1l +
η2

(1− λδ1h) (1− λδ1h − λδ1l)
≤ p2l +

η2
(1− λq + λδ1h) (1− λ+ λδ1h + λδ1l)

(21)

p1h − p1l ≤ η1

(
λ(δ1h + δ1l)

1− λδ1h − λδ1l

)
(22)

p1h − p1l ≥ η2

(
λ(δ1h + δ1l)

(1− λδ1h − λδ1l)2
)

(23)

0 ≤ δ1h ≤ q; 0 ≤ δ1l ≤ 1− q; p1h, p1l ≥ 0.

8The formulation for SP 2 is similar and we omit it for the sake of conciseness.
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Since SP 1 and SP 2 both provide differentiated service, we only consider cases in which patient

as well as impatient customers select both SPs (the former select low-priority service while the

latter choose high-priority service)9, and hence ∃δ1h, δ1l, which are unique, with 0 < δ1h < q

and 0 < δ1l < 1 − q such that p1h + η1
1−λδ1h = p2h + η1

1−λq+λδ1h and p1l + η2
(1−λδ1h)(1−λδ1h−λδ1l) =

p2l + η2
(1−λq+λδ1h)(1−λ+λδ1h+λδ1l) . Note that if the firms set these prices and the corresponding IC

constraints are satisfied then the unique δij ’s result from the self-selection of customers. Next, we

establish a key property regarding the profit function of SP 1.

Proposition 7 Let G(x, y) ≡ λx(p2h + η1
1−λq+λx −

η1
1−λx) + λ(y − x)(p2l + η2

(1−λq+λx)(1−λ+λy) −
η1

(1−λx)(1−λy)). Then G is strictly concave in x ∀0 ≤ y ≤ 1 and it is also strictly concave in

y ∀0 ≤ x ≤ 1. If (x∗, y∗) = arg max0≤x,y≤1 G(x, y) then x∗ and y∗ satisfy:

y∗ = H1(x
∗) =

1

λ


λ− 1 +

λ(1− q)
η1
η2

(1− λq)− 1 + (1− λq + λx∗)2
(
p2h−p2l
η2

− η1−η2
η2(1−λx∗)2

)


 (24)

x∗ = H2(y
∗) =

1

λ


λq − 1 +

λ(1− q)
1 + (1− λ+ λy∗)2

(
p2l
η2
− 1

(1−λy∗)2
)


 (25)

If H2(H1(0)) < 0, then there exists at most a single (x∗, y∗). This condition is satisfied when

η2
η1
≤ q (1− λq) (2− λ)

√
1− λ

q (2− λ) (2− λq)
√

1− λ+ (1− q)
(√

1− λq +
√

1− λ
) . (26)

The profit of SP 1, π1,DD, is obtained by setting x = δ1h and y = δ1 = δ1h + δ1l. Proposition 7

establishes sufficient conditions under which SP 1 has unique “best response prices” for any prices

charged by SP 210. In particular, we observe that if the customers are highly heterogeneous so that

η1/η2 is high then SP 1 has a unique best response function. Next, we characterize the equilibrium

resulting from price-plus-delay competition between SP 1 and SP 2 when both of them provide

differentiated service.

Theorem 4 The prices p̃1h = p̃2h = 4η1λq
(2−λq)2 + 8η2λ(1−q)(4−λ−λq)

(2−λq)2(2−λ)2 and p̃1l = p̃2l = 8η2λ(1−q)
(2−λq)(2−λ)2

result in a unique symmetric equilibrium with δ̃1h = δ̃2h = q/2 and δ̃1l = δ̃2l = (1 − q)/2 if

2η2λ
(2−λ)2 ≤ p̃1h − p̃1l ≤

η1λ
(2−λ) and H2(H1(0))|p2h=p̃2h,p2l=p̃2l < 0.

5.4 Service Delivery under Duopoly: Single Service vs. Single and Differenti-
ated Services vs. Differentiated Service

The SPs can choose to provide either single or differentiated service. This choice precedes their

pricing decisions, which in turn precedes customers’ choices. Therefore, we have a three-stage game

9If either patient or impatient customers do not choose an SP then she is better by offering single service instead
of differentiated service.

10Note that the fractions δ1h and δ1l get uniuqely determined from customers’ self-selection for any given prices.

18



SP 1/SP 2 Single Service Differentiated Service

π̃1 = π̃2 = 0.2222 π̃1 = 0.0421, π̃2 = 0.1227
Single p̃1 = p̃2 = 0.8889 p̃1 = 0.3318, p̃2h = 0.337, p̃2l = 0.3251

Service δ̃1 = δ̃2 = 0.5 δ̃11 = 0.254, δ̃12 = 0,

δ̃2h = 0.246, δ̃2l = 0.5

π̃1 = 0.1227, π̃2 = 0.0421 π̃1 = π̃2 = 0.0426
Differentiated p̃1h = 0.337, p̃1l = 0.3251, p̃2 = 0.3318 p̃1h = p̃2h = 0.336, p̃1l = p̃2l = 0.0051

Service δ̃1h = 0.246, δ̃1l = 0.5, δ̃1h = δ̃2h = δ̃1l = δ̃2l = 0.25

δ̃21 = 0.254, δ̃22 = 0

Table 1: Equilibrium profits, prices, and fractions of customers under different types of service
delivery when η1 = 1, η2 = 0.01, and λ = q = 0.5

and the SPs make the first stage service delivery decisions based on the equilibriums resulting from

price-plus-delay competition between them and customer choices. There are four possible sub-

games from the service delivery decisions, which were analyzed in §5.1-5.311. Next, we present

an example to understand the trade-offs in and gain insights from the equilibrium involving SPs’

service delivery decisions.

We consider an example in which η1 = 1, η2 = 0.01, and λ = q = 0.5. Note that η2/η1 << 1−λ
and there is high heterogeneity between patient and impatient customers. Table 1 characterizes the

sub-game equilibriums under different types of service delivery. When both SPs offer single service,

because the fraction of impatient customers is high (q ≥ 0.5), there is a high-price equilibrium. When

one of them offers single service and the other SP offers differentiated service, we numerically find

that there is a unique equilibrium. In this equilibrium, the single service SP only satisfies some

(but not all) impatient customers (interestingly, we find that there is no equilibrium in which the

single service SP satisfies some (but not all) patient customers). From Table 1, we also find that the

profits of both SPs are significantly lower than those obtained when they both provide single service.

The result that an SP providing single service loses from the other one differentiating its service

(through prioritization) has an intuitive explanation. However, it is somewhat counterintuitive

that even the SP providing differentiated service loses, and it is explained as follows. Because the

SP providing single service satisfies only impatient customers, it prices much more aggressively

than under the high-price equilibrium characterized above. This aggressive pricing intensifies the

competition between the SPs so much that in spite of selling to more customers (e.g., δ̃2 = 0.746 >

0.5 when SP 1 and SP 2 provide single and differentiated services respectively), the SP providing

differentiated service obtains less profit. The effect of intensified competition (from provision of

differentiated service) is further illustrated by comparing the profits and sales when an SP offers

11The cases SD and DS result in symmetric equilibrium outcomes.
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single and differentiated services, and the other SP provides differentiated service. From Table 1, we

find that the increase in profit is marginal (e.g., when SP 2 offers differentiated service, π̃1 changes

from 0.0421 to 0.0426 when SP 1’s service delivery changes from single service to differentiated

service) even though the sales increase significantly (correspondingly, δ̃1 increases from 0.254 to

0.5). The sales increase is from providing low-priority service to patient customers but they are

charged a much lower price (p̃1l = 0.0051 << 0.336 = p̃1h) due to more intense competition for

them between the SPs, thereby resulting in just a marginal increase in profit.
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Figure 6: Equilibrium profits under different service deliveries, and how they change with λ and q;
superscripts 1 and 2 denote possible equilibriums in which the SP providing single service satisfies
only impatient and patient customers respectively, the overall equilibrium is marked with

Table 1 shows that providing single service dominates providing differentiated service for both

SPs. Hence both of them provide single service at equilibrium even though η2/η1 << 1−λ and there

is high heterogeneity between patient and impatient customers. Provision of differentiated service

through prioritization of customers has two effects: (i) it enables an SP to better differentiate her

customers and (ii) it intensifies the competition between the SPs. In this example, we find that the
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loss from the second effect outweighs any gain from the first effect, thereby making differentiated

service sub-optimal for both SPs.

6. Discussion

We provide more examples to analyze the equilibrium involving service delivery decisions and how

the parameters λ and q, the arrival rate of customers and the fraction of impatient customers

respectively, affect them. In all these examples, η1 = 1 and η2 = 0.01 so that there is high

heterogeneity between patient and impatient customers. Figure 6 summarizes the results. In

examples A through C in which q = 0.25, we find that there is no equilibrium when both SPs

provide single service because q is too high for a low-price equilibrium but it is less than 0.5 so

that there is no high-price equilibrium. The equilibrium service delivery12 then is for both SPs

to provide differentiated service. In these examples, unlike the analysis in §5.4, we find that the

positive effect on profit from differentiating customers outweighs the negative effect from more

intense competition. That can be observed from examining the equilibrium when the SPs provide

single and differentiated services. From Figure 6, we find that there are two possibilities: (i) the

single service SP satisfies only impatient customers and (ii) she satisfies only patient customers

(indicated by 1 and 2 respectively in Figure 6). We also find that, since η2/η1 is low, the profits of

both SPs are higher when the single service SP satisfies only impatient customers (e.g., in example

B π11,SD = 0.009927 > π21,SD = 0.003218 and π12,SD = 0.062674 > π22,SD = 0.035487) so that it

becomes the equilibrium. However, the single service SP is still better from providing differentiated

service (in example B π11,SD = 0.009927 < π1,DD = 0.011022). In contradiction, examples D

through I are all akin to the example in §6 (note that example E is the same as the one in §6), and

we find that the loss from intense competition outweighs the benefit from differentiated service. In

conclusion, we note that although all the examples in Figure 6 result in at least one SP being better

under equilibrium service delivery, a prisoner’s dilemma scenario is also possible. For instance,

when λ = 0.75 and q = 0.4, there is no equilibrium under SS; π11,SD = 0.0779, π21,SD = 0.3149

(there is no equilibrium when SP 1 only satisfies patient customers); and π1,DD = π2,DD = 0.0689.

Although π1i,SD > πi,DD, SD is not an equilibrium because we find that Fj(q) > 0; j = 1, ..., 4 and

hence Theorem 3 implies that SP 1 is better by offering differentiated service, thereby resulting in

DD as the equilibrium service delivery.

12We consider SS only if it has a price equilibrium and we consider DD only if it has a symmetric price equilibrium.
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7. Conclusion

Time is used as a differentiating factor by service providers (SPs) under different contexts. We

consider differentiated service with two service classes in which some customers are prioritized, and

analyze when offering it in the presence of self-selecting customers, who maximize their individual

expected utilities, would be beneficial for SPs. The customers are heterogeneous in their delay

sensitivities and belong to one of two types: impatient and patient. We first show that the prices for

high-priority and low-priority services have to satisfy strong incentive compatibility (IC) conditions;

otherwise, the queuing dynamics and customers’ self-selection result in all of them selecting a single

service class (high-priority or low-priority). We also show that these conditions are stronger than

those IC conditions which preclude customers from changing their service classes after they have

made their decisions. In the presence of these conditions, we examine how differentiated service

performs vis-a-vis single service under both monopoly and duopoly.

When a single SP sells to customers, we characterize the SP’s optimal pricing decisions under

both single and differentiated services. We find that self-selection results in patient customers

getting a preference over impatient ones under single service. Under differentiated service, we

observe that both the amount of customers selecting high-priority service and the total amount

of customers getting satisfied increase as customers’ valuation increases; however, the amount

of customers selecting low-priority service can decrease. In comparing single and differentiated

services, we find that even if the customers’ valuation is very high, single service still outperforms

differentiated service when the customers are not sufficiently heterogeneous. Unlike prior research

on queuing optimization in which prioritization is either always better or is not possible due to

limited capacity, we establish a new criterion for it to perform better in the presence of self-selecting

customers: sufficient customer heterogeneity13.

When two SPs sell to customers, they engage in price-plus-delay competition and three types

of service delivery are possible: both of them provide single service (SS), one of them provides

single service and the other provides differentiated service (SD and DS), and both of them provide

differentiated service (DD). We identify two kinds of equilibrium under SS: low-price and high-

price. We also characterize the symmetric equilibrium under DD. We derive sufficient conditions

for which the single service SP in SD or DS would be better providing differentiated service (in

comparison to the equilibrium under SD or SD) and hence SD or DS would be dominated by DD.

In comparing the three types of service delivery, we find that the equilibrium service delivery is

13Customers cannot be just heterogeneous, they have to be sufficiently heterogeneous so that η2/η1 ≤ 1− λ.
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generally either SS or DD. Further, we also find that, due to the competitive dynamics between the

SPs, sufficient customer heterogeneity is no longer enough, and the performance of differentiated

service vis-a-vis single service also depends on the fraction of impatient customers q. When an SP

provides differentiated service, it can increase her profit from better customer differentiation but it

can also decrease her profit from intensified competition with the other SP. We show that, generally,

when q is low DD is the equilibrium service delivery and the SPs also benefit from differentiating

customers but when q is high SS is the equilibrium service delivery and the SPs benefit from the

high-price equilibrium.
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Appendix

Proof (Proof of Proposition 1) Under M/M/1 preemptive priority, Wl(x, y − x) −Wh(x) = 1/((1 − λx) ·
(1− λy))− 1/(1− λx) = λy/((1− λx) · (1− λy)), which is strictly increasing in x ∀y > 0. Similarly, under
M/M/1 non-preemptive priority, Wl(x, y−x)−Wh(x) = (λy/((1− λx) · (1− λy)) + 1)−(λy/(1− λx) + 1) =
(λy)2/((1 − λx) · (1 − λy)), which is strictly increasing in x ∀y > 0. Suppose 0 ≤ x1 < x2 ≤ y. Then
Wl(x1, y − x1)−Wh(x1) < Wl(x2, y − x2)−Wh(x2). Using x1 = 0, x2 = δh, y = δh + δl, and the fact that
Wl(0, x) = W (x), we get W (δh + δl) −Wh(0) ≤ Wl(δh, δl) −Wh(δh). So the RHS of (1) does not exceed
the RHS of (3) and hence (1) ⇒ (3). Similarly, using x1 = δh, x2 = δh + δl, y = δh + δl, and the fact that
Wh(δh + δl) = W (δh + δl), we get Wl(δh, δl)−Wh(δh) ≤ Wl(δh + δl, 0)−W (δh + δl). So the RHS of (2) is
greater than or equal to the RHS of (4) and hence (2) ⇒ (4).

Proof (Proof of Proposition 2) The result follows from the fact that Wl(x, y − x) − Wh(x) is strictly
increasing in x ∀x ∈ [0, y], y > 0 (see Proposition 1). We prove it by contradiction. Suppose some impatient
customers select low-priority service. Then they should obtain a higher net-utility from their choice so that
pl + η1Wl(δh, δl) ≤ ph + η1Wh(δh), i.e., ph − pl ≥ η1 (Wl(δh, δl)−Wh(δh)). However, that condition violates
(1) because Wl(δh, δl)−Wh(δh) > Wl(0, δh + δl)−Wh(0) = W (δh + δl)−Wh(0) ∀δh > 0. Similarly, if some
patient customers select high-priority service then we require that ph + η2Wh(δh) ≤ pl + η2Wl(δh, δl), i.e.,
ph − pl ≤ η2 (Wl(δh, δl)−Wh(δh)). However, it violates (2) because Wl(δh, δl)−Wh(δh) < Wl(δh + δl, 0)−
Wh(δh + δl) = Wl(δh + δl, 0)−W (δh + δl) ∀δl > 0.

Proof (Proof of Proposition 3) If δ ≤ 1 − q then (6) binds under optimality because otherwise price p

can be increased yielding better profit. The profit then becomes λδ
(
v − η2

1−λδ

)
which is strictly concave

in δ. Similarly if δ > 1 − q then (5) binds (constraint (5) is stronger than constraint (6)) and the profit is

λδ
(
v − η2

1−λδ

)
which is again strictly concave in δ. So the profit is piecewise concave (with two pieces) and

it is discontinuous at δ = 1− q. The result in Proposition 3 is then obtained by comparing the profits at the
appropriate interior solution(s)/boundary solution(s).

Proof (Proof of Proposition 4) Under optimality, there are three possibilities: (i) constraints (7) and (10)
bind, (ii) (7) and (8) bind, or (iii) (7) and (10) bind. Consider the first case with ph = v − η1

1−λδh and

pl = v− η1
1−λδh −η2

(
λ(δh+δl)

(1−λδh−λδl)2
)

. We show that this solution is feasible. Clearly, it satisfies (9), and hence,
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we just need to show that (8) holds. It holds because

pl +
η2

(1− λδh) · (1− λδh − λδl)
= v − η1

1− λδh
− η2λ(δh + δl)

(1− λδh − λδl)2
+

η2
(1− λδh) · (1− λδh − λδl)

= v − η1
1− λδh

+
η2 (1− λ(δh + δl)(2− λδh))

(1− λδh)(1− λδh − λδl)2

< v − η2
1− λδh

+
η2 (1− λ(δh + δl)(2− λδh))

(1− λδh)(1− λδh − λδl)2

= v − η2λδl(λδh + λδl)

(1− λδh)(1− λδh − λδl)2
< v.

Similarly, it can be shown that the second and third cases lead to infeasible solutions. When(7) and (10) bind,

the profit becomes πD = λδh

(
v − η1

1−λδh

)
+ λδl

(
v − η1

1−λδh −
η2λ(δh+δl)

(1−λδh−λδl)2
)

, which after using δl = δt − δh
equals λδt

(
v − η1

1−λδh −
η2λδt

(1−λδt)2
)

+ η2λ
2δhδt

(1−λδt)2 . For any given δt, the second derivative ∂2πD
∂δ2h

= − 2η1λ
3δt

(1−λδh)3 < 0

and the profit is strictly concave in δh. The first derivative ∂πD
∂δh

= − η1λ
2δt

(1−λδh)2 + η2λ
2δt

(1−λδt)2 and equating it

to zero gives δh =
√
η2−(1−λδt)√η1

λ
√
η2

≤ δt ∀0 ≤ δt ≤ 1. However, we need δh ≥ max (0, δt − (1− q)) and

δh ≤ q for it to be feasible, and hence δ∗h(δt) = min
(

max
(

0, δt + q − 1,
√
η2−(1−λδt)√η1

λ
√
η2

)
, q
)

. Substituting

δh =
√
η2−(1−λδt)√η1

λ
√
η2

, after some algebra, the profit πD = λδt

(
v −

√
η2(2
√
η1−√η2)

1−λδt

)
which is strictly concave

in δt because ∂2πD
∂δ2t

= − 2λ2√η2(2√η1−√η2)
(1−λδt)3 < 0. Similarly, when δh = 0, δt + q − 1, q, the profits are given

by λδt

(
v − η1 − η2λδt

(1−λδt)2
)

, λδt

(
v − η1

1−λq+λ−λδt −
η2λ(1−q)
(1−λδt)2

)
, and λδt

(
v − η1

1−λq −
η2λ(δt−q)
(1−λδt)2

)
respectively,

which are all strictly concave (the second derivatives are all negative). Hence πD(δ∗h(δt), δt) is piecewise
concave in δt. It is also continuous in δt because (i) πD(δh, δt) is continuous in (δh, δt) and (ii) δ∗h(δt) is also
continuous in δt. So there is a unique δ∗t that maximizes πD.

Proof (Proof of Theorem 1) The profits π∗S and π∗D are strictly increasing in v because an IR constraint
always binds under optimality in both problems S and D. From Proposition 3, we find that π∗S is ei-

ther
(√
v −√η2

)2
, λ(1 − q)

(
v − η2

1−λ+λq

)
,
(√
v −√η1

)2
, or λ

(
v − η1

1−λ

)
. All these functions are con-

vex in v and π∗S is continuous and differentiable in v so that π∗S is also convex in v. For problem D,
from the proof in Proposition 4, we find that the best profit for any given δt is one of the following four

functions (corresponding to different values of δ∗h(δt)): λδt

(
v −

√
η2(2
√
η1−√η2)

1−λδt

)
, λδt

(
v − η1 − η2λδt

(1−λδt)2
)

,

λδt

(
v − η1

1−λq+λ−λδt −
η2λ(1−q)
(1−λδt)2

)
, and λδt

(
v − η1

1−λq −
η2λ(δt−q)
(1−λδt)2

)
. Clearly, if δ∗t = 0 then the profit is zero

(independent of v), or if δ∗t = 1/λ(η1 − η2)/η1 then it is linearly increasing in v; hence, it is convex in
both cases. Otherwise, it is an interior solution and makes one of the derivatives of the above four func-

tions wrt δt zero. Applying Envelope Theorem we find that
dπ∗
D

dv = λδ∗t (v), in which δ∗t (v) is the optimal
δt when customers’ valuation is v, because the partial derivative of all the four functions wrt v is λδt.
Also, δ∗t (v) is increasing in v because (i) their derivatives wrt δt are increasing in v and (ii) the functions

are concave in δt. Hence
dπ∗
D

dv is increasing in v and so pi∗D is convex in v. Because the two functions
are convex and strictly increasing, they intersect at most at two points, which yields the result on the

threshold(s) in Proposition 1. As v → ∞, π∗S → λv − η1λ
1−λ . If 1

λ

(
1− η2

η1

)
< 1 then δ∗t < 1 ∀v > 0

and so limv→∞ π∗D < λδ∗t v < λv − η1λ
1−λ . Otherwise, limv→∞ δ∗t = 1 and after some algebra, we obtain

limv→∞ π∗D = λv − η1λ
1−λq −

η2λ
2(1−q)

(1−λ)2 > limv→∞ π∗S = λv − η1λ
1−λ because η2

η1
< 1−λ

1−λq .

Proof (Proof of Proposition 5) In the first case, p1 + η1
1−λ ≤ p2 + η1 implies p1 + η2

1−λ ≤ p2 + η2. Because
the prices are non-negative, SP 1 benefits from satisfying more customers and so δ∗11 = q and δ∗12 = q.
Alternatively, in the last case the price p1 is too high and so SP 1 cannot satisfy any customers. In
the second case, we have p1 + η1 < p2 + η1/(1 − λ) (since p1 < p2) and p1 + η1

1−λ > p2 + η1 so that
p1 + η1/(1 − λα1) = p2 + η1/(1 − λ + λα1) and 0.5 < α1 < 1. Also, α2 > α1 because either α2 = 1 or
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p1 +η2/(1−λα2) = p2 +η2/(1−λ+λα2). Since p1 < p2 we have p1 +η1/(1−λδ1) ≤ p2 +η1/(1−λ+λδ1)⇒
p1 + η2/(1 − λδ1) ≤ p2 + η2/(1 − λ + λδ1) and patient customers get a preference over impatient ones.
Under optimality SP 1 satisfies the maximum amount of customers while satisfying (12) and (13); hence
δ∗12 = min(α2, 1 − q) and δ∗11 = (α1 − δ∗12)

+
. Similarly, in the fourth case, it can be shown that impatient

customers get a preference, and the optimal fractions can be derived. Finally, in the third case, the prices
are equal and so the total fraction of customers satisfied by each SP has to be 0.5. However, note that unlike
the other cases, the fractions of patient and impatient customers are not unique but that does not affect the
profits.
If the SPs just set the prices, we prove that self-selection by customers still results in the same fractions.
It is evident in the first, third, and fifth cases in Proposition 5 because different δ11 or δ12 values result in
higher dis-utility for some customers. In the second case, we first note that the total fraction of customers
satisfied δ1 (δ1 = δ11 + δ12) is at least α1 (otherwise some customers would benefit in shifting from SP 2 to
SP 1). There are two possibilities: (i) δ1 = α1 which is possible only when all the patient customers who get
a preference are satisfied, i.e., δ12 = 1 − q. Further, 1 − q ≤ α2 because otherwise some patient customers
would be better by shifting from SP 1 to SP 2, or (ii) δ1 > α1 in which none of the impatient customers
buy from SP 1 (if any of them did, they would be better by buying from SP 2 instead) so that δ11 = 0;
the impatient customers buy from SP 1 until either all of them do so or they obtain the same dis-utility as
buying from SP 2 and hence δ12 = min(α2, 1 − q). Similarly, we can show that self-selection also results in
the same fractions in the fourth case.

Proof (Proof of Theorem 2) We use superscript ˜ to denote the corresponding equilibrium values. First,
we show by contradiction that an equilibrium, if it exists, has to be symmetric with p̃1 = p̃2 (and hence
α̃1 = α̃2 = 0.5). Suppose p̃1 < p̃2. If p̃1 + η1

1−λ ≤ p̃2 + η1 then π̃2 = 0. It is not an equilibrium because SP 2
can obtain a positive profit by reducing the price from p̃2 to p̃1. Hence p̃1+ η1

1−λ > p̃2+η1 and α̃1 < α̃2. Then,

from Proposition 5, we know that δ̃11 =
(
α̃1 − δ̃12

)+
and δ̃12 = min(α̃2, 1 − q). Further, either α̃2 ≤ 1 − q

or α̃1 ≥ 1 − q because otherwise α̃1 < 1 − q < α̃2 with δ̃11 = 0 and δ̃12 = 1 − q and it does not yield an
equilibrium because price of SP 1 can be increased until α1 = 1 − q without any loss in her sales, thereby
increasing her profit.

Suppose α̃2 ≤ 1 − q then δ̃11 = 0 and δ̃12 = α̃2 so that δ̃21 = q and δ̃22 = 1 − q − α̃2 because all the
customers, due to their high valuation, buy from one of the SPs. Also, due to a result for SP 2 analogous to

that in Proposition 5 (case 4), we have δ̃21 = min(α1, q) and δ̃22 =
(
α̃2 − δ̃21

)+
. Hence α̃2 − q = 1− q − α̃2

so that α̃2 = 0.5 which implies that p̃1 = p̃2 and α̃1 = α̃2 = 0.5, a contradiction. Similarly, if α̃1 ≥ 1 − q
then δ̃11 = α̃1 + q − 1 and δ̃12 = 1− q so that δ̃21 = 1− α̃1 and δ̃22 = 0. Also, we have δ̃21 = min(α̃1, q) and

δ̃22 =
(
α̃2 − δ̃21

)+
. Hence min(α̃1, q) ≥ α̃2 which implies that α̃1 ≥ α̃2, a contradiction.

Similarly, it can be shown that p̃1 > p̃2 results in contradictions. Therefore, p̃1 = p̃2 with α̃1 = α̃2 =
δ̃1 = δ̃2 = 0.5. If q ≥ 0.5 and 0 < δ∗1 < 1 then, after some algebra, we find from Proposition 5 that (i)
p1 < p2 implies δ∗11 = α1 + 1 − q and δ∗12 = 1 − q and (ii) p1 > p2 implies δ∗11 = α1 and δ∗12 = 0. Hence
δ∗1 = α1 ∀p1, p2 and p1 + η1

1−λδ∗1
= p2 + η1

1−λ+λδ∗1
. The equilibrium price is obtained by equating the derivative

of λδ1

(
p2 + η1

(
1

1−λ+λδ1 −
1

1−λδ1

))
with respect to δ1 at δ1 = 0.5 to zero. If q < 0.5 then Proposition 5

implies that ∀p1, p2 s.t. q ≤ α2 ≤ 1− q either δ∗11 = 0 and δ∗12 = α2 (if p1 < p2) or δ∗11 = q and δ∗12 = α2 − q,
and so δ∗1 = α2 with p1 + η1

1−λδ∗1
= p2 + η1

1−λ+λδ∗1
. Because the equilibrium has to be symmetric, it’s necessary

that the derivative of λδ1

(
p2 + η1

(
1

1−λ+λδ1 −
1

1−λδ1

))
with respect to δ1 at δ1 = 0.5 be zero. However,

that is not sufficient. An SP should also obtain a lower profit by charging a higher price and selling only to
impatient customers (it is relatively straightforward to show that charging a lower price than the equilibrium
price of η2λ

(1−λ2 )
2 always reduces the profit).

Proof (Proof of Proposition 6) The first and second cases, in which β1 ≤ β2 and β1 > β2, are similar
to to the second and fourth cases in Proposition 5 respectively. The proofs for (i) deriving the optimal
values of δ11 and δ12 and (ii) showing that they result uniquely from customers’ self-selection are similar
to the corresponding proofs in Proposition 5. The four possibilities directly follow from the mathematical
expressions for δ∗11 and δ∗12.
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Proof (Proof of Theorem 3) The first part of Theorem 3 follows from Proposition 6. The case with δ̃11 > 0
and δ̃12 = 1 − q does not occur at equilibrium because SP 2 would then be better by just offering single
service. Next, we derive the range(s) of q for which the strategy of SP 1 is dominated under different cases.
I Suppose SP 1 only satisfies impatient customers at equilibrium. Then her profit is λδ̃11p̃1. Also, due to
self-selection and all the customers buying from one of the SPs, we have p̃1+ η1

1−λδ̃11
= p̃2h+ η1

1−λq+λδ̃11
. From

optimizing the profit and equating the derivative to zero, we have p̃1 = η1λδ̃11

(
1

(1−λq+λδ̃11)2
+ 1

(1−λδ̃11)2

)
.

Also, note that p̃1 + η2
1−λδ̃11

≥ p̃2l + η2

(1−λq+λδ̃11)(1−λ+λδ̃11)
. We first consider the case when this inequality

binds. We show that, under some conditions, the profit of SP 1 can be increased by offering differentiated
service. Let ε > 0, p1h ≡ p̃1, and p1l ≡ p̃2l + η2

(1−λq+λδ̃11)(1−λ+λδ̃11+λε)
− η2

(1−λδ̃11)(1−λδ̃11−λε)
. If SP 1

charges p1h and p1l for high-priority and low-priority services (and the prices of SP 2 remain the same),
then fractions δ11 and ε select them respectively. This strategy is feasible and profitable if and only if
η2λ(δ̃11+ε)

(1−λδ̃11−λε)2 ≤ p1h− p1l ≤
η1λ(δ̃11+ε)
1−λδ̃11−λε

(strong IC conditions) and p1l > 0. We show that these conditions are

satisfied for a small enough ε > 0 if q ≤ 1/3 or 0.5 ≤ q < q̂ with q̂ = min
(

max{q : λq
(1−λq)3 ≤ 1

(1−λ+λq)2 }, 1
)

.

We find that

p1l = p̃2l +
η2(

1− λq + λδ̃11

)(
1− λ+ λδ̃11 + λε

) − η2(
1− λδ̃11

)(
1− λδ̃11 − λε

)

= p̃1 +
η2

1− λδ̃11
− η2(

1− λq + λδ̃11

)(
1− λ+ λδ̃11

) +
η2(

1− λq + λδ̃11

)(
1− λ+ λδ̃11 + λε

)

− η2(
1− λδ̃11

)(
1− λδ̃11 − λε

)

= p̃1 +
η2

1− λδ̃11
− η2

(1− λδ̃11)(1− λδ̃11 − λε)
− η2λε

(1− λq + λδ̃11)(1− λ+ λδ̃11)(1− λ+ λδ̃11 + λε)

= p1h −
η2λ(δ̃11 + ε)

(1− λδ̃11 − λε)2
+

η2λ
2ε(δ̃11 + ε)

(1− λδ̃11)(1− λδ̃11 − λε)2

− η2λε

(1− λq + λδ̃11)(1− λ+ λδ̃11)(1− λ+ λδ̃11 + λε)
.

Hence p1h − p1l ≥
η2λ(δ̃11+ε)

(1−λδ̃11−λε)2 for small enough ε > 0 if limε→0
η2λ

2ε(δ̃11+ε)

(1−λδ̃11)(1−λδ̃11−λε)2
−

η2λε

(1−λq+λδ̃11)(1−λ+λδ̃11)(1−λ+λδ̃11+λε)
< 0, i.e., λδ̃11

(1−λδ̃11)3
< 1

(1−λq+λδ̃11)(1−λ+λδ̃11)2
. Because δ̃11 ≤ q and the

LHS is increasing in δ̃11 while the RHS is decreasing in δ̃11, this inequality holds if q < q̂. Also, because

p1h − p1l → η2λδ̃11

(1−λδ̃11)2 <
η1λδ̃11
1−λδ̃11

as ε → 0, we have p1h − p1l ≤
η1λ(δ̃11+ε)
1−λδ̃11−λε

for small enough ε > 0. Further,

p1l is positive because as ε→ 0, p1l → p̃1 − η1λδ̃11
1−λδ̃11

> 0.

Suppose SP 1 satisfies only impatient customers and p̃1 + η2
1−λδ̃11

> p̃2l + η2

(1−λq+λδ̃11)(1−λ+λδ̃11)
. Then

p̃2h− p̃2l = η2λ(1−δ11)
(1−λ+λδ11)2 because otherwise p2l can be increased to increase the profit of SP 2. Also, note that

if q < q then after some algebra, as shown above, p1h− p1l ≥
η2λ(δ̃11+ε)

(1−λδ̃11−λε)2 for small enough ε > 0. However,

it is now non-trivial and we need some more properties to show that p1h − p1l ≤
η1λ(δ̃11+ε)

(1−λδ̃11−λε)
for such ε > 0.

Further, note that if this inequality holds then p1l > 0. First, we find that δ̃11 > q/2. That is because

for any given p1, π2,SD = λp∗2hδ
∗
2h + λ(1 − q)p∗2l = λ

(
p1 + η1

1−λq+λδ∗2h
− η1

1−λδ∗2h

)
δ∗2h + λ(1 − q)p∗2l and since

dp∗2l
dδ∗2h

< 0 (the optimal price p∗2l is either limited by p1 through constraint (17) or by constraint (17); both these

constraints become tighter as δ2h increases) and
dπ2,SD

dδ∗2h
|δ∗2h=δ̃2h = 0, we have p̃1 − η1

(1−λδ̃2h)2
+ η1

(1−λδ̃2h)2
> 0.

Substituting for p̃1 (see above) and using δ̃2h = q− δ̃11, after some algebra, we get (1−λq+λδ̃11)3 > (1−λq)3
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and so δ̃11 > q/2. The price difference for SP 1, as ε→ 0, is then given by

p1h − p1l = (p1h − p2h) + (p2h − p2l) + (p2l − p1l)

=

(
η1

1− λq + λδ̃11
− η1

1− λδ̃11

)
+

(
η2λ(1− δ̃11)

(1− λ+ λδ̃11)2

)

+

(
η2

(1− λδ̃11)2
− η2

(1− λq + λδ̃11)(1− λ+ λδ̃11)

)

<
η2

(1− λδ̃11)2
+

η2λ(1− δ̃11)

(1− λ+ λδ̃11)2
− η2

(1− λq + λδ̃11)(1− λ+ λδ̃11)

<
η2

(1− λq)2 +
η2λ(1− q/2)

(1− λ+ λq/2)2
− η2

1− λ+ λq
,

in which the last inequality is due to q/2 < δ̃11 < q. Hence if η2
(1−λq)2 + η2λ(1−q/2)

(1−λ+λq/2)2 −
η2

1−λ+λq ≤
η1λq/2
1−λq/2 <

η1λδ̃11
1−λδ̃11

then ∃ε > 0 s.t. p1h − p1l ≤
η1λ(δ̃11+ε)

(1−λδ̃11−λε)
.

II Suppose SP 1 satisfies only patient customers. Then her profit is λδ̃12p̃1 and we have p̃1 + η2
1−λδ̃12

=

p̃2l+
η2

(1−λq)(1−λ+λδ̃12)
. Also, we have p̃1+ η1

1−λδ̃12
≥ p̃2h+ η1

1−λq . We first consider the case when this inequality

binds. Let ε > 0, new prices p1h and p1l be such that p1h + η1
1−λε = p2h + η1

1−λq+λε and p1l + η2
(1−λε)(1−λδ̃12)

=

p2l + η2
(1−λq+λε)(1−λ+λδ̃12)

. With these prices, the new profit is λεp1h + λ(δ̃12 − ε)p1l. Also, we have

p1h − p1l = (p1h − p2h) + (p2h − p̃1) + (p̃1 − p2l) + (p2l − p1l)
=

η1
1− λq + λε

− η1
1− λε +

η1

1− λδ̃12
− η1

1− λq +
η2

(1− λq)(1− λ+ λδ̃12)
− η2

1− λδ̃12
+

η2

(1− λε)(1− λδ̃12)
− η2

(1− λq + λε)(1− λ+ λδ̃12)

=
η1λδ̃12

(1− λδ̃12)(1− λε)
+

(η2 − η1)λε

(1− λδ̃12)(1− λε)
+

λε

(1− λq)(1− λq + λε)

(
η2

1− λ+ λδ̃12
− η1

)

<
η1λδ̃12

(1− λδ̃12)(1− λε)
,

in which the last inequality follows from η2/η1 < 1 − λ. Hence, p1h − p1l < (→) η1λδ̃12
1−λδ̃12

∀ε > 0 (as ε → 0)

so that the IC constraints are satisfied for small enough ε > 0. In addition to satisfying the IC constraints,
the new profit has to be higher. Next, we show that if ε is low then λεp1h + λ(δ̃12 − ε)p1l ≥ λδ̃12p̃1. This
inequality holds if and only if

p1h − p1l ≥
δ̃12
ε

(p̃1 − p1l)

⇔ p1h − p2h + p2h − p2l + p2l − p1l ≥
δ̃12
ε

(p̃1 − p2l + p2l − p1l)

⇔ p2h − p2l +
η1

1− λq + λε
− η1

1− λε +
η2

(1− λε)(1− λδ̃12)
− η2

(1− λq + λε)(1− λ+ λδ̃12)

≥ η2λδ̃12

(1− λq)(1− λq + λε)(1− λ+ λδ̃12)
+

η2λδ̃12

(1− λε)(1− λδ̃12)

⇔ p2h − p2l +
η1

1− λq + λε
− η1 − η2

1− λε −
η2(1− λq + λδ̃12)

(1− λq)(1− λq + λε)(1− λ+ λδ̃12)
≥ 0

⇐ η2λ(1− δ̃12)

(1− λ+ λδ̃12)2
+

η1
1− λq + λε

− η1 − η2
1− λε −

η2(1− λq + λδ̃12)

(1− λq)(1− λq + λε)(1− λ+ λδ̃12)
≥ 0

⇐ η2(1− λq + λδ̃12)

(1− λq)2(1− λ+ λδ̃12)
− η2λ(1− δ̃12)

(1− λ+ λδ̃12)2
− η2 <

η1λq

1− λq
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for low ε > 0. Further, for any given q, η2(1−λq+λδ̃12)
(1−λq)2(1−λ+λδ̃12)

and η2λ(1−δ̃12)
(1−λ+λδ̃12)2

are both strictly decreasing in

δ̃12), and (1− q)/2 < δ̃12 < 1 − q (the reasoning for (1 − q)/2 < δ̃12 is similar to that of q/2 < δ̃11). Hence

the last inequality above is satisfied ∀δ̃12 if η2(2+λ−3λq)
(1−λq)2(2−λ−λq) −

η2λq
(1−λq)2 − η2 <

η1λq
1−λq .

Suppose SP 1 satisfies only patient customers and p̃1 + η1
1−λδ̃12

> p̃2h+ η1
1−λq . Then p̃2h− p̃2l = η1λ(1−δ̃12)

1−λ+λδ̃12
;

otherwise p2h can be increased. It can still be shown that p1h − p1l ≤ η1λδ̃12
1−λδ̃12

and that the new profit is

higher for some ε > 0 if q satisfies the above inequality. However, the condition p1h − p1l ≥ η2λδ̃12
(1−λδ̃12)2

is no

longer trivially satisfied. After some algebra, as ε→ 0, we have p1h−p1l = p1h−p2h+p2h−p2l+p2l−p1l =
η1λq
1−λq + η1λ(1−δ̃12)

1−λ+λδ̃12
+ η2

1−λδ̃12
− η2

(1−λq)(1−λ+λδ̃12)
. Because (1 − q)/2 < δ̃12 < 1 − q, p1h − p1l ≥ η2λδ̃12

(1−λδ̃12)2
for

some ε > 0 if η1λq
1−λq + η1λ(1−(1−q))

1−λ+λ(1−q) + η2
1−λ(1−q)/2 −

η2
(1−λq)(1−λ+λ(1−q)/2) >

η2λ(1−q)
(1−λ+λq)2 , i.e., 2η1λq

1−λq + 2η2
2−λ+λq −

2η2
(1−λq)(2−λ−λq) −

η2λ(1−q)
(1−λ+λq)2 > 0.

Proof (Proof of Proposition 7) After some algebra, we find that

∂G
∂x

= λ(p2h − p2l) +
λ

(1− λq + λx)2

(
η1(1− λq)− η2(1− λq + λy)

1− λ+ λy

)
− λ(η1 − η2)

(1− λx)2
,

∂2G
∂x2

=
−2λ2

(1− λq + λx)3

(
η1(1− λq)− η2(1− λq + λy)

1− λ+ λy

)
− 2λ2(η1 − η2)

(1− λx)3
.

Also, we find that ∂2G
∂x2 < 0 ∀0 ≤ x, y ≤ 1 because η2(1−λq+λy)

1−λ+λy is decreasing in y and hence η1(1 − λq) −
η2(1−λq+λy)

1−λ+λy ≥ η1(1 − λq) − η2(1−λq)
1−λ ≥ 0 as η2/η1 ≤ 1 − λ. Equating ∂G

∂x at x∗ to zero and solving for y∗

gives (24). Similarly, the partial derivatives of G wrt y are given by

∂G
∂y

= λp2l +
η2(1− λ+ λx)

1− λq + λx
· λ

(1− λ+ λy)2
− λη2

(1− λy)2
,

∂2G
∂y2

= −2η2(1− λ+ λx)

1− λq + λx
· λ2

(1− λ+ λy)3
− 2λ2η2

(1− λy)3
,

and hence ∂2G
∂y2 < 0 ∀0 ≤ x, y ≤ 1. Equating ∂G

∂y at y∗ to zero and solving for x∗ gives (25). We prove that there

is at most a single x∗ (and hence a single y∗ = H1(x∗)) by first showing that H2(H1(x)) is strictly convex
and increasing over those ranges of (x, y) which can satisfy (24) and (25) with 0 ≤ x, y ≤ 1. First, note

that p2h−p2l
η2

≤ η1−η2
η2(1−λx)2 because otherwise H1(x) < 1

λ

(
λ− 1 + λ(1−q)

η1
η2

(1−λq)−1

)
≤ 1

λ

(
λ− 1 + λ(1−q)

1−λq
1−λ −1

)
=

0. Similarly, p2l
η2
≤ 1

(1−λy)2 so that H2(y) ≥ 014. H1(x) is increasing because both (1 − λq + λx)2 and
η1−η2

η2(1−λx)2 −
p2h−p2l
η2

are both non-negative and increasing in x so that the denominator in (24) is decreasing

in x. In order to show strict convexity, let H̃1(x) ≡ (1−λq+λx)2
(

η1−η2
η2(1−λx)2 −

p2h−p2l
η2

)
. Then H̃1 is strictly

convex because it’s the product of two strictly convex, increasing, and non-negative functions. Further,

because H1(x) = 1
λ

(
λ− 1 + λ(1−q)

η1
η2

(1−λq)−1−H̃1(x)

)
is strictly convex and increasing (SCI) in H̃1, H1(x) is

SCI in x. Similarly, it can be shown that H2(y) is also SCI, and hence H2(H1(x)) is SCI. Therefore
if H2(H1(0) < 0 then ∃ at most a single x∗ such that H2(H1(x∗) = x∗. Finally, let y0 ≡ H1(0) ≤
1
λ

(
λ− 1 + 1−q

q
(
η1
η2
·(1−λq)−(2−λq)

)
)

. After some algebra, we find that H2(H1(0)) < 0 if (1−λ+λy0)2
(1−λy0)2 ≤ 1−λ

1−λq ,

i.e., 1−λ+λy0
1−λy0 ≤

√
1−λ√
1−λq ⇐

1−q
q
(
η1
η2
·(1−λq)−(2−λq)

) ≤ (2−λ)
√
1−λ√

1−λq+
√
1−λ , which yields (26).

Proof (Proof of Theorem 4) If H2(H1(0))|p2h=p̃2h,p2l=p̃2l < 0, then prices p2h = p̃2h and p2l = p̃2l yield

unique values of x and y that satisfy (24) and (25). Further, x = δ̃1h = q/2 and y = δ̃1h + δ̃1l = 1/2

14A stronger inequality needs to be satisfied for H2 to be non-negative but this inequality is sufficient for the proof.
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do satisfy them. Because the dis-utilities from high-priority and low-priority services are equal for SPs 1
and 2, the prices p̃1h = p̃2h and p̃1l = p̃2l are the best response prices of SP 1. Similarly, p̃2h and p̃2l are
SP 2’s best response prices when SP 1 charges p̃1h and p̃1l. Hence these prices result in an equilibrium.
Further, they result in unique δ̃’s. The reasoning is as follows. Because the prices at the two SPs are
equal, δ̃1h = δ̃2h; otherwise δ̃1h > δ̃2h (or δ̃1h < δ̃2h) and some customers would benefit from purchasing
at SP 2 instead of SP 1 (SP 1 instead of SP 2). Similarly δ̃1l = δ̃2l and hence δ̃1 = δ̃2 = 0.5. Finally, if
2η2λ

(2−λ)2 ≤ p̃1h − p̃1l ≤ η1λ
(2−λ) then the IC conditions are satisfied (note that these conditions depend only on

the total amount of customers buying at SP 1 or SP 2, not on the individual amounts buying high-priority
and low-priority services), and all the impatient (patient) customers purchase high-priority (low-priority)
service thereby yielding δ̃1h = δ̃2h = q/2 and δ̃1l = δ̃2l = (1− q)/2.
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