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Simulation Optimization via Robust Optimization

To understand the performance of stochastic systems, the traditional approach consists of positing a

probability distribution over the uncertain parameters and evaluate the distribution associated with a

certain performance measure. When the system dynamics are complex, common practice is to resort

to Monte Carlo simulation models to evaluate the system’s performance. Difficulties arising in this

setting include the choice of probability distributions to posit around the uncertain parameters, given

the presence of correlations and limited information, as well as computational challenges, especially for

heavy-tailed systems which require a high number of samples to obtain meaningful simulation outputs.

A step further is to optimally design stochastic systems by finding the best design or input parameters

with the goal of optimizing a given performance measure. Simulation optimization is commonly used to

that end, by taking the output of a simulation model, then feeding it to an optimization strategy which

provides a feedback on the progress of the search for the optimal solution, henceforth guiding the next

input to the simulation model. Simulation optimization methods include gradient based search methods,

such as perturbation analysis (e.g., see this approach applied to inventory systems by Glasserman and

Tayur [1994, 1995] and Fu [1994]), and stochastic optimization, among others. However, generating the

gradient for search methods, on the one hand, performing Monte Carlo approximations and generating

scenarios for the stochastic optimization framework, on the other hand, can be challenging.

Proposal

We propose a robust optimization approach to simulating and optimizing stochastic systems character-

ized by linear dynamics, based on a robust optimization framework. Specifically,

(1) Instead of positing some joint probability distribution over the uncertain parameters affecting

the system’s performance, we model uncertainty via polyhedral sets inspired by the limit laws of

probability. The size of each uncertainty set is characterized by a single variability parameter,

which controls the degree of conservatism of the model. We further assume that the variability

parameter follows some limiting distribution (a derivative of the normal distribution for light-tailed

systems and the stable distribution for heavy-tailed systems).

(2) We formulate the worst case performance analysis as an optimization problem over the parametrized

uncertainty sets and obtain a worst case output as a function of the variability parameters. To
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analyze the average case performance of a stochastic system, we propose to take the average of the

worst case outputs over the variability parameters. Furthermore, we cast the problem of finding

the optimal design inputs of a stochastic system that optimize its average performance as a robust

optimization problem.

This framework allows a significant reduction in the dimension of uncertainty, yielding tractable analyses.

Furthermore, the distribution of the variability parameters is deduced from the limiting distributions,

hence bypassing the challenge of fitting probability distributions or generating scenarios to model the

uncertainty. The approach also demonstrates the use of robust optimization for evaluating average

performance, as opposed to being merely restricted to a worst case approach.

Results

We illustrate the tractability and accuracy of our approach by (a) simulating the transient behavior

of multi-server queueing systems, (b) determining optimal base-stock levels in supply chains, and (c)

designing a optimal portfolio minimizing conditional value-at risk (CVaR).

Transient Queues. Queueing systems in call centers and cloud computing are often subject to

heavy-tailed arrivals and experience substantially long transient regime. The probabilistic analysis of

even simple transient queues remains intractable. We assume that the interarrival and service times sat-

isfy uncertainty sets characterized by variability parameters. We formulate the worst case performance

analysis as a one-dimensional nonlinear optimization problem, which yields closed form expressions as

a function of the variability parameters. The resulting average case performance reduces to a single-

dimensional integral. Besides significant tractability, the proposed methodology yields accurate results,

with errors within 10% relative to simulation for light and heavy tailed multi-server queueing systems.

Inventory Systems. The problem of finding optimal base-stock levels in multi-echelon supply

chain networks is challenging given the multi-dimensional state space of possible demand realizations.

In our framework, we assume demand realizations at the sink nodes satisfy parameterized uncertainty

sets. For given base-stock levels, we take a worst case approach and determine the highest total cost

incurred, subject to the demand satisfying the parameterized uncertainty set. We then cast the problem

of finding the optimal base-stock levels that minimize the expected total cost as a robust optimization

problem, specifically one that minimizes the average worst case total cost. Our approach generates

optimal base-stock levels within reasonable run times, using a Benders-like decomposition inspired by

Bienstock and Özbay [2008], with optimal base-stock levels and expected costs that are within 8% of

those obtained via simulation optimization.
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Portfolio Optimization. Multi-period optimal portfolio selection is a challenging problem given

the intrinsic correlation among different assets within the portfolio. While practitioners generally assume

a geometric Brownian motion for price dynamics, empirical studies have shown that market prices differ

from the ascribed model prices. We propose to model uncertainty in correlated returns via parametrized

uncertainty sets. More specifically, we deduce the covariance matrix from bootstrapping over available

data on stock returns, and then express price returns as a function of independent variables using the

Cholesky decomposition. We constrain the independent variables to follow parametrized uncertainty sets

inspired by the central limit law and obtain an optimal portfolio which minimizes the CVaR of the worst

case, given our uncertainty set assumptions. Our computations suggest that our methodology captures

the α−CVaR of the total returns with errors within 12% compared to simulations, for α = 0.5, . . . , 0.99.

Table 3: Single-Server Queue: Average percent errors for the waiting time relative to simu-

lations with normally distributed interarrival and service times.

� n0 = 0 n0 = 5 n0 = 10 n0 = 20 n0 = 50 n0 = 100

�
a
=� s
=2.

5

0.90 23.2 5.17 4.80 4.60 3.14 2.79

0.95 12.0 5.09 5.90 4.64 3.82 2.18

0.96 9.95 3.52 7.16 3.99 3.74 3.54

0.97 4.76 2.15 5.47 6.12 4.15 2.22

0.98 5.30 4.01 4.00 7.34 4.38 0.88

0.99 5.21 1.92 2.74 5.68 5.11 0.80

�
a
=� s
=4.

0

0.90 4.90 4.71 5.80 6.68 5.88 4.40

0.95 1.41 3.11 6.07 5.45 6.88 9.28

0.96 9.95 3.53 7.16 3.37 3.74 3.54

0.97 4.77 2.16 5.50 6.15 4.14 2.22

0.98 3.35 4.83 4.13 4.70 8.08 1.08

0.99 6.48 5.86 6.76 4.09 2.37 1.68
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Figure 5: Simulated (solid line) versus predicted values (dotted line) for a single-server queue with

normally distributed primitives (�a = �s = 4.0). Panels (a)–(c) correspond to an instance with

� = 0.95 and n0 = 0,5,20. Panels (d)–(f) correspond to an instance with � = 0.99 and n0 = 0,5,20.
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Table 4: Single-Server Queue: Average percent errors for the waiting time relative to simu-

lations with Pareto distributed interarrival and service times.

� n0 = 0 n0 = 50 n0 = 100 n0 = 200 n0 = 500

�
a
=� s

=1.
6

0.90 13.8 12.0 9.28 5.24 5.32

0.95 6.20 2.36 3.09 11.9 7.48

0.96 6.39 2.62 2.59 5.36 5.55

0.97 4.86 1.49 2.45 5.98 5.22

0.98 3.39 1.13 3.08 6.40 4.85

0.99 2.59 2.08 3.86 6.63 4.47
�

a
=� s

=1.
7

0.90 18.4 9.66 17.1 8.38 6.37

0.95 9.59 7.18 5.75 1.78 3.84

0.96 10.4 4.69 2.65 2.24 2.86

0.97 8.75 3.14 1.69 2.92 2.65

0.98 7.18 1.94 1.00 3.39 2.42

0.99 5.72 1.17 1.13 3.66 2.19
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Figure 6: Simulated (solid line) versus predicted values (dotted line) for a single-server queue with

Pareto distributed primitives (�a = �s = 1.6). Panels (a)–(c) correspond to an instance with � = 0.95

and n0 = 0,50,200. Panels (d)–(f) correspond to an instance with � = 0.99 and n0 = 0,50,200.
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Table 4: Single-Server Queue: Average percent errors for the waiting time relative to simu-

lations with Pareto distributed interarrival and service times.

� n0 = 0 n0 = 50 n0 = 100 n0 = 200 n0 = 500

�
a
=�

s
=1.

6

0.90 13.8 12.0 9.28 5.24 5.32

0.95 6.20 2.36 3.09 11.9 7.48

0.96 6.39 2.62 2.59 5.36 5.55

0.97 4.86 1.49 2.45 5.98 5.22

0.98 3.39 1.13 3.08 6.40 4.85

0.99 2.59 2.08 3.86 6.63 4.47

�
a
=�

s
=1.

7

0.90 18.4 9.66 17.1 8.38 6.37

0.95 9.59 7.18 5.75 1.78 3.84

0.96 10.4 4.69 2.65 2.24 2.86

0.97 8.75 3.14 1.69 2.92 2.65
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0.99 5.72 1.17 1.13 3.66 2.19
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Figure 6: Simulated (solid line) versus predicted values (dotted line) for a single-server queue with

Pareto distributed primitives (�a = �s = 1.6). Panels (a)–(c) correspond to an instance with � = 0.95

and n0 = 0,50,200. Panels (d)–(f) correspond to an instance with � = 0.99 and n0 = 0,50,200.
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Figure 1: Simulated (solid blue line) versus predicted values (dotted red line) for a single-
server queue with with traffic intensity 0.95. Panels (a), (b), and (c) correspond to an
instance with normally distributed inter-arrival and service times with initial buffer of 0, 5,
and 20 jobs, respectively. Panels (d), (e), and (f) correspond to an instance with Pareto
distributed interarrivals and services with a tail coefficient of 1.6, with initial buffers of 0,
50, and 200 jobs, respectively.
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Figure 1: Simulated (solid blue line) versus predicted values (dotted red line). Panel (a) depicts the
average system time in a single-server queue with Pareto distributed primitives with a tail coefficient of
1.6. Panel (b) depicts the average total cost of holding and backlogging stock in a single installation over
24 time periods. The optimal base-stock level is 160 as inferred by simulation and prediction, with an
error of 4% with the corresponding expected cost relative to simulation. Panel (c) depicts the α-CVaR
of the return for a given five-asset portfolio over a one month horizon of 22 trading days.
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