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We investigate the impact of delay announcements on the coordination within hospital networks using

a combination of empirical observations and numerical experiments. We show that patients take delay

information into account when choosing emergency service providers and that such information can help

increase coordination in the network, leading to improvements in performance of the network, as measured

by Emergency Department wait times. Our numerical results indicate that the level of coordination that can

be achieved is limited by the patients’ sensitivity to waiting, the load of the system, the heterogeneity among

hospitals, and, importantly, the method hospital use to estimate delays. We show that delay estimators that

are based on historical average may cause oscillation in the system and lead to higher average waiting times

when patients are sensitive to delay. We provide empirical evidence which suggests that such oscillations

occurs in hospital networks in the US.
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1. Introduction

Delay announcements have become commonplace in service systems. They serve as a means to influ-

ence quality perception, system operation, and customer sentiment towards the service provider.

As a consequence, understanding the impact of delay announcements on customer choices and

system operations, as well as the development of methods to support such announcements, has

attracted the attention of the Operations Research and Management communities in the past few

years. Thus far, most of the research in this area concentrated on call center announcements, where

it was shown that such information influences, for example, customer abandonment (Mandelbaum

and Zeltyn 2013, Yu et al. 2014).

In recent years, a growing number of hospitals have begun posting their Emergency Department

(ED) waiting times on websites, billboards and smartphone apps (see for example Figure 1(b)). Here

we examine the effect of this information (also referred to as delay announcements or waiting time

announcements) on the choices made by patients. Although the primary consideration of patients

in selecting an ED is its timely provision of treatment, it is clearly not the only consideration.

The reputation of the hospital, its expertise, and the patients’ medical insurance plan, as well as

recommendation by the primary physician all influence such choice (Marco et al. 2012). Given the

effort required to provide waiting time information for hospital ED services, it is important to ask,

do people actually seek this information when choosing a hospital? Is the proportion of people

who seek such information large enough to have an operational impact on the healthcare system,

and hospital networks in particular? Do hospitals provide the right information to help achieve

coordination (resource pooling) in the network?

Here we attempt to answer questions regarding the publication of wait times and their impact

on the customer choice and the system performance using a combination of empirical analysis

and numerical experiments. The empirical data provides objective evidence for the use of delay

information. We base our analysis on two primary sources of data: first, we collected information of

real ED delay announcements from more than 200 hospitals in the US over a period of 3 months;

second, we observe anonymized queries made to the Bing search engine by people seeking ED

delay information during that period. The latter information is used to estimate public interests in

such delay announcements and their influence on the delays themselves. We notice that a growing

number of people search for ED wait times: Figure 1(a) shows the query volume to the Google

search engine for “hospital wait time” and “ER wait time” (trends.google.com). As the figure

demonstrates, this volume has been steadily rising in the past 4 years.

Using insights from queueing theory, we conduct empirical analysis of the hospital networks,

and study the operational influence of delay announcements on future delays and on correlation

of delays among hospitals. Throughout the paper we refer to two hospitals with correlated waiting
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(a) Google Trends query volume regarding ED wait

times

Slide&8(
Service&Operations&33&
Lariviere( 8(

(b) Real time delays announcement web-page of emergency

departments in north Texas, USA.

Figure 1 Internet publication and query trends of ED wait times.

times as synchronized EDs and measure that level of synchronization. We then use a stylized

simulation model to investigate how system characteristics such as patients’ sensitivity to waiting,

load and different delay estimators influence the phenomena we observed in the data.

1.1. Scientific Background

Delay announcements have a measurable influence on customer satisfaction (Carmon and Kah-

neman 1996, Larson 1987). Such announcements can be given in a variety of ways, ranging from

vague information on the current load to specific information on the customer’s location in the

queue or their expected waiting times. The effect of these messages differ. Munichor and Rafaeli

(2007) showed that, in a call center environment, providing information about the location in the

queue will result in lower abandonment rates and higher customer satisfaction, as compared to

other waiting time fillers such as music or apologies. Allon et al. (2011) developed a game theoretic

model of a strategic service provider and a strategic customer, which provides a theoretical basis

for determining how vague delay announcements should be.

One of the challenges in incorporating detailed delay announcements is producing a credible

estimation of the delay. In a series of papers, Ibrahim and Whitt proposed several delay estimators,

based on queueing theory, for customers joining a multi-server service system. They considered

queuing systems with a time-homogeneous arrival process and staffing level, as well as a time-

varying one (Ibrahim and Whitt 2009, 2011). Their proposed estimators are based on a real-time

history of the queue, e.g., the delay of the last customer who entered the agent’s service (LES) and

the total current delay of the customer at the head of the line (HOL). These estimators perform well

in reality as was shown in Senderovich et al. (2014). Senderovich et al. (2014) used queue mining
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techniques to solve the on-line delay prediction problem, validating the queueing theory-based

predictors with real data.

Estimating delays in EDs is much more difficult than in call centers, because of the inherent

complexity and transient nature of these systems. ED patients do not wait in a single queue but

instead have a process they must go through. This process involves multiple resources (physicians,

nurses, labs, etc.), and takes between 3 to 6 hours to complete. The apparent complexity is even

greater when one considers the fact that the arrival rate is time-varying, and that the route of each

patient is unknown ahead of time. Plambeck et al. (2014) developed a forecasting method of ED

delay estimator that are based on a combination of queueing and machine learning methods. In

our data, none of the hospitals uses such sophisticated models. Instead, hospitals publish historic

average waiting times using a 4-hour moving average, a measure which has become the convention

in US hospitals.

Delay announcements influence not only customer satisfaction but also customer actions.

Announcing the expected delay as customers enter the system, especially in heavily loaded peri-

ods of time, may cause customers to balk (leave the system upon arrival) or abandon after a

short time (Mandelbaum and Zeltyn 2013, Yu et al. 2014). Delay announcements may serve as a

means to reduce the offered load on a service system. If announcing a specific (long) wait causes

some customers to abandon, the waiting time of the remaining customers will be shortened. This

feedback may cause difficulties in analyzing the steady-state performance of the system. Armony

et al. (2009) explored the effect of delay announcement in an M/GI/s+GI queue, proposing two

approximations for the steady state performance of such systems. Ibrahim et al. (2013) developed

delay estimators that took these feedback effects into account.

Since delay announcements influence customer actions and customer waiting costs (Yu et al.

2014), they can be used as an operational tool. For example, delay announcements are used in call

centers to help customers choose their time of service via a call-back option (Armony and Maglaras

2004). In theme parks, delay announcements assist customers in choosing preferred queues, hence

raising questions on their impact on resource allocation (Kostami and Ward 2009).

The above-mentioned research investigated the impact of delay announcements on the company

which provides the information, not from the network perspective thereof. When multiple compa-

nies are present (for example, when several EDs are located in the same area), it is important to

investigate the impact of such announcements on social welfare in a network setting, where the

announcements of one service provider may impact the demand for services at other providers.

Moreover, in the setting of an ED, service providers are not only competing with each other but

also have incentives to cooperate. On one hand, hospitals want patients to come to their ED, as

the EDs are considered as the ‘gateway’ to a range of services offered by a hospital. On the other
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hand, the resources (capacity) of a hospital are very limited, due to the expensive nature of such

services, which in turn causes occasional high congestion and long waiting times.

When an ED is overcrowded, delays may cause quality of care to deteriorate (Chalfin et al.

2007). At such times the hospital has an incentive to ease some of the load by reducing the arrival

rate. Some hospitals do this through ambulance diversions. However, ambulance diversion may

turn away patients who are most at need of medical care, whereas hospitals may intend to reduce

the arrival rate of the least severe patients. Hence, hospital have an incentive to announce delay

information of the ED as a means to influence the behavior of the least severe patients, especially

when the ED is crowded. These patients can then chose a different ED or delay their visit. In

general, non-acute patient population can account for up to 90% of ED visits (Plambeck et al. 2014).

Assuming patients take such information into account, announcements are expected to smooth the

demand for hospital services throughout the day (and week) and balance patient load between

nearby hospitals. Figure 2 compares the simulated sample path for two uncorrelated systems, where

patients randomly choose which hospital to attend, and two correlated (fully synchronized) systems,

where patients always choose the hospital with the shortest waiting time. We base our analysis

on the observation that in the latter, the waiting times of the two hospitals are synchronized.

Therefore, in this paper, we identify connections between delay announcements and correlation

among workloads at geographically proximate EDs.
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Figure 2 Unsynchronized v.s. synchronized systems.

From a theoretical point of view, hospitals are akin to independent agents where there is no

social planner that balances the load between them. It is known that if some coordination exists,

for example, by having customers always Joining the Shortest Queue (JSQ), the efficiency of the

network could be improved to be almost like that of a fully pooled system (Foley and McDonald
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2001). Even when the fraction of customers choosing a server by the JSQ policy is small, this policy

is still advantageous (Turner 2000). Hence, one of the operational rationales for providing delay

announcements is that they might improve the efficiency of the hospital network, even if not all

patients are strategic or sensitive to waiting.

1.2. Goals and main contributions

We make the following main contributions:

• We show that patients explore delay information provided by hospitals, and do so at a growing

rate.

• Customers take delay information into account when deciding on ED providers and there are

enough of them to have a pooling effect on the hospital network. This is evident as the number

of delay reporting hospitals per unit area and the number of queries about them are significant

indicators in explaining synchronization levels in hospital networks. The distance between the

hospitals is another factor that influence synchronization levels. The larger the distance between

two hospitals, the lower the effect they have on one another.

• Our numerical results show that the synchronization level between two hospitals are influenced

by how sensitive customers are to delay, the load of the system, and the heterogeneity between

hospitals in terms of customer preferences and size.

• If the appropriate method is used for delay estimation (and loads are fairly balanced), the

social welfare of patients in this network increases, i.e., delay announcements will decrease the

average waiting times of all hospitals in the network.

• The accuracy of the waiting time estimator as well as the delay of the estimator in reflecting

the true waiting time have a profound impact on the effectiveness of delay announcements. We find

that the commonly used method of a 4-hour moving average could be problematic. This method

can cause the load to oscillate between hospitals when customers are very sensitive to delay. Our

empirical analysis supports this finding and suggests that small differences in wait times between

geographically proximate hospitals translate, on average, to large future differences and vice versa.

2. Empirical study of announcement impact

In this section, we use the data described above to find objective indicators that patients indeed

use delay information in choosing an emergency service provider, and this has a profound influence

on the network coordination. We also explore how sensitive patients are to differences between

waiting times of different hospitals.
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2.1. Data sources used in this research

First, we identified 211 US hospitals which published their waiting times using RSS feeds as of

March 2013. We collected these waiting times every 5 minutes by polling their RSS feeds between

March and June 2013 (inclusive). The time provided is from entering the ED to when one is

expected to see the first medical provider. No real time information on length-of-stay, or classifica-

tion according to severity is provided. All these hospitals use the same delay estimators, namely,

a moving average over a 4-hour time window. According to the explanation in those website, the

wait time provided does not apply to urgent patients, as these patients are prioritized according to

their medical conditions. Hence, hospitals urge patient to ignore this information if they are in an

immediate threat to their lives. From our data it appears that this information is updated every

15 minutes.

To estimate the total number of hospitals in each area we obtained a list of 36,438 hospitals

identified in the Bing local search application.

Finally, we extracted all queries made using the Bing search engine between March and June

2013 (inclusive) which resulted in visits to the web pages of one of the hospitals in our list. Each

query contained an anonymized user identifier, time stamp, user location (GPS information for

mobile users and zip-code information for other users), the query text, and the pages which were

clicked as a result of this query.

2.2. Results

As a preliminary step, we clustered the 211 hospitals according to their wait times into three groups

using the K-means algorithm. The resulting clusters partition hospitals into three categories: low

wait, medium wait and high wait times. Figure 3 shows the average waiting time of the three

groups over a 3-week period, in 5-minute resolution, which demonstrate both the daily pattern and

the variation in waiting time among the three groups.
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Figure 3 Average waiting time of the three groups of hospitals—low wait, medium wait and high wait times.
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In most of the empirical analysis, we want to ignore synchronization that is due to diurnal

patterns. Hence, for each hospital, we removed the hourly and daily waiting time trends from the

observed waiting times in the following manner. First, the average waiting times for each hospital

at each hour of the day and each day of the week was computed. Then, for each hospital, a linear

predictor was trained to predict the waiting times using the appropriate hourly and daily waiting

times, and the predicted waiting times were removed from the observed waiting times. We refer to

the resulting detrended waiting times as the Residual Waiting Times (RWT).1

Figure 4 plots the RWT of two hospital pairs, suggesting that some ED pairs are more synchro-

nized than others. The first factor to influence synchronization is distance—we expect geographi-

cally close hospitals to be more synchronized. Indeed, there is a negative correlation between the

distance of hospitals and the level of synchronization of these hospitals. Specifically, the correlation

between the distance of hospitals and the correlation of their RWT is −0.138 (p-value < 10−5).

Observation 1. Distance influences synchronization levels: synchronization is stronger for

closer hospitals. In other words, the larger the distance between two hospitals, the lower the effect

they have on one another.

This geographical synchronization could be attributed to several factors, e.g., information pro-

vided to ambulance services. What we seek to understand is whether the announcement of antici-

pated delays for the general population contributes to this synchronization, and to what extent.
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(a) Highly synchronized EDs (32 km
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Figure 4 Waiting time announcements of different EDs.

We note in passing that wealth does not seem to be associated with more hospitals publishing

their wait times: To each of the 36,438 hospitals identified in the Bing local search application we

1 The average ratio between the weight of the hourly trend and the weight of the daily trend was 0.999, indicating
that both terms had an almost identical effect. Together, these two variables explained 85.0% of the variance of the
original waiting times.
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found the 2012 adjusted gross income data of the closest zip code from IRS data. Using these data

we found that wait times are published in locations where the median income is the same to within

0.5% (P = 0.017, ranksum test).

2.2.1. Do patients use delay information when deciding on ED services? As noted

above, people query for delay information at a growing rate in the past several years. To investigate

whether patients use delay information and to understand its influence on synchronization, we

model the level of synchronization between clusters of geographically close hospitals (less than 20

km apart) using five variables.

To define ‘geographically close hospitals’, we clustered the hospitals which published wait times

according to their geographic location by performing Agglomerative Hierarchical Clustering (Duda

et al. 2001) until no hospitals were found within 20km. This resulted in 46 clusters.

Then, we trained a regression tree (see Figure 5) to predict the average correlation of RWT

within a cluster and modeled each cluster using the following variables:

1. Number of EDs reporting wait time per square km within a cluster.

2. Number of hospitals per square km (either reporting wait time or not) within a cluster.

3. Number of queries made (to the Bing search engine) about the reporting hospitals within the

cluster.

4. Average wait time of the hospitals within the cluster.

5. Number of pediatric EDs within the cluster (some EDs do not, or only during part of the

day, cater to children).

Applying the leave-one-out cross-validation method, we estimated the performance of the model

and found that the Spearman correlation between predicted and actual average RWT correlation

was ρ= 0.397 (P = 0.006), indicating that the variables provide a good explanatory power for the

dependent variable, e.g., the synchronization level as measured by the correlation of RWT.

Observation 2. Customers seem to take delay information into account in their decision mak-

ing process: As evident from Figure 5, the number of delay reporting hospitals per unit area and the

number of queries are significant indicators to explain the hospital network synchronization. The

higher the number of reporting hospitals per unit area is, the higher the correlations are observed.

More queries about the waiting time are associated with higher synchronization levels, as is the

existence of a pediatric ward.

2.2.2. How sensitive patient are to waiting time differences? In this section, we inves-

tigate the cost-of-waiting. The cost-of-waiting influences the sensitivity of patients to waiting times.

If this cost is high, even small gaps of waiting times between geographically close hospitals will
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Figure 5 Regression tree classifier for predicting the in-cluster RWT correlation. Decision nodes show the split-

ting variable and the average correlation at the node (in parenthesis). Leaf nodes show the average

correlation at the node.

influence the patient’s choice. Naturally, a patient with higher severity has a higher cost of wait-

ing. Note that the most urgent patients are usually transported by ambulance to the nearest ED,

and are prioritized in the queue, hence, the reported delays in the website do not apply to them.

Therefore, we examine the impact of delay announcements on the non-urgent population, that may

check the delays before choosing an ED.

We computed the average future differences in waiting times between adjacent hospitals as a

function of the current differences. Let Wi(T ) denote the waiting time of hospital i at time T . First,

we calculated the difference in waiting times ∆T =Wi(T )−Wj(T ) at each time instance T between

pairs of hospitals that are separated by 20km or less. We further calculate ΩT =min(Wi(T ),Wj(T )),

which is the lower of the waiting times among the two hospitals. Then, we computed the average

difference of waiting times between each pair at time T + τ , where τ = [1,2,3,4,5], and stratified

by ∆T at 5-minute increments, that is, 0<∆T ≤ 5 up to 15<∆T ≤ 20 minutes.

The results of this calculation are shown in Figure 6. Figure 6(a) demonstrates that smaller

initial differences in waiting times are associated with higher future differences, and vice versa.

We hypothesize that this counter-intuitive result is due to the cost of waiting, coupled with the

method by which waiting times are given, i.e., as an average of the past 4 hours of wait times. A
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linear cost of waiting (such as the one we use in Section 3) implies that if the difference in wait

times is small, patients choose hospitals randomly, and consequently differences tend to grow. If

differences are large, patients will tend to choose the less loaded one and the difference will become

smaller. As we show in Section 3.3, as the cost of waiting increases, such differences are less prone

to occur. In addition, we show in Section 3.2 that the use of the 4-hour estimators can also cause

such phenomena, even when the cost of waiting is high.

Figure 6(b) shows that future time differences are also dependent on the actual waiting times at

time T , not only the differences: The figure shows ∆T+τ for τ = 5 as a function of two parameters,

namely, ∆T and ΩT . As the figure demonstrates, when the initial difference is small (< 10 min) the

difference in wait times after 5 hours increases, whereas when it is high (> 10 min) it decreases.

However, the rate of change is strongly dependent on the shorter of the wait times: When this time

is long (i.e., 20 min), future differences in wait times change linearly. In contrast, if the minimal

wait time is low (i.e., 5 min), the change is much greater when initial differences are large compared

to when they are small.

(a) Average future wait times as a function of

the difference between the wait times of pairs of

hospitals.

(b) Average ∆T+τ for τ = 5 as a function of the

difference between the wait times at T , for four

levels of ωT . Dotted diagonal line indicates ∆T =

∆T+τ .

Figure 6 Average future wait times.

We attempted to model the future difference between wait times of adjacent hospital pairs using

the current difference and the number of queries made about both hospitals in the current time

period. That is, given the difference in wait times ∆T between two hospitals at time T and the

number of queries made about these hospitals,Nq, between T and T+1 hours, we predict ∆T+τ/∆T

where τ = [1,2,3,4] using a linear regression model:

∆T+τ/∆T =w1 ·∆T +w2 ·NqT +w3
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We then analyzed the correlation between the parameters of the models and the model coef-

ficients, using ∆T values between 0 and 20 minutes, at 2 minute intervals, that is, 0 ≤ ∆T < 2,

2≤∆T < 4, (time units in minutes), etc.. Specifically, the R2 between the middle of each ∆T range

(e.g., 1min for the 0–2min range) and the weight in the regression model of the actual ∆T (w1)

is 0.38, while the R2 between the minimal ∆T and the weight of the queries (w2) is 0.36. The

correlation coefficient was positive for the former and negative for the latter. Thus, the higher ∆T ,

the higher the ratio ∆T+τ/∆T would be. This is to be expected, since larger gaps are more difficult

to close than smaller ones. More importantly, the more queries are seen regarding the hospitals, the

smaller ∆T+τ/∆T will be at T + τ . This suggests a strategic behavior by patients when choosing

EDs, i.e., the more people query for wait time information, the smaller the eventual gap.

3. Simulation analysis of queueing models

In order to gain a better understanding of the empirical results above, we use simulation models

to study factors such as patients’ sensitivity to delay, load and network symmetry, on the level of

synchronization that can be achieved between two hospitals. We also analyze the impact of the

announcement method (delay estimator).

There has been a significant volume of work analyzing the JSQ policy, where customers join

the shortest queue among several parallel queues upon arrival. Most of the results are established

for networks of single server queues in the heavy-traffic asymptotic regime. The main result of

relevance to our discussion is that we only need a small fraction of customers to act strategically

(choose the shortest queue) to achieve a high level of resource pooling (state-space collapse in

the limit) (Reiman 1984, Turner 2000). In this study, we consider a more complex system—two

multi-server queues operating in parallel, with customers who choose the queue (server pool) by

a rational autonomous decision making approach. Customers choose which queue to join based on

a choice model that takes into account the delay factor. Specifically, we use a Multinomial Logit

Model (MNL) (see Anderson et al. (1996, §2.6)) where the utility for being served in hospital i

with reported delay ri is ui(ri) = βi−αri. βi is a hospital dependent parameter which reflects the

differences between hospitals in terms of their service quality, ED size, etc., that may affect the

way customers perceive the value of the service. α measures the cost of delay. The probability of

choosing hospital 1 is

p1(r1, r2) =
exp(β1−αr1)

exp(β1−αr1) + exp(β2−αr2)
,

where r1 and r2 are the reported waiting time of hospital 1 and hospital 2, respectively. Similarly,

the probability of choosing hospital 2 is

p2(r1, r2) = 1− p1(r1, r2) =
exp(β2−αr2)

exp(β1−αr1) + exp(β2−αr2)
.
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We notice that α measures how sensitive customers are to the differences in reported delays. In

other words, given two different reported delays, as α increases, a larger the proportion of patients

will choose to join the queue with the shorter reported delay.

We extend the previous JSQ literature in three directions:

a) We introduce a choice model to capture the phenomenon that people are relatively insensitive

to small differences in waiting times, but are more sensitive to larger gaps. In our model, we assume

everyone chooses which queue to join, but begin to act strategically when they see a relatively large

difference in the reported waiting times. Accordingly, we analyze how the sensitivity of customers

to delay affects synchronization level of the system.

b) As we are only conducting numerical experiments, our model offers more flexibility in terms

of allowing multiple servers for each queue and heterogeneity between the two queues. We also gain

more insights into the dynamics of finite scale systems.

c) We analyze how different delay announcements affect the synchronization level of the system.

This is motivated by the fact that most hospitals report a 4-hour moving average of historical

waiting times instead of the current queue length. In this analysis, we distinguish between the

effect of estimator accuracy and the estimation delay. Each factor has a different influence.

In what follows, we shall start with an idealistic model where each queue is able to report its

true waiting time. Note that if, in addition, α=∞, then every arriving customer chooses to join

the queue with the shortest waiting time and we achieve complete resource pooling, i.e. the two

queues act as a fully pooled one. We analyze how the sensitivity parameter α, the offered load

(offered load of each system when α = 0) and other factors affect the synchronization level and

system performance. We then investigate the effect of other waiting time announcements that differ

in their accuracy. Lastly, we check how the sensitivity parameter affects the gaps in waiting times

between two queues.

The simulation model allows full flexibility in terms of inter-arrival time and service time dis-

tributions. For the simplicity of demonstration, we consider the classical Markovian setting where

the arrivals follow a Poisson process with rate λ. The service times are exponentially distributed

with rate µ. Without loss of generality, we set µ = 1, i.e. the mean service time as one unit of

time. In the ED setting, this one unit of time would be around 4 hours. We denote Wi(t) as the

true waiting time of queue i at time t, Ri(t) as the reported delay of queue i at time t, and ni as

the number of servers in queue i. We measure the system synchronization level by the correlation

between waiting times as seen by arriving customers.

3.1. Idealistic model

In the idealistic model, each queue reports the true waiting time. We distinguish between two cases:

symmetric and non-symmetric. In the symmetric case, we assume that both hospitals (queues) have



14

the same number of beds (resources/servers), service time distribution, and are of the same quality.

In the non-symmetric case we consider hospitals with different preference parameters (β1 6= β2) and

different sizes (n1 6= n2).

3.1.1. Symmetric case In this case, we assume β1 = β2 and n1 = n2. Hence,

p1(r1, r2) =
1

1 + exp(−α(r2− r1))
.

We analyze how the sensitivity parameter α and the total offered load (λ/((n1 + n2)µ)) affect

the synchronization level between the two hospitals and the system performance—measured by

expected waiting times.

For finite values of α, our numerical experiments indicate that the synchronization level increases

in α (see Figure 7(a)). As previous research on JSQ policy implies, the increase in the sensitivity

level is not linear in α. We observe that a small value of α will lead to a significant level of

synchronization. This suggests that if customers are sensitive only to large gaps between waiting

times, we still gain most of the benefit of resource pooling. In addition, we observe that for the

same sensitivity parameter α, the synchronization level increases with the system load. Figure 7(b)

demonstrates that the expected waiting times of both hospitals decreases with α. This impact is

also influenced by load. As system load increases the effect on expected waiting times is larger, but

most of it is achieved even for small values of α.
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Figure 7 Synchronization level and expected waiting time as a function of α (upper: ρ= 0.95, middle: ρ= 0.9,

lower: ρ= 0.85).
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3.1.2. Non-symmetric case Here we consider two non-symmetric cases: quality differences

manifested by different βi’s and size differences derived by changes in ni’s. The announcements

themselves are still exact. We start by assuming that hospitals are of the same size but patients

have a predetermined preference towards the second hospital (i.e. β2 > β1). This may be due

to differences in quality-of-care provided by each institution or some constraints inflicted by the

insurance company that drive a higher proportion of the nearby population to a specific facility.

As a result, when α = 0, p1(r1, r2) = exp(−β1)/(exp(−β1) + exp(−β2)) < 0.5. Hence, hospital 2

has a higher offer load than hospital 1 to start with, i.e. if we denote ρ1 = λp1(r1, r2)/(n1µ) and

ρ2 = λp2(r1, r2)/(n2µ), then ρ2 >ρ1. We also notice that, since

p1(r1, r2) =
exp(1−αr1)

exp(1−αr1) + exp((β2−β1)−αr1)
,

we can measure the level of heterogeneity in preference by |β2−β1|.
Observation 3. We make the following three observations from our numerical experiments:

1. Similar to the symmetric case, the synchronization level increases as α increases, and most of

the pooling effect is achieved with small values of α.

2. For the same value of α, the synchronization level is decreasing in |β2−β1|.
3. The expected waiting time of hospital 2 (the more loaded queue) is decreasing in α. The

expected waiting time of hospital 1, may decrease or increase in α depending on the preference

difference—|β2 − β1|. For small value of |β2 − β1|, E[W1] is decreasing in α, for large value of

|β2−β1|, it is increasing in α.

Figure 8 illustrates a numerical example in this setting. We define System A to have β1 = 1 and

β2 = 1.1. In this case, ρ1 ≈ 0.85 and ρ2 ≈ 0.95. Both EW1 and EW2 are decreasing in α. In System

B, β1 = 1 and β2 = 2. In this case, when α = 0, ρ2 > 1 (i.e. hospital 2 is unstable when acting

alone). Here synchronization assures stability. Nevertheless, this comes at the following cost: EW1

is increasing in α for System B.

We make similar observations when β1 = β2 and look at the heterogeneity in staffing levels

(n1, n2). The synchronization level is increasing in α and the expected waiting time of the more

loaded system (system with a smaller staffing level) is decreasing in α. For a fixed value of α, the

synchronization level is decreasing in |n2−n1|. For small values of |n2−n1|, the expected waiting

time of the less loaded system (the system with the larger staffing level) is decreasing in α, while

for large values of |n2−n1|, the expected waiting time of the less loaded system is increasing in α.

3.2. The importance of timely and accurate delay announcements

The wait time estimator used by hospitals will err from time to time. In this section, we show that

these errors limit the synchronization levels that can be achieved and that delays of the wait time
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Figure 8 Synchronization level and expected waiting time as a function of α.

estimator in reflecting the true waiting time may drive the system to distraction. We show that the

system may become more volatile (oscillating), and that synchronization may decrease (instead of

increase) with α. Specifically, such behavior occurs when one uses the moving average estimators

employed in all the hospitals we observed.

We compare the following two delay estimators:

1. Moving average: Historical average over time windows of specific lengths. This is the current

reporting policy of hospitals. Let l be the time window for the moving average function. We

demonstrate two cases: 1. l equals average service time (LOS) (i.e., l = 1/µ); 2. l is one order

shorter than the average service time (i.e., l= 0.1/µ).

2. Head-of-Line (HOL) wait : Waiting time of the customer that is waiting at the head of the

line upon the current arrival. This method could be considered as a using moving average with

l= 0.

The hospitals in our empirical study report waiting times that are calculated using the average

waiting time of patients who enter service during the past 4 hours (moving average of a 4-hour

window). This is more or less the case where the averaging window equals the average service time.

There are other websites and online apps that report historical averages of even longer periods of

time—up to 1 year (see, for example, the online app “ED Wait Watcher” (Groeger et al. 2014)).

Figure 9 shows how the synchronization level changes with the sensitivity parameter α for

different window lengths l. Unlike the idealistic model, the synchronization level first increases in

α but then decreases in α. When l = 1, the synchronization level decreases to a negative level,

while when l= 0.1 and HOL (l= 0), the synchronization level is positive for all values of α. Figure

10 shows how the expected waiting time changes with the sensitivity parameter α for different

window length l. We observe that when the averaging window is long (l= 1), the expected waiting

time is increasing in α for large values of α. This suggests that the system is better off without
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announcements if patients are very sensitive to wait. But if one uses a relatively small window

(l < 0.1) than the expected waiting time decreases as sensitivity increases.
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Figure 9 Synchronization level as a function of α.
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Figure 10 Expected waiting time as a function of α.

Part of this effect is due to differences in accuracy of the estimators. Indeed, the error of the

reported waiting times with respect to the true waiting times is increasing in l. Specifically, when

α= 10, l= 1, the mean square error of the reported waiting times of hospital 1,
√
E[(R1−W1)2], is

approximately 1.0901; when l= 0.1,
√
E[(R1−W1)2]≈ 0.3269, and when l= 0,

√
E[(R1−W1)2]≈

0.1906. Figure 11 shows the sample path of the true waiting times versus the reported waiting

times.

Interestingly, the error alone is not what drives the phenomena of performance deterioration

with α. To validate this, we analyze a modified-idealistic model where we report the true waiting

time plus an error term that is normally distributed with mean 0 and standard deviation σ. Large

values of σ lead to inaccurate delay announcements, but there is no delay effect as with the moving
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Figure 11 Sample path of the true waiting time and the report waiting time (α= 10) in Hospital 1.

average method. Figure 12 shows how σ affects the synchronization levels. We observe that the

synchronization level is monotonically increasing in α for each value of σ, which is in contrast

to the non-monotonic effect of α we observed in Figure 9. Still, the inaccuracy has its impact:

synchronization will not reach its full potential when the announcement is inaccurate. This is

reasonable, as in that case patient may choose the more loaded queue just because the information

was not correct. Hence, as the error increases the maximal synchronization level will decrease.
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Figure 12 Synchronization level for different values of α and σ (upper: σ= 0.1, lower: σ= 1).

To understand why a moving average estimator preforms so poorly, we next take a closer look

at the sample path of the waiting time process of the two queues for α= 10 (see Figure 13). We

observe that when l= 1, the waiting time processes of the two queues take an alternating oscillating

form. Specifically, when W1(t) is large (small), W2(t) is small (large). This explains the negative

correlation we observe between the two waiting times. When l= 0.1 or 0 (HOL), the two waiting

time processes are closer to each other. This observation also explains the counter-intuitive result

shown in Figure 6, where initially small differences in wait times translated to large differences,
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and vice versa. This phenomenon is known in control theory as self-oscillation, where systems with

a delayed feedback may oscillate solely because of the feedback (Jenkins 2013). Here the delay

announcement and its influence on customer choice can be considered a control mechanism. This

suggests that the delay effect is the main reason for the “desynchronization” when patients are

very sensitive to delay.
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Figure 13 Sample path of the waiting time process (α= 10) of the two hospitals.

3.3. Closing the gap in delay times

Inspired by the empirical results of Section 2.2.2, we investigate here how the sensitivity parameter

α affects the waiting time gap between two hospitals and the rate in which such a gap will close.

Following the delay announcement analysis we conducted in Section 3.2, we first test how the gaps

in delay times, E[|W1−W2|] change with sensitivity parameter α for different delay announcement

estimators (Figure 14). We observe that for l= 1 (long historical average window), the average gap

size is first decreasing and then increasing in α, and for short historical average window, the average

gap size is decreasing in α. We also observe the variation of gap, V ar(|W1 −W2|), is increasing

with the window size l. These are consistent with our analysis on delay announcement estimators.

We observe that the if the l = 1 the gap can be of the same order of the service time, while for

more accurate and timely methods (l < 0.1) the gap is one order less than service time.)

We next look at how fast a specific gap in waiting time closes for different values of the sensitivity

parameter α. Specifically, we start the two queues from different initial states, one empty and the

other with certain amount of people waiting and observe the duration required, on average, for the

two systems to close the gap in waiting times to less than 0.01 units of time, for different values

of the sensitivity parameter α. We assume the system reports a delay that is based on historical

averages of a moving window that is of the same size as the mean service time (to be consistent with

our empirical systems). Figure 15 shows the numerical results from simulation. We observe that as
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Figure 14 Average waiting time gap as a function of α (upper: l= 1, middle: l= 0.1, lower: HOL (l= 0)).

patients become more sensitive to waiting, more of them choose the hospital with shorter reported

(and very likely true) waiting times, thus helping to balance the load faster. We also observe that

the higher the total offered load of the system, the longer it takes to close such waiting time gaps.
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Figure 15 Synchronization speed as a function of α (upper: ρ= 0.95, lower: ρ= 0.9).

4. Conclusion and future research

In this paper, we investigated the impact ED delay announcements have on patients’ choices

and the effect of patients’ choices on hospital synchronization levels. We provide evidence that

patients take delay information into account and that they act on this information when the

gap between waiting times is large enough. Using numerical simulations we observed that the

synchronization level between systems increase with patients’ sensitivity to waiting, the load of the

system, and the accuracy of the delay announcements. We also found that the mismatch between
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delay announcement and actual delay may cause extra oscillations in system load when the patients

are very sensitive to delay.

We believe this paper opens several directions for future research. The instability caused by the

mismatch between historical average and future delay calls for more accurate machinery for delay

announcements. We hypothesize that it is better to provide customers an estimation of the future

waiting time, as they need to travel to the ED, and hence do not enter the system immediately.

Developing estimators that jointly model travel and wait time is an open question. In addition, the

delay until seeing a physician is very partial information of the load in the ED. Another important

piece of information is the total LOS in the ED. Estimating future LOS is hard, as the reason

that the patient is arriving at the hospital is unknown, and the treatment required for him, as

well as the requirements of resources in the system are unknown. Nevertheless, we believe that

LOS is an important indicator for patients when considering which hospital to attend. How will

providing other load indicators (such as LOS) influence patient choices? Will the fact that they

cannot be accurate reduce coordination in the same way? Another issue arises when considering

that hospitals can ‘play’ with the load indicators by changing priorities between new and in-process

patients. When giving priority to new patient LOS may increase and vise versa. Does the current

system design incentivize hospitals to act in different operational modes as load changes? These

are topics we are currently investigating.
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